WO2012132685A1 - Focus extending optical system and imaging system - Google Patents

Focus extending optical system and imaging system Download PDF

Info

Publication number
WO2012132685A1
WO2012132685A1 PCT/JP2012/054563 JP2012054563W WO2012132685A1 WO 2012132685 A1 WO2012132685 A1 WO 2012132685A1 JP 2012054563 W JP2012054563 W JP 2012054563W WO 2012132685 A1 WO2012132685 A1 WO 2012132685A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
mtf
image
coefficient
optical system
Prior art date
Application number
PCT/JP2012/054563
Other languages
French (fr)
Japanese (ja)
Inventor
慶延 岸根
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012132685A1 publication Critical patent/WO2012132685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses

Definitions

  • the present invention provides an optical system that expands the depth of focus of an optical lens (hereinafter referred to as a focus expansion optical system), and an image that is sharpened by performing restoration processing (deconvolution processing) on an image captured through the depth of focus expansion optical system. About the system.
  • a digital camera mounted on a cellular phone or the like is an image that is several tens of centimeters away from a subject such as a person or landscape several meters away, or a subject that is several meters away, for reading characters or two-dimensional codes. It is also used for imaging. To shoot at a wide range of subject distances, it is necessary to focus according to the shooting distance. However, a digital camera mounted on a mobile phone or the like must be small and inexpensive. It is difficult to provide a focus adjustment mechanism.
  • EDoF Extended ⁇ Depth
  • EDoF imaging system uses a phase expansion plate or the like to pick up an image using a focus expansion optical system having a different focal length depending on the distance from the optical axis (incident height), and sharpens the resulting defocused image by restoration processing.
  • This is an imaging system that obtains an image equivalent to that captured by a lens having a wide depth.
  • the EDoF imaging system has the advantage of being able to capture an image with an extended depth of field by a combination of a focus extension optical system and image processing.
  • a focus extension optical system In order to use a special lens system called a focus extension optical system, A unique problem arises in EDoF imaging systems.
  • an image at the center of the image near the optical axis can obtain a constant resolution, but an image at a portion outside the optical axis has a problem that the resolution varies depending on the image height.
  • the resolution is not so constant that the resolution decreases as it approaches the peripheral portion, but the resolution becomes lower at an intermediate position slightly away from the center of the image on the basis of the resolution of the central portion of the image on the optical axis.
  • the part has a complicated resolution distribution such as a slightly improved resolution.
  • Such a resolution distribution causes locally unnatural blur when a distant view such as a landscape or a person is imaged, and causes the entire distant image to be uncomfortable.
  • a close-up image such as a character or a two-dimensional code is imaged, there is a problem that the character cannot be read.
  • An object of the present invention is to provide a focus expanding optical system and an imaging system capable of eliminating a disturbance in the resolution distribution of a portion off the optical axis and acquiring a natural image that can obtain a substantially constant resolution over the entire image. To do.
  • the focus extending optical system of the present invention has at least one optical lens that forms an image of light from a subject on an image sensor, and a wavefront so as to change an imaging position by the optical lens according to a distance from the optical axis. And a focus expansion element that adjusts and expands the focus of the optical lens.
  • of the coefficient K 12 preferably satisfies
  • of the coefficient K 13 preferably satisfies
  • of the coefficient K 13 preferably satisfies
  • the coefficient K 12 is a value within range satisfying the Th1 ⁇ K 12 ⁇ Th2 or Th2 ⁇ K 12 ⁇ Th1,.
  • of the coefficient K 13 preferably satisfies
  • the coefficient K 12 is defined.
  • optical lens and the focus expanding element are fixed so as not to move in the optical axis direction.
  • the optical lens or the focus expanding element is preferably provided so as to be movable in the optical axis direction.
  • the focus expansion optical system like the gap of the MTF of sagittal direction and the tangential direction is within a range smaller than twice the reference value, the coefficient K 12 is defined.
  • the present invention it is possible to provide a focus expanding optical system and an EDoF imaging system that can eliminate a disturbance in the resolution distribution of a portion off the optical axis and obtain a natural image having a substantially constant resolution in the entire image. be able to.
  • the EDoF imaging system 10 includes a focus extending optical system 11, an imaging element 12, and an image processing unit 13.
  • the EDoF imaging system 10 is mainly used for two types of applications: imaging of a distant view from a few meters ahead, such as a landscape or a person, and imaging of a close view that captures a distance of several tens of centimeters, such as a character or a two-dimensional code. used.
  • the focus expansion optical system 11 is for imaging light incident from the subject 14 on the image sensor 12, and includes a plurality of optical lenses and a focus expansion element for extending the depth of focus of the optical lens, as will be described later. Including.
  • the depth-of-focus optical system 11 converges, for example, a light beam near the center including the optical axis toward the front (subject 14), and converges a light beam passing outside toward the back (imaging element 12), depending on the incident height. The focus changes.
  • the optical performance of the focus expanding optical system 11 is designed to be a performance required by a specific EDoF imaging system 10, but in this embodiment, a fixed focus lens having an F number (Fn) of 2.29 is used.
  • the focal expansion optical system 11 when represented by the formula (so-called Zernike mode) to each term wavefront aberration Zernike the (Zernike) polynomial, absolute coefficient K 12 of paragraph 12 Z 12
  • the shape of each lens surface is determined so that the value
  • the EDoF imaging system 10 projects the subject at the same shooting distance with a uniform resolution in the image by focus shift (movement of focus). Further, when the image is blurred, a substantially uniform blur is realized vertically and horizontally at any position in the acquired image 15.
  • the image pickup device 12 picks up an image of the subject 14 formed by the focus extending optical system 11 by performing photoelectric conversion for each pixel, and outputs the obtained RAW data to the image processing unit 13.
  • the image sensor 12 is arranged such that an imaging surface on which a plurality of pixels are arranged is located within the focal range E of the depth of focus extending optical system 11.
  • the center of the captured image corresponds to the optical axis of the focus extending optical system 11
  • the horizontal direction of the image corresponds to the S (sagittal) direction
  • the vertical direction of the image corresponds to the T (tangential) direction.
  • the image processing unit 13 is composed of a DSP, a DIP, or the like, and performs various image processing on the image data output from the image pickup device 12 to convert it into a clear image 15 as a whole. Specifically, the image processing unit 13 performs restoration processing, noise reduction processing, color mixture correction processing, shading correction processing, white balance adjustment processing, synchronization processing, color matrix correction processing, YC conversion processing on RAW data, A gamma correction process and an edge enhancement process are performed in this order to generate an image 15 having a predetermined format (for example, jpeg).
  • a predetermined format for example, jpeg
  • the focus extending optical system 11 includes, for example, a plurality of optical lenses 11 a and 11 b and a focus extending element 16.
  • the optical lens 11 a adjusts the light emitted as a spherical wave from the point 14 a of the subject 14 into a plane wave and makes it incident on the focus extending element 16.
  • the optical lens 11b converges the light incident from the focus expanding element 16.
  • the focus extending element 16 extends the focus by the optical lenses 11a and 11b from one point to the focus range E by adjusting the balance of various aberrations such as spherical aberration and chromatic aberration by wavefront aberration.
  • the focal point expansion element 16 converts a plane wave incident from the optical lens 11a into a light beam (hereinafter referred to as an inner light beam) L1 passing through a central portion including the optical axis L0 and a light beam passing through the periphery of the light beam L1 (hereinafter referred to as an outer light beam).
  • the wavefront is adjusted so that the distance until convergence by the optical lens 11b differs from L2.
  • the focus expanding optical system 11 uses the focus expanding element 16 to converge the inner light beam L1 having a small incident height to the short-distance focal point F1 and the outer light beam L2 having a large incident height to the long-distance focal point F2.
  • the focus extending optical system 11 expands the focal point by the optical lenses 11a and 11b to the focal range E between the short-distance focal point F1 and the long-distance focal point F2.
  • the RAW data output from the image sensor 12 is data that is convoluted with an image that converges at the focal point F1, an image that converges at the focal point F2, and the like.
  • the image sensor 12 is disposed at the focal point F2 so that a distant view such as infinity is in the best focus.
  • the image of the point 14a where the subject 14 is located is a blurred image according to the arrangement of the image sensor 12.
  • the image of the point 14a is broadly distributed in the direction of the line AB of the RAW data 21 as a pixel value.
  • the MTF for the spatial frequency hereinafter referred to as the frequency MTF
  • the frequency MTF decreases sharply with the increase of the spatial frequency Fq, and the resolution is low.
  • the point 14a where the subject 14 is located becomes a point image without blur as in the image data 22 shown in FIG. 3D.
  • the pixel value distribution (FIG. 3B), which is broad, is sharpened so as to have a steep peak as shown in FIG. 3E.
  • FIG. 3F the frequency MTF is recovered to the same level as when imaged with a normal single focus lens, and a predetermined resolution is obtained.
  • the restoration processing is performed for each of the focal point F1 and the focal point F2 convoluted in the RAW data 21 or an image converged between them according to the focal position. Since sharpening is performed, an image 15 having a deeper depth of field than an image photographed with a fixed focus lens is obtained.
  • a general simple fixed focus lens (hereinafter referred to as a normal lens) used for a mobile phone or the like and the focus extending optical system 11 are changed in MTF with respect to defocusing of an image on the optical axis. Comparison will be made below (hereinafter referred to as on-axis defocus MTF).
  • the Zernike polynomial Z is expressed by the following equation 1 using a distance ⁇ ( ⁇ ⁇ 1) from the optical axis, an angle ⁇ from a predetermined direction (for example, the S direction), and integers m, n, and s.
  • ⁇ K j ⁇ Z j using the coefficient K j .
  • the coefficient K 4 representing the defocus amount and the focus amount d 1 (mm) on the image plane have the relationship of the following formula 2, and the subject defocus amount (hereinafter referred to as the subject defocus amount) d 2 is: It is represented by the formula of Formula 3.
