JP2016054371A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2016054371A
JP2016054371A JP2014178826A JP2014178826A JP2016054371A JP 2016054371 A JP2016054371 A JP 2016054371A JP 2014178826 A JP2014178826 A JP 2014178826A JP 2014178826 A JP2014178826 A JP 2014178826A JP 2016054371 A JP2016054371 A JP 2016054371A
Authority
JP
Japan
Prior art keywords
image height
distortion
image
lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014178826A
Other languages
Japanese (ja)
Other versions
JP6362107B2 (en
Inventor
佐藤 新
Arata Sato
新 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014178826A priority Critical patent/JP6362107B2/en
Publication of JP2016054371A publication Critical patent/JP2016054371A/en
Application granted granted Critical
Publication of JP6362107B2 publication Critical patent/JP6362107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging apparatus comprising an imaging optical system where deterioration in resolution power is small even when negative distortion aberration is corrected electronically.SOLUTION: The imaging apparatus comprises: an imaging optical system; an imaging device which photodetects an image formed by the imaging optical system; and an image processor which corrects the distortion of an image obtained by the imaging device. The image processor sets each enlarging amount at each image height of 50%, 70% and 90% with respect to a maximum image height within the effective range of the imaging device so as to meet a predetermined condition expression.SELECTED DRAWING: Figure 3

Description

本発明は、デジタルカメラ、デジタル一眼レフカメラ、デジタルビデオカメラ等の撮像装置に関するものである。   The present invention relates to an imaging apparatus such as a digital camera, a digital single-lens reflex camera, and a digital video camera.

撮像装置の画像処理部を用いて、撮影画像の座標変換処理を行うことによって、撮影画像の歪曲を補正する技術が知られている(特許文献1)。   A technique for correcting distortion of a captured image by performing coordinate conversion processing of the captured image using an image processing unit of an imaging apparatus is known (Patent Document 1).

特開2006−330675号公報JP 2006-330675 A

撮像装置の画像処理部を用いて、撮像光学系の負の歪曲収差を補正することにより、広画角で小型の撮像光学系を得ることが容易になる。しかしながら、負の歪曲収差を補正するとき、画面中心から画面周辺にかけての歪曲収差の曲線形状が不適切であると、画質が大きく低下する。   By correcting the negative distortion of the imaging optical system using the image processing unit of the imaging apparatus, it becomes easy to obtain a small imaging optical system with a wide angle of view. However, when correcting the negative distortion, if the curve shape of the distortion from the center of the screen to the periphery of the screen is inappropriate, the image quality is greatly reduced.

本発明は、歪曲収差を補正しても解像力の低下が少ない撮像光学系を有する撮像装置を提供することを目的とする。   An object of the present invention is to provide an image pickup apparatus having an image pickup optical system in which a decrease in resolution is small even when distortion is corrected.

本発明の撮像装置は、撮像光学系と、該撮像光学系によって形成した像を受光する撮像素子と、該撮像素子で得られた画像の歪曲を補正する画像処理部を有する撮像装置において、前記撮像素子の有効範囲のうち最大像高を10割とし、歪曲を補正する前の最大像高に対するi割での像高[mm]をy1ai、像高y1aiに前記撮像素子の画素ピッチ[mm]を加えた像高[mm]をy2ai、像高y1aiでの歪曲を補正した後の像高[mm]をy1bi、像高y2aiでの歪曲を補正した後の像高[mm]をy2biとし、最大像高に対してi割での像高におけるメリジオナル方向の引き延ばし量kmiを
kmi=(y2bi-y1bi)/(y2ai-y1ai)
とおくとき、最大像高に対する5割,7割,9割の各像高における引き延ばし量km5,km7,km9はそれぞれ、
0.05<km7-km5<0.12
0.05<km9-km5<0.28
1.18<km7<1.4
なる条件式を満足することを特徴としている。
The imaging apparatus according to the present invention includes an imaging optical system, an imaging element that receives an image formed by the imaging optical system, and an image processing unit that corrects distortion of an image obtained by the imaging element. The maximum image height is 100% of the effective range of the image sensor, and the image height [mm] at i% of the maximum image height before correcting the distortion is y1ai, and the pixel pitch [mm] of the image sensor is the image height y1ai The image height [mm] after adding y2ai, the image height [mm] after correcting the distortion at the image height y1ai is y1bi, the image height [mm] after correcting the distortion at the image height y2ai is y2bi, The extension amount kmi in the meridional direction at an image height that is 10% of the maximum image height.
kmi = (y2bi-y1bi) / (y2ai-y1ai)
When the maximum image height is 50%, 70%, and 90%, the stretch amounts km5, km7, and km9 are respectively
0.05 <km7-km5 <0.12
0.05 <km9-km5 <0.28
1.18 <km7 <1.4
It satisfies the following conditional expression.

本発明によれば、歪曲収差を電子的に補正しても解像力の低下が少ない撮像光学系を有する撮像装置を得ることができる。   According to the present invention, it is possible to obtain an image pickup apparatus having an image pickup optical system with little reduction in resolving power even if distortion is corrected electronically.

メリジオナル方向での歪曲補正の概念図Conceptual diagram of distortion correction in the meridional direction サジタル方向での歪曲補正の概念図Conceptual diagram of distortion correction in the sagittal direction 本発明の歪曲の形の概念図Conceptual diagram of distortion shape of the present invention 実施例1のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 1 (A),(B)数値実施例1のズームレンズの広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Numerical Example 1 実施例2のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 2 (A),(B)数値実施例2のズームレンズの広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Numerical Example 2 実施例3のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 3 (A),(B)数値実施例3のズームレンズの広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Numerical Example 3 実施例4のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens according to Example 4 (A),(B)数値実施例4のズームレンズの広角端と望遠端における収差図(A), (B) Aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Numerical Example 4 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下、本発明の実施例について説明する。本発明の撮像装置は、撮像光学系と、撮像光学系によって形成した像を受光する撮像素子と、撮像素子で得られた画像の歪曲を補正する画像処理部を有する。まず光学系に歪曲が発生したときに解像力が劣化するメカニズムについて説明する。図1(A),(B)にメリジオナル方向の歪曲補正前と、歪曲補正後の概念図を示す。画面中心から対角方向の像高にx軸をとる。補正前のメリジオナル方向の画面中心からの線分の長さ(像高)をL1m(x)、微小領域(画素ピッチ)の線分の長さをΔL1m(x)とする。 Examples of the present invention will be described below. The imaging apparatus of the present invention includes an imaging optical system, an imaging element that receives an image formed by the imaging optical system, and an image processing unit that corrects distortion of an image obtained by the imaging element. First, the mechanism by which the resolving power deteriorates when distortion occurs in the optical system will be described. Figures 1 (A) and 1 (B) show conceptual diagrams before and after distortion correction in the meridional direction. The x-axis is taken from the center of the screen to the diagonal image height. The length (image height) of the line segment from the center of the screen in the meridional direction before correction is L1 m (x), and the length of the line segment of the minute area (pixel pitch) is ΔL1 m (x).

図1(A)で発生している負の歪曲が図1(B)で歪曲は0%に補正されているとしている。線分の長さL1m(x)の補正後の線分の長さをL2m(x)、補正前の微小領域の線分の長さΔL1m(x)の補正後の微小領域の線分の長さをΔL2m(x)とする。歪曲を補正することで長さL1m(x)が長さL2m(x)に、長さΔL1m(x)が長さΔL2m(x)に引き延ばされる。ここで座標変換関数V(x)を以下のように定義する。 It is assumed that the negative distortion occurring in FIG. 1 (A) is corrected to 0% in FIG. 1 (B). The length of the line segment after correction of the length L1 m (x) of the line segment is L2 m (x), and the line of the micro area after correction of the length ΔL1 m (x) of the micro area before the correction Let the length of the minute be ΔL2 m (x). Distortion in the length L1 m correcting (x) the length L2 m (x) and length .DELTA.L1 m (x) is extended in length [Delta] L2 m (x). Here, the coordinate transformation function V (x) is defined as follows.

歪曲補正による引き延ばしは、微小領域の線分がどれだけ引き延ばされるかで計算できるので、メリジオナル方向の引き延ばし関数xm(x)は以下のように定義できる。   Since the stretching by distortion correction can be calculated by how much the line segment of the minute region is stretched, the stretching function xm (x) in the meridional direction can be defined as follows.

ここで、   here,

とする。Distは%表記の歪曲量を表す。yrは実際の像高、yiは理想像高を表す。この式は以下のように変形できる。 And Dist represents the amount of distortion expressed in%. y r represents the actual image height, and y i represents the ideal image height. This equation can be modified as follows.

ここで見通しを良くするために、補正後の歪曲が0%の場合を考える。補正後の歪曲が0%でない場合も補正項が入るだけであり、傾向は一致する。補正後の歪曲が0%の場合なので、歪曲補正前の実際の像高yrが歪曲補正後の理想像高yiとなる引き延ばしに相当する。 Here, in order to improve the prospect, consider the case where the corrected distortion is 0%. Even when the distortion after correction is not 0%, only the correction term is entered, and the trends agree. Since the distortion after correction is 0%, this corresponds to the stretching in which the actual image height y r before distortion correction becomes the ideal image height y i after distortion correction.

となる。メリジオナル方向の歪曲補正による引き延ばしと歪曲の関係を知りたいので、引き延ばし関数xm(x)を歪曲量Distの関数で表現する。補正後の歪曲は0%であるため以下のように変形できる。 It becomes. Since we want to know the relationship between stretching and distortion due to distortion correction in the meridional direction, the stretching function x m (x) is expressed as a function of the distortion amount Dist. Since the corrected distortion is 0%, it can be deformed as follows.

つまりメリジオナル方向にどれだけ引き延ばされるかは歪曲量Distと、歪曲の微分値   In other words, how much is stretched in the meridional direction is the amount of distortion Dist and the differential value of the distortion

に依存する。引き延ばし量が増えると解像力が下がるため、歪曲の微分値 Depends on. Since the resolution decreases as the amount of stretching increases, the differential value of distortion

が大きいほどメリジオナル方向の解像力は下がる。画素ピッチ程度の領域ΔL1m(x)での差分値は微分値とみなせるので、ここでは歪曲の差分値を用いる。 The larger the value, the lower the resolution in the meridional direction. Since the difference value in the region ΔL1 m (x) of about the pixel pitch can be regarded as a differential value, here, the distortion difference value is used.

図2にサジタル方向の歪曲を補正するときの概念図を示す。歪曲補正前のサジタル方向の微小領域の線分をΔL1sとする。歪曲補正後の微小領域の線分をΔL2sとする。歪曲を補正することで線分ΔL1sが線分ΔL2sに引き延ばされる。現在考えているのは微小領域であるために、線分ΔL1sは半径L1,角度θの弧と同じ大きさであるとみなせる。同様に線分ΔL2sは半径L2,角度θの弧と同じ大きさであるとみなせる。従って以下のようになる。   FIG. 2 shows a conceptual diagram when correcting distortion in the sagittal direction. Let ΔL1s be the line segment of the small area in the sagittal direction before distortion correction. Let ΔL2s be the line segment of the minute region after distortion correction. By correcting the distortion, the line segment ΔL1s is extended to the line segment ΔL2s. Since what is currently considered is a minute region, the line segment ΔL1s can be regarded as having the same size as the arc of radius L1 and angle θ. Similarly, the line segment ΔL2s can be regarded as having the same size as the arc having the radius L2 and the angle θ. Therefore, it becomes as follows.

