WO2012132749A1 - 立体表示装置、指示受付方法及びプログラムならびにその記録媒体 - Google Patents

立体表示装置、指示受付方法及びプログラムならびにその記録媒体 Download PDF

Info

Publication number
WO2012132749A1
WO2012132749A1 PCT/JP2012/055176 JP2012055176W WO2012132749A1 WO 2012132749 A1 WO2012132749 A1 WO 2012132749A1 JP 2012055176 W JP2012055176 W JP 2012055176W WO 2012132749 A1 WO2012132749 A1 WO 2012132749A1
Authority
WO
WIPO (PCT)
Prior art keywords
instruction
image
stereoscopic
eye
indicator
Prior art date
Application number
PCT/JP2012/055176
Other languages
English (en)
French (fr)
Inventor
田中 康一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12765796.3A priority Critical patent/EP2693405A4/en
Priority to JP2013507300A priority patent/JP5693708B2/ja
Priority to CN2012800170054A priority patent/CN103460257A/zh
Publication of WO2012132749A1 publication Critical patent/WO2012132749A1/ja
Priority to US14/040,103 priority patent/US9727229B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity

Definitions

  • the present invention relates to a stereoscopic display device, an instruction receiving method, and a program capable of stereoscopically displaying an instruction image to be instructed by an indicator and receiving a user's instruction so as not to impair the user's stereoscopic effect.
  • a 3D button image including a right eye button image and a left eye button image is displayed, and when a user touches a touch sensor arranged on the display screen with an indicator such as a finger or a touch pen, the touch on the display screen is performed.
  • a stereoscopic display device that detects a position is known (see, for example, Patent Document 1).
  • the present invention has been made in view of such circumstances, and it is possible to display a three-dimensional display of an instruction image to be instructed by a pointer and receive a user instruction so that the stereoscopic effect of the user can be maintained. It is an object to provide a display device, an instruction receiving method, and a program.
  • the present invention provides a stereoscopic display means for displaying an instruction stereoscopic image composed of an instruction left-eye image and an instruction right-eye image to be instructed by an indicator, and the instruction indicated by the indicator
  • a spatial sensor for detecting an indication position on the display screen of the stereoscopic display means, a distance between the display screen of the stereoscopic display means and the indicator, and an indication position detected by the spatial sensor is the indication stereoscopic image.
  • Determination means for determining whether or not the detection area corresponds to the instruction stereoscopic image, and receiving the instruction corresponding to the instruction stereoscopic image, the instruction left-eye image and the instruction right-eye image displayed on the stereoscopic display means
  • Parallax amount determining means for determining a parallax amount between the left eye image for instruction and the right eye image for instruction according to a decrease in the interval detected by the space sensor.
  • a stereoscopic display device comprising: a parallax amount determining unit that reduces a parallax amount; and an image processing unit that displays the instruction stereoscopic image on the stereoscopic display unit with a parallax amount determined by the parallax amount determining unit.
  • the present invention is arranged on the display screen of the stereoscopic display means, the stereoscopic display means for displaying an instruction stereoscopic image composed of an instruction left-eye image and an instruction right-eye image to be instructed by an indicator, and the instruction
  • a touch sensor for detecting a pointing position touched by a body, and determining whether or not the pointing position detected by the touch sensor is within a detection region corresponding to the pointing stereoscopic image
  • a determination unit that receives an instruction corresponding to an image; a space sensor that detects a distance between a touch surface of the touch sensor or a display screen of the stereoscopic display unit and the indicator; and the instruction displayed on the stereoscopic display unit Parallax amount determining means for determining a parallax amount between the left-eye image and the pointing right-eye image, wherein the instruction is determined according to the decrease in the interval detected by the space sensor.
  • Parallax amount determining means for reducing the amount of parallax between the left-eye image and the pointing right-eye image; and image processing means for displaying the pointing stereoscopic image on the stereoscopic display means with the amount of parallax determined by the parallax amount determining means; And a stereoscopic display device.
  • the space sensor detects the interval between the display screen and the indicator (for example, a finger or a touch pen), and the amount of parallax between the instruction left-eye image and the instruction right-eye image according to the decrease in the detected interval. Therefore, the stereoscopic effect of the user can be prevented from being impaired.
  • the indicator for example, a finger or a touch pen
  • stereoscopic image for instruction is an image for instruction to be instructed by an indicator and is an image displayed in three dimensions.
  • Specific examples of the “instruction stereoscopic image” include a so-called button-type 3D image (for example, a 3D button, a 3D icon, a 3D thumbnail), a so-called slide-type 3D image (for example, a 3D slide bar), and the like. Can be mentioned.
  • the type of touch operation (button operation, slide operation, etc.) and the image display format are not particularly limited.
  • the present invention makes it possible to change the projection amount of a stereoscopic image so that the stereoscopic image is pushed together with an indicator such as a finger or a touch pen. A sense of incongruity can be eliminated. Even if it is not a button-type 3D image, there is an effect of allowing the user to accurately recognize the interval between the indicator and the display screen.
  • the image processing means switches the instruction stereoscopic image to a planar display when an instruction of the indicator is detected by the spatial sensor or the touch sensor. That is, when the indicator is touched, the indication image is switched from the three-dimensional display to the flat display, so that it can be sensed not only by touch but also visually that the interval between the indicator and the display screen has become zero.
  • the present invention also provides a stereoscopic display means for displaying a pointing stereoscopic image composed of a pointing left-eye image and a pointing right-eye image for pointing with a pointer, and a display screen of the stereoscopic display means instructed by the pointer. While detecting the upper indicated position, the stereoscopic display unit is displayed on the stereoscopic display unit with a predetermined amount of parallax by using a spatial sensor that detects an interval between the display screen of the stereoscopic display unit and the indicator. A step of acquiring an interval between the display screen of the stereoscopic display means and the indicator by the space sensor, and the indicating left-eye image and the indicating right-eye image according to the decrease in the acquired interval.
  • a step of accepting an instruction corresponding to the serial instruction stereoscopic image, providing the instruction receiving method comprising a.
  • the present invention is arranged on the display screen of the stereoscopic display means, the stereoscopic display means for displaying an instruction stereoscopic image composed of an instruction left-eye image and an instruction right-eye image to be instructed by an indicator, and the instruction Using a touch sensor that detects a position touched by a body, and a spatial sensor that detects a change in a space between the touch surface of the touch sensor or a display screen of the stereoscopic display unit and the indicator, and A stereoscopic image for display on the stereoscopic display means with a predetermined amount of parallax, a step of obtaining an interval between the display screen of the stereoscopic display means and the indicator from the spatial sensor, and acquired from the spatial sensor A step of reducing a parallax amount between the pointing left-eye image and the pointing right-eye image according to the decrease in the interval, and a position at which a touch is detected by the touch sensor By determining whether a detection area corresponding to the instruction for the stereoscopic image
  • the present invention also provides a program for causing a computer to execute the instruction receiving method and a computer-readable recording medium on which the program is recorded.
  • the stereoscopic effect of the user can be prevented from being impaired.
  • the block diagram which shows the whole structure of an example of the three-dimensional display apparatus in this invention.
  • Explanatory drawing which shows the example of the stereo image for instruction
  • the figure which shows the external appearance of the three-dimensional display apparatus using a three-dimensional camera as a space sensor.
  • the flowchart which shows the flow of an example of instruction
  • the schematic diagram which shows a mode that the protrusion amount dz of the instruction
  • Explanatory drawing which shows the case where a parallax amount is reduced only for the instruction
  • Explanatory drawing which shows the case where size is enlarged only for the instruction
  • Explanatory drawing which shows the case where the surrounding instruction
  • Explanatory drawing which shows the example of the instruction
  • FIG. 15 is a block diagram showing a basic hardware configuration example for the stereoscopic display device of FIG. Explanatory drawing used to explain the problem of the present invention
  • FIG. 1 is a block diagram illustrating a configuration example of a stereoscopic display device 10 according to an embodiment.
  • the image input unit 11 inputs a 2D image of one viewpoint.
  • the three-dimensional image processing unit 12 converts the one-viewpoint 2D image output from the image input unit 11 into a 3D image composed of two-viewpoint images (a right-eye image for the right eye and a left-eye image for the left eye). To do.
  • the stereoscopic display unit 13 performs stereoscopic display of a 3D image.
  • the touch sensor 16 is arranged on the display screen of the stereoscopic display unit 13 and detects an indication position (xy coordinate) on the display screen touched by a user with an indicator such as a finger or a touch pen.
  • 2D means two dimensions (plane)
  • 3D means three dimensions (solid). That is, the “2D image” is a planar image, and the “3D image” is a stereoscopic image (a stereoscopically viewable image).
  • FIG. 2A shows a case where the amount of parallax is zero (no popping out)
  • FIG. 2B shows a case where the amount of parallax is small (small popping amount)
  • FIG. 2C shows a large amount of parallax (high popping amount).
  • Reference numeral 56 denotes an indicated position detection area for detecting the indicated position touched on the display screen (touch surface) as an effective one. In the case of the portion in FIG.
  • the user does not recognize the stereoscopic image, but as shown in the portions in FIG. 2B and FIG. 2C, the instruction left-eye image 53L and the instruction right-eye image 53R are converted into a parallax amount d. Only by shifting the position in the x direction (left and right direction), the user recognizes the instruction image as a three-dimensional image (3D image) popping out toward the front side of the display screen.
  • 3D image three-dimensional image
  • the space sensor 17 is a sensor that detects a three-dimensional position of an indicator (such as a finger or a touch pen), and thereby detects an interval between the display screen of the stereoscopic display unit 13 (or the touch surface of the touch sensor 16) and the indicator. To do. Since the touch sensor 16 is thin relative to the moving distance of the indicator, it is recognized that the surface (touch surface) of the touch sensor 16 and the display screen are substantially the same. In the following description, it is assumed that the space sensor 17 detects the interval between the display screen of the stereoscopic display unit 13 and the indicator.
  • an indicator such as a finger or a touch pen
  • the stereoscopic effect setting unit 14 receives a setting input operation for the magnitude (strongness) of the stereoscopic effect of the instruction 3D image, and the parallax amount corresponding to the set stereoscopic effect is stored in the storage unit 15 as an initial parallax amount. It has a function to memorize. For example, the stereoscopic effect setting unit 14 displays a selection menu of the stereoscopic effect “strong”, “medium”, and “weak” on the stereoscopic display unit 13, accepts a selection input of the stereoscopic effect level from the user, and receives the stereoscopic effect level. Is stored in the storage unit 15.
  • the dominant eye information setting unit 20 receives a setting input of the user's dominant eye information, and stores the input dominant eye information in the storage unit 15. For example, it asks the user whether the dominant eye is left or right by display (or audio output), and accepts left and right selection inputs from the user.
  • the structure which acquires dominant eye information by a user's setting input operation is demonstrated here, and the aspect which acquires dominant eye information by determining a user's dominant eye automatically is mentioned later.
  • the indicated position detection area determination unit 18 determines an indicated position detection area (reaction area) on the display screen of the stereoscopic display unit 13 based on at least the dominant eye information. For example, when the dominant eye information is acquired, at least one of the position, size, and shape of the indicated position detection area on the display screen is switched according to whether the user's dominant eye is the right eye or the left eye.
  • the determination unit 19 determines that the pointing position where the touch is detected by the pointing position detection unit 16 is within the range of the pointing position detection region (the region corresponding to the pointing 3D image) determined by the pointing position detection region determination unit 18. By determining whether or not there is, an instruction corresponding to the instruction 3D image is received. That is, the determination unit 19 determines whether there is a user instruction corresponding to the instruction 3D image.
  • Control unit 30 controls each unit of stereoscopic display device 10. Further, the control unit 30 determines the amount of parallax between the instruction left-eye image 53L and the instruction right-eye image 53R as a parallax amount determination unit. The control unit 30 changes the amount of parallax according to the change in the space between the display screen of the stereoscopic display unit 13 and the indicator detected by the space sensor 17. The control unit 30 of this example reduces the amount of parallax between the instruction right-eye image 53R and the instruction left-eye image 53L in accordance with the decrease in the interval detected by the space sensor 17. In addition, when the touch sensor 16 detects the touch of the indicator, the control unit 30 of the present example performs control to switch the instruction 3D image to flat display.
  • a stereoscopic image appears between the center position of the pointing right eye image 53R and the center position of the pointing left eye image 53L.
  • the designated position depends on the user's dominant eye. For example, when the user's dominant eye is the right eye, the position closer to the center position of the pointing right eye image 53R than the intermediate position C between the center position of the pointing right eye image 53R and the center position of the pointing left eye image 53L is Tend to be directed by.
  • the indicated position detection area determination unit 18 determines whether the dominant position of the specified position detection area is the right eye or the left eye. , Switch at least one. For example, when the dominant eye information is acquired, the indication position detection region is arranged closer to the display position of the dominant eye indication image of the indication right eye image and the indication left eye image. For example, an indication position detection area including a display area of the indication right eye image 53R is set. Thereby, it is possible to correctly determine the instruction intended by the user.
  • the image input unit 11, the three-dimensional image processing unit 12, the designated position detection region determination unit 18, the determination unit 19, and the control unit 30 are configured by, for example, a microprocessor (CPU).
  • the stereoscopic effect setting unit 14 and the dominant eye information setting unit 20 are mainly configured by, for example, a microprocessor and a touch sensor 16.
  • the stereoscopic effect setting unit 14 and the dominant eye information setting unit 20 may be configured to include other input devices such as a key and a mouse without using a touch sensor.
  • the storage unit 15 is configured by a memory, for example. However, the processing of each unit may be executed by software in accordance with a program recorded on a computer-readable non-transitory recording medium such as the storage unit 15 or may be executed by hardware using a circuit.
  • FIG. 3 shows the stereoscopic display device 10 when a compound eye stereoscopic camera 42 (hereinafter referred to as “compound eye 3D camera”) is used as the space sensor 17 of FIG.
  • the compound-eye 3D camera 42 is a camera including a multi-viewpoint optical system and an image sensor, and is a touch panel including the stereoscopic display unit 13 and the touch sensor 16 based on captured images of a plurality of viewpoints captured by the plurality of image sensors, respectively. The three-dimensional position of the indicator to be touched is detected.
  • the compound eye 3D camera 42 is used as the spatial sensor 17.
  • a monocular 3D camera that performs stereoscopic imaging by dividing a single imaging optical system into pupils may be used as the spatial sensor 17.
  • an infrared sensor including an infrared light emitting unit 17a that emits infrared light and an infrared light receiving unit 17b that receives the infrared light may be used as the spatial sensor 17.
  • 4A is a plan view of the stereoscopic display device 10 viewed from the z direction orthogonal to the display screen (xy plane).
  • 4B is a cross-sectional view of a cross section of the stereoscopic display device 10 along the z direction.
  • the space sensor 17 of this example has a structure in which a set of infrared sensors including an infrared light emitting unit 17a and an infrared light receiving unit 17b are stacked in the z direction. As shown in part (C) of FIG.
  • the distance between the indicator and the display screen is detected by detecting which infrared ray of the pair of infrared sensors 17 a and 17 b is shielded by the indicator. Is done.
  • the element interval of the infrared sensor in the Z direction is determined according to the resolution necessary for detecting the interval between the indicator and the display screen.
  • stereoscopic camera stereo image sensor
  • infrared sensor infrared sensor
  • other types of sensors may be used.
  • a capacitive touch sensor touch panel
  • FIG. 5 is a flowchart showing an example of instruction reception processing in the stereoscopic display device 10a of FIG. This process is executed according to a program under the control of the microprocessor constituting the control unit 30. It is assumed that a one-view instruction 2D image is input to the image input unit 11 before the start of this process.
  • step S2 it is determined whether or not dominant eye information has been set (step S2). That is, it is determined whether or not dominant eye information is stored in the storage unit 15.