  • D is the aperture (mm)
  • f is the focal length (mm)
  • the wavelength ⁇ (nm).
  • the coefficient K 4 can be used as a defocus index.
  • MTF spherical aberration adjusting type focus expanding optical system in which the wavefront is adjusted by spherical aberration (K 9 , K 16 , K 25 ).
  • the best-focus MTF is smaller than that of the normal lens.
  • the focus expanding optical system 11 has a moderate decrease in MTF even when deviating from the best focus, and an MTF value above a certain level can be obtained to such an extent that the image can be sharpened by the restoration process.
  • a subject distance of around 500 mm is a subject distance that is highly likely to be frequently used in capturing a foreground image of a person, a bus timetable, a memo written on a memo paper, or the like.
  • a subject with a subject distance of about 500 mm has a higher resolution than that of a normal lens, and a foreground image that can read characters, a two-dimensional code, and the like can be obtained.
  • the on-axis defocus MTF of the normal lens has a curved shape symmetrical to the best focus regardless of the defocus direction (positive or negative) with respect to the best focus.
  • the focus extending optical system 11 is designed to obtain a resolution higher than a predetermined value when the focus position is shifted in the negative direction in order to improve the MTF of the near view.
  • the upper defocus MTF has a curve shape that is asymmetric with respect to the best focus.
  • the axial defocus MTF shown here has almost no directionality, and the axial defocus MTF is almost the same in the S direction and the T direction in both the case of the focus extending optical system 11 and the case of a normal lens.
  • the focus expansion optical system 11 Since the focus expansion optical system 11 has the MTF characteristics as described above, the EDoF imaging system 10 can capture an image with a deep depth of field. However, as described below, the focus expansion optical system 11 There are also problems peculiar to. Specifically, in the case of the focus extending optical system 11, the on-axis defocus MTF is substantially the same in the S direction and the T direction as described above, but the MTF by defocus at a position deviating from the optical axis L0. Is measured (hereinafter referred to as off-axis defocus MTF), a difference occurs between the S direction and the T direction of the focus extending optical system 11.
  • the off-axis defocus MTF at a medium image height (hereinafter referred to as an intermediate image height) has a gap between the S direction and the T direction.
  • the resolution of the image is high and not so noticeable, but the resolution is different between the S direction and the T direction. Specifically, the resolution in the vertical direction (T direction) is higher than that in the horizontal direction (S direction). This is due to a gap between the S direction and the T direction of the off-axis defocus MTF at the intermediate image height.
  • the non-uniformity in the blur direction between the S direction and the T direction is more pronounced because the gap between the S direction and the T direction of the off-axis defocus MTF at the peripheral image height becomes obvious than in the case of the intermediate image height. stand out.
  • the image blur may be non-uniform depending on the image height. This tendency is the same even in the image 15 after the restoration process.
  • the resolution of an image taken with a general camera or human vision is lower in the periphery of the image, so the resolution is improved in one direction due to the non-uniformity of blurring between the S direction and the T direction at the peripheral image height. If it looks like this, it will be an image that feels unnatural.
  • Such inhomogeneity of the blur (resolution) according to the image height can be reduced by adjusting the magnitude of the coefficient K 12 of the Zernike polynomial 12th term Z 12 . Therefore, in the focus extending optical system 11, the surface shapes of the lenses 11a and 11b and the focus extending element 16 are determined so that the absolute value
  • the size of the coefficient K 12 is preferably MTF of the MTF and the T direction of the S-direction with respect to the coefficient K 12 is within the scope of the following point becomes zero.
  • the ratio of the MTF in the S direction to the MTF in the T direction is more than 1: 2 (or 2: 1). Then, the non-uniformity of the blurring method (resolution) becomes conspicuous in the S direction and the T direction. Therefore, MTF ratio of MTF and T direction S direction 1: 2 or 2: 1 smaller ranges, it is preferable that the value of K 12 is defined.
  • the coefficient K 12 of MTF of the value of the coefficient K 12 of MTF of S direction is twice the MTF of the T direction first threshold value Th1
  • T direction is 2 times the MTF of S direction the value when the second threshold value Th2
  • the condition that the coefficient K 12 is a second threshold value Th2 is smaller than greater than the first threshold Th1 (Th1 ⁇ K 12 ⁇ Th2 ), or, the coefficient K 12 is smaller than the first threshold value
  • the condition is greater than the second threshold (Th2 ⁇ K 12 ⁇ Th1). Specifically, in FIG. 8,
  • the focus expanding optical system 11 is blurred in the image 15 captured by the EDoF imaging system 10. And the uniformity of resolution is improved.
  • the range of the image height that satisfies the above-mentioned conditions is the range in which the image blur and the resolution are uniform. Therefore, in the focus expansion optical system 11, it is preferable that all image heights are satisfied.
  • the paragraph 12 Z 12 of Zernike polynomials Z has been described a relationship between the off-axis defocusing MTF, in Zernike polynomials Z is paragraph 12 against off-axis defocusing MTF there are terms having substantially the same relationship as Z 12.
  • Section 13 represents the wavefront mode is rotated 45 degrees wavefront mode represented by Section 12 Z 12, as shown in FIG. 9, the direction of the off-axis defocus MTF inclined 45 degrees from the S direction and S45, if Hakare for the direction T45 inclined 45 degrees from the T direction, resulting in the same effect as the paragraph 12 Z 12 to the image 15.
  • the lens 11a, for 11b and focus expansion element 16 is rotationally symmetric with respect to an optical axis L0, a focus extended optical system 11 as the coefficient K 12 when designing the focal expansion optical system 11 satisfies the above condition form it and it is equivalent to form a focal expansion optical system 11 as the coefficient K 13 satisfies the above conditions.
  • the coefficient K 12 is influenced by the arrangement errors of the lenses 11a and 11b and the focus expanding element 16, other aberrations, and the like.
  • the coefficient K 13 is not necessarily the same. Therefore, it is preferable to satisfy the same conditions as the coefficient K 13 also factor K 12.
  • the focus extending optical system 11 has an enlarged focus range E, but the focus range E is constant, and thus is a kind of fixed focus lens. Therefore, the focus extending optical system 11 and the EDoF imaging system 10 can be suitably used as an inexpensive fixed focus lens without a focus adjustment function or instead of another imaging system using a fixed focus lens. In this case, there is no resolution distribution (unnatural blur), which is a disadvantage of the focus extending optical system, and an image taken with an extended depth of field can be easily obtained as compared with the case of using a fixed focus lens. it can.
  • the present invention is not limited to this.
  • the optical lenses 11a and 11b and the focus expanding element 16 of the focus extending optical system 11 By moving the optical lenses 11a and 11b and the focus expanding element 16 of the focus extending optical system 11, it can be suitably used in an imaging system that performs autofocus.
  • the in-focus state is determined from an image with left and right (or top and bottom) parallax, but a conventional focus expansion optical system having a different blur depending on the position in the image 15 is used. I could not.
  • the defocusing optical system 11 has a substantially constant blur regardless of the position in the image 15, it can be suitably used for such an imaging system.
  • the focus range E is moved along the optical axis by moving the optical lenses 11a and 11b or the focus expansion element 16 along the optical axis. Further, like the zoom lens, the length of the focal range E may be changed by changing the relative positions of the optical lenses 11a and 11b. In these cases, optical lenses 11a, 11b, or after the movement of the focal expansion element 16 (or moving) also, it is devised that the conditions of the above-mentioned factor K 12 (and conditions of the coefficient K 13) is satisfied It ’s fine.
  • the condition of the coefficient K 12 (and coefficient K 13 ) described above is not a condition that uniquely defines the surface shapes of the optical lenses 11 a and 11 b and the focus expanding element 16 of the focus expanding optical system 11.
  • the focus expansion optical system 11 can be formed by various combinations of the surface shapes of the optical lenses 11a and 11b and the focus expansion element 16 while satisfying the condition of the coefficient K 12 (and coefficient K 13 ). Therefore, the condition of the coefficient K 12 (and coefficient K 13 ) described above can be satisfied by various focus expansion optical systems having different performance as the focus expansion optical system, such as the size of the focus range E.
  • the 12th term Z 12 and the 13th term Z 13 of the Zernike polynomial Z have been described.
  • effect on the off-axis defocus MTF is not large.
  • the coefficient K 12 (and coefficient K 13 ) described above is used as the coefficient of the twelfth term Z 12 (13th term Z 13 ). ) Should be satisfied.
  • the image processing unit 13 performs a restoration process to obtain the image 15 with an extended depth of field.
  • the depth of field may be sufficiently extended only by the focus extending optical system 11. In such a case, it is not always necessary to perform restoration processing.
  • an image that seems to have a deepened depth of field can be easily obtained by performing edge enhancement processing or contrast enhancement processing instead of performing restoration processing. You can also.
  • the restoration process since the restoration process is not performed, the image can be obtained at a high speed, which is effective in capturing a moving image.
  • the restoration processing may not be performed during moving image imaging.
  • the image sensor 12 may be a CCD image sensor or a CMOS image sensor.
  • an image sensor having another structure may be used.
  • the focus extending optical system 11 converges the light beam near the center including the optical axis toward the near side (subject 14) and converges the light beam passing outside toward the back side (imaging element 12).
  • the light flux near the center including the optical axis may be converged toward the back (imaging element 12), and the light flux passing outside may be converged toward the near side (subject 14).
  • the number of lenses other than the focus expansion element 16 may be one, and may be three or more.
  • the surface shape of the optical lenses 11a and 11b is arbitrary, and may include a spherical surface, but the focus extending optical system 11 includes at least one aspherical surface.
  • the focus extending element 16 may be composed of a plurality of optical lenses.
  • the focus extending optical system 11 includes substantially three lenses, the optical lenses 11a and 11b and the focus extending element 16, but further includes a lens having substantially no power, a diaphragm, a cover glass, and the like.
  • An optical element other than the lens, a lens flange, a lens barrel, a mechanism portion such as a camera shake correction mechanism, and the like may be included.

Abstract

Provided are a focus extending optical system and an imaging system that are able to acquire a natural image wherein a nearly uniform resolution is obtained across the entire image and disturbance of the resolution distribution at the portion deviating from the optical axis is cancelled. The focus extending optical system (11) is provided with an optical lens (11) and a focus extender (16) that extends the focal range by adjusting the wavefront in a manner so as to change the image formation position of the optical lens (11) in accordance with distance from the optical axis (L0). The wavefront (ψ) after passing through the optical lens (11) and the focus extender (16) is represented by the formula ψ=ΣKj·Zj, which has the Zernicke polynomial Zj(n,m) as each term. An MTC in common in the sagittal direction and the tangential direction when the coefficient K12 of the 12th term Z12(n=4, m=2) is zero in the polynomial is used as a reference value. At the time of this reference value, the coefficient K­12 is prescribed in a range in which the MTF gap of the sagittal direction and the tangential direction is less than twice the reference value.

Description

焦点拡張光学系及び撮像システムFocus expansion optical system and imaging system
 本発明は、光学レンズの焦点深度を拡張する光学系(以下、焦点拡張光学系という)と、この焦点深度拡張光学系を通して撮像した画像に復元処理(デコンボリューション処理)を施して鮮鋭化する撮像システムに関する。 The present invention provides an optical system that expands the depth of focus of an optical lens (hereinafter referred to as a focus expansion optical system), and an image that is sharpened by performing restoration processing (deconvolution processing) on an image captured through the depth of focus expansion optical system. About the system.
 携帯電話機やPDA、小型ノート型パソコン等には、デジタルカメラが標準的に搭載されるようになってきている。従来、こうした携帯電話機等に搭載されるデジタルカメラは、小型かつ安価に製造するために、例えば固定焦点レンズを用いることが一般的であった。しかし、近年では、こうした簡易なデジタルカメラにも撮影画像の画質向上が求められるようになっている。 Mobile phones, PDAs, small notebook personal computers, etc. are equipped with digital cameras as standard. Conventionally, in order to manufacture a digital camera mounted on such a cellular phone or the like in a small size and at a low cost, for example, a fixed focus lens is generally used. However, in recent years, such simple digital cameras are also required to improve the image quality of captured images.
 また、携帯電話機等に搭載されるデジタルカメラは、数m先の人物や風景の撮影等、数m先の被写体の撮像から、文字や二次元コード等の読み取りのために数十cm先の像の撮像にも用いられる。広範囲な被写体距離での撮影を行うには、撮影距離に応じてピント合わせをすることが必要であるが、携帯電話等に搭載されるデジタルカメラでは、小型かつ安価であることが必須であるため、ピント調節機構を設けることは難しい。 A digital camera mounted on a cellular phone or the like is an image that is several tens of centimeters away from a subject such as a person or landscape several meters away, or a subject that is several meters away, for reading characters or two-dimensional codes. It is also used for imaging. To shoot at a wide range of subject distances, it is necessary to focus according to the shooting distance. However, a digital camera mounted on a mobile phone or the like must be small and inexpensive. It is difficult to provide a focus adjustment mechanism.
 こうしたことから、近年では、コスト等の面から携帯電話機等の装置では、数十cm程度のマクロ撮影域からほぼ無限遠までの撮像距離範囲をピント合わせなしでカバーできるデジタルカメラとしてEDoF(Extended Depth of Field)撮像システムが用いられるようになってきている(特許文献1~3)。EDoF撮像システムは、位相板等によって光軸からの距離(入射高)に応じて焦点距離が異なる焦点拡張光学系を用いて撮像し、得られたピンぼけ画像を復元処理によって鮮鋭化し、被写界深度が広いレンズで撮像したと同等な画像を得る撮像システムである。 For these reasons, in recent years, EDoF (Extended 装置 Depth) is a digital camera that can cover an imaging distance range from a macro shooting range of about several tens of centimeters to almost infinity in terms of cost, etc., in terms of cost and the like. of Field) imaging systems are being used (Patent Documents 1 to 3). The EDoF imaging system uses a phase expansion plate or the like to pick up an image using a focus expansion optical system having a different focal length depending on the distance from the optical axis (incident height), and sharpens the resulting defocused image by restoration processing. This is an imaging system that obtains an image equivalent to that captured by a lens having a wide depth.
特開2010-213274号公報JP 2010-213274 A 特開2007-206738号公報JP 2007-206738 A 特開2006-094471号公報JP 2006-094471 A
 EDoF撮像システムは、焦点拡張光学系と画像処理の組み合わせによって被写界深度を拡張した画像撮影ができるという利点があるが、一方で、焦点拡張光学系という特殊なレンズ系を使用するために、EDoF撮像システムに独自の問題が生じる。 The EDoF imaging system has the advantage of being able to capture an image with an extended depth of field by a combination of a focus extension optical system and image processing. On the other hand, in order to use a special lens system called a focus extension optical system, A unique problem arises in EDoF imaging systems.
 具体的には、光軸付近である画像中央の像は一定の解像度が得られるが、光軸から外れた部分の像では、像高毎に異なる解像度となってしまうという問題がある。このように、像高毎に解像度が異なると、復元処理後であっても、横方向と縦方向とで解像度に差が生じ、違和感のある画像となってしまう。しかも、周縁部分に近づくほど、解像度が低下するといったような一定の変化ではなく、光軸上である画像中央部分の解像度を基準として、画像中央からやや離れた中間位置では解像度が低くなり、周縁部分ではやや解像度が向上する等、複雑な解像度分布を有する。こうした解像度分布は、風景や人物等の遠景を撮像した場合には局所的に不自然なボケ味となり、遠景画像の全体に違和感を生じさせる。また、文字や二次元コード等の近景を撮像した場合には、文字等が読み取れない等の不具合が生じる。 Specifically, an image at the center of the image near the optical axis can obtain a constant resolution, but an image at a portion outside the optical axis has a problem that the resolution varies depending on the image height. Thus, if the resolution differs for each image height, even after restoration processing, a difference in resolution occurs between the horizontal direction and the vertical direction, resulting in an uncomfortable image. In addition, the resolution is not so constant that the resolution decreases as it approaches the peripheral portion, but the resolution becomes lower at an intermediate position slightly away from the center of the image on the basis of the resolution of the central portion of the image on the optical axis. The part has a complicated resolution distribution such as a slightly improved resolution. Such a resolution distribution causes locally unnatural blur when a distant view such as a landscape or a person is imaged, and causes the entire distant image to be uncomfortable. In addition, when a close-up image such as a character or a two-dimensional code is imaged, there is a problem that the character cannot be read.
 本発明は、光軸から外れた部分の解像度分布の乱れを解消し、画像全体でほぼ一定の解像度が得られる自然な画像を取得可能な焦点拡張光学系及び撮像システムを提供することを目的とする。 An object of the present invention is to provide a focus expanding optical system and an imaging system capable of eliminating a disturbance in the resolution distribution of a portion off the optical axis and acquiring a natural image that can obtain a substantially constant resolution over the entire image. To do.
 本発明の焦点拡張光学系は、被写体からの光を撮像素子に結像させる少なくとも1つの光学レンズと、この光学レンズによる結像位置を、光軸からの距離に応じて変化させるように波面を調節し、光学レンズの焦点を拡張する焦点拡張素子とを備える。光学レンズ及び焦点拡張素子を透過した後の波面ψをツェルニケ多項式Zj(n,m)を各項とする式ψ=ΣK・Zで表わす。この多項式中で第12項Z12(n=4,m=2)の係数K12が0の場合のサジタル方向及びタンジェンシャル方向に共通のMTFを基準値とするときに、サジタル方向とタンジェンシャル方向のMTFのギャップが基準値の2倍より小さい範囲内となるように、係数K12が定められている。 The focus extending optical system of the present invention has at least one optical lens that forms an image of light from a subject on an image sensor, and a wavefront so as to change an imaging position by the optical lens according to a distance from the optical axis. And a focus expansion element that adjusts and expands the focus of the optical lens. The wavefront ψ after passing through the optical lens and the focus expanding element is expressed by the formula ψ = ΣK j · Z j with Zernike polynomials Zj (n, m) as terms. In this polynomial, when the MTF common to the sagittal direction and the tangential direction when the coefficient K 12 of the twelfth term Z 12 (n = 4, m = 2) is 0 is used as a reference value, the sagittal direction and the tangential as the gap in the direction of MTF is within a range smaller than twice the reference value, the coefficient K 12 is defined.
 係数K12の絶対値|K12|が、|K12|<0.3を満たすことが好ましい。 The absolute value | K 12 | of the coefficient K 12 preferably satisfies | K 12 | <0.3.
 第12項Z13(n=4,m=-2)の係数K13が、K13=0におけるMTFを基準値として、サジタル方向とタンジェンシャル方向のMTFのギャップが基準値の2倍より小さい範囲内となるように、係数K13が定められていることが好ましい。 The coefficient K 13 of the twelfth term Z 13 (n = 4, m = −2) is such that the gap between the sagittal and tangential MTFs is smaller than twice the reference value with the MTF at K 13 = 0 as the reference value. as will be within the range, it is preferable that the coefficient K 13 is defined.
 係数K13の絶対値|K13|が、|K13|<0.3を満たすことが好ましい。 The absolute value | K 13 | of the coefficient K 13 preferably satisfies | K 13 | <0.3.
 係数K12に対するサジタル方向及びタンジェンシャル方向のMTFが0となる点以下の範囲内で、係数K12が定められていることが好ましい。 In MTF of sagittal direction and the tangential direction with respect to the coefficients K 12 is within the following point becomes zero, it is preferable that the coefficient K 12 is defined.
 係数K13の絶対値|K13|が、|K13|<0.275を満たすことが好ましい。 The absolute value | K 13 | of the coefficient K 13 preferably satisfies | K 13 | <0.275.
 サジタル方向のMTFがタンジェンシャル方向のMTFの2倍となる係数K12の値を第1閾値Th1、タンジェンシャル方向のMTFがサジタル方向のMTFの2倍となる係数K12の値を第2閾値Th2とする。このときに、前記係数K12がTh1<K12<Th2、またはTh2<K12<Th1の条件を満たす範囲内の値であることが好ましい。 Sagittal MTF tangential direction of the MTF twice to become the value of the first threshold value of the coefficient K 12 Th1, the tangential value of the second threshold value of the coefficient K 12 of tangential direction of the MTF is twice the sagittal MTF Let Th2. In this case, it is preferable that the coefficient K 12 is a value within range satisfying the Th1 <K 12 <Th2 or Th2 <K 12 <Th1,.
 係数K13の絶対値|K13|が、|K13|<0.08を満たすことが好ましい。 The absolute value | K 13 | of the coefficient K 13 preferably satisfies | K 13 | <0.08.
 全ての像高において、サジタル方向とタンジェンシャル方向のMTFのギャップが基準値の2倍より小さい範囲内に、前記係数K12が定められていることが好ましい。 In all of the image height, the sagittal direction and tangential within a small range than twice the tangential direction of the reference value gap of MTF, it is preferable that the coefficient K 12 is defined.
 光学レンズ及び焦点拡張素子は光軸方向に動かないように固定されていることが好ましい。 It is preferable that the optical lens and the focus expanding element are fixed so as not to move in the optical axis direction.
 光学レンズまたは焦点拡張素子は、光軸方向に移動可能に設けられていることが好ましい。 The optical lens or the focus expanding element is preferably provided so as to be movable in the optical axis direction.
 本発明の撮像システムは、被写体の像を撮像する撮像素子と、被写体からの光を撮像素子に結像させる少なくとも1つの光学レンズと、光学レンズによる結像位置を、光軸からの距離に応じて変化させるように波面を調節し、光学レンズの焦点を拡張する焦点拡張素子と、を有する。さらに、光学レンズ及び焦点拡張素子を透過後の波面ψをツェルニケ多項式Zj(n,m)を各項とする式ψ=ΣK・Zで表わす。この多項式中で、第12項Z12(n=4,m=2)の係数K12が0の場合のサジタル方向及びタンジェンシャル方向に共通のMTFを基準値とする。このときに、焦点拡張光学系は、サジタル方向とタンジェンシャル方向のMTFのギャップが基準値の2倍より小さい範囲内となるように、係数K12が定められている。 An imaging system according to the present invention includes an imaging device that captures an image of a subject, at least one optical lens that forms light from the subject on the imaging device, and an imaging position of the optical lens according to a distance from the optical axis. And a focal point expansion element that adjusts the wavefront to vary and expands the focal point of the optical lens. Further, the wavefront ψ after passing through the optical lens and the focus expanding element is expressed by the equation ψ = ΣK j · Z j with Zernike polynomials Zj (n, m) as terms. In this polynomial, an MTF common to the sagittal direction and the tangential direction when the coefficient K 12 of the twelfth term Z 12 (n = 4, m = 2) is 0 is used as a reference value. At this time, the focus expansion optical system, like the gap of the MTF of sagittal direction and the tangential direction is within a range smaller than twice the reference value, the coefficient K 12 is defined.
 撮像素子が出力するデータに復元処理を施すことにより、被写界深度が広い光学系で撮影した画像と同等の画像を生成する画像処理部を備えることが好ましい。 It is preferable to provide an image processing unit that generates an image equivalent to an image photographed by an optical system having a wide depth of field by performing a restoration process on data output from the image sensor.
 本発明によれば、光軸から外れた部分の解像度分布の乱れを解消し、画像全体でほぼ一定の解像度となった自然な画像を取得可能とする焦点拡張光学系及びEDoF撮像システムを提供することができる。 According to the present invention, it is possible to provide a focus expanding optical system and an EDoF imaging system that can eliminate a disturbance in the resolution distribution of a portion off the optical axis and obtain a natural image having a substantially constant resolution in the entire image. be able to.
EDoF撮像システムの構成を示すブロック図である。It is a block diagram which shows the structure of an EDoF imaging system. 焦点拡張光学系の構成を示す説明図である。It is explanatory drawing which shows the structure of a focus expansion optical system. 被写体の任意の点の像を表すRAWデータを模式的に示す図である。It is a figure which shows typically the RAW data showing the image of the arbitrary points of a to-be-photographed object. RAWデータにおける点像の画素値の分布を模式的に表すグラフである。It is a graph which represents typically the distribution of the pixel value of the point image in RAW data. RAWデータの周波数MTFを模式的に表すグラフである。4 is a graph schematically showing a frequency MTF of RAW data. 復元処理後の点像の画像データを模式的に示す図である。It is a figure which shows typically the image data of the point image after a decompression | restoration process. 復元処理後における点像の画素値の分布を模式的に表すグラフである。It is a graph which represents typically distribution of a pixel value of a point image after restoration processing. 復元処理後の周波数MTFを模式的に表すグラフである。It is a graph which represents typically frequency MTF after restoration processing. 通常レンズと焦点拡張光学系の軸上デフォーカスMTFを示すグラフである。It is a graph which shows the axial defocus MTF of a normal lens and a focus expansion optical system. 中間像高における焦点拡張光学系の軸外デフォーカスMTFを示すグラフである。It is a graph which shows the off-axis defocus MTF of the focus expansion optical system in intermediate image height. 周辺像高における焦点拡張光学系の軸外デフォーカスMTFを示すグラフである。It is a graph which shows the off-axis defocus MTF of the focus expansion optical system in peripheral image height. 光軸上において、デフォーカスして撮像することにより得られる近景像のRAWデータの例を示す画像である。It is an image which shows the example of the RAW data of the foreground image obtained by defocusing and imaging on an optical axis. 光軸上において、ベストピントで撮像することにより得られる遠景像のRAWデータの例を示す画像である。It is an image which shows the example of the RAW data of the distant view image obtained by imaging on the optical axis with the best focus. 中間像高において、デフォーカスして撮像することにより得られる近景像のRAWデータの例を示す画像である。It is an image which shows the example of the raw data of the foreground image obtained by defocusing and imaging in intermediate image height. 中間像高において、ベストピントで撮像することにより得られる遠景像のRAWデータの例を示す画像である。It is an image which shows the example of the RAW data of the distant view image obtained by imaging with the best focus in intermediate image height. 周辺像高において、デフォーカスして撮像することにより得られる近景像のRAWデータの例を示す画像である。It is an image which shows the example of the RAW data of the foreground image obtained by defocusing and imaging in peripheral image height. 周辺像高において、ベストピントで撮像することにより得られる遠景像のRAWデータの例を示す画像である。It is an image which shows the example of the RAW data of the distant view image obtained by imaging with the best focus in peripheral image height. 係数K12に対するS方向及びT方向のMTFの変化を示すグラフである。It is a graph which shows the change of MTF of S direction and T direction to coefficient K12. 12項とZ13項の関係を示す説明図である。It is an explanatory diagram showing a relationship of Z 12 and Section Z 13 Section.
 図1に示すように、EDoF撮像システム10は、焦点拡張光学系11,撮像素子12,画像処理部13を備える。EDoF撮像システム10は、風景や人物等、数m先から無限遠の遠景の撮像と、文字や2次元コード等、数十cm程度の距離で撮像する近景の撮像の主に2種類の用途で使用される。 As shown in FIG. 1, the EDoF imaging system 10 includes a focus extending optical system 11, an imaging element 12, and an image processing unit 13. The EDoF imaging system 10 is mainly used for two types of applications: imaging of a distant view from a few meters ahead, such as a landscape or a person, and imaging of a close view that captures a distance of several tens of centimeters, such as a character or a two-dimensional code. used.
 焦点拡張光学系11は、被写体14から入射する光を撮像素子12に結像させるためのものであり、後述するように複数の光学レンズと、光学レンズの焦点深度拡張するための焦点拡張素子を含む。焦点深度拡張光学系11は、例えば、光軸を含む中心近傍の光束を手前(被写体14)側に収束させ、外側を通る光束を奥(撮像素子12)側に収束させ、入射高に応じて焦点が変化する。 The focus expansion optical system 11 is for imaging light incident from the subject 14 on the image sensor 12, and includes a plurality of optical lenses and a focus expansion element for extending the depth of focus of the optical lens, as will be described later. Including. The depth-of-focus optical system 11 converges, for example, a light beam near the center including the optical axis toward the front (subject 14), and converges a light beam passing outside toward the back (imaging element 12), depending on the incident height. The focus changes.
 焦点拡張光学系11の光学的性能は具体的なEDoF撮像システム10で求められる性能に設計されるが、この実施形態では、Fナンバー(Fn)が2.29の固定焦点レンズが用いられる。また、光学レンズの解像力δは、Fナンバー(Fn)に反比例し、参照波長をλ(nm)とすれば、δ=1/Fn/λである。したがって、参照波長λ=546nmとすれば、焦点拡張光学系11の解像力δは約800本/mmであり、後述する撮像素子12のサンプリング周波数fsとほぼ等しく、ナイキスト周波数Nyの2倍程度である。 The optical performance of the focus expanding optical system 11 is designed to be a performance required by a specific EDoF imaging system 10, but in this embodiment, a fixed focus lens having an F number (Fn) of 2.29 is used. The resolving power δ of the optical lens is inversely proportional to the F number (Fn), and if the reference wavelength is λ (nm), δ = 1 / Fn / λ. Therefore, if the reference wavelength λ is 546 nm, the resolving power δ of the focus extending optical system 11 is about 800 lines / mm, which is almost equal to the sampling frequency fs of the image sensor 12 described later, and about twice the Nyquist frequency Ny. .
 また、後述するように、焦点拡張光学系11は、波面収差をツェルニケ(Zernike)多項式を各項とする式(いわゆるツェルニケモード)で表すときに、第12項Z12の係数K12の絶対値|K12|が0.3以下になるように、各レンズ面の形状等が定められている。これにより、EDoF撮像システム10は、フォーカスシフト(ピントの移動)によって、同じ撮影距離の被写体は画像内で均一な解像度で写し出される。また、像がボケる場合に、取得する画像15内のどの位置においても上下左右にほぼ均等なボケを実現する。 As described later, the focal expansion optical system 11, when represented by the formula (so-called Zernike mode) to each term wavefront aberration Zernike the (Zernike) polynomial, absolute coefficient K 12 of paragraph 12 Z 12 The shape of each lens surface is determined so that the value | K 12 | is 0.3 or less. As a result, the EDoF imaging system 10 projects the subject at the same shooting distance with a uniform resolution in the image by focus shift (movement of focus). Further, when the image is blurred, a substantially uniform blur is realized vertically and horizontally at any position in the acquired image 15.
 撮像素子12は、焦点拡張光学系11によって結像された被写体14の像を画素毎に光電変換することにより撮像し、得られたRAWデータを画像処理部13に出力する。撮像素子12は、複数の画素が配列された撮像面が焦点深度拡張光学系11の焦点範囲E内に位置するように配置される。また、撮像素子12は、撮像した画像の中心が焦点拡張光学系11の光軸に、画像の横方向がS(サジタル)方向に、画像の縦方向がT(タンジェンシャル)方向にそれぞれ対応するように配置されているとする。焦点拡張光学系11の焦点が焦点範囲Eに拡張(拡大)されているため(図2参照)、撮像素子12が出力するRAWデータにおいては、被写体14の像はボケている。 The image pickup device 12 picks up an image of the subject 14 formed by the focus extending optical system 11 by performing photoelectric conversion for each pixel, and outputs the obtained RAW data to the image processing unit 13. The image sensor 12 is arranged such that an imaging surface on which a plurality of pixels are arranged is located within the focal range E of the depth of focus extending optical system 11. In the imaging device 12, the center of the captured image corresponds to the optical axis of the focus extending optical system 11, the horizontal direction of the image corresponds to the S (sagittal) direction, and the vertical direction of the image corresponds to the T (tangential) direction. Are arranged as follows. Since the focus of the focus extending optical system 11 is extended (enlarged) to the focus range E (see FIG. 2), the image of the subject 14 is blurred in the RAW data output from the image sensor 12.
 なお、撮像素子12としては、具体的なEDoF撮像システム10で求められる性能のものが用いられるが、以下では、画素ピッチpが1.25μmである。すなわち、撮像素子12のサンプリング周波数fsは、fs=1/p=800本/mmであるとする。したがって、ナイキスト周波数Nyは、400本/mmである。 In addition, although the thing of the performance calculated | required by the concrete EDoF imaging system 10 is used as the image pick-up element 12, below, the pixel pitch p is 1.25 micrometers. That is, the sampling frequency fs of the image sensor 12 is assumed to be fs = 1 / p = 800 lines / mm. Therefore, the Nyquist frequency Ny is 400 lines / mm.
 画像処理部13は、DSPやDIP等からなり、撮像素子12が出力する画像データに、各種画像処理を施して、全体が鮮明な画像15に変換する。具体的には、画像処理部13は、RAWデータに対して、復元処理、ノイズリダクション処理、混色補正処理、シェーディング補正処理、ホワイトバランス調整処理、同時化処理、カラーマトリックス補正処理、YC変換処理、γ補正処理、エッジ強調処理をこの順で施して、所定フォーマット(例えばjpeg)の画像15を生成する。 The image processing unit 13 is composed of a DSP, a DIP, or the like, and performs various image processing on the image data output from the image pickup device 12 to convert it into a clear image 15 as a whole. Specifically, the image processing unit 13 performs restoration processing, noise reduction processing, color mixture correction processing, shading correction processing, white balance adjustment processing, synchronization processing, color matrix correction processing, YC conversion processing on RAW data, A gamma correction process and an edge enhancement process are performed in this order to generate an image 15 having a predetermined format (for example, jpeg).
 図2に示すように、焦点拡張光学系11は、例えば複数の光学レンズ11a,11bと、焦点拡張素子16を備える。光学レンズ11aは、被写体14の点14aから球面波として出射される光を平面波に整え、焦点拡張素子16に入射させる。光学レンズ11bは焦点拡張素子16から入射する光を収束させる。焦点拡張素子16は、球面収差や色収差等の各種収差のバランスを、波面収差で調節することによって、光学レンズ11a,11bによる焦点を一点から焦点範囲Eに拡張する。焦点拡張素子16は、例えば、光学レンズ11aから入射する平面波を光軸L0を含む中心部分を通る光束(以下、内光束という)L1と、光束L1の周囲を通る光束(以下、外光束という)L2とで、光学レンズ11bによって収束されるまでの距離が異なるように波面を調節する。具体的には、焦点拡張光学系11は焦点拡張素子16により、入射高が小さい内光束L1を短距離の焦点F1に、入射高が大きい外光束L2を遠距離の焦点F2に収束させる。したがって、焦点拡張光学系11は、光学レンズ11a,11bによる焦点を、短距離焦点F1から遠距離焦点F2の間の焦点範囲Eに拡大する。撮像素子12が出力するRAWデータは、焦点F1に収束する像や焦点F2に収束する像等がボケた状態で畳み込まれたデータとなる。以下では、無限遠等の遠景がベストピントとなるように、撮像素子12は、焦点F2に配置されているとする。 As shown in FIG. 2, the focus extending optical system 11 includes, for example, a plurality of optical lenses 11 a and 11 b and a focus extending element 16. The optical lens 11 a adjusts the light emitted as a spherical wave from the point 14 a of the subject 14 into a plane wave and makes it incident on the focus extending element 16. The optical lens 11b converges the light incident from the focus expanding element 16. The focus extending element 16 extends the focus by the optical lenses 11a and 11b from one point to the focus range E by adjusting the balance of various aberrations such as spherical aberration and chromatic aberration by wavefront aberration. For example, the focal point expansion element 16 converts a plane wave incident from the optical lens 11a into a light beam (hereinafter referred to as an inner light beam) L1 passing through a central portion including the optical axis L0 and a light beam passing through the periphery of the light beam L1 (hereinafter referred to as an outer light beam). The wavefront is adjusted so that the distance until convergence by the optical lens 11b differs from L2. Specifically, the focus expanding optical system 11 uses the focus expanding element 16 to converge the inner light beam L1 having a small incident height to the short-distance focal point F1 and the outer light beam L2 having a large incident height to the long-distance focal point F2. Therefore, the focus extending optical system 11 expands the focal point by the optical lenses 11a and 11b to the focal range E between the short-distance focal point F1 and the long-distance focal point F2. The RAW data output from the image sensor 12 is data that is convoluted with an image that converges at the focal point F1, an image that converges at the focal point F2, and the like. In the following, it is assumed that the image sensor 12 is disposed at the focal point F2 so that a distant view such as infinity is in the best focus.
 図3Aに示すように、撮像素子12から出力されるRAWデータ21では、被写体14のある点14aの像は、撮像素子12の配置に応じてボケた像となる。このとき、図3Bに示すように、点14aの像は、画素値として、RAWデータ21のラインA-Bの方向にブロードに分布する。このため、図3Cに示すように、RAWデータ21のままでは、空間周波数に対するMTF(以下、周波数MTFという)が、空間周波数Fqの増大とともに急峻に減少し、解像度は低い。 As shown in FIG. 3A, in the RAW data 21 output from the image sensor 12, the image of the point 14a where the subject 14 is located is a blurred image according to the arrangement of the image sensor 12. At this time, as shown in FIG. 3B, the image of the point 14a is broadly distributed in the direction of the line AB of the RAW data 21 as a pixel value. For this reason, as shown in FIG. 3C, with the raw data 21, the MTF for the spatial frequency (hereinafter referred to as the frequency MTF) decreases sharply with the increase of the spatial frequency Fq, and the resolution is low.
 しかし、画像処理部13によって復元処理を施すことにより、図3Dに示す画像データ22のように、被写体14のある点14aはボケのない点像となる。すなわち、復元処理では、ブロードであった画素値の分布(図3B)から、図3Eに示すように急峻なピークを持つように鮮鋭化される。これにより、図3Fに示すように、周波数MTFは、通常の単焦点レンズで撮像した場合と同程度に回復し、所定の解像度を得る。また、復元処理は、ここで例示した点14aの像と同様に、RAWデータ21に畳み込まれている焦点F1や焦点F2、あるいはその間に収束される像を、その焦点位置に応じて各々に鮮鋭化するので、固定焦点レンズで撮影した画像よりも、被写界深度が深化した画像15が得られる。 However, when the restoration processing is performed by the image processing unit 13, the point 14a where the subject 14 is located becomes a point image without blur as in the image data 22 shown in FIG. 3D. In other words, in the restoration process, the pixel value distribution (FIG. 3B), which is broad, is sharpened so as to have a steep peak as shown in FIG. 3E. As a result, as shown in FIG. 3F, the frequency MTF is recovered to the same level as when imaged with a normal single focus lens, and a predetermined resolution is obtained. Similarly to the image of the point 14a illustrated here, the restoration processing is performed for each of the focal point F1 and the focal point F2 convoluted in the RAW data 21 or an image converged between them according to the focal position. Since sharpening is performed, an image 15 having a deeper depth of field than an image photographed with a fixed focus lens is obtained.
 焦点拡張光学系11と同様に携帯電話機等に用いられる一般的な単なる固定焦点レンズ(以下、通常レンズという)と、焦点拡張光学系11とを、光軸上の像のデフォーカスに対するMTFの変化(以下、軸上デフォーカスMTFという)について比較する。 Similar to the focus extending optical system 11, a general simple fixed focus lens (hereinafter referred to as a normal lens) used for a mobile phone or the like and the focus extending optical system 11 are changed in MTF with respect to defocusing of an image on the optical axis. Comparison will be made below (hereinafter referred to as on-axis defocus MTF).
 通常レンズや焦点拡張光学系11の透過波面ψは、ツェルニケ(Zernike)多項式Z(j=1~)を各項とする式ψ=ΣK・Zで表すことができる。ツェルニケ多項式Zは、光軸からの距離ρ(ρ<1)と所定方向(例えばS方向)からの角度θ、整数m,n,sを用いて下記数1で表され、焦点拡張光学系11の波面ψは、係数Kを用いて、ψ=ΣK・Zで表すことができる。例えば、Z(n=2,m=0)は波面のデフォーカスを、Z(n=2,m=2)は非点収差を、Z(n=3,m=1)及びZ(n=3,m=-1)はそれぞれS,T各方向のコマ収差を、Z(n=4,m=0),Z16(n=6,m=0),Z25(n=8,m=0)は球面収差を示す。こうしたツェルニケ多項式Zの中で、第12項Z12(n=4,m=2)は、Z12=(4ρ-3ρ)cos(2θ)であり、ザイデル収差との直接の対応はないが、S方向とT方向に非対称性を生じさせる波面収差の一つのモードである。 The transmitted wavefront ψ of the normal lens or the focus extending optical system 11 can be expressed by an equation ψ = ΣK j · Z j with Zernike polynomials Z j (j = 1 to) as terms. The Zernike polynomial Z is expressed by the following equation 1 using a distance ρ (ρ <1) from the optical axis, an angle θ from a predetermined direction (for example, the S direction), and integers m, n, and s. Can be expressed by ψ = ΣK j · Z j using the coefficient K j . For example, Z 4 (n = 2, m = 0) is the defocus of the wavefront, Z 5 (n = 2, m = 2) is the astigmatism, Z 7 (n = 3, m = 1) and Z 8 (n = 3, m = −1) are coma aberrations in the S and T directions, respectively, Z 9 (n = 4, m = 0), Z 16 (n = 6, m = 0), Z 25 ( n = 8, m = 0) indicates spherical aberration. Among such Zernike polynomials Z j , the twelfth term Z 12 (n = 4, m = 2) is Z 12 = (4ρ 4 −3ρ 2 ) cos (2θ), and the direct correspondence with Seidel aberration is This is one mode of wavefront aberration that causes asymmetry in the S and T directions.
Figure JPOXMLDOC01-appb-M000001

