WO2011043508A1 - Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치 - Google Patents

Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치 Download PDF

Info

Publication number
WO2011043508A1
WO2011043508A1 PCT/KR2009/006406 KR2009006406W WO2011043508A1 WO 2011043508 A1 WO2011043508 A1 WO 2011043508A1 KR 2009006406 W KR2009006406 W KR 2009006406W WO 2011043508 A1 WO2011043508 A1 WO 2011043508A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
reactor
tube
latent heat
reaction
Prior art date
Application number
PCT/KR2009/006406
Other languages
English (en)
French (fr)
Inventor
이호태
정헌
천동현
김학주
양정일
양정훈
홍재창
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2011043508A1 publication Critical patent/WO2011043508A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00053Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00123Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons

Definitions

  • the present invention relates to a mixed cooling device for removing the reaction heat of the FT slurry bubble column reactor that can control the temperature of the reaction heat generated during the reaction between the synthesis gas generated in the coal gasifier and the catalyst, more specifically the FT slurry machine
  • a latent heat cooling tube containing an inner tube is piped to the center, and a plurality of cooling tubes are vertically separated and piped to a side edge thereof. Therefore, the central cooling method by the latent heat in which the coolant injected from the inner tube is changed into steam and the side cooling method by directly supplying the cooling water or steam to the cooling tube selectively are mixed to uniform the temperature of the center and side of the reactor. It relates to a mixed cooling device for removing the heat of reaction of the FT slurry bubble column reactor to be controlled.
  • coal indirect liquefaction system is used to prepare a synthetic fuel in the form of wax and finally use it as a raw material for fossil fuels through gasification process-> refining process-> liquefaction process.
  • the gasification process is a process of converting coal into a synthesis gas mainly containing hydrogen and carbon monoxide.
  • the refining process is a process of collecting and desulfurizing the syngas produced through the gasification process and removing various impurities.
  • the liquefaction process is a process of converting the purified syngas to a liquid synthetic fuel by reacting on a catalyst.
  • the synthesis gas is uniformly dispersed in the FT slurry bubble column reactor to react with the iron-catalyst contained in the slurry of the FT slurry bubble column reactor to generate a synthetic fuel.
  • the reactor since the reactor has a long length in the vertical direction, various reaction temperatures appearing for each part are formed, and precise temperature control is difficult by spraying the same cooling water.
  • the synthesis gas supplied by the dispersion plate is bubbling more through the central portion of the reactor cross-section, the reaction is more active, the reaction temperature is increased, the reaction temperature of the center and side of the reactor also occurs.
  • a plurality of latent heat cooling tubes are vertically piped at the center of the interior, and inside the latent heat cooling tube, a multi-tube inner pipe is piped to form an injection hole formed in the inner pipe.
  • the cooling water is injected through the cooling water so that the cooling water is cooled by latent heat, which is changed into steam, and a plurality of cooling pipes vertically piped along the side of the inner side of the reactor are piped separately from the central latent heat cooling pipe. It is an object to control the side reaction temperature of the reactor.
  • a mixing-in cooling device for removing the reaction heat of a slurry bubble column reactor comprising: a first latent heat cooling tube horizontally piped to an upper portion of a reaction chamber of the reactor; A second latent heat cooling tube configured to be horizontally piped to the introduction chamber of the reactor, one end of which is exposed to the outside, and an outlet is formed at the exposed end to discharge the phase-changed steam; A plurality of third latent heat cooling tubes vertically connecting the first and second latent heat cooling tubes at a central portion of the reactor; A plurality of pipes are respectively individually piped into the first to third latent heat cooling tubes, and a plurality of injection holes are formed in the pipes that are piped inside the third latent heat cooling tubes, and the injection holes are different from each other adjacent to each other.
  • the injected cooling water absorbs the ambient heat and the inner tube is made of phase change to steam;
  • a plurality of cooling tubes communicating with each of the lower and upper side surfaces of the reactor reaction chamber, the cooling tubes being piped in a ring shape around the third latent heat cooling tube as a vertical tube in which cooling water is introduced from the lower portion and discharged to the upper portion.
  • FIG. 1 is a block diagram showing a mixed cooling device for removing the reaction heat of the FT slurry bubble column reactor according to the present invention.
  • FIG. 2 and 3 are enlarged views of portion A of FIG. 1 and B-B cross-sectional views.
  • Figure 4 is a schematic diagram showing a piping state of the first and second inner tube according to an embodiment of the present invention.
  • 5 to 7 is a block diagram showing a hybrid cooling apparatus according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a mixed cooling device for removing the reaction heat of the FT slurry bubble column reactor according to the present invention
  • Figures 2 and 3 is a cross-sectional view showing a portion A, BB cross-sectional view of Figure 1
  • Figure 4 Is a schematic diagram showing a pipe state of a latent heat cooling tube and a cooling tube according to an embodiment of the present invention.
  • the mixed cooling device 10 for removing the reaction heat of the FT slurry bubble column reactor receives a synthesis gas from a coal gasifier and reacts with a catalyst to generate a synthetic fuel, and in this process, a reaction heat is generated. It is a device that can control the temperature inside.
  • the reactor 20 is composed of a main body 21 of the cylinder, and upper and lower cover 22, 23 coupled to the upper and lower portions of the main body, respectively, and the gas distribution plate between the lower cover 23 and the body 21 (24) was installed to divide the inner space into a lower introduction chamber (26) and an upper reaction chamber (25).
  • the introduction chamber 26 is supplied with the synthesis gas generated by the coal gasifier to distribute the synthesis gas to the upper reaction chamber through the gas distribution plate, and the reaction chamber is loaded with the synthesis Allow reaction with gas.
  • the reactor 20 is installed in the reactor 20 to remove the reaction heat generated in the reaction of the synthesis gas and the catalyst to maintain a temperature suitable for the synthesis fuel production.
  • the cooling device 10 is separated into a latent heat cooling tube 30 for cooling the central portion of the reactor 20, and the cooling tube 50 for cooling the side portion, which is the edge of the reactor except the central portion, The temperature control of the center and side of the reactor is made separately.
  • the latent heat cooling tube has a first latent heat cooling tube 31 that is horizontally piped to an upper cover 22 that is an upper portion of the reaction chamber 25 of the reactor in the form of a double tube having an inner tube 40 therein, and an introduction chamber of the reactor.
  • the first latent latent cooling tube 31 and the second latent latent cooling tube 32 are piped so as to be located at the center of the reactor cross section vertically installed. That is, the first latent heat cooling tube 31 and the second latent heat cooling tube 32 are inserted into the reactor from the outside or the main pipe 34 discharged to the outside from the inside of the reactor, the main pipe is in communication with the center of the reactor cross section It is composed of an auxiliary pipe 35 that is widely piped to the part, the auxiliary pipe 35 may be formed in a variety of forms such as a circle, a grid or a plurality of concentric circles as shown in FIG.
  • An inlet port 311 is formed at an end of the first latent heat cooling tube 31 to allow the inflow of cooling water to be made, and an outlet 321 formed at the end of the second latent heat cooling tube 32 is cooled.
  • the steam generated during the process should be discharged.
  • the third latent heat cooling tube 33 communicates the first latent heat cooling tube installed at the upper side of the reactor and the second latent heat cooling tube installed at the lower side thereof, and as shown in FIG. It is preferable to pipe them at regular intervals to facilitate temperature control in the reactor.
  • a plurality of inner tubes 40 are piped inside the first to third latent heat cooling tubes 30, 31, 32, and 33, and an injection hole is provided on the inner tube located inside the third latent heat cooling tubes 33.
  • 401 is formed to allow the cooling water flowing into the inner tube to be injected through the injection hole.
  • the number of inner tubes 40 installed in the latent heat cooling tube 30 is 2 to 5 to subdivide the reactor section into multiple stages so that the cooling water is sprayed.
  • the number of the inner pipe is to increase the number of pipes as the length of the reactor is increased so that the segmentation is possible, if the number of the inner pipe exceeds 5, the coolant injection angle is restricted by the other inner pipe is even injection of the coolant It is preferable to make the injection within the above range with difficulty.
  • the inner tube 40 is formed of three tubes, such as the first to third inner tubes (41, 42, 43) as shown.
  • the first inner tube 41 is piped inside the first to third cooling tubes and communicated with one flow path, and the second inner tube 42 and the third inner tube 43 are also similar to the first inner tube.
  • 3 Inside the cooling pipes are piped as independent flow paths.
  • the inner tube 40 is formed with a plurality of injection holes 401 in the tube located inside the third latent heat cooling tube 33 to allow the injection of the cooling water flowing into the inner tube.
  • the diameter of the inner tube 40 which is a bundle of three tubes having different flow paths, is smaller than 1/2 of the inner diameter of the latent heat cooling tube 30, so that a gap is formed between the inner tube and the latent heat cooling tube. It is desirable to form sufficiently.
  • the gap is used as a space in which the coolant can be injected by the injection hole described later, or as a space for discharging the phase-changed steam.
  • the injection hole 401 formed in the first to third inner pipe (40, 41, 42, 43) may be formed in a section having a different height and the other adjacent adjacent body. Since the cooling water sprays a part of the cooling water while sequentially passing through the plurality of injection holes 401, the amount of cooling water gradually flowing to the inner tube is reduced, thereby lowering the injection pressure. Therefore, in order to prevent the difference in temperature control that may occur as the amount of cooling water sprayed at the first injection hole and the amount of cooling water injected at the last time is different, the injection hole positions formed in each inner tube are differently formed to spray the same coolant as much as possible. By minimizing the temperature difference caused by the injection amount is minimized.