  • the dominant eye information it is determined based on the dominant eye information whether the observer's dominant eye is the left eye or the right eye (step S4).
  • the three-dimensional image processing unit 12 is configured to shift the instruction left-eye image to the instruction right-eye image side and display it on the stereoscopic display unit 13 when the indicator approaches the display screen.
  • Step S6 When the dominant eye is the left eye, the three-dimensional image processing unit 12 is configured such that when the indicator approaches the display screen, the instruction right eye image is shifted to the instruction left eye image side and displayed on the stereoscopic display unit 13.
  • an instruction image for a non-dominant eye for example, the instruction left eye
  • Image processing is performed to bring the display position of the (image) closer to the display position of the dominant-eye instruction image (for example, the instruction right-eye image).
  • the three-dimensional image processing unit 12 is notified in advance so that both the instruction left-eye image and the instruction right-eye image are shifted and displayed on the stereoscopic display unit 13 (step S10). . That is, since there is no dominant eye information, when the indicator approaches the display screen of the stereoscopic display unit 13, both instruction images are brought close to the center between the display position of the instruction left-eye image and the display position of the instruction right-eye image. It is set in advance to perform default processing.
  • the instruction image is displayed in 3D on the stereoscopic display unit 13 (step S12). That is, based on the initial amount of parallax set by the stereoscopic effect setting unit 14, the 3D image processing unit 12 converts the one-view instruction 2D image acquired by the image input unit 11 into the instruction left-eye image and instruction. The instruction 3D image is converted to a right-eye image, and the instruction 3D image is displayed on the stereoscopic display unit 13.
  • step S14 acceptance of the observer's instruction is started (step S14).
  • the designated position detection region is determined by the designated position detection region determination unit 18, and the designated position detection region is notified to the determination unit 19.
  • the three-dimensional position (px, py, pz) of the indicator is acquired from the space sensor 17 (step S16).
  • the three-dimensional position of the indicator is measured by the compound eye 3D camera 42 of FIG.
  • px and py are coordinates on a plane parallel to the display screen.
  • px indicates a position in the left-right direction.
  • pz indicates a distance (interval) from the display screen.
  • step S18 it is determined whether or not the xy position (px, py) of the pointer corresponds to the xy position of the pointing 3D image (step S18). That is, it is determined whether or not the xy position (px, py) of the indicator detected by the space sensor 17 is within the range on the xy plane of the instruction 3D image.
  • an instruction 3D image facing the indicator is specified from among the plurality of instruction 3D images.
  • step S20 it is further determined whether or not the interval pz between the indicator and the display screen and the pop-up amount dz of the instruction 3D image satisfy pz ⁇ dz (step S20). ).
  • the initial parallax amount d0 distance between the left and right instruction images
  • the initial pop-out amount dz0 corresponding thereto are known, and it is first determined whether or not pz ⁇ dz0.
  • face detection and face component detection may be performed to detect the position of the observer's eyes, and an accurate value of s may be obtained.
  • the three-dimensional image processing unit 12 converts at least one of the instruction left-eye image and instruction right-eye image in the left-right direction (x
  • FIG. 6 schematically shows how the left-eye instruction image 53L for the left eye approaches the right-eye instruction image 53R for the right eye when the dominant eye is the right eye.
  • the amount of parallax is reduced in accordance with the decrease in the interval dz detected by the space sensor 17, so that the stereoscopic image 54 of the pointing 3D image moves to be pushed by the pointer.
  • the determination unit 19 determines whether or not the designated position detection area has been touched (step S24). That is, whether the indicator has touched the indicated position detection area determined by the indicated position detection area determination unit 18 in the display screen (actually, the touch surface of the touch panel including the stereoscopic display unit 13 and the touch sensor 16). It is determined whether or not.
  • the amount of parallax is adjusted so as to be (step S26). That is, based on the shift information set in step S6, S8, or S10 so that the parallax amount between the instruction left-eye image and the instruction right-eye image becomes zero by the three-dimensional image processing unit 12, the instruction 3D image Is switched to 2D display. In this example, only the instruction image for the dominant eye (the right eye image for instruction if the right eye is effective) is displayed.
  • step S28 an action corresponding to the touch operation is performed. That is, processing corresponding to the instruction 3D image is performed.
  • step S30 it is determined whether or not to end the process. If the process is to be ended, the process is ended. If the process is to be continued, the process returns to step S16.
  • the control unit 30 reduces the pop-out amount dz by reducing the parallax amount according to the decrease in the interval pz. Go.
  • the parallax amount of the 3D button may be increased in accordance with the increase in the interval pz detected by the space sensor 17. That is, the pop-out amount dz may be increased in accordance with the increase in the interval pz so that FIG. 7 is viewed in the reverse order of the (D) portion ⁇ (C) portion ⁇ (B) portion. However, as shown in FIG. 7A, when the interval pz is equal to or larger than the initial pop-out amount dz0, the pop-out amount dz is not increased.
  • the instruction image may be shifted based on the strength of the dominant eye.
  • the dominant eye information indicating the dominant hand of the user and the strength of the dominant eye is stored in the storage unit 15 in advance, and the three-dimensional image processing unit 12 reduces the interval pz detected by the space sensor 17.
  • FIG. 8 is an explanatory diagram when the amount of parallax is reduced only for the 3D button facing the indicator.
  • the 3D image processing unit 12 specifies the 3D button 54b facing the finger based on the 3D position of the finger detected by the space sensor 17. 8B and 8C, only the 3D button 54b facing the finger among the plurality of 3D buttons 54a, 54b, and 54c reduces the amount of parallax according to the decrease in the interval pz. As a result, the pop-out amount dz is reduced.
  • the 3D image processing unit 12 specifies the 3D button 54b based on the 3D position of the finger detected by the space sensor 17, and The 3D button 54b facing the finger is identified, and as shown in FIG. 8D, when the touch of the finger on the display screen is detected, the 3D button 54a, 54b, 54c facing the finger is detected. Only the button 54b is switched to 2D display.
  • the 3D image processing unit 12 indicates the 3D for pointing to the pointer based on the 3D position of the pointer acquired from the space sensor 17.
  • the image is specified, and the 3D button 54b facing the finger is specified based on the three-dimensional position of the finger detected by the space sensor 17, and the order of FIG. 8 (D) ⁇ (C) ⁇ (B) is reversed.
  • FIG. 5 only the 3D button 54b facing the finger among the plurality of 3D buttons 54a, 54b, 54c may increase the pop-out amount dz by increasing the parallax amount according to the increase in the interval pz.
  • FIG. 9 is an explanatory diagram in the case where the size of only the instruction 3D image facing the indicator is increased.
  • the 3D image processing unit 12 specifies the 3D button 54b facing the finger based on the 3D position of the finger detected by the space sensor 17, As shown in FIGS. 9A and 9B, only the 3D button 54b facing the finger among the plurality of 3D buttons 54a, 54b, 54c is increased in size, and each 3D button 54a, 54b, 54c is increased. Do not change the position of. Further, the designated position detection area is enlarged in accordance with the enlargement of the button size.
  • FIG. 10 is an explanatory diagram in the case where the surrounding instruction 3D image is saved from the instruction 3D image facing the indicator.
  • the 3D image processing unit 12 specifies the 3D button 54c facing the finger based on the 3D position of the finger detected by the space sensor 17, 10A and 10B, the surrounding 3D buttons 54a, 54b, 54d, and 54e (instruction 3D images) are retracted from the 3D button 54c (instruction 3D image) facing the finger. .
  • the display position is smoothly moved when the finger moves in the button arrangement direction (for example, the x direction) so that it is not difficult to press the 3D button to be changed to another 3D button.
  • the designated position detection area determination unit 18 determines at least one of the position, size, and shape of the designated position detection area according to whether dominant eye information is stored in the storage unit 15 (that is, whether or not dominant eye information is present). Switch.
  • the designated position detection area determination unit 18 makes the size of the designated position detection area smaller when there is dominant eye information than when there is no dominant eye information.
  • the designated position detection area determination unit 18 switches at least one of the position, size, and shape of the detection area depending on whether the user's dominant eye is the right eye or the left eye.
  • the indication position detection area determination unit 18 arranges the detection area closer to the display position of the dominant eye instruction image of the instruction right eye image and the instruction left eye image.
  • the instruction position detection region determination unit 18 detects the instruction position so that at least a part of the instruction image corresponding to the dominant eye among the instruction right eye image and the instruction left eye image is included. Determine the area.
  • the designated position detection area 56 is determined so as to include at least a part thereof.
  • FIG. 11A shows an example in the case of a small amount of parallax (small stereoscopic image pop-out amount), and FIG. 11B shows an example in the case of a large amount of parallax (large stereoscopic image pop-out amount). .
  • the dominant eye information setting unit 20 may be omitted from the configuration of FIG. 1, and secondly, the dominant eye information in the configuration shown in FIG. The user's dominant eye information may not be set by the setting unit 20.
  • FIG. 12 is a block diagram illustrating a configuration example of the stereoscopic display device 10 capable of measuring dominant eye information.
  • symbol is attached
  • the stereoscopic display device 10 of FIG. 12 includes a dominant eye measurement unit 21 as a dominant eye information acquisition unit.
  • the dominant eye measurement unit 21 measures the dominant eye and stores the dominant eye information as a measurement result in the storage unit 15.
  • the control unit 30 controls each unit including the dominant eye measurement unit 21.
  • the dominant eye measurement unit 21 includes a parallax amount of the instruction 3D image including the instruction right eye image 53R and the instruction left eye image 53L, and the instruction position detection unit 16 in a state where the instruction 3D image is displayed on the stereoscopic display unit 13.
  • the dominant eye parameter is calculated based on the user's designated position detected by the above.
  • the dominant eye parameter is the dominant eye information in this example, and indicates the strength of the dominant eye (hereinafter, referred to as “degree of dominant eye”) as well as the user's dominant eye.
  • the dominant eye degree indicates that the user's instruction position on the display screen of the stereoscopic display unit 13 is the display position of the instruction image on the dominant eye side among the display position of the instruction right eye image 53R and the display position of the instruction left eye image 53L. Indicates the degree of deviation.
  • an instruction 3D image including an instruction right-eye image 53R and an instruction left-eye image 53L is displayed on the three-dimensional display unit 13 with three-dimensional effects.
  • the stereoscopic effect (amount of projection of the stereoscopic image) is displayed in three different ways: small, medium, and large. That is, the stereoscopic effect setting unit 14 changes the stereoscopic effect of the instruction 3D image by changing the parallax amount to d1, d2, and d3, and instructs the user to perform an instruction operation on each instruction 3D image.
  • the position detection unit 16 detects the designated positions p1, p2, and p3 corresponding to the parallax amounts d1, d2, and d3 as coordinate values on the display screen of the stereoscopic display unit 13.
  • w is a distance from the reference position of one instruction image (in this example, the center position of the instruction right-eye image 53R) to the instruction position
  • a is a dominant eye parameter
  • d is a parallax amount.
  • the dominant eye measurement unit 21 uses the reference position (center position) of the pointing right eye image 53R and the reference position (center position) of the corresponding pointing left eye image 53L as a reference, and the specified position is for any instruction.
  • the dominant-eye parameter a when the user is right-handed, the dominant-eye parameter a is less than 0.5. That is, the indication position is closer to the center position of the indication right eye image 53R.
  • the dominant-eye parameter a When the user is a left-handed person, the dominant-eye parameter a is larger than 0.5. That is, the indication position is closer to the center position of the indication left-eye image 53L. Note that when the dominant eye parameter a is 0.5, the user is likely to be bilateral, but may be treated as a right-handed or left-handed for convenience.
  • the dominant eye parameter a Since the dominant eye parameter a differs for each observer (user), the dominant eye parameter a is stored in the storage unit 15 in association with the user ID (for example, name), and the indicated position is determined for each user by the indicated position detection area determination unit 18. It is preferable to determine the range (position and size) of the detection region.
  • the instruction 3D image is displayed on the stereoscopic display unit 13 a plurality of times with different parallax amounts, the user's instruction position is detected a plurality of times by the instruction position detection unit 16, and the dominant eye information is calculated. There is.
  • the instruction 3D image is displayed on the stereoscopic display unit 13 a plurality of times with different display positions, and the user's instruction position is detected a plurality of times by the instruction position detection unit 16 to calculate the dominant eye information. There is. It is more preferable to change the amount of parallax each time the instruction 3D image is displayed once.
  • a plurality of instruction 3D images are displayed on the stereoscopic display unit 13 at different display positions, the user's instruction position is detected a plurality of times by the instruction position detection unit 16, and dominant eye information is calculated.
  • the instruction position detection unit 16 detects a plurality of times.
  • dominant eye information is calculated.
  • the stereoscopic display device 10 of this example measures the user's dominant eye and the degree of dominant eye and determines the indicated position detection region based on the measurement result, so that the user's instruction can be determined more accurately.
  • the case where both the position and the size of the designated position detection area are determined according to the user's dominant eye information has been described as an example, but either one of the position and the size is selected. May be determined according to the user's dominant eye.
  • the shape of the designated position detection area is a square has been described as an example, the shape of the designated position detection area is not particularly limited. For example, an elliptical shape may be used.
  • the shape of the designated position detection area may be determined according to the user's dominant eye.
  • buttons image As described above, in order to facilitate understanding of the invention, a simple square button image has been illustrated as an instruction stereoscopic image.
  • the “button image” is not limited to such an image, but an indicator (finger, touch pen).
  • Etc. include various stereoscopic images that accept an operation such as pressing.
  • a 3D icon image, a 3D thumbnail image, and the like are included.
  • the “instruction stereoscopic image” is not particularly limited to the “button image”.
  • various images that receive instructions by various touch operations such as a sliding operation, a rotating operation, a moving operation, an expanding operation, and a contracting operation are included.
  • the present invention displays the instruction stereoscopic image as the indicator approaches the display screen.
  • the present invention can also be applied to a case where a display is approached from a distance.
  • control unit 30 may detect that the user who has input an instruction using the touch sensor 16 (instructed position detection unit) is switched.
  • control unit 30 may determine the number of times the indicated position (touch position) detected by the touch sensor 16 is outside the range of the indicated position detection area determined by the indicated position detection area determination unit 18 or The frequency is calculated, and the user switching is detected based on the calculation result.
  • the control unit 30 may create history information of the designated position detected by the touch sensor 16 and detect a user switch based on the history information of the designated position. For example, the switching of the user is detected by detecting a dominant eye or a change in strength of the dominant eye based on the history information of the indicated position.
  • control unit 30 executes at least one of the following calibration process, detection mode switching process, display mode switching process, and warning process.
  • new user's dominant eye information is acquired, and at least one difference is determined among the position, size, and shape of the detection area with respect to the display area of the instruction left-eye image and instruction right-eye image.
  • the designated position detection area is determined from the first detection mode in which the designated position detection area is determined according to the dominant hand or the strength of the dominant eye based on the dominant eye information than in the first detection mode. Switch to the second detection mode where the default is set to a larger size.
  • the stereoscopic display mode for displaying the instruction 3D image is switched to the flat display mode for displaying the instruction 2D image.
  • FIG. 14 is a block diagram showing a basic hardware configuration to which the stereoscopic display device of the first to third embodiments is applied.
  • the microprocessor 110 includes the three-dimensional image processing unit 12, the designated position detection region determination unit 18, the determination unit 19, the control unit 30, and dominant eye measurement in the first and second embodiments. Part 21 and the like.
  • the medium interface 101 includes an image input unit 11.