  
Figure JPOXMLDOC01-appb-I000002

  
Figure JPOXMLDOC01-appb-I000003

  
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-M000001

  
Figure JPOXMLDOC01-appb-I000002

  
Figure JPOXMLDOC01-appb-I000003

  
Figure JPOXMLDOC01-appb-I000004
 また、デフォーカス量を表す係数Kと像面でフォーカス量d(mm)は、下記数2の関係にあり、被写体のデフォーカス量(以下、被写体デフォーカス量という)dは、下記数3の式で表される。なお、Dは口径(mm)、fは焦点距離(mm)、波長λ(nm)である。 Further, the coefficient K 4 representing the defocus amount and the focus amount d 1 (mm) on the image plane have the relationship of the following formula 2, and the subject defocus amount (hereinafter referred to as the subject defocus amount) d 2 is: It is represented by the formula of Formula 3. Here, D is the aperture (mm), f is the focal length (mm), and the wavelength λ (nm).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上述のように、デフォーカス量d,dと、係数Kは一定の関係にあるので、係数Kをデフォーカスの指標として用いることができる。なお、以下に示す各MTFのグラフは、空間周波数100本/mmにおけるMTFである。これは、後述するK=-0.675の条件で「film」の文字を撮像した場合の、文字の太さに合わせた空間周波数である。また、各MTFのグラフは、簡単のためにK=-0.18,K16=-0.057,K25=-0.0156,他K,K12を除く全係数を「0」としたMTFである。すなわち、球面収差(K,K16,K25)によって波面を調節した球面収差調節型の焦点拡張光学系の例である。 As described above, since the defocus amounts d 1 and d 2 and the coefficient K 4 are in a fixed relationship, the coefficient K 4 can be used as a defocus index. In addition, the graph of each MTF shown below is MTF in the spatial frequency of 100 lines / mm. This is a spatial frequency according to the thickness of the character when the character “film” is imaged under the condition of K 4 = −0.675 described later. In the graph of each MTF, for the sake of simplicity, all coefficients except K 9 = −0.18, K 16 = −0.057, K 25 = −0.0156, and other K 4 and K 12 are “0”. MTF. In other words, this is an example of a spherical aberration adjusting type focus expanding optical system in which the wavefront is adjusted by spherical aberration (K 9 , K 16 , K 25 ).
 図4に示すように、軸上デフォーカスMTFを、通常レンズと焦点拡張光学系11とで比較すると、通常レンズは、ベストピント(K=0)では焦点拡張光学系11よりもMTF値が大きいものの、デフォーカスにより、焦点拡張光学系11よりもはやくMTFが減少する。これは、ベストピントからわずかにズレた被写体でも像のボケが大きいことを示す。一方、遠景のMTFと近景のMTFはトレード・オフの関係にあるため、焦点拡張光学系11の場合、ベストピントのMTFが通常レンズよりも小さくなる。しかし、焦点拡張光学系11は、ベストピントからずれてもMTFの減少は緩やかであり、復元処理によって像を鮮鋭化できる程度に、一定以上のMTF値が得られるようになっている。 As shown in FIG. 4, when the on-axis defocus MTF is compared between the normal lens and the focus expansion optical system 11, the normal lens has an MTF value higher than that of the focus expansion optical system 11 at the best focus (K 4 = 0). Although it is large, the MTF is decreased more than the focus extending optical system 11 due to the defocusing. This indicates that the subject is slightly blurred even when the subject is slightly deviated from the best focus. On the other hand, since the far-field MTF and the near-field MTF are in a trade-off relationship, in the case of the focus extending optical system 11, the best-focus MTF is smaller than that of the normal lens. However, the focus expanding optical system 11 has a moderate decrease in MTF even when deviating from the best focus, and an MTF value above a certain level can be obtained to such an extent that the image can be sharpened by the restoration process.
 なお、ベストピントのMTFは例えば無限遠とみなせる風景等、遠景を撮像した場合の解像度を表し、デフォーカス(例えばK=0~-1程度)して撮像される像は、ベストピントから0~-数百mm程度デフォーカスして撮像される近景の像の解像度を表す。例えばK=-0.657は被写体距離520mm程度に相当する。500mm前後の被写体距離は、人物や、バスの時刻表、メモ用紙に書いたメモ等の近景像撮像で高頻度に使用される可能性が高い被写体距離である。 Note that the best focus MTF represents the resolution when capturing a distant view such as a landscape that can be regarded as infinity, and an image picked up with defocus (for example, about K 4 = 0 to −1) is 0 from the best focus. ~ -Represents the resolution of a foreground image that is defocused by several hundred mm. For example, K 4 = −0.657 corresponds to a subject distance of about 520 mm. A subject distance of around 500 mm is a subject distance that is highly likely to be frequently used in capturing a foreground image of a person, a bus timetable, a memo written on a memo paper, or the like.
 通常レンズの場合、K=-0.657における軸上デフォーカスMTFは0.1(10%)程度であり、像を解像していないものとみなせる。したがって、通常レンズは、近景撮像の解像度は低く、近景画像から文字や二次元コード等を読み取ることが難しい。一方、焦点拡張光学系11のK=-0.657における軸上デフォーカスMTFは0.2(20%)程度に向上される。焦点拡張光学系11の場合には、RAWデータ21に復元処理を施すことによってさらに解像度が向上される。したがって、焦点拡張光学系11を用いる場合、被写体距離が500mm前後の被写体が通常レンズよりも高解像度であり、文字や二次元コード等を読み取ることができる近景画像を得ることができる。 In the case of a normal lens, the on-axis defocus MTF at K 4 = −0.657 is about 0.1 (10%), and it can be considered that the image is not resolved. Therefore, the normal lens has a low resolution for foreground imaging, and it is difficult to read characters, two-dimensional codes, and the like from the foreground image. On the other hand, the on-axis defocus MTF at K 4 = −0.657 of the focus extending optical system 11 is improved to about 0.2 (20%). In the case of the focus extending optical system 11, the resolution is further improved by performing restoration processing on the RAW data 21. Therefore, when the focus extending optical system 11 is used, a subject with a subject distance of about 500 mm has a higher resolution than that of a normal lens, and a foreground image that can read characters, a two-dimensional code, and the like can be obtained.
 また、通常レンズの軸上デフォーカスMTFは、ベストピントに対してデフォーカスの方向(正負)によらず、ベストピントに対して対称な曲線形状である。一方、焦点拡張光学系11は、近景のMTFを向上させるために、フォーカス位置を負方向にシフトさせた場合に所定以上の解像度が得られるようになっているため、焦点拡張光学系11の軸上デフォーカスMTFは、ベストピントに対して非対称な曲線形状となる。また、ここで示した軸上デフォーカスMTFに方向性は殆どなく、焦点拡張光学系11の場合も通常レンズの場合も軸上デフォーカスMTFはS方向とT方向とでほぼ同一である。 In addition, the on-axis defocus MTF of the normal lens has a curved shape symmetrical to the best focus regardless of the defocus direction (positive or negative) with respect to the best focus. On the other hand, the focus extending optical system 11 is designed to obtain a resolution higher than a predetermined value when the focus position is shifted in the negative direction in order to improve the MTF of the near view. The upper defocus MTF has a curve shape that is asymmetric with respect to the best focus. Further, the axial defocus MTF shown here has almost no directionality, and the axial defocus MTF is almost the same in the S direction and the T direction in both the case of the focus extending optical system 11 and the case of a normal lens.
 焦点拡張光学系11が上述のようなMTF特性を有することによって、EDoF撮像システム10は、被写界深度を深化した画像撮影が可能となるが、以下に説明するように、焦点拡張光学系11に特有の問題も生じる。具体的には、焦点拡張光学系11の場合、前述のように軸上デフォーカスMTFは、S方向とT方向とでほぼ一致しているが、光軸L0から外れた位置におけるデフォーカスによるMTFの変化(以下、軸外デフォーカスMTFという)を計測すると、焦点拡張光学系11のS方向とT方向とで差が生じる。 Since the focus expansion optical system 11 has the MTF characteristics as described above, the EDoF imaging system 10 can capture an image with a deep depth of field. However, as described below, the focus expansion optical system 11 There are also problems peculiar to. Specifically, in the case of the focus extending optical system 11, the on-axis defocus MTF is substantially the same in the S direction and the T direction as described above, but the MTF by defocus at a position deviating from the optical axis L0. Is measured (hereinafter referred to as off-axis defocus MTF), a difference occurs between the S direction and the T direction of the focus extending optical system 11.
 図5に示すように、中程度の像高(以下、中間像高という)における軸外デフォーカスMTFは、S方向とT方向でギャップが生じる。ベストピント(K=0)においては、T方向のMTFがS方向のMTFよりも大きくなり、K=-0.675では、この関係が逆転し、S方向のMTFがT方向のMTFよりも大きくなる。また、図6に示すように、画像15の周辺となる像高(以下、周辺像高という)における軸外デフォーカスMTFは、S方向とT方向のギャップがより顕在化し、特にK=-0.675ではT方向のMTFがほぼ0になる。 As shown in FIG. 5, the off-axis defocus MTF at a medium image height (hereinafter referred to as an intermediate image height) has a gap between the S direction and the T direction. At the best focus (K 4 = 0), the MTF in the T direction is larger than the MTF in the S direction, and at K 4 = −0.675, this relationship is reversed, and the MTF in the S direction is greater than the MTF in the T direction. Also grows. Further, as shown in FIG. 6, the off-axis defocus MTF at the image height that is the periphery of the image 15 (hereinafter referred to as the peripheral image height) makes the gap between the S direction and the T direction more obvious, and in particular, K 4 = − At 0.675, the MTF in the T direction becomes almost zero.
 このようなS方向とT方向の軸外デフォーカスMTFのギャップは、RAWデータ21内及び復元処理後の画像15で像高に応じて解像度のばらつきを生じさせる。例えば、図7Aは、ほぼ光軸上の部分において、「film」の文字を、K=-0.675に対応する被写体距離で撮像して得られるRAWデータ21である。すなわち、図7AのRAWデータ21は、焦点拡張光学系11の中心付近でデフォーカスして撮像された近景像である。このため、デフォーカスの量(K=-0.675)に応じて、S方向(左右方向)とT方向(上下方向)に均一にボケている。これは、軸上デフォーカスMTFが、K=-0.675においてS方向とT方向とでほぼ一致していることによる(図4参照)。 Such a gap between the off-axis defocus MTFs in the S direction and the T direction causes variations in resolution depending on the image height in the RAW data 21 and the image 15 after the restoration process. For example, FIG. 7A shows RAW data 21 obtained by imaging the character “film” at a subject distance corresponding to K 4 = −0.675 in a portion substantially on the optical axis. That is, the RAW data 21 in FIG. 7A is a foreground image captured by defocusing near the center of the focus extending optical system 11. For this reason, it is uniformly blurred in the S direction (left-right direction) and the T direction (up-down direction) according to the amount of defocus (K 4 = −0.675). This is because the on-axis defocus MTF is substantially the same in the S direction and the T direction when K 4 = −0.675 (see FIG. 4).
 また、図7Bは、焦点拡張光学系11の光軸上に対応する中心部分において、「film」の文字を、K=0に対応する被写体距離で撮像して得られるRAWデータである。すなわち、図7BのRAWデータ21は、光軸付近においてベストピントで撮像された遠景像である。このため、S方向にもT方向にも一定の解像度である。これは、軸上デフォーカスMTFが、K=0においてS方向とT方向とでほぼ一致していることによる。図7A及び図7Bから分かるように、焦点拡張光学系11で撮像する場合、光軸上である焦点拡張光学系11の中心部分であれば、デフォーカスの量に応じて像がボケるものの、像のボケ方は上下左右で均一であり、自然なボケ方であると言える。 FIG. 7B is RAW data obtained by imaging the character “film” at the subject distance corresponding to K 4 = 0 in the central portion corresponding to the optical axis of the focus extending optical system 11. That is, the RAW data 21 in FIG. 7B is a distant view image captured with the best focus in the vicinity of the optical axis. For this reason, the resolution is constant in both the S direction and the T direction. This is because the on-axis defocus MTF is substantially the same in the S direction and the T direction when K 4 = 0. As can be seen from FIGS. 7A and 7B, when the image is taken by the focus extending optical system 11, the image is blurred depending on the amount of defocus if it is the central portion of the focus extending optical system 11 on the optical axis. The way the image is blurred is uniform in all directions, and it can be said that the image is naturally blurred.
 図7Cは、中間像高において、「film」の文字を、K=-0.675に対応する被写体距離で撮像して得られるRAWデータ21である。すなわち、図7CのRAWデータ21は、中間像高においてデフォーカスして撮像して得られる近景像である。したがって、光軸上での撮像時と同様にデフォーカスの量(K=-0.675)に応じて、S方向とT方向に像がボケているが、S方向に対応する左右の方向に解像度が高めで、T方向に対応する上下方向には解像度が低めであり、「film」の文字の縦線部分が若干目立つボケ方になっている。これは、中間像高における軸外デフォーカスMTFにおいて、K=-0.675のMTFがS方向とT方向でギャップが生じており、S方向のMTFがT方向のMTFよりも若干高めであることによるものである。 FIG. 7C shows RAW data 21 obtained by imaging the character “film” at a subject distance corresponding to K 4 = −0.675 at the intermediate image height. That is, the RAW data 21 in FIG. 7C is a foreground image obtained by defocusing and capturing at the intermediate image height. Accordingly, the image is blurred in the S direction and the T direction according to the amount of defocus (K 4 = −0.675) as in the case of imaging on the optical axis, but the left and right directions corresponding to the S direction The vertical resolution corresponding to the T direction is slightly lower, and the vertical line portion of the “film” character is slightly noticeable. This is because in the off-axis defocus MTF at the intermediate image height, an MTF with K 4 = −0.675 has a gap in the S direction and the T direction, and the MTF in the S direction is slightly higher than the MTF in the T direction. It is because there is.
 また、図7Dは、中間像高において、「film」の文字を、K=0に対応する被写体距離で撮像して得られるRAWデータである。すなわち、図7DのRAWデータ21は、中間像高においてベストピントで撮像して得られる遠景像である。図7Dではベストピントでの像であるために像の解像度は高く、あまり目立たないが、S方向とT方向とで解像度が異なる。具体的には、左右方向(S方向)よりも上下方向(T方向)の解像度が高くなっている。これは、中間像高における軸外デフォーカスMTFのS方向とT方向とでのギャップによるものである。 FIG. 7D shows RAW data obtained by imaging the character “film” at the subject distance corresponding to K 4 = 0 at the intermediate image height. That is, the RAW data 21 in FIG. 7D is a distant view image obtained by capturing the best focus at the intermediate image height. In FIG. 7D, since the image is the best focus, the resolution of the image is high and not so noticeable, but the resolution is different between the S direction and the T direction. Specifically, the resolution in the vertical direction (T direction) is higher than that in the horizontal direction (S direction). This is due to a gap between the S direction and the T direction of the off-axis defocus MTF at the intermediate image height.
 図7Eは、周辺像高において、「film」の文字を、K=-0.675に対応する被写体距離で撮像して得られる近景像のRAWデータ21である。また、図7Fは、周辺像高において、「film」の文字を、K=0に対応する被写体距離で撮像して得られる近景像のRAWデータ21である。これらは、中間像高の場合よりも、周辺像高における軸外デフォーカスMTFのS方向とT方向のギャップが顕在化することにより、S方向とT方向とでボケ方の不均一性がより目立つ。 FIG. 7E shows the RAW data 21 of the foreground image obtained by imaging the character “film” at the subject distance corresponding to K 4 = −0.675 at the peripheral image height. FIG. 7F shows RAW data 21 of a foreground image obtained by imaging the character “film” at a subject distance corresponding to K 4 = 0 at the peripheral image height. In these cases, the non-uniformity in the blur direction between the S direction and the T direction is more pronounced because the gap between the S direction and the T direction of the off-axis defocus MTF at the peripheral image height becomes obvious than in the case of the intermediate image height. stand out.
 上述のように、焦点拡張光学系11で撮像して得られるRAWデータ21では、像高に応じて像のボケ方が不均一になることがある。この傾向は、復元処理を施した後の画像15であっても同様である。特に、一般的なカメラで撮影した画像や人間の視覚は、画像の周辺ほど解像度が低いので、周辺像高においてS方向とT方向とのボケ方の不均一さにより、一方向に解像度が向上して見えてしまうと、不自然さを感じる画像となってしまう。 As described above, in the RAW data 21 obtained by imaging with the focus extending optical system 11, the image blur may be non-uniform depending on the image height. This tendency is the same even in the image 15 after the restoration process. In particular, the resolution of an image taken with a general camera or human vision is lower in the periphery of the image, so the resolution is improved in one direction due to the non-uniformity of blurring between the S direction and the T direction at the peripheral image height. If it looks like this, it will be an image that feels unnatural.
 このような像高に応じたボケ方(解像度)の不均一性は、ツェルニケ多項式第12項Z12の係数K12の大きさを調節することによって緩和することができる。このため、焦点拡張光学系11は、係数K12の絶対値|K12|が以下に説明する条件をみたすように、レンズ11a,11bや焦点拡張素子16の面形状等が定められている。 Such inhomogeneity of the blur (resolution) according to the image height can be reduced by adjusting the magnitude of the coefficient K 12 of the Zernike polynomial 12th term Z 12 . Therefore, in the focus extending optical system 11, the surface shapes of the lenses 11a and 11b and the focus extending element 16 are determined so that the absolute value | K 12 | of the coefficient K 12 satisfies the conditions described below.
 図8は、K=-0.675において、係数K12に対するMTFの変化を表すグラフである。これを図4~図6で示した軸上デフォーカスMTF及び軸外デフォーカスMTFと比較すれば、光軸上でK=-0.675にデフォーカスして撮像する場合のMTF(図4のK=-0.675)はZ12=0のMTFに対応する。中間像高でK=-0.675にデフォーカスして撮像する場合のMTF(図5のK=-0.675)はZ12=-0.10のMTFに、また、周辺像高でK=-0.675にデフォーカスして撮像する場合のMTF(図6のK=-0.675)はZ12=-0.30のMTFに、それぞれ対応する。また、図8から分かるように、係数K12の絶対値|K12|が大きくなるほど、S方向とT方向のMTFのギャップが大きくなる。このため、絶対値|K12|が小さければ、S方向とT方向のMTFのギャップが緩和され、画像内でのボケ方及び解像度の不均一性が緩和される。 FIG. 8 is a graph showing the change in MTF with respect to the coefficient K 12 when K 4 = −0.675. Comparing this with the on-axis defocus MTF and off-axis defocus MTF shown in FIGS. 4 to 6, the MTF in the case of imaging with defocusing to K 4 = −0.675 on the optical axis (FIG. 4). K 4 = −0.675) corresponds to an MTF with Z 12 = 0. The MTF (K 4 = −0.675 in FIG. 5) when the image is defocused to K 4 = −0.675 at the intermediate image height is set to an MTF with Z 12 = −0.10, and the peripheral image height in MTF when imaging defocused to K 4 = -0.675 (K 4 = -0.675 in FIG. 6) to the MTF of Z 12 = -0.30, corresponding. Further, as can be seen from FIG. 8, the larger the absolute value | K 12 | of the coefficient K 12 is, the larger the gap between the MTFs in the S direction and the T direction is. For this reason, if the absolute value | K 12 | is small, the gap between the MTFs in the S direction and the T direction is relaxed, and blurring in the image and nonuniformity in resolution are alleviated.
 図8に示す係数K12に対するMTFの変化と、図7A,図7C,図7Eで示した各像高でデフォーカスして撮像して得られる像の対応関係を考慮すると、Z12=0における像のMTFを基準値とすると、S方向とT方向のMTFのギャップがこの基準値の2倍以上に広がると、S方向とT方向の解像度の相違により、ボケ方が不自然な画像となる。このため、焦点拡張光学系11では、S方向とT方向のMTFの差が基準値(Z12=0のMTF)の2倍より小さい範囲におさまるように、係数K12が定められている。具体的に、図8においては、|K12|<0.3である。 MTF and variation in relative coefficient K 12 shown in FIG. 8, FIG. 7A, FIG. 7C, the defocused at each image height shown in FIG. 7E considering the correspondence between the image obtained by imaging, in the Z 12 = 0 Assuming that the MTF of the image is a reference value, if the gap between the MTF in the S direction and the T direction is more than twice the reference value, the image will be unnatural due to the difference in resolution between the S direction and the T direction. . Therefore, the focal expansion optical system 11, to fit in the smaller range than twice the reference value the difference between the MTF in the S direction and the T direction (MTF of Z 12 = 0), the coefficient K 12 is defined. Specifically, in FIG. 8, | K 12 | <0.3.
 また、図8において、矢印P及びQで示すように、|K12|<0.3の範囲内において、S方向のMTF及びT方向のMTFがほぼ「0」となる点があり、この点P,Qを境にMTFの位相が反転している。点PではS方向のMTFの位相が反転し、点QではT方向の位相が反転している。MTFが「0」になると像が伝達されず、位相の反転は2線ボケ等のアーチファクトの原因となるため正確な像を伝達できない。このため、焦点拡張光学系11は、係数K12の大きさが、係数K12に対するS方向のMTF及びT方向のMTFが0となる点以下の範囲内であることが好ましい。具体的に、図8においては、点P(K12=-0.275)より大きく、点Q(K12=+0.275)よりも小さい範囲、すなわち|K12|<0.275であることが好ましい。 In addition, as shown by arrows P and Q in FIG. 8, within the range of | K 12 | <0.3, there is a point where the MTF in the S direction and the MTF in the T direction are almost “0”. The phase of the MTF is reversed at P and Q. At point P, the phase of the MTF in the S direction is reversed, and at point Q, the phase in the T direction is reversed. When the MTF is “0”, the image is not transmitted, and the phase inversion causes artifacts such as two-line blurring, so that an accurate image cannot be transmitted. Therefore, the focus expansion optical system 11, the size of the coefficient K 12 is preferably MTF of the MTF and the T direction of the S-direction with respect to the coefficient K 12 is within the scope of the following point becomes zero. Specifically, in FIG. 8, a range larger than the point P (K 12 = −0.275) and smaller than the point Q (K 12 = + 0.275), that is, | K 12 | <0.275. Is preferred.
 さらに、S方向のMTFとT方向のMTFとの差が基準値の2倍以下であっても、S方向のMTFとT方向のMTFの比が1:2(あるいは2:1)以上に離れると、S方向とT方向とでボケ方(解像度)の不均一性が目立つようになる。このため、S方向のMTFとT方向のMTFの比が1:2または2:1より小さい範囲内に、K12の値が定められていることが好ましい。 Furthermore, even if the difference between the MTF in the S direction and the MTF in the T direction is not more than twice the reference value, the ratio of the MTF in the S direction to the MTF in the T direction is more than 1: 2 (or 2: 1). Then, the non-uniformity of the blurring method (resolution) becomes conspicuous in the S direction and the T direction. Therefore, MTF ratio of MTF and T direction S direction 1: 2 or 2: 1 smaller ranges, it is preferable that the value of K 12 is defined.
 S方向のMTFとT方向のMTFの関係は、K12=0を境に反転する。また、S方向とT方向のMTFの係数K12に対する大小関係は、実際の焦点拡張光学系11の構成によって変化する。すなわち、図8では、係数K12のプラス側でS方向よりもT方向のMTFが大きく、係数K12のマイナス側でT方向よりもS方向のMTFが大きいが、この関係は具体的な焦点拡張光学系11の構成によって逆になり、係数K12のプラス側でT方向よりもS方向のMTFが大きく、係数K12のマイナス側でS方向よりもT方向のMTFが大きくなることがある。このため、上述の条件は、S方向のMTFがT方向のMTFの2倍となる係数K12の値を第1閾値Th1、T方向のMTFがS方向のMTFの2倍となる係数K12の値を第2閾値Th2とするときに、係数K12が第1閾値Th1より大きく第2閾値Th2より小さいという条件(Th1<K12<Th2)、または、係数K12が第1閾値より小さく第2閾値より大きいという条件(Th2<K12<Th1)である。具体的に、図8では|K12|<0.08である。 The relationship between the MTF in the S direction and the MTF in the T direction is reversed at K 12 = 0. Further, the magnitude relationship with respect to the coefficient K 12 of the MTF in the S direction and the T direction varies depending on the actual configuration of the focus extending optical system 11. That is, in FIG. 8, greater MTF of T direction than S direction on the positive side of the coefficients K 12, although the MTF S direction is greater than the T direction at the minus side of the coefficients K 12, this relationship is specific focus It reversed by the configuration of the extended optical system 11, greater MTF of S direction than the T direction at the positive side of the coefficients K 12, which may MTF of T direction than S direction in the minus side of the factor K 12 is increased . Therefore, the above conditions, the coefficient K 12 of MTF of the value of the coefficient K 12 of MTF of S direction is twice the MTF of the T direction first threshold value Th1, T direction is 2 times the MTF of S direction the value when the second threshold value Th2, the condition that the coefficient K 12 is a second threshold value Th2 is smaller than greater than the first threshold Th1 (Th1 <K 12 <Th2 ), or, the coefficient K 12 is smaller than the first threshold value The condition is greater than the second threshold (Th2 <K 12 <Th1). Specifically, in FIG. 8, | K 12 | <0.08.
 焦点拡張光学系11は、上述の条件を満たすように光学レンズ11a,11bや焦点拡張素子16の面形状等が定められているため、EDoF撮像システム10で撮像した画像15内では、像のボケ方及び解像度の均一性が向上する。 Since the surface shape of the optical lenses 11a and 11b and the focus expanding element 16 is determined so as to satisfy the above-described conditions, the focus expanding optical system 11 is blurred in the image 15 captured by the EDoF imaging system 10. And the uniformity of resolution is improved.
 なお、上述の各条件を満たす像高の範囲が、像のボケ方及び解像度が均一になる範囲である。したがって、焦点拡張光学系11では、全ての像高において満たされていることが好ましい。 Note that the range of the image height that satisfies the above-mentioned conditions is the range in which the image blur and the resolution are uniform. Therefore, in the focus expansion optical system 11, it is preferable that all image heights are satisfied.
 なお、上述の各条件は、K=-0.675にデフォーカスされた場合を例に説明したが、K=0のベストピントの場合等、他の係数Kが他の値の場合も同様である。また、上述の各条件は、簡単のためにK=-0.18,K16=-0.057,K25=-0.0156,他K,K12を除く全係数を0とした球面収差調節型の焦点拡張光学系のMTFを例に説明したが、これに限らない。係数K12以外の各係数Kは実際の焦点拡張光学系11に必要とされる具体的な性能に応じて任意に決定してよい。 Note that each of the above-described conditions has been described by taking an example where K 4 = −0.675 is defocused, but other coefficients K 4 have other values such as the best focus of K 4 = 0. Is the same. Also, in the above conditions, for simplicity, all coefficients except K 9 = −0.18, K 16 = −0.057, K 25 = −0.0156, and other K 4 and K 12 are set to 0. Although the MTF of the spherical aberration adjusting type focus expanding optical system has been described as an example, the present invention is not limited to this. Each coefficient K j other than the coefficient K 12 may be arbitrarily determined according to the specific performance required for the actual focus extending optical system 11.
