WO2012133988A1 - 합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템 - Google Patents

합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템 Download PDF

Info

Publication number
WO2012133988A1
WO2012133988A1 PCT/KR2011/004992 KR2011004992W WO2012133988A1 WO 2012133988 A1 WO2012133988 A1 WO 2012133988A1 KR 2011004992 W KR2011004992 W KR 2011004992W WO 2012133988 A1 WO2012133988 A1 WO 2012133988A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
synthesis gas
catalyst
reaction
heat exchanger
Prior art date
Application number
PCT/KR2011/004992
Other languages
English (en)
French (fr)
Inventor
이호태
정헌
천동현
김학주
양정일
양정훈
박지찬
김병권
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to CN201180004625.XA priority Critical patent/CN102869752B/zh
Priority to US13/516,855 priority patent/US8852539B2/en
Publication of WO2012133988A1 publication Critical patent/WO2012133988A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/341Apparatus, reactors with stationary catalyst bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention is a two-stage FT reactor system for producing synthetic fuel by Fischer-Tropsch reaction with catalyst contained in slurry (oil, wax) in coal liquefaction (CTL) and natural gas liquefaction (GTL) processes.
  • CTL coal liquefaction
  • GTL natural gas liquefaction
  • it comprises a first reactor consisting of a bubble column reactor and a second reactor consisting of a bubble column reactor or a fixed bed reactor, and two heat exchangers for cooling and heating between the two reactors to provide moisture and low boiling point
  • the present invention relates to a two-stage FT reactor system for increasing the conversion rate of syngas to maximize the yield of synthetic fuel and to extend the life of the catalyst used by separating the oil.
  • the FT reaction process is a core process of the liquefaction system (CTL), the indirect liquefaction system (CLT), the natural gas liquefaction system (GTL), and the liquefaction system (XTL) for gasifying various raw materials such as biomass and waste such as wood.
  • CTL liquefaction system
  • CLT indirect liquefaction system
  • GTL natural gas liquefaction system
  • XTL liquefaction system
  • the composition ratio (H 2 / CO ratio) of hydrogen and carbon monoxide generated in the gasification process of the CTL, GTL, XTL process is distributed in various ways depending on the raw material.
  • the composition ratio is distributed in the range of 0.6 to 1.2, and in the case of using gas such as natural gas and process waste gas as raw materials, 1.2 to 2.0 Shows the distribution of.
  • the FT reaction process induces the synthesis gas (CO + H 2 ) to react with the catalyst in the reactor body to produce a synthetic fuel in the liquid state.
  • the catalyst used in the FT reactor mainly uses Fe (iron) catalyst and Co (cobalt) catalyst.
  • the type of catalyst used in the FT reactor depends on the composition ratio (H 2 / CO ratio) of the synthesis gas flowing into the reactor.
  • the Fe catalyst can be used in a wide range of H 2 / CO ratio of 0.6 to 3.5 because the components contained in the catalyst causes a water gas shift reaction (CO) to convert hydrogen into hydrogen.
  • CO water gas shift reaction
  • Fe catalysts have lower activity than Co catalysts, resulting in higher reaction temperatures and pressures in order to obtain higher activity, resulting in shorter catalyst lifetimes.
  • the cobalt catalyst has high activity, and the reaction temperature and pressure are relatively lower than that of the Fe catalyst, but the catalyst deactivation is accelerated if the H 2 / CO ratio is not maintained at 1.8 to 2.0, thereby shortening the catalyst life. Therefore, when using the Co catalyst in the coal liquefaction process, it is necessary to attach the water gas reactor in front of the FT reactor to maintain the H 2 / CO ratio of the synthesis gas flowing into the FT reactor to 1.8 ⁇ 2.0. In addition, Co catalysts are difficult to apply to syngas generated from coal because they have a disadvantage that the reaction activity is rapidly reduced even if a small amount of impurities such as H 2 S in the synthesis gas.
  • the present invention has been made in view of the above problems, and a first object of the present invention is to interconnect one or more first reactors mainly using Fe catalysts and a second reactor mainly using Fe ⁇ Co or Co catalysts.
  • a first object of the present invention is to interconnect one or more first reactors mainly using Fe catalysts and a second reactor mainly using Fe ⁇ Co or Co catalysts.
  • the second purpose is to adjust the H 2 / CO ratio of the gas injected into the second reactor to 1.8 ⁇ 2.0 by adjusting the conversion rate of CO by adjusting the temperature, pressure and flow rate of the synthesis gas supplied to the first reactor. It is to provide a two-stage FT reactor system for increasing the conversion rate of the syngas that can provide a suitable reaction conditions for the second reactor.
  • the third object is to minimize the inflow of impurities into the second reactor by removing moisture and non-point oil in the synthesis gas discharged from the first reactor by using the first heat exchanger, and furthermore, It is to provide a two-stage FT reactor system for heating the temperature of the synthesis gas flowing into the second reactor using heat to increase the conversion efficiency of the synthesis gas of the structure that can increase the efficiency of the reaction while maximizing the energy efficiency.
  • the first invention in the FT reactor system, using a Fe catalyst, the first synthesis gas extracted from coal or biomass or natural gas At least one or more first reactors 10 which are supplied with and react with Fe catalyst to obtain synthetic fuel; And a second reactor using a Fe ⁇ Co catalyst or a Co catalyst and receiving a second synthesis gas flowing out after the reaction from the first reactor 10 to react with the Fe ⁇ Co catalyst or Co catalyst to obtain a synthetic fuel.
  • the first reactor 10 is supplied with a composition ratio of H 2 / CO included in the first synthesis gas in a range of 0.6 to 1.2, and includes an internal temperature and a pressure of the first synthesis gas.
  • the second reactor 20 is the ratio of the composition of H 2 / CO of the second synthesis gas flowing out after the reaction in the first reactor (10) It is preferably configured to have a CO conversion rate in the range of 90 to 95% during the reaction by controlling the internal temperature and pressure and the flow rate of the second synthesis gas when supplied in the range of 1.8 to 2.0.
  • the first reactor 10 and the second reactor 20 are preferably bubble column reactors.
  • the first reactor 10 is a bubble column reactor
  • the second reactor 20 is a fixed bed reactor having a catalyst pipe filled with a catalyst therein.
  • the first reactor 10 is provided with a first cooling tube 13 therein to prevent a sudden temperature rise due to the reaction heat generated when reacting with the Fe catalyst
  • the second reactor 20 is provided with a second cooling tube 23 therein to prevent a sudden temperature rise due to the reaction heat generated when reacting with the Fe ⁇ Co catalyst or the Co catalyst, and the first reactor 10
  • the outflow pipe 12 of the first reactor 10 and the second reactor so as to receive the second synthesis gas flowing out after the reaction from the reaction, and react with the Fe ⁇ Co catalyst or Co catalyst stored in the second reactor 20.
  • the fifth invention in the fourth invention, further comprises a first line 40 connecting the inlet side of the first heat exchanger 31 and the first cooling tube 13, the first line 40 is Cooling water supplied to the first heat exchanger (31) cools the second synthesis gas flowing out after the reaction from the first reactor (10), and is continuously transferred to the first cooling tube (13) to the first reactor by the heat of reaction It is configured to cool the inside of (10) to prevent a sudden temperature rise due to the internal reaction heat,
  • the second line 41 is the outlet of the first cooling tube 13