  • the medium interface 101 reads data from and writes data to a medium such as a memory card that is detachable from the main body of the stereoscopic display device 10.
  • a network interface that performs communication via a network may be used.
  • stereoscopic display device 10 in FIG. 14 for example, various digital devices capable of stereoscopic display such as a personal computer, a 3D camera device, a 3D portable terminal device, a 3D game device, a 3D guidance device, and a 3D television device can be exemplified. .
  • 3D imaging means for acquiring a 3D captured image by capturing a subject from a plurality of viewpoints is provided separately from the spatial sensor 17 and acquired by the stereoscopic imaging unit.
  • the stereoscopic image and the instruction stereoscopic image are combined and stereoscopically displayed by the stereoscopic display unit 13.
  • the touch sensor 16 detects the designated position on the display screen
  • the spatial sensor 17 may detect the designated position
  • FIG. 15 shows an overall configuration of an example of the stereoscopic display device 10 in which the designated position is detected by the space sensor 17. 15, the same reference numerals are given to the components shown in FIG. 12, and only differences from the case of FIG. 12 will be described below.
  • the space sensor 17 detects an indication position on the display screen of the stereoscopic display unit 13 instructed by the indicator, and detects an interval between the display screen of the stereoscopic display unit 13 and the indicator.
  • the determination unit 19 determines whether or not the indicated position detected by the space sensor 17 is within a detection region corresponding to the instruction 3D image, and receives an instruction corresponding to the instruction 3D image.
  • the 3D image processing unit 12 switches the instruction 3D image to flat display.
  • the space sensor 17 of this example it is detected whether or not an indicator such as a finger is touching the display screen of the stereoscopic display unit 13 and to which position on the display screen the indicator is touched. It is possible. Examples of such a space sensor 17 include a stereoscopic camera (a compound eye 3D camera, a monocular 3D camera).
  • FIG. 16 is a block diagram showing a basic hardware configuration example for the stereoscopic display device shown in FIG.
  • the same reference numerals are given to the components shown in FIG. 14, and the difference from the case of FIG. 14 is that the space sensor 17 is also used as the indicated position detection unit 16.
  • Invention 1 Three-dimensional display means for displaying a pointing three-dimensional image composed of a pointing left-eye image and a pointing right-eye image to be pointed by a pointer, and instructions on the display screen of the three-dimensional display means specified by the pointer
  • a spatial sensor for detecting a position and detecting a distance between the display screen of the stereoscopic display means and the indicator; and whether the indicated position detected by the spatial sensor is within a detection region corresponding to the stereoscopic image for indication.
  • a stereoscopic display means for displaying an instruction stereoscopic image comprising an instruction left-eye image and an instruction right-eye image to be instructed by an indicator, and a touch on the indicator, arranged on the display screen of the stereoscopic display means
  • a touch sensor for detecting the designated pointing position, and determining whether or not the pointing position at which a touch is detected by the touch sensor is within a detection region corresponding to the pointing stereoscopic image, and corresponding to the pointing stereoscopic image
  • a determination unit that receives the instruction, a space sensor that detects a distance between the touch surface of the touch sensor or the display screen of the stereoscopic display unit and the indicator, and the left eye image for indication displayed on the stereoscopic display unit
  • Parallax amount determining means for determining the amount of parallax with the pointing right-eye image, the pointing left-eye image according to the decrease in the interval detected by the space sensor Parallax amount determining means for reducing the amount of parallax between
  • Invention 3 The stereoscopic display device according to Invention 1, wherein the image processing means switches the indication stereoscopic image to planar display when an instruction to the display screen of the indicator is detected by the spatial sensor.
  • Invention 4 The stereoscopic display device according to Invention 2, wherein the image processing means switches the indication stereoscopic image to planar display when the touch sensor detects the touch of the indicator on the display screen.
  • the space sensor detects a three-dimensional position of the indicator in space
  • the image processing means is configured to display a plurality of instruction stereoscopic images on the stereoscopic display means.
  • An instruction stereoscopic image facing the indicator is specified based on a three-dimensional position, and among the plurality of instruction stereoscopic images, only the instruction stereoscopic image facing the indicator is selected according to the decrease in the interval.
  • the stereoscopic display device according to any one of inventions 1 to 4, wherein the parallax amount between the instruction right-eye image and the instruction left-eye image is reduced.
  • the space sensor detects a three-dimensional position of the indicator in the space
  • the image processing means is configured to display a plurality of instruction stereoscopic images on the stereoscopic display means.
  • An instruction stereoscopic image facing the indicator is specified based on a three-dimensional position, and when an instruction to the display screen of the indicator is detected, the indicator among the plurality of instruction stereoscopic images is detected.
  • the stereoscopic display device according to any one of inventions 1 to 5, wherein only the facing instruction stereoscopic image is switched to flat display.
  • the space sensor detects a three-dimensional position of the indicator in space
  • the image processing means is configured to display a plurality of instruction stereoscopic images on the stereoscopic display means when the indicator Inventions 1 to 6 in which an instruction stereoscopic image facing the indicator is specified based on a three-dimensional position, and only the instruction stereoscopic image facing the indicator is enlarged among the plurality of instruction stereoscopic images.
  • the stereoscopic display device according to any one of the above.
  • the space sensor detects a three-dimensional position of the indicator in space
  • the image processing means is configured to display a plurality of instruction stereoscopic images on the stereoscopic display means when the indicator
  • the indicator According to any one of the inventions 1 to 7, wherein an instruction stereoscopic image facing the indicator is specified based on a three-dimensional position, and a surrounding instruction stereoscopic image is saved from the instruction stereoscopic image facing the indicator.
  • Invention 9 The invention according to any one of Inventions 1 to 8, wherein the parallax amount determining means increases the amount of parallax between the pointing right-eye image and the pointing left-eye image in accordance with an increase in the interval detected by the space sensor.
  • the three-dimensional display apparatus as described in one.
  • the space sensor detects a three-dimensional position of the indicator in space
  • the image processing means is configured to display a plurality of instruction stereoscopic images on the stereoscopic display means when the indicator An instruction stereoscopic image facing the indicator is specified based on a three-dimensional position, and only the instruction stereoscopic image corresponding to the indicator among the plurality of instruction stereoscopic images is increased according to the increase in the interval.
  • the stereoscopic display device according to invention 9, wherein the amount of parallax between the instruction right-eye image and the instruction left-eye image is increased.
  • Invention 11 A storage unit that stores dominant eye information indicating a user's dominant eye, and the image processing unit stores the dominant eye stored in the storage unit when the parallax amount is decreased in accordance with the decrease in the interval.
  • the display position of the instruction image for the non-dominant eye among the instruction right-eye image and the instruction left-eye image is made closer to the display position of the instruction image for the dominant eye based on the information The three-dimensional display apparatus of any one of Claims.
  • Invention 12 Storage means for storing dominant eye information indicating the dominant hand of the user and the strength of the dominant eye, and the image processing means, when reducing the amount of parallax according to the decrease in the interval, Based on the stored dominant eye information, a ratio that is closer to the display position of the dominant-eye instruction image than the intermediate position of the instruction right-eye image and the instruction left-eye image and that corresponds to the strength of the dominant eye
  • the stereoscopic display according to any one of inventions 1 to 10, wherein both the display position of the pointing right-eye image and the display position of the pointing left-eye image are brought closer to a position close to the display position of the dominant-eye instruction image. apparatus.
  • Invention 13 The stereoscopic display device according to claim 11 or 12, further comprising detection area determining means for determining a detection area of the indicated position on the display screen of the stereoscopic display means based on at least the dominant eye information.
  • the dominant eye information is calculated by calculating the dominant eye information based on an instruction position detected in a state where the instruction stereoscopic image is displayed on the stereoscopic display means and a parallax amount of the instruction stereoscopic image.
  • the three-dimensional display device according to claim 1, further comprising a dominant eye information acquisition unit configured to acquire an image.
  • Invention 15 The stereoscopic display device according to any one of claims 1 to 13, further comprising: a dominant eye information acquisition unit that acquires the dominant eye information by receiving an input operation of the dominant eye information.
  • Invention 16 The stereoscopic display device according to any one of claims 1 to 15, wherein the spatial sensor is a stereoscopic imaging sensor, an infrared sensor, or a capacitance sensor.
  • Invention 17 The three-dimensional display device according to any one of claims 1 to 16, wherein the indicator is a finger or a pen.
  • Inventions 18 to 34 Instruction receiving methods corresponding to the inventions 1 to 17, respectively.
  • Invention 35 Three-dimensional display means for displaying an instruction stereoscopic image composed of an instruction right-eye image and an instruction left-eye image for receiving an instruction of the user, and detecting the user's designated position on the display screen of the stereoscopic display means Instructed position detection means, dominant eye information acquisition means for acquiring dominant eye information indicating the dominant eye of the user, and detection area of the indicated position on the display screen of the stereoscopic display means based on at least the dominant eye information And determining whether or not the indicated position detected by the indicated position detecting means is within the detected area, whereby the user's instruction corresponding to the instruction stereoscopic image is determined.
  • a three-dimensional display device comprising: a determination unit that receives the determination unit.
  • Invention 36 The stereoscopic display device according to Invention 35, wherein the detection area determining means switches at least one of a position, a size, and a shape of the detection area according to presence / absence of the dominant eye information.
  • Invention 37 The three-dimensional display device according to Invention 36, wherein the detection area determining means makes the size of the detection area smaller when there is the dominant eye information than when there is no dominant eye information.
  • Invention 38 In the case where the dominant eye information is present, the detection area determining means determines at least one of the position, size and shape of the detection area depending on whether the user's dominant eye is a right eye or a left eye.
  • the three-dimensional display device according to any one of inventions 35 to 37 for switching between.
  • Invention 39 In the invention 38, when the dominant eye information is present, the detection area is arranged closer to the display position of the dominant eye instruction image of the instruction right eye image and the instruction left eye image.
  • the three-dimensional display apparatus of description when the dominant eye information is present, the detection area is arranged closer to the display position of the dominant eye instruction image of the instruction right eye image and the instruction left eye image.
  • the detection area determining means includes at least a part of an instruction image corresponding to a dominant eye among the instruction right eye image and the instruction left eye image.
  • the three-dimensional display device according to any one of inventions 35 to 39 for determining a detection region.
  • the detection area determining means determines the detection area so that, when there is no dominant eye information, at least a part of the instruction right-eye image and at least a part of the instruction left-eye image are included.
  • the stereoscopic display device according to any one of 35 to 40.
  • the dominant eye information acquisition means is a parallax between the instruction position of the user detected by the instruction position detection means in a state where the instruction stereoscopic image is displayed on the stereoscopic display means and the instruction stereoscopic image.
  • the stereoscopic display device according to any one of inventions 35 to 41, wherein the dominant eye information indicating the dominant hand of the user and the strength of the dominant eye is calculated based on the amount.
  • Invention 43 The indication stereoscopic image is displayed on the stereoscopic display means a plurality of times with different amounts of parallax, the indication position of the user is detected a plurality of times by the indication position detection means, and the dominant eye information is calculated.
  • Invention 44 The indication stereoscopic image is displayed on the stereoscopic display means a plurality of times with different display positions, the indication position of the user is detected a plurality of times by the indication position detection means, and the dominant eye information is calculated.
  • Invention 45 A plurality of the three-dimensional images for indication are displayed on the three-dimensional display means with different display positions, the indication position of the user is detected a plurality of times by the indication position detection means, and the dominant eye information is calculated.
  • Invention 46 The stereoscopic display device according to any one of Inventions 35 to 41, wherein the dominant eye information acquisition unit receives an input operation of the user's dominant eye information.
  • a stereoscopic effect setting means for accepting an input operation for setting the magnitude of the stereoscopic effect of the stereoscopic image for instruction, and an instructional stereoscopic image for generating the indicated stereoscopic image with a parallax amount corresponding to the size of the stereoscopic effect set and input Image generating means, wherein the stereoscopic display means displays the stereoscopic display image generated by the instruction stereoscopic image generating means, and the detection region determining means has a parallax amount corresponding to the size of the stereoscopic effect.
  • the stereoscopic display device according to any one of inventions 35 to 46, wherein the detection area is determined based on
  • Invention 48 The stereoscopic display device according to any one of Inventions 35 to 47, further comprising user switching detection means for detecting that a user who has input an instruction by the indicated position detection means is switched.
  • the user switching detection means calculates the number of times or frequency that the indicated position detected by the indicated position detection means is outside the range of the detection area determined by the detection area determination means,
  • the stereoscopic display device according to invention 48 which detects a user switching based on the above.
  • Invention 50 The three-dimensional display according to Invention 48, wherein the user switching detection means creates history information of the indicated position detected by the indicated position detection means, and detects user switching based on the history information of the indicated position. apparatus.
  • the user switching detecting means detects a user switching by detecting a dominant eye or a change in strength of the dominant eye based on the history information of the indicated position.
  • Invention 52 When the user switching is detected by the user switching detecting means, the dominant area information of a new user is acquired and the position of the detection area with respect to the display area of the instruction left-eye image and instruction right-eye image, Calibration processing for determining at least one difference among size and shape, and the detection from a first detection mode in which the detection region is determined based on the dominant eye information according to the user's dominant eye or the strength of the dominant eye
  • a detection mode switching process for switching to a second detection mode in which the area is set to a default larger in size than in the first detection mode, and a plane instruction image is displayed from the stereoscopic display mode for displaying the instruction stereoscopic image.
  • Invention 53 The stereoscopic display device according to any one of Inventions 48 to 51, further comprising selection receiving means for receiving, from the user, a selection of processing to be executed when a user switch is detected.
  • Invention 54 A stereoscopic display device according to any one of Inventions 45 to 52, and stereoscopic imaging means for acquiring a stereoscopic image by imaging a subject from a plurality of viewpoints, the stereoscopic image and the A three-dimensional imaging apparatus that synthesizes a stereoscopic image for instruction and stereoscopically displays the stereoscopic display means.
  • Inventions 54 to 72 Instruction receiving methods corresponding to the inventions 35 to 53, respectively.
  • Invention 73 A program for causing a computer to execute the instruction receiving method according to any one of Inventions 18 to 34 and Inventions 54 to 72.
  • Invention 74 A recording medium on which the program according to Invention 73 is recorded. That is, the program can be provided and used by being recorded on a predetermined recording medium.
  • SYMBOLS 10 Three-dimensional display apparatus, 11 ... Image input part, 12 ... Three-dimensional image processing part, 13 ... Three-dimensional display part, 14 ... Three-dimensional effect setting part, 15 ... Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Position Input By Displaying (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 指示用立体画像を表示する立体表示部13と、立体表示部13の表示画面上に配置されたタッチセンサ16と、立体表示部13の表示面又はタッチセンサ16のタッチ面と指示体(指やタッチペン等)との間隔を検出する空間センサ17と、空間センサ17によって検出された前記間隔の減少に応じて指示用立体画像の視差量を減少させる制御部30と、指示用立体画像を制御部30によって決定された視差量で立体表示部13に表示させる3次元画像処理部12を備えた。