歪曲の補正による引き延ばしは、微小領域の線分ΔL1sがどれだけ引き延ばされるかで計算できるので、サジタル方向の引き延ばし関数xs(x)は以下のように定義できる。 Since the extension by distortion correction can be calculated by how much the line segment ΔL1s of the minute region is extended, the extension function x s (x) in the sagittal direction can be defined as follows.

メリジオナル方向の場合と同様に補正後の歪曲が0%の場合を考えると、歪曲の補正前の像高yrが歪曲補正後の像高yiとなる引き延ばしに相当する。メリジオナル方向の場合と同様に歪曲の補正による引き延ばしと歪曲の関係を知りたいので、xs(x)をDistの関数で表現する。 Considering the case where the distortion after correction is 0% as in the case of the meridional direction, this corresponds to the enlargement in which the image height yr before the distortion correction becomes the image height yi after the distortion correction. As in the case of the meridional direction, we want to know the relationship between stretching by distortion correction and distortion, so x s (x) is expressed by a function of Dist.

つまりサジタル方向にどれだけ引き延ばせるかの引き延ばしは歪曲量Distによって決定される。負の歪曲量Distが大きいほど引き延ばし量は増大し、サジタル方向の解像力は下がる。ここで負の歪曲が大きい場合、歪曲が大きい像高での解像力が低下するメカニズムについて説明する。負の歪曲があると画面周辺部の画像は画面中心部の画像に比べて圧縮された状態になる。被写体が例えば100lp/mmの解像力評価用のチャートであったときに、撮像素子(センサー)上で画面中心の画像は歪曲による圧縮がないのでチャートは100lp/mmで結像する。   That is, the extension of how much can be extended in the sagittal direction is determined by the distortion amount Dist. The larger the negative distortion amount Dist, the larger the stretching amount and the lower the resolution in the sagittal direction. Here, the mechanism by which the resolving power at a high image height when the negative distortion is large will be described. If there is a negative distortion, the image at the periphery of the screen is compressed compared to the image at the center of the screen. For example, when the subject is a chart for evaluation of resolution of 100 lp / mm, the image at the center of the screen on the image sensor (sensor) is not compressed by distortion, so the chart is formed at 100 lp / mm.

これに比べて画面周辺部の画像は歪曲による空間圧縮作用で例えばチャートは140lp/mmで結像する。一般に空間周波数が高くなるほど解像力は低下するので、負の歪曲があると画面周辺部は画面中心に比べて解像力が低下する。以上の理由より、歪曲が発生するとメリジオナル方向は歪曲の差分値   In contrast, the image at the periphery of the screen is formed by a spatial compression effect due to distortion, for example, a chart at 140 lp / mm. In general, the higher the spatial frequency is, the lower the resolving power is. Therefore, if there is a negative distortion, the resolving power at the periphery of the screen is lower than that at the center of the screen. For the above reasons, when distortion occurs, the meridional direction is the difference value of the distortion.

が増加すると解像力が下がる。サジタル方向は歪曲量Distが増加すると引き延ばし関数xs(x)が大きくなり解像力が下がる。一般に歪曲を大きく出すと画面周辺部で急激に歪曲量が増大する傾向がある。そのため、画面周辺部での歪曲の差分値 As the value increases, the resolution decreases. In the sagittal direction, when the amount of distortion Dist increases, the stretching function x s (x) increases and the resolution decreases. In general, when distortion is increased, the amount of distortion tends to increase rapidly at the periphery of the screen. Therefore, the difference value of distortion at the periphery of the screen

が増大し、引き延ばし関数xm(x),xs(x)が増大する。特にxm(x)が大きくなりメリジオナル方向の解像力が大きく下がる。そこで、光学系全体を小型化するために大きい歪曲(最大像高で-10%以上)を出しながら、かつ歪曲の差分値 Increases, and the stretching functions x m (x) and x s (x) increase. In particular, x m (x) increases and the resolution in the meridional direction decreases greatly. Therefore, while producing large distortion (more than -10% at the maximum image height) to reduce the size of the entire optical system, the difference value of distortion

を周辺部でも小さくなるように歪曲の曲線を設定することでメリジオナル方向の解像力が順次低下するようにしてメリジオナル方向の解像力の低下を抑える。 By setting a distortion curve so as to be small even in the peripheral portion, the resolution in the meridional direction is sequentially reduced so that the decrease in the resolution in the meridional direction is suppressed.

本発明の歪曲の形の概念図を図3に示す。図3中の曲線Aは従来の光学系の歪曲の形、曲線B、曲線Cは本発明の光学系に係る歪曲の形である。Dは直線的な歪曲の形である。従来の光学系では、例えば曲線Aの如く設定しており、このため画面周辺部での解像力が低下していた。それに対して直線Dに近づくほど画面周辺部の解像力は良くなる。しかしながら直線Dは画面中心から歪曲を大きく出すことになるため、特に球面収差が増加し、画面中心の解像力が低下する。   A conceptual diagram of the distortion shape of the present invention is shown in FIG. A curve A in FIG. 3 is a distortion shape of a conventional optical system, and a curve B and a curve C are distortion shapes according to the optical system of the present invention. D is a linear distortion shape. In the conventional optical system, for example, the curve A is set, so that the resolving power at the periphery of the screen is reduced. On the other hand, the closer to the straight line D, the better the resolution at the periphery of the screen. However, since the straight line D causes large distortion from the center of the screen, the spherical aberration increases, and the resolution at the center of the screen decreases.

そこで、本発明の光学系では、解像力と球面収差のバランスをとるために曲線Bや曲線Cといった形状の歪曲を残存させている。本発明の光学系は、全系の小型化を図りつつ、歪曲補正したときの解像力の低下を小さくするために、曲線Bや曲線Cで示す形状の歪曲が生ずるように光学系を構成している。   Therefore, in the optical system of the present invention, distortions of shapes such as the curve B and the curve C are left in order to balance the resolving power and the spherical aberration. The optical system of the present invention is configured so that the distortion of the shape shown by the curve B or the curve C is generated in order to reduce the decrease in the resolving power when the distortion is corrected while reducing the size of the entire system. Yes.

本発明は、解像力が低下するメカニズムを考慮し、比較的低い像高から撮像光学系の歪曲収差を積極的に残存させて、画像処理部で電子歪曲の補正を行う撮像装置を提供することを目的としている。特許文献1の変倍光学系は最大像高での歪曲量が-20%程度と大きく、全系の小型化には有利であるが、歪曲の差分値が大きいため、メリジオナル方向の解像力が低下する傾向があった。   The present invention provides an image pickup apparatus that corrects electronic distortion in an image processing unit by actively remaining distortion aberration of an image pickup optical system from a relatively low image height in consideration of a mechanism in which the resolution is lowered. It is aimed. The variable power optical system of Patent Document 1 has a large distortion amount of about -20% at the maximum image height, which is advantageous for miniaturization of the entire system, but the resolution value in the meridional direction decreases because the difference value of distortion is large. There was a tendency to.

本発明の撮像装置に用いる撮像光学系は、広画角化及び全系の小型化を図ることを目的としている。このときの各像高における歪曲の曲線形状が所定の像高において所定の引き延ばし量で電子的に補正したとき、歪曲が0%となるように設定している。即ち、撮像光学系の歪曲を積極的に出すとき、各像高における歪曲が所定の引き延ばし量で電子的に補正したとき、0%となるように設定している。尚、このとき電子的に補正した歪曲は0%でなくても所定の値(例えば0%〜5%の範囲内)であれば良い。   An image pickup optical system used in the image pickup apparatus of the present invention aims at widening the angle of view and reducing the size of the entire system. The distortion curve shape at each image height at this time is set so that the distortion becomes 0% when electronically corrected at a predetermined image height with a predetermined stretch amount. That is, when the distortion of the imaging optical system is positively set, the distortion at each image height is set to 0% when electronically corrected with a predetermined stretch amount. At this time, the electronically corrected distortion is not limited to 0%, but may be a predetermined value (for example, within a range of 0% to 5%).

本発明に係る撮像光学系は単一焦点距離の光学系の他にズームレンズであっても良い。ズームレンズのときは広角端におけるズーム位置を基準に各構成要件を設定すればよい。   The imaging optical system according to the present invention may be a zoom lens in addition to a single focal length optical system. In the case of a zoom lens, each constituent element may be set based on the zoom position at the wide-angle end.

撮像素子の有効範囲のうち最大像高を10割とする。歪曲を補正する前の最大像高に対するi割での像高[mm]をy1aiとする。像高y1aiに撮像素子の画素ピッチ[mm]を加えた像高[mm]をy2ai、像高y1aiでの歪曲を補正した後の像高[mm]をy1biとする。像高y2aiでの歪曲を補正した後の像高[mm]をy2biとする。最大像高に対してi割での像高におけるメリジオナル方向の引き延ばし量kmiを
kmi=(y2bi-y1bi)/(y2ai-y1ai)
とする。
The maximum image height is set to 100% of the effective range of the image sensor. Let y1ai be the image height [mm] at i% of the maximum image height before correcting the distortion. The image height [mm] obtained by adding the pixel pitch [mm] of the image sensor to the image height y1ai is y2ai, and the image height [mm] after correcting the distortion at the image height y1ai is y1bi. The image height [mm] after correcting the distortion at the image height y2ai is defined as y2bi. The extension amount kmi in the meridional direction at an image height that is 10% of the maximum image height.
kmi = (y2bi-y1bi) / (y2ai-y1ai)
And

このとき、最大像高に対する5割,7割,9割の各像高における引き延ばし量km5,km7,km9がそれぞれ、
0.05<km7-km5<0.12 ・・・(1)
0.05<km9-km5<0.28 ・・・(2)
1.18<km7<1.4 ・・・(3)
なる条件式を満足するように設定している。
At this time, the stretch amount km5, km7, and km9 at 50%, 70%, and 90% of the maximum image height is
0.05 <km7-km5 <0.12 (1)
0.05 <km9-km5 <0.28 (2)
1.18 <km7 <1.4 (3)
Is set to satisfy the following conditional expression.

条件式(1)はメリジオナル方向の引き延ばし量kmiの歪曲補正後の7割像高と歪曲補正後の5割像高の差の範囲を規定している。条件式(1)の上限値を超えて、引き延ばし量km7が大きくなりすぎると、7割像高でのメリジオナル方向の解像力の劣化が大きくなりすぎるために好ましくない。条件式(1)の下限値を超えて、引き延ばし量km7が小さくなりすぎると、全系の小型化が困難になるために好ましくない。   Conditional expression (1) defines the range of the difference between the 70% image height after distortion correction and the 50% image height after distortion correction of the extension amount kmi in the meridional direction. Exceeding the upper limit value of the conditional expression (1) and the stretching amount km7 becoming too large is not preferable because the resolution in the meridional direction at 70% image height becomes too great. If the lower limit value of conditional expression (1) is exceeded and the amount of extension km7 is too small, it is not preferable because it becomes difficult to downsize the entire system.

条件式(2)は、全系の小型化を図りつつ、歪曲補正後の9割像高で解像力の劣化を少なくするためのものである。条件式(2)は歪曲補正後の9割像高の引き延ばし量km9と歪曲補正後の5割像高の引き延ばし量km5の差の範囲を規定している。条件式(2)の上限値を超えて引き延ばし量km9が大きくなりすぎると、9割像高でのメリジオナル方向の解像力の劣化が顕著になるために好ましくない。条件式(2)の下限値を下回ると引き延ばし量km9が小さくなりすぎ、全系の小型化が困難になるために好ましくない。   Conditional expression (2) is for reducing degradation of resolution at 90% image height after distortion correction while reducing the size of the entire system. Conditional expression (2) defines the range of the difference between the extension amount km9 of 90% image height after distortion correction and the extension amount km5 of 50% image height after distortion correction. Exceeding the upper limit value of the conditional expression (2) and the stretching amount km9 becoming too large are not preferable because the resolution in the meridional direction at 90% image height becomes remarkable. If the lower limit value of conditional expression (2) is not reached, the extension amount km9 becomes too small, and it is difficult to downsize the entire system, which is not preferable.

条件式(3)は、全系の小型化を図りつつ、高い解像力を維持するためのものである。条件式(3)は前述したように歪曲補正後の7割像高での引き延ばし量km7の値の範囲を規定している。条件式(3)の上限値をこえて引き延ばし量km7の値が大きくなりすぎると、像高7割での解像力の劣化が大きくなりすぎるために好ましくない。条件式(3)の下限値を下回ると歪曲量が小さくなり、全系の小型化が困難になるために好ましくない。   Conditional expression (3) is for maintaining a high resolving power while reducing the size of the entire system. Conditional expression (3) defines the range of the value of the stretch amount km7 at the 70% image height after distortion correction as described above. If the value of the extension amount km7 exceeds the upper limit value of the conditional expression (3), the resolution will be excessively deteriorated at an image height of 70%, which is not preferable. If the lower limit of conditional expression (3) is not reached, the amount of distortion becomes small and it is difficult to downsize the entire system, which is not preferable.

条件式(1),(2),(3)を同時に満たす事で、全系の小型化のために必要な歪曲量を出しつつ、出した歪曲量を電子的に補正するときの解像力の劣化を少なくし、小型のデジタルカメラ(撮像装置)を得ている。更に好ましくは条件式(1),(2),(3)の数値範囲を次の如く設定するのが良い。
0.06<km7-km5<0.12 ・・・(1a)
0.07<km9-km5<0.28 ・・・(2a)
1.2<km7<1.4 ・・・(3a)
By satisfying conditional expressions (1), (2), and (3) at the same time, the amount of distortion required for miniaturization of the entire system can be obtained, and the resolution degradation when electronically correcting the amount of distortion produced To obtain a small digital camera (imaging device). More preferably, the numerical ranges of conditional expressions (1), (2), and (3) are set as follows.
0.06 <km7-km5 <0.12 (1a)
0.07 <km9-km5 <0.28 (2a)
1.2 <km7 <1.4 (3a)

また、本発明の一実施形態としての撮像装置は、最大像高に対する3割,5割,7割の各像高における引き延ばし量km3,km5,km7について、
1.05<km3<1.15 ・・・(4)
1.1<km5<1.3 ・・・(5)
1.18<km7<1.40 ・・・(3)
なる条件式を満足する。
In addition, the imaging device as one embodiment of the present invention has an extension amount km3, km5, km7 at each image height of 30%, 50%, and 70% of the maximum image height.
1.05 <km3 <1.15 (4)
1.1 <km5 <1.3 (5)
1.18 <km7 <1.40 (3)
The following conditional expression is satisfied.

条件式 (4),(5),(3)は各々3割像高,5割像高,7割像高のメリジオナル方向における引き延ばし量km3,km5,km7を適切に設定し、全系(光学系全体)の小型化を図りつつ、歪曲補正後の解像力の低下を少なくするためのものである。   Conditional expressions (4), (5), and (3) respectively set the stretch amount km3, km5, and km7 in the meridional direction of 30% image height, 50% image height, and 70% image height appropriately, This is to reduce the decrease in resolution after distortion correction while reducing the size of the entire system.

各像高における引き延ばし量が条件式(3),(4),(5)の下限値又は上限値のいずれかを外れると、全系の小型化を図りつつ、メリジオナル方向の解像力を良好に維持するのが困難になる。例えば上限値を超えると、解像力の低下が増大する。また下限値を超えると歪曲量が少なくなり、全系の小型化が困難になる。更に好ましくは条件式(4),(5)の数値範囲を次の如く設定するのが良い。   If the amount of enlargement at each image height deviates from either the lower limit value or the upper limit value of conditional expressions (3), (4), and (5), the resolution in the meridional direction is maintained well while reducing the size of the entire system. It becomes difficult to do. For example, when the upper limit is exceeded, the decrease in resolution increases. When the lower limit is exceeded, the amount of distortion decreases, making it difficult to downsize the entire system. More preferably, the numerical ranges of conditional expressions (4) and (5) should be set as follows.

1.06<km3<1.10 ・・・(4a)
1.13<km5<1.25 ・・・(5a)
最大像高に対してi割での像高におけるサジタル方向の引き延ばし量ksiを
ksi=y2bi/y2ai
とおくとき、最大像高に対する9割の像高における引き延ばし量ks9は、
1.11<ks9<1.40 ・・・(6)
なる条件式を満足するのが良い。
1.06 <km3 <1.10 (4a)
1.13 <km5 <1.25 ・ ・ ・ (5a)
Stretching amount ksi in the sagittal direction at an image height that is i% of the maximum image height
ksi = y2bi / y2ai
In this case, the stretching amount ks9 at 90% of the maximum image height is
1.11 <ks9 <1.40 (6)
It is good to satisfy the following conditional expression.

条件式(6)はサジタル方向の歪曲補正後の9割像高の引き延ばし量ks9の範囲を規定している。条件式(6)の上限値を超えると歪曲が大きくなりすぎ、像高9割での解像力の劣化が大きくなりすぎるために好ましくない。条件式(6)の下限値を下回ると歪曲量が小さくなり、全系の小型化が困難になるために好ましくない。さらに望ましくは以下の条件式(6a)を満たすと、全系の小型化を図りつつ、高い解像力を維持するのが容易となる。   Conditional expression (6) defines the range of the enlargement amount ks9 at 90% image height after sagittal distortion correction. Exceeding the upper limit value of conditional expression (6) is not preferable because distortion becomes excessively large and deterioration of resolution at an image height of 90% becomes excessively large. If the lower limit of conditional expression (6) is not reached, the amount of distortion becomes small and it is difficult to downsize the entire system. More desirably, when the following conditional expression (6a) is satisfied, it becomes easy to maintain a high resolving power while downsizing the entire system.

1.11<ks9<1.35 ・・・(6a)
さらに望ましくは以下の条件式(6b)を満たすのが良い。
1.11<ks9<1.30 ・・・(6b)
さらに望ましくは以下の条件式(6c)を満たすのが良い。
1.11<ks9<1.25 ・・・(6c)
最大像高に対する3割,9割の各像高における引き延ばし量km3,km9はそれぞれ、
0.1<km9-km3<0.5 ・・・(7)
なる条件式を満足するのが良い。
1.11 <ks9 <1.35 (6a)
More preferably, the following conditional expression (6b) should be satisfied.
1.11 <ks9 <1.30 (6b)
More desirably, the following conditional expression (6c) should be satisfied.
1.11 <ks9 <1.25 (6c)
The stretch amounts km3 and km9 at 30% and 90% of the maximum image height are respectively
0.1 <km9-km3 <0.5 (7)
It is good to satisfy the following conditional expression.

条件式(7)は画面全体での解像力の劣化を小さくするためのものである。条件式(7)は歪曲補正後の9割像高の引き延ばし量km9と歪曲補正後の3割像高の引き延ばし量km3の差の範囲を規定している。条件式(7)の上限値を超えると9割像高の引き延ばし量km9が大きくなりすぎ、9割像高でのメリジオナル方向の解像力の劣化が顕著になるために好ましくない。条件式(7)の下限値を下回ると、引き延ばし量km3の値が大きくなりすぎ、3割像高でのメリジオナル方向の解像力の劣化が顕著になるために好ましくない。   Conditional expression (7) is for reducing the degradation of the resolution on the entire screen. Conditional expression (7) defines the range of the difference between the stretch amount km9 of 90% image height after distortion correction and the stretch amount km3 of 30% image height after distortion correction. Exceeding the upper limit of conditional expression (7) is not preferable because the 90% image height enlargement amount km9 becomes too large, and the resolution in the meridional direction becomes significant at 90% image height. If the lower limit value of conditional expression (7) is not reached, the value of the stretch amount km3 becomes too large, and the resolution in the meridional direction at 30% image height becomes remarkable, which is not preferable.

さらに望ましくは以下の条件式(7a)を満たすと画面全体での解像力の劣化を低減できるために良い。
0.10<km9-km3<0.45・・・(7a)
More desirably, the following conditional expression (7a) is satisfied because the degradation of the resolution of the entire screen can be reduced.
0.10 <km9-km3 <0.45 ... (7a)

次に各実施例のレンズ構成について説明する。本発明において特に断りがない限り、計算に用いる歪曲補正は、歪曲補正後に歪曲が0%になる補正を指す。引き延ばし量kmi、ksiの値は特に歪曲が顕著になりやすい広角端で計算を行っている。また歪曲は物体距離が無限遠の状態で計算している。各条件式は光学系が単一焦点距離のときは無限遠にフォーカスしているとき、ズームレンズのときはズームレンズのいずれかのズーム位置で満たされていればよく、ズーム全域で必ずしも満たす必要はない。   Next, the lens configuration of each example will be described. Unless otherwise specified in the present invention, the distortion correction used in the calculation refers to a correction in which the distortion becomes 0% after the distortion correction. The values of stretch amounts kmi and ksi are calculated at the wide-angle end where distortion tends to be particularly noticeable. The distortion is calculated with the object distance at infinity. Each conditional expression must be satisfied at any zoom position of the zoom lens when the optical system is focused at infinity when the optical system has a single focal length, and must be satisfied throughout the entire zoom range. There is no.

数値実施例において歪曲補正後の歪曲が0%になるように補正を行っているが、本発明の範囲はこれに限定されるものではない。引き延ばし量kmi,ksiの値は、歪曲補正後の歪曲が0%の場合で計算するが、実施形で例えば歪曲を0.5%残した状態に歪曲補正したとしても良い。歪曲補正後の歪曲は0〜5%程度あっても良い。   In the numerical examples, correction is performed so that the distortion after distortion correction is 0%, but the scope of the present invention is not limited to this. The values of the stretching amounts kmi and ksi are calculated when the distortion after distortion correction is 0%, but the distortion correction may be performed in a state where, for example, 0.5% of distortion is left in the embodiment. The distortion after distortion correction may be about 0 to 5%.

[実施例1]
以下、図4を参照して、本発明の実施例1に係るズームレンズのレンズ構成について説明する。図5(A),(B)は実施例1の広角端と望遠端における収差図である。収差図においてdはd線、gはg線である。ΔMはメリジオナル像面、ΔSはサジタル像面である。倍率色収差はg線について示している。以下、収差図は全て同じである。
[Example 1]
Hereinafter, the lens configuration of the zoom lens according to Example 1 of the present invention will be described with reference to FIG. FIGS. 5A and 5B are aberration diagrams of the first embodiment at the wide-angle end and the telephoto end. In the aberration diagrams, d is the d-line and g is the g-line. ΔM is a meridional image plane, and ΔS is a sagittal image plane. The lateral chromatic aberration is shown for the g-line. Hereinafter, all aberration diagrams are the same.

図4に示す実施例1のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群L1、開口絞りSP、正の屈折力の第2レンズ群L2、フレアカット絞りFC、正の屈折力の第3レンズ群L3を有している。GBはガラスブロックである。矢印は広角端から望遠端へのズーミングに際しての移動方向を示している。広角端から望遠端へのズーミングに際しての各レンズ群の移動は次のとおりである。   The zoom lens of Example 1 shown in FIG. 4 includes, in order from the object side to the image side, a first lens unit L1 having a negative refractive power, an aperture stop SP, a second lens unit L2 having a positive refractive power, and a flare-cut stop FC. The third lens unit L3 has a positive refractive power. GB is a glass block. The arrow indicates the moving direction during zooming from the wide-angle end to the telephoto end. The movement of each lens unit during zooming from the wide-angle end to the telephoto end is as follows.

第1レンズ群L1は像側に凸状の軌跡を描いて移動し、望遠端で広角端よりも物体側に位置する。開口絞りSPと、第2レンズ群L2は一体となって(同じ軌跡で)物体側に移動する。第3レンズ群L3は物体側に移動する。ズーミングに際してガラスブロックGBは不動である。物体距離が無限遠から至近になるに従って第3レンズ群L3は物体側に移動する。実施例1において歪曲補正後の最大像高(10割像高)は4.6285mmとして計算している。撮像素子として有効寸法5.55mm×7.41mmのセンサーを想定している。また画素ピッチは2μmとして計算している。   The first lens unit L1 moves along a locus convex toward the image side, and is positioned closer to the object side at the telephoto end than at the wide-angle end. The aperture stop SP and the second lens group L2 move together (with the same trajectory) toward the object side. The third lens unit L3 moves to the object side. The glass block GB does not move during zooming. As the object distance becomes closer to infinity, the third lens unit L3 moves to the object side. In Example 1, the maximum image height (100% image height) after distortion correction is calculated as 4.6285 mm. A sensor with an effective dimension of 5.55mm x 7.41mm is assumed as an image sensor. The pixel pitch is calculated as 2 μm.

従来の光学系では、全系の小型化の効果を優先して最大歪曲量を15%程度出すとすると、一般に7割像高での引き延ばし量km7は1.4程度になる。引き延ばし量に比例してメリジオナル方向の評価周波数は変化するので、例えば評価周波数を1001p/mmとすると、1401p/mmで評価することに相当する。   In a conventional optical system, if the maximum distortion amount is about 15% with priority given to the effect of miniaturization of the entire system, the extension amount km7 at 70% image height is generally about 1.4. Since the evaluation frequency in the meridional direction changes in proportion to the amount of stretching, for example, assuming that the evaluation frequency is 1001 p / mm, this is equivalent to evaluating at 1401 p / mm.

実施例1での引き延ばし量km7の値は1.28であり、1281p/mmで評価する事になる。波長587.6nmで像高3.26mmの単色MTFを計算すると、空間周波数128lp/mmのメリジオナル方向でMTFは20%、空間周波数140lp/mmのメリジオナル方向でMTFは15%となり向上している。一般に評価周波数が低くなると解像力は高くなるので、歪曲の差分値に注目することで解像力の劣化を低減できていることが分かる。   The value of the stretch amount km7 in Example 1 is 1.28, and the evaluation is performed at 1281 p / mm. When calculating a monochromatic MTF with a wavelength of 587.6 nm and an image height of 3.26 mm, the MTF is improved by 20% in the meridional direction with a spatial frequency of 128 lp / mm and 15% in the meridional direction with a spatial frequency of 140 lp / mm. In general, when the evaluation frequency is lowered, the resolving power is increased. Therefore, it is understood that the deterioration of the resolving power can be reduced by paying attention to the difference value of the distortion.

[実施例2]
以下、図6を参照して、本発明の実施例2に係るズームレンズのレンズ構成について説明する。図7(A),(B)は実施例2の広角端と望遠端における収差図である。図6に示す実施例2のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、負の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、から構成されている。開口絞りSPは第2レンズ群L2中に含まれている。矢印は広角端から望遠端へのズーミングに際しての移動方向を示している。広角端から望遠端へのズーミングに際しての各レンズ群の移動は次のとおりである。
[Example 2]
Hereinafter, the lens configuration of the zoom lens according to Example 2 of the present invention will be described with reference to FIG. FIGS. 7A and 7B are aberration diagrams of the second embodiment at the wide-angle end and the telephoto end. The zoom lens of Example 2 shown in FIG. 6 includes, in order from the object side to the image side, a first lens unit L1 having a negative refractive power, a second lens unit L2 having a positive refractive power, and a third lens having a negative refractive power. The lens unit includes a group L3 and a fourth lens unit L4 having a positive refractive power. The aperture stop SP is included in the second lens unit L2. The arrow indicates the moving direction during zooming from the wide-angle end to the telephoto end. The movement of each lens unit during zooming from the wide-angle end to the telephoto end is as follows.

第1レンズ群L1は像側に凸状の軌跡で移動し、第2レンズ群L2は物体側に移動する。第3レンズ群L3は物体側に、第4レンズ群L4は物体側に移動する。実施例2において最大像高は13.63mm としている。撮像素子としてAPS-Cサイズ(有効寸法15.1mm×22.7mm)のセンサーを想定している。画素ピッチは4.3μmとして計算している。   The first lens unit L1 moves along a locus convex toward the image side, and the second lens unit L2 moves toward the object side. The third lens unit L3 moves to the object side, and the fourth lens unit L4 moves to the object side. In Example 2, the maximum image height is 13.63 mm. A sensor of APS-C size (effective dimension 15.1mm x 22.7mm) is assumed as an image sensor. The pixel pitch is calculated as 4.3 μm.

実施例2での7割像高での引き延ばし量km7の値は1.27である。評価周波数は歪曲のないデジタル一眼レフカメラで例えば評価周波数を30lp/mmとすると39.3lp/mmで評価する事になる。従来の光学系は実施例1と同様に考えると、引き延ばし量km7は1.4程度となり421p/mmで評価することに相当する。波長587.6nmで像高9.6mmの単色MTFを計算すると、空間周波数39.3lp/mmのメリジオナル方向でMTFは29%、空間周波数42lp/mmのメリジオナル方向でMTFは26%となり向上している。実施例1の場合と同様に、歪曲の差分値に注目することで解像力の劣化を低減できていることが分かる。   In Example 2, the value of the stretching amount km7 at the 70% image height is 1.27. For example, if the evaluation frequency is 30 lp / mm with a digital single-lens reflex camera without distortion, the evaluation frequency is 39.3 lp / mm. When the conventional optical system is considered in the same manner as in Example 1, the extension amount km7 is about 1.4, which is equivalent to evaluation at 421 p / mm. When calculating a monochromatic MTF with a wavelength of 587.6 nm and an image height of 9.6 mm, the MTF was improved by 29% in the meridional direction with a spatial frequency of 39.3 lp / mm and 26% in the meridional direction with a spatial frequency of 42 lp / mm. As in the case of the first embodiment, it can be seen that the deterioration of the resolution can be reduced by paying attention to the difference value of the distortion.

[実施例3]
以下、図8を参照して、本発明の実施例3に係るズームレンズのレンズ構成について説明する。図9(A),(B)は実施例3の広角端と望遠端における収差図である。図8に示す実施例3のズームレンズは、物体側から像側へ順に次のとおりである。正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、開口絞りSP、正の屈折力の第3レンズ群L3、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5を有する。GBはガラスブロックである。矢印は広角端から望遠端へのズーミングに際しての移動方向を示している。広角端から望遠端へのズーミングに際しての各レンズ群の移動は次のとおりである。
[Example 3]
Hereinafter, the lens configuration of the zoom lens according to Example 3 of the present invention will be described with reference to FIG. 9A and 9B are aberration diagrams of Example 3 at the wide-angle end and the telephoto end. The zoom lens of Example 3 shown in FIG. 8 is as follows in order from the object side to the image side. First lens unit L1 with positive refractive power, second lens unit L2 with negative refractive power, aperture stop SP, third lens unit L3 with positive refractive power, fourth lens unit L4 with negative refractive power, positive A fifth lens unit L5 having refractive power is included. GB is a glass block. The arrow indicates the moving direction during zooming from the wide-angle end to the telephoto end. The movement of each lens unit during zooming from the wide-angle end to the telephoto end is as follows.

第1レンズ群L1は像側に凸状の軌跡で移動し、望遠端で広角端よりも物体側に位置する。第2レンズ群L2は像側に凸状の軌跡で移動し、望遠端で広角端よりも像側に位置する。開口絞りSPは他のレンズ群と独立に(異なった軌跡で)移動する。第3レンズ群L3は物体側に移動する。第4レンズ群L4は物体側に移動する。第5レンズ群L5は物体側に凸状の軌跡で移動する。ガラスブロックGBはズーミングに際して不動である。   The first lens unit L1 moves along a locus convex toward the image side, and is positioned closer to the object side at the telephoto end than at the wide-angle end. The second lens unit L2 moves along a locus convex toward the image side, and is positioned closer to the image side than the wide-angle end at the telephoto end. The aperture stop SP moves independently of other lens groups (with different trajectories). The third lens unit L3 moves to the object side. The fourth lens unit L4 moves to the object side. The fifth lens unit L5 moves along a locus convex toward the object side. The glass block GB does not move during zooming.

実施例3は実施例1と比較して高ズーム比化を達成している。一般に光学系の広画角化、高ズーム比化に対する全系の小型化は相反する。このため少しでも小型化するために電子的に歪曲を補正することを導入している。条件式(3)は数値実施例1乃至4の中で最大であり、全系の小型化を最大限に行っている。実施例3において撮像素子は1/2.3型(有効寸法4.65mm×6.2mm)を想定し、最大像高は3.875mmとし、画素ピッチは1.4μmとして計算している。   The third embodiment achieves a higher zoom ratio than the first embodiment. Generally, downsizing of the entire system is contrary to widening the angle of view and high zoom ratio of the optical system. For this reason, in order to reduce the size as much as possible, electronic distortion correction is introduced. Conditional expression (3) is the largest among the numerical examples 1 to 4, and the entire system is miniaturized to the maximum. In Example 3, the image sensor is assumed to be 1 / 2.3 type (effective size 4.65 mm × 6.2 mm), the maximum image height is 3.875 mm, and the pixel pitch is 1.4 μm.

実施例3での引き延ばし量km7の値は1.32である。評価周波数は歪曲のないデジタルカメラで例えば評価周波数を100lp/mmとすると132p/mmで評価する事になる。従来の光学系は実施例1と同様に考えると、引き延ばし量km7は1.4程度となり1401p/mmで評価することに相当する。波長587.6nmで像高2.73mmの単色MTFを計算すると、空間周波数132lp/mmのメリジオナル方向でMTFは17%、空間周波数140lp/mmのメリジオナル方向でMTFは16%となり向上している。実施例1の場合と同様に、歪曲の差分値に注目することで解像力の劣化を低減できていることが分かる。   The value of the stretching amount km7 in Example 3 is 1.32. For example, if the evaluation frequency is 100 lp / mm with an undistorted digital camera, the evaluation frequency is 132 p / mm. When the conventional optical system is considered in the same manner as in Example 1, the extension amount km7 is about 1.4, which corresponds to evaluation at 1401 p / mm. When a monochromatic MTF with a wavelength of 587.6 nm and an image height of 2.73 mm is calculated, the MTF is improved by 17% in the meridional direction at a spatial frequency of 132 lp / mm and 16% in the meridional direction at a spatial frequency of 140 lp / mm. As in the case of the first embodiment, it can be seen that the deterioration of the resolution can be reduced by paying attention to the difference value of the distortion.

[実施例4]
以下、図10を参照して、本発明の実施例4に係るズームレンズのレンズ構成について説明する。図11(A),(B)は実施例4の広角端と望遠端における収差図である。図10に示す実施例4のズームレンズは、物体側から像側へ順に、負の屈折力の第1レンズ群L1、開口絞りSP、正の屈折力の第2レンズ群L2、フレアカット絞りFC、正の屈折力の第3レンズ群L3を有している。GBはガラスブロックである。
[Example 4]
Hereinafter, the lens configuration of the zoom lens according to Example 4 of the present invention will be described with reference to FIG. 11A and 11B are aberration diagrams at the wide-angle end and the telephoto end of Example 4. The zoom lens of Example 4 shown in FIG. 10 includes, in order from the object side to the image side, a first lens unit L1 having a negative refractive power, an aperture stop SP, a second lens unit L2 having a positive refractive power, and a flare-cut stop FC. The third lens unit L3 has a positive refractive power. GB is a glass block.

矢印は広角端から望遠端へのズーミングに際しての移動方向を示している。広角端から望遠端へのズーミングに際しての各レンズ群の移動は次のとおりである。第1レンズ群L1は像側に凸状の軌跡を描いて移動し、望遠端で広角端よりも物体側に位置する。開口絞りSPと、第2レンズ群L2は一体となって物体側に移動する。第3正レンズ群L3は変倍時に像側に移動する。ズーミングに際してガラスブロックGBは不動である。物体距離が無限遠から至近になるフォーカシングに際して第3レンズ群L3は物体側に移動する。   The arrow indicates the moving direction during zooming from the wide-angle end to the telephoto end. The movement of each lens unit during zooming from the wide-angle end to the telephoto end is as follows. The first lens unit L1 moves along a locus convex toward the image side, and is positioned closer to the object side at the telephoto end than at the wide-angle end. The aperture stop SP and the second lens unit L2 move together to the object side. The third positive lens unit L3 moves to the image side during zooming. The glass block GB does not move during zooming. The third lens unit L3 moves to the object side during focusing when the object distance is close to infinity.

条件式(1),(2),(3)は数値実施例1乃至4の中で最小であり、解像力の劣化が少ない。実施例4において歪曲補正後の最大像高は4.6285mmとして計算している。撮像素子として有効寸法5.55mm×7.41mmのセンサーを想定している。また画素ピッチは2μmとして計算している。   Conditional expressions (1), (2), and (3) are the smallest among the numerical examples 1 to 4, and the degradation of the resolution is small. In Example 4, the maximum image height after distortion correction is calculated as 4.6285 mm. A sensor with an effective dimension of 5.55mm x 7.41mm is assumed as an image sensor. The pixel pitch is calculated as 2 μm.

実施例4での引き延ばし量km7の値は1.22である。評価周波数は歪曲のないデジタルカメラで例えば評価周波数を100lp/mmとすると122p/mmで評価する事になる。従来の光学系は実施例1と同様に考えると、引き延ばし量km7は1.4程度となり1401p/mmで評価することに相当する。波長587.6nmで像高3.26mmの単色MTFを計算すると、空間周波数122lp/mmのメリジオナル方向でMTFは45%、空間周波数140lp/mmのメリジオナル方向でMTFは38%となり向上している。実施例1の場合と同様に、歪曲の差分値に注目することで解像力の劣化を低減できていることが分かる。   The value of the stretch amount km7 in Example 4 is 1.22. For example, if the evaluation frequency is 100 lp / mm with a digital camera without distortion, the evaluation frequency is 122 p / mm. When the conventional optical system is considered in the same manner as in Example 1, the extension amount km7 is about 1.4, which corresponds to evaluation at 1401 p / mm. When calculating a monochromatic MTF with a wavelength of 587.6 nm and an image height of 3.26 mm, the MTF is improved by 45% in the meridional direction at a spatial frequency of 122 lp / mm and 38% in the meridional direction at a spatial frequency of 140 lp / mm. As in the case of the first embodiment, it can be seen that the deterioration of the resolution can be reduced by paying attention to the difference value of the distortion.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

次に実施例1乃至4に示したズームレンズを撮像装置に適用した実施例を図12を用いて説明する。本発明の撮像装置はズームレンズを含む交換レンズ装置と、交換レンズ装置とカメラマウント部を介して着脱可能に接続され、ズームレンズが形成する光学像を受光して、電気的な画像信号に変換する撮像素子を含むカメラ本体とを備えている。   Next, an embodiment in which the zoom lens shown in Embodiments 1 to 4 is applied to an imaging apparatus will be described with reference to FIG. The imaging apparatus of the present invention is an interchangeable lens apparatus including a zoom lens, and is detachably connected to the interchangeable lens apparatus via a camera mount unit, and receives an optical image formed by the zoom lens and converts it into an electrical image signal. And a camera body including an image pickup device.

図12は一眼レフカメラの要部概略図である。図12において10は実施例1乃至4のズームレンズ1を有する撮影レンズである。ズームレンズ1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮影レンズ10からの光束を上方に反射するクイックリターンミラー3、撮影レンズ10の像形成装置に配置された焦点板4より構成されている。更に焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を観察するための接眼レンズ6などによって構成されている。   FIG. 12 is a schematic diagram of a main part of a single-lens reflex camera. In FIG. 12, reference numeral 10 denotes a photographing lens having the zoom lens 1 of the first to fourth embodiments. The zoom lens 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body, which includes a quick return mirror 3 that reflects the light beam from the photographing lens 10 upward, and a focusing screen 4 that is disposed in the image forming apparatus of the photographing lens 10. Further, it is composed of a penta roof prism 5 for converting an inverted image formed on the focusing screen 4 into an erect image, an eyepiece 6 for observing the erect image, and the like.

7は感光面であり、CCDセンサやCMOSセンサ等のズームレンズによって形成される像を受光する固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。実施例1乃至4にて説明した利益は本実施例に開示したような撮像装置において効果的に享受される。撮像装置としてクイックリターンミラー3のないミラーレスのカメラにも同様に適用できる。   Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) and a silver salt film that receive an image formed by a zoom lens such as a CCD sensor or a CMOS sensor are arranged. At the time of photographing, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the photographing lens 10. The benefits described in the first to fourth embodiments are effectively enjoyed in the imaging apparatus disclosed in the present embodiment. The same applies to a mirrorless camera without the quick return mirror 3 as an imaging device.

次に本発明の各実施例の数値実施例を示す。各数値実施例においてiは物体側からの面の順序を示し、riはレンズ面の曲率半径、diは第i面と第i+1面との間のレンズ肉厚および空気間隔、ndi、νdiはそれぞれd線に対する屈折率、アッベ数を示す。BFはバックフォーカスであり、最終レンズ面から像面までの空気換算での距離で示している。レンズ全長は第1レンズ面から最終レンズ面までの距離にバックフォーカスを加えた値である。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、A4,A6,A8,A10,A12を各々非球面係数としたとき、   Next, numerical examples of the respective embodiments of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, ri is the radius of curvature of the lens surface, di is the lens thickness and air spacing between the i-th surface and the i + 1-th surface, and ndi and νdi are respectively Indicates the refractive index and Abbe number for the d-line. BF is a back focus, and is represented by a distance in terms of air from the final lens surface to the image plane. The total lens length is a value obtained by adding back focus to the distance from the first lens surface to the final lens surface. The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, A4, A6, A8, A10, A12 When the aspheric coefficient is used,

なる式で表している。また[e+X]は[×10+x]を意味し、[e−X]は[×10+x]を意味している。非球面は面番号の後に*を付加して示す。また、各光学面の間隔dが(可変)となっている部分は、ズーミングに際して変化するものであり、別表に焦点距離に応じた面間隔を記している。表1には本発明の上述した条件式と数値実施例の関係を示す。 It is expressed by the following formula. [E + X] means [× 10 + x ], and [e−X] means [× 10 + x ]. An aspherical surface is indicated by adding * after the surface number. Also, the portion where the distance d between the optical surfaces is (variable) changes during zooming, and the surface distance corresponding to the focal length is shown in the separate table. Table 1 shows the relationship between the above-described conditional expressions of the present invention and numerical examples.

数値実施例1
単位 mm

面データ
面番号 r d nd νd 有効径
1* -715.455 1.40 1.84954 40.1 14.29
2* 6.510 2.68 10.94
3* 11.638 1.90 1.94595 18.0 12.60
4 21.257 (可変) 12.20
5(絞り) ∞ 0.40 6.97
6* 8.262 2.70 1.74330 49.3 7.77
7* 162.365 0.20 7.54
8 7.747 1.95 1.51633 64.1 7.40
9 107.724 0.60 1.80518 25.4 6.90
10 5.319 3.15 6.10
11 17.548 1.65 1.72000 50.2 6.50
12 -39.308 0.35 6.50
13 ∞ (可変) 5.10
14* 18.438 2.00 1.48749 70.2 10.80
15 50.327 (可変) 10.80
16 ∞ 1.96 1.51633 64.1 15.00
17 ∞ 0.61 15.00
像面 ∞
Numerical example 1
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * -715.455 1.40 1.84954 40.1 14.29
2 * 6.510 2.68 10.94
3 * 11.638 1.90 1.94595 18.0 12.60
4 21.257 (variable) 12.20
5 (Aperture) ∞ 0.40 6.97
6 * 8.262 2.70 1.74330 49.3 7.77
7 * 162.365 0.20 7.54
8 7.747 1.95 1.51633 64.1 7.40
9 107.724 0.60 1.80518 25.4 6.90
10 5.319 3.15 6.10
11 17.548 1.65 1.72000 50.2 6.50
12 -39.308 0.35 6.50
13 ∞ (variable) 5.10
14 * 18.438 2.00 1.48749 70.2 10.80
15 50.327 (variable) 10.80
16 ∞ 1.96 1.51633 64.1 15.00
17 ∞ 0.61 15.00
Image plane ∞

非球面データ
第1面
K =-1.85357e+004 A 4=-4.16158e-004 A 6= 1.82503e-005
A 8=-2.61932e-007 A10= 1.37270e-009

第2面
K =-2.20782e+000 A 4= 2.05194e-004 A 6= 5.57972e-006
A 8= 6.35090e-007 A10=-1.08481e-008

第3面
K = 4.95770e-002 A 4=-3.16117e-005 A 6=-1.34160e-006
A 8= 1.19908e-007 A10=-1.52323e-009

第6面
K =-1.43493e-001 A 4=-5.85079e-005 A 6= 2.59082e-006
A 8= 7.59699e-008 A10= 1.90128e-009

第7面
K =-6.19299e+003 A 4= 2.41060e-004 A 6=-7.08566e-006
A 8= 8.19434e-007 A10=-1.57781e-008

第14面
K = 4.39801e-001 A 4= 1.45395e-004 A 6=-1.59824e-005
A 8= 6.09418e-007 A10=-8.97900e-009
Aspheric data 1st surface
K = -1.85357e + 004 A 4 = -4.16158e-004 A 6 = 1.82503e-005
A 8 = -2.61932e-007 A10 = 1.37270e-009

Second side
K = -2.20782e + 000 A 4 = 2.05194e-004 A 6 = 5.57972e-006
A 8 = 6.35090e-007 A10 = -1.08481e-008

Third side
K = 4.95770e-002 A 4 = -3.16117e-005 A 6 = -1.34160e-006
A 8 = 1.19908e-007 A10 = -1.52323e-009

6th page
K = -1.43493e-001 A 4 = -5.85079e-005 A 6 = 2.59082e-006
A 8 = 7.59699e-008 A10 = 1.90128e-009

7th page
K = -6.19299e + 003 A 4 = 2.41060e-004 A 6 = -7.08566e-006
A 8 = 8.19434e-007 A10 = -1.57781e-008

14th page
K = 4.39801e-001 A 4 = 1.45395e-004 A 6 = -1.59824e-005
A 8 = 6.09418e-007 A10 = -8.97900e-009

各種データ
ズーム比 3.53
広角 中間 望遠
焦点距離 6.18 13.83 21.84
Fナンバー 2.50 3.78 5.49
半画角(度) 33.39 18.51 11.96
像高 4.07 4.63 4.63
レンズ全長 46.16 43.24 48.89
BF 4.75 3.63 2.51

d 4 17.19 5.00 1.38
d13 5.23 15.63 26.02
d15 2.85 1.73 0.61

入射瞳位置 7.72 5.29 3.93
射出瞳位置 -25.96 -49.23 -94.59
前側主点位置 12.46 15.28 20.76
後側主点位置 -5.57 -13.22 -21.24

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -12.06 5.98 -0.03 -4.53
2 5 13.02 11.00 1.67 -8.37
3 14 58.49 2.00 -0.76 -2.08
4 16 ∞ 1.96 0.65 -0.65
Various data Zoom ratio 3.53
Wide angle Medium Telephoto focal length 6.18 13.83 21.84
F number 2.50 3.78 5.49
Half angle of view (degrees) 33.39 18.51 11.96
Statue height 4.07 4.63 4.63
Total lens length 46.16 43.24 48.89
BF 4.75 3.63 2.51

d 4 17.19 5.00 1.38
d13 5.23 15.63 26.02
d15 2.85 1.73 0.61

Entrance pupil position 7.72 5.29 3.93
Exit pupil position -25.96 -49.23 -94.59
Front principal point position 12.46 15.28 20.76
Rear principal point position -5.57 -13.22 -21.24

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -12.06 5.98 -0.03 -4.53
2 5 13.02 11.00 1.67 -8.37
3 14 58.49 2.00 -0.76 -2.08
4 16 ∞ 1.96 0.65 -0.65

単レンズデータ
レンズ 始面 焦点距離
1 1 -7.59
2 3 24.81
3 6 11.63
4 8 16.06
5 9 -6.97
6 11 17.06
7 14 58.49
8 16 0.00
Single lens Data lens Start surface Focal length
1 1 -7.59
2 3 24.81
3 6 11.63
4 8 16.06
5 9 -6.97
6 11 17.06
7 14 58.49
8 16 0.00

数値実施例2

単位 mm

面データ
面番号 r d nd νd 有効径
1 33.781 2.10 1.77250 49.6 44.84
2 19.506 7.27 34.52
3* 47.969 1.80 1.85400 40.4 33.13
4* 12.261 8.97 24.36
5 -81.369 1.20 1.49700 81.5 24.27
6 25.540 0.33 23.24
7 21.691 6.00 1.80610 33.3 23.42
8 219.669 (可変) 22.13
9* 17.306 2.50 1.85135 40.1 10.31
10 -568.837 2.38 9.49
11(絞り) ∞ 2.51 7.63
12 -52.975 0.80 1.80610 33.3 7.12
13 8.429 3.00 1.59282 68.6 7.02
14 -30.911 0.20 7.14
15 133.860 1.50 1.48749 70.2 7.12
16 -19.488 (可変) 7.77
17 -189.040 1.01 1.60311 60.6 8.58
18 28.470 (可変) 9.27
19 319.925 3.00 1.48749 70.2 19.89
20 -40.785 0.30 20.65
21 -141.113 1.20 1.80518 25.4 21.26
22 509.921 4.00 1.55332 71.7 21.85
23* -26.440 (可変) 22.55
像面 ∞
Numerical example 2

Unit mm

Surface data surface number rd nd νd Effective diameter
1 33.781 2.10 1.77250 49.6 44.84
2 19.506 7.27 34.52
3 * 47.969 1.80 1.85400 40.4 33.13
4 * 12.261 8.97 24.36
5 -81.369 1.20 1.49700 81.5 24.27
6 25.540 0.33 23.24
7 21.691 6.00 1.80610 33.3 23.42
8 219.669 (variable) 22.13
9 * 17.306 2.50 1.85135 40.1 10.31
10 -568.837 2.38 9.49
11 (Aperture) ∞ 2.51 7.63
12 -52.975 0.80 1.80610 33.3 7.12
13 8.429 3.00 1.59282 68.6 7.02
14 -30.911 0.20 7.14
15 133.860 1.50 1.48749 70.2 7.12
16 -19.488 (variable) 7.77
17 -189.040 1.01 1.60311 60.6 8.58
18 28.470 (variable) 9.27
19 319.925 3.00 1.48749 70.2 19.89
20 -40.785 0.30 20.65
21 -141.113 1.20 1.80518 25.4 21.26
22 509.921 4.00 1.55332 71.7 21.85
23 * -26.440 (variable) 22.55
Image plane ∞

非球面データ
第3面
K = 3.22156e+000 A 4= 1.61064e-005 A 6=-1.38171e-008
A 8=-4.78782e-011 A10=-5.48940e-013 A12= 1.67078e-015

第4面
K =-1.94862e-001 A 4= 1.80767e-006 A 6=-8.13067e-008
A 8= 3.12204e-009 A10=-3.16628e-011 A12= 5.07186e-014

第9面
K =-4.41308e-001 A 4=-1.88740e-005 A 6= 3.75387e-007
A 8=-1.00553e-008 A10= 7.26232e-011 A12= 2.75905e-014

第23面
K =-1.90837e-001 A 4= 4.31184e-005 A 6=-6.10361e-007
A 8= 7.03104e-009 A10=-3.32333e-011 A12=-9.21025e-015
A13= 4.76713e-015
Aspheric data 3rd surface
K = 3.22156e + 000 A 4 = 1.61064e-005 A 6 = -1.38171e-008
A 8 = -4.78782e-011 A10 = -5.48940e-013 A12 = 1.67078e-015

4th page
K = -1.94862e-001 A 4 = 1.80767e-006 A 6 = -8.13067e-008
A 8 = 3.12204e-009 A10 = -3.16628e-011 A12 = 5.07186e-014

9th page
K = -4.41308e-001 A 4 = -1.88740e-005 A 6 = 3.75387e-007
A 8 = -1.00553e-008 A10 = 7.26232e-011 A12 = 2.75905e-014

23rd page
K = -1.90837e-001 A 4 = 4.31184e-005 A 6 = -6.10361e-007
A 8 = 7.03104e-009 A10 = -3.32333e-011 A12 = -9.21025e-015
A13 = 4.76713e-015

各種データ
ズーム比 1.90
広角 中間 望遠
焦点距離 9.22 14.05 17.50
Fナンバー 3.39 4.04 4.63
半画角(度) 53.07 44.12 37.91
像高 12.27 13.63 13.63
レンズ全長 89.68 83.60 86.84
BF 14.22 15.78 16.00

d 8 19.98 6.83 3.00
d16 0.73 3.17 4.00
d18 4.68 7.75 13.76
d23 14.22 15.78 16.00

入射瞳位置 18.62 17.15 16.55
射出瞳位置 -31.38 -51.83 -117.70
前側主点位置 25.98 28.28 31.76
後側主点位置 5.00 1.73 -1.50

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -17.71 27.67 6.15 -17.62
2 9 19.24 12.89 3.95 -8.09
3 17 -40.96 1.01 0.55 -0.08
4 19 36.28 8.50 4.53 -1.13
Various data Zoom ratio 1.90
Wide angle Medium telephoto focal length 9.22 14.05 17.50
F number 3.39 4.04 4.63
Half angle of view (degrees) 53.07 44.12 37.91
Image height 12.27 13.63 13.63
Total lens length 89.68 83.60 86.84
BF 14.22 15.78 16.00

d 8 19.98 6.83 3.00
d16 0.73 3.17 4.00
d18 4.68 7.75 13.76
d23 14.22 15.78 16.00

Entrance pupil position 18.62 17.15 16.55
Exit pupil position -31.38 -51.83 -117.70
Front principal point position 25.98 28.28 31.76
Rear principal point position 5.00 1.73 -1.50

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -17.71 27.67 6.15 -17.62
2 9 19.24 12.89 3.95 -8.09
3 17 -40.96 1.01 0.55 -0.08
4 19 36.28 8.50 4.53 -1.13

単レンズデータ
レンズ 始面 焦点距離
1 1 -63.85
2 3 -19.75
3 5 -38.97
4 7 29.46
5 9 19.77
6 12 -8.97
7 13 11.50
8 15 35.01
9 17 -40.96
10 19 74.41
11 21 -137.16
12 22 45.55
Single lens Data lens Start surface Focal length
1 1 -63.85
2 3 -19.75
3 5 -38.97
4 7 29.46
5 9 19.77
6 12 -8.97
7 13 11.50
8 15 35.01
9 17 -40.96
10 19 74.41
11 21 -137.16
12 22 45.55

数値実施例3

単位 mm

面データ
面番号 r d nd νd 有効径
1 108.129 1.80 1.72047 34.7 41.81
2 46.978 5.26 1.49700 81.5 37.75
3 -946.730 0.18 37.67
4 51.474 3.98 1.59282 68.6 37.18
5 280.718 (可変) 36.78
6 142.908 0.95 1.88300 40.8 19.48
7* 9.032 4.03 14.13
8 466.957 0.80 1.80400 46.6 13.77
9 19.862 1.99 13.22
10 -93.334 0.70 1.80400 46.6 13.24
11 62.738 0.20 13.34
12 19.578 1.99 1.94595 18.0 13.68
13 111.681 (可変) 13.49
14 ∞ 0.00 8.81
15(絞り) ∞ 0.00 8.81
16 ∞ (可変) 8.81
17* 12.974 2.93 1.55332 71.7 11.20
18* 18242.199 0.20 11.13
19 13.658 2.51 1.43875 94.9 11.05
20 -126.223 0.32 10.67
21 17.766 0.60 1.83400 37.2 10.10
22 9.367 (可変) 9.48
23 21.414 0.70 1.90366 31.3 9.54
24 8.926 2.72 1.59263 41.7 9.31
25 60.848 (可変) 9.37
26* 21.453 2.13 1.49680 63.2 11.51
27 -50.678 0.60 2.00069 25.5 11.52
28 -102.015 (可変) 11.57
29 ∞ 0.30 1.51633 64.1 30.00
30 ∞ 0.47 30.00
31 ∞ 0.50 1.51633 64.1 30.00
32 ∞ 0.52 30.00
像面 ∞
Numerical example 3

Unit mm

Surface data surface number rd nd νd Effective diameter
1 108.129 1.80 1.72047 34.7 41.81
2 46.978 5.26 1.49700 81.5 37.75
3 -946.730 0.18 37.67
4 51.474 3.98 1.59282 68.6 37.18
5 280.718 (variable) 36.78
6 142.908 0.95 1.88300 40.8 19.48
7 * 9.032 4.03 14.13
8 466.957 0.80 1.80 400 46.6 13.77
9 19.862 1.99 13.22
10 -93.334 0.70 1.80 400 46.6 13.24
11 62.738 0.20 13.34
12 19.578 1.99 1.94595 18.0 13.68
13 111.681 (variable) 13.49
14 ∞ 0.00 8.81
15 (Aperture) ∞ 0.00 8.81
16 ∞ (variable) 8.81
17 * 12.974 2.93 1.55332 71.7 11.20
18 * 18242.199 0.20 11.13
19 13.658 2.51 1.43875 94.9 11.05
20 -126.223 0.32 10.67
21 17.766 0.60 1.83400 37.2 10.10
22 9.367 (variable) 9.48
23 21.414 0.70 1.90366 31.3 9.54
24 8.926 2.72 1.59263 41.7 9.31
25 60.848 (variable) 9.37
26 * 21.453 2.13 1.49680 63.2 11.51
27 -50.678 0.60 2.00069 25.5 11.52
28 -102.015 (variable) 11.57
29 ∞ 0.30 1.51633 64.1 30.00
30 ∞ 0.47 30.00
31 ∞ 0.50 1.51633 64.1 30.00
32 ∞ 0.52 30.00
Image plane ∞

非球面データ
第7面
K =-3.26846e-002 A 4= 4.44730e-006 A 6= 1.98474e-006
A 8=-9.09294e-008 A10= 1.04407e-009

第17面
K =-2.35583e+000 A 4= 8.02150e-005 A 6=-6.01650e-007
A 8=-1.22700e-008 A10= 2.23374e-010

第18面
K =-1.89560e+010 A 4= 3.33961e-005 A 6=-6.54026e-007

第26面
K =-8.62550e-001 A 4= 4.05831e-005 A 6=-5.46445e-006
A 8= 3.46453e-007 A10=-7.66379e-009
Aspheric data 7th surface
K = -3.26846e-002 A 4 = 4.44730e-006 A 6 = 1.98474e-006
A 8 = -9.09294e-008 A10 = 1.04407e-009

17th page
K = -2.35583e + 000 A 4 = 8.02150e-005 A 6 = -6.01650e-007
A 8 = -1.22700e-008 A10 = 2.23374e-010

18th page
K = -1.89560e + 010 A 4 = 3.33961e-005 A 6 = -6.54026e-007

26th page
K = -8.62550e-001 A 4 = 4.05831e-005 A 6 = -5.46445e-006
A 8 = 3.46453e-007 A10 = -7.66379e-009

各種データ
ズーム比 55.73
広角 中間 望遠
焦点距離 3.86 10.55 215.00
Fナンバー 2.87 5.00 7.07
半画角(度) 40.82 20.17 1.03
像高 3.33 3.88 3.88
レンズ全長 104.64 99.63 150.63
BF 9.87 15.27 9.51

d 5 0.80 12.48 66.13
d13 31.78 21.47 1.69
d16 19.59 1.51 1.54
d22 2.06 1.53 5.01
d25 5.92 12.76 32.14
d28 8.36 13.75 7.99

入射瞳位置 18.57 37.18 715.09
射出瞳位置 82.69 -57.35 10777.46
前側主点位置 22.61 45.81 934.38
後側主点位置 -3.34 -10.03 -214.48

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 84.74 11.22 3.15 -4.13
2 6 -8.91 10.66 0.83 -7.94
SP 14 ∞ 0.00 0.00 -0.00
3 17 21.84 6.57 -2.41 -6.01
4 23 -640.72 3.42 21.30 18.59
5 26 43.50 2.73 0.12 -1.61
GB 29 ∞ 1.27 0.50 -0.50
Various data Zoom ratio 55.73
Wide angle Medium Telephoto focal length 3.86 10.55 215.00
F number 2.87 5.00 7.07
Half angle of view (degrees) 40.82 20.17 1.03
Image height 3.33 3.88 3.88
Total lens length 104.64 99.63 150.63
BF 9.87 15.27 9.51

d 5 0.80 12.48 66.13
d13 31.78 21.47 1.69
d16 19.59 1.51 1.54
d22 2.06 1.53 5.01
d25 5.92 12.76 32.14
d28 8.36 13.75 7.99

Entrance pupil position 18.57 37.18 715.09
Exit pupil position 82.69 -57.35 10777.46
Front principal point 22.61 45.81 934.38
Rear principal point position -3.34 -10.03 -214.48

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 84.74 11.22 3.15 -4.13
2 6 -8.91 10.66 0.83 -7.94
SP 14 ∞ 0.00 0.00 -0.00
3 17 21.84 6.57 -2.41 -6.01
4 23 -640.72 3.42 21.30 18.59
5 26 43.50 2.73 0.12 -1.61
GB 29 ∞ 1.27 0.50 -0.50

単レンズデータ
レンズ 始面 焦点距離
1 1 -116.74
2 2 90.21
3 4 105.64
4 6 -10.96
5 8 -25.82
6 10 -46.57
7 12 24.83
8 17 23.46
9 19 28.25
10 21 -24.56
11 23 -17.40
12 24 17.31
13 26 30.64
14 27 -101.23
15 29 0.00
16 31 0.00
Single lens Data lens Start surface Focal length
1 1 -116.74
2 2 90.21
3 4 105.64
4 6 -10.96
5 8 -25.82
6 10 -46.57
7 12 24.83
8 17 23.46
9 19 28.25
10 21 -24.56
11 23 -17.40
12 24 17.31
13 26 30.64
14 27 -101.23
15 29 0.00
16 31 0.00

数値実施例4

単位 mm

面データ
面番号 r d nd νd 有効径
1* -12.772 1.40 1.84954 40.1 13.87
2* 14.060 2.68 10.93
3* 15.399 1.90 1.94595 18.0 12.60
4* 38.111 (可変) 12.20
5(絞り) ∞ 0.40 7.10
6* 7.325 2.70 1.74330 49.3 8.07
7* 7993.996 0.20 7.78
8 10.302 1.95 1.51633 64.1 7.40
9 252.002 0.60 1.80518 25.4 6.90
10 5.032 3.15 6.10
11 13.505 1.65 1.72000 50.2 6.50
12 -116.500 0.35 6.50
13 ∞ (可変) 5.10
14* 21.647 2.00 1.48749 70.2 10.80
15* -70.118 (可変) 10.80
16 ∞ 1.96 1.51633 64.1 15.00
17 ∞ 0.60 15.00
像面 ∞
Numerical example 4

Unit mm

Surface data surface number rd nd νd Effective diameter
1 * -12.772 1.40 1.84954 40.1 13.87
2 * 14.060 2.68 10.93
3 * 15.399 1.90 1.94595 18.0 12.60
4 * 38.111 (variable) 12.20
5 (Aperture) ∞ 0.40 7.10
6 * 7.325 2.70 1.74330 49.3 8.07
7 * 7993.996 0.20 7.78
8 10.302 1.95 1.51633 64.1 7.40
9 252.002 0.60 1.80518 25.4 6.90
10 5.032 3.15 6.10
11 13.505 1.65 1.72000 50.2 6.50
12 -116.500 0.35 6.50
13 ∞ (variable) 5.10
14 * 21.647 2.00 1.48749 70.2 10.80
15 * -70.118 (variable) 10.80
16 ∞ 1.96 1.51633 64.1 15.00
17 ∞ 0.60 15.00
Image plane ∞

非球面データ
第1面
K =-9.22800e+000 A 4= 7.20202e-004 A 6=-1.03552e-005
A 8= 8.21482e-008 A10=-3.80566e-010

第2面
K = 3.20487e+000 A 4= 7.82725e-004 A 6=-1.32225e-006
A 8= 3.77284e-007 A10=-1.20322e-008

第3面
K =-7.66165e-001 A 4=-1.22270e-004 A 6= 9.28959e-006
A 8=-1.44673e-007 A10= 6.65676e-010

第4面
K =-2.50168e+000 A 4=-4.73353e-006 A 6=-6.35396e-008
A 8=-4.30242e-009 A10= 2.50050e-011

第6面
K =-2.85005e-001 A 4=-1.09355e-004 A 6=-5.93715e-006
A 8= 5.18542e-007 A10=-1.31579e-008

第7面
K = 3.62301e+006 A 4=-2.18903e-005 A 6=-7.49735e-007
A 8= 5.51846e-007 A10=-2.06687e-008

第14面
K =-5.57156e+000 A 4= 1.52203e-004 A 6=-2.10569e-005
A 8= 1.13453e-006 A10=-1.70610e-008

第15面
K = 1.34767e+002 A 4=-5.58926e-005 A 6= 7.07720e-006
A 8= 1.93192e-007 A10= 3.33693e-010
Aspheric data 1st surface
K = -9.22800e + 000 A 4 = 7.20202e-004 A 6 = -1.03552e-005
A 8 = 8.21482e-008 A10 = -3.80566e-010

Second side
K = 3.20487e + 000 A 4 = 7.82725e-004 A 6 = -1.32225e-006
A 8 = 3.77284e-007 A10 = -1.20322e-008

Third side
K = -7.66165e-001 A 4 = -1.22270e-004 A 6 = 9.28959e-006
A 8 = -1.44673e-007 A10 = 6.65676e-010

4th page
K = -2.50168e + 000 A 4 = -4.73353e-006 A 6 = -6.35396e-008
A 8 = -4.30242e-009 A10 = 2.50050e-011

6th page
K = -2.85005e-001 A 4 = -1.09355e-004 A 6 = -5.93715e-006
A 8 = 5.18542e-007 A10 = -1.31579e-008

7th page
K = 3.62301e + 006 A 4 = -2.18903e-005 A 6 = -7.49735e-007
A 8 = 5.51846e-007 A10 = -2.06687e-008

14th page
K = -5.57156e + 000 A 4 = 1.52203e-004 A 6 = -2.10569e-005
A 8 = 1.13453e-006 A10 = -1.70610e-008

15th page
K = 1.34767e + 002 A 4 = -5.58926e-005 A 6 = 7.07720e-006
A 8 = 1.93192e-007 A10 = 3.33693e-010

各種データ
ズーム比 3.54
広角 中間 望遠
焦点距離 6.18 13.70 21.84
Fナンバー 2.46 3.70 5.43
半画角(度) 34.21 18.67 11.96
像高 4.20 4.63 4.63
レンズ全長 46.16 43.60 49.38
BF 4.74 3.66 2.57

d 4 17.11 5.06 1.35
d13 5.32 15.90 26.48
d15 2.85 1.77 0.68

入射瞳位置 7.26 4.93 3.63
射出瞳位置 -33.50 -113.93 504.18
前側主点位置 12.31 16.99 26.42
後側主点位置 -5.58 -13.10 -21.24

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 -12.53 5.98 -0.81 -5.54
2 5 13.45 11.00 0.94 -8.84
3 14 34.17 2.00 0.32 -1.03
4 16 ∞ 1.96 0.65 -0.65
Various data Zoom ratio 3.54
Wide angle Medium Telephoto focal length 6.18 13.70 21.84
F number 2.46 3.70 5.43
Half angle of view (degrees) 34.21 18.67 11.96
Image height 4.20 4.63 4.63
Total lens length 46.16 43.60 49.38
BF 4.74 3.66 2.57

d 4 17.11 5.06 1.35
d13 5.32 15.90 26.48
d15 2.85 1.77 0.68

Entrance pupil position 7.26 4.93 3.63
Exit pupil position -33.50 -113.93 504.18
Front principal point position 12.31 16.99 26.42
Rear principal point position -5.58 -13.10 -21.24

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 -12.53 5.98 -0.81 -5.54
2 5 13.45 11.00 0.94 -8.84
3 14 34.17 2.00 0.32 -1.03
4 16 ∞ 1.96 0.65 -0.65

単レンズデータ
レンズ 始面 焦点距離
1 1 -7.69
2 3 26.25
3 6 9.86
4 8 20.75
5 9 -6.38
6 11 16.90
7 14 34.17
GB 16 0.00
Single lens Data lens Start surface Focal length
1 1 -7.69
2 3 26.25
3 6 9.86
4 8 20.75
5 9 -6.38
6 11 16.90
7 14 34.17
GB 16 0.00

L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群 L4 第4レンズ群
L5 第5レンズ群 IP 像面 GB ガラスブロック SP 開口絞り
FC フレアカット絞り
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group
L5 5th lens group IP Image surface GB Glass block SP Aperture stop
FC flare-cut diaphragm

Claims (5)

撮像光学系と、該撮像光学系によって形成した像を受光する撮像素子と、該撮像素子で得られた画像の歪曲を補正する画像処理部を有する撮像装置において、
前記画像処理部による歪曲の補正に際して、前記撮像素子の有効範囲のうち最大像高を10割とし、歪曲を補正する前の最大像高に対するi割での像高[mm]をy1ai、像高y1aiに前記撮像素子の画素ピッチ[mm]を加えた像高[mm]をy2ai、像高y1aiでの歪曲を補正した後の像高[mm]をy1bi、像高y2aiでの歪曲を補正した後の像高[mm]をy2biとし、最大像高に対してi割での像高におけるメリジオナル方向の引き延ばし量kmiを
kmi=(y2bi-y1bi)/(y2ai-y1ai)
とおくとき、最大像高に対する5割,7割,9割の各像高における引き延ばし量km5,km7,km9はそれぞれ、
0.05<km7-km5<0.12
0.05<km9-km5<0.28
1.18<km7<1.4
なる条件式を満足することを特徴とする撮像装置。
In an imaging apparatus having an imaging optical system, an imaging element that receives an image formed by the imaging optical system, and an image processing unit that corrects distortion of an image obtained by the imaging element,
When correcting the distortion by the image processing unit, the maximum image height of the effective range of the image sensor is set to 100%, and the image height [mm] at i% of the maximum image height before correcting the distortion is y1ai, the image height Image height [mm] obtained by adding pixel pitch [mm] of the image sensor to y1ai, y2ai, distortion after image height y1ai was corrected, image height [mm] was corrected to y1bi, and distortion at image height y2ai was corrected The subsequent image height [mm] is y2bi, and the extension amount kmi in the meridional direction at the image height divided by i relative to the maximum image height.
kmi = (y2bi-y1bi) / (y2ai-y1ai)
When the maximum image height is 50%, 70%, and 90%, the stretch amounts km5, km7, and km9 are respectively
0.05 <km7-km5 <0.12
0.05 <km9-km5 <0.28
1.18 <km7 <1.4
An imaging device characterized by satisfying the following conditional expression:
最大像高に対する3割,5割,7割の各像高における引き延ばし量km3,km5,km7はそれぞれ、
1.05<km3<1.15
1.1<km5<1.3
1.18<km7<1.40
なる条件式を満足することを特徴とする請求項1に記載の撮像装置。
The stretch amounts km3, km5, and km7 at 30%, 50%, and 70% of the maximum image height are respectively
1.05 <km3 <1.15
1.1 <km5 <1.3
1.18 <km7 <1.40
The imaging apparatus according to claim 1, wherein the following conditional expression is satisfied.
撮像光学系と、該撮像光学系によって形成した像を受光する撮像素子と、該撮像素子で得られた画像の歪曲を補正する画像処理部を有する撮像装置において、
前記画像処理部による歪曲の補正に際して、前記撮像素子の有効範囲のうち最大像高を10割とし、歪曲を補正する前の最大像高に対するi割での像高[mm]をy1ai、像高y1aiに前記撮像素子の画素ピッチ[mm]を加えた像高[mm]をy2ai、像高y1aiでの歪曲を補正した後の像高[mm]をy1bi、像高y2aiでの歪曲を補正した後の像高[mm]をy2biとし、最大像高に対してi割での像高におけるメリジオナル方向の引き延ばし量kmiを
kmi=(y2bi-y1bi)/(y2ai-y1ai)
とおくとき、最大像高に対する3割,5割,7割の各像高における引き延ばし量km3,km5,km7はそれぞれ、
1.05<km3<1.15
1.1<km5<1.3
1.18<km7<1.40
なる条件式を満足することを特徴とする撮像装置。
In an imaging apparatus having an imaging optical system, an imaging element that receives an image formed by the imaging optical system, and an image processing unit that corrects distortion of an image obtained by the imaging element,
When correcting the distortion by the image processing unit, the maximum image height of the effective range of the image sensor is set to 100%, and the image height [mm] at i% of the maximum image height before correcting the distortion is y1ai, the image height Image height [mm] obtained by adding pixel pitch [mm] of the image sensor to y1ai, y2ai, distortion after image height y1ai was corrected, image height [mm] was corrected to y1bi, and distortion at image height y2ai was corrected The subsequent image height [mm] is y2bi, and the extension amount kmi in the meridional direction at the image height divided by i relative to the maximum image height.
kmi = (y2bi-y1bi) / (y2ai-y1ai)
When the maximum image height is 30%, 50%, and 70%, the stretch amounts km3, km5, and km7 are respectively
1.05 <km3 <1.15
1.1 <km5 <1.3
1.18 <km7 <1.40
An imaging device characterized by satisfying the following conditional expression:
前記最大像高に対してi割での像高におけるサジタル方向の引き延ばし量ksiを
ksi=y2bi/y2ai
とおくとき、最大像高に対する9割の像高における引き延ばし量ks9は、
1.11<ks9<1.40
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
The amount of stretching ksi in the sagittal direction at an image height that is i% of the maximum image height is
ksi = y2bi / y2ai
In this case, the stretching amount ks9 at 90% of the maximum image height is
1.11 <ks9 <1.40
The imaging apparatus according to claim 1, wherein the following conditional expression is satisfied.
前記最大像高に対する3割,9割の各像高における引き延ばし量km3,km9はそれぞれ、
0.1<km9-km3<0.5
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
The stretch amounts km3 and km9 at 30% and 90% of the maximum image height are respectively
0.1 <km9-km3 <0.5
The imaging apparatus according to claim 1, wherein the following conditional expression is satisfied.
JP2014178826A 2014-09-03 2014-09-03 Imaging device Active JP6362107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178826A JP6362107B2 (en) 2014-09-03 2014-09-03 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178826A JP6362107B2 (en) 2014-09-03 2014-09-03 Imaging device

Publications (2)

Publication Number Publication Date
JP2016054371A true JP2016054371A (en) 2016-04-14
JP6362107B2 JP6362107B2 (en) 2018-07-25

Family

ID=55745322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178826A Active JP6362107B2 (en) 2014-09-03 2014-09-03 Imaging device

Country Status (1)

Country Link
JP (1) JP6362107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772939A (en) * 2016-12-27 2017-05-31 东莞市宇瞳光学科技股份有限公司 Small-sized super large aperture tight shot
JP2020190636A (en) * 2019-05-22 2020-11-26 キヤノン株式会社 Zoom lens and imaging apparatus including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308929A (en) * 2005-04-28 2006-11-09 Olympus Imaging Corp Compact zoom photographing optical system and electronic imaging apparatus using the same
JP2009017419A (en) * 2007-07-09 2009-01-22 Canon Inc Imaging apparatus and interchangeable lens device
JP2010147959A (en) * 2008-12-22 2010-07-01 Canon Inc Image capturing apparatus
JP2011128913A (en) * 2009-12-18 2011-06-30 Canon Inc Image processing apparatus and method
JP2014053700A (en) * 2012-09-06 2014-03-20 Canon Inc Image pickup and image processing apparatus and image processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308929A (en) * 2005-04-28 2006-11-09 Olympus Imaging Corp Compact zoom photographing optical system and electronic imaging apparatus using the same
JP2009017419A (en) * 2007-07-09 2009-01-22 Canon Inc Imaging apparatus and interchangeable lens device
JP2010147959A (en) * 2008-12-22 2010-07-01 Canon Inc Image capturing apparatus
JP2011128913A (en) * 2009-12-18 2011-06-30 Canon Inc Image processing apparatus and method
JP2014053700A (en) * 2012-09-06 2014-03-20 Canon Inc Image pickup and image processing apparatus and image processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772939A (en) * 2016-12-27 2017-05-31 东莞市宇瞳光学科技股份有限公司 Small-sized super large aperture tight shot
JP2020190636A (en) * 2019-05-22 2020-11-26 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US11635602B2 (en) 2019-05-22 2023-04-25 Canon Kabushiki Kaisha Zoom lens and imaging apparatus including the same

Also Published As

Publication number Publication date
JP6362107B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP5808311B2 (en) Zoom lens and imaging apparatus having the same
JP6230267B2 (en) Zoom lens and imaging apparatus having the same
US9081170B2 (en) Zoom lens and image pickup apparatus including the same
JP5743810B2 (en) Zoom lens and imaging apparatus having the same
JP6214205B2 (en) Zoom lens and imaging apparatus having the same
JP5465000B2 (en) Zoom lens and imaging apparatus having the same
JP5665489B2 (en) Zoom lens and imaging apparatus having the same
JP2017223755A (en) Imaging optical system
JP2014219616A5 (en)
JP2010134081A (en) Zoom lens and image pickup apparatus including the same
JP2013228450A (en) Zoom lens and imaging apparatus including the same
JP5896825B2 (en) Zoom lens and imaging apparatus having the same
US10571670B2 (en) Zoom lens and image pickup apparatus including the same
JP6438294B2 (en) Zoom lens and imaging apparatus having the same
JP2013250340A (en) Zoom lens and imaging apparatus having the same
JP2013250339A (en) Zoom lens and imaging apparatus having the same
JP5783840B2 (en) Zoom lens and imaging apparatus having the same
JP5665637B2 (en) Zoom lens and imaging apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP5858761B2 (en) Zoom lens and imaging apparatus having the same
JP6362107B2 (en) Imaging device
JP2013156407A (en) Zoom lens and imaging apparatus including the same
JP5197262B2 (en) Zoom lens and imaging apparatus having the same
JP6436653B2 (en) Zoom lens and imaging apparatus having the same
JP2014106390A (en) Zoom lens and optical device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R151 Written notification of patent or utility model registration

Ref document number: 6362107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03