  • the first inner tube 41 forms an injection hole in section a of the drawing
  • the second inner tube 42 is shown in FIG.
  • the injection port is formed in the section b
  • the third inner tube 43 may form the injection hole in the section c of the drawing so that the injection is performed at the same pressure in each section.
  • the inner tube 40 can be further divided into a multi-stage separation section forming the injection hole.
  • the inner tube 40 is a diameter of the inner tube in the second latent latent cooling tube 32 is discharged more than the inner tube diameter in the first latent heat-cooling tube 31 through which the coolant is introduced into the reactor through the injection port. It can form small.
  • the inner tube of the third latent heat cooling tube is formed in the same part as the inner diameter of the inner tube in the first cooling tube, the formation of the injection hole is formed in the same point as the inner tube diameter in the second cooling tube,
  • the diameter of the inner tube in which the injection hole is formed can be made gradually smaller.
  • the change in the inner tube diameter is such that the diameter is made smaller by the amount of the cooling water discharged through the injection hole, thereby preventing the lowering of the injection pressure of the next injection hole by the cooling water lost by the injection.
  • the plurality of injection holes formed in the first to third inner pipes are formed to be gradually widened from the inner circumferential surface of the inner pipe to the outer circumferential surface such that the cooling water is sprayed in a wide range by the pressure.
  • the reaction is actively performed in the reactor, the relatively high heat dissipation portion can be formed in a narrower forming interval of the injection hole than the other portion to increase the injection amount of the cooling water.
  • the injection hole 401 is formed so that a plurality of injection holes on the same horizontal line, or as shown in the enlarged view of Figure 2, the same horizontal line by arranging the injection holes 401 along the inner pipe (41, 42, 43) Only one jet can be formed on the bed. As such, only one injection hole may be formed on the same horizontal line, and thus, the injection may be easily performed even at a relatively low pressure than that of a plurality of injection holes.
  • the latent heat cooling tube which is the above-described double tube, it is formed as a single tube through which cooling water or steam flows directly, and is horizontally introduced into the lower portion of the reactor 20 as shown in FIGS. 1 and 4, and the inner wall of the reactor and Piped vertically to be close, and is discharged through the top of the reactor.
  • the cooling pipe 50 may be piped to the entire vertical direction of the reactor, but preferably is to be piped only to the reaction chamber 25 in which the reaction is substantially made to increase the temperature.
  • the cooling pipe 50 may be a plurality of vertical pipes in the form of a ring along the inner wall of the reactor centered around the third latent heat cooling tube 33 is vertically piped in the center of the reactor can be made to adjust the side temperature.
  • the plurality of cooling pipes 50 are not shown, it is preferable that each of the pipes may be individually supplied with cooling water so that selective cooling of a specific part of the side of the reactor may be performed.
  • the cooling pipe 50 may be formed in multiple stages by separating a plurality of vertically in the vertical direction, as shown in FIG. 5, and supplying cooling water to each of the multiple stages separately. In this way, if the cooling tube is formed in multiple stages, a plurality of internal side portions of the reactor may be separated and controlled in a vertical direction.
  • the temperature control in the reactor is separated and controlled by the latent heat cooling tube at the center and the cooling tube at the side in the horizontal direction of the reactor, and in the vertical direction, the third latent heat cooling tube having different parts of the injection hole 401 in the inner inner tube.
  • the temperature control is made for each part to enable more precise temperature control.
  • cooling tube 50 is illustrated and described as a single tube through which cooling water flows, the cooling tube 50 may be formed as a double tube, such as a latent heat cooling tube, to allow cooling using latent heat.
  • the cooling device 10 may be further provided with a circulation pipe 60 for recovering and re-supply the remaining cooling water remaining after the injection.
  • the circulation tube 60 is a pipe that is piped outside the reactor, one end of which communicates with the inner tube in the first latent heat cooling tube 31, and the other end thereof communicates with the inner tube of the second latent heat cooling tube 32.
  • the circulating pipe 60 piped in this way supplies coolant to the first latent heat cooling tube side, and sprays through the injection port and immediately recovers the remaining coolant from the second latent heat cooling tube side, and then supplies it back into the reactor through the first latent heat cooling tube side.
  • the cooling water storage tank 70 is further installed on the flow path of the circulation pipe 60 to temporarily store the recovered cooling water, and replenish the cooling water consumed by being injected into the reactor.
  • the pump 80 is installed on the flow path of the circulation pipe so that the supply amount of the cooling water can be adjusted according to the degree of operation of the pump.
  • the injection amount of the cooling water can be adjusted by the valve 90 in addition to the pump.
  • the valve 90 is mounted on the circulating pipe portion from which the coolant is discharged from the reactor to adjust the amount of coolant injected by adjusting the coolant pressure of the inner tube by the valve operation.
  • the valve 90 may be installed in the circulation pipe of the cooling water inlet portion, but is installed in the discharge portion after being injected into the reactor as shown, so that it is easy to control the pressure by the pump desirable.
  • valve 90 may be independently mounted to each of the plurality of inner tubes to selectively adjust the coolant pressure of each inner tube to adjust the injection amount of the cooling water.
  • each section of the reactor is equipped with a temperature sensor, by measuring the reaction temperature in the part equipped with the temperature sensor to open and close the associated valve by the measured value to be able to partially control the temperature in the reactor have.
  • the synthesis gas introduced into the introduction chamber 26 of the FT slurry bubble column reactor 20 is distributed and supplied to the reaction chamber 25 through the gas distribution plate 24. Syngas supplied to the reaction chamber is raised by the bubbling gas fluid behavior, and reacts with the catalyst contained in the reactor slurry.
  • the gas fluid behavior is made more in the center than in the side portion, which is the edge of the reactor, so that the catalytic reaction is actively performed in the center portion, thereby generating a large amount of heat of reaction.
  • the generated heat of reaction increases the temperature of the reactor, out of the range of about 200 to 350 ° C., which is a preferable temperature for the production of synthetic fuel, thereby increasing the generation of methane gas and carbon dioxide due to the high temperature, thereby lowering the production rate of synthetic fuel.
  • the cooling device 10 is a latent heat cooling tube 30 pipe to the center portion of the reactor in which the gas fluid behavior is active, and the cooling tube 50 is piped to the side of the relatively low edge of the gas fluid behavior to control the temperature To be done.
  • the temperature of the central portion of the reactor is controlled by the latent heat cooling tube (30).
  • the latent heat cooling tube flows cooling water into the reactor 20 through an inner tube inside the first latent heat cooling tube 31 and descends vertically through an inner tube inside the third latent heat cooling tube 33 piped to a central portion of the reactor. Then, it passes through the reaction chamber 25 where the catalytic reaction is carried out and is transferred to the inner tube in the second latent heat cooling tube 32 of the introduction chamber 26.
  • the coolant pressure in the inner tube 40 is increased to increase the amount of coolant sprayed through the injection hole 401 formed in the inner tube. That is, the coolant is injected into the space between the inner circumferential surface of the third latent heat cooling tube 33 and the outer circumferential surface of the inner tube 40, and the injected coolant absorbs heat transferred to the cooling tube to change into steam, and the phase-changed steam is made of 2 is discharged to the outside through the discharge port 321 formed at one end of the latent heat cooling tube (32).
  • the remaining cooling water injected into the injection hole 401 is recovered through the circulation pipe 60 communicating with the inner tube in the second latent heat cooling tube and collected in the cooling water storage tank 70. It can be to re-supplied to the inner tube 40 in the reactor 20 by.
  • valve 90 when the valve 90 is individually mounted to each inner tube 40 in the latent heat cooling tube, as shown in FIG. 7, when the reaction heat of section c is increased, the valve of the inner tube in which the injection port is formed in section c is operated to increase the coolant pressure. It is possible to precisely control the temperature in the reactor for each section in the vertical direction, such as to increase the injection amount of the cooling water.
  • the temperature of the reactor side portion is controlled by the cooling tube 50.
  • the cooling tube is formed in multiple stages in the vertical direction of the reactor, the cooling water flowing therein is directly heat exchanged with the side surface of the reactor to control the temperature. For example, when the reaction temperature of the lowermost part of the reaction chamber is increased, the temperature is lowered by increasing the cooling water circulation rate inside the cooling tube of the lowermost part. In addition, if the temperature rises only in a certain part among the lowest stages, the temperature of each part in the reaction chamber is maintained at a temperature suitable for producing synthetic fuel by more precisely controlling the temperature by increasing the circulation rate of the cooling water around the tube.
  • a latent heat cooling tube having good cooling efficiency is piped at the center of the reactor with high reaction heat, and a cooling tube is piped at the side of the edge having a relatively low reaction heat, so that the temperature control at the center and the edge of the reactor is separated to precise temperature control.
  • maximizing the cooling efficiency by the latent heat cooling tube can reduce the number of cooling pipes piped to the central portion of the reactor mainly gas bubbling behavior can reduce the impact on the gas bubbling behavior.
  • the inner tube of the latent heat cooling tube is formed by a multi-pipe equipped with each individual valve, the injection hole formed in each inner pipe to be formed in a section having a different height, the cooling tube is vertically separated by a multi-stage cooling device By multi-stage separation in the width direction and the vertical direction of the reactor to enable individual driving can be more precisely controlled the temperature inside the reactor to increase the synthesis fuel production rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

본 발명은 석탄 가스화기에서 생성된 합성가스와 촉매와의 반응시 발생되는 반응열의 온도를 제어할 수 있는 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치에 관한 것으로, 보다 상세하게는 FT슬러리 기포탑 반응기에는 내관이 내포된 잠열냉각관을 중앙에 배관하고, 측면인 가장자리에는 다수의 냉각관을 수직으로 다단 분리하여 배관한 것이다. 따라서, 내관에서 분사되는 냉각수가 스팀으로 상변화되는 잠열에 의한 중앙냉각방식과, 냉각관에 선택적으로 냉각수 또는 스팀을 공급해 직접 냉각이 이루어지는 측면냉각방식을 혼합하여 반응기의 중앙과 측면의 온도를 균일하게 조절할 수 있도록 한 FT슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치에 관한 것이다.

Description

FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치
본 발명은 석탄 가스화기에서 생성된 합성가스와 촉매와의 반응시 발생되는 반응열의 온도를 제어할 수 있는 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치에 관한 것으로, 보다 상세하게는 FT슬러리 기포탑 반응기에는 내관이 내포된 잠열냉각관을 중앙에 배관하고, 측면인 가장자리에는 다수의 냉각관을 수직으로 다단 분리하여 배관한 것이다. 따라서, 내관에서 분사되는 냉각수가 스팀으로 상변화되는 잠열에 의한 중앙냉각방식과, 냉각관에 선택적으로 냉각수 또는 스팀을 공급해 직접 냉각이 이루어지는 측면냉각방식을 혼합하여 반응기의 중앙과 측면의 온도를 균일하게 조절할 수 있도록 한 FT슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치에 관한 것이다.
일반적으로, 석탄을 주원료로 가스화공정-->정제공정-->액화공정을 통해 최종적으로 왁스형태의 합성연료를 제조하여 화석연료의 원료로 사용할 수 있도록 하는 것이 석탄 간접 액화 시스템이다.
여기서 가스화공정은 석탄을 수소와 일산화탄소를 주로 포함하는 합성가스로 변환하는 공정이다. 그리고 정제공정은 가스화공정을 통해 제조된 합성가스를 집진 및 탈황(黃)하고, 각종 불순물을 제거하는 공정이다. 마지막에서 액화공정은 정제된 합성가스를 촉매 상에서 반응시켜 액상 합성연료로 변환하는 공정이다.
상기에서 액화공정을 수행하기 위해서는 상기 FT 슬러리 기포탑 반응기로 합성가스를 균일하게 분산시켜 FT 슬러리 기포탑 반응기의 슬러리에 함유된 철-촉매와 반응하도록 하여 합성연료를 생성한다.
이러한 FT 슬러리 기포탑 반응기는 합성가스(CO + H2)와, 철(Fe)-촉매가 반응하면 합성연료가 생성되는데 이 때 발열에 의해 FT 슬러리 기포탑 반응기 내부 온도가 상승하게 된다. 상기 반응기의 내부온도가 상승하면 메탄가스와 에탄, 프로판 등의 가스 생성물 발생이 증가하여 액체 연료와 왁스의 생성이 저하된다. 또한 반응 온도가 높게 유지되면 촉매의 비활성화가 빨리 일어나게 되어 촉매의 수명이 단축된다. 따라서 상기 FT 슬러리 기포탑 반응기의 내부 온도를 일정하게 유지하는 것이 선행되어야 한다.
상기 반응기 내부의 온도를 일정하게 유지시키기 위한 방법으로는 내부에 물 또는 스팀을 순환시키는 냉각관을 배관시키는 방법이 사용되었으나, 이러한 구조는 냉각관에 많은 량의 냉각수를 공급해야 함은 물론 물을 계속해서 순환시켜야 하기 때문에 에너지가 많이 소비되고, 냉각 효율 또한 매우 떨어지며, 그 결과 냉각관의 단면적을 늘리기 위해 관의 개수가 많아지게 된다.
이에 본 출원인은 특허등록 제0901736호에서 잠열을 이용한 냉각장치를 제시하였다. 도 8을 참조한 바와같이 출원된 냉각장치(1)는 내부에 분사관(3)이 내입된 냉각관(4)을 반응기(2)의 반응실로 유입하고, 하향으로 다수개를 연장형성하여 분사관으로 냉각수를 상측에서 하측으로 공급하면서 분사관에 형성된 분사구를 통해 공급된 냉각수를 냉각관과 분사관 사이의 공간으로 분사되도록 하고, 분사된 냉각수를 반응열을 흡수하여 스팀으로 증발되어 상측으로 배출되는 구조를 제공하였다. 상기 등록건은 냉각수의 증발 잠열로 반응기의 내부 반응온도를 조절하는 방식이어서 냉각효율을 증대시키는 장점은 있다.
그러나, 상기 반응기는 수직방향으로의 길이가 길게 형성되기 때문에 각 부위별로 나타나는 반응온도가 다양하게 형성됨으로, 동일한 냉각수의 분사로써는 정밀한 온도 컨트롤이 어렵다. 또한 분산판에 의해 공급되는 합성가스는 반응기 단면의 중앙부분을 통해 더욱 많은 량이 버블링됨으로 반응이 더욱 활발하게 이루어져 반응온도가 상승됨으로 반응기 중앙과 측면의 반응온도도 차이가 발생된다.
따라서, 상기 방응기의 높이와 폭방향에 따른 다양한 반응온도차에 대응하여 반응기 내부온도를 보다 정밀하게 조절할 수 있는 냉각장치에 대한 연구가 필요하다.
이에 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치는,
가스분산판에 의해 상부 반응실과 하부 도입실로 구획된 FT슬러리 기포탑 반응기에는 내부 중앙에 다수의 잠열냉각관을 수직배관하고, 상기 잠열냉각관 내에는 다관으로 된 내관을 배관하여 내관에 형성된 분사구를 통해 냉각수를 분사하여 냉각수가 스팀으로 상변화되는 잠열에 의한 냉각이 이루어지도록 하고, 상기 반응기 내부의 가장자리인 측면에는 수직배관되는 냉각관을 측면을 따라 다수 배관되도록 하여 중앙의 잠열냉각관과는 별도로 반응기의 측면 반응온도를 제어하도록 한 것을 목적으로 한다.
또한, 상기 잠열냉각관 내부의 내관은 수직방향으로 인접된 내관과 서로 다른 범위에서 분사구가 형성되도록 하고 각 내관에는 개별적으로 밸브가 설치되어 개별적인 냉각수 분사가 가능하도록 하고, 상기 반응기 내부의 측면에 설치되는 냉각관은 다단으로 형성되도록 함으로써 반응기의 수직방향으로도 다단으로 온도제어가 가능하도록 한 것을 다른 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치는,