Description

立体表示装置、指示受付方法及びプログラムならびにその記録媒体
 本発明は、指示体に指示させる指示用画像を立体表示してユーザの指示を受け付ける際に、ユーザの立体感を損ねないようにすることができる立体表示装置、指示受付方法及びプログラムに関する。
 従来、右目用ボタン画像および左目用ボタン画像からなる3Dボタン画像を表示し、表示画面上に配置したタッチセンサにユーザが指やタッチペンなどの指示体でタッチすると、その表示画面上のタッチされた位置を検出するようにした立体表示装置が知られている(例えば特許文献1を参照)。
特開2010-55266号公報
 しかしながら、図17に示すように、タッチセンサが設けられている表示画面90にユーザの指92が近づくと、その指92とボタンの立体像94とが被り、指92がボタンを突き抜けたかのように見えてしまい、ユーザが違和感を感じるという問題がある。即ち、ハードウェアの押しボタンであれば指によりボタンが押し込まれるのに対して、虚像である3Dのボタンでは、指で押し込むような操作をしてもボタンの立体像が指に被るだけであり、観察者の立体感が損なわれるという課題があった。
 本発明はこのような事情に鑑みてなされたもので、指示体に指示させる指示用画像を立体表示してユーザの指示を受け付ける際に、ユーザの立体感を損ねないようにすることができる立体表示装置、指示受付方法及びプログラムを提供することを目的とする。
 前記目的を達成するために、本発明は、指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記指示体によって指示された前記立体表示手段の表示画面上の指示位置を検出するとともに、前記立体表示手段の表示画面と前記指示体との間隔を検出する空間センサと、前記空間センサによって検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、を備えた立体表示装置を提供する。
 また、本発明は、指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記立体表示手段の表示画面上に配置され、前記指示体でタッチされた指示位置を検出するタッチセンサと、前記タッチセンサによってタッチを検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、前記タッチセンサのタッチ面又は前記立体表示手段の表示画面と前記指示体との間隔を検出する空間センサと、前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、を備えた立体表示装置を提供する。
 本発明によれば、空間センサによって表示画面と指示体(例えば指やタッチペン)との間隔が検出され、その検出された間隔の減少に応じて指示用左目画像と指示用右目画像との視差量を減少させるので、ユーザの立体感を損ねないようにすることができる。
 「指示用立体画像」は、本明細書にて、指示体によって指示させるための指示用画像であって立体表示された画像である。「指示用立体画像」の具体例としては、所謂ボタン式の3D画像(例えば、3Dのボタン、3Dのアイコン、3Dのサムネイル)、所謂スライド式の3D画像(例えば、3Dのスライドバー)等が挙げられる。タッチ操作の種類(ボタン操作、スライド操作など)および画像の表示形式は特に限定されない。
 ボタン式の3D画像(3Dボタン画像)では、本発明により、指やタッチペンなどの指示体と一緒に立体像が押し込まれるように立体像の飛び出し量を変化させることが可能になるので、見た目の違和感を無くすことができる。ボタン式の3D画像でない場合でも、ユーザに指示体と表示画面との間隔を正確に認識させる効果を奏する。
 一実施形態では、前記画像処理手段は、前記空間センサ又は前記タッチセンサによって前記指示体の指示が検出されたとき、前記指示用立体画像を平面表示に切替える。即ち、指示体がタッチしたとき指示用画像が立体表示から平面表示に切り替わるので、指示体と表示画面との間隔がゼロになったことを触覚だけでなく視覚でも感じることができ、好ましい。
 また、本発明は、指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記指示体によって指示された前記立体表示手段の表示画面上の指示位置を検出するとともに、前記立体表示手段の表示画面と前記指示体との間隔を検出する空間センサとを用い、前記指示用立体画像を所定の視差量で前記立体表示手段に表示させるステップと、前記空間センサによって前記立体表示手段の表示画面と前記指示体との間隔を取得するステップと、前記取得された間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させるステップと、前記空間センサによって検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定することで、前記指示用立体画像に対応した指示を受け付けるステップと、を備えた指示受付方法を提供する。
 また、本発明は、指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記立体表示手段の表示画面上に配置され、前記指示体でタッチされた位置を検出するタッチセンサと、前記タッチセンサのタッチ面又は前記立体表示手段の表示画面と前記指示体との空間上の間隔の変化を検出する空間センサとを用い、前記指示用立体画像を所定の視差量で前記立体表示手段に表示させるステップと、前記空間センサから前記立体表示手段の表示画面と前記指示体との間隔を取得するステップと、前記空間センサから取得された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させるステップと、前記タッチセンサによりタッチを検出した位置が前記指示用立体画像に対応した検出領域内であるか否かを判定することで、前記指示用立体画像に対応した指示を受け付けるステップと、を備えた指示受付方法を提供する。
 また、本発明は、前記指示受付方法をコンピュータに実行させるプログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。
 本発明によれば、タッチ操作用の指示用画像を立体表示してユーザの指示を受け付ける際に、ユーザの立体感を損ねないようにすることができる。
本発明における立体表示装置の一例の全体構成を示すブロック図 指示用立体画像と指示位置検出領域の例を示す説明図 空間センサとして立体カメラを用いた立体表示装置の外観を示す図 空間センサとして赤外線センサを用いた立体装置を示す図 指示受付処理の一例の流れを示すフローチャート 利き目の指示用画像を利き目でない目の指示用画像に近づける例の説明図 指示用立体画像の飛び出し量dzが指示体と表示画面との間隔の減少に応じて小さくなる様子を示す模式図 指示体に対向した指示用立体画像のみ視差量を減少させる場合を示す説明図 指示体に対向した指示用立体画像のみサイズを大きくする場合を示す説明図 指示体に対向した指示用立体画像から周辺の指示用立体画像を退避させる場合を示す説明図 利き目情報が未取得の場合における指示用立体画像と指示位置検出領域の例を示す説明図 本発明における立体表示装置の他の例の全体構成を示すブロック図 利き目測定処理の一例の説明に用いる説明図 立体表示装置の基本的なハードウェア構成例を示すブロック図 本発明における立体表示装置であって空間センサによって指示位置を検出するようにした立体表示装置の一例の全体構成を示すブロック図 図15の立体表示装置のための基本的なハードウェア構成例を示すブロック図 本発明の課題の説明に用いる説明図
 以下、添付図面に従って、本発明の実施形態について、詳細に説明する。
 図1は、一実施形態の立体表示装置10の構成例を示すブロック図である。
 画像入力部11は、一視点の2D画像を入力する。3次元画像処理部12は、画像入力部11から出力された一視点の2D画像を、複数視点の2D画像(右目のための右目画像および左目のための左目画像)からなる3D画像に、変換する。立体表示部13は、3D画像の立体表示を行なう。タッチセンサ16は、立体表示部13の表示画面上に配置され、ユーザにより指やタッチペン等の指示体でタッチされた表示画面上の指示位置(xy座標)を検出する。
 なお、本明細書にて、「2D」は2次元(平面)を意味し、「3D」は3次元(立体)を意味する。つまり、「2D画像」は平面画像であり、「3D画像」は立体画像(立体視可能な画像)である。
 図2(A)部分~(C)部分は、立体表示部13及びタッチセンサ16でユーザの指示を受け付けるため、複数視点の指示用2D画像(指示用左目画像53L及び指示用右目画像53R)を立体表示部13の表示画面に表示した様子を示す。図2(A)部分は視差量ゼロ(飛び出しなし)の場合、図2(B)部分は視差量小(飛び出し量小)の場合、図2(C)部分は視差量大(飛び出し量大)の場合をそれぞれ示す。符号56は、表示画面(タッチ面)のうちタッチされた指示位置を有効なものとして検出する指示位置検出領域である。図2(A)部分の場合にはユーザに立体像として認識されないが、図2(B)部分および(C)部分に示すように指示用左目画像53Lと指示用右目画像53Rとを視差量dだけx方向(左右方向)に位置をずらして表示することで、ユーザは表示画面の手前側に飛び出した立体像(3D画像)として指示用画像を認識する。
 空間センサ17は、指示体(指やタッチペン等)の3次元位置を検出するセンサであり、これにより立体表示部13の表示画面(又はタッチセンサ16のタッチ面)と指示体との間隔を検出する。なお、タッチセンサ16は指示体の移動距離に対して薄いので、タッチセンサ16の表面(タッチ面)と表示画面とはほぼ同じと認識される。以下では、空間センサ17が立体表示部13の表示画面と指示体との間隔を検出するとして、説明する。
 立体感設定部14は、指示用3D画像の立体感の大小(強弱)の設定入力操作を受け付け、設定入力された立体感の大小に対応した視差量を、初期の視差量として記憶部15に記憶させる機能を有する。例えば、立体感設定部14は、立体感「強」、「中」、「弱」という選択メニューを立体表示部13に表示させて、ユーザから立体感レベルの選択入力を受け付け、その立体感レベルに対応する視差量を記憶部15に記憶させる。
 利き目情報設定部20は、ユーザの利き目情報の設定入力を受け付け、設定入力された利き目情報を記憶部15に記憶する。例えば、ユーザに利き目が左右のいずれであるかを表示(あるいは音声出力)により質問し、ユーザから左右の選択入力を受け付ける。なお、ここではユーザの設定入力操作により利き目情報を取得する構成を説明し、ユーザの利き目を自動的に判定することで利き目情報を取得する態様については、後述する。
 指示位置検出領域決定部18は、少なくとも利き目情報に基づいて、立体表示部13の表示画面上における指示位置検出領域(反応領域)を決定する。例えば、利き目情報が取得されている場合、ユーザの利き目が右目であるか左目であるかに応じて、指示位置検出領域の表示画面上における位置、サイズおよび形状のうち少なくともひとつを切り替える。
 判定部19は、指示位置検出部16によりタッチを検出した指示位置が、指示位置検出領域決定部18により決定された指示位置検出領域(指示用3D画像に対応した領域である)の範囲内であるか否かを判定することで、指示用3D画像に対応した指示を受け付ける。即ち、判定部19は、指示用3D画像に対応したユーザの指示の有無を判定する。
 制御部30は、立体表示装置10の各部を制御する。また、制御部30は、視差量決定手段として、指示用左目画像53Lと指示用右目画像53Rとの視差量を決定する。制御部30は、空間センサ17により検出された立体表示部13の表示画面と指示体との空間上の間隔の変化に応じて、視差量を変化させる。本例の制御部30は、空間センサ17により検出された間隔の減少に応じて、指示用右目画像53Rと指示用左目画像53Lとの視差量を減少させる。また、本例の制御部30は、タッチセンサ16によって指示体のタッチが検出されたとき、指示用3D画像を平面表示に切替える制御を行う。指示用3D画像を平面表示に切替えるには、指示用右目画像および指示用左目画像のうちの一方のみを立体表示部13に表示させるように切替える態様と、視差量をゼロに変更する態様とがある。
 次に、利き目とユーザのタッチ位置との関係について説明しておく。図2(B)部分および図2(C)部分に示した表示を行なうと、指示用右目画像53Rの中心位置と指示用左目画像53Lの中心位置との中間に立体像が出現するが、その立体像をユーザが見ながら指やタッチペン等で指示した場合、その指示位置は、ユーザの利き目に依存した位置となる。例えば、ユーザの利き目が右目の場合、指示用右目画像53Rの中心位置と指示用左目画像53Lの中心位置との中間位置Cよりも、指示用右目画像53Rの中心位置に近い位置が、ユーザにより指示される傾向にある。そこで、指示位置検出領域決定部18は、利き目情報が取得されている場合、ユーザの利き目が右目であるか左目であるかに応じて、指示位置検出領域の位置、サイズおよび形状のうち、少なくともひとつを切り替える。例えば、利き目情報が取得されている場合、指示位置検出領域を指示用右目画像および指示用左目画像のうち利き目の指示用画像の表示位置寄りに配置する。例えば、指示用右目画像53Rの表示領域を含む指示位置検出領域を設定する。これにより、ユーザの意図した指示を正しく判定することができる。