  • the high temperature cooling water discharged through the side is supplied to the second heat exchanger 32 to heat the second synthesis gas cooled through the first heat exchanger 31, and then discharged as water or steam to be used as another heat source.
  • a third line 42 connecting the outlet side of the second cooling tube 23 to the second line 41, wherein the third line 42 is an outlet side of the second cooling tube 23. It is configured to supply the high temperature coolant discharged through the second line 41 to increase the temperature of the coolant flowing into the second heat exchanger 32 along the second line 41. It is desirable to be.
  • the sixth invention in the fifth invention, by cooling the third synthesis gas flowing out after the reaction from the second reactor 20 to collect the water / low boiling oil contained in the synthesis gas through the second recovery tank 52 Further comprising a three heat exchanger to be stored, the third heat exchanger 51 is preferably installed in the discharge line 50 is connected to the second reactor (20).
  • the seventh invention further includes a fourth line 43 connecting the inlet side of the third heat exchanger 51 and the second cooling tube 23 in the sixth invention, wherein the fourth line 43 is Cooling water supplied to the third heat exchanger 51 cools the third synthesis gas flowing out from the second reactor 20, and is continuously transferred to the second cooling tube 23 to provide a second reactor by internal heat of reaction ( 20) is preferably configured to prevent a sudden temperature rise inside.
  • the reaction conditions of the first reactor 10 is the internal temperature 240 °C ⁇ 280 °C, the internal pressure is 15 atm ⁇ 40 atm, the flow rate of the first synthesis gas is 5 It is preferable that it is-20 cm / sec.
  • the reaction conditions of the second reactor 20 is a temperature of 150 °C to 230 °C, the pressure is 10 at 30 to 30 atm, the flow rate of the first synthetic gas is 5 to 20 cm / sec is preferred.
  • two independent reactors are installed to select a catalyst suitable for the composition ratio of H 2 / CO of the synthesis gas, and maintain process conditions suitable for each characteristic.
  • the first heat exchanger is used to remove moisture and non-point oil in the synthesis gas discharged from the first reactor, thereby minimizing the inflow of impurities into the second reactor, and further, the second heat exchanger is used to Heating the temperature has the effect of increasing the efficiency of the reaction while increasing the efficiency of energy to the maximum.
  • FIG. 1 is a block diagram of a two-stage F-T reactor system for increasing the conversion rate of the synthesis gas according to the first embodiment of the present invention
  • FIG. 2 is a block diagram of a two-stage F-T reactor system for increasing the conversion rate of the synthesis gas according to a second embodiment of the present invention.
  • FIG. 1 is a block diagram of a two-stage F-T reactor system for increasing the conversion rate of the synthesis gas according to the first embodiment of the present invention.
  • the present invention interconnects the first reactor 10 mainly using the Fe catalyst and the second reactor 20 mainly using the Fe ⁇ Co or Co catalyst to form two reaction zones.
  • Two-stage FT to increase the conversion rate of syngas to increase the total conversion rate of syngas, maximize the yield of synthesis fuel, and extend the life of the catalyst by having different catalyst and reaction conditions in each reaction zone. It relates to a reactor system.
  • the two-stage FT reactor system for improving the conversion rate of the synthesis gas according to the present invention consists of two parts, which is the first reactor 10, the second reactor 20 interconnected with the first reactor (10) It is composed of
  • the first reactor is composed of a bubble column reactor in which a slurry containing Fe catalyst is stored.
  • a dispersion plate 14 for dispersing bubble particles of the first synthesis gas extracted from coal, and Fischer- of the first synthesis gas and the Fe catalyst in the inner central region.
  • Filtering means 15 for releasing the synthetic fuel produced by the Tropsch reaction and filtering the catalyst, and a first cooling tube for cooling the reaction heat by the Fischer-Tropsch reaction of the synthesis gas and the Fe catalyst. 13) is provided.
  • the first reactor 10 is supplied with the first synthesis gas through the inlet pipe 11, at which time the composition ratio of H 2 / CO contained in the first synthesis gas is supplied in the range of 0.6 ⁇ 1.2 Temperature and pressure, and the flow rate of the first synthesis gas is adjusted to have a CO conversion in the range of 50 to 80% when reacted with the Fe catalyst.
  • the total composition ratio of the first synthesis gas is in the range of H 2 : 35% ⁇ 40%, CO: 40% ⁇ 45%, CO 2 : 10% ⁇ 20%, CH 4 : 1% ⁇ 5%, and the internal temperature is It is required to be in the range of 240 ° C. to 280 ° C., an internal pressure of 15 atm to 40 atm, and a flow rate of 5 to 20 cm / sec.
  • the reaction temperature of the first reactor (10) is maintained in the range of 240 °C ⁇ 280 °C, the internal pressure is maintained at 15 atmospheres to 40 atmospheres, the flow rate is adjusted to 5 ⁇ 20cm / sec to change the CO conversion rate 50 ⁇ 80 You can set it to the% range.
  • the Fischer-Tropsch reaction equation of the present invention is defined as in [Formula 1], and is a main reaction equation of the first reactor 10 and the second reactor 20.
  • the conversion rate of CO is 50 depending on the composition ratio of the first synthesis gas, the flow rate, the internal temperature, and the internal pressure.
  • the ratio of H 2 / CO of the second synthesis gas supplied to the second reactor 20 is maintained in the range of 80% to 80%, thereby providing a structure that can be supplied in the range of 1.8 to 2.0.
  • a wax-type synthetic fuel produced in a state in which a conversion rate of CO is 50 to 80% by reacting with a Fe catalyst through [Formula 1] may be first obtained through the filtering means 15. Can be.
  • the H 2 / CO ratio of the second synthesis gas is introduced into the second reactor 20 using the Fe ⁇ Co catalyst or the Co catalyst at 1.8 or lower, or the temperature is too high.
  • the following subreaction formula [Formula 4] may be generated.
  • Such a reaction is not preferable because it generates carbon, carbon covers the surface of the catalyst, promotes deactivation of the catalyst, weakens the conversion of CO, and consequently, obtains synthetic fuel in the second synthesis gas.
  • the second reactor 20 uses a Fe ⁇ Co catalyst or a Co catalyst, and has a structure in which a second cooling tube 23 is installed to remove reaction heat generated when the second synthesis gas reacts with the catalyst.
  • the second reactor 20 may be composed of a bubble column reactor or a fixed bed reactor having a catalyst pipe filled with a catalyst therein.
  • a bubble column reactor or a fixed bed reactor having a catalyst pipe filled with a catalyst therein.
  • the second reactor 20 may be supplied with a second synthesis gas having a phase of H 2 / CO of 1.8 to 2.0 by maintaining a conversion ratio of 50 to 80% as described above in the first reactor 10.
  • the total composition ratio of the second synthesis gas is H 2 : 40% to 50%, CO: 20 to 30%, CO 2 : 20% to 40%, CH 4 : 2% to 7% range.
  • the reaction conditions of the second reactor 20 is a temperature 150 °C ⁇ 230 °C
  • the pressure is 10 at 30 ⁇ 30 atm
  • the flow rate of the first synthetic gas is preferably 5 ⁇ 20cm / sec.
  • the second reactor 20 is connected to the first reactor 10 to receive the second synthesis gas from the first reactor 10, and the trace amount of impurities contained in the first synthesis gas is the first reactor 10.
  • the trace amount of impurities contained in the first synthesis gas is the first reactor 10.
  • the Fe catalyst in or is absorbed in the slurry it is also included in the oil and water condensed in the first heat exchanger 31 is removed because it can be prevented from entering the second reactor (20)
  • a substance that suppresses the activity of the Co catalyst is hardly supplied, thereby extending the life of the Co catalyst.
  • the second synthesis gas H 2 / CO composition ratio supplied to the second reactor 20 is supplied in the range of 1. 8 ⁇ 2.0 to the CO conversion rate of the second synthesis gas to 90% ⁇ 95% or more by the reaction conditions described above Because of the reaction, the overall process yield is higher than 95%, which can improve the economics of the process.
  • the present invention further provides a first heat exchanger 31 for cooling the syngas discharged through the inside of the first reactor 10 and the outlet pipe 12 of the first reactor 10, and the first heat exchange. It consists of a second heat exchanger (32) which is heated by the reaction heat of the first reactor (10) for heating the synthesis gas cooled through the group (31).
  • connection line 30 connects the inlet pipes 21 of the second reactor 20 to each other.
  • connection line 30 the second synthesis gas is cooled from the first reactor 10 so that the water and the low boiling oil contained in the second synthesis gas are collected and stored through the first recovery tank 33.
  • the first heat exchanger 31 is installed.
  • the first heat exchanger 31 cools the second high temperature synthesis gas transported along the connection line 30 to supply moisture and low boiling oil included in the second synthesis gas through the first recovery tank 33. It can be collected, which is a structure that can prevent the supply of water to suppress the Co catalyst activity of the second reactor (20).
  • connection line 30 has a second heat exchange to heat the second synthesis gas cooled through the first heat exchanger 31 to the reaction temperature of the Fe ⁇ Co catalyst or Co catalyst of the second reactor 20.
  • the machine 32 is installed.
  • the first line 40 is connected to the inflow side of the first heat exchanger 31 and the first cooling tube 13.
  • the first line 40 cools the second synthesis gas flowing out after the coolant supplied to the first heat exchanger 31 is reacted from the first reactor 10, and continuously the first cooling tube 13 And cooled to the inside of the first reactor 10 by the heat of reaction to prevent rapid temperature rise by the heat of internal reaction.
  • the outlet side of the second heat exchanger 32 and the first cooling tube 13 has a structure in which the second line 41 is connected.
  • the second line 41 is cooled by the first heat exchanger 31 by allowing the high temperature cooling water discharged through the outlet side of the first cooling tube 13 to be supplied to the second heat exchanger 32.
  • the second synthesis gas is heated and then discharged in the form of water or steam to be used as another heat source.
  • the structure further includes a third line 42 connecting the outlet side of the second cooling tube 23 and the second line 41.
  • the third line 42 is configured such that the high temperature cooling water discharged through the outlet side of the second cooling tube 23 can be supplied to the second line 41 so that the second line 42 is along the second line 41. It is comprised so that the temperature of the cooling water which flows into the heat exchanger 32 can be raised.
  • the first synthesis gas is introduced through the inlet pipe 11 of the first reactor 10.
  • the first synthetic gas introduced is made to uniformize the bubble particles through the dispersion plate 14, and then react with the Fe catalyst to generate synthetic fuel.
  • the generated synthetic fuel is collected through the filtering means 15, and the high temperature second synthesis gas flowing out to the connection line 30 after the reaction is cooled by the first heat exchanger 31 to be included in the second synthesis gas.
  • Moisture and low boiling oil can be collected through the first recovery tank 33. This is to prevent moisture from flowing into the second reactor 20 to suppress Co catalyst activity.
  • the low temperature second synthesis gas from which the water and the low boiling oil are removed is heated again through the second heat exchanger 32 to be introduced into the second reactor 20.
  • the second synthesis gas flowing into the second reactor 20 is reacted with the Fe Co catalyst or Co catalyst to obtain the synthetic fuel through the filtering means 24 provided in the second reactor 20, and generated during the reaction. And unreacted gas are discharged to the outside.
  • the movement path of the cooling water is as follows.
  • the first low temperature cooling water is supplied to the first heat exchanger 31 to cool the second synthetic fuel and flow out to the first line 40.
  • the coolant cooling the second synthetic fuel flows into the first cooling tube 13 through the first line 40 to cool the reaction heat of the first reactor 10 and is converted into a high temperature cooling water so that the second line ( 41).
  • the separate cooling water that cools the reaction heat of the second reactor 20 and is converted into high temperature cooling water flows out through the third line 42 and joins the cooling water of the second line 41.
  • the joined high temperature coolant is supplied to the second heat exchanger 32 through the second line 41 to heat the second synthetic fuel and to be steamed to be used as another heat source.
  • FIG. 2 is a block diagram of a two-stage F-T reactor system for increasing the conversion rate of the synthesis gas according to a second embodiment of the present invention.
  • the second embodiment includes the first embodiment and cools the third synthesis gas flowing out after the reaction from the second reactor 20 to remove the water and the low boiling oil included in the third synthesis gas.
  • the structure further includes a three heat exchanger to be collected and stored through the two recovery tanks (52).
  • the second reactor 20 is configured as a bubble column reactor in an embodiment, the third heat exchanger 51 is installed in the discharge line 50 is connected to the outlet pipe 22 of the second reactor (20) Structure.
  • a fourth line 43 which connects the inlet side of the third heat exchanger 51 and the second cooling tube 23 to the third heat exchanger 51. Cooling water supplied to the C) cools the third synthesis gas flowing out from the second reactor 20, and is continuously transferred to the second cooling tube 23, so that the inside of the second reactor 20 by the internal heat of reaction is abrupt. It is configured to prevent the temperature rise.
  • This structure is to supply the low-temperature cooling water of the third synthesis gas or the low boiling point oil flowing through the discharge line 50 by supplying the cooling water of the low temperature to the third heat exchanger 51, the unreacted Gas is a structure that can be discharged to the outside.
  • the high temperature cooling water flowing out through the second cooling tube 23 is merged into the second line 41 through the third line 42 to heat the second synthesis gas through the second heat exchanger 32. It is a constitution.
  • the volume of the second reactor 20 according to the present invention is proportional to the number of first reactors 10 and the CO conversion rate in the first reactors.
  • the number of first reactors 10 is the same as in the embodiment.
  • the volume of the second reactor 20 is 30 to 60% of the volume of the first reactor 10. Therefore, when there are two first reactors 10, the volume of the second reactor 20 may be configured as 60% to 120% of the first reactor 10, of course.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에 관한 것으로, 이를 위해 Fe 촉매를 사용하고, 석탄 또는 바이오매스 또는 천연가스에서 추출된 제 1합성가스를 공급받아 Fe 촉매와 반응시켜 합성연료를 획득하는 적어도 1개 이상의 제 1반응기(10); 및 Fe·Co 촉매 또는 Co 촉매를 사용하고, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 Fe·Co 촉매 또는 Co 촉매와의 반응시켜 합성연료를 획득하는 제 2반응기(20);를 포함하여 이루어지되, 상기 제 1반응기(10)는 제 1합성가스에 포함된 H2/CO의 조성비를 0.6 ~ 1.2 범위로 공급받아 내부온도 및 압력과, 제 1합성가스의 유속을 조절하여 반응시 50 ~ 80%범위의 CO 전환율을 갖도록 구성하고, 상기 제 2반응기(20)는 제 1반응기(10)에서 반응 후 유출되는 제 2합성가스의 H2/CO의 조성비를 1.8 ~ 2.0 범위로 공급받아 내부온도 및 압력과, 제 2합성가스의 유속을 조절하여 반응시 90 ~ 95% 범위의 CO 전환율을 갖도록 구성되는 것을 특징으로 한다.

Description

합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템
본 발명은 석탄 액화(CTL) 및 천연가스 액화(GTL) 공정에서 슬러리(오일, 왁스)에 함유된 촉매와 피셔-트롭쉬(Fischer-Tropsch) 반응에 의해 합성연료를 생성하는 2단 F-T 반응기 시스템에 관한 것으로, 보다 상세하게는 기포탑 반응기로 이루어진 제 1반응기와 기포탑 반응기 또는 고정층 반응기로 이루어진 제 2반응기를 구성하고, 두 반응기 사이에 냉각과 가열을 위한 2개의 열교환기를 설치하여 수분 및 저비점의 오일을 분리하여 줌으로써 합성연료의 수율을 최대한 높이고, 사용하는 촉매의 수명을 연장하도록 한 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에 관한 것이다.
일반적으로, F-T 반응공정은 석탄 간접 액화시스템(CLT)과, 천연가스 액화시스템(GTL)과, 목재 등의 바이오매스 및 폐기물 등 다양한 원료를 가스화하여 기름을 만드는 액화 시스템(XTL)의 핵심 공정이다.
여기서 CTL, GTL, XTL 공정의 가스화 공정에서 생성되는 수소와 일산화탄소의 조성비(H2/CO 비)는 원료물질에 따라 다양하게 분포하고 있다. 석탄, 페트롤륨코크, 중질잔사 및 목재 등의 바이오매스와 같은 고체를 원료로 사용하는 경우 조성비는 0.6 ~ 1.2 가량으로 분포하고 있으며, 천연가스 및 공정 폐가스 등 기체를 원료로 사용할 경우에는 1.2 ~ 2.0의 분포를 보이고 있다.
여기서 F-T 반응공정은 합성가스(CO + H2)를 유입시켜 반응기 본체 내의 촉매와 반응하도록 하여 액체상태의 합성연료를 생성한다.
이 때 F-T 반응기에서 사용하는 촉매는 주로 Fe(철) 촉매와 Co(코발트) 촉매를 주로 사용하게 된다. F-T 반응기에서 사용되는 촉매의 종류는 반응기에 유입되는 합성가스의 조성비(H2/CO 비)에 따라 결정된다.
여기서 Fe 촉매는 촉매에 함유된 성분이 CO를 수소로 전환하는 수성가스반응(water gas shift reaction)을 일으키기 때문에 H2/CO 비가 0.6 ~ 3.5의 넓은 범위에서 사용이 가능하다. 그러나 Fe 촉매는 Co 촉매에 비해 활성이 낮기 때문에 높은 활성을 얻기 위해서는 반응온도와 압력이 높아지며, 촉매의 수명이 단축되는 결과를 가져온다.
반면에 코발트 촉매는 활성이 높아 반응온도와 압력이 Fe 촉매에 비해 상대적으로 낮지만 H2/CO 비를 1.8~2.0으로 유지하지 않으면 촉매의 비활성화 현상이 가속화되어 촉매의 수명이 짧아진다. 따라서 석탄액화 공정에서 Co 촉매를 사용할 경우에는 F-T 반응기 앞에 수성가스 반응기를 부착하여 F-T 반응기에 유입되는 합성가스의 H2/CO 비를 1.8~2.0으로 유지해주는 것이 필요하다. 또한 Co 촉매는 합성가스에 H2S 등과 같은 불순물이 소량 포함되어 있어도 급격하게 반응 활성이 저하되는 단점을 가지고 있기 때문에 석탄으로부터 생성된 합성가스에 적용하기에 어려움이 있다.
이와 같이 Fe 촉매와 Co 촉매는 각각의 장단점을 가지고 있기 때문에 이들의 장단점을 서로 보완하면서 공정의 효율을 높이는 반응공정의 조합의 개발이 필요하다.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 제 1목적은, Fe 촉매를 주로 사용하는 하나 이상의 제 1반응기와 Fe·Co 또는 Co 촉매를 주로 사용하는 제 2반응기를 상호 연결하여 각각 2개의 반응영역을 형성하고, 각 반응영역에서 서로 다른 촉매와 반응조건을 갖도록 하여 합성가스의 총 전환율을 높이고 합성연료의 수율을 최대화하며, 촉매의 수명을 연장할 수 있도록 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템을 제공하는데 있다.
또한 제 2목적은, 제 1반응기의 온도, 압력 및 공급되는 합성가스의 유량을 조절하여 CO의 전환율을 조절함으로써 제 2반응기로 주입되는 가스의 H2/CO 비율을 1.8 ~ 2.0으로 조정하여 줌으로써 제 2반응기에 적합한 반응조건을 제공할 수 있는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템을 제공하는데 있다.
또한 제 3목적은, 제 1열교환기를 이용하여 제 1반응기에서 배출되는 합성가스 중의 수분 및 비점오일을 제거함으로써 제 2반응기로의 불순물 유입을 최소화하고, 더불어 제 1반응기와 제 2반응기에서 발생하는 열을 이용하여 제 2반응기에 유입되는 합성가스의 온도를 가열하여 에너지의 효율을 높이면서 반응효율을 최대로 높일 수 있는 구조의 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템을 제공하는데 있다.
본 발명은 상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 제 1발명은, F-T 반응기 시스템에 있어서, Fe 촉매를 사용하고, 석탄 또는 바이오매스 또는 천연가스에서 추출된 제 1합성가스를 공급받아 Fe 촉매와 반응시켜 합성연료를 획득하는 적어도 1개 이상의 제 1반응기(10); 및 Fe·Co 촉매 또는 Co 촉매를 사용하고, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 Fe·Co 촉매 또는 Co 촉매와의 반응시켜 합성연료를 획득하는 제 2반응기(20);를 포함하여 이루어지되, 상기 제 1반응기(10)는 제 1합성가스에 포함된 H2/CO의 조성비를 0.6 ~ 1.2 범위로 공급받아 내부온도 및 압력과, 제 1합성가스의 유속을 조절하여 반응시 50 ~ 80%범위의 CO 전환율을 갖도록 구성하고, 상기 제 2반응기(20)는 제 1반응기(10)에서 반응 후 유출되는 제 2합성가스의 H2/CO의 조성비를 1.8 ~ 2.0 범위로 공급받아 내부온도 및 압력과, 제 2합성가스의 유속을 조절하여 반응시 90 ~ 95% 범위의 CO 전환율을 갖도록 구성되는 것이 바람직하다.
제 2발명은, 제 1발명에서, 상기 제 1반응기(10) 및 제 2반응기(20)는 기포탑 반응기인 것이 바람직하다.
제 3발명은, 제 1발명에서, 상기 제 1반응기(10)는 기포탑 반응기이고, 제 2반응기(20)는 내부에 촉매가 충진된 촉매파이프를 갖는 고정층 반응기인 것이 바람직하다.
제 4발명은, 제 1발명 내지 제 3발명에서, 상기 제 1반응기(10)는 내부에 제 1냉각관(13)을 구비하여 Fe 촉매와 반응시 발생되는 반응열에 의한 급격한 온도상승을 방지하고, 상기 제 2반응기(20)는 내부에 제 2냉각관(23)을 구비하여 Fe·Co 촉매 또는 Co 촉매와 반응시 발생되는 반응열에 의한 급격한 온도상승을 방지하며, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 제 2반응기(20)에 저장된 Fe·Co 촉매 또는 Co 촉매와 반응시킬 수 있도록 상기 제 1반응기(10)의 유출관(12)과, 제 2반응기(20)의 유입관(21)을 상호 연결하는 연결라인(30)과, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 냉각하여 제 2합성가스에 포함된 수분 및 저비점 오일을 제 1회수탱크(33)를 통해 수거하여 저장될 수 있도록 상기 연결라인(30)에 설치되는 제 1열교환기(31)와, 상기 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 제 2반응기(20)의 Fe·Co 촉매 또는 Co 촉매의 반응온도까지 가열할 수 있도록 상기 연결관에 설치되는 제 2열교환기(32)를 더 포함하여 이루어지는 것이 바람직하다.
제 5발명은, 제 4발명에서, 상기 제 1열교환기(31)와 제 1냉각관(13)의 유입측을 연결하는 제 1라인(40)을 더 포함하되, 상기 1라인(40)은 제 1열교환기(31)로 공급된 냉각수가 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 냉각하고, 연속적으로 제 1냉각관(13)으로 이송되어 반응열에 의한 제 1반응기(10)의 내부를 냉각하여 내부 반응열에 의한 급격한 온도 상승을 방지하도록 구성되고,
상기 제 1냉각관(13)의 유출측과 제 2열교환기(32)를 연결하는 제 2라인(41)을 더 포함하되, 상기 제 2라인(41)은 제 1냉각관(13)의 유출측을 통해 배출되는 고온의 냉각수가 제 2열교환기(32)로 공급되도록 하여 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 가열한 후 물 또는 스팀형태로 배출되어 다른 열원으로 사용될 수 있도록 구성되며,