내설된 가스분산판에 의해 내부를 하부 도입실과 상부 반응실로 구획된 반응기에 냉각관을 배관하여 반응기로 공급된 석탄 가스화기에서 생성된 합성가스와 촉매의 반응에 의해 발생되는 반응열을 제어하도록 한 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합령 냉각장치에 있어서, 상기 반응기의 반응실 상부로 수평 배관되는 제1잠열냉각관과; 상기 반응기의 도입실에 수평배관되고 일단이 외부로 표출되며 표출된 단부에 배출구가 형성되어 상변화된 스팀을 배출하도록 하는 제2잠열냉각관과; 상기 제1잠열냉각관과 제2잠열냉각관을 반응기의 중앙부분에서 수직으로 연결하는 다수의 제3잠열냉각관과; 상기 제1 내지 제3 잠열냉각관의 내부에 다수의 관체가 각각 개별적으로 배관되고, 상기 제3 잠열냉각관 내부에 배관되는 관체에는 다수의 분사구가 형성되데, 상기 분사구는 인접된 다른 관체와 서로 다른 높이의 구간에서 형성되어 냉각수 분사가 이루어지도록 하고, 분사된 냉각수는 주위열을 흡수해 스팀으로 상변화가 이루어지는 내관과; 상기 반응기 반응실의 하부와 상부 측면에 각각 연통되어 하부로부터 냉각수를 유입하여 상부로 배출하는 수직관체로 제3잠열냉각관을 중심으로하여 환 형태로 다수 배관되는 냉각관;을 포함하여 구성된다.
도 1은 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치를 도시한 구성도.
도 2와 도 3은 도 1의 A부분 확대도와, B-B 단면도.
도 4는 본 발명의 실시예에 따른 제1 및 2내각관의 배관상태를 도시한 개략도.
도 5 내지 도 7은 본 발명의 다른 실시예에 따른 혼합형 냉각장치를 도시한 구성도.
도 8은 종래의 FT 슬러리 기포탑 반응기의 반응열 제거용 냉각관을 도시한 구성도이다.
<도면의 주요부분에 대한 부호의 설명>
10: 냉각장치
20 : 반응기
21 : 본체 22 : 상부덮개 23 : 하부덮개
24 : 가스분산판 25 : 반응실 26 : 도입실
30 : 잠열냉각관
31 : 제1잠열냉각관 32 : 제2잠열냉각관
33 : 제3잠열냉각관 34 : 주관 35 : 보조관
311 : 유입구 321 : 배출구
40 : 내관
41 : 제1내관 42 : 제2내관 43 : 제3내관
401 : 분사구
50 : 냉각관
60 : 순환관
70 : 냉각수저장탱크
80 : 펌프
90 : 밸브
이하에서는 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치에 관하여 첨부되어진 도면과 함께 더불어 상세히 설명하기로 한다.
도 1은 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치를 도시한 구성도이고, 도 2와 도 3은 도 1의 A부분 확대도와, B-B단면을 도시한 단면도이고, 도 4는 본 발명의 실시예에 따른 잠열냉각관과 냉각관의 배관상태를 도시한 개략도이다.
도시된 바와같이 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치(10)는 석탄가스화 장치에서 합성가스를 공급받아 촉매와 반응시켜 합성연료를 생성하고 이 과정에서 반응열이 발생된 반응기 내의 온도를 제어할 수 있도록 한 장치이다.
여기서 상기 반응기(20)는 통체의 본체(21)와, 상기 본체의 상하부에 각각 결합되는 상하부 덮개(22,23)로 구성되고, 상기 하부덮개(23)와 본체(21) 사이에 가스분산판(24)을 설치하여 내부공간을 하부 도입실(26)과 상부 반응실(25)로 구획하였다. 이러한 구조에서 상기 도입실(26)에는 석탄 가스화기에서 생성된 합성가스를 공급하여 합성가스가 가스분산판을 통해 상부의 반응실로 분산공급하도록 하고, 상기 반응실에는 촉매가 적재되어 있어 공급되는 합성가스와 반응이 이루어지도록 한다.
또한, 상기 반응기(20)에는 냉각장치(10)를 설치하여 합성가스와 촉매의 반응에서 생성된 반응열을 제거해 합성연료 생성에 적합한 온도를 유지하도록 한다.
상기 냉각장치(10)는 반응기(20)의 중앙부분을 냉각시키기 위한 잠열냉각관(30)과, 상기 중앙부분을 제외한 반응기 가장자리인 측면부분을 냉각시키기 위한 냉각관(50)으로 분리구성하여, 반응기의 중앙과 측면의 온도조절이 별도로 이루어지게 한다.
먼저 잠열냉각관(30)을 살펴보면,
상기 잠열냉각관은 내부에 내관(40)을 갖는 이중관 형태로 반응기의 반응실(25) 상부인 상부덮개(22)에 수평으로 배관되는 제1잠열냉각관(31)과, 상기 반응기의 도입실(26)에 수평배관되고 일단은 외부로 표출되며 표출된 단부에 배출구(321)가 형성되어 냉각수가 상변화된 스팀을 배출하도록 하는 제2잠열냉각관(32)과, 상기 제1잠열냉각관과 제2잠열냉각관을 수직으로 연결하는 다수의 제3잠열냉각관(33)으로 이루어진다.
상기 제1잠열냉각관(31)과 제2잠열냉각관(32)은 수직설치된 반응기 단면 중 중앙부분에 위치하도록 배관된다. 즉, 상기 제1잠열냉각관(31)과 제2잠열냉각관(32)은 외부로부터 반응기 내부로 삽통 또는 반응기 내부에서 외부로 배출되는 주관(34)과, 상기 주관과 연통되고 반응기 단면의 중앙 부분에 넓게 배관되는 보조관(35)으로 구성되며, 상기 보조관(35)은 도 4에 도시된 형태인 원으로 하거나, 격자 또는 다수의 동심원등 다양한 형태로 형성할 수 있다. 상기 제1잠열냉각관(31)의 외부로 표출된 단부에는 유입구(311)가 형성되어 냉각수의 유입이 이루어지도록 하고, 상기 제2잠열냉각관(32)의 단부에 형성된 배출구(321)는 냉각과정시 발생된 스팀을 배출하도록 한다.
또한, 제3잠열냉각관(33)은 반응기의 상측에 설치된 제1잠열냉각관과 하측에 설치된 제2잠열냉각관을 서로 연통시키는 것으로, 도 4에 도시된 바와같이 다수개를 수직설치하고 이 들을 서로 일정간격으로 배관하여 반응기 내의 온도조절이 용이하게 하는 것이 바람직하다.
다음으로 상기 제1 내지 제3잠열냉각관(30,31,32,33)의 내부에는 다수의 내관(40)이 배관되며, 상기 제3잠열냉각관(33) 내부에 위치하는 내관에는 분사구(401)가 형성되어 내관 내부로 흐르는 냉각수가 분사구를 통해 분사되도록 한다. 바람직하게는 상기 잠열냉각관(30) 내의 설치되는 내관(40)의 수는 2 내지 5개로 형성하여 반응기 구간을 다단으로 세분화하여 냉각수의 분사가 이루어지도록 하는 것이다. 여기서 상기 내관의 수는 반응기의 길이가 길어질수록 배관되는 수를 증가시켜 세분화가 가능하도록 한것이나, 내관의 수가 상기 5개를 초과할 경우 냉각수 분사각이 다른 내관에 의해 제약을 받아 냉각수의 고른 분사가 어려움으로 상기 범위 내로 분사하도록 하는 것이 바람직하다.
실시일예를 도시한 도1 및 도 2를 참조하여 설명하면, 상기 내관(40)은 도시된 바와같이 제1 내지 3 내관(41,42,43) 등 3개 관체로 형성된다. 상기 제1내관(41)은 제1 내지 3 냉각관의 내부에 배관되어 하나의 유로로 연통되어 있고, 제2내관(42) 및 제3내관(43)도 제1내관과 동일하게 제1 내지 3 냉각관의 내부에 서로 독립된 유로로써 배관된다. 또한, 상기 내관(40)은 제3잠열냉각관(33) 내부에 위치하는 관체에 다수의 분사구(401)가 형성되어 내관 내부로 흐르는 냉각수의 분사가 이루어지도록 한다.
여기서 도 3을 참조한 바와같이 상기 서로 다른 유로를 갖는 3개의 관체 뭉치인 내관(40) 직경은 잠열냉각관(30)의 내부 직경의 1/2보다 작게 형성하여 내관과 잠열냉각관 사이에 갭이 충분히 형성되도록 하는 것이 바람직하다. 상기 갭은 후술되는 분사구에 의해 냉각수가 분사될 수 있는 공간으로 활용되거나, 상변화된 스팀을 배출하는 공간으로써 활용된다.
또한, 상기 제 1 내지 제3 내관(40,41,42,43)에 형성된 분사구(401)는 인접된 다른 관체와 서로 다른 높이를 갖는 구간에서 형성되도록 할 수 있다. 이는 냉각수가 다수의 분사구(401)를 순차적으로 통과하면서 냉각수의 일부를 분사하기 때문에 점진적으로 내관으로 흐르는 냉각수의 량이 줄어들어 분사압력도 낮아지게 된다. 따라서, 처음 분사되는 분사구의 냉각수 분사량과 마지막으로 분사되는 냉각수의 분사량이 달라짐에 따라 발생될 수 있는 온도조절의 미차를 방지하기 위해 각 내관에 형성되는 분사구 위치를 달리 형성하여 구간별로 최대한 동일한 냉각수 분사가 이루어지게 함으로써 분사량 감소에 따른 온도 차이를 최소화 한 것이다.
예컨대 도 1을 참조한 바와같이 내관(40,41,42,43)을 3개로 형성할 경우에는 제1내관(41)은 도면의 a구간에 분사구를 형성하고, 제2내관(42)은 도면의 b구간에서 분사구를 형성하고, 제3내관(43)은 도면의 c구간에서 분사구를 형성하여 각 구간에서 동일한 압력으로 분사가 이루어지게 할 수 있다. 물론 상기 내관(40)의 수를 증가시켜 분사구 형성 구간을 더욱 세분화하여 다단으로 분리가 이루어지게 할 수 있다.
또한, 상기 내관(40)은 냉각수가 반응기로 유입되는 제1잠열냉각관(31) 내의 내관 직경보다 분사구를 통해 분사가 이루어진 후의 냉각수가 배출되는 제2잠열냉각관(32) 내의 내관 직경을 더 작게 형성할 수 있다. 이 때 상기 제3잠열냉각관 내의 내관은 분사구형성이 시작된 부분은 제1냉각관 내의 내관직경과 동일하게 형성하고, 분사구가 형성이 끝나는 지점은 제2냉각관 내의 내관지경과 동일하게 형성하며, 분사구가 형성된 내관의 직경은 점진적으로 작게 형성되게 할 수 있다. 이와같이 내관 직경의 변화는 분사구를 통해 배출되는 냉각수의 량만큼 직경을 작게 형성되도록 하여 분사로 소실된 냉각수에 의해 다음 분사구의 분사압력 저하를 방지할 수 있는 것이다.
상기 제1 내지 제3 내관에 형성된 다수의 분사구는 내관의 내주면으로부터 외주면으로 갈수록 점진적으로 넓게 형성되도록 하여 냉각수가 압력에 의해 넓은 범위로 분사되도록 하는 것이 바람직하다. 또한, 반응기 내에서 반응이 활발하게 이루어져 상대적으로 높은 열이 발산되는 부분에는 다른 부분보다 분사구의 형성간격을 좁게 형성하여 냉각수의 분사량이 증가되도록 할 수 있다.
아울러 상기 분사구(401)는 동일한 수평선상에 다수개의 분사구가 형성되도록 하거나, 도 2의 확대한 도면을 참조한 바와같이 내관(41,42,43)을 따라 나선으로 분사구(401)를 배열하여 동일 수평선상에 하나의 분사구만 형성되도록 할 수 있다. 이와같이 동일 수평선상에 하나의 분사구만 형성될 형태는 다수개의 분사구가 형성된 형태의 것보다 상대적으로 낮은 압력에서도 분사가 용이하게 이루어질 수 있는 장점이 있다.
다음으로 상기 냉각관(50)은,
상술된 이중관인 잠열냉각관과는 다르게 내부에 냉각수나 스팀이 직접 흐르는 단일관으로 형성되는 것으로, 도 1과 도 4를 참조한 바와같이 반응기(20)의 하부에 수평으로 유입되고, 반응기의 내벽과 근접되도록 수직으로 배관되며, 반응기의 상부를 통해 배출되는 구조이다. 상기 냉각관(50)은 반응기의 수직방향 전체에 배관되도록 할 수 있으나, 바람직하게는 실질적으로 반응이 이루어져 온도가 상승되는 반응실(25)에만 배관되도록 하는 것이다.
또한 상기 냉각관(50)은 반응기 중앙에 수직배관된 제3잠열냉각관(33)을 중심으로 반응기의 내벽을 따라 환의 형태로 다수개가 수직배관되도록 하여 측면온도조절이 이루어지도록 할 수 있다. 이때 상기 다수의 냉각관(50)은 미도시되었지만 각각이 개별적으로 냉각수를 공급받도록 배관하여 반응기의 측면 중에서도 특정부분에 대한 선택적인 냉각이 이루어질 수 있게 하는 것이 바람직하다.
그리고 상기 냉각관(50)은 도 5를 참조한 바와같이 수직방향으로도 다수 분리해 다단으로 형성하고, 다단 분리된 각각에 개별적으로 냉각수를 공급하도록 할 수 있다. 이와같이 냉각관을 다단으로 형성하면 반응기 내부 측변 부분을 수직방향으로 다수 분리하여 온도조절할 수 있다.
즉, 반응기 내의 온도 조절은 반응기 수평단면 방향으로는 중앙의 잠열냉각관과 측면의 냉각관에 의해 분리 조절하고, 수직방향으로는 내부 내관의 분사구(401) 형성부위를 달리 한 제3잠열냉각관(50)과 다단으로 분리된 냉각관(50)에 의해 조절되게 함으로써 반응기 내부를 세분화하여 부위별로 온도조절이 이루어지게 함으로 보다 정교한 온도조절이 가능하게 한 것이다.
또한, 상기 냉각관(50)은 내부에 냉각수가 흐르는 단일관으로 도시 및 설명하고 있으나, 잠열냉각관과 같이 이중관으로 형성하여 잠열을 이용한 냉각이 이루어지도록 할 수 있다.
한편, 도 6을 참조한 바와같이 상기 냉각장치(10)에는 분사하고 남은 잔여 냉각수를 회수하여 재공급하는 순환관(60)이 더 설치될 수 있다. 상기 순환관(60)은 반응기 외부에 배관되는 관체로 일단이 제1잠열냉각관(31) 내의 내관과 연통되고, 타단이 제2잠열냉각관(32) 내의 내관과 연통되어 있다. 이와같이 배관된 순환관(60)은 제1잠열냉각관측으로 냉각수를 공급하고, 분사구를 통해 분사하고 남은 냉각수를 제2잠열냉각관측으로부터 즉시 회수하여 다시 제1잠열냉각관측을 통해 반응기 내로 공급한다.
이러한 순환관(60)의 유로상에는 냉각수저장탱크(70)를 더 설치하여 회수된 냉각수를 임시로 저장하고, 반응기 내에서 분사되어 소모된 냉각수를 보충하게 한다. 또한 상기 순환관의 유로상에는 펌프(80)를 설치하여 펌프의 작동 정도에 따라 냉각수의 공급량 조절이 이루어지도록 할 수 있다.
아울러 상기 냉각수의 분사량 조절은 상기 펌프 이외에 밸브(90)에 의해서도 조절이 가능하다. 상기 밸브(90)는 냉각수가 반응기에서 배출되는 순환관 부분에 장착하여, 밸브작동으로 내관의 냉각수 압력을 조절해 분사되는 냉각수의 량을 조절하도록 한다. 이때 상기 밸브(90)는 냉각수가 유입되는 부분의 순환관에 설치될 수 있으나, 도시된 바와같이 반응기에 분사된 후 배출되는 부분에 설치되어 펌프에 의한 압력조절이 용이하게 이루어지도로록 하는 것이 바람직하다.
또한, 도 7을 참조한 바와같이 상기 밸브(90)를 다수의 내관 각각에 독립적으로 장착하여 각 내관의 냉각수 압력을 선택적으로 조절하여 냉각수의 분사량을 조절하도록 할 수 있다. 이 때 상기 반응기의 각 구간에는 온도센서를 장착하고, 온도센서가 장착된 부분에서의 반응온도를 측정해 측정된 값에 의해 연관된 밸브를 개방 및 닫게 함으로써 반응기 내의 온도조절이 부분적으로 이루어지게 할 수 있다.
이하에서는 본 발명에 따른 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치의 작동에 관하여 첨부되어진 도면과 더불어 간단히 설명하기로 한다.
먼저 FT 슬러리 기포탑 반응기(20)의 도입실(26)로 유입된 합성가스는 가스분산판(24)을 통해 반응실(25)로 분산 공급되도록 한다. 반응실로 공급된 합성가스는 버블링형태의 가스유체거동에 의해 상승되면서 반응기의 유동슬러리에 함유되어 있는 촉매와 반응이 이루어지면서 합성연료를 생산한다.
여기서 상기 수직설치된 반응기(20)의 수평단면으로 보면 가스유체거동이 반응기 가장자리인 측면부분보다 중앙 부분에서 더욱 많이 이루어짐으로 중앙부분에서 촉매반응이 활발하게 이루어져 반응열을 다량 생성하게 된다. 상기 생성된 반응열은 반응기의 온도를 상승시켜 합성연료 생성의 바람직한 온도인 200 ~ 350℃ 정도의 범위를 벗어나게 함으로 고온에 의해 메탄가스와 이산화탄소의 발생이 증가되어 합성연료의 생성율이 저하된다.
따라서, FT 슬러리 기포탑 반응기에 설치된 냉각장치(10)를 통해 반응기 내의 온도를 일정하게 유지되게 함으로써 항시 최적의 합성연료 생성온도를 유지할 수 있도록 한 것이다.
이러한 냉각장치(10)는 가스유체거동이 활발하게 이루어지는 반응기 중앙부분에는 잠열냉각관(30)을 배관하고, 상대적으로 가스유체거동이 낮은 가장자리인 측면에는 냉각관(50)을 배관하여 온도조절이 이루어지도록 한다.
상기 반응기 중앙부분의 온도는 잠열냉각관(30)에 의해 조절된다. 상기 잠열냉각관은 제1잠열냉각관(31) 내부의 내관을 통해 냉각수를 반응기(20) 내로 유입하고, 반응기의 중앙부분에 배관된 제3잠열냉각관(33) 내측의 내관을 통해 수직하강하여 촉매반응이 이루어지는 반응실(25)을 통과해 도입실(26)의 제2잠열냉각관(32) 내의 내관으로 이송된다.
이 과정에서 밸브(90)를 작동하면 내관(40) 내의 냉각수 압력이 증가되어 내관에 형성된 분사구(401)를 통한 냉각수 분사량이 증가된다. 즉, 냉각수가 제3잠열냉각관(33) 내주면과 내관(40) 외주면 사이의 공간으로 분사되고, 분사된 냉각수는 냉각관으로 전달된 열을 흡수하여 스팀으로 상변화되며, 상변화된 스팀은 제2잠열냉각관(32)의 일단에 형성된 배출구(321)를 통해 외부로 배출된다.
도 6에 도시된 바와같이 상기 분사구(401)로 분사되고 남은 냉각수는 제2잠열냉각관 내의 내관과 연통된 순환관(60)을 통해 회수되어 냉각수저장탱크(70)로 포집되며, 펌프의 펌핑에 의해 반응기(20) 내의 내관(40)으로 재공급하도록 할 수 있다.
또한 도 7과 같이 상기 밸브(90)를 잠열냉각관 내의 각 내관(40)에 개별적으로 장착하게 될 경우 c구간의 반응열이 높아지면 c구간에 분사구가 형성된 내관의 밸브를 작동하여 냉각수 압력을 증가되도록 해 냉각수의 분사량이 증가되게 하는 등 수직방향으로의 각 구간별로 반응기 내의 온도를 정밀하게 조절할 수 있다.
한편, 반응기 측면 부분의 온도는 냉각관(50)에 의해 조절된다. 상기 냉각관은 반응기의 수직방향으로 다단 형성되며, 내부에 흐르는 냉각수가 직접 반응기 측면부위와 열교환하여 온도조절이 이루어진다. 예컨대, 반응실의 최하단 부분의 반응온도가 상승하게 되면 최하단 부분의 냉각관 내부 냉각수 순환속도를 증가시켜 온도를 하강시키게 된다. 또한 최하단중에서도 특정 부분에서만 온도가 상승하면 그 주위의 냉각관 냉각수의 순환속도를 증가시킴으로써 더욱 세밀하게 온도를 조절하여 반응실 내의 각 부위 온도가 합성연료 생성에 적합한 온도를 유지할 수 있도록 한 것이다.
본 발명은, 반응기에서 반응열이 높은 중앙에는 냉각효율이 좋은 잠열냉각관을 배관하고, 상대적으로 반응열이 낮은 가장자리인 측면에는 냉각관을 배관하여 반응기 중앙과 가장자리의 온도제어가 분리해 정밀한 온도조절이 이루어질 수 있다. 특히 잠열냉각관에 의해 냉각효율을 극대화시킴으로써 가스 버블링 거동이 주로 이루어지는 반응기 중앙 부분에 배관되는 냉각관의 수를 줄일 수 있어 가스 버블링 거동에 대한 영향을 줄일 수 있다.
또한, 상기 잠열냉각관 내부의 내관은 각 개별적인 밸브가 장착된 다관으로 형성하고, 각 내관에 형성되는 분사구는 서로 다른 높이를 갖는 구간에서 형성되도록 하고, 냉각관은 수직으로 다단 분리 구성하여 냉각장치를 반응기의 폭방향과 수직방향으로 다단분리해 개별적인 구동이 가능하게 함으로써 반응기 내부온도를 보다 정밀하게 조절하여 합성연료 생성율을 증대시킬수 있다.

Claims (4)

  1. 내설된 가스분산판(24)에 의해 내부를 하부 도입실(26)과 상부 반응실(25)로 구획된 반응기(20)에 냉각관을 배관하여 반응기로 공급된 석탄 가스화기에서 생성된 합성가스와 촉매의 반응에 의해 발생되는 반응열을 제어하도록 한 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합령 냉각장치에 있어서,
    상기 반응기의 반응실(25) 상부로 수평 배관되는 제1잠열냉각관(31)과;
    상기 반응기의 도입실(26)에 수평배관되고 일단이 외부로 표출되며 표출된 단부에 배출구(321)가 형성되어 상변화된 스팀을 배출하도록 하는 제2잠열냉각관(32)과;
    상기 제1잠열냉각관과 제2잠열냉각관을 반응기의 중앙부분에서 수직으로 연결하는 다수의 제3잠열냉각관(33)과;
    상기 제1 내지 제3 잠열냉각관의 내부에 다수의 관체가 각각 개별적으로 배관되고, 상기 제3 잠열냉각관(33) 내부에 배관되는 관체에는 다수의 분사구(401)가 형성되데, 상기 분사구는 인접된 다른 관체와 서로 다른 높이를 갖는 구간에 형성되어 냉각수 분사가 이루어지도록 하고, 분사된 냉각수는 주위열을 흡수해 스팀으로 상변화가 이루어지는 내관(40)과;
    상기 반응기 반응실의 하부와 상부 측면에 각각 연통되어 하부로부터 냉각수를 유입하여 상부로 배출하는 수직관체로 제3잠열냉각관을 중심으로하여 환 형태로 다수 배관되는 냉각관(50);을 포함하여 구성되는 것을 특징으로 하는 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치.
  2. 제1항에 있어서,
    상기 반응기(20) 외부에 배관되고, 일단이 제1잠열냉각관(31) 내의 내관과 연통되고, 타단이 제2잠열냉각관(32) 내의 내관에 연통되어 제2잠열냉각관의 내관으로 배출되는 냉각수를 제1잠열냉각관의 내관으로 재공급하는 순환관(60)과;
    상기 순환관의 유로상에 설치되는 밸브(90), 냉각수저장탱크(70) 및 펌프(80);가 더 설치됨을 특징으로 하는 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치.
  3. 제1항 또는 제2항에 있어서,
    상기 냉각관(50)은 수직방향으로 다수 분리해 다단으로 형성하여 반응기 수직방향으로 개별적인 냉각작용이 이루어지도록 한 것을 특징으로 하는 FT 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치.
  4. 제1항 또는 제2항에 있어서,
    상기 다수 관체의 집합체인 내관(40)은 각 관체마다 밸브(90)를 장착하여 개별적인 밸브작동에 의해 반응기 구간 별로 냉각수 압력을 조절하여 냉각수 분사량이 조절되도록 한 것을 특징으로 하는 FT슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치.
PCT/KR2009/006406 2009-10-07 2009-11-03 Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치 WO2011043508A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090095167A KR101031886B1 (ko) 2009-10-07 2009-10-07 Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치
KR10-2009-0095167 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043508A1 true WO2011043508A1 (ko) 2011-04-14

Family

ID=43856950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006406 WO2011043508A1 (ko) 2009-10-07 2009-11-03 Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치

Country Status (2)

Country Link
KR (1) KR101031886B1 (ko)
WO (1) WO2011043508A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694171A (zh) * 2013-12-06 2015-06-10 通用电气公司 用于冷却气化器系统内的合成气的系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011788B2 (en) 2012-02-17 2015-04-21 Ceramatec, Inc Advanced fischer tropsch system
WO2013126449A1 (en) 2012-02-21 2013-08-29 Ceramatec, Inc. Compact ft combined with micro-fibrous supported nano-catalyst
CA2864514C (en) 2012-02-21 2020-01-07 Ceramatec, Inc. Compact fischer tropsch system with integrated primary and secondary bed temperature control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258467A (ja) * 1993-03-04 1994-09-16 Toshiba Corp 冷却管
US20050080147A1 (en) * 2003-10-08 2005-04-14 Hawthorne William H. Fischer-tropsch slurry reactor cooling tube arrangement
US6900248B2 (en) * 2002-08-28 2005-05-31 Institut Francais Du Petrole High-pressure fischer-tropsch synthesis process using an optimized coolant
US20080000623A1 (en) * 2006-04-21 2008-01-03 Francois Hugues Novel internal exchanger for gas-liquid-solid reactor for fischer-tropsch synthesis
KR100901736B1 (ko) * 2008-06-19 2009-06-09 한국에너지기술연구원 Ft 슬러리 기포탑 반응기의 반응열 제거용 냉각장치
WO2009081175A1 (en) * 2007-12-24 2009-07-02 Compactgtl Plc Catalytic reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258467A (ja) * 1993-03-04 1994-09-16 Toshiba Corp 冷却管
US6900248B2 (en) * 2002-08-28 2005-05-31 Institut Francais Du Petrole High-pressure fischer-tropsch synthesis process using an optimized coolant
US20050080147A1 (en) * 2003-10-08 2005-04-14 Hawthorne William H. Fischer-tropsch slurry reactor cooling tube arrangement
US20080000623A1 (en) * 2006-04-21 2008-01-03 Francois Hugues Novel internal exchanger for gas-liquid-solid reactor for fischer-tropsch synthesis
WO2009081175A1 (en) * 2007-12-24 2009-07-02 Compactgtl Plc Catalytic reactor
KR100901736B1 (ko) * 2008-06-19 2009-06-09 한국에너지기술연구원 Ft 슬러리 기포탑 반응기의 반응열 제거용 냉각장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694171A (zh) * 2013-12-06 2015-06-10 通用电气公司 用于冷却气化器系统内的合成气的系统及方法
CN104694171B (zh) * 2013-12-06 2022-06-14 气体产品与化学公司 用于冷却气化器系统内的合成气的系统及方法

Also Published As

Publication number Publication date
KR20110037640A (ko) 2011-04-13
KR101031886B1 (ko) 2011-05-02

Similar Documents

Publication Publication Date Title
US7569086B2 (en) Fluid bed reactor having vertically spaced apart clusters of heating conduits
WO2011043508A1 (ko) Ft 슬러리 기포탑 반응기의 반응열 제거용 혼합형 냉각장치
CN105536654B (zh) 一种大型轴向多段混合换热式丁烯氧化脱氢反应器
CN111286355B (zh) 一种用于费托合成的流化床反应器
CN109022013A (zh) 加氢热裂化反应过程及应用于该过程的组合式加氢反应器
WO2011034249A1 (ko) Ft 슬러리 기포탑 반응기의 반응열 제거용 다단분리형 냉각장치
CN114053970B (zh) 一种甲烷裂解炉
CN109181771B (zh) 一种煤催化气化方法及煤催化气化装置
CN104419457B (zh) 一种双提升管催化裂化方法及装置
AU2009261430B2 (en) Fluidized-bed gasification method and facility therefor
US20130236392A1 (en) Thermochemical Reactors and Processes for Hydrolysis of Cupric Chloride
WO2012133988A1 (ko) 합성가스의 전환율을 높이기 위한 2단 f-t 반응기 시스템
CN102963944B (zh) 一种co变换冷凝液汽提塔
CN1018187B (zh) 制备合成气的方法和装置
WO2011034248A1 (ko) Ft 슬러리 기포탑 반응기의 반응열 제거용 순환형 냉각장치
CN104513670B (zh) 一种催化裂化方法与装置
CN217725506U (zh) 甲醇合成塔以及二氧化碳制甲醇系统
WO2011030959A1 (ko) Ft 슬러리 기포탑 반응기의 반응열 제거용 상향류 공급형 냉각장치
CN203238228U (zh) 高压多级流化床反应器
CN111349462B (zh) 水煤浆的气流床气化系统及方法
US6936082B2 (en) Very large autothermal reformer
WO2014069794A1 (ko) 경유 재순환 장치 및 그를 갖는 합성연료 제조 시스템
CN206676347U (zh) 一种蒽醌法制过氧化氢气液固三相内循环流化床反应装置
CN111732075A (zh) 复合式绝热串控温变换炉装置及变换工艺
CN105441114B (zh) 一种催化裂化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850279

Country of ref document: EP

Kind code of ref document: A1