 図1にて、画像入力部11、3次元画像処理部12、指示位置検出領域決定部18、判定部19および制御部30は、例えばマイクロプロセッサ(CPU)により構成される。立体感設定部14及び利き目情報設定部20は、例えば主としてマイクロプロセッサおよびタッチセンサ16により構成される。立体感設定部14および利き目情報設定部20は、タッチセンサを用いないで、キー、マウス等の他の入力デバイスを含んで構成してもよい。記憶部15は、例えばメモリにより構成される。もっとも、各部の処理は、記憶部15などのコンピュータ読み取り可能な非一時的記録媒体に記録されたプログラムに従ってソフトウェアで実行してもよいし、回路によりハードウェアで実行してもよい。
 次に、指示体の3次元位置を検出可能な空間センサ17の一例について説明する。
 図3は、図1の空間センサ17として複眼の立体カメラ42(以下「複眼3Dカメラ」という)を用いた場合の立体表示装置10を示す。複眼3Dカメラ42は、複数視点の光学系および撮像素子を備えたカメラであり、複数の撮像素子によりそれぞれ撮像された複数視点の撮像画像に基づいて、立体表示部13及びタッチセンサ16からなるタッチパネル40にタッチしようとする指示体の3次元位置を検出する。
 なお、図3では、複眼3Dカメラ42を用いた場合を例示したが、単一の撮影光学系を瞳分割して立体撮影を行う単眼3Dカメラを、空間センサ17として用いてもよい。
 図4(A)部分及び(B)部分に示すように、赤外線を発光する赤外線発光部17a及びその赤外線を受光する赤外線受光部17bからなる赤外線センサを空間センサ17として用いてもよい。図4(A)部分は、表示画面(xy面)に直交するz方向から立体表示装置10を見た平面図である。図4(B)部分は、z方向に沿った立体表示装置10の断面を見た断面図である。本例の空間センサ17は、赤外線発光部17a及び赤外線受光部17bからなる赤外線センサの組をz方向に積層した構造になっている。図4(C)部分に示すように、赤外線センサ17a,17bの組のうち、いずれの組の赤外線が指示体で遮光されているかを検出することで、指示体と表示画面との間隔が検出される。Z方向における赤外線センサの素子間隔は、指示体と表示画面との間隔検出に必要な分解能に応じて決められている。
 尚、空間センサ17として、立体カメラ(立体撮像センサ)及び赤外線センサを紹介したが、他の種類のセンサを用いてもよいことは、言うまでもない。例えば、空間センサとして静電容量式のタッチセンサ(タッチパネル)を使用してもよい。
 図5は、図1の立体表示装置10aにおける指示受付処理例を示すフローチャートである。本処理は、制御部30を構成しているマイクロプロセッサの制御により、プログラムに従って実行される。本処理の開始前に、画像入力部11に一視点の指示用2D画像が入力されているものとする。
 まず、利き目情報が設定済みであるか否かを判定する(ステップS2)。即ち、記憶部15に利き目情報が記憶されているか否かを判定する。
 利き目情報が設定済みである場合、その利き目情報に基づいて、観察者の利き目が左目であるか右目であるかを判定する(ステップS4)。利き目が右目である場合には、指示体が表示画面に近づいたときに指示用左目画像を指示用右目画像側にシフトして立体表示部13に表示するように、3次元画像処理部12に予め通知する(ステップS6)。利き目が左目である場合には、指示体が表示画面に近づいたときに指示用右目画像を指示用左目画像側にシフトして立体表示部13に表示するように、3次元画像処理部12に予め通知する(ステップS8)。このように利き目情報に対応したシフト情報を予め設定しておくことで、指示体が立体表示部13の表示画面に近づいたときに、利き目でない目用の指示用画像(例えば指示用左目画像)の表示位置を利き目用の指示用画像(例えば指示用右目画像)の表示位置に近づける画像処理を行なう。
 利き目情報が設定済みでない場合には、指示用左目画像および指示用右目画像の両方をシフトして立体表示部13に表示するように、3次元画像処理部12に予め通知する(ステップS10)。つまり、利き目情報が無いので、指示体が立体表示部13の表示画面に近づいたときに指示用左目画像の表示位置と指示用右目画像の表示位置との中央に両方の指示用画像を近づけるデフォルト処理を行うように予め設定しておく。
 続いて、立体表示部13に指示用画像を3D表示する(ステップS12)。即ち、画像入力部11によって取得された一視点の指示用2D画像を、立体感設定部14によって設定された初期の視差量に基づいて、3次元画像処理部12によって指示用左目画像及び指示用右目画像からなる指示用3D画像に変換し、その指示用3D画像を立体表示部13に表示させる。
 続いて、観察者の指示の受付を開始する(ステップS14)。本例では、記憶部15に記憶されている利き目情報に基づいて、指示位置検出領域決定部18によって指示位置検出領域が決定され、その指示位置検出領域が判定部19に通知される。
 続いて、指示体の3次元位置(px、py、pz)を空間センサ17から取得する(ステップS16)。本例では、図3の複眼3Dカメラ42によって指示体の3次元位置が測定される。px、pyは、表示画面に平行な面上の座標であり、本例ではpxが左右方向の位置を示す。pzは、表示画面からの距離(間隔)を示す。
 続いて、指示体のxy位置(px、py)と指示用3D画像のxy位置とが対応するか否かを判定する(ステップS18)。つまり、空間センサ17によって検出された指示体のxy位置(px、py)が、指示用3D画像のxy平面における範囲内にあるか否かを判定する。立体表示部13に複数の指示用3D画像が表示されている場合には、複数の指示用3D画像のうちで、指示体に対向した指示用3D画像が特定される。
 指示体に対向した指示用3D画像がある場合、さらに、指示体と表示画面との間隔pzと指示用3D画像の飛び出し量dzとが、pz<dzであるか否かを判定する(ステップS20)。初期の視差量d0(左右の指示用画像間の距離)と、それに対応した初期の飛び出し量dz0は既知であり、最初にpz<dz0であるか否かが判定される。dz0は、初期の視差量d0、観察者と表示画面との距離r、及び観察者の両目の間隔sから、dz0=(d0×r)/(d0+s)により決定される。一例として、3インチ程度のLCDの場合、s=65mm、r=300mmとして求めることができる。rは、観察者の方向を向いた複眼カメラや距離センサを用いて、正確な値を求めるようにしてもよい。また、顔検出及び顔の部品検出を行なって、観察者の目の位置を検出し、sの正確な値を求めるようにしてもよい。
 指示体に対向した指示用3D画像があり、且つ、pz<dzである場合には、3次元画像処理部12によって、指示用左目画像及び指示用右目画像のうちで少なくとも一方を左右方向(x方向)にてシフトすることで、dz=pzとなるように指示用左目画像及び指示用右目画像の視差量dを調整する(ステップS22)。つまり、ステップS6、S8又はS10にて設定されたシフト情報に基づいて、利き目でない目用の指示用画像の表示位置が利き目である目用の指示用画像の表示位置に近づけられる。図6は、利き目が右目である場合に、左目用の左目指示用画像53Lを右目用の右目指示用画像53Rを近づける様子を模式的に示している。このように空間センサ17により検出された間隔dzの減少に応じて視差量が減少することで、指示用3D画像の立体像54が指示体により押し込まれる動きをする。
 続いて、判定部19によって、指示位置検出領域がタッチされたか否かが判定される(ステップS24)。即ち、表示画面(実際には立体表示部13及びタッチセンサ16からなるタッチパネルのタッチ面)のうちで、指示位置検出領域決定部18によって決められた指示位置検出領域に、指示体がタッチしたか否かが判定される。
 指示位置検出領域がタッチされたと判定されたときには、指示用左目画像及び指示用右目画像のうち少なくとも一方を左右方向(x方向)にシフトさせることで、指示用3D画像の飛び出し量dz=0となるように視差量を調整する(ステップS26)。つまり、3次元画像処理部12によって、指示用左目画像及び指示用右目画像の視差量がゼロとなるように、ステップS6、S8又はS10にて設定されたシフト情報に基づいて、指示用3D画像が2D表示に切替えられる。本例では、利き目用の指示用画像(右目が効き目であれば指示用右目画像)のみが表示された状態となる。
 続いて、タッチ操作に応じたアクションを行なう(ステップS28)。つまり、指示用3D画像に対応した処理が行なわれる。
 そして、本処理を終了させるか否かを判定し(ステップS30)、終了させる場合には本処理を終了し、続ける場合にはステップS16に戻る。
 以上、図5を用いて説明したように、間隔pzが初期の飛び出し量dz0よりも小さいとき、間隔pzの減少に応じて飛び出し量dzを減少させる。この様子を図7(A)部分~(D)に示す。
 図7(A)部分に示す状態では、間隔pz>飛び出し量dzであり、指が3Dボタンの立体像54よりも手前にあるため、間隔pzが減少しても飛び出し量dzを変化させない。図7(C)部分に示すように、間隔pz<初期の飛び出し量dz0であるとき、制御部30は、間隔pzの減少に応じて、視差量を減少させることで飛び出し量dzを減少させていく。図7(D)部分に示すように、指のタッチが検出されたとき、3次元画像処理部12は、3Dボタンの指示用3D画像を2D表示に切替える。例えば、利き目用の指示用画像のみを表示した状態にする。あるいは、dz=0となるように視差量を調整する。
 タッチした指が表示画面から離れていくとき、空間センサ17により検出された間隔pzの増加に応じて、3Dボタンの視差量を増加させるようにしてもよい。つまり、図7を(D)部分→(C)部分→(B)部分と逆順で見るように、間隔pzの増加に応じて飛び出し量dzを増加させていってもよい。ただし、図7(A)部分に示すように、間隔pzが初期の飛び出し量dz0以上であるときには、飛び出し量dzの増加を行わない。
 以上、図7に示すように、間隔pzと初期の飛び出し量dz0との関係がpz<dz0となった場合に飛び出し量dzを次第に小さくする場合を例に説明したが、別の態様として、pz<dz0となったときに飛び出し量dz=0とするようにしてもよい。つまり、pz<dz0となったときに2D表示に切替える。
 また、利き目でない目用の指示用画像の表示位置を利き目用の指示用画像の表示位置に近づける場合を説明したが、利き目の強弱にも基づいて指示用画像のシフトを行なってもよい。具体的には、記憶部15にユーザの利き目および利き目の強弱を示す利き目情報を予め記憶させておき、3次元画像処理部12は、空間センサ17で検出される間隔pzの減少に応じて視差量を減少させるとき、記憶部15に記憶された利き目情報に基づいて、指示用右目画像および指示用左目画像の中間位置よりも利き目用の指示用画像の表示位置に近い位置であって利き目の強弱に応じた割合だけ利き目用の指示用画像の表示位置に近い位置に指示用右目画像の表示位置および指示用左目画像の表示位置の両方を近づける。
 次に、立体表示部13に複数の指示用3D画像が表示されている場合の制御例を、説明する。
 図8は、指示体に対向した3Dボタンのみ視差量を減少させる場合の説明図である。
 3次元画像処理部12は、複数の3Dボタン54a、54b、54cが表示されている場合、空間センサ17で検出された指の3次元位置に基づいて、指に対向した3Dボタン54bを特定し、図8(B)部分及び(C)部分に示すように、複数の3Dボタン54a、54b、54cのうちで指に対向した3Dボタン54bのみ、間隔pzの減少に応じて視差量を減少させることで飛び出し量dzを減少させる。
 また、3次元画像処理部12は、複数の3Dボタン54a、54b、54cが表示されている場合、空間センサ17で検出された指の3次元位置に基づいて、3Dボタン54bを特定し、指に対向した3Dボタン54bを特定し、図8(D)部分に示すように、指の表示画面へのタッチが検出されたき、複数の3Dボタン54a、54b、54cのうちで指に対向した3Dボタン54bのみ、2D表示に切替える。
 また、3次元画像処理部12は、複数の3Dボタン54a、54b、54cが表示されている場合、空間センサ17から取得された指示体の3次元位置に基づいて指示体に対向した指示用3D画像を特定し、空間センサ17で検出された指の3次元位置に基づいて、指に対向した3Dボタン54bを特定し、図8(D)部分→(C)部分→(B)部分と逆順で見るように、複数の3Dボタン54a、54b、54cのうちで指に対向した3Dボタン54bのみ、間隔pzの増加に応じて視差量を増加させることで飛び出し量dzを増加させてもよい。
 図9は、指示体に対向した指示用3D画像のみサイズを大きくする場合の説明図である。
 3次元画像処理部12は、複数の3Dボタン54a、54b、54cが表示されている場合、空間センサ17で検出された指の3次元位置に基づいて指に対向した3Dボタン54bを特定し、図9(A)部分及び(B)部分に示すように、複数の3Dボタン54a、54b、54cのうちで指に対向した3Dボタン54bのみ、サイズを大きくし、各3Dボタン54a、54b、54cの位置は変えないようにする。また、指示位置検出領域をボタンサイズの拡大に応じて拡大する。