상기 제 2냉각관(23)의 유출측과 제 2라인(41)을 연결하는 제 3라인(42)을 더 포함하되, 상기 제 3라인(42)은 제 2냉각관(23)의 유출측을 통해 배출되는 고온의 냉각수가 제 2라인(41)으로 공급될 수 있도록 구성하여 제 2라인(41)을 따라 제 2열교환기(32)로 유입되는 냉각수의 온도를 상승을 도모할 수 있도록 구성되는 것이 바람직하다.
제 6발명은, 제 5발명에서, 상기 제 2반응기(20)로부터 반응 후 유출되는 제 3합성가스를 냉각하여 합성가스에 포함된 물/저비점오일을 제 2회수탱크(52)를 통해 수거하여 저장될 수 있도록 3열교환기를 더 포함하되, 상기 제 3열교환기(51)는 제 2반응기(20)와 연결되는 배출라인(50)에 설치되는 것이 바람직하다.
제 7발명은 제 6발명에서, 상기 제 3열교환기(51)와 제 2냉각관(23)의 유입측을 연결하는 제 4라인(43)을 더 포함하되, 상기 제 4라인(43)은 제 3열교환기(51)로 공급된 냉각수가 상기 제 2반응기(20)로부터 유출되는 제 3합성가스를 냉각하고, 연속적으로 제 2냉각관(23)으로 이송되어 내부 반응열에 의한 제 2반응기(20)에 내부의 급격한 온도 상승을 방지할 수 있도록 구성되는 것이 바람직하다.
제 8발명은, 제 1발명에서, 상기 제 1반응기(10)의 반응조건은 내부온도 240℃ ~ 280℃이고, 내부압력은 15기압 ~ 40기압이며, 유입되는 제 1합성가스의 유속은 5 ~ 20cm/sec인 것이 바람직하다.
제 9발명은, 제 8발명에서, 상기 제 2반응기(20)의 반응조건은 온도 150℃ ~ 230℃이고, 압력은 10기압 ~ 30기압이며, 유입되는 제 1합성가스의 유속은 5 ~ 20cm/sec인 것이 바람직하다.
본 발명에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에서는 두 개의 독립된 반응기를 설치하여 합성가스의 H2/CO의 조성비에 적합한 촉매를 선정하고, 각각의 특성에 적합하도록 공정조건을 유지해줌으로써 촉매의 활성을 장시간 유지할 수 있도록 하며, 합성연료의 수율을 최대화 하여 공정의 경제성을 높이는 효과가 있다.
또한 제 1열교환기를 이용하여 제 1반응기에서 배출되는 합성가스 중의 수분 및 비점오일을 제거함으로써 제 2반응기로의 불순물 유입을 최소화하고, 더불어 제 2열교환기를 이용하여 제 2반응기에 유입되는 합성가스의 온도를 가열하여 에너지의 효율을 높이면서 반응효율을 최대로 높일 수 있는 효과가 있다.
도 1은 본 발명의 제 1실시예에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템의 구성도,
도 2는 본 발명의 제 2실시예에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템의 구성도이다.
이하에서는 본 발명에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.
[실시예 1]
도 1은 본 발명의 제 1실시예에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템의 구성도이다.
도 1에 도시된 바와 같이, 본 발명은 Fe 촉매를 주로 사용하는 제 1반응기(10)와 Fe·Co 또는 Co 촉매를 주로 사용하는 제 2반응기(20)를 상호 연결하여 각각 2개의 반응영역을 형성하고, 각 반응영역에서 서로 다른 촉매와 반응조건을 갖도록 하여 합성가스의 총 전환율을 높이고 합성연료의 수율을 최대화하며, 촉매의 수명을 연장할 수 있도록 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템에 관한 것이다.
이러한 본 발명에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템은 크게 2부분으로 구성되는데, 이는 제 1반응기(10)와, 상기 제 1반응기(10)와 상호 연결되는 제 2반응기(20)로 구성된다.
여기서 상기 제 1반응기는 내부에 Fe 촉매를 함유하는 슬러리가 저장된 기포탑 반응기로 구성된다.
이러한 제 1반응기(10)의 저면에는 석탄에서 추출된 제 1합성가스의 기포입자를 분산시키는 분산판(14)과, 내부 중앙 영역에는 제 1합성가스와 Fe 촉매의 피셔-트롭쉬(Fischer-Tropsch) 반응에 의해 생성되는 합성연료는 배출시키고 촉매는 필터링하는 필터링수단(15) 및 합성가스와 Fe 촉매의 피셔-트롭쉬(Fischer-Tropsch) 반응에 의한 반응열을 냉각하기 위한 제 1냉각관(13)이 구비된다.
여기서 상기의 제 1반응기(10)는 유입관(11)을 통해 제 1합성가스를 공급받는데, 이 때 상기 제 1합성가스의 포함된 H2/CO의 조성비를 0.6 ~ 1.2 범위로 공급받아 내부온도 및 압력과, 제 1합성가스의 유속을 조절하여 Fe 촉매와 반응시 50 ~ 80%범위의 CO 전환율을 갖도록 이루어진다.
이 때 제 1합성가스의 전체조성비는 H2:35% ~ 40%, CO:40% ~ 45%, CO2:10% ~ 20%, CH4:1% ~ 5%범위이고, 내부 온도는 240℃ ~ 280℃ 범위이고, 내부 압력은 15기압 ~ 40기압이며, 유속은 5 ~ 20cm/sec인 것이 요구된다.
특히 제 1반응기(10)는 Fe 촉매를 사용하기 때문에 Co 촉매에 비해 활성이 낮다. 따라서 높은 활성을 얻기 위해서는 반응온도를 높여야 하는데, 반응온도가 너무 높으면 Fe 촉매의 수명이 단축되는 결과를 가져온다. 따라서 제 1반응기(10)의 반응온도는 240℃ ~ 280℃ 범위로 유지시키고, 내부 압력은 15기압 ~ 40기압으로 유지시키며, 유속은 5 ~ 20cm/sec로 조절하여 CO의 전환율을 50 ~ 80% 범위로 맞출 수 있게 된다.
이는 결과적으로 반응 후 제 2반응기(20)의 내부로 유출되는 제 2합성가스의 의 H2/CO의 조성비를 1.8 ~ 2.0 범위로 유지시켜 제 2반응기(20)에 내의 Fe·Co 촉매 또는 Co 촉매와 반응시켜 제 2반응기(20) 내에서 CO의 전환율을 90% ~ 95% 범위로 활성화시킬 수 있는 구조를 마련한다.
한편 본 발명의 피셔-트롭쉬(Fischer-Tropsch) 반응식은 [화학식 1]과 같이 정의 되며, 제 1반응기(10)와 제 2반응기(20)의 주반응식이다.
화학식 1
Figure PCTKR2011004992-appb-C000001
그리고 제 1반응기(10)의 부반응(수성가스반응)식은 [화학식 2]와 같다.
화학식 2
Figure PCTKR2011004992-appb-C000002
이러한 [화학식 1]과, [화학식 2] Fe 촉매 사용하는 제 1반응기(10) 내에서 발생하며, 전술된 제 1합성가스의 조성비와, 유속과 내부온도 및 내부 압력에 따라 CO의 전환율을 50 ~ 80% 범위로 유지시켜 제 2반응기(20)로 공급되는 제 2합성가스의 H2 /CO의 비율을 1.8 ~ 2.0 범위로 맞춰 공급할 수 있는 구조를 마련한다.
또한 제 1반응기(10)에서는 [화학식 1]을 통해 Fe 촉매와 반응으로 CO의 전환율을 50 ~ 80% 범위인 상태에서 생성된 왁스 형태의 합성연료를 필터링수단(15)을 통해 1차로 획득할 수 있다.
그리고 제 1합성가스와, 제 2합성가스의 부반응식은 [화학식 3]과 같다.
화학식 3
Figure PCTKR2011004992-appb-C000003
이러한 [화학식 3]은 반응온도가 높게 유지될 경우 많이 발생하며, 특히 메탄가스의 발생이 증가하면 공정의 효율이 떨어지기 때문에 바람직하지 않다.
한편 Fe·Co 촉매 또는 Co 촉매를 사용하는 제 2반응기(20)로 제 2합성가스의 H2/CO 비율이 1.8이하인 상태로 유입되거나 온도가 너무 높아 메탄가스의 발생이 많아 수소의 양이 부족해 질 경우 다음의 부반응식 [화학식 4]이 발생될 수 있다.
화학식 4
Figure PCTKR2011004992-appb-C000004
이러한 반응은 카본을 발생시켜 카본이 촉매의 표면을 덮어 촉매의 비활성화를 촉진시켜 CO의 전환율을 약화시켜 결과적으로 제 2합성가스에서 합성연료 획득도 작아지기 때문에 바람직하지 않다.
한편 제 2반응기(20)는 Fe·Co 촉매 또는 Co 촉매를 사용하며, 내부에는 제 2합성가스와 촉매와의 반응 시 발생되는 반응열을 제거해주는 제 2냉각관(23)이 설치되는 구조이다.
이러한 제 2반응기(20)는 기포탑 반응기 또는 내부에 촉매가 충진된 촉매파이프를 갖는 고정층 반응기로 구성될 수 있다. 본 발명의 실시예에서는 첨부된 도면과 같이 기포탑 반응기의 예를 들어 설명하기로 한다.
여기서 상기 제 2반응기(20)는 제 1반응기(10)에서 전술한 바와 같이 CO의 전환율을 50 ~ 80%를 유지함으로써 H2/CO 비율이 1.8 ~ 2.0인 상인 제 2합성가스를 공급받을 수 있다. 그리고 상기 제 2합성가스의 전체조성비는 H2:40% ~ 50%, CO:20 ~ 30%, CO2:20%~ 40%, CH4:2% ~ 7%범위로 조성된다.
이 때 제 2반응기(20)의 반응조건은 온도 150℃ ~ 230℃이고, 압력은 10기압 ~ 30기압이며, 유입되는 제 1합성가스의 유속은 5 ~ 20cm/sec인 것이 바람직하다.
이러한 상기 제 2반응기(20)는 제 1반응기(10)와 연결되어 제 1반응기(10)로부터 제 2합성가스를 공급받으며, 제 1합성가스 중에 포함되었던 미량의 불순물은 제 1반응기(10)에서 Fe 촉매와 반응하는 과정에서 제거되거나 슬러리에 흡수되고, 또한 제 1열교환기(31)에서 응축되는 오일과 물에 포함되어 제거되기 때문에 제 2반응기(20)로 유입되는 것을 방지할 수 있어 제 2반응기(20)에서 Co 촉매의 활성을 억제하는 물질이 거의 공급되지 않아 Co 촉매의 수명 연장이 가능하다.
또한 제 2반응기(20)에 공급되는 제 2합성가스 H2/CO 조성비를 1. 8~ 2.0 범위로 공급받아 상술된 반응조건에 의해 제 2합성가스의 CO 전환율을 90% ~ 95% 이상으로 반응시킬 수 있기 때문에 전체 공정의 수율이 95% 이상으로 높아 공정의 경제성을 향상시킬 수 있다.
한편 부가적으로 본 발명은 제 1반응기(10)의 내부 및 제 1반응기(10)의 유출관(12)을 통해 배출되는 합성가스를 냉각하는 제 1열교환기(31)와, 상기 제 1열교환기(31)를 통해 냉각된 합성가스를 가열하는 제 1반응기(10)의 반응열에 의해 가열하는 제 2열교환기(32)로 구성된다.
그리고 상기 제 1반응기(10)로부터 제 2합성가스를 공급받아 제 2반응기(20)에서 Fe·Co 촉매 또는 Co 촉매와 반응시킬 수 있도록 상기 제 1반응기(10)의 유출관(12)과, 제 2반응기(20)의 유입관(21)을 상호 연결하는 것이 연결라인(30)이다.
이러한 상기 연결라인(30)에는 상기 제 1반응기(10)로부터 제 2합성가스를 냉각하여 제 2합성가스에 포함된 수분 및 저비점 오일을 제 1회수탱크(33)를 통해 수거하여 저장될 수 있도록 제 1열교환기(31)가 설치된다.
즉, 상기 제 1열교환기(31)는 연결라인(30)을 따라 이송되는 고온의 제 2합성가스를 냉각하여 제 2합성가스에 포함된 수분 및 저비점 오일을 제 1회수탱크(33)를 통해 수거될 수 있도록 하며, 이는 제 2반응기(20)의 Co 촉매 활성을 억제하는 수분이 공급되는 것을 방지할 수 있는 구조이다.
또한 상기 연결라인(30)에는 상기 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 제 2반응기(20)의 Fe·Co 촉매 또는 Co 촉매의 반응온도까지 가열할 수 있도록 제 2열교환기(32)가 설치된다.
한편 상기 제 1열교환기(31)와 제 1냉각관(13)의 유입측에는 제 1라인(40)이 연결되는 구조이다. 이러한 상기 제 1라인(40)은 상기 제 1열교환기(31)로 공급된 냉각수가 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 냉각하고, 연속적으로 제 1냉각관(13)으로 이송되어 반응열에 의한 제 1반응기(10)의 내부를 냉각하여 내부 반응열에 의한 급격한 온도 상승을 방지하도록 구성된다.
또한 상기 제 2열교환기(32)와 제 1냉각관(13)의 유출측은 제 2라인(41)이 연결되는 구조이다. 이러한 상기 제 2라인(41)은 상기 제 1냉각관(13)의 유출측을 통해 배출되는 고온의 냉각수가 제 2열교환기(32)로 공급되도록 하여 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 가열한 후 물 또는 스팀형태로 배출되어 다른 열원으로 사용될 수 있도록 구성된다.
또한 상기 제 2냉각관(23)의 유출측과 제 2라인(41)을 연결하는 제 3라인(42)을 더 포함하는 구조이다. 이러한 상기 제 3라인(42)은 제 2냉각관(23)의 유출측을 통해 배출되는 고온의 냉각수가 제 2라인(41)으로 공급될 수 있도록 구성하여 제 2라인(41)을 따라 제 2열교환기(32)로 유입되는 냉각수의 온도를 상승을 도모할 수 있도록 구성된다.
이하에서는 본 발명에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템의 작용에 관하여 도 1를 참조하여 간단히 설명하기로 한다.
도 1에 도시된 바와 같이, 제 1합성가스는 제 1반응기(10)의 유입관(11)을 통해 유입된다. 유입된 제 1합성가스는 분산판(14)을 거쳐 기포입자를 균일하게 하고, 이 후 Fe 촉매와 반응되도록 하여 합성연료를 생성할 수 있도록 한다.
그리고 생성된 합성연료는 필터링수단(15)을 통해 수거되고, 반응 후 연결라인(30)으로 유출되는 고온의 제 2합성가스는 제 1열교환기(31)에 의해 냉각되어 제 2합성가스에 포함된 수분 및 저비점 오일을 제 1회수탱크(33)를 통해 수거될 수 있도록 한다. 이는 수분이 제 2반응기(20)에 유입되어 Co 촉매 활성을 억제하는 것을 방지하기 위함이다.
그리고 수분 및 저비점 오일이 제거된 저온의 제 2합성가스는 제 2열교환기(32)를 통해 다시 온도가 상승되어 상기 제 2반응기(20)의 내부로 유입된다.
아울러 제 2반응기(20)로 유입되는 제 2합성가스는 Fe·Co 촉매 또는 Co 촉매와 반응되어 제 2반응기(20)에 구비된 필터링수단(24)을 통해 합성연료는 획득하고, 반응 중 생성된 가스와 미반응 가스는 외부로 배출된다.
상기에서 냉각수의 이동경로는 다음과 같다.
첫번째: 최초의 저온 냉각수는 제 1열교환기(31)로 공급되어 제 2합성연료를 냉각하여 제 1라인(40)으로 유출된다.
두번째: 제 2합성연료를 냉각한 냉각수는 제 1라인(40)을 통해 제 1냉각관(13)으로 유입되어 제 1반응기(10)의 반응열을 냉각하고 고온의 냉각수로 전환되어 제 2라인(41)으로 유출된다.
세번째: 제 2반응기(20)의 반응열을 냉각하고 고온의 냉각수로 전환된 별도의 냉각수는 제 3라인(42)을 통해 유출되어 제 2라인(41)의 냉각수와 합류된다.
네번째: 합류된 고온의 냉각수는 제 2라인(41)을 통해 제 2열교환기(32)로 공급되어 제 2합성연료를 가열한 후 스팀화되어 다른 열원으로 사용될 수 있도록 한다.
[실시예 2]
도 2는 본 발명의 제 2실시예에 따른 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템의 구성도이다.
도 2와 같이, 제 2실시예를 제 1실시예를 포함하며, 상기 제 2반응기(20)로부터 반응 후 유출되는 제 3합성가스를 냉각하여 제 3합성가스에 포함된 물 및 저비점 오일을 제 2회수탱크(52)를 통해 수거하여 저장될 수 있도록 3열교환기를 더 포함하는 구조이다.
여기서 제 2반응기(20)는 실시예로 기포탑 반응기로 구성되며, 상기 제 3열교환기(51)는 제 2반응기(20)의 유출관(22)와 연결되는 배출라인(50)에 설치되는 구조이다.
그리고 상기 제 3열교환기(51)와 제 2냉각관(23)의 유입측을 연결하는 제 4라인(43)을 더 포함하는 구조이며, 상기 제 4라인(43)은 제 3열교환기(51)로 공급된 냉각수가 상기 제 2반응기(20)로부터 유출되는 제 3합성가스를 냉각하고, 연속적으로 제 2냉각관(23)으로 이송되어 내부 반응열에 의한 제 2반응기(20)에 내부의 급격한 온도 상승을 방지할 수 있도록 구성된다.
이러한 구조는 저온의 냉각수를 제 3열교환기(51)에 공급하여 배출라인(50)을 통해 유출되는 제 3합성가스의 물 또는 저비점 오일을 제 2회수탱크(52)를 통해 수거하고, 미반응 가스는 외부로 배출될 수 있도록 한 구조이다.
또한 제 2냉각관(23)을 통해 유출되는 고온의 냉각수는 제 3라인(42)을 통해 제 2라인(41)으로 병합시켜 제 2열교환기(32)를 통해 제 2합성가스의 가열을 도모하는 구성이다.
본 발명에 따른 제 2반응기(20)의 체적은 제 1반응기(10)의 개수와 제 1반응기에서의 CO전환율에 따라 비례하며, 예를 들어 제 1반응기(10)가 개수가 실시예와 같이 1개일 경우에는 제 2반응기(20)의 체적은 제 1반응기(10) 대비 30 ~ 60% 체적을 갖는 구성이다. 따라서 제 1반응기(10)가 2개일 경우에는 제 2반응기(20)의 체적은 제 1반응기(10)의 60% ~ 120%와 같이 구성할 수 있음은 물론이다.
비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.

Claims (9)

  1. F-T 반응기 시스템에 있어서,
    Fe 촉매를 사용하고, 석탄 또는 바이오매스 또는 천연가스에서 추출된 제 1합성가스를 공급받아 Fe 촉매와 반응시켜 합성연료를 획득하는 적어도 1개 이상의 제 1반응기(10); 및
    Fe·Co 촉매 또는 Co 촉매를 사용하고, 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 Fe·Co 촉매 또는 Co 촉매와의 반응시켜 합성연료를 획득하는 제 2반응기(20);를 포함하여 이루어지되,
    상기 제 1반응기(10)는 제 1합성가스에 포함된 H2/CO의 조성비를 0.6 ~ 1.2 범위로 공급받아 내부온도 및 압력과, 제 1합성가스의 유속을 조절하여 반응시 50 ~ 80%범위의 CO 전환율을 갖도록 구성하고,
    상기 제 2반응기(20)는 제 1반응기(10)에서 반응 후 유출되는 제 2합성가스의 H2/CO의 조성비를 1.8 ~ 2.0 범위로 공급받아 내부온도 및 압력과, 제 2합성가스의 유속을 조절하여 반응시 90 ~ 95% 범위의 CO 전환율을 갖도록 구성되는 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템
  2. 제 1항에 있어서,
    상기 제 1반응기(10) 및 제 2반응기(20)는 기포탑 반응기인 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  3. 제 1항에 있어서,
    상기 제 1반응기(10)는 기포탑 반응기이고, 제 2반응기(20)는 내부에 촉매가 충진된 촉매파이프를 갖는 고정층 반응기인 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 제 1반응기(10)는 내부에 제 1냉각관(13)을 구비하여 Fe 촉매와 반응시 발생되는 반응열에 의한 급격한 온도상승을 방지하고,
    상기 제 2반응기(20)는 내부에 제 2냉각관(23)을 구비하여 Fe·Co 촉매 또는 Co 촉매와 반응시 발생되는 반응열에 의한 급격한 온도상승을 방지하며,
    상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 공급받아 제 2반응기(20)에 저장된 Fe·Co 촉매 또는 Co 촉매와 반응시킬 수 있도록 상기 제 1반응기(10)의 유출관(12)과, 제 2반응기(20)의 유입관(21)을 상호 연결하는 연결라인(30)과,
    상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 냉각하여 제 2합성가스에 포함된 수분 및 저비점 오일을 제 1회수탱크(33)를 통해 수거하여 저장될 수 있도록 상기 연결라인(30)에 설치되는 제 1열교환기(31)와,
    상기 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 제 2반응기(20)의 Fe·Co 촉매 또는 Co 촉매의 반응온도까지 가열할 수 있도록 상기 연결관에 설치되는 제 2열교환기(32)를 더 포함하여 이루어지는 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  5. 제 4항에 있어서,
    상기 제 1열교환기(31)와 제 1냉각관(13)의 유입측을 연결하는 제 1라인(40)을 더 포함하되, 상기 1라인(40)은 제 1열교환기(31)로 공급된 냉각수가 상기 제 1반응기(10)로부터 반응 후 유출되는 제 2합성가스를 냉각하고, 연속적으로 제 1냉각관(13)으로 이송되어 반응열에 의한 제 1반응기(10)의 내부를 냉각하여 내부 반응열에 의한 급격한 온도 상승을 방지하도록 구성되고,
    상기 제 1냉각관(13)의 유출측과 제 2열교환기(32)를 연결하는 제 2라인(41)을 더 포함하되, 상기 제 2라인(41)은 제 1냉각관(13)의 유출측을 통해 배출되는 고온의 냉각수가 제 2열교환기(32)로 공급되도록 하여 제 1열교환기(31)를 통해 냉각된 제 2합성가스를 가열한 후 물 또는 스팀형태로 배출되어 다른 열원으로 사용될 수 있도록 구성되며,
    상기 제 2냉각관(23)의 유출측과 제 2라인(41)을 연결하는 제 3라인(42)을 더 포함하되, 상기 제 3라인(42)은 제 2냉각관(23)의 유출측을 통해 배출되는 고온의 냉각수가 제 2라인(41)으로 공급될 수 있도록 구성하여 제 2라인(41)을 따라 제 2열교환기(32)로 유입되는 냉각수의 온도를 상승을 도모할 수 있도록 구성되는 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  6. 제 5항에 있어서,
    상기 제 2반응기(20)로부터 반응 후 유출되는 제 3합성가스를 냉각하여 합성가스에 포함된 물/저비점오일을 제 2회수탱크(52)를 통해 수거하여 저장될 수 있도록 3열교환기를 더 포함하되, 상기 제 3열교환기(51)는 제 2반응기(20)와 연결되는 배출라인(50)에 설치되는 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  7. 제 6항에 있어서,
    상기 제 3열교환기(51)와 제 2냉각관(23)의 유입측을 연결하는 제 4라인(43)을 더 포함하되, 상기 제 4라인(43)은 제 3열교환기(51)로 공급된 냉각수가 상기 제 2반응기(20)로부터 유출되는 제 3합성가스를 냉각하고, 연속적으로 제 2냉각관(23)으로 이송되어 내부 반응열에 의한 제 2반응기(20)에 내부의 급격한 온도 상승을 방지할 수 있도록 구성되는 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  8. 제 1항에 있어서,
    상기 제 1반응기(10)의 반응조건은 내부온도 240℃ ~ 280℃이고, 내부압력은 15기압 ~ 40기압이며, 유입되는 제 1합성가스의 유속은 5 ~ 20cm/sec인 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
  9. 제 8항에 있어서,
    상기 제 2반응기(20)의 반응조건은 온도 150℃ ~ 230℃이고, 압력은 10기압 ~ 30기압이며, 유입되는 제 1합성가스의 유속은 5 ~ 20cm/sec인 것을 특징으로 하는 합성가스의 전환율을 높이기 위한 2단 F-T 반응기 시스템.
PCT/KR2011/004992 2011-04-01 2011-07-07 합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템 WO2012133988A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180004625.XA CN102869752B (zh) 2011-04-01 2011-07-07 用于提高合成气体的转化率的2段f-t反应器系统
US13/516,855 US8852539B2 (en) 2011-04-01 2011-07-07 Second stage Fischer-Tropsch reaction system to enhance the conversion of synthetic gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110030269A KR101262691B1 (ko) 2011-04-01 2011-04-01 합성가스의 전환율을 높이기 위한 2단 피셔-트롭쉬 반응기 시스템
KR10-2011-0030269 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012133988A1 true WO2012133988A1 (ko) 2012-10-04

Family

ID=46931649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004992 WO2012133988A1 (ko) 2011-04-01 2011-07-07 합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템

Country Status (4)

Country Link
US (1) US8852539B2 (ko)
KR (1) KR101262691B1 (ko)
CN (1) CN102869752B (ko)
WO (1) WO2012133988A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468298B (zh) * 2013-09-16 2017-01-18 邯郸市颐民宝新能源开发有限公司 一种通过Fischer‑Tropsch反应将生物质合成气转化为液体燃料的方法
FI127086B (en) 2013-10-10 2017-11-15 Teknologian Tutkimuskeskus Vtt Oy Process and apparatus for producing a hydrocarbon fraction and hydrocarbon fraction and its use
KR101494796B1 (ko) * 2014-08-22 2015-02-23 고등기술연구원연구조합 합성가스의 전환 시스템 및 방법
DE102017001627A1 (de) * 2017-02-14 2018-08-16 Advanced Liquid Fuel UG (haftungsbeschränkt) Vorrichtung und Verfahren zur Hochleistungs-OT-NT-FT-Synthese mit hohen Ausbeuten an FT-Produkten mit hoher Produktselektivität zur Aufbereitung zu flüssigen/festen industriellen Wachsen und zu flüssigen Kraftsstoffen(Kerosin/Diesel)
KR102054428B1 (ko) * 2017-05-19 2019-12-10 한국에너지기술연구원 촉매 제조장치 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763716A (en) * 1986-05-08 1998-06-09 Rentech, Inc. Process for the production of hydrocarbons
US6642281B1 (en) * 2000-09-01 2003-11-04 Exxonmobil Research And Engineering Company Fischer-tropsch process
WO2007069317A1 (ja) * 2005-12-14 2007-06-21 Nippon Steel Engineering Co., Ltd. 気泡塔型フィッシャー・トロプシュ合成スラリー床反応システム
KR100986751B1 (ko) * 2009-09-17 2010-10-08 한국에너지기술연구원 Ft 슬러리 기포탑 반응기의 반응열 제거용 다단분리형 냉각장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417164A (en) * 1944-11-23 1947-03-11 Standard Oil Co Hydrocarbon synthesis
US2434537A (en) * 1944-12-16 1948-01-13 Standard Oil Dev Co Two-stage synthesis of hydrocarbons
US5504118A (en) 1986-05-08 1996-04-02 Rentech, Inc. Process for the production of hydrocarbons
US5645613A (en) 1992-04-13 1997-07-08 Rentech, Inc. Process for the production of hydrocarbons
US5543437A (en) 1986-05-08 1996-08-06 Rentech, Inc. Process for the production of hydrocarbons
US5324335A (en) 1986-05-08 1994-06-28 Rentech, Inc. Process for the production of hydrocarbons
JPS63281891A (ja) 1987-05-15 1988-11-18 Hodogaya Chem Co Ltd ペンタジエン化合物及び該化合物を用いた記録材料
US6169120B1 (en) * 1999-09-17 2001-01-02 Syntroleum Corporation Extended catalyst life two stage hydrocarbon synthesis process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763716A (en) * 1986-05-08 1998-06-09 Rentech, Inc. Process for the production of hydrocarbons
US6642281B1 (en) * 2000-09-01 2003-11-04 Exxonmobil Research And Engineering Company Fischer-tropsch process
WO2007069317A1 (ja) * 2005-12-14 2007-06-21 Nippon Steel Engineering Co., Ltd. 気泡塔型フィッシャー・トロプシュ合成スラリー床反応システム
KR100986751B1 (ko) * 2009-09-17 2010-10-08 한국에너지기술연구원 Ft 슬러리 기포탑 반응기의 반응열 제거용 다단분리형 냉각장치

Also Published As

Publication number Publication date
CN102869752A (zh) 2013-01-09
CN102869752B (zh) 2014-09-10
KR101262691B1 (ko) 2013-05-15
US20120275975A1 (en) 2012-11-01
KR20120111650A (ko) 2012-10-10
US8852539B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
WO2012133988A1 (ko) 합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템
CN102317237A (zh) 制备富甲烷气体的方法
CN105753646B (zh) 一种节能型段间高低温梯度分醇两段产醇方法及装置
CN206902052U (zh) 由缺氢的合成气进行甲醇合成
WO2011081276A1 (ko) 용철 제조 장치
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
KR20200000749A (ko) 다단 온도 제어가 가능한 일체형 수성가스전환 반응기
CN101580748B (zh) 合成气制天然气中甲烷化的方法和设备
CN113045382B (zh) 一种用氢气调节碳氢比简化煤制甲醇的系统及其工作方法
CN106518609A (zh) 一种甲醇合成装置及甲醇合成方法
KR20190111539A (ko) 수성가스 전환 반응장치
WO2014098524A1 (ko) 열 교환기가 구비된 순환 유동층 가스화기
CN101745350B (zh) 一种副产蒸汽催化反应设备
WO2011043508A1 (ko) Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치
US4337067A (en) Coal gasification
CN115340095A (zh) 一种冷氢化热能回收系统及方法
CN212237215U (zh) 自热净化炉和变换反应及热回收装置
CN111621340B (zh) 煤炭高效催化气化系统及方法
CN209043091U (zh) 颗粒状固体冷却器
WO2020159188A9 (ko) 이산화탄소 전환 공정 및 그 시스템
CN221268068U (zh) 一种低压合成甲醇的生产系统
CN101696361B (zh) 一种带有回热系统的高压粉煤气化炉
JP3978016B2 (ja) 水素製造装置
CN205933756U (zh) 一种等温法甲醇转化制稳定轻烃的系统
CN108977230A (zh) 一种煤制燃气工艺方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004625.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13516855

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862228

Country of ref document: EP

Kind code of ref document: A1