JP2014053700A - Image pickup and image processing apparatus and image processing method - Google Patents

Image pickup and image processing apparatus and image processing method Download PDF

Info

Publication number
JP2014053700A
JP2014053700A JP2012195621A JP2012195621A JP2014053700A JP 2014053700 A JP2014053700 A JP 2014053700A JP 2012195621 A JP2012195621 A JP 2012195621A JP 2012195621 A JP2012195621 A JP 2012195621A JP 2014053700 A JP2014053700 A JP 2014053700A
Authority
JP
Japan
Prior art keywords
image
distortion
image processing
correction
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012195621A
Other languages
Japanese (ja)
Inventor
Kenichi Sasaki
憲一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012195621A priority Critical patent/JP2014053700A/en
Publication of JP2014053700A publication Critical patent/JP2014053700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce degradation of image quality in a screen center area in an image pickup apparatus that assumes distortion aberration by image processing.SOLUTION: Degradation of resolution performance of a screen center is prevented by specifying a residual distortion amount at a time of lens design, prioritizing image processing distortion correction on the periphery, limiting sharpness recovery processing in a meridional direction, and setting an amount of correction on the basis of a design value as a reference.

Description

本発明は、画像処理装置および画像処理方法に関し、特に、カメラ、内視鏡等軸対称な撮像光学系を有する撮像装置からの信号を処理する画像処理装置および画像処理方法に関する。   The present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method for processing a signal from an imaging apparatus having an axially symmetric imaging optical system such as a camera and an endoscope.

近年、コンパクトデジタルカメラ等撮像装置では、特にズームレンズの広角側に於いて、より広角のものが増えてきており、画角に依存する歪曲収差の発生量が大きくなる。また、撮影レンズの光学設計上の歪曲収差補正を減らし、デジタル画像処理による画像処理による歪曲収差補正を行う例が増えている。   In recent years, in an imaging apparatus such as a compact digital camera, in particular, on the wide-angle side of a zoom lens, the number of wide-angle lenses has increased, and the amount of distortion aberration that depends on the angle of view increases. Further, there is an increasing number of examples in which distortion aberration correction in the optical design of the photographing lens is reduced and distortion aberration correction is performed by image processing by digital image processing.

デジタル画像処理による歪曲収差補正は、一般的には、広角端で発生する樽型の歪曲収差を、画像の引き伸ばしによって補正するものである。以下、樽型の歪曲収差に限定して記載する。   In general, distortion correction by digital image processing is to correct barrel distortion generated at the wide-angle end by stretching an image. Hereinafter, the description will be limited to barrel distortion.

周知のように歪曲収差は像高により横倍率が非線形に変化するものである。広角端で発生する樽型の歪曲収差と呼ばれるものは、高い像高になるに従い、軸上に比較して横倍率が非線形に小さくなってゆくものである。この歪曲収差の発生量に応じて、これを相殺するように画像を引き伸ばすことで、歪曲収差を後処理にて低減することが可能となる。その結果、レンズには歪曲収差の残存が許されるため、レンズ設計上歪曲収差を補正する必要が低下し、レンズ設計の自由度が増す。増した自由度は、レンズの枚数削減、使用する非球面数削減など小型化、低コスト化に振り向けることができる。   As is well known, distortion is a phenomenon in which the lateral magnification changes nonlinearly with the image height. What is called barrel-shaped distortion occurring at the wide-angle end is such that the lateral magnification becomes non-linearly smaller than on the axis as the image height increases. By stretching the image so as to cancel out this distortion according to the amount of distortion, the distortion can be reduced by post-processing. As a result, since distortion remains in the lens, the necessity for correcting distortion in the lens design is reduced, and the degree of freedom in lens design is increased. The increased degree of freedom can be directed to downsizing and cost reduction, such as reducing the number of lenses and the number of aspheric surfaces used.

一方で、画像処理による歪曲補正は画像の引き伸ばし操作によるため、解像性能の低下を招く問題がある。   On the other hand, since distortion correction by image processing is based on an image enlargement operation, there is a problem in that the resolution performance is degraded.

画像処理による歪曲補正は、主にメリディオナル方向への画像の引き伸ばしによる座標変換とそれに伴う補間処理による。この時、前述のように高い像高に至るに従い非線形に引き伸ばし量が増大する。解像性能低下は、引き伸ばされる量に応じて増大するので、高い像高、即ち画像周辺部ほど解像性能の低下が顕著になる。この課題に対し、高い像高側でアパーチャ補正量を増大させるという解決手段の提案がなされている(特許文献1)。   Distortion correction by image processing is mainly performed by coordinate conversion by image stretching in the meridional direction and interpolation processing associated therewith. At this time, the amount of enlargement increases nonlinearly as the image height increases as described above. The reduction in resolution performance increases according to the amount of enlargement. Therefore, the lower the resolution performance becomes, the higher the image height, that is, the peripheral portion of the image. In order to solve this problem, there has been proposed a solving means for increasing the aperture correction amount on the high image height side (Patent Document 1).

また、このような広角レンズは一般に画面周辺部、即ち高い像高に於いて非点収差などの影響により画質の低下が生じ易い。この課題の指摘と、アパーチャ補正量をメリディオナル方向とサジタル方向で異なった処理を施すという解決手段の提案がなされている(特許文献2)。   In addition, such a wide-angle lens generally tends to deteriorate image quality due to the influence of astigmatism at the periphery of the screen, that is, at a high image height. The indication of this subject and the proposal of the solution means to perform the process which differs the aperture correction amount by the meridional direction and the sagittal direction are made | formed (patent document 2).

しかしながら、歪曲収差が軸上から徐々に増大している場合、画像処理による歪曲収差補正を行うことで、画面の中心付近から既に解像性能の低下が生じるという問題があった。   However, when the distortion is gradually increasing from the axis, there is a problem that the resolution is already deteriorated from the vicinity of the center of the screen by performing the distortion correction by the image processing.

また、特許文献1に示すように、画像処理による歪曲収差補正の影響を緩和するために、高い像高側に於いて、アパーチャ補正処理の補正量を増大させた場合、サジタル方向に於いて補正過剰になり、画質に良くない影響を及ぼすことが判明した。   Further, as shown in Patent Document 1, when the correction amount of the aperture correction process is increased on the high image height side in order to alleviate the influence of the distortion correction by the image processing, the correction is performed in the sagittal direction. It has been found that it becomes excessive and has a negative effect on image quality.

一方、特許文献2に示すように、光学系の軸外光束のメリディオナル方向とサジタル方向のF値の差に基づく結像性能差、及び、非点収差によるメリディオナル方向とサジタル方向の像面差に起因する、即ち軸外のデフォーカスによる解像性能低下に対し、メリディオナル方向とサジタル方向で異なるエッジ強調処理を適用するものである。この場合、光学系の個体製造バラつきの影響を受けるため、個体毎に適した条件を適用する必要があった。   On the other hand, as shown in Patent Document 2, the imaging performance difference based on the difference between the F-number of the off-axis light flux of the optical system and the sagittal direction, and the image plane difference between the meridional direction and the sagittal direction due to astigmatism. Different edge emphasis processing is applied in the meridional direction and the sagittal direction to the resolution degradation caused by defocusing off-axis. In this case, since it is affected by the individual manufacturing variation of the optical system, it is necessary to apply conditions suitable for each individual.

特開2004−242125号公報JP 2004-242125 A 特開2006−211218号公報JP 2006-21112 A

本発明は、上記事実に鑑みてなされたものであり、画像処理による歪曲補正にて、画面中心付近に於ける解像性能の低下の低減を図ることができる撮像装置を提案することを目的とする。   The present invention has been made in view of the above-described facts, and an object of the present invention is to propose an imaging apparatus capable of reducing a decrease in resolution performance near the center of the screen by correcting distortion by image processing. To do.

歪曲収差は、3次収差領域に於いて、像高の3乗に比例する。そのため、画像処理による歪曲収差補正を行う場合、画面中心から徐々に引き伸ばされており、引き伸ばし量の大きな画面周辺部はさることながら、画像中央付近から解像力劣化の影響を受けていた。   Distortion is proportional to the cube of the image height in the third-order aberration region. Therefore, when distortion aberration correction is performed by image processing, the image is gradually stretched from the center of the screen, and is affected by resolution degradation from the vicinity of the center of the image, in addition to the periphery of the screen with a large stretch amount.

その結果、画面中心付近でも何となく眠い画質になってしまい、画面全体でメリハリのない画像しか得られないという問題がある。   As a result, there is a problem that the image quality is somewhat sleepy even near the center of the screen, and only a clear image can be obtained on the entire screen.

本発明による方法では、画像処理の負荷の増大を抑えつつ、広角撮像レンズに残存させる樽型歪曲収差に条件を加えることと、それに適した解像性能回復手段を設定する。   In the method according to the present invention, a condition is added to the barrel distortion remaining in the wide-angle imaging lens while suppressing an increase in image processing load, and a resolution performance recovery unit suitable for the condition is set.

本発明に係る画像処理装置の構成は、
光学的に樽型歪曲収差が残存した撮像光学系と、それを有する撮像装置からの信号を処理する画像処理装置であって、
画像処理による歪曲収差補正により歪曲収差を補正する機能を有し、
歪曲収差を像高の関数として、
The configuration of the image processing apparatus according to the present invention is as follows.
An imaging optical system in which barrel distortion remains optically, and an image processing apparatus that processes a signal from an imaging apparatus having the imaging optical system,
It has a function of correcting distortion by correcting distortion by image processing,
Distortion as a function of image height,

と表現したときに、
光学系に残存する樽型歪曲収差は、
像高5割まで−3%≦dist、
像高9割で−20%≦dist≦−10%
であって、
画像処理による歪曲収差補正を行った画像には、メリディオナル方向のみアパーチャ補正処理乃至エッジ強調処理などの画像鮮鋭化処理を行い、サジタル方向は画像鮮鋭化処理を行わず、メリディオナル方向のみの補正量は、設計時の残存歪曲収差量に基づいて一義的に決められていることを特徴とする。
When expressing
The barrel distortion remaining in the optical system is
-3% ≦ dist, up to 50% of image height
-20% ≦ dist ≦ −10% at 90% of image height
Because
For images that have been subjected to distortion correction by image processing, image sharpening processing such as aperture correction processing or edge enhancement processing is performed only in the meridional direction, image sharpening processing is not performed in the sagittal direction, and the correction amount only in the meridional direction is It is uniquely determined based on the amount of residual distortion at the time of design.

本発明の効果は、画像処理による歪曲収差補正を行っても、特に画像中央領域の解像力低下を抑制し、画質の全体的な劣化のない撮像装置を提供できる。   The effects of the present invention can provide an imaging apparatus that suppresses a decrease in resolution particularly in the center area of an image and does not cause overall deterioration in image quality even when distortion correction is performed by image processing.

本発明の第1実施形態に従う歪曲収差の特性を示す説明図Explanatory drawing which shows the characteristic of the distortion aberration according to 1st Embodiment of this invention 歪曲収差補正の概念を説明する説明図Explanatory drawing explaining the concept of distortion correction

〈実施例の基本構成〉
以下添付図面を参照して本発明の好適な実施形態について詳細に説明する。
<Basic configuration of the embodiment>
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明の実施例に関する説明を以下に記す。   The description about the Example of this invention is described below.

本発明の実施例は画像処理による歪曲収差補正を前提とした撮影レンズに於いて、歪曲収差補正による画面中心付近の解像性能低下を抑制できる構成について説明する。   An embodiment of the present invention will be described with respect to a configuration that can suppress degradation in resolution near the center of the screen due to distortion aberration correction in a photographic lens premised on distortion aberration correction by image processing.

撮影レンズの歪曲収差は、3次収差成分が支配的な場合、像高(画角)の3乗に比例する。従って、この場合、比較的画面中心に近いところから歪曲が発生し始めて、画像周辺に向かい増大する。このようなレンズに画像処理による歪曲収差補正を適用する場合、画面中心付近は既に引き伸ばされて解像性能低下が生じている。   When the third-order aberration component is dominant, the distortion aberration of the photographing lens is proportional to the cube of the image height (field angle). Therefore, in this case, distortion starts to occur relatively near the center of the screen and increases toward the periphery of the image. When distortion correction by image processing is applied to such a lens, the vicinity of the center of the screen has already been stretched, resulting in degradation of resolution performance.

本発明による構成では、先ず第一にレンズ設計時に、低い像高に於ける残存歪曲収差を抑制し、高い像高側の高次の歪曲収差に対しては設計上の制約条件を緩和する。   In the configuration according to the present invention, firstly, at the time of designing a lens, residual distortion at a low image height is suppressed, and design constraints are relaxed for high-order distortion on the high image height side.

そのためには、非球面レンズの使用が前提となるが、その設計自由度を5次収差成分以上の高次の歪曲収差の制御に振り向け、低い像高側の歪曲を小さくする設計とする。反面、画面対角端部などの高い像高側に残存する歪曲の絶対量は相対的に多少増える場合もある。   For this purpose, the use of an aspherical lens is premised, but the design freedom is directed to control of higher-order distortion aberrations of the fifth-order aberration component or more, and the design is made to reduce distortion on the low image height side. On the other hand, the absolute amount of distortion remaining on the high image height side, such as the diagonal end of the screen, may increase somewhat.

一般に歪曲収差は像高の関数として、   In general, distortion is a function of image height,

で表される。 It is represented by

上記歪曲収差量(dist)は、一般的に像高に関する非線形関数である。   The amount of distortion (dist) is generally a nonlinear function related to image height.

像高5割以下の歪曲は−3%以下(0%に近くする)にする。これを、縦収差図として、図1に示す。図1に於いて、横軸は次式で示される歪曲収差量[%]、縦軸は像高比率である。   The distortion with an image height of 50% or less is set to -3% or less (close to 0%). This is shown in FIG. 1 as a longitudinal aberration diagram. In FIG. 1, the horizontal axis represents the distortion amount [%] expressed by the following equation, and the vertical axis represents the image height ratio.

歪曲収差を全体として抑制する設計を行う必要はないため、像高9割の残存歪曲収差は−10%よりも大きいことは問題ではない。しかしながら、際限なく許容できる訳ではなく、−20%よりも樽型歪曲収差の度合いが強まると周辺画質低下が著しいため、それよりも少なく抑えることが望ましい。   Since there is no need to design to suppress distortion as a whole, it is not a problem that the residual distortion at 90% of the image height is larger than -10%. However, this is not indefinitely acceptable, and when the degree of barrel distortion becomes greater than −20%, the peripheral image quality deteriorates significantly.

画像処理による歪曲収差補正、即ち、歪曲収差により高い像高側では画面中心に比較して横倍率が小さくなるのを、メリディオナル方向に画面外側に引き伸ばす処理を行う。その際には、像高5割以下などの低い像高の領域は非常に僅かな引き伸ばし処理に留まるため、画面中心部の解像性能低下の影響は小さくなる。   Distortion correction by image processing, that is, processing for extending the lateral magnification smaller than the center of the screen on the higher image height side due to distortion to the outside of the screen in the meridional direction. In that case, since the low image height region such as an image height of 50% or less remains in a very slight enlargement process, the influence of the reduction in the resolution performance at the center of the screen is reduced.

一方で、高い像高の画面外側の領域では大きく引き伸ばす処理が必要となる。そこでは、引き伸ばしにより解像性能低下が生ずるので、アパーチャ補正/エッジ強調処理などのフィルタ処理により解像性能を補償する。   On the other hand, a process of enlarging the area outside the screen with a high image height is necessary. In this case, since the resolution performance is reduced due to the enlargement, the resolution performance is compensated by a filter process such as aperture correction / edge enhancement.

先に記したように画像処理による歪曲収差補正は、歪曲収差量に応じて、メリディオナル方向に画像を引き伸ばし、補間する処理である。その結果、画像が主に引き伸ばされて解像性能低下が起きるのもメリディオナル方向であって、サジタル方向に引き伸ばされる量は、メリディオナル方向に比較してかなり少ない。   As described above, distortion correction by image processing is a process of stretching and interpolating an image in the meridional direction according to the amount of distortion. As a result, the image is mainly stretched and degradation of the resolution performance occurs in the meridional direction, and the amount stretched in the sagittal direction is considerably smaller than that in the meridional direction.

図2に示すように、像高rの所の1:点Aを像高r’の位置に引き伸ばしのため移動したとする場合、移動後の1:点Aを3:点A’とする。画面上にて、1:点Aに近接する画素である像高rの2:点Bとそれに対応する、引き伸ばし後の4:点B’を考えたとき、1:点Aと2:点Bの為すアジムス角を7:θとする。引き伸ばし前後の、1:点Aと3:点A’(及び2:点Bと4:点B’)のメリディオナル方向の移動量はr−r’である。一方でサジタル方向の1:点A−2:点Bの間隔と、引き伸ばし後の3:点−A’4:点B’の間隔との変化はθ・(r−r’)である。1:点A−2:点Bを隣り合う画素であるとし、例えば実際のコンパクトデジタルカメラの条件で計算すると、7:θは、像高8割程度で凡そ0.4〜0.6[mrad]となり、メリディオナル方向の引き伸ばしに対して、サジタル方向の引き伸ばし量は、その0.04〜0.06[%]となり殆ど無視できる量である。   As shown in FIG. 2, when 1: point A at the image height r is moved to the position of the image height r ′ for movement, the 1: point A after the movement is set to 3: point A ′. On the screen, consider 1: point B of image height r, which is a pixel adjacent to point A, and 4: point B ′ after enlargement, corresponding to point B: 1: point A and 2: point B The azimuth angle for this is 7: θ. The amount of movement in the meridional direction between 1: point A and 3: point A ′ (and 2: point B and 4: point B ′) before and after stretching is r−r ′. On the other hand, the change between the distance of 1: point A-2: point B in the sagittal direction and the distance of 3: point-A′4: point B ′ after stretching is θ · (r−r ′). 1: Point A-2: Assume that point B is an adjacent pixel. For example, when calculated under the conditions of an actual compact digital camera, 7: θ is about 0.4 to 0.6 [mrad] with an image height of about 80%. In contrast to the stretching in the meridional direction, the sagittal stretching amount is 0.04 to 0.06 [%], which is almost negligible.

従って、引き伸ばしの影響はメリディオナル方向にしか生じないので、メリディオナル方向のみのアジムスに対して、引き伸ばしの影響を補正するためのアパーチャ補正/エッジ強調処理を行うだけで十分である。   Accordingly, since the influence of stretching occurs only in the meridional direction, it is sufficient to perform aperture correction / edge enhancement processing for correcting the influence of stretching for azimuth only in the meridional direction.

更に、引き伸ばし処理により生じる解像性能低下について説明する。   Furthermore, the resolution performance degradation caused by the enlargement process will be described.

撮像光学系に樽型の歪曲収差を残存させた場合、高い像高に於いては低倍率で結像されるため、より高い空間周波数の像として結像される。一方イメージセンサの画素間隔は一定であるため、引き伸ばし処理ののち、より粗いサンプリング間隔でサンプリングされたことと等価となる。そのため、イメージセンサの限界解像特性が低下する。また、より高い空間周波数の像として結像されることは、光学系のMTF特性にとっても解像性能低下の原因となる。   When barrel distortion is left in the imaging optical system, an image is formed at a higher spatial frequency because the image is formed at a low magnification at a high image height. On the other hand, since the pixel interval of the image sensor is constant, it is equivalent to sampling at a coarser sampling interval after the enlargement process. Therefore, the limit resolution characteristic of the image sensor is deteriorated. Further, the formation of an image with a higher spatial frequency causes a reduction in resolution performance for the MTF characteristics of the optical system.

本発明では、撮像レンズ系の広角の残存樽型歪曲収差を像高5割まで補正不要の範囲となるよう設計し、像高5割以上に対しては、引き伸ばし処理を行う。更に、像高5割以上の領域に対しては、メリディオナル方向のみにアパーチャ補正/エッジ強調処理を適用するが、その適用量は、歪曲収差補正量から一義的に決まる条件を使用する。   In the present invention, the wide-angle residual barrel distortion of the imaging lens system is designed to be in a range that does not require correction up to an image height of 50%, and the enlargement process is performed for an image height of 50% or more. Further, aperture correction / edge emphasis processing is applied only to the meridional direction for an area having an image height of 50% or more. The application amount uses a condition that is uniquely determined from the distortion aberration correction amount.

r 像高
r Image height

Claims (1)

光学的に樽型歪曲収差が残存した撮像光学系と、それを有する撮像装置からの信号を処理する画像処理装置であって、
画像処理による歪曲収差補正により歪曲収差を補正する機能を有し、
歪曲収差を像高の関数として、
と表現したときに、
光学系に残存する樽型歪曲収差は、
像高5割まで−3%≦dist、
像高9割で−20%≦dist≦−10%
であって、
画像処理による歪曲収差補正を行った画像には、メリディオナル方向のみアパーチャ補正処理乃至エッジ強調処理の画像鮮鋭化処理を行い、サジタル方向は画像鮮鋭化処理を行わず、
メリディオナル方向のみの補正量は、設計時の残存歪曲収差量に基づいて一義的に決められていることを特徴とする撮像及び画像処理装置。
An imaging optical system in which barrel distortion remains optically, and an image processing apparatus that processes a signal from an imaging apparatus having the imaging optical system,
It has a function of correcting distortion by correcting distortion by image processing,
Distortion as a function of image height,
When expressing
The barrel distortion remaining in the optical system is
-3% ≦ dist, up to 50% of image height
-20% ≦ dist ≦ −10% at 90% of image height
Because
The image subjected to distortion correction by image processing is subjected to image sharpening processing of aperture correction processing or edge enhancement processing only in the meridional direction, and image sharpening processing is not performed in the sagittal direction.
An imaging and image processing apparatus characterized in that the correction amount only in the meridional direction is uniquely determined based on the amount of residual distortion at the time of design.
JP2012195621A 2012-09-06 2012-09-06 Image pickup and image processing apparatus and image processing method Pending JP2014053700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195621A JP2014053700A (en) 2012-09-06 2012-09-06 Image pickup and image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195621A JP2014053700A (en) 2012-09-06 2012-09-06 Image pickup and image processing apparatus and image processing method

Publications (1)

Publication Number Publication Date
JP2014053700A true JP2014053700A (en) 2014-03-20

Family

ID=50611789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195621A Pending JP2014053700A (en) 2012-09-06 2012-09-06 Image pickup and image processing apparatus and image processing method

Country Status (1)

Country Link
JP (1) JP2014053700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054371A (en) * 2014-09-03 2016-04-14 キヤノン株式会社 Imaging apparatus
WO2016152343A1 (en) * 2015-03-20 2016-09-29 株式会社日立国際電気 Image-capture device and image-capture method
US9995931B2 (en) 2014-09-26 2018-06-12 Hitachi Kokusai Electric Inc. Method for correcting contour distortions of lenses
US10313615B2 (en) 2014-08-29 2019-06-04 Hitachi Kokusai Electric, Inc. Image processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313615B2 (en) 2014-08-29 2019-06-04 Hitachi Kokusai Electric, Inc. Image processing method
JP2016054371A (en) * 2014-09-03 2016-04-14 キヤノン株式会社 Imaging apparatus
US9995931B2 (en) 2014-09-26 2018-06-12 Hitachi Kokusai Electric Inc. Method for correcting contour distortions of lenses
WO2016152343A1 (en) * 2015-03-20 2016-09-29 株式会社日立国際電気 Image-capture device and image-capture method
JPWO2016152343A1 (en) * 2015-03-20 2017-12-07 株式会社日立国際電気 Imaging apparatus and imaging method

Similar Documents

Publication Publication Date Title
WO2020080053A1 (en) Imaging lens and imaging device
JP4712631B2 (en) Imaging device
WO2016167063A1 (en) Imaging unit and imaging device
JP6448851B2 (en) Zoom lens and imaging device
JP5726491B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP6381376B2 (en) Imaging apparatus, camera system, image processing apparatus, and image processing program
JP2008268937A (en) Imaging device and imaging method
CN105929525B (en) Optical system and image pickup apparatus
US8477428B2 (en) Zoom lens and image pickup apparatus having the zoom lens
JP5968169B2 (en) Imaging device, control method thereof, and control program
JP6401420B2 (en) Zoom lens and imaging device
JP2014138196A (en) Image processing apparatus, image pick-up device and image processing program
CN112166363B (en) Imaging optical system, imaging device, and imaging system
JP6401421B2 (en) Zoom lens and imaging device
US20210096335A1 (en) Imaging optical system, imaging device, and imaging system
JP2012063403A (en) Inner focus type macro lens with vibration isolating function
JP2014053700A (en) Image pickup and image processing apparatus and image processing method
JP2010134347A (en) Taking lens, and image capturing apparatus
JP6422836B2 (en) Zoom lens and imaging device
WO2012132685A1 (en) Focus extending optical system and imaging system
JP7020674B2 (en) Large aperture lens
JP6333076B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP5968121B2 (en) Optical system and imaging apparatus having the same
JP6033904B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP6088343B2 (en) Optical system and imaging apparatus