 このように指示体に対向した3Dボタンのみサイズを大きくした場合、押そうとしている3Dボタンを押し易くなる。また、各3Dボタンの位置が変わらないので、押す3Dボタンを他の3Dボタンに変更する場合にも、押し易い。
 図10は、指示体に対向した指示用3D画像から周辺の指示用3D画像を退避させる場合の説明図である。
 3次元画像処理部12は、複数の3Dボタン54a、54b、54cが表示されている場合、空間センサ17で検出された指の3次元位置に基づいて指に対向した3Dボタン54cを特定し、図10(A)部分及び(B)部分に示すように、指に対向した3Dボタン54c(指示用3D画像)から周辺の3Dボタン54a,54b,54d,54e(指示用3D画像)を退避させる。
 このように指示体に対向した3Dボタンから他の3Dボタンを退避させる場合、押そうとしている3Dボタンを押し易くなる。ただし、押す3Dボタンを他の3Dボタンに変更する場合に押し難くならないよう、指がボタンの並び方向(例えばx方向)にて移動したときに滑らかに表示位置を移動させる。
 次に、図1に示した指示位置検出領域決定部18の指示位置検出領域決定について説明する。
 指示位置検出領域決定部18は、記憶部15に利き目情報が記憶されているか否か(即ち利き目情報の有無)に応じて、指示位置検出領域の位置、サイズおよび形状のうち、少なくともひとつを切り替える。
 指示位置検出領域決定部18は、利き目情報が有る場合、指示位置検出領域のサイズを利き目情報が無い場合よりも小さくする。
 指示位置検出領域決定部18は、利き目情報が有る場合、ユーザの利き目が右目であるか左目であるかに応じて、検出領域の位置、サイズおよび形状のうち、少なくともひとつを切り替える。
 指示位置検出領域決定部18は、利き目情報が有る場合、検出領域を指示用右目画像および指示用左目画像のうち利き目の指示用画像の表示位置寄りに配置する。また、指示位置検出領域決定部18は、利き目情報が有る場合、指示用右目画像および指示用左目画像のうち利き目に対応する指示用画像の少なくとも一部が含まれるように、指示位置検出領域を決定する。
 次に、利き目情報が取得されない場合の指示位置検出領域決定について、説明する。
 ユーザの利き目情報が取得されない場合、指示用左目画像位置と指示用右目画像位置との中間位置のみでユーザの指示を検出するだけでは、指示される可能性のある領域をカバーできない。右目が利き目であるユーザは指示用右目画像の近傍を、左目が利き目であるユーザは指示用左目画像の近傍を、それぞれ指示する傾向にあるという理由による。そこで、指示位置検出領域決定部18は、利き目情報が取得されない場合、図11(A)部分および(B)部分に示すように、指示用右目画像53Rの少なくとも一部および指示用左目画像53Lの少なくとも一部が含まれるように、指示位置検出領域56を決定する。なお、図11(A)部分は視差量小(立体像の飛び出し量小)の場合の例、図11(B)部分は、視差量大(立体像の飛び出し量大)の場合の例を示す。
 ユーザの利き目情報が取得されない場合とは、第1に、図1の構成から利き目情報設定部20を省略した場合があり、第2に、図1に示した構成にて、利き目情報設定部20によりユーザの利き目情報が設定されなかった場合がある。
 次に、利き目情報を測定する場合について、説明する。図12は、利き目情報を測定可能な立体表示装置10の構成例を示すブロック図である。なお、図1に示した構成要素には同じ符号を付してあり、説明済みの事項についてはその説明を省略する。
 図12の立体表示装置10は、利き目情報取得手段として利き目測定部21を備えており、利き目測定部21により利き目測定を行い、その測定結果である利き目情報を記憶部15に記憶させる。制御部30は、利き目測定部21を含む各部を制御する。
 利き目測定部21は、指示用右目画像53Rおよび指示用左目画像53Lからなる指示用3D画像の視差量と、その指示用3D画像が立体表示部13に表示された状態で指示位置検出部16により検出されたユーザの指示位置とに基づいて、利き目パラメータを算出する。
 利き目パラメータは、本例における利き目情報であり、ユーザの利き目を示すとともに、利き目の強弱の程度(以下「利き目度合」という)を示す。利き目度合は、立体表示部13の表示画面上におけるユーザの指示位置が、指示用右目画像53Rの表示位置および指示用左目画像53Lの表示位置のうちで利き目側の指示用画像の表示位置に片寄る程度を示す。
 例えば、図13(A)部分~(C)部分に示すように、指示用右目画像53Rおよび指示用左目画像53Lからなる指示用3D画像を、立体表示部13に三通りの立体感で表示させる。本例では、立体感(立体像の飛び出し量)を小、中、大の3通りに変化させて表示させている。即ち、立体感設定部14により視差量をd1、d2、d3と変化させることで指示用3D画像の立体感を変化させ、それぞれの指示用3D画像に対しユーザに指示操作を行わせて、指示位置検出部16により各視差量d1、d2、d3に対応する指示位置p1、p2、p3を立体表示部13の表示画面上の座標値として検出する。
 本例では、利き目モデル式として、w=a×dを用いる。ここで、wは一方の指示用画像の基準位置(本例では指示用右目画像53Rの中心位置)から指示位置までの距離であり、aは利き目パラメータであり、dは視差量である。即ち、利き目測定部21により、指示用右目画像53Rの基準位置(中心位置)と、それに対応する指示用左目画像53Lの基準位置(中心位置)とを基準とし、指示位置がいずれの指示用画像の基準位置により近いか(片寄っているか)を示す数値a=w/dを、利き目パラメータとして算出する。
 例えば、ユーザが右目利きである場合、利き目パラメータaは、0.5未満となる。つまり指示位置が指示用右目画像53Rの中心位置により近い位置になる。ユーザが左目利きである場合、利き目パラメータaは、0.5よりも大きくなる。つまり指示位置が指示用左目画像53Lの中心位置により近い位置になる。なお、利き目パラメータaが0.5になった場合、ユーザは両目利きである可能性が高いが、便宜上、右目利きまたは左目利きとして扱ってもよい。
 なお、利き目パラメータaは、観察者(ユーザ)ごとに異なるため、ユーザID(例えば名前)と対応付けて記憶部15に記憶させておき、指示位置検出領域決定部18によりユーザごとに指示位置検出領域の範囲(位置およびサイズ)を決定することが、好ましい。
 利き目測定部21による利き目測定の測定精度を向上させるため、次のような測定態様があげられる。
 第1に、指示用3D画像を、視差量を異ならせて立体表示部13に複数回表示させて、ユーザの指示位置を指示位置検出部16により複数回検出し、利き目情報を算出する態様がある。
 第2に、指示用3D画像を、表示位置を異ならせて立体表示部13に複数回表示させて、ユーザの指示位置を指示位置検出部16により複数回検出し、利き目情報を算出する態様がある。指示用3D画像を1回表示するごとに、視差量を異ならせると、より好ましい。
 第3に、指示用3D画像を、表示位置を異ならせて立体表示部13に複数個同時に表示させて、ユーザの指示位置を指示位置検出部16により複数回検出し、利き目情報を算出する態様がある。指示用3D画像ごとに、視差量を異ならせると、より好ましい。
 本例の立体表示装置10は、ユーザの利き目と利き目度合とを測定し、その測定結果に基づいて指示位置検出領域を決定するので、より的確にユーザの指示を判定することができる。
 なお、第1実施形態~第3実施形態において、ユーザの利き目情報に応じて指示位置検出領域の位置およびサイズの両方を決定する場合を例に説明したが、位置およびサイズのうちいずれか一方を、ユーザの利き目に応じて決定してもよい。また、指示位置検出領域の形状が四角形である場合を例に説明したが、特に指示位置検出領域の形状は限定されない。例えば、楕円形状でもよい。
 また、ユーザの利き目に応じて、指示位置検出領域の形状を決定するようにしてもよい。
 以上、指示用立体画像として、発明の理解を容易にするために、単なる四角形のボタン画像を図示したが、「ボタン画像」は、このような画像には限定されず、指示体(指、タッチペン等)で押すような操作を受け付ける各種の立体画像が含まれる。例えば、3Dのアイコン画像、3Dのサムネイル画像などが含まれる。また、本発明にて、「指示用立体画像」は、「ボタン画像」には特に限定されない。例えば、3Dのスライドバーのように、スライドさせる操作、回転させる操作、移動させる操作、広げる操作、縮める操作など、各種のタッチ操作により指示を受け付ける各種の画像が含まれる。
 また、指示体が表示画面に近づくにつれて押し込まれるように指示用立体画像を表示する場合を例に説明したが、本発明は、指示体が表示画面に近づくにつれて指示用立体画像を表示画面の奧遠くから表示画面に近づいてくるように表示する場合にも適用できる。
 また、制御部30により、タッチセンサ16(指示位置検出部)によって指示を入力したユーザが切り替わったことを検出するようにしてもよい。
 制御部30(ユーザ切替検出手段)は、例えば、タッチセンサ16によって検出された指示位置(タッチ位置)が指示位置検出領域決定部18によって決定された指示位置検出領域の範囲外であった回数または頻度を算出し、その算出結果に基づいてユーザの切り替わりを検出する。制御部30により、タッチセンサ16によって検出された指示位置の履歴情報を作成し、その指示位置の履歴情報に基づいてユーザの切り替わりを検出するようにしてもよい。例えば、指示位置の履歴情報に基づいて、利き目または利き目の強弱の変化を検出することでユーザの切り替わりを検出する。
 制御部30は、ユーザの切り替わりが検出された場合、次のキャリブレーション処理、検出モード切替処理、表示モード切替処理、および警告処理のうち少なくとも一つの処理を実行する。
 キャリブレーション処理では、新たなユーザの利き目情報を取得して指示用左目画像および指示用右目画像の表示領域に対する検出領域の位置、サイズおよび形状のうちで少なくともひとつの差分を決定する。
 検出モード切替処理では、指示位置検出領域を利き目情報に基づきユーザの利き目または利き目の強弱に応じて決定する第1の検出モードから指示位置検出領域を前記第1の検出モード時よりもサイズが大きいデフォルトに設定にする第2の検出モードに切替える。
 表示モード切替処理では、指示用3D画像を表示する立体表示モードから指示用2D画像を表示する平面表示モードに切替える。
 ユーザの切り替わりが検出された場合に実行する処理の選択をユーザから受け付けるようにしてもよい。
 図14は、前述の第1実施形態から第3実施形態の立体表示装置を適用する基本的なハードウェア構成を示すブロック図である。図14の立体表示装置10では、マイクロプロセッサ110が、第1実施形態及び第2実施形態における3次元画像処理部12、指示位置検出領域決定部18、判定部19、制御部30、利き目測定部21などを含んでいる。また、媒体インタフェース101は画像入力部11を含んでいる。媒体インタフェース101は、メモリカード等、立体表示装置10の本体に着脱自在な媒体に対しデータ読み取りおよびデータ書き込みを行なう。媒体インタフェース101として、ネットワークを介して通信を行なうネットワークインタフェースを用いてもよい。
 図14の立体表示装置10として、例えば、パーソナルコンピュータ、3Dカメラ装置、3D携帯端末装置、3Dゲーム装置、3D案内装置、3Dテレビジョン装置など、各種の立体表示可能なデジタル装置を挙げることができる。
 図14の立体表示装置10を3Dカメラ装置として用いる場合、被写体を複数視点から撮像することで3D撮像画像を取得する3D撮像手段を空間センサ17とは別に設け、その立体撮像部で取得された立体撮像画像と指示用立体画像とを合成して立体表示部13により立体表示する。
 以上、タッチセンサ16によって表示画面上の指示位置を検出する場合を例に説明したが、空間センサ17によって指示位置を検出するようにしてもよい。
 図15は、空間センサ17によって指示位置を検出するようにした立体表示装置10の一例の全体構成を示す。図15において、図12に示した構成要素には同じ符号を付してあり、以下では図12の場合と異なる点のみ説明する。
 空間センサ17は、指示体によって指示された立体表示部13の表示画面上の指示位置を検出するとともに、立体表示部13の表示画面と指示体との間隔を検出する。判定部19は、空間センサ17によって検出した指示位置が指示用3D画像に対応した検出領域内であるか否かを判定して、指示用3D画像に対応した指示を受け付ける。
 3次元画像処理部12は、空間センサ17によって指示体の表示画面への指示が検出されたとき、指示用3D画像を平面表示に切替える。
 本例の空間センサ17によれば、指等の指示体が立体表示部13の表示画面にタッチしているか否か、及び、指示体が表示画面上のどの位置にタッチしているかを検出することが可能である。このような空間センサ17の例としては、立体カメラ(複眼3Dカメラ、単眼3Dカメラ)が挙げられる。
 図16は、図15に示した立体表示装置のための基本的なハードウェア構成例を示すブロック図である。図16において、図14に示した構成要素には同じ符号を付してあり、図14の場合と異なる点は、空間センサ17を指示位置検出部16として兼用する点である。
 以上に開示された発明、及び、その発明を応用した発明は、以下の通りである。
 発明1:指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記指示体によって指示された前記立体表示手段の表示画面上の指示位置を検出するとともに、前記立体表示手段の表示画面と前記指示体との間隔を検出する空間センサと、前記空間センサによって検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、を備えた立体表示装置。
 発明2:指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記立体表示手段の表示画面上に配置され、前記指示体でタッチされた指示位置を検出するタッチセンサと、前記タッチセンサによってタッチを検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、前記タッチセンサのタッチ面又は前記立体表示手段の表示画面と前記指示体との間隔を検出する空間センサと、前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、を備えた立体表示装置。
 発明3:前記画像処理手段は、前記空間センサによって前記指示体の前記表示画面への指示が検出されたとき、前記指示用立体画像を平面表示に切替える発明1に記載の立体表示装置。
 発明4:前記画像処理手段は、前記タッチセンサによって前記指示体の前記表示画面へのタッチが検出されたとき、前記指示用立体画像を平面表示に切替える発明2に記載の立体表示装置。
 発明5:前記空間センサは、前記指示体の空間上の3次元位置を検出し、前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、前記間隔の減少に応じて前記指示用右目画像と前記指示用左目画像との視差量を減少させる発明1から4のうちいずれかひとつに記載の立体表示装置。
 発明6:前記空間センサは、前記指示体の空間上の3次元位置を検出し、前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記指示体の前記表示画面への指示が検出されたとき、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、平面表示に切替える発明1から5のうちいずれかひとつに記載の立体表示装置。
 発明7:前記空間センサは、前記指示体の空間上の3次元位置を検出し、前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、サイズを大きくする発明1から6のうちいずれかひとつに記載の立体表示装置。
 発明8:前記空間センサは、前記指示体の空間上の3次元位置を検出し、前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記指示体に対向した指示用立体画像から周辺の指示用立体画像を退避させる発明1から7のうちいずれかひとつに記載の立体表示装置。
 発明9:前記視差量決定手段は、前記空間センサにより検出された前記間隔の増加に応じて前記指示用右目画像と前記指示用左目画像との視差量を増加させる発明1から8のうちいずれかひとつに記載の立体表示装置。
 発明10:前記空間センサは、前記指示体の空間上の3次元位置を検出し、前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対応した指示用立体画像のみ、前記間隔の増加に応じて前記指示用右目画像と前記指示用左目画像との視差量を増加させる発明9に記載の立体表示装置。
 発明11:ユーザの利き目を示す利き目情報を記憶する記憶手段を備え、前記画像処理手段は、前記間隔の減少に応じて前記視差量を減少させるとき、前記記憶手段に記憶された利き目情報に基づいて、前記指示用右目画像および前記指示用左目画像のうちで利き目でない目用の指示用画像の表示位置を利き目用の指示用画像の表示位置に近づける発明1から10のうちいずれか1項に記載の立体表示装置。
 発明12:ユーザの利き目および利き目の強弱を示す利き目情報を記憶する記憶手段を備え、前記画像処理手段は、前記間隔の減少に応じて前記視差量を減少させるとき、前記記憶手段に記憶された利き目情報に基づいて、前記指示用右目画像および前記指示用左目画像の中間位置よりも利き目の指示用画像の表示位置に近い位置であって前記利き目の強弱に応じた割合だけ前記利き目の指示用画像の表示位置に近い位置に前記指示用右目画像の表示位置および前記指示用左目画像の表示位置の両方を近づける発明1から10のうちいずれかひとつに記載の立体表示装置。
 発明13:少なくとも前記利き目情報に基づいて、前記立体表示手段の表示画面上における前記指示位置の検出領域を決定する検出領域決定手段を備えた請求項11または12に記載の立体表示装置。
 発明14:前記立体表示手段に前記指示用立体画像が表示された状態で検出された指示位置と前記指示用立体画像の視差量とに基づいて前記利き目情報を算出することで前記利き目情報を取得する利き目情報取得手段を備えた請求項1から13のうちいずれか1項に記載の立体表示装置。
 発明15:前記利き目情報の入力操作を受け付けることで前記利き目情報を取得する利き目情報取得手段を備えた請求項1から13のうちいずれか1項に記載の立体表示装置。
 発明16:前記空間センサは、立体撮像センサ、赤外線センサ、又は静電容量センサである請求項1から15のうちいずれか1項に記載の立体表示装置。
 発明17:前記指示体は、指またはペンである請求項1から16のうちいずれか1項に記載の立体表示装置。
 発明18~34:発明1~17にそれぞれ対応する指示受付方法。
 発明35:ユーザの指示を受け付けるための指示用右目画像および指示用左目画像からなる指示用立体画像を表示する立体表示手段と、前記立体表示手段の表示画面上における前記ユーザの指示位置を検出する指示位置検出手段と、前記ユーザの利き目を示す利き目情報を取得する利き目情報取得手段と、少なくとも前記利き目情報に基づいて、前記立体表示手段の表示画面上における前記指示位置の検出領域を決定する検出領域決定手段と、前記指示位置検出手段により検出された前記指示位置が前記検出領域内であるか否かを判定することで、前記指示用立体画像に対応する前記ユーザの指示を受け付ける判定手段と、を備えた立体表示装置。
 発明36:前記検出領域決定手段は、前記利き目情報の有無に応じて、前記検出領域の位置、サイズおよび形状のうち、少なくともひとつを切り替える発明35に記載の立体表示装置。
 発明37:前記検出領域決定手段は、前記利き目情報が有る場合、前記検出領域のサイズを前記利き目情報が無い場合よりも小さくする発明36に記載の立体表示装置。
 発明38:前記検出領域決定手段は、前記利き目情報が有る場合、前記ユーザの利き目が右目であるか左目であるかに応じて、前記検出領域の位置、サイズおよび形状のうち、少なくともひとつを切り替える発明35から37のうちいずれかひとつに記載の立体表示装置。
 発明39:前記検出領域決定手段は、前記利き目情報が有る場合、前記検出領域を前記指示用右目画像および指示用左目画像のうち利き目の指示用画像の表示位置寄りに配置する発明38に記載の立体表示装置。
 発明40:前記検出領域決定手段は、前記利き目情報が有る場合、前記指示用右目画像および前記指示用左目画像のうち利き目に対応する指示用画像の少なくとも一部が含まれるように、前記検出領域を決定する発明35から39のうちいずれかひとつに記載の立体表示装置。
 発明41:前記検出領域決定手段は、前記利き目情報が無い場合、前記指示用右目画像の少なくとも一部および前記指示用左目画像の少なくとも一部が含まれるように、前記検出領域を決定する発明35から40のうちいずれかひとつに記載の立体表示装置。
 発明42:前記利き目情報取得手段は、前記立体表示手段に前記指示用立体画像が表示された状態で前記指示位置検出手段により検出された前記ユーザの指示位置と、前記指示用立体画像の視差量とに基づいて、ユーザの利き目および利き目の強弱を示す前記利き目情報を算出する発明35から41のうちいずれかひとつに記載の立体表示装置。
 発明43:前記指示用立体画像を視差量を異ならせて前記立体表示手段に複数回表示させて、前記ユーザの指示位置を前記指示位置検出手段により複数回検出し、前記利き目情報を算出する発明42に記載の立体表示装置。
 発明44:前記指示用立体画像を表示位置を異ならせて前記立体表示手段に複数回表示させて、前記ユーザの指示位置を前記指示位置検出手段により複数回検出し、前記利き目情報を算出する発明42または43に記載の立体表示装置。
 発明45:前記指示用立体画像を表示位置を異ならせて前記立体表示手段に複数個表示させて、前記ユーザの指示位置を前記指示位置検出手段により複数回検出し、前記利き目情報を算出する発明42または43に記載の立体表示装置。
 発明46:前記利き目情報取得手段は、前記ユーザの利き目情報の入力操作を受け付ける発明35から41のうちいずれかひとつに記載の立体表示装置。
 発明47:前記指示用立体画像の立体感の大小の設定入力操作を受け付ける立体感設定手段と、設定入力された立体感の大小に対応した視差量で前記指示用立体画像を生成する指示用立体画像生成手段と、を備え、前記立体表示手段は、前記指示用立体画像生成手段で生成された立体表示画像を表示し、前記検出領域決定手段は、前記立体感の大小に対応した視差量にも基づいて、前記検出領域を決定する発明35から46のうちいずれかひとつに記載の立体表示装置。
 発明48:前記指示位置検出手段によって指示を入力したユーザが切り替わったことを検出するユーザ切替検出手段を備えた発明35から47のうちいずれかひとつに記載の立体表示装置。
 発明49:前記ユーザ切替検出手段は、前記指示位置検出手段によって検出された指示位置が前記検出領域決定手段によって決定された検出領域の範囲外であった回数または頻度を算出し、その算出結果に基づいてユーザの切り替わりを検出する発明48に記載の立体表示装置。
 発明50:前記ユーザ切替検出手段は、前記指示位置検出手段によって検出された指示位置の履歴情報を作成し、その指示位置の履歴情報に基づいてユーザの切り替わりを検出する発明48に記載の立体表示装置。
 発明51:本発明の一実施形態では、前記ユーザ切替検出手段は、前記指示位置の履歴情報に基づいて、利き目または利き目の強弱の変化を検出することでユーザの切り替わりを検出する発明50に記載の立体表示装置。
 発明52:前記ユーザ切替検出手段によってユーザの切り替わりが検出された場合、新たなユーザの前記利き目情報を取得して前記指示用左目画像および指示用右目画像の表示領域に対する前記検出領域の位置、サイズおよび形状のうちで少なくともひとつの差分を決定するキャリブレーション処理と、前記検出領域を前記利き目情報に基づきユーザの利き目または利き目の強弱に応じて決定する第1の検出モードから前記検出領域を前記第1の検出モード時よりもサイズが大きいデフォルトに設定にする第2の検出モードに切替える検出モード切替処理と、前記指示用立体画像を表示する立体表示モードから平面指示用画像を表示する平面表示モードに切替える表示モード切替処理と、警告を出力する警告処理とのうちで少なくともいずれかの処理を実行する制御手段を備えた発明48から発明51のうちいずれか1項に記載の立体表示装置。
 発明53:ユーザの切り替わりが検出された場合に実行する処理の選択をユーザから受け付ける選択受付手段を備えた発明48から51のいずれかひとつに記載の立体表示装置。
 発明54:発明45から発明52のうちいずれかひとつに記載の立体表示装置と、被写体を複数視点から撮像することで立体撮像画像を取得する立体撮像手段と、を備え、前記立体撮像画像と前記指示用立体画像とを合成して前記立体表示手段により立体表示する立体撮影装置。
 発明54~72:発明35~53にそれぞれ対応する指示受付方法。
 発明73:発明18~34及び発明54~72のうちいずれかひとつに記載の指示受付方法をコンピュータに実行させるプログラム。
 発明74:発明73に記載のプログラムを記録した記録媒体。即ち、前記プログラムを所定の記録媒体に記録して、提供及び利用することができる。
 以上、各種の本発明の各種の態様についてそれぞれ説明したが、本明細書の記載事項を可能な限り組み合わせて実施してよいことは、言うまでもない。
 本発明は、本明細書において説明した例や図面に図示された例には限定されず、本発明の要旨を逸脱しない範囲において、各種の設計変更や改良を行ってよいのはもちろんである。
 10…立体表示装置、11…画像入力部、12…3次元画像処理部、13…立体表示部、14…立体感設定部、15…記憶部、16…タッチセンサ、17…空間センサ、18…指示位置検出領域決定部、19…判定部、20…利き目情報設定部、21…利き目測定部、30…制御部、53R…指示用右目画像、53L…指示用左目画像、54…立体像、56…指示位置検出領域

Claims (21)

  1.  指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、
     前記指示体によって指示された前記立体表示手段の表示画面上の指示位置を検出するとともに、前記立体表示手段の表示面と前記指示体との間隔を検出する空間センサと、
     前記空間センサによって検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、
     前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、
     前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、
     を備えた立体表示装置。
  2.  指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、
     前記立体表示手段の表示面上に配置され、前記指示体でタッチされた指示位置を検出するタッチセンサと、
     前記タッチセンサによってタッチを検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定して、前記指示用立体画像に対応した指示を受け付ける判定手段と、
     前記タッチセンサのタッチ面又は前記立体表示手段の表示面と前記指示体との間隔を検出する空間センサと、
     前記立体表示手段に表示された前記指示用左目画像と前記指示用右目画像との視差量を決定する視差量決定手段であって、前記空間センサによって検出された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させる視差量決定手段と、
     前記指示用立体画像を前記視差量決定手段によって決定された視差量で前記立体表示手段に表示させる画像処理手段と、
     を備えた立体表示装置。
  3.  前記画像処理手段は、前記空間センサによって前記指示体の前記表示画面への指示が検出されたとき、前記指示用立体画像を平面表示に切替える請求項1に記載の立体表示装置。
  4.  前記画像処理手段は、前記タッチセンサによって前記指示体の前記表示画面へのタッチが検出されたとき、前記指示用立体画像を平面表示に切替える請求項2に記載の立体表示装置。
  5.  前記空間センサは、前記指示体の空間上の3次元位置を検出し、
     前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、前記間隔の減少に応じて前記指示用右目画像と前記指示用左目画像との視差量を減少させる請求項1から4のうちいずれか1項に記載の立体表示装置。
  6.  前記空間センサは、前記指示体の空間上の3次元位置を検出し、
     前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合
    、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記指示体の前記表示画面への指示が検出されたとき、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、平面表示に切替える請求項1から5のうちいずれか1項に記載の立体表示装置。
  7.  前記空間センサは、前記指示体の空間上の3次元位置を検出し、
     前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対向した指示用立体画像のみ、サイズを大きくする請求項1から6のうちいずれか1項に記載の立体表示装置。
  8.  前記空間センサは、前記指示体の空間上の3次元位置を検出し、
     前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記指示体に対向した指示用立体画像から周辺の指示用立体画像を退避させる請求項1から7のうちいずれか1項に記載の立体表示装置。
  9.  前記視差量決定手段は、前記空間センサにより検出された前記間隔の増加に応じて前記指示用右目画像と前記指示用左目画像との視差量を増加させる請求項1から8のうちいずれか1項に記載の立体表示装置。
  10.  前記空間センサは、前記指示体の空間上の3次元位置を検出し、
     前記画像処理手段は、前記立体表示手段に複数の指示用立体画像が表示されている場合、前記指示体の3次元位置に基づいて前記指示体に対向した指示用立体画像を特定し、前記複数の指示用立体画像のうちで前記指示体に対応した指示用立体画像のみ、前記間隔の増加に応じて前記指示用右目画像と前記指示用左目画像との視差量を増加させる請求項9に記載の立体表示装置。
  11.  ユーザの利き目を示す利き目情報を記憶する記憶手段を備え、
     前記画像処理手段は、前記間隔の減少に応じて前記視差量を減少させるとき、前記記憶手段に記憶された利き目情報に基づいて、前記指示用右目画像および前記指示用左目画像のうちで利き目でない目用の指示用画像の表示位置を利き目用の指示用画像の表示位置に近づける請求項1から10のうちいずれか1項に記載の立体表示装置。
  12.  ユーザの利き目および利き目の強弱を示す利き目情報を記憶する記憶手段を備え、
     前記画像処理手段は、前記間隔の減少に応じて前記視差量を減少させるとき、前記記憶手段に記憶された利き目情報に基づいて、前記指示用右目画像および前記指示用左目画像の中間位置よりも利き目の指示用画像の表示位置に近い位置であって前記利き目の強弱に応じた割合だけ前記利き目の指示用画像の表示位置に近い位置に前記指示用右目画像の表示位置および前記指示用左目画像の表示位置の両方を近づける請求項1から10のうちいずれか1項に記載の立体表示装置。
  13.  少なくとも前記利き目情報に基づいて、前記立体表示手段の表示面上における前記指示位置の検出領域を決定する検出領域決定手段を備えた請求項11または12に記載の立体表示装置。
  14.  前記立体表示手段に前記指示用立体画像が表示された状態で検出された指示位置と前記指示用立体画像の視差量とに基づいて前記利き目情報を算出することで前記利き目情報を取得する利き目情報取得手段を備えた請求項1から13のうちいずれか1項に記載の立体表示装置。
  15.  前記利き目情報の入力操作を受け付けることで前記利き目情報を取得する利き目情報取得手段を備えた請求項1から13のうちいずれか1項に記載の立体表示装置。
  16.  前記空間センサは、立体撮像センサ、赤外線センサ、又は静電容量センサである請求項1から15のうちいずれか1項に記載の立体表示装置。
  17.  前記指示体は、指またはペンである請求項1から16のうちいずれか1項に記載の立体表示装置。
  18.  指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記指示体によって指示された前記立体表示手段の表示画面上の指示位置を検出するとともに、前記立体表示手段の表示面と前記指示体との間隔を検出する空間センサとを備えた立体表示装置が、
     前記指示用立体画像を所定の視差量で前記立体表示手段に表示させるステップと、
     前記空間センサによって前記立体表示手段の表示面と前記指示体との間隔を取得するステップと、
     前記取得された間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させるステップと、
     前記空間センサによって検出した指示位置が前記指示用立体画像に対応した検出領域内であるか否かを判定することで、前記指示用立体画像に対応した指示を受け付けるステップと、
     を実行する指示受付方法。
  19.  指示体によって指示させるための指示用左目画像及び指示用右目画像からなる指示用立体画像を表示する立体表示手段と、前記立体表示手段の表示面上に配置され、前記指示体でタッチされた位置を検出するタッチセンサと、前記タッチセンサのタッチ面又は前記立体表示手段の表示面と前記指示体との空間上の間隔の変化を検出する空間センサとを備えた立体表示装置が、
     前記指示用立体画像を所定の視差量で前記立体表示手段に表示させるステップと、
     前記空間センサから前記立体表示手段の表示面と前記指示体との間隔を取得するステップと、
     前記空間センサから取得された前記間隔の減少に応じて前記指示用左目画像と前記指示用右目画像との視差量を減少させるステップと、
     前記タッチセンサによりタッチを検出した位置が前記指示用立体画像に対応した検出領域内であるか否かを判定することで、前記指示用立体画像に対応した指示を受け付けるステップと、
     を実行する指示受付方法。
  20.  請求項18または19に記載の指示受付方法を前記立体表示装置が実行するためのプログラム。
  21.  請求項18または19に記載の指示受付方法を前記立体表示装置が実行するためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/055176 2011-03-31 2012-03-01 立体表示装置、指示受付方法及びプログラムならびにその記録媒体 WO2012132749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12765796.3A EP2693405A4 (en) 2011-03-31 2012-03-01 STEREOSCOPIC DISPLAY DEVICE, INSTRUCTION ACCEPTANCE METHOD, PROGRAM, AND RECORDING MEDIUM THEREOF
JP2013507300A JP5693708B2 (ja) 2011-03-31 2012-03-01 立体表示装置、指示受付方法及びプログラムならびにその記録媒体
CN2012800170054A CN103460257A (zh) 2011-03-31 2012-03-01 立体显示设备、接受指令的方法、程序及记录其的介质
US14/040,103 US9727229B2 (en) 2011-03-31 2013-09-27 Stereoscopic display device, method for accepting instruction, and non-transitory computer-readable medium for recording program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079295 2011-03-31
JP2011079295 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/040,103 Continuation US9727229B2 (en) 2011-03-31 2013-09-27 Stereoscopic display device, method for accepting instruction, and non-transitory computer-readable medium for recording program

Publications (1)

Publication Number Publication Date
WO2012132749A1 true WO2012132749A1 (ja) 2012-10-04

Family

ID=46930496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055176 WO2012132749A1 (ja) 2011-03-31 2012-03-01 立体表示装置、指示受付方法及びプログラムならびにその記録媒体

Country Status (5)

Country Link
US (1) US9727229B2 (ja)
EP (1) EP2693405A4 (ja)
JP (1) JP5693708B2 (ja)
CN (2) CN103460257A (ja)
WO (1) WO2012132749A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014128747A1 (ja) * 2013-02-19 2017-02-02 株式会社ブリリアントサービス 入出力装置、入出力プログラム、および入出力方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884928B1 (en) * 2012-01-26 2014-11-11 Amazon Technologies, Inc. Correcting for parallax in electronic displays
US9507462B2 (en) * 2012-06-13 2016-11-29 Hong Kong Applied Science and Technology Research Institute Company Limited Multi-dimensional image detection apparatus
CN103997329A (zh) * 2014-05-14 2014-08-20 广东美的厨房电器制造有限公司 家电设备操控界面显示方法以及显示装置和家电设备
US10162412B2 (en) * 2015-03-27 2018-12-25 Seiko Epson Corporation Display, control method of display, and program
CN104991684A (zh) * 2015-07-23 2015-10-21 京东方科技集团股份有限公司 触控设备及其工作方法
KR20170024453A (ko) * 2015-08-25 2017-03-07 한신대학교 산학협력단 3차원 가상 버튼을 이용한 포인팅 장치
US20180267671A1 (en) * 2017-03-15 2018-09-20 Edito Co., Ltd. Touch screen system and method for driving the same
CN108334191B (zh) * 2017-12-29 2021-03-23 北京七鑫易维信息技术有限公司 基于眼动分析设备的确定注视点的方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131442A (ja) * 1992-10-19 1994-05-13 Mazda Motor Corp 3次元虚像造形装置
JPH10105735A (ja) * 1996-09-30 1998-04-24 Terumo Corp 入力装置及び画像表示システム
JP2004362218A (ja) * 2003-06-04 2004-12-24 Canon Inc 三次元物体操作方法
JP2005316790A (ja) * 2004-04-30 2005-11-10 Nippon Telegr & Teleph Corp <Ntt> 情報入力方法および情報入出力装置並びにプログラム
WO2008062586A1 (fr) * 2006-11-22 2008-05-29 Sharp Kabushiki Kaisha Dispositif d'affichage, procédé d'affichage, programme d'affichage, et support d'enregistrement
JP2009229752A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 表示装置、表示方法及びヘッドアップディスプレイ
JP2010055266A (ja) 2008-08-27 2010-03-11 Fujifilm Corp 3次元表示時における指示位置設定装置および方法並びにプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863326A (ja) * 1994-08-22 1996-03-08 Hitachi Ltd 画像処理装置及び方法
JP3944188B2 (ja) * 2004-05-21 2007-07-11 株式会社東芝 立体画像表示方法、立体画像撮像方法及び立体画像表示装置
US8264477B2 (en) * 2005-08-05 2012-09-11 Pioneer Corporation Image display apparatus
KR20100041006A (ko) * 2008-10-13 2010-04-22 엘지전자 주식회사 3차원 멀티 터치를 이용한 사용자 인터페이스 제어방법
CN102124749B (zh) * 2009-06-01 2013-05-29 松下电器产业株式会社 立体图像显示装置
US20100315413A1 (en) * 2009-06-16 2010-12-16 Microsoft Corporation Surface Computer User Interaction
KR101608764B1 (ko) * 2009-07-14 2016-04-04 엘지전자 주식회사 이동 단말기 및 이것의 디스플레이 제어 방법
JP5593972B2 (ja) * 2010-08-30 2014-09-24 ソニー株式会社 情報処理装置、立体視表示方法、及びプログラム
GB2485140A (en) * 2010-10-26 2012-05-09 Sony Corp A Method and Apparatus For Inserting Object Data into a Stereoscopic Image
US20120127155A1 (en) * 2010-11-23 2012-05-24 Sharp Laboratories Of America, Inc. 3d comfort and fusion limit empirical model

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131442A (ja) * 1992-10-19 1994-05-13 Mazda Motor Corp 3次元虚像造形装置
JPH10105735A (ja) * 1996-09-30 1998-04-24 Terumo Corp 入力装置及び画像表示システム
JP2004362218A (ja) * 2003-06-04 2004-12-24 Canon Inc 三次元物体操作方法
JP2005316790A (ja) * 2004-04-30 2005-11-10 Nippon Telegr & Teleph Corp <Ntt> 情報入力方法および情報入出力装置並びにプログラム
WO2008062586A1 (fr) * 2006-11-22 2008-05-29 Sharp Kabushiki Kaisha Dispositif d'affichage, procédé d'affichage, programme d'affichage, et support d'enregistrement
JP2009229752A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 表示装置、表示方法及びヘッドアップディスプレイ
JP2010055266A (ja) 2008-08-27 2010-03-11 Fujifilm Corp 3次元表示時における指示位置設定装置および方法並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693405A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014128747A1 (ja) * 2013-02-19 2017-02-02 株式会社ブリリアントサービス 入出力装置、入出力プログラム、および入出力方法

Also Published As

Publication number Publication date
JP5693708B2 (ja) 2015-04-01
JPWO2012132749A1 (ja) 2014-07-24
CN106896952A (zh) 2017-06-27
US9727229B2 (en) 2017-08-08
EP2693405A1 (en) 2014-02-05
CN103460257A (zh) 2013-12-18
US20140022198A1 (en) 2014-01-23
EP2693405A4 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5693708B2 (ja) 立体表示装置、指示受付方法及びプログラムならびにその記録媒体
JP5676608B2 (ja) 立体表示装置、立体撮影装置、および指示判定方法
JP5450791B2 (ja) 立体表示装置及び立体撮影装置、並びに利き目判定方法及びこれに用いる利き目判定プログラム並びに記録媒体
US9445084B2 (en) Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
KR101381928B1 (ko) 포인터를 사용하지 않는 가상 터치 장치 및 방법
US9075442B2 (en) Image processing apparatus, method, and computer-readable storage medium calculation size and position of one of an entire person and a part of a person in an image
EP2976881B1 (en) 3d display device and method for controlling the same
WO2014141504A1 (ja) 3次元ユーザインタフェース装置及び3次元操作処理方法
KR20120050900A (ko) 정보 처리 장치, 입체 표시 방법 및 프로그램
WO2011114564A1 (ja) 立体画像表示装置およびその制御方法
KR101441882B1 (ko) 포인터를 사용하지 않는 가상 터치 장치에서의 디스플레이 표시면 둘레의 가상 평면을 사용하여 전자기기를 제어하는 방법
TWI530858B (zh) 一種立體交互系統和立體交互方法
JP2012256110A (ja) 情報処理装置、情報処理方法およびプログラム
KR20120126508A (ko) 포인터를 사용하지 않는 가상 터치 장치에서의 터치 인식 방법
US20170185147A1 (en) A method and apparatus for displaying a virtual object in three-dimensional (3d) space
JP6065908B2 (ja) 立体画像表示装置、そのカーソル表示方法及びコンピュータプログラム
KR101321274B1 (ko) 두대의 카메라와 광원을 이용한 포인터를 사용하지 않는 가상 터치 장치
JP4678428B2 (ja) 仮想空間内位置指示装置
JP2013168120A (ja) 立体画像処理装置、立体画像処理方法、及びプログラム
JP2008176438A (ja) 画像表示装置
JP2012103980A5 (ja)
WO2012105703A1 (ja) 表示装置、表示画像生成方法、プログラム、及び記録媒体
JP2024041582A (ja) 情報処理装置、システム、制御方法、およびコンピュータプログラム
JP2015109111A (ja) ジェスチャ操作入力処理装置、3次元ディスプレイ装置およびジェスチャ操作入力処理方法
JP2011118907A (ja) 3次元表示時における指示位置設定装置および方法並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507300

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012765796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE