WO2012136143A1 - 一种电动助力车力矩传感器 - Google Patents

一种电动助力车力矩传感器 Download PDF

Info

Publication number
WO2012136143A1
WO2012136143A1 PCT/CN2012/073577 CN2012073577W WO2012136143A1 WO 2012136143 A1 WO2012136143 A1 WO 2012136143A1 CN 2012073577 W CN2012073577 W CN 2012073577W WO 2012136143 A1 WO2012136143 A1 WO 2012136143A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
hall
torque sensor
electric
magnetic
Prior art date
Application number
PCT/CN2012/073577
Other languages
English (en)
French (fr)
Inventor
朱正风
李家俊
Original Assignee
深圳市琛玛华夏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市琛玛华夏科技有限公司 filed Critical 深圳市琛玛华夏科技有限公司
Publication of WO2012136143A1 publication Critical patent/WO2012136143A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof

Definitions

  • the invention relates to the field of electromechanical, in particular to an electric brake torque sensor.
  • the technical problem to be solved by the present invention is to provide an electric assisted vehicle torque sensor for detecting the torque electric signal of the electric bicycle for human riding, and the structure is simple and reliable.
  • An electric bicycle torque sensor the main body of which is an elastic body, the elastic body is a circular sleeve similar to a spring structure with a spiral groove in a middle portion; a circular sleeve related surface at both ends of the spiral groove of the elastic body, A magnetic steel is respectively adhered in the circumferential direction; two Hall sensors are mounted on the support 7
  • the two ends of the elastic body respectively have an input coupling mechanism and an output coupling mechanism, which are connected in series between two components that need to detect the moment.
  • the magnetic steel is an integral magnetic ring, and the magnetic ring is charged with different magnetic poles in the circumferential direction.
  • the magnetic steel is formed by affixing a plurality of adjacent small-polar magnets of different polarities in a circumferential direction.
  • the two magnetic steels are respectively attached to the inner circumferential surface of the circular sleeve at both ends of the spiral groove of the elastic body.
  • the support member corresponding to the two magnetic steels comprises at least a motor core shaft and a Hall mounting plate, wherein the motor core shaft passes through the elastic body, and the Hall mounting plate is fixed at the In the Hall element mounting groove of the motor mandrel, the two Hall sensors are fixed on the Hall mounting plate.
  • the two magnetic steels are respectively attached to the outer surface of the circular sleeve at both ends of the spiral groove of the elastic body.
  • the support member corresponding to the two magnetic steels at least comprises a jacket and a Hall mounting plate, the elastic body is located in the outer casing; the Hall mounting plate is fixed to the Hall element mounting groove of the outer casing The two Hall sensors are fixed to the Hall mounting plate.
  • the magnetic steel is adhered to the surface of the circular sleeve at both ends of the spiral groove of the elastomer.
  • the elastic body is a circular sleeve similar to a spring structure with a spiral groove in the middle portion, and a magnetic steel is respectively attached to the circumferential surface of the circular sleeve on the opposite sides of the spiral groove of the elastic body.
  • two Hall sensors are respectively mounted on the support 7
  • the driving torque generated by the pedal pedal of the rider is transmitted to the end of the elastic body by the input member and the input coupling mechanism; and the resistance torque of the ground to the wheel is transmitted to the elastic through the output member and the output coupling mechanism.
  • the other end of the body The elastic body is twisted and deformed in the middle part under the action of driving torque and resisting torque, resulting in the relative positional misalignment of the two magnetic steels.
  • the pulse train output by the two sets of pulse generating devices consisting of magnetic steel and Hall sensor will produce a phase difference.
  • the phase difference is signal processed and can be output to the torque electric signal required by the electric bicycle driving controller.
  • the electric torque sensor torque sensing provided by the invention
  • FIG. 1 is a cross-sectional view of an electric bicycle torque sensor applied to an electric assisted wheel hub motor according to the present invention
  • FIG 2 is an exploded view of the main parts of the torque sensor of the electric bicycle shown in Figure 1;
  • FIG 3 is an exploded view of all parts of the torque sensor of the electric bicycle shown in Figure 1;
  • FIG. 4 is a cross-sectional view of an electric bicycle torque sensor applied to a standard center axle according to the present invention
  • Figure 5 is a cross-sectional view of a half-axis torque sensor of an electric bicycle applied to a standard central shaft according to the present invention
  • the invention provides an electric bicycle torque sensor, which can detect the torque electric signal of the electric bicycle of the electric bicycle, and has a structural unit and is reliable and practical. The details are described below separately.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a cross-sectional view showing an electric assisted vehicle torque sensor applied to an electric assisted wheel hub motor according to the present invention.
  • the electric brake torque sensor can include:
  • the elastic body 5 is a circular sleeve similar to a spring structure in which a spiral groove is formed in a middle portion; one end of the elastic body 5 is coupled to the threaded sleeve 6 through an input coupling mechanism 2, and the other of the elastic body 5 One end is coupled to the torque output disk 8 through the output coupling mechanism 7;
  • a neodymium magnet 4 is respectively attached in the circumferential direction; on the branch 7
  • the magnetic steel 4 is an integral magnetic ring, and the magnetic ring is charged with different magnetic poles in the circumferential direction.
  • the magnetic steel 4 is formed by sticking a plurality of small magnets of adjacent opposite polarity in a circumferential direction.
  • the magnetic steel 4 is adhered to the surface of the circular sleeve at both ends of the spiral groove of the elastic body 5.
  • the two turns of the magnetic steel 4 are respectively attached to the inner circumferential surface of the circular sleeve at both ends of the spiral groove of the elastic body 5.
  • the support member corresponding to the two magnetic steels 4 at least The motor mandrel 1 and the Hall mounting plate 9 are included, wherein the motor mandrel 1 passes through the elastic body 5, and the Hall mounting plate 9 is fixed to the Hall element mounting groove 10 of the motor mandrel 1.
  • the two Hall sensors 3 are fixed to the Hall mounting plate 9.
  • the above-described support member may further include a bearing 14 for supporting the motor spindle 1.
  • the electric power-assisted wheel hub motor is further provided with an end cover 11 for engaging with the torque output disc 8, and the thread sleeve 6 is limited, and the thread sleeve 6 can be freely rotated.
  • FIG. 2 and FIG. 3 Please refer to FIG. 2 and FIG. 3 together, wherein the right end of the threaded sleeve 6 is provided with end teeth, and the left end of the torque output disc 8 is provided with end teeth (not shown in FIG. 2 and FIG. 3), wherein the ends of the elastic body 5 are placed therein. End teeth are also provided, which respectively constitute an input coupling mechanism 2 and an output coupling mechanism 7.
  • the elastic body 5 is a spring-like circular sleeve similar to a spiral groove formed in the middle portion, and two round magnetic steels 4 are respectively adhered to the inner circumferential surface of the circular sleeve at both ends of the spiral groove of the elastic body 5.
  • the motor mandrel 1 passes through the elastic body 5, the motor core shaft 1 has a Hall element mounting groove 10, the Hall element mounting groove 10 is fixed with a Hall mounting plate 9, and the Hall mounting plate 9 is fixed with a pair. Hall element 3.
  • the fly sleeve When the electric bicycle is in normal working condition, the fly sleeve is mounted on the threaded sleeve 6, and the driving torque generated by the pedal pedal of the rider drives the flywheel through the chain to apply force to the threaded sleeve 6, and the threaded sleeve 6 drives the torque through the input coupling structure 2.
  • the resistance to the wheel is transmitted to the hub, the end cap 11, the torque output disk 8, and the resistance torque is transmitted to the other end of the elastic body 5 through the output coupling mechanism 7.
  • the elastic body 5 undergoes torsional deformation in the middle of the driving torque and the resisting torque, and the relative positions of the two magnetic steels 4 are misaligned.
  • the entire hub motor including the elastic body 5 is rotated forward, and the two magnetic steels 4 are respectively closely spaced from the surfaces of the two Hall sensors 3 fixed on the motor mandrel 1, and the two sets are magnetically
  • the pulse train output from the pulse generating device composed of the steel 4 and the Hall sensor 3 generates a phase difference, and the Hall mounting plate 9 performs signal processing on the phase difference to output a torque electric signal required by the electric assist vehicle drive controller.
  • the elastic body 5 and the torque output disk 8 There is a gap between them. If the spiral groove of the elastic body 5 is right-handed, the middle portion of the elastic body 5 will become thicker during operation, and the gap can provide a deformation space. If the deformation exceeds a certain limit, after the above gap is exceeded, the inner circle of the torque output disk 8 can limit its further deformation, thereby providing a safety protection effect.
  • the elastic body 5 is a circular sleeve similar to a spring structure in which a spiral groove is formed in the middle portion, and a circular sleeve related surface on both ends of the spiral groove of the elastic body 5 is respectively pasted in the circumferential direction.
  • a magnetic steel 4 and two bearing sensors 3 are respectively mounted on the supporting members corresponding to the two magnetic steels 4, and each of the Hall sensors 3 is adjacent to a magnetic steel 4, so that each of the magnetic steels 4 and A Hall sensor 3 can constitute a set of pulse generating means.
  • the driving torque generated by the pedal pedal of the rider is transmitted to one end of the elastic body 5 via the threaded sleeve 6 and the input coupling mechanism 2; and the resistance torque of the ground-to-wheel is transmitted through the torque output disc 8,
  • the output coupling mechanism 7 is transmitted to the other end of the elastic body 5.
  • the elastic body 5 undergoes torsional deformation of the middle portion under the action of the driving torque and the resisting torque, resulting in the relative positional displacement of the two magnetic steels 4, and the pulse trains output by the two sets of pulse generating devices composed of the magnetic steel 4 and the Hall sensor 3 are generated.
  • the phase difference after correcting the phase difference, can output the torque signal of the electric bicycle rotation. This signal, the structure is simple, reliable and practical.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a cross-sectional view showing an electric assisted vehicle torque sensor applied to a standard center axle according to the present invention.
  • the motor spindle 1 is changed to the middle shaft 12, and the input coupling mechanism 2 and the output coupling mechanism 7 of the elastic body 5 are adjusted to each other, and the torque output disk is adjusted.
  • the shape of the 8 changes accordingly, and the sprocket can be riveted.
  • the two magnetic steels 4 are respectively attached to the outer surface of the circular sleeve at both ends of the spiral groove of the elastic body 5.
  • the fixed position of the Hall sensor 3 is also moved to the outer cymbal, and is fixed in the Hall element mounting groove 10 of the outer casing 13 by the Hall mounting plate 9.
  • the outer casing 13 and the hall mounting plate 9 can be regarded as a support member corresponding to the two turns of the magnetic steel 4.
  • the design of the elastic body 5 here is thicker and thicker than the design of the elastic body 5 in the first embodiment.
  • the two shafts 7 14 are used to support the middle shaft 12, the middle shaft 12 is fixed on the left bowl 16 and the right bowl 17, and finally all the parts are sequentially combined by the five-way 15 and the outer sleeve 13 to form A complete product.
  • the square head and the thread at both ends of the central shaft 12 are used for mounting and fastening the ankle, and under the action of the rider's ankle force, the central shaft 12 rotates forward, through the teeth on the central shaft 12 and the upper end of the elastic body 5
  • the input input coupling mechanism 2 is driven to drive the elastic body 5 to rotate.
  • the tooth plate on the torque output plate 8 is pulled backward by the load, and the generated load torque is transmitted to the elastic body 5 through the output coupling mechanism 7, so that the middle portion of the spring-like elastic body 5 is torsionally deformed, and the two sets are made of magnetic steel 4 and
  • the pulse train output from the pulse generating device constituted by the Hall sensor 3 generates a phase difference, and the phase difference is corrected to output a torque signal for the electric bicycle to rotate.
  • the utility model provides an electric bicycle torque sensor which is applied on a standard central axis, has a single structure, is reliable and practical, has good compatibility, and is cost-effective.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the middle shaft 12 is a half-axis structure, which is divided into two left and right half shafts from the middle, and the middle shaft 12-1 of the left half, respectively.
  • the middle shaft 12-2 of the right half the elastic body 5 passes through the input coupling mechanism 2 and the output coupling mechanism 7, which are both threaded, respectively, and the left half middle shaft 12-1 and the right half middle shaft 12-2 are respectively.
  • the half shafts are connected in series. and also That is to say, the torque sensor is connected in series between the two halves of the shaft (the bicycle shaft is directly mounted on the right crank), and the right half of the shaft is connected to the crankset as an output mechanism (the output connection in Fig.
  • Disk 8 the left half of the center shaft 12-1 serves as a torque input mechanism.
  • the torque sensor detects only the riding force of the left foot, and the riding force of the right foot is symmetrically represented by the circuit chip according to the force of the left foot.
  • the structure of the elastic body 5, the two magnetic steels 4, the two Hall sensors 3, the Hall mounting plate 9, the outer casing 13, the Hall element mounting groove 10, and the left bowl 16 in Fig. 5 are basically the same as those in Fig. 4.
  • the right bowl 17 of Fig. 5 is longer, and an intermediate bearing 14 is mounted more than that of Fig.
  • the right cylindrical portion of the elastic body 5 is relatively long, The inner circular surface serves as an auxiliary support for the right end of the left half of the central axis 12-1; there is a large gap between the middle portion of the elastic body 5 and the central shaft 12-1 of the left half, if the spiral groove of the elastic body 5 is right-handed, when working The diameter of the elastic body 5 becomes small, which provides a deformation space for the elastic body 5. When the torque is too large and exceeds the limit, the gap will limit the excessive deformation of the elastic body 5 and serve as a limit protection. If the spiral groove of the elastic body 5 is left-handed, the diameter of the elastic body 5 is increased during operation, and the gap between the elastic body 5 and the outer casing 13 can function in the same manner as described above.
  • the semi-axle torque sensor structure of the electric bicycle used in the standard central axis is more compact, more compatible, and more cost-effective.
  • the description of the present invention is not intended to limit the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

一种电动助力车力矩传感器 本申请要求于 2011 年 4 月 8 日提交中国专利局、 申请号为 201110087966.X、 发明名称为"一种电动助力车力矩传感器"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及机电领域, 尤其涉及一种电动助力车力矩传感器。
背景技术
近年来, 越来越多的外国人开始把电动助力车作为外出健身郊游以及 室内运动的体育器材, 骑电动助力车逐渐成为一种时尚。 目前, 市场上的 电动助力车一般都会安装有力矩传感器, 力矩传感器用于检测电动助力车 人力驱动的力矩电信号并输出给驱动控制器, 驱动控制器根据该力矩电信 号可以获得骑车者脚蹬力的大小, 并根据骑车者脚蹬力的大小来控制电机 输出的功率大小, 使骑车者感觉轻便、 舒适, 真正享受骑行乐趣。
然而, 发明人在实践中发现, 目前的电动助力车力矩传感器都普遍存 在要么结构复杂, 要么不反映真实等缺陷。 如何设计一种结构筒单、 可靠 实用的力矩传感器产品, 已成为电动助力车行业亟需解决的问题。 发明内容
针对上述缺陷, 本发明所要解决的技术问题是提供一种电动助力车力 矩传感器, 用于检测电动助力车人力骑行的力矩电信号, 结构筒单、 可靠 实用。
一种电动助力车力矩传感器, 其主体为一弹性体, 所述弹性体为中段 开有螺旋槽的类似于弹簧结构的圓套筒; 所述弹性体的螺旋槽两端的圓套 筒相关面上, 沿圓周方向分别粘贴有一圏磁钢; 与两圏磁钢对应的支 7|件 上, 安装有两个霍尔传感器, 每一个霍尔传感器分别与一圏磁钢相接近; 所述弹性体的两端分别有输入联接机构与输出联接机构, 串联在需要检测 力矩的两个零部件间。
作为一种可选的实施方式, 所述磁钢是一个整体型磁环, 所述磁环沿 圓周方向充上不同磁极。
作为另一种可选的实施方式, 所述磁钢是由多片相邻异极性的小磁钢 沿圓周方向粘贴构成。
作为另一种可选的实施方式, 所述两圏磁钢分别粘贴在所述弹性体的 螺旋槽两端的圓套筒内圓表面上。
相应地, 所述与两圏磁钢对应的支 7?件至少包括电机芯轴和霍尔安装 板, 其中, 所述电机芯轴穿过所述弹性体, 所述霍尔安装板固定在所述电 机芯轴的霍尔元件安装槽内, 所述两个霍尔传感器固定在所述霍尔安装板 上。
作为另一种可选的实施方式, 所述两圏磁钢分别粘贴在所述弹性体的 螺旋槽两端的圓套筒外圓表面上。
相应地, 所述与两圏磁钢对应的支承件至少包括外套和霍尔安装板, 所述弹性体位于所述外套内; 所述霍尔安装板固定在所述外套的霍尔元件 安装槽内, 所述两个霍尔传感器固定在所述霍尔安装板上。
作为一种可选的实施方式, 所述磁钢粘贴在所述弹性体的螺旋槽两端 的圓套筒相联接的表面上。
本发明提供的电动助力车力矩传感器中, 弹性体为中段开有螺旋槽的 类似于弹簧结构的圓套筒, 弹性体的螺旋槽两端的圓套筒相关面上沿圓周 方向分别粘贴有一圏磁钢, 并且与两圏磁钢对应的支 7|件上分别安装有两 个霍尔传感器, 每一个霍尔传感器分别与一圏磁钢相接近, 从而每一圏磁 钢与一个霍尔传感器可以构成一套脉沖发生装置。 当电动助力车正常工作 时, 骑车者脚蹬踏板产生的驱动力矩由输入件、 输入联接机构传递给弹性 体的一端; 而地面对车轮的阻力矩经由输出件、 输出联接机构传递给弹性 体的另一端。 弹性体在驱动力矩和阻力矩的作用下其中段发生扭转变形, 导致两圏磁钢相对位置错位, 两套由磁钢与霍尔传感器构成的脉沖发生装 置输出的脉沖串将产生相位差, 对该相位差进行信号处理后可输出给电动 助力车驱动控制器需要的力矩电信号。 本发明提供的电动助力车力矩传感
附图说明
为了更清楚地说明本发明中的技术方案, 下面将对实施例中所需要使 用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提 下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的应用在电动助力车轮毂电机上的一种电动助力车 力矩传感器的剖面图;
图 2为图 1所示电动助力车力矩传感器主要零件的分解图;
图 3为图 1所示电动助力车力矩传感器全部零件的分解图;
图 4为本发明提供的应用在标准中轴上的一种电动助力车力矩传感器 的剖面图;
图 5为本实用新型提供的应用在标准中轴上的一种电动助力车半轴力 矩传感器的剖面图;
其中, 1-电机芯轴, 2-输入联接机构, 3-霍尔传感器, 4-磁钢, 5-弹性 体, 6-螺纹套, 7-输出联接机构, 8-力矩输出盘, 9-霍尔安装板, 10-霍尔 元件安装槽, 11-端盖, 12-中轴, 13-外套, 14-轴 , 15-五通, 16-左碗, 17-右碗。
具体实施方式 下面将结合本发明中的附图, 对本发明中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供一种电动助力车力矩传感器, 可以检测电动助力车人力骑 行的力矩电信号, 结构筒单、 可靠实用。 以下分别进行详细说明。
实施例一:
请参阅图 1 , 图 1为本发明提供的应用在电动助力车轮毂电机上的一 种电动助力车力矩传感器的剖面图。 如图 1所示, 该电动助力车力矩传感 器可以包括:
弹性体 5 , 所述弹性体 5为中段开有螺旋槽的类似于弹簧结构的圓套 筒; 所述弹性体 5的一端通过输入联接机构 2与螺纹套 6联接, 所述弹性 体 5的另一端通过输出联接机构 7与力矩输出盘 8联接;
所述弹性体 5的螺旋槽两端的圓套筒相关面上, 沿圓周方向分别粘贴 有一圏磁钢 4; 与两圏磁钢 4对应的支 7|件上, 安装有两个霍尔传感器 3 , 每一个霍尔传感器 3分别与一圏磁钢 4相接近。
作为一种可选的实施方式, 所述磁钢 4是一个整体型磁环, 所述磁环 沿圓周方向充上不同磁极。
作为另一种可选的实施方式, 所述磁钢 4是由多片相邻异极性的小磁 钢沿圓周方向粘贴构成。
作为一种可选的实施方式, 所述磁钢 4粘贴在所述弹性体 5的螺旋槽 两端的圓套筒相联接的表面上。
作为另一种可选的实施方式, 所述两圏磁钢 4分别粘贴在所述弹性体 5的螺旋槽两端的圓套筒内圓表面上。
相应地, 如图 1所示, 在两圏磁钢 4分别粘贴在所述弹性体 5的螺旋 槽两端的圓套筒内圓表面的情况下, 所述与两圏磁钢 4对应的支承件至少 包括电机芯轴 1和霍尔安装板 9,其中,所述电机芯轴 1穿过所述弹性体 5 , 所述霍尔安装板 9固定在所述电机芯轴 1的霍尔元件安装槽 10内,所述两 个霍尔传感器 3固定在所述霍尔安装板 9上。
如图 1所示,上述的支承件还可以包括轴承 14,用于支撑电机芯轴 1。 如图 1所示, 电动助力车轮毂电机上还设置有端盖 11 , 端盖 11用于和力 矩输出盘 8相配合, 对所述螺纹套 6进行限位, 螺纹套 6可以自由转动。
请一并参阅图 2和图 3 , 其中, 螺纹套 6的右端设置端齿, 力矩输出 盘 8的左端设置端齿(图 2、 图 3未显示出来), 其中置入的弹性体 5两端 也设置端齿, 与其分别组成输入联接机构 2、 输出联接机构 7。
其中, 弹性体 5为中段加工有螺旋槽的类似于弹簧结构圓套筒, 弹性 体 5的螺旋槽两端的圓套筒内圓表面上分别粘贴有两圏磁钢 4。
其中, 在电机芯轴 1穿过弹性体 5 , 电机芯轴 1开有一霍尔元件安装 槽 10,霍尔元件安装槽 10内固定有霍尔安装板 9,霍尔安装板 9上固定有 一对霍尔元件 3。
在电动助力车处于正常工作状态时, 螺纹套 6上安装有飞轮, 骑车者 脚蹬踏板产生的驱动力矩通过链条带动飞轮, 对螺纹套 6施力, 螺纹套 6 通过输入联接结构 2将驱动力矩传递给弹性体 5的一端; 而地面对车轮的 阻力经幅条传递给轮毂、 端盖 11、 经力矩输出盘 8, 并通过输出联接机构 7将阻力矩传递给弹性体 5的另一端。 弹性体 5在驱动力矩和阻力矩的作 用下其中段发生扭转变形, 两圏磁钢 4相对位置错位。 由于驱动力大于阻 力, 整个轮毂电机包括弹性体 5都在向前转动, 两圏磁钢 4分别从固定在 电机芯轴 1上的两个霍尔传感器 3的表面近距离越过, 两套由磁钢 4与霍 尔传感器 3构成的脉沖发生装置输出的脉沖串将产生相位差, 霍尔安装板 9 对该相位差进行信号处理后可输出给电动助力车驱动控制器需要的力矩 电信号。
本发明提供的电动助力车力矩传感器中, 在弹性体 5与力矩输出盘 8 之间留有间隙, 如果弹性体 5的螺旋槽是右旋的, 在工作时, 弹性体 5中 段部分会变粗, 间隙可提供其变形空间。 如果变形超过一定限度, 超出上 述间隙后, 力矩输出盘 8的内圓能限制其近一步变形, 起到安全保护的效 果。
本发明提供的电动助力车力矩传感器中, 弹性体 5为中段开有螺旋槽 的类似于弹簧结构的圓套筒, 弹性体 5的螺旋槽两端的圓套筒相关面上沿 圓周方向分别粘贴有一圏磁钢 4 , 并且与两圏磁钢 4对应的支承件上分别 安装有两个霍尔传感器 3 ,每一个霍尔传感器 3分别与一圏磁钢 4相接近, 从而每一圏磁钢 4与一个霍尔传感器 3可以构成一套脉沖发生装置。 当电 动助力车正常工作时, 骑车者脚蹬踏板产生的驱动力矩由经螺纹套 6和输 入联接机构 2传递给弹性体 5的一端; 而地面对车轮的阻力矩由经力矩输 出盘 8、 输出联接机构 7传递给弹性体 5的另一端。 弹性体 5在驱动力矩 和阻力矩的作用下其中段发生扭转变形, 导致两圏磁钢 4相对位置错位, 两套由磁钢 4与霍尔传感器 3构成的脉沖发生装置输出的脉沖串将产生相 位差, 对该相位差进行修正后即可输出电动助力车转动的力矩信号。 本发 信号, 结构筒单、 可靠实用。
实施例二:
请参阅图 4, 图 4为本发明提供的应用在标准中轴上的一种电动助力 车力矩传感器的剖面图。
与图 1相比, 在图 4所示的电动助力车力矩传感器中, 电机芯轴 1改 成了中轴 12, 弹性体 5的输入联接机构 2和输出联接机构 7左右对调了一 下, 力矩输出盘 8的形状相应发生变化, 其上可以铆接牙盘。
在图 4所示的电动助力车力矩传感器中, 两圏磁钢 4分别粘贴在弹性 体 5的螺旋槽两端的圓套筒外圓表面上。 相应地, 霍尔传感器 3的固定位 置也相应移到外圏, 由霍尔安装板 9固定在外套 13的霍尔元件安装槽 10 里。 在图 4所示的电动助力车力矩传感器中,外套 13和霍尔安装板 9可以 看作是与两圏磁钢 4对应的支承件。
另外,考虑到中轴 12的驱动力要比电机的驱动力大几倍,这里的弹性 体 5设计要比实施例一中弹性体 5的设计粗大厚实。 如图 4所示, 两个轴 7 14用于支撑中轴 12, 将中轴 12固定在左碗 16和右碗 17上, 最后由五 通 15、 外套 13把所有零件依次组合在一起, 形成个完整的产品。
其中, 中轴 12两端的方头、 螺纹用于安装和紧固脚蹬, 在骑车者脚蹬 力作用下, 中轴 12向前转动, 通过中轴 12上的齿与弹性体 5上端齿构成 的输入联接机构 2传动, 带动弹性体 5转动。 力矩输出盘 8上的牙盘被负 载拖动向后拉, 其产生的负载扭力经输出联接机构 7传给弹性体 5 , 使弹 簧状弹性体 5中段发生扭转变形, 两套由磁钢 4与霍尔传感器 3构成的脉 沖发生装置输出的脉沖串将产生相位差, 对该相位差进行修正后即可输出 电动助力车转动的力矩信号。
图 4中的牙盘虽只画出一种单牙盘结构, 对力矩输出盘 8稍作改变, 同样适用于多牙盘链条型外变速车结构。
其中, 中轴 12与弹性体 5中段的变形区之间也有一定间隙,如果弹性 体 5的螺旋槽采用右旋, 工作时弹性体 5体直径变小, 该间隙给弹性体 5 提供变形空间。 当力矩太大, 超过限度时, 该间隙会限制弹性体 5过分变 形, 起到限位保护作用。 如果弹性体 5的螺旋槽采用左旋, 工作时弹性体 5直径增大, 弹性体 5与外套 13的间隙能起上述同样作用。
本发明提供的应用在标准中轴上的电动助力车力矩传感器结构筒单、 可靠实用、 兼容性好、 性价比高。
实施例三:
请参阅图 5 , 与图 4相比, 图 5结构最大的区别为: 中轴 12为一种半 轴结构, 从中间分为左右两段半轴, 分别是左半段的中轴 12-1和右半段的 中轴 12-2, 弹性体 5通过同为螺紋联接的输入联接机构 2和输出联接机构 7, 分别把左半段中轴 12-1和右半段中轴 12-2两半段中轴串联在一起。 也 就是说, 力矩传感器是串联在两半段中轴间 (一般自行车结构右曲柄上直 接安装牙盘),右半段中轴跟牙盘相联作为输出机构(省去了图 4中的输出 联接盘 8 ), 左半段中轴 12-1作为力矩输入机构。 该力矩传感器只检测左 脚的骑行力, 右脚的骑行力是根据左脚的力对称性地由电路芯片模拟给出 的。
图 5中的弹性体 5、 两圏磁钢 4、 两个霍尔传感器 3、 霍尔安装板 9、 外套 13、 霍尔元件安装槽 10、 左碗 16等结构与图 4基本相同。 图 5的右 碗 17较长, 比图 4多装了一颗中间轴承 14, 作为两半段中轴 12-1、 12-2 的中心支承; 弹性体 5的右边圓筒部分相对长些, 其内圓表面作为左半段 中轴 12-1右端的辅助支承; 弹性体 5中段与左半段中轴 12-1间有较大间 隙, 如果弹性体 5的螺旋槽采用右旋, 工作时弹性体 5的直径变小, 该间 隙给弹性体 5提供变形空间。 当力矩太大, 超过限度时, 该间隙会限制弹 性体 5过分变形, 起到限位保护作用。 如果弹性体 5的螺旋槽采用左旋, 工作时弹性体 5直径增大, 弹性体 5与外套 13的间隙能起上述同样作用。
本本发明提供的应用在标准中轴上的电动助力车半轴力矩传感器结构 更筒单、 兼容性更好、 性价比更高。 领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上 均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种电动助力车力矩传感器, 其特征在于: 主体为一弹性体(5), 所述弹性体( 5 )为中段开有螺旋槽的类似于弹簧结构的圓套筒; 所述弹性 体(5)的螺旋槽两端的圓套筒相关面上, 沿圓周方向分别粘贴有一圏磁钢 (4); 与两圏磁钢(4)对应的支承件上, 安装有两个霍尔传感器(3), 每 一个霍尔传感器(3)分别与一圏磁钢(4)相接近; 所述弹性体(5)的两 端分别有输入联接机构(2)与输出联接机构(7), 串联在需要检测力矩的 两个零部件间。
2、根据权利要求 1所述的电动助力车力矩传感器, 其特征在于, 所述 磁钢 (4)是一个整体型磁环, 所述磁环沿圓周方向充上不同磁极。
3、根据权利要求 1所述的电动助力车力矩传感器, 其特征在于, 所述 磁钢 (4)是由多片相邻异极性的小磁钢沿圓周方向粘贴构成。
4、根据权利要求 1~3任意一项所述的电动助力车力矩传感器,其特征 在于, 所述两圏磁钢(4)分别粘贴在所述弹性体(5) 的螺旋槽两端的圓 套筒内圓表面上。
5、根据权利要求 4所述的电动助力车力矩传感器, 其特征在于, 所述 与两圏磁钢(4)对应的支承件至少包括电机芯轴(1)和霍尔安装板(9), 其中, 所述电机芯轴(1) 穿过所述弹性体(5), 所述霍尔安装板(9) 固 定在所述电机芯轴(1)的霍尔元件安装槽(10) 内, 所述两个霍尔传感器 (3) 固定在所述霍尔安装板(9)上。
6、根据权利要求 1~3任意一项所述的电动助力车力矩传感器,其特征 在于, 所述两圏磁钢(4)分别粘贴在所述弹性体(5) 的螺旋槽两端的圓 套筒外圓表面上。
7、根据权利要求 6所述的电动助力车力矩传感器, 其特征在于, 所述 与两圏磁钢(4)对应的支承件至少包括外套(13)和霍尔安装板(9), 所 述弹性体(5)位于所述外套(13) 内; 所述霍尔安装板(9) 固定在所述 外套(13) 的霍尔元件安装槽 (10) 内, 所述两个霍尔传感器固定在所述 霍尔安装板(9)上。
8、根据权利要求 1所述的电动助力车力矩传感器, 其特征在于, 所述 磁钢(4)粘贴在所述弹性体(5)的螺旋槽两端的圓套筒相联接的表面上。
PCT/CN2012/073577 2011-04-08 2012-04-06 一种电动助力车力矩传感器 WO2012136143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110087966.X 2011-04-08
CN 201110087966 CN102226727B (zh) 2011-04-08 2011-04-08 一种电动助力车力矩传感器

Publications (1)

Publication Number Publication Date
WO2012136143A1 true WO2012136143A1 (zh) 2012-10-11

Family

ID=44807713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073577 WO2012136143A1 (zh) 2011-04-08 2012-04-06 一种电动助力车力矩传感器

Country Status (2)

Country Link
CN (1) CN102226727B (zh)
WO (1) WO2012136143A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211434A1 (de) * 2013-06-18 2014-12-18 Ovalo Gmbh Antriebsvorrichtung zum Antreiben eines Fahrrades mit einer Elektronik
US20150020621A1 (en) * 2012-03-08 2015-01-22 Panasonic Corporation Electric bicycle
WO2015120848A1 (de) * 2014-02-12 2015-08-20 Schaeffler Technologies AG & Co. KG Welle für ein fahrradtretlager
WO2015120847A1 (de) * 2014-02-12 2015-08-20 Schaeffler Technologies AG & Co. KG Welle für ein fahrradtretlager

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226727B (zh) * 2011-04-08 2013-03-20 深圳市琛玛华夏科技有限公司 一种电动助力车力矩传感器
CN103278274B (zh) * 2013-04-24 2015-01-14 中北大学 基于电容耦合的旋转件扭矩测试装置
CN103335012A (zh) * 2013-07-05 2013-10-02 重庆大学 一种风电齿轮箱的太阳齿轮轴
CN104163225B (zh) * 2014-08-27 2015-05-27 天津市弘塔科技有限公司 电动自行车模拟力矩助力传感控制系统及实现方法
CN108627294A (zh) * 2018-05-07 2018-10-09 重庆三叶花科技有限公司 低阻式中轴力矩检测方法
TWI710757B (zh) * 2019-07-05 2020-11-21 期美科技股份有限公司 飛輪扭力量測裝置
CN112206466B (zh) * 2019-07-09 2022-02-11 期美科技股份有限公司 飞轮扭力量测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280973A (ja) * 1996-04-17 1997-10-31 Shuhei Takasu トルクセンサ
CN1248699A (zh) * 1999-08-12 2000-03-29 上海科峰电动车发展有限公司 链轮式力矩传感装置
US6223607B1 (en) * 1998-07-09 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Torque detector
JP2002310819A (ja) * 2001-04-13 2002-10-23 Kayaba Ind Co Ltd トルクセンサ
CN2542551Y (zh) * 2002-04-10 2003-04-02 苏州奔集动力有限公司 带力矩传感系统的电动自行车中轴组件
CN1459620A (zh) * 2002-05-20 2003-12-03 本田技研工业株式会社 电动辅助自行车的踏力检测装置
CN101604552A (zh) * 2009-06-26 2009-12-16 中国人民解放军国防科学技术大学 全方位高精度空间指向微调装置
CN101973357A (zh) * 2010-10-28 2011-02-16 苏州工业园区同盛车业有限公司 电动自行车力矩和速度传感器
CN102226727A (zh) * 2011-04-08 2011-10-26 深圳市琛玛华夏科技有限公司 一种电动助力车力矩传感器
CN202083502U (zh) * 2011-04-08 2011-12-21 深圳市琛玛华夏科技有限公司 一种电动助力车力矩传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071153B2 (ja) * 1997-02-21 2000-07-31 三洋電機株式会社 トルク検出装置及び該装置を具えた補助動力付自転車
TW409104B (en) * 1998-09-01 2000-10-21 Shimano Kk Torque sensor for bicycle and crankshaft assembly for bicycle
JP4722271B2 (ja) * 2000-09-06 2011-07-13 株式会社ジェイテクト トルク検出装置
US6595072B2 (en) * 2001-10-22 2003-07-22 Gordon Liao Sensor of the pedaling force of a power-assisting bike
JP2003149064A (ja) * 2001-11-07 2003-05-21 Honda Motor Co Ltd 電動補助自転車の踏力検知装置
CN2578807Y (zh) * 2002-11-05 2003-10-08 长春华隆汽车科技发展有限公司 一种汽车用转向扭矩传感器
ITMI20070669A1 (it) * 2007-04-02 2008-10-03 Campagnolo Srl Componente di bicicletta strumentato ed unita' di rilevamento per strumentare tale componente
CN201096565Y (zh) * 2007-09-04 2008-08-06 刘海平 电动助力车力矩传感装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280973A (ja) * 1996-04-17 1997-10-31 Shuhei Takasu トルクセンサ
US6223607B1 (en) * 1998-07-09 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Torque detector
CN1248699A (zh) * 1999-08-12 2000-03-29 上海科峰电动车发展有限公司 链轮式力矩传感装置
JP2002310819A (ja) * 2001-04-13 2002-10-23 Kayaba Ind Co Ltd トルクセンサ
CN2542551Y (zh) * 2002-04-10 2003-04-02 苏州奔集动力有限公司 带力矩传感系统的电动自行车中轴组件
CN1459620A (zh) * 2002-05-20 2003-12-03 本田技研工业株式会社 电动辅助自行车的踏力检测装置
CN101604552A (zh) * 2009-06-26 2009-12-16 中国人民解放军国防科学技术大学 全方位高精度空间指向微调装置
CN101973357A (zh) * 2010-10-28 2011-02-16 苏州工业园区同盛车业有限公司 电动自行车力矩和速度传感器
CN102226727A (zh) * 2011-04-08 2011-10-26 深圳市琛玛华夏科技有限公司 一种电动助力车力矩传感器
CN202083502U (zh) * 2011-04-08 2011-12-21 深圳市琛玛华夏科技有限公司 一种电动助力车力矩传感器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150020621A1 (en) * 2012-03-08 2015-01-22 Panasonic Corporation Electric bicycle
US9434446B2 (en) * 2012-03-08 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Electric bicycle
DE102013211434A1 (de) * 2013-06-18 2014-12-18 Ovalo Gmbh Antriebsvorrichtung zum Antreiben eines Fahrrades mit einer Elektronik
DE102013211434B4 (de) * 2013-06-18 2017-09-28 Ovalo Gmbh Antriebsvorrichtung zum Antreiben eines Fahrrades mit einer Elektronik
WO2015120848A1 (de) * 2014-02-12 2015-08-20 Schaeffler Technologies AG & Co. KG Welle für ein fahrradtretlager
WO2015120847A1 (de) * 2014-02-12 2015-08-20 Schaeffler Technologies AG & Co. KG Welle für ein fahrradtretlager

Also Published As

Publication number Publication date
CN102226727B (zh) 2013-03-20
CN102226727A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2012136143A1 (zh) 一种电动助力车力矩传感器
TWI506944B (zh) 馬達單元、馬達驅動裝置及踏板驅動裝置
KR101265306B1 (ko) 동력 보조 자전거용 토크 센서 조립체
CN101817388B (zh) 一种电动助力自行车助力传动机构
JP6408150B2 (ja) 電動自転車中心モーター及びそのトルク検知デバイス
US8651993B1 (en) Bicycle drive unit
WO2015120644A1 (zh) 电动自行车中轴力矩传感装置
TW201634335A (zh) 用於帶有電力輔助驅動裝置之人工驅動車輛的驅動組件及其控制方法與應用
WO2013097281A1 (zh) 一种线圈感应力矩传感器中置电机传动系统
CN203698571U (zh) 自行车中轴的无线力矩感测系统
WO2014184826A1 (ja) 電動アシスト自転車
WO2010022578A1 (zh) 一种电动助力自行车脚踏力矩传感系统
EP3772452B1 (en) Pedaling sensing device of electric bicycle
US10858059B2 (en) Combined torque, direction, and cadence sensing system for electric bicycles
CN103661773A (zh) 基于无线力矩检测的中置系统
CN106143777A (zh) 一种电动助力车中置电机及其力矩检测装置
TWI546207B (zh) Existing wheel side removable disc device
CN202083502U (zh) 一种电动助力车力矩传感器
JP3181650U (ja) 電動車の非接触式トルクセンサ機構
EP2664533B1 (en) Reverse brake mechanism for electrically assisted bicycle
WO2013097282A1 (zh) 一种磁控式力矩感应传动系统
CN204368387U (zh) 电动自行车中置电机及其力矩传感装置
CN102765456B (zh) 电动自行车的倒踩刹车机构
TWI646016B (zh) 電助力自行車驅動裝置
TWM587148U (zh) 自行車的電動輔助驅動單元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12768613

Country of ref document: EP

Kind code of ref document: A1