 なお、上述の実施形態では、ツェルニケ多項式Zの第12項Z12と、軸外デフォーカスMTFの関係を説明したが、ツェルニケ多項式Zの中には、軸外デフォーカスMTFに対して第12項Z12とほぼ同様の関係を有する項がある。具体的には、第13項Z13(n=4,m=-2)=(4ρ-3ρ)sin(2θ)である。第13項は、第12項Z12で表される波面モードを45度回転させた波面モードを表しており、図9に示すように、軸外デフォーカスMTFをS方向から45度傾斜した方向S45と、T方向から45度傾斜した方向T45とについて測れば、画像15に対して第12項Z12と同様の効果をもたらす。したがって、第13項Z13の係数K13についても、上述の第12項Z12の係数K12と同様に、上述の条件を満たすことが好ましい。但し、レンズ11a,11b及び焦点拡張素子16は光軸L0に対して回転対称であるため、焦点拡張光学系11の設計時に係数K12について上述の条件を満たすように焦点拡張光学系11を形成することと、係数K13について上述の条件を満たすように焦点拡張光学系11を形成することは等価である。しかし、実際に製造した焦点拡張光学系11の波面をツェルニケ多項式Zの重ね合せで展開する場合、レンズ11a,11bや焦点拡張素子16の配置誤差、他の収差等との影響により、係数K12と係数K13は、必ずしも同一になるとは限らない。したがって、係数K13も係数K12と同様の条件をみたすことが好ましい。 In the above embodiment, the paragraph 12 Z 12 of Zernike polynomials Z, has been described a relationship between the off-axis defocusing MTF, in Zernike polynomials Z is paragraph 12 against off-axis defocusing MTF there are terms having substantially the same relationship as Z 12. Specifically, the thirteenth term Z 13 (n = 4, m = −2) = (4ρ 4 −3ρ 2 ) sin (2θ). Section 13 represents the wavefront mode is rotated 45 degrees wavefront mode represented by Section 12 Z 12, as shown in FIG. 9, the direction of the off-axis defocus MTF inclined 45 degrees from the S direction and S45, if Hakare for the direction T45 inclined 45 degrees from the T direction, resulting in the same effect as the paragraph 12 Z 12 to the image 15. Therefore, for the coefficient K 13 of Section 13 Z 13, like the coefficient K 12 of paragraph 12 Z 12 described above, it is preferable above conditions are satisfied. However, the lens 11a, for 11b and focus expansion element 16 is rotationally symmetric with respect to an optical axis L0, a focus extended optical system 11 as the coefficient K 12 when designing the focal expansion optical system 11 satisfies the above condition form it and it is equivalent to form a focal expansion optical system 11 as the coefficient K 13 satisfies the above conditions. However, when the wavefront of the actually manufactured focus expanding optical system 11 is developed by superimposing the Zernike polynomial Z, the coefficient K 12 is influenced by the arrangement errors of the lenses 11a and 11b and the focus expanding element 16, other aberrations, and the like. the coefficient K 13 is not necessarily the same. Therefore, it is preferable to satisfy the same conditions as the coefficient K 13 also factor K 12.
 なお、焦点拡張光学系11は、拡大された焦点範囲Eを有するが、その焦点範囲Eは一定であるから固定焦点レンズの一種である。したがって、焦点拡張光学系11及びEDoF撮像システム10は、焦点調節機能のない安価な固定焦点レンズとして、あるいは固定焦点レンズを用いる他の撮像システムのかわりに好適に用いることができる。この場合、焦点拡張光学系のデメリットである解像度分布(不自然なボケ味)もなく、固定焦点レンズを用いる場合よりも被写界深度が拡張された状態で撮影した画像を容易に得ることができる。 Note that the focus extending optical system 11 has an enlarged focus range E, but the focus range E is constant, and thus is a kind of fixed focus lens. Therefore, the focus extending optical system 11 and the EDoF imaging system 10 can be suitably used as an inexpensive fixed focus lens without a focus adjustment function or instead of another imaging system using a fixed focus lens. In this case, there is no resolution distribution (unnatural blur), which is a disadvantage of the focus extending optical system, and an image taken with an extended depth of field can be easily obtained as compared with the case of using a fixed focus lens. it can.
 なお、上述の実施形態では、焦点拡張光学系11の光学レンズ11a,11bや焦点拡張素子16が固定されている例を説明したがこれに限らない。焦点拡張光学系11の光学レンズ11a,11bや焦点拡張素子16を移動させることにより、オートフォーカスを行う撮像システムにおいても好適に用いることができる。このような、オートフォーカスを行う撮像システムでは、左右(あるいは上下)の視差のある像から合焦状態を判定するが、画像15内の位置によってボケ味が異なる従来の焦点拡張光学系を用いることができなかった。しかし、焦点拡張光学系11は、ボケ味が画像15内の位置によらずにほぼ一定なので、こうした撮像システムにも好適に用いることができる。 In the above-described embodiment, the example in which the optical lenses 11a and 11b and the focus extending element 16 of the focus extending optical system 11 are fixed has been described. However, the present invention is not limited to this. By moving the optical lenses 11a and 11b and the focus expanding element 16 of the focus extending optical system 11, it can be suitably used in an imaging system that performs autofocus. In such an imaging system that performs autofocus, the in-focus state is determined from an image with left and right (or top and bottom) parallax, but a conventional focus expansion optical system having a different blur depending on the position in the image 15 is used. I could not. However, since the defocusing optical system 11 has a substantially constant blur regardless of the position in the image 15, it can be suitably used for such an imaging system.
 オートフォーカスを行う撮像システムに焦点拡張光学系11を用いる場合、光学レンズ11a,11bまたは焦点拡張素子16を光軸に沿って移動させることにより、焦点範囲Eを光軸に沿って移動させる。また、ズームレンズのように、光学レンズ11a,11bの相対位置を変えて焦点範囲Eの長さを変更するようにしても良い。これらの場合には、光学レンズ11a,11b、または焦点拡張素子16の移動後(あるいは移動中)にも、上述の係数K12の条件(及び係数K13の条件)が満たされるようにしておけば良い。 When the focus expansion optical system 11 is used in an imaging system that performs autofocus, the focus range E is moved along the optical axis by moving the optical lenses 11a and 11b or the focus expansion element 16 along the optical axis. Further, like the zoom lens, the length of the focal range E may be changed by changing the relative positions of the optical lenses 11a and 11b. In these cases, optical lenses 11a, 11b, or after the movement of the focal expansion element 16 (or moving) also, it is devised that the conditions of the above-mentioned factor K 12 (and conditions of the coefficient K 13) is satisfied It ’s fine.
 なお、上述の係数K12(及び係数K13)の条件は、焦点拡張光学系11の光学レンズ11a,11bや焦点拡張素子16の面形状を一義に定める条件ではない。このため、上述の係数K12(及び係数K13)の条件を満たしながら、光学レンズ11a,11bや焦点拡張素子16の面形状の様々な組み合わせで焦点拡張光学系11を形成することができる。したがって、上述の係数K12(及び係数K13)の条件は、焦点範囲Eの大きさ等、焦点拡張光学系としての性能が異なる種々の焦点拡張光学系で満たすことができる。 The condition of the coefficient K 12 (and coefficient K 13 ) described above is not a condition that uniquely defines the surface shapes of the optical lenses 11 a and 11 b and the focus expanding element 16 of the focus expanding optical system 11. For this reason, the focus expansion optical system 11 can be formed by various combinations of the surface shapes of the optical lenses 11a and 11b and the focus expansion element 16 while satisfying the condition of the coefficient K 12 (and coefficient K 13 ). Therefore, the condition of the coefficient K 12 (and coefficient K 13 ) described above can be satisfied by various focus expansion optical systems having different performance as the focus expansion optical system, such as the size of the focus range E.
 なお、上述の実施形態では、ツェルニケ多項式Zの第12項Z12と、第13項Z13について説明したが、第21項Z21(n=6,m=2:(15ρ-20ρ+6ρ)cos(2θ))は第12項Z12と、第22項Z22(n=6,m=-2:(15ρ-20ρ+6ρ)sin(2θ))は第13項Z13と各々類似した特徴を有する波面モードである。しかし、第12項Z12や第13項Z13ほど、軸外デフォーカスMTFに対する影響は大きくない。このため、軸上デフォーカスMTFのS方向とT方向とのギャップを解消するためには、第12項Z12(第13項Z13)の係数について、上述の係数K12(及び係数K13)の条件を満たすようにすれば良い。 In the above embodiment, the 12th term Z 12 and the 13th term Z 13 of the Zernike polynomial Z have been described. However, the 21st term Z 21 (n = 6, m = 2: (15ρ 6 −20ρ 4 + 6ρ). 2) cos (2θ)) and paragraph 12 Z 12, Section 22 Z 22 (n = 6, m = -2: (15ρ 6 -20ρ 4 + 6ρ 2) sin (2θ)) is Section 13 Z 13 And wavefront modes each having similar characteristics. However, as the paragraph 12 Z 12 and Section 13 Z 13, effect on the off-axis defocus MTF is not large. For this reason, in order to eliminate the gap between the S direction and the T direction of the on-axis defocus MTF, the coefficient K 12 (and coefficient K 13 ) described above is used as the coefficient of the twelfth term Z 12 (13th term Z 13 ). ) Should be satisfied.
 なお、上述の実施形態では、画像処理部13で復元処理を施すことにより、被写界深度が拡張された画像15を得る構成である。ところで、焦点拡張光学系11のMTF性能によっては、焦点拡張光学系11だけで十分に被写界深度を拡張することができることがある。こうした場合には、必ずしも復元処理を施す必要はない。また、焦点拡張光学系11のMTF性能によっては、復元処理を行わず、代わりにエッジ強調処理やコントラスト強調処理を施すことによって、簡易的に被写界深度を深化したように見える画像を得ることもできる。これらの場合は、復元処理を行わない分、高速に得られるので、動画を撮像する場合に有効である。もちろん、復元処理を行うEDoF撮像システム10においても、動画撮像時には復元処理を行わないようにしても良い。 In the above-described embodiment, the image processing unit 13 performs a restoration process to obtain the image 15 with an extended depth of field. By the way, depending on the MTF performance of the focus extending optical system 11, the depth of field may be sufficiently extended only by the focus extending optical system 11. In such a case, it is not always necessary to perform restoration processing. Further, depending on the MTF performance of the focus extending optical system 11, an image that seems to have a deepened depth of field can be easily obtained by performing edge enhancement processing or contrast enhancement processing instead of performing restoration processing. You can also. In these cases, since the restoration process is not performed, the image can be obtained at a high speed, which is effective in capturing a moving image. Of course, even in the EDoF imaging system 10 that performs the restoration processing, the restoration processing may not be performed during moving image imaging.
 なお、撮像素子12は、CCD型撮像素子でも、CMOS型撮像素子でも良い。また、その他の構造の撮像素子であっても良い。 Note that the image sensor 12 may be a CCD image sensor or a CMOS image sensor. In addition, an image sensor having another structure may be used.
 なお、上述の実施形態では、焦点拡張光学系11が光軸を含む中心近傍の光束を手前(被写体14)側に収束させ、外側を通る光束を奥(撮像素子12)側に収束させているが、光軸を含む中心近傍の光束を奥(撮像素子12)側に、外側を通る光束を手前(被写体14)側に収束させるようにしても良い。 In the above-described embodiment, the focus extending optical system 11 converges the light beam near the center including the optical axis toward the near side (subject 14) and converges the light beam passing outside toward the back side (imaging element 12). However, the light flux near the center including the optical axis may be converged toward the back (imaging element 12), and the light flux passing outside may be converged toward the near side (subject 14).
 なお、焦点拡張光学系11には2個の光学レンズ11a,11bを備える例を説明したが、焦点拡張素子16以外のレンズは1枚でも良く、3枚以上でも良い。また、光学レンズ11a,11bの面形状は任意であり、球面を含んでいても良いが、焦点拡張光学系11には少なくとも1枚の非球面が含まれる。また、焦点拡張素子16は複数枚の光学レンズから構成しても良い。 In addition, although the example provided with the two optical lenses 11a and 11b in the focus expansion optical system 11 was demonstrated, the number of lenses other than the focus expansion element 16 may be one, and may be three or more. The surface shape of the optical lenses 11a and 11b is arbitrary, and may include a spherical surface, but the focus extending optical system 11 includes at least one aspherical surface. The focus extending element 16 may be composed of a plurality of optical lenses.
 また、焦点拡張光学系11は、光学レンズ11a,11bと焦点拡張素子16の実質的に3個のレンズを備えているが、さらに、実質的にパワーを有さないレンズ、絞りやカバーガラス等のレンズ以外の光学要素、レンズフランジ、レンズバレル、手ブレ補正機構等の機構部分、等を含んでも良い。 The focus extending optical system 11 includes substantially three lenses, the optical lenses 11a and 11b and the focus extending element 16, but further includes a lens having substantially no power, a diaphragm, a cover glass, and the like. An optical element other than the lens, a lens flange, a lens barrel, a mechanism portion such as a camera shake correction mechanism, and the like may be included.
 10 EDoF撮像ステム
 11 焦点拡張光学系
 11a,11b レンズ
 12 撮像素子
 13 画像処理部
 14 被写体
 14a 点
 15 画像
 16 焦点拡張素子
 21 RAWデータ
DESCRIPTION OF SYMBOLS 10 EDoF imaging stem 11 Focus expansion optical system 11a, 11b Lens 12 Image sensor 13 Image processing part 14 Subject 14a Point 15 Image 16 Focus expansion element 21 RAW data

Claims (13)

  1.  被写体からの光を撮像素子に結像させる少なくとも1つの光学レンズと、
     前記光学レンズによる結像位置を、光軸からの距離に応じて変化させるように波面を調節し、前記光学レンズの焦点を、幅を持った焦点範囲に拡張する焦点拡張素子とを備え、
     前記光学レンズ及び前記焦点拡張素子を透過後の波面ψをツェルニケ多項式Zj(n,m)を各項とする式ψ=ΣK・Zで表し、第12項Z12(n=4,m=2)の係数K12が0の場合のサジタル方向及びタンジェンシャル方向に共通のMTFを基準値とするときに、サジタル方向とタンジェンシャル方向のMTFのギャップが前記基準値の2倍より小さい範囲内に、前記係数K12が定められていることを特徴とする焦点拡張光学系。
    At least one optical lens for imaging light from a subject on an image sensor;
    A focus expansion element that adjusts a wavefront so as to change an imaging position by the optical lens according to a distance from an optical axis, and expands a focal point of the optical lens to a focal range having a width;
    The wavefront ψ after passing through the optical lens and the focus expanding element is expressed by a formula ψ = ΣK j · Z j where each term is a Zernike polynomial Zj (n, m), and the twelfth term Z 12 (n = 4, m = 2 common MTF in the sagittal direction and the tangential direction when the coefficient K 12 is 0 when the reference value of the) range smaller than twice the gap MTF of sagittal direction and the tangential direction to the reference value within the focus expansion optical system, wherein the coefficient K 12 is defined.
  2.  前記係数K12の絶対値|K12|が、|K12|<0.3を満たすことを特徴とする請求の範囲第1項記載の焦点拡張光学系。 2. The focus extending optical system according to claim 1, wherein an absolute value | K 12 | of the coefficient K 12 satisfies | K 12 | <0.3.
  3.  第12項Z13(n=4,m=-2)の係数K13が、K13=0におけるMTFを基準値として、サジタル方向とタンジェンシャル方向のMTFのギャップが前記基準値の2倍より小さい範囲内に、前記係数K13が定められていることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 The coefficient K 13 of the twelfth term Z 13 (n = 4, m = −2) is based on the MTF at K 13 = 0, and the gap between the sagittal and tangential MTF is twice the reference value. within a small range, the focus extension optical system ranging first claim of claim, wherein the coefficient K 13 is defined.
  4.  前記係数K13の絶対値|K13|が、|K13|<0.3を満たすことを特徴とする請求の範囲第3項記載の焦点拡張光学系。 4. The focus extending optical system according to claim 3, wherein the absolute value | K 13 | of the coefficient K 13 satisfies | K 13 | <0.3.
  5.  前記係数K12に対するサジタル方向及びタンジェンシャル方向のMTFが0となる点以下の範囲内で、前記係数K12が定められていることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 Within the scope of the following points MTF of sagittal direction and the tangential direction with respect to the coefficients K 12 is 0, the focus extension optical system ranging first claim of claim, wherein the coefficient K 12 is defined .
  6.  前記係数K13の絶対値|K13|が、|K13|<0.275を満たすことを特徴とする請求の範囲第5項記載の焦点拡張光学系。 6. The focus expanding optical system according to claim 5, wherein the absolute value | K 13 | of the coefficient K 13 satisfies | K 13 | <0.275.
  7.  サジタル方向のMTFがタンジェンシャル方向のMTFの2倍となる係数K12の値を第1閾値Th1、タンジェンシャル方向のMTFがサジタル方向のMTFの2倍となる係数K12の値を第2閾値Th2とするときに、前記係数K12がTh1<K12<Th2、またはTh2<K12<Th1の条件を満たす範囲内の値であることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 Sagittal MTF tangential direction of the MTF twice to become the value of the first threshold value of the coefficient K 12 Th1, the tangential value of the second threshold value of the coefficient K 12 of tangential direction of the MTF is twice the sagittal MTF when a Th2, the coefficient K 12 is Th1 <K 12 <Th2, or Th2 <focal extension of claims paragraph 1, wherein the a value within range satisfying the K 12 <Th1 Optical system.
  8.  前記係数K13の絶対値|K13|が、|K13|<0.08を満たすことを特徴とする請求の範囲第7項記載の焦点拡張光学系。 The focus expanding optical system according to claim 7, wherein the absolute value | K 13 | of the coefficient K 13 satisfies | K 13 | <0.08.
  9.  全ての像高において、サジタル方向とタンジェンシャル方向のMTFのギャップが前記基準値の2倍より小さい範囲内に、前記係数K12が定められていることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 In all image heights, the gap MTF of sagittal direction and the tangential direction within a small range than twice of the reference value, wherein the range first of claims, wherein the coefficient K 12 is defined Focus expansion optical system.
  10.  前記光学レンズ及び前記焦点拡張素子は光軸方向に動かないように固定されていることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 The focus extending optical system according to claim 1, wherein the optical lens and the focus extending element are fixed so as not to move in the optical axis direction.
  11.  前記光学レンズまたは前記焦点拡張素子が光軸方向に移動可能に設けられていることを特徴とする請求の範囲第1項記載の焦点拡張光学系。 2. The focus expanding optical system according to claim 1, wherein the optical lens or the focus expanding element is provided so as to be movable in the optical axis direction.
  12.  被写体の像を撮像する撮像素子と、
     前記被写体からの光を前記撮像素子に結像させる少なくとも1つの光学レンズと、この光学レンズによる結像位置を、光軸からの距離に応じて変化させるように波面を調節し、前記光学レンズの焦点を、幅を持った焦点範囲に拡張する焦点拡張素子とを有し、前記光学レンズ及び前記焦点拡張素子を透過後の波面ψをツェルニケ多項式Zj(n,m)を各項とする式ψ=ΣK・Zで表し、第12項Z12(n=4,m=2)の係数K12が0の場合のサジタル方向及びタンジェンシャル方向に共通のMTFを基準値とするときに、サジタル方向とタンジェンシャル方向のMTFのギャップが前記基準値の2倍より小さい範囲内に、前記係数K12が定められている焦点拡張光学系と、
    を備えることを特徴とする撮像システム。
    An image sensor for capturing an image of a subject;
    Adjusting at least one optical lens for imaging light from the subject on the image sensor, and adjusting a wavefront so as to change an imaging position by the optical lens according to a distance from an optical axis; A focal extension element that extends the focal point to a focal range having a width, and a wavefront ψ after passing through the optical lens and the focal extension element is a Zernike polynomial Zj (n, m) as a term ψ = ΣK j · Z j , and when the MTF common to the sagittal direction and the tangential direction when the coefficient K 12 of the twelfth term Z 12 (n = 4, m = 2) is 0 is used as a reference value, the gap MTF of sagittal direction and the tangential direction within a small range than twice of the reference value, the focus expansion optical system in which the coefficient K 12 is defined,
    An imaging system comprising:
  13.  前記撮像素子が出力するデータに復元処理を施すことにより、前記焦点範囲に対応して被写界深度が拡張された画像を生成する画像処理部を備えることを特徴とする請求の範囲第12項記載の撮像システム。 13. The image processing apparatus according to claim 12, further comprising: an image processing unit that generates an image with an extended depth of field corresponding to the focal range by performing a restoration process on data output from the imaging device. The imaging system described.
PCT/JP2012/054563 2011-03-31 2012-02-24 Focus extending optical system and imaging system WO2012132685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079260 2011-03-31
JP2011079260A JP2014115303A (en) 2011-03-31 2011-03-31 Focal depth expansion optical system and imaging system

Publications (1)

Publication Number Publication Date
WO2012132685A1 true WO2012132685A1 (en) 2012-10-04

Family

ID=46930445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054563 WO2012132685A1 (en) 2011-03-31 2012-02-24 Focus extending optical system and imaging system

Country Status (2)

Country Link
JP (1) JP2014115303A (en)
WO (1) WO2012132685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488472A (en) * 2020-10-28 2022-05-13 株式会社日立制作所 Image pickup optical system, image pickup apparatus, and focal depth enlarging optical system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019536A (en) * 2016-07-25 2016-10-12 浙江大学 Device for extending depth of field of array image sensors
WO2018037806A1 (en) * 2016-08-25 2018-03-01 富士フイルム株式会社 Image processing device, image processing system, image processing method, and image capturing optical system set
CN106845024B (en) * 2017-03-02 2020-04-21 哈尔滨工业大学 Optical satellite in-orbit imaging simulation method based on wavefront inversion
JP7247973B2 (en) 2020-06-23 2023-03-29 いすゞ自動車株式会社 Purification control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523330A (en) * 2003-03-31 2006-10-12 シーディーエム オプティックス, インコーポレイテッド System and method for minimizing the effects of aberrations in an imaging system
JP2009169092A (en) * 2008-01-16 2009-07-30 Fujifilm Corp Optical system and imaging apparatus
WO2011027536A1 (en) * 2009-09-01 2011-03-10 オリンパス株式会社 Optical device, image capturing device using same, and image capturing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523330A (en) * 2003-03-31 2006-10-12 シーディーエム オプティックス, インコーポレイテッド System and method for minimizing the effects of aberrations in an imaging system
JP2009169092A (en) * 2008-01-16 2009-07-30 Fujifilm Corp Optical system and imaging apparatus
WO2011027536A1 (en) * 2009-09-01 2011-03-10 オリンパス株式会社 Optical device, image capturing device using same, and image capturing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488472A (en) * 2020-10-28 2022-05-13 株式会社日立制作所 Image pickup optical system, image pickup apparatus, and focal depth enlarging optical system
CN114488472B (en) * 2020-10-28 2023-07-21 株式会社日立制作所 Imaging optical system, imaging device, and focal depth expansion optical system
US11933993B2 (en) 2020-10-28 2024-03-19 Hitachi, Ltd. Imaging optical system, imaging apparatus and focal-depth extension optical system

Also Published As

Publication number Publication date
JP2014115303A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6648757B2 (en) Imaging unit and imaging device
KR101527990B1 (en) Customized depth of field optical system and compact fast lens architecture
JP5390046B2 (en) Focus expansion optical system and EDoF imaging system
JPWO2011096193A1 (en) IMAGING LENS, IMAGING DEVICE USING THE SAME, AND PORTABLE DEVICE HAVING THE IMAGING DEVICE
JP2008211679A (en) Imaging apparatus and method thereof
JP2007300208A (en) Imaging apparatus
CN105652422B (en) Zoom lens and photographic device
WO2012132685A1 (en) Focus extending optical system and imaging system
JP4875787B2 (en) Imaging device
JP2015004883A (en) Image forming optical system, imaging system, and imaging method
CN109425971A (en) Imaging len and photographic device
US9638893B2 (en) Optical image capturing system
US20100295973A1 (en) Determinate and indeterminate optical systems
JP2006311473A (en) Imaging device and imaging method
JP2009086017A (en) Imaging device and imaging method
JP2014053700A (en) Image pickup and image processing apparatus and image processing method
JP4818956B2 (en) Imaging apparatus and method thereof
JP5248543B2 (en) Imaging module
JP2012132958A (en) Imaging apparatus
WO2013146042A1 (en) Image pickup lens
TW201250279A (en) Image pickup lens and image pickup module
WO2013031564A1 (en) Optical system and imaging device
JP5581177B2 (en) Imaging position adjusting apparatus and imaging apparatus
CN110941082A (en) Eyepiece optical system, electronic viewfinder and image pickup device
JP6088343B2 (en) Optical system and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP