JP2012063403A - Inner focus type macro lens with vibration isolating function - Google Patents

Inner focus type macro lens with vibration isolating function Download PDF

Info

Publication number
JP2012063403A
JP2012063403A JP2010205393A JP2010205393A JP2012063403A JP 2012063403 A JP2012063403 A JP 2012063403A JP 2010205393 A JP2010205393 A JP 2010205393A JP 2010205393 A JP2010205393 A JP 2010205393A JP 2012063403 A JP2012063403 A JP 2012063403A
Authority
JP
Japan
Prior art keywords
lens unit
lens
focal length
conditional expression
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010205393A
Other languages
Japanese (ja)
Other versions
JP5558281B2 (en
Inventor
Yukihiro Yamamoto
幸広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2010205393A priority Critical patent/JP5558281B2/en
Publication of JP2012063403A publication Critical patent/JP2012063403A/en
Application granted granted Critical
Publication of JP5558281B2 publication Critical patent/JP5558281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner focus type macro lens with a vibration isolating function that corrects an image blur sufficiently even when the maximum photographic magnification is nearly the same magnification, and also corrects various aberrations excellently over the entire photographic area.SOLUTION: The inner focus type macro lens consists of a first lens group L1 with positive refracting power, a second lens group L2 with negative refracting power, a third lens group L3 with positive refracting power, a fourth lens group L4 with negative refracting power, a fifth lens group L5 with negative refracting power, and a sixth lens group L6 with positive refracting power. For focusing from an infinite object to a short-range object, the first lens group L1 is fixed with respect to an image plane, the third lens group L3 moves to an object side while the second lens group L2 moves to an image plane side, and the fifth lens group L5 moves in a direction substantially perpendicular to the optical axis to move an image in the direction substantially perpendicular to the optical axis. Further, predetermined conditional expressions are satisfied.

Description

本発明は、インナーフォーカスタイプを採用し、無限遠物体から撮影倍率等倍を可能とし、手ブレ等による像ブレを補正するための防振機能を有する、特にデジタルカメラ、銀塩カメラ及びビデオカメラ等に好適な光学系に関するものである。   The present invention adopts an inner focus type, makes it possible to obtain a magnification equal to that of an object at infinity, and has an anti-vibration function for correcting image blur due to camera shake or the like, particularly a digital camera, a silver salt camera, and a video camera. The present invention relates to a suitable optical system.

防振機能を有するインナーフォーカス式マクロレンズにおいて、防振レンズ群の配置を有利にするための防振レンズ群の特徴は、フォーカス時に光軸方向に移動しないこと、レンズ径が小さいこと、防振時の移動量が少ないことが挙げられる。   In an inner focus type macro lens with anti-vibration function, the features of the anti-vibration lens group to make the arrangement of the anti-vibration lens group advantageous are that it does not move in the optical axis direction during focusing, the lens diameter is small, It is mentioned that there is little movement amount at the time.

また手ブレ量が同じ場合に撮影倍率が等倍近辺であるときの像ブレ量は無限遠撮影時の像ブレ量より大きくなるため、マクロレンズと呼称しない撮影距離が無限遠から撮影倍率0.3倍未満であるレンズと比較して防振レンズ群の移動量に対する像の変化量の割合である防振係数を大きくする必要がある。   Further, when the amount of camera shake is the same, the amount of image blur when the shooting magnification is near the same magnification is larger than the amount of image blur at the time of shooting at infinity, so the shooting distance not called a macro lens is from infinity to the shooting magnification of 0.3. It is necessary to increase the image stabilization coefficient, which is the ratio of the amount of change in the image to the amount of movement of the image stabilization lens group, compared to a lens that is less than double.

防振レンズ群の配置が有利であると考えられる防振機能を有するインナーフォーカス式マクロレンズとして例えば以下の特許文献1〜4が上げられる。   For example, Patent Documents 1 to 4 listed below can be cited as inner focus type macro lenses having an anti-vibration function considered to be advantageous in the arrangement of the anti-vibration lens group.

特開2006−106112号公報JP 2006-106112 A

特開2009−175202号公報JP 2009-175202 A

特開2009−288384号公報JP 2009-288384 A

特開2010−002790号公報JP 2010-002790 A

特許文献1、2、3におけるレンズでは、防振レンズ群がフォーカス時に光軸方向に移動せず、防振レンズの外径が小さいため防振レンズ群の配置に有利である。しかし防振係数が小さいため防振時の防振レンズ移動量を大きくする必要がある。そのため、防振ユニットの大型化を招き、製品外径が大きくなる問題がある。また、製品外径を抑えるために防振時の防振レンズ移動量を少なくすると撮影倍率が等倍近辺であるときの手ブレ補正量が無限遠撮影時と比較して小さくなり、手ブレ補正効果が少なくなる。   The lenses in Patent Documents 1, 2, and 3 are advantageous in disposing the anti-vibration lens group because the anti-vibration lens group does not move in the optical axis direction during focusing and the outer diameter of the anti-vibration lens is small. However, since the image stabilization coefficient is small, it is necessary to increase the amount of movement of the image stabilization lens during image stabilization. For this reason, there is a problem that the vibration isolation unit is increased in size and the outer diameter of the product is increased. Also, if the amount of movement of the anti-vibration lens is reduced to reduce the outer diameter of the product, the amount of camera shake correction when the shooting magnification is near the same magnification will be smaller than when shooting at infinity. Less effective.

一方、特許文献4におけるレンズでは、特許文献1、2、3同様、防振レンズ群がフォーカス時に光軸方向に移動せず、防振レンズの外径が小さいため防振レンズ群の配置に有利であり、さらに、特許文献1、2、3と比較して防振係数が大きく、撮影倍率の絶対値が1.0倍であるときの像ブレ補正量も大きくし易い。しかし、特許文献1、2、3と比較してコマ収差、倍率色収差が悪化しているため防振時の性能劣化が大きい。   On the other hand, in the lens of Patent Document 4, as in Patent Documents 1, 2, and 3, the image stabilizing lens group does not move in the optical axis direction during focusing, and the outer diameter of the image stabilizing lens is small, which is advantageous for the arrangement of the image stabilizing lens group. Furthermore, the image stabilization coefficient is large compared to Patent Documents 1, 2, and 3, and the image blur correction amount when the absolute value of the photographing magnification is 1.0 times is easy to increase. However, compared with Patent Documents 1, 2, and 3, coma aberration and lateral chromatic aberration are deteriorated, so that the performance deterioration during image stabilization is large.

本発明は、防振レンズ群の配置が有利で、最大撮影倍率が等倍近辺であるときにも十分な像ブレ補正が可能であり、かつ全撮影領域で諸収差を良好に補正した、防振機能を有するインナーフォーカス式マクロレンズを提供することを目的とする。   The present invention is advantageous in the arrangement of the anti-vibration lens group, enables sufficient image blur correction even when the maximum photographing magnification is close to the same magnification, and corrects various aberrations well in the entire photographing region. An object of the present invention is to provide an inner focus type macro lens having a vibration function.

物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4、負の屈折力を有する第5レンズ群L5、正の屈折力を有する第6レンズ群L6で構成され、無限遠物体から近距離物体への合焦の際に、第1レンズ群L1は像面に対し固定であり、第2レンズ群L2が像面側へ移動すると同時に第3レンズ群L3が物体側へ移動し、第5レンズ群L5が光軸に対して略垂直方向に移動することで、像を光軸に対して略垂直方向に移動させることが可能であり、以下の条件式を満足することを特徴とする。
(1) 0.05 < |f3/f4| < 1.00
(2) 0.30 < |f5/f456| < 1.10
(3) 0.50 < |f6/f456| < 1.30
(4) 1.00 < |(1−β)×β| < 2.50
f3:第3レンズ群L3の焦点距離
f4:第4レンズ群L4の焦点距離
f5:第5レンズ群L5の焦点距離
f6:第6レンズ群L6の焦点距離
f456:第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離
β:第5レンズ群L5の無限遠合焦時の横倍率
β:第6レンズ群L6の無限遠合焦時の横倍率
In order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a fourth lens having a negative refractive power The lens unit includes a group L4, a fifth lens unit L5 having a negative refractive power, and a sixth lens unit L6 having a positive refractive power, and the first lens unit L1 is focused upon focusing from an object at infinity to a near object. Is fixed with respect to the image plane. At the same time the second lens unit L2 moves to the image plane side, the third lens unit L3 moves to the object side, and the fifth lens unit L5 moves in a direction substantially perpendicular to the optical axis. Thus, the image can be moved in a direction substantially perpendicular to the optical axis, and the following conditional expression is satisfied.
(1) 0.05 <| f3 / f4 | <1.00
(2) 0.30 <| f5 / f456 | <1.10
(3) 0.50 <| f6 / f456 | <1.30
(4) 1.00 <| (1 -β 5) × β 6 | <2.50
f3: focal length of the third lens unit L3 f4: focal length of the fourth lens unit L4 f5: focal length of the fifth lens unit L5 f6: focal length of the sixth lens unit L6 f456: fourth lens unit L4, fifth Composite focal length β 5 of the lens group L5 and the sixth lens group L6: Lateral magnification when the fifth lens group L5 is focused at infinity β 6 : Lateral magnification when the sixth lens group L6 is focused at infinity

また、以下の条件式を満足することを特徴とする。
(5) 0.05 < |Δx3/f| <0.17
(6) 60 < P1ν
(7) 55 < P3ν < 85
Δx3:無限遠物体から近距離物体への合焦時における第3レンズ群L3の移動量
f:無限遠合焦時の全レンズ系の焦点距離
P1ν:第1レンズ群L1の全ての正レンズのd線に対するアッベ数の平均値
P3ν:第3レンズ群L3の全ての正レンズのd線に対するアッベ数の平均値
Further, the following conditional expression is satisfied.
(5) 0.05 <| Δx3 / f | <0.17
(6) 60 <P1ν
(7) 55 <P3ν <85
Δx3: Amount of movement of the third lens unit L3 when focusing from an object at infinity to a near object f: Focal length P1ν of all lens systems when focusing at infinity: All positive lenses of the first lens unit L1 Average Abbe number for d-line P3ν: Average Abbe number for d-line of all positive lenses in third lens unit L3

また、以下の条件式を満足することを特徴とする。
(8) 0.35 < f1/f < 0.65
(9) 0.25 < |f2/f| < 0.50
(10) 0.20 < f3/f < 0.40
(11) 0.30 < |f456/f| < 0.60
f:無限遠合焦時の全レンズ系の焦点距離
f1:第1レンズ群L1の焦点距離
f2:第2レンズ群L2の焦点距離
f3:第3レンズ群L3の焦点距離
f456:第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離
Further, the following conditional expression is satisfied.
(8) 0.35 <f1 / f <0.65
(9) 0.25 <| f2 / f | <0.50
(10) 0.20 <f3 / f <0.40
(11) 0.30 <| f456 / f | <0.60
f: focal length of all lens systems at the time of focusing on infinity f1: focal length of first lens unit L1 f2: focal length of second lens unit L2 f3: focal length of third lens unit L3 f456: fourth lens unit L4, the combined focal length of the fifth lens unit L5 and the sixth lens unit L6

さらに、無限遠物体から近距離物体への合焦の際に、開口絞り、第4レンズ群L4、第5レンズ群L5、第6レンズ群L6が像面に対し固定であることを特徴とする。   Furthermore, the aperture stop, the fourth lens unit L4, the fifth lens unit L5, and the sixth lens unit L6 are fixed with respect to the image plane during focusing from an infinitely distant object to a close object. .

本発明は上記条件を満足することで、防振レンズ群の配置が有利で、最大撮影倍率が等倍近辺であるときにも十分な像ブレ補正が可能であり、かつ全撮影領域で諸収差を良好に補正した、防振機能を有するインナーフォーカ式マクロレンズを提供することが可能となる。   By satisfying the above conditions, the present invention is advantageous in the arrangement of the anti-vibration lens group, can perform sufficient image blur correction even when the maximum photographing magnification is near the same magnification, and has various aberrations in the entire photographing region. It is possible to provide an inner focus type macro lens having an anti-vibration function in which the above is corrected satisfactorily.

本発明の実施例1のレンズ構成図である。It is a lens block diagram of Example 1 of the present invention. 本発明の実施例1の撮影距離無限遠における諸収差である。These are various aberrations at the shooting distance infinite in Example 1 of the present invention. 本発明の実施例1の撮影倍率|β|=1.0における諸収差である。These are various aberrations at the imaging magnification | β | = 1.0 of Example 1 of the present invention. 本発明の実施例1の撮影距離無限遠における標準状態の横収差図である。FIG. 6 is a transverse aberration diagram in a standard state at an imaging distance of infinity according to Example 1 of the present invention. 本発明の実施例1の撮影距離無限遠における0.30°手ブレ補正時の横収差図である。FIG. 6 is a lateral aberration diagram at the time of 0.30 ° camera shake correction at an imaging distance of infinity according to Example 1 of the present invention. 本発明の実施例1の撮影倍率|β|=1.0における標準状態の横収差図である。FIG. 6 is a transverse aberration diagram in a standard state at an imaging magnification | β | = 1.0 in Example 1 of the present invention. 本発明の実施例1の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。FIG. 5 is a lateral aberration diagram at the time of 0.30 ° camera shake correction when the imaging magnification | β | = 1.0 in Example 1 of the present invention. 本発明の実施例2のレンズ構成図である。It is a lens block diagram of Example 2 of this invention. 本発明の実施例2の撮影距離無限遠における諸収差である。These are various aberrations at an imaging distance of infinity in Example 2 of the present invention. 本発明の実施例2の撮影倍率|β|=1.0における諸収差である。These are various aberrations at the imaging magnification | β | = 1.0 in Example 2 of the present invention. 本発明の実施例2の撮影距離無限遠における標準状態の横収差図である。It is a lateral aberration figure of the standard state in the shooting distance infinite distance of Example 2 of this invention. 本発明の実施例2の撮影距離無限遠における0.30°手ブレ補正時の横収差図である。It is a lateral aberration figure at the time of 0.30 degree camera-shake correction | amendment in the shooting distance infinite distance of Example 2 of this invention. 本発明の実施例2の撮影倍率|β|=1.0における標準状態の横収差図である。FIG. 10 is a transverse aberration diagram in a standard state at a photographing magnification | β | = 1.0 in Example 2 of the present invention. 本発明の実施例2の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。FIG. 12 is a lateral aberration diagram at the time of 0.30 ° camera shake correction when the imaging magnification | β | = 1.0 in Example 2 of the present invention. 本発明の実施例3のレンズ構成図である。It is a lens block diagram of Example 3 of the present invention. 本発明の実施例3の撮影距離無限遠における諸収差である。These are various aberrations at the shooting distance infinite in Example 3 of the present invention. 本発明の実施例3の撮影倍率|β|=1.0における諸収差である。These are various aberrations at the imaging magnification | β | = 1.0 in Example 3 of the present invention. 本発明の実施例3の撮影距離無限遠における標準状態の横収差図である。It is a transverse aberration figure of the standard state in the shooting distance infinite distance of Example 3 of the present invention. 本発明の実施例3の撮影距離無限遠における0.30°手ブレ補正時の横収差図である。It is a lateral aberration figure at the time of 0.30 degree camera shake correction | amendment in the shooting distance infinite distance of Example 3 of this invention. 本発明の実施例3の撮影倍率|β|=1.0における標準状態の横収差図である。FIG. 10 is a transverse aberration diagram in a standard state at an imaging magnification | β | = 1.0 in Example 3 of the present invention. 本発明の実施例3の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.30 ° camera shake correction in the imaging magnification | β | = 1.0 of Example 3 of the present invention. 本発明の実施例4のレンズ構成図である。It is a lens block diagram of Example 4 of this invention. 本発明の実施例4の撮影距離無限遠における諸収差である。These are various aberrations at an imaging distance of infinity in Example 4 of the present invention. 本発明の実施例4の撮影倍率|β|=1.0における諸収差である。Aberrations at shooting magnification | β | = 1.0 in Example 4 of the present invention. 本発明の実施例4の撮影距離無限遠における標準状態の横収差図である。It is a lateral aberration figure of the standard state in the shooting distance infinite distance of Example 4 of this invention. 本発明の実施例4の撮影距離無限遠における0.30°手ブレ補正時の横収差図である。It is a lateral aberration figure at the time of 0.30 degree camera shake correction | amendment in the shooting distance infinite distance of Example 4 of this invention. 本発明の実施例4の撮影倍率|β|=1.0における標準状態の横収差図である。FIG. 10 is a transverse aberration diagram in a standard state at a shooting magnification | β | = 1.0 in Example 4 of the present invention. 本発明の実施例4の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.30 ° camera shake correction in the shooting magnification | β | = 1.0 of Example 4 of the present invention. 本発明の実施例5のレンズ構成図である。It is a lens block diagram of Example 5 of this invention. 本発明の実施例5の撮影距離無限遠における諸収差である。These are various aberrations at the shooting distance of infinity in Example 5 of the present invention. 本発明の実施例5の撮影倍率|β|=1.0における諸収差である。Aberrations at photographing magnification | β | = 1.0 in Example 5 of the present invention. 本発明の実施例5の撮影距離無限遠における標準状態の横収差図である。It is a transverse aberration figure of the standard state in the photographing distance infinity of Example 5 of the present invention. 本発明の実施例5の撮影距離無限遠における0.30°手ブレ補正時の横収差図である。It is a lateral aberration figure at the time of 0.30 degree camera shake correction | amendment in the shooting distance infinite distance of Example 5 of this invention. 本発明の実施例5の撮影倍率|β|=1.0における標準状態の横収差図である。FIG. 10 is a transverse aberration diagram in a standard state at a shooting magnification | β | = 1.0 in Example 5 of the present invention. 本発明の実施例5の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。FIG. 10 is a lateral aberration diagram at the time of 0.30 ° camera shake correction in the shooting magnification | β | = 1.0 of Example 5 of the present invention. 第4レンズ群L4の配置の優位性を説明するためにレンズ構成の一部を抜粋した図であり、防振係数が小さい場合である。It is the figure which extracted a part of lens structure in order to demonstrate the predominance of arrangement | positioning of the 4th lens group L4, and is a case where an anti-vibration coefficient is small. 第4レンズ群L4の配置の優位性を説明するためにレンズ構成の一部を抜粋した図であり、防振係数が大きい場合である。It is the figure which extracted a part of lens structure in order to demonstrate the predominance of arrangement of the 4th lens group L4, and is a case where a vibration proof coefficient is large. 第4レンズ群L4の配置の優位性を説明するためにレンズ構成の一部を抜粋した図であり、防振係数が大きいまま防振レンズ群より像側のレンズの光線高を下げた場合である。FIG. 5 is a diagram illustrating a part of the lens configuration in order to explain the superiority of the arrangement of the fourth lens unit L4, in a case where the light ray height of the image side lens is lowered from the anti-vibration lens unit with a large anti-vibration coefficient. is there. 第4レンズ群L4の配置の優位性を説明するためにレンズ構成の一部を抜粋した図であり、防振レンズ群より物体側に負レンズ群を加えた場合である。FIG. 6 is a diagram illustrating a part of the lens configuration for explaining the superiority of the arrangement of the fourth lens unit L4, in which a negative lens unit is added to the object side of the image stabilizing lens unit.

本発明に記載の防振機能を有するインナーフォーカス式マクロレンズは、物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4、負の屈折力を有する第5レンズ群L5、正の屈折力を有する第6レンズ群L6で構成される。   The inner focus type macro lens having the image stabilization function according to the present invention includes, in order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a positive refractive power. A third lens unit L3 having negative refractive power, a fourth lens unit L4 having negative refractive power, a fifth lens unit L5 having negative refractive power, and a sixth lens unit L6 having positive refractive power.

また、本発明に記載の防振機能を有するインナーフォーカス式マクロレンズは、無限遠物体から近距離物体への合焦の際に、第1レンズ群L1は像面に対し固定であり、第2レンズ群L2が像面側へ移動すると同時に第3レンズ群L3が物体側へ移動する。さらに、第5レンズ群L5が光軸に対して略垂直方向に移動することで、像を光軸に対して略垂直方向に移動させることが可能となる。   Further, in the inner focus type macro lens having the image stabilization function according to the present invention, the first lens unit L1 is fixed with respect to the image plane when focusing from an object at infinity to an object at a short distance. At the same time as the lens unit L2 moves to the image plane side, the third lens unit L3 moves to the object side. Further, the fifth lens unit L5 moves in a direction substantially perpendicular to the optical axis, whereby the image can be moved in a direction substantially perpendicular to the optical axis.

図1は本発明の実施例1の防振機能を有するインナーフォーカス式マクロレンズのレンズ構成図を示したものであり、図2は実施例1の撮影距離無限遠における諸収差、図3は実施例1の撮影倍率|β|=1.0における諸収差を表した図である。   FIG. 1 shows a lens configuration diagram of an inner focus type macro lens having an image stabilization function of Example 1 of the present invention, FIG. 2 shows various aberrations at an imaging distance of infinity in Example 1, and FIG. FIG. 6 is a diagram illustrating various aberrations in Example 1 at an imaging magnification of | β | = 1.0.

図4は実施例1の撮影距離無限遠における標準状態での横収差図、図5は実施例1の撮影距離無限遠における0.30°手ブレ補正時の横収差図、図6は実施例1の撮影倍率|β|=1.0における標準状態での横収差図、図7は実施例1の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。   FIG. 4 is a transverse aberration diagram in the standard state at an imaging distance of infinity in Example 1, FIG. 5 is a lateral aberration diagram at the time of infinite imaging distance of Example 1 at the time of 0.30 ° camera shake correction, and FIG. FIG. 7 is a lateral aberration diagram in the standard state at a photographing magnification | β | = 1.0 of FIG. 1, and FIG. 7 is a lateral aberration diagram at the time of 0.30 ° camera shake correction at the photographing magnification | β | = 1.0 of the first embodiment. is there.

なお、各収差図において、d線、g線、C線はそれぞれの波長に対する収差であり、ΔSはサジタル像面、ΔMはメリジオナル像面を示す。これは、以降の収差図においても同様とする。   In each aberration diagram, d-line, g-line, and C-line are aberrations with respect to respective wavelengths, ΔS indicates a sagittal image plane, and ΔM indicates a meridional image plane. The same applies to the subsequent aberration diagrams.

図8は本発明の実施例2の防振機能を有するインナーフォーカス式マクロレンズのレンズ構成図を示したものであり、図9は実施例2の撮影距離無限遠における諸収差、図10は実施例2の撮影倍率|β|=1.0における諸収差を表した図である。   FIG. 8 shows a lens configuration diagram of an inner focus type macro lens having an image stabilization function according to Example 2 of the present invention, FIG. 9 shows various aberrations at an imaging distance of infinity in Example 2, and FIG. FIG. 6 is a diagram illustrating various aberrations in Example 2 at an imaging magnification | β | = 1.0.

図11は実施例2の撮影距離無限遠における標準状態での横収差図、図12は実施例2の撮影距離無限遠における0.30°手ブレ補正時の横収差図、図13は実施例2の撮影倍率|β|=1.0における標準状態での横収差図、図14は実施例2の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。   FIG. 11 is a lateral aberration diagram in the standard state at an imaging distance of infinity in Example 2. FIG. 12 is a lateral aberration diagram at the time of 0.30 ° camera shake correction in Example 2 at an imaging distance of infinity. FIG. FIG. 14 is a lateral aberration diagram in the standard state at an imaging magnification | β | = 1.0 of FIG. 2, and FIG. 14 is a lateral aberration diagram at the time of 0.30 ° camera shake correction at the imaging magnification | β | = 1.0 of Example 2. is there.

図15は本発明の実施例3の防振機能を有するインナーフォーカス式マクロレンズのレンズ構成図を示したものであり、図16は実施例3の撮影距離無限遠における諸収差、図17は実施例3の撮影倍率|β|=1.0における諸収差を表した図である。   FIG. 15 shows a lens configuration diagram of an inner focus type macro lens having an image stabilization function according to Example 3 of the present invention, FIG. 16 shows various aberrations at an imaging distance of infinity in Example 3, and FIG. FIG. 12 is a diagram illustrating various aberrations in Example 3 at an imaging magnification | β | = 1.0.

図18は実施例3の撮影距離無限遠における標準状態での横収差図、図19は実施例3の撮影距離無限遠における0.30°手ブレ補正時の横収差図、図20は実施例3の撮影倍率|β|=1.0における標準状態での横収差図、図21は実施例3の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。   FIG. 18 is a lateral aberration diagram in the standard state at an imaging distance of infinity in Example 3, FIG. 19 is a lateral aberration diagram at the time of infinite imaging distance of Example 3 at the time of 0.30 ° camera shake correction, and FIG. 20 is an example. FIG. 21 is a lateral aberration diagram in the standard state at a shooting magnification | β | = 1.0 of FIG. 3, and FIG. 21 is a lateral aberration diagram at the time of 0.30 ° camera shake correction at the shooting magnification | β | = 1.0 of the third embodiment. is there.

図22は本発明の実施例4の防振機能を有するインナーフォーカス式マクロレンズのレンズ構成図を示したものであり、図23は実施例4の撮影距離無限遠における諸収差、図24は実施例4の撮影倍率|β|=1.0における諸収差を表した図である。   FIG. 22 shows a lens configuration diagram of an inner focus type macro lens having an anti-vibration function according to Example 4 of the present invention. FIG. 23 shows various aberrations at an imaging distance of infinity according to Example 4, and FIG. FIG. 10 is a diagram illustrating various aberrations in Example 4 at an imaging magnification | β | = 1.0.

図25は実施例4の撮影距離無限遠における標準状態での横収差図、図26は実施例4の撮影距離無限遠における0.30°手ブレ補正時の横収差図、図27は実施例4の撮影倍率|β|=1.0における標準状態での横収差図、図28は実施例4の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。   FIG. 25 is a transverse aberration diagram in the standard state at an imaging distance of infinity in Example 4, FIG. 26 is a lateral aberration diagram at the time of infinite imaging distance of Example 4 at the time of 0.30 ° camera shake correction, and FIG. 27 is an example. FIG. 28 is a lateral aberration diagram in the standard state at an imaging magnification | β | = 1.0 of FIG. 4, and FIG. 28 is a lateral aberration diagram at the time of 0.30 ° camera shake correction at the imaging magnification | β | = 1.0 of Example 4. is there.

図29は本発明の実施例5の防振機能を有するインナーフォーカス式マクロレンズのレンズ構成図を示したものであり、図30は実施例5の撮影距離無限遠における諸収差、図31は実施例5の撮影倍率|β|=1.0における諸収差を表した図である。   FIG. 29 shows a lens configuration diagram of an inner focus type macro lens having an anti-vibration function according to Example 5 of the present invention. FIG. 30 shows various aberrations at an imaging distance of infinity in Example 5, and FIG. FIG. 10 is a diagram illustrating various aberrations in Example 5 at an imaging magnification | β | = 1.0.

図32は実施例5の撮影距離無限遠における標準状態での横収差図、図33は実施例5の撮影距離無限遠における0.30°手ブレ補正時の横収差図、図34は実施例5の撮影倍率|β|=1.0における標準状態での横収差図、図35は実施例5の撮影倍率|β|=1.0における0.30°手ブレ補正時の横収差図である。   FIG. 32 is a transverse aberration diagram in the standard state at an imaging distance of infinity in Example 5, FIG. 33 is a lateral aberration diagram at the time of infinite imaging distance of Example 5 at the time of 0.30 ° camera shake correction, and FIG. FIG. 35 is a lateral aberration diagram in the standard state at an imaging magnification | β | = 1.0 of FIG. 5, and FIG. 35 is a lateral aberration diagram at the time of 0.30 ° camera shake correction in the imaging magnification | β | = 1.0 of Example 5. is there.

本発明に記載の防振機能を有するインナーフォーカス式マクロレンズは、さらに以下の条件式を満足するよう構成されている。
(1) 0.05 < |f3/f4| < 1.00
(2) 0.30 < |f5/f456| < 1.10
(3) 0.50 < |f6/f456| < 1.30
(4) 1.00 < |(1−β)×β| < 2.50
The inner focus type macro lens having the image stabilization function according to the present invention is further configured to satisfy the following conditional expression.
(1) 0.05 <| f3 / f4 | <1.00
(2) 0.30 <| f5 / f456 | <1.10
(3) 0.50 <| f6 / f456 | <1.30
(4) 1.00 <| (1 -β 5) × β 6 | <2.50

ここで、f3は第3レンズ群L3の焦点距離、f4は第4レンズ群L4の焦点距離、f5は第5レンズ群L5の焦点距離、f6は第6レンズ群L6の焦点距離、f456は第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離、βは第5レンズ群L5の無限遠合焦時の横倍率、βは第6レンズ群L6の無限遠合焦時の横倍率、fは無限遠合焦時の全レンズ系の焦点距離である。 Here, f3 is the focal length of the third lens unit L3, f4 is the focal length of the fourth lens unit L4, f5 is the focal length of the fifth lens unit L5, f6 is the focal length of the sixth lens unit L6, and f456 is the first. fourth lens unit L4, the fifth lens group L5, the combined focal length of the sixth lens group L6, beta 5 is the lateral magnification upon focusing on infinity in the fifth lens group L5, beta 6 is infinity of the sixth lens unit L6 The lateral magnification at the time of focusing and f is the focal length of all the lens systems at the time of focusing on infinity.

条件式(1)は第3レンズ群L3の焦点距離と第4レンズ群L4の焦点距離の関係を規定したものであり、第4レンズ群L4の効果に関するものである。   Conditional expression (1) defines the relationship between the focal length of the third lens unit L3 and the focal length of the fourth lens unit L4, and relates to the effect of the fourth lens unit L4.

まずここで図36〜図39を用いて第4レンズ群L4の配置の優位性を説明する。   First, the superiority of the arrangement of the fourth lens unit L4 will be described with reference to FIGS.

防振時の手ブレ補正角を一定とし、第4レンズ群L4に該当するレンズ群が無い場合、防振レンズ群より物体側にあるレンズ群をLa、防振レンズ群をLos、防振レンズ群より像側にあるレンズ群をLbとしたとき、防振時の防振レンズ群Losの移動量を少なくするには防振レンズ群Losの屈折力を強くし、防振係数を大きくしなければならない。そのため、防振レンズ群Losより像面側での光線が高くなりレンズ群Lbの径が大きくなることで製品外径が大きくなる(図36、図37)。   When the camera shake correction angle at the time of image stabilization is constant and there is no lens group corresponding to the fourth lens unit L4, the lens unit located on the object side of the image stabilization lens unit is La, the image stabilization lens unit is Los, and the image stabilization lens When the lens group on the image side of the lens group is Lb, in order to reduce the amount of movement of the image stabilizing lens unit Los during image stabilization, the refractive power of the image stabilizing lens unit Los must be increased and the image stabilization coefficient increased. I must. For this reason, the light beam on the image plane side becomes higher than the image stabilizing lens group Los, and the diameter of the lens group Lb is increased, thereby increasing the outer diameter of the product (FIGS. 36 and 37).

これを抑えるためには防振レンズ群Losより物体側での光線高を下げておく必要があり、レンズ群Laを用いて防振レンズ群より物体側にある正の屈折力を強くする必要がある(図38)。   In order to suppress this, it is necessary to lower the ray height on the object side from the image stabilizing lens group Los, and it is necessary to increase the positive refractive power on the object side from the image stabilizing lens group using the lens group La. Yes (Figure 38).

しかしそうすると防振レンズ群Losに到達する周縁光線の入射角がきつくなることで偏芯コマ収差の補正が困難となり、さらに軸外光線における像面湾曲の補正も困難となるため好ましくない。防振レンズ群Losの前に負の屈折力のレンズ群Lcを配置することで防振レンズ群Losに到達する周縁光線の入射角をゆるくすることができ良好な収差補正が可能となる(図39)。本発明では第4レンズ群L4が上記の防振レンズ群Losの前の負の屈折力のレンズ群Lcに該当する。   However, doing so makes it difficult to correct the eccentric coma aberration because the incident angle of the peripheral ray reaching the vibration-proof lens group Los becomes tight, and it is also difficult to correct the curvature of field in the off-axis ray. By disposing the lens unit Lc having a negative refractive power in front of the anti-vibration lens unit Los, the incident angle of the peripheral ray reaching the anti-vibration lens unit Los can be relaxed, and good aberration correction can be performed (FIG. 39). In the present invention, the fourth lens unit L4 corresponds to the lens unit Lc having a negative refractive power in front of the anti-vibration lens unit Los.

条件式(1)の上限を越える場合は第4レンズ群L4の焦点距離が短くなり屈折力が強くなるため、第4レンズ群L4で発生するコマ収差、非点収差が大きくなることで収差バランスの悪化を招き好ましくない。下限を越える場合は防振レンズ群に入射する周縁光線の入射角がきつくなることで特に第5レンズ群L5で発生するコマ収差、非点収差の補正が困難となり、防振時の偏芯コマ収差、像面湾曲の悪化を招き好ましくない。   When the upper limit of conditional expression (1) is exceeded, the focal length of the fourth lens unit L4 becomes shorter and the refractive power becomes stronger. Therefore, coma aberration and astigmatism occurring in the fourth lens unit L4 increase, and aberration balance This is not preferable. If the lower limit is exceeded, the angle of incidence of the marginal ray incident on the image stabilizing lens group becomes stiff, making it particularly difficult to correct coma and astigmatism occurring in the fifth lens group L5. It is not preferable because aberration and field curvature are deteriorated.

条件式(2)、条件式(3)は第5レンズ群L5の焦点距離、第6レンズ群L6の焦点距離を規定したものであり、防振係数に関するものである。   Conditional expressions (2) and (3) define the focal length of the fifth lens unit L5 and the focal length of the sixth lens unit L6, and relate to the image stabilization coefficient.

条件式(2)の上限を越える場合は第5レンズ群L5の焦点距離が長くなり屈折力が小さくなることで防振係数を大きくすることが困難となり、防振時に必要とする移動量が増え製品外径が大きくなり好ましくない。もしくは必要とする防振係数の条件を満たそうとすると収差バランスが悪化し好ましくない。   If the upper limit of conditional expression (2) is exceeded, the focal length of the fifth lens unit L5 increases and the refractive power decreases, making it difficult to increase the image stabilization coefficient and increasing the amount of movement required during image stabilization. It is not preferable because the outer diameter of the product becomes large. Alternatively, if the required anti-vibration coefficient condition is satisfied, the aberration balance deteriorates, which is not preferable.

条件式(2)の下限を越える場合は第5レンズ群L5の焦点距離が短くなり屈折力が強くなるため防振係数を大きくし易くなるがコマ収差、非点収差が悪化し、特に防振時の偏芯コマ収差、像面湾曲が悪化するため好ましくない。   When the lower limit of conditional expression (2) is exceeded, the focal length of the fifth lens unit L5 is shortened and the refractive power is increased, so that the image stabilization coefficient can be easily increased, but coma and astigmatism are deteriorated. Since the eccentric coma aberration and the curvature of field at the time deteriorate, it is not preferable.

条件式(3)の上限を越える場合は第6レンズ群L6の焦点距離が長くなり防振係数を大きくすることが困難となる。必要とする防振係数の条件を満たそうとすると収差補正のバランスが悪化し好ましくない。   When the upper limit of conditional expression (3) is exceeded, the focal length of the sixth lens unit L6 becomes long and it is difficult to increase the image stabilization coefficient. An attempt to satisfy the necessary anti-vibration coefficient condition is not preferable because the balance of aberration correction deteriorates.

条件式(3)の下限を越える場合は第6レンズ群L6の焦点距離が短くなり防振係数を大きくし易くなるがバックフォーカスを確保することが困難となる。また球面収差が大きくなることで収差補正のバランスが悪化し好ましくない。   When the lower limit of conditional expression (3) is exceeded, the focal length of the sixth lens unit L6 is shortened and the image stabilization coefficient is easily increased, but it is difficult to ensure the back focus. Further, since the spherical aberration is increased, the balance of aberration correction is deteriorated, which is not preferable.

条件式(4)は防振係数の良好な範囲を規定したものであり、防振時のレンズ移動量に関するものである。   Conditional expression (4) defines a good range of the image stabilization coefficient and relates to the lens movement amount during image stabilization.

防振係数kは防振レンズ群の移動量Δxと像の変化量ΔHの比であって、k=ΔH/Δxと表せる。また防振係数kは防振レンズ群の横倍率をβos、防振レンズ群より像側にある全てのレンズ群の合成横倍率をβrとするとk=(1−βos)×βrとなり横倍率のみで表せる。   The image stabilization coefficient k is a ratio of the movement amount Δx of the image stabilization lens group to the image change amount ΔH, and can be expressed as k = ΔH / Δx. The image stabilization coefficient k is k = (1−βos) × βr, where βos is the lateral magnification of the image stabilization lens group, and βr is the combined lateral magnification of all lens groups on the image side of the image stabilization lens group. It can be expressed as

条件式(4)の上限を越える場合は防振係数が大きくなり製品外径を小さくするのに有利になるが、そのためには各レンズ群の屈折力を強くする必要がある。特に第5レンズ群L5の屈折力が強くなることで、コマ収差、非点収差、さらに防振時の偏芯コマ収差、像面湾曲、倍率色収差の変動が大きくなり、収差補正が困難となるため好ましくない。   When the upper limit of the conditional expression (4) is exceeded, the image stabilization coefficient is increased, which is advantageous for reducing the outer diameter of the product. For this purpose, it is necessary to increase the refractive power of each lens group. In particular, as the refractive power of the fifth lens unit L5 increases, coma aberration, astigmatism, decentration coma during image stabilization, field curvature, and chromatic aberration of magnification increase, making it difficult to correct aberrations. Therefore, it is not preferable.

条件式(4)の下限を越える場合は収差補正に有利になるが、防振係数が小さくなるために防振時に必要とする移動量が増え、製品外径が大きくなり好ましくない。製品外径をより効果的に抑えるために下限値を1.3程度にすることがより望ましい。   Exceeding the lower limit of conditional expression (4) is advantageous for aberration correction. However, since the image stabilization coefficient becomes smaller, the amount of movement required during image stabilization increases and the product outer diameter increases, which is not preferable. In order to more effectively suppress the outer diameter of the product, it is more desirable to set the lower limit to about 1.3.

以上の構成により本発明の目的は達成されるが、より望ましくは、さらに以下の条件式を満足するのが良い。
(5) 0.05 < |Δx3/f| <0.17
(6) 60 < P1ν
(7) 55 < P3ν < 85
Although the object of the present invention can be achieved by the above configuration, it is more preferable that the following conditional expression is satisfied.
(5) 0.05 <| Δx3 / f | <0.17
(6) 60 <P1ν
(7) 55 <P3ν <85

ここで、Δx3は無限遠物体から撮影倍率が等倍近辺となる物体への合焦時における第3レンズ群L3の移動量、fは無限遠合焦時の全レンズ系の焦点距離、P1νは第1レンズ群L1の全ての正レンズのd線に対するアッベ数の平均値、P3νは第3レンズ群L3の全ての正レンズのd線に対するアッベ数の平均値である。   Here, Δx3 is the amount of movement of the third lens unit L3 when focusing from an object at infinity to an object whose photographing magnification is near the same magnification, f is the focal length of all the lens systems when focusing at infinity, and P1ν is The average Abbe number of all positive lenses of the first lens unit L1 with respect to the d-line, and P3ν is the average value of Abbe numbers of all positive lenses of the third lens unit L3 with respect to the d-line.

条件式(5)は第3レンズ群L3のフォーカス移動量と収差補正に関するものである。   Conditional expression (5) relates to the focus movement amount and aberration correction of the third lens unit L3.

条件式(5)の上限を超える場合は第3レンズ群L3のフォーカス移動量が長くなり、レンズ系の全長が伸びるため好ましくない。レンズ系の全長を抑えようとすると第2レンズ群L2の焦点距離を短くする必要が生じる。これにより、第2レンズ群L2の屈折力が強くなることで特にコマ収差が悪化し、フォーカス群移動の際のコマ収差の変動が大きくなり、良好な収差補正を行うことが困難となるため好ましくない。   Exceeding the upper limit of conditional expression (5) is not preferable because the amount of focus movement of the third lens unit L3 becomes long and the entire length of the lens system is extended. In order to suppress the overall length of the lens system, it is necessary to shorten the focal length of the second lens unit L2. This increases the refractive power of the second lens unit L2, thereby particularly deteriorating coma aberration, increasing fluctuations in coma when moving the focus group, and making it difficult to perform good aberration correction. Absent.

条件式(5)の下限を越える場合は第3レンズ群L3のフォーカス移動量が短くなり、主に第3レンズ群L3の屈折力が強くなる。これにより、前後の群との屈折力のバランスが崩れ収差補正が困難となる。特に第3レンズ群L3の球面収差が悪化し良好な収差補正を行うことが困難となるため好ましくない。   When the lower limit of conditional expression (5) is exceeded, the focus movement amount of the third lens unit L3 is shortened, and mainly the refractive power of the third lens unit L3 is increased. As a result, the balance of refractive power with the front and rear groups is lost, making it difficult to correct aberrations. In particular, it is not preferable because the spherical aberration of the third lens unit L3 deteriorates and it becomes difficult to perform good aberration correction.

条件式(6)、(7)は色収差補正に関するものである。   Conditional expressions (6) and (7) relate to chromatic aberration correction.

条件式(6)の下限を越える場合は第1レンズ群L1で発生する軸上の色収差が悪化し、他の群での軸上、倍率の色収差補正が困難となるため好ましくない。軸上の色収差をより効果的に抑えるために下限値を65程度にすることがより望ましい。   Exceeding the lower limit of conditional expression (6) is not preferable because the axial chromatic aberration generated in the first lens unit L1 deteriorates, and it becomes difficult to correct the chromatic aberration of magnification on the other group. In order to more effectively suppress axial chromatic aberration, it is more desirable to set the lower limit to about 65.

条件式(7)の上限を越える場合は比較的低屈折率の媒質を用いることになる。そのため第3レンズ群L3の球面収差が悪化しフォーカス群移動の際の収差変動が大きくなる。これにより、良好な収差補正を行うことが困難となるため好ましくない。条件式(7)の下限を越える場合は倍率の色収差補正が悪化し、フォーカス群移動の際の軸上、倍率の色収差が悪化するため好ましくない。   When the upper limit of conditional expression (7) is exceeded, a relatively low refractive index medium is used. For this reason, the spherical aberration of the third lens unit L3 is deteriorated, and the aberration variation during the movement of the focus unit is increased. This makes it difficult to perform good aberration correction, which is not preferable. Exceeding the lower limit of conditional expression (7) is not preferable because the chromatic aberration of magnification is deteriorated and the chromatic aberration of magnification is deteriorated on the axis when the focus group is moved.

より望ましくは、さらに以下の条件式を満足するのが良い。
(8) 0.35 < f1/f < 0.65
(9) 0.25 < |f2/f| < 0.50
(10) 0.20 < f3/f < 0.40
(11) 0.30 < |f456/f| < 0.60
More preferably, the following conditional expression should be satisfied.
(8) 0.35 <f1 / f <0.65
(9) 0.25 <| f2 / f | <0.50
(10) 0.20 <f3 / f <0.40
(11) 0.30 <| f456 / f | <0.60

ここで、fは無限遠合焦時の全レンズ系の焦点距離、f1は第1レンズ群L1の焦点距離、f2は第2レンズ群L2の焦点距離、f3は第3レンズ群L3の焦点距離、f456は第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離である。   Here, f is the focal length of the entire lens system at the time of focusing on infinity, f1 is the focal length of the first lens unit L1, f2 is the focal length of the second lens unit L2, and f3 is the focal length of the third lens unit L3. , F456 is a combined focal length of the fourth lens unit L4, the fifth lens unit L5, and the sixth lens unit L6.

条件式(8)は全系の焦点距離に対して第1レンズ群L1の焦点距離を規定したものであり、収差補正と製品全長に関するものである。   Conditional expression (8) defines the focal length of the first lens unit L1 with respect to the focal length of the entire system, and relates to aberration correction and the total product length.

条件式(8)の上限を越えた場合は第1レンズ群L1の焦点距離が長くなり収差補正に有利に働くが、レンズ系の全長が伸び製品全長の短縮に不利になるため好ましくない。条件式(8)の下限を越えた場合は第1レンズ群L1の焦点距離が短くなり球面収差、軸上色収差を始め諸収差が悪化し、特に無限遠撮影時の球面収差の補正が困難となるため好ましくない。   When the upper limit of the conditional expression (8) is exceeded, the focal length of the first lens unit L1 becomes long and works favorably for aberration correction, but it is not preferable because the total length of the lens system is extended and disadvantageous for shortening the total product length. If the lower limit of conditional expression (8) is exceeded, the focal length of the first lens unit L1 will be shortened and various aberrations such as spherical aberration and axial chromatic aberration will deteriorate, and it will be difficult to correct spherical aberration especially at infinity shooting. Therefore, it is not preferable.

条件式(9)は全系の焦点距離に対して第2レンズ群L2の焦点距離を規定したものであり、フォーカス群移動の際の収差補正に関するものである。   Conditional expression (9) defines the focal length of the second lens unit L2 with respect to the focal length of the entire system, and relates to aberration correction when the focus group is moved.

条件式(9)の上限を越えた場合は第2レンズ群L2の焦点距離が長くなり等倍撮影までに必要とするフォーカス群移動量が大きくなる。これにより、レンズ系の全長が伸びることになり好ましくない。条件式(9)の下限を越えた場合は第2レンズ群L2の焦点距離が短くなり、特にコマ収差が悪化してフォーカス群移動の際のコマ収差の変動が大きくなり、良好な収差補正を行うことが困難となるため好ましくない。   When the upper limit of conditional expression (9) is exceeded, the focal length of the second lens unit L2 becomes longer, and the amount of focus group movement required until the same magnification photographing is increased. This undesirably increases the overall length of the lens system. When the lower limit of conditional expression (9) is exceeded, the focal length of the second lens unit L2 becomes shorter, especially coma becomes worse and fluctuations in coma during movement of the focus group become larger, so that satisfactory aberration correction is achieved. This is not preferable because it is difficult to perform.

条件式(10)は全系の焦点距離に対して第3レンズ群L3の焦点距離を規定したものであり、フォーカス群移動の際の収差補正に関するものである。   Conditional expression (10) defines the focal length of the third lens unit L3 with respect to the focal length of the entire system, and relates to aberration correction when the focus group is moved.

条件式(10)の上限を越えた場合は第3レンズ群L3の焦点距離が長くなり等倍撮影までに必要とするフォーカス群移動量が大きくなる。これにより、レンズ系の全長が伸びることになり好ましくない。条件式(10)の下限を越えた場合は第3レンズ群L3の焦点距離が短くなり、屈折力が強くなることで前後の群との屈折力のバランスが崩れ、収差補正が困難となる。特に球面収差が悪化し、良好な収差補正を行うことが困難となるため好ましくない。   When the upper limit of conditional expression (10) is exceeded, the focal length of the third lens unit L3 becomes longer, and the amount of focus group movement required until the same magnification photographing is increased. This undesirably increases the overall length of the lens system. When the lower limit of conditional expression (10) is exceeded, the focal length of the third lens unit L3 is shortened, and the refractive power is increased, so that the balance of refractive power with the front and rear groups is lost, and aberration correction becomes difficult. In particular, spherical aberration is deteriorated and it is difficult to perform good aberration correction.

条件式(11)は全系の焦点距離に対して第4レンズ群L4と第5レンズ群L5と第6レンズ群L6の合成焦点距離を規定したものであり、製品全長、外径に関するものである。   Conditional expression (11) defines the combined focal length of the fourth lens unit L4, the fifth lens unit L5, and the sixth lens unit L6 with respect to the focal length of the entire system, and relates to the total length of the product and the outer diameter. is there.

条件式(11)の上限を越えた場合は合成焦点距離が長くなることにより望遠比が大きくなり、レンズ系が伸びるため好ましくない。また射出瞳が物体側に移動し第6レンズ群L6における最大画角の光線高が高くなる。これにより、十分な周辺光量を確保しようとすると製品外径が大きくなるため好ましくない。   Exceeding the upper limit of conditional expression (11) is not preferable because the telephoto ratio increases as the combined focal length increases, and the lens system extends. Further, the exit pupil moves toward the object side, and the ray height at the maximum field angle in the sixth lens unit L6 increases. Accordingly, it is not preferable to secure a sufficient amount of peripheral light because the outer diameter of the product increases.

条件式(11)の下限を越えた場合は合成焦点距離が短くなることによりレンズ系のバックフォーカスが短くなり、一眼レフカメラに取り付ける場合にミラー干渉等の不具合を起こす。また球面収差が補正過剰となり、収差補正のバランスが悪化し好ましくない。   When the lower limit of conditional expression (11) is exceeded, the back focal length of the lens system is shortened by shortening the combined focal length, causing problems such as mirror interference when attached to a single-lens reflex camera. In addition, spherical aberration is excessively corrected, and the balance of aberration correction is deteriorated.

より望ましくは、さらに以下の要件を満足するのが良い。すなわち、無限遠物体から近距離物体への合焦の際に、開口絞り、第4レンズ群L4、第5レンズ群L5、第6レンズ群L6を像面に対し固定とする。   More preferably, the following requirements should be satisfied. That is, the aperture stop, the fourth lens unit L4, the fifth lens unit L5, and the sixth lens unit L6 are fixed with respect to the image plane when focusing from an object at infinity to an object at a short distance.

これにより、防振レンズ群を動作、制御するための電装パーツ、メカニカルパーツがフォーカス群移動の際に不動となり、防振レンズ群の配置を有利にできる。また、製品の製造誤差をより少なくすることができる。   As a result, electrical parts and mechanical parts for operating and controlling the anti-vibration lens group become immobile when the focus group moves, and the arrangement of the anti-vibration lens group can be advantageously performed. Moreover, the manufacturing error of the product can be further reduced.

また、レンズ鏡室の内径を設定する又は無限遠物体から近距離物体への合焦の際に絞り径が小さくなるように絞り径を可変とすることが望ましい。これにより、無限遠物体から近距離物体への合焦の際に良好な収差補正を維持するため所定のFナンバーになるよう設定することができる。   Further, it is desirable to set the inner diameter of the lens mirror chamber or to make the aperture diameter variable so that the aperture diameter becomes smaller when focusing from an object at infinity to an object at a short distance. Thereby, in order to maintain good aberration correction when focusing from an object at infinity to an object at a short distance, it can be set to a predetermined F number.

また、第3レンズ群L3内の正レンズのいずれかに異常部分分散性を持った低分散媒質を用いることが望ましい。これにより、全撮影距離における軸上の色収差、無限遠撮影時の倍率の色収差を良好に補正することができる。   Moreover, it is desirable to use a low dispersion medium having anomalous partial dispersion for any of the positive lenses in the third lens unit L3. Thereby, the axial chromatic aberration at the entire shooting distance and the chromatic aberration of magnification at the time of shooting at infinity can be corrected well.

また、第1レンズ群L1内の幾つかの正レンズには異常部分分散性を持った低分散媒質を用いることが望ましい。これにより、全撮影距離における軸上の色収差、倍率の色収差を良好に補正することができる。   In addition, it is desirable to use a low dispersion medium having abnormal partial dispersion for some positive lenses in the first lens unit L1. This makes it possible to satisfactorily correct axial chromatic aberration and chromatic aberration of magnification at the entire shooting distance.

また、第6レンズ群L6の最も物体側の面を物体側に凸を向けた状態にし、軸外光線の光線高を下げる作用を持たせることが望ましい。これにより、強い屈折力を持つ第5レンズ群L5による軸外光線の光線高の上昇を抑えることができ、製品外径を抑えることができる。   In addition, it is desirable that the most object side surface of the sixth lens unit L6 be convex toward the object side so as to reduce the height of off-axis rays. Thereby, an increase in the height of the off-axis light beam by the fifth lens unit L5 having strong refractive power can be suppressed, and the outer diameter of the product can be suppressed.

以下、上述した実施例1〜5に各々対応する数値実施例を示す。   Hereinafter, numerical examples corresponding to the first to fifth embodiments will be described.

[全体諸元]中のfは焦点距離、FnoはFナンバー、Yは光軸からの最大像高を表す。   In [Overall Specifications], f represents the focal length, Fno represents the F number, and Y represents the maximum image height from the optical axis.

[レンズ諸元]中の第1列の番号は物体側からのレンズ面の番号、第2列rはレンズ面の曲率半径、第3列dはレンズ面間隔、第4列ndはd線(波長λ=587.56mm)に対する屈折率、第5列νdはd線に対するアッベ数である。第2列の「絞り」は絞り面を表し、第3列のBfはバックフォーカスを表す。   In the [lens specifications], the number of the first column is the lens surface number from the object side, the second column r is the radius of curvature of the lens surface, the third column d is the lens surface interval, and the fourth column nd is the d line ( The refractive index for the wavelength λ = 587.56 mm), the fifth column νd is the Abbe number for the d-line. “Aperture” in the second column represents the diaphragm surface, and Bf in the third column represents the back focus.

[可変間隔]は可変間隔の値を示す。   [Variable interval] indicates the value of the variable interval.

[レンズ群データ]は各レンズ群の焦点距離を示す。   [Lens Group Data] indicates the focal length of each lens group.

また、[条件式対応値]は各数値実施例における本発明の各条件式の値を示す。   Further, “value corresponding to the conditional expression” indicates the value of each conditional expression of the present invention in each numerical example.

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない場合「mm」を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。これらの符号は以降の他の実施例においても同様であり説明は省略する。   In all the following values of specifications, “mm” is used as the focal length f, radius of curvature r, lens surface interval d, and other length units unless otherwise specified. However, since the same optical performance can be obtained in proportional enlargement and proportional reduction, it is not limited to this. These symbols are the same in the other embodiments below, and the description thereof is omitted.

[数値実施例1]
[全体諸元]
INF |β|=0.5|β|=1.0
f 147.46 106.21 78.58
Fno 2.92 4.36 5.82
Y 21.63 21.63 21.63
[Numerical Example 1]
[Overall specifications]
INF | β | = 0.5 | β | = 1.0
f 147.46 106.21 78.58
Fno 2.92 4.36 5.82
Y 21.63 21.63 21.63

[レンズ諸元]
r d nd νd
[1] 172.8574 6.1500 1.65844 50.85
[2] -235.6130 0.2000
[3] 112.5713 8.0000 1.49700 81.61
[4] -112.5713 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 54.2824 9.8000 1.49700 81.61
[7] -123.1553 1.7000 1.77250 49.62
[8] 316.9267 d8
[9] 271.0617 1.3000 1.72916 54.67
[10] 55.9022 3.7400
[11] -1000.0000 4.3000 1.84666 23.78
[12] -63.5280 1.2000 1.48749 70.44
[13] 93.4605 2.7400
[14] 1026.8535 1.2000 1.72916 54.67
[15] 110.9706 d15
[16] 絞り d16
[17] 100.5015 4.7700 1.72916 54.67
[18] -77.3089 0.1500
[19] 59.2968 5.7100 1.49700 81.61
[20] -59.2968 1.3000 1.80518 25.46
[21] -489.1568 d21
[22] -114.3680 1.2000 1.53172 48.84
[23] 231.3033 3.5000
[24] 241.0084 3.3000 1.80518 25.46
[25] -56.2213 0.9500 1.72916 54.67
[26] 34.6735 3.4300
[27] -86.8556 0.9500 1.72916 54.67
[28] 139.5220 2.5000
[29] 65.1284 6.5000 1.80420 46.50
[30] -84.6669 0.4600
[31] -397.5440 2.0000 1.78472 25.72
[32] 41.3949 5.7600 1.83400 37.35
[33] 521.4793 Bf
[Lens specifications]
r d nd νd
[1] 172.8574 6.1500 1.65844 50.85
[2] -235.6130 0.2000
[3] 112.5713 8.0000 1.49700 81.61
[4] -112.5713 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 54.2824 9.8000 1.49700 81.61
[7] -123.1553 1.7000 1.77250 49.62
[8] 316.9267 d8
[9] 271.0617 1.3000 1.72916 54.67
[10] 55.9022 3.7400
[11] -1000.0000 4.3000 1.84666 23.78
[12] -63.5280 1.2000 1.48749 70.44
[13] 93.4605 2.7400
[14] 1026.8535 1.2000 1.72916 54.67
[15] 110.9706 d15
[16] Aperture d16
[17] 100.5015 4.7700 1.72916 54.67
[18] -77.3089 0.1500
[19] 59.2968 5.7100 1.49700 81.61
[20] -59.2968 1.3000 1.80518 25.46
[21] -489.1568 d21
[22] -114.3680 1.2000 1.53172 48.84
[23] 231.3033 3.5000
[24] 241.0084 3.3000 1.80518 25.46
[25] -56.2213 0.9500 1.72916 54.67
[26] 34.6735 3.4300
[27] -86.8556 0.9500 1.72916 54.67
[28] 139.5220 2.5000
[29] 65.1284 6.5000 1.80420 46.50
[30] -84.6669 0.4600
[31] -397.5440 2.0000 1.78472 25.72
[32] 41.3949 5.7600 1.83400 37.35
[33] 521.4793 Bf

[可変間隔]
INF |β|=0.5 |β|=1.0
d8 2.7700 11.5375 21.9179
d15 25.7700 17.0025 6.6221
d16 21.9400 11.8572 2.5000
d21 2.5800 12.6628 22.0200
[Variable interval]
INF | β | = 0.5 | β | = 1.0
d8 2.7700 11.5375 21.9179
d15 25.7700 17.0025 6.6221
d16 21.9400 11.8572 2.5000
d21 2.5800 12.6628 22.0200

[レンズ群データ]
群番号 先頭面 群焦点距離
1 1 76.7515
2 9 -58.0304
3 17 46.4457
4 22 -143.7530
5 24 -32.7958
6 29 51.8585
4,5,6 22 -68.1672
[Lens group data]
Group number Front surface Group focal length
1 1 76.7515
2 9 -58.0304
3 17 46.4457
4 22 -143.7530
5 24 -32.7958
6 29 51.8585
4,5,6 22 -68.1672

[条件式対応値]
実施例1
条件式(1) 0.32
条件式(2) 0.48
条件式(3) 0.76
条件式(4) 1.85
条件式(5) 0.13
条件式(6) 71.36
条件式(7) 68.14
条件式(8) 0.52
条件式(9) 0.39
条件式(10) 0.31
条件式(11) 0.46
[Conditional expression values]
Example 1
Conditional expression (1) 0.32
Conditional expression (2) 0.48
Conditional expression (3) 0.76
Conditional expression (4) 1.85
Conditional expression (5) 0.13
Conditional expression (6) 71.36
Conditional expression (7) 68.14
Conditional expression (8) 0.52
Conditional expression (9) 0.39
Conditional expression (10) 0.31
Conditional expression (11) 0.46

[数値実施例2]
[全体諸元]
INF |β|=0.5|β|=1.0
f 150.00 106.51 78.23
Fno 2.92 4.37 5.83
Y 21.63 21.63 21.63
[Numerical Example 2]
[Overall specifications]
INF | β | = 0.5 | β | = 1.0
f 150.00 106.51 78.23
Fno 2.92 4.37 5.83
Y 21.63 21.63 21.63

[レンズ諸元]
r d nd νd
[1] 172.3015 6.2500 1.65844 50.85
[2] -240.1703 0.6000
[3] 117.3228 7.8700 1.49700 81.61
[4] -117.3228 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 51.3542 10.3700 1.49700 81.61
[7] -118.7741 1.7000 1.77250 49.62
[8] 303.8511 d8
[9] 171.2605 1.3000 1.72916 54.67
[10] 49.9070 4.2000
[11] -944.6684 4.4500 1.84666 23.78
[12] -60.4640 1.2000 1.48749 70.44
[13] 303.9765 2.2100
[14] -315.1893 1.2000 1.72916 54.67
[15] 86.6671 d15
[16] 絞り d16
[17] 99.4050 4.8500 1.72916 54.67
[18] -76.1692 0.1500
[19] 59.6187 5.8000 1.49700 81.61
[20] -59.6187 1.2000 1.80518 25.46
[21] -592.3620 d21
[22] -132.8024 1.2000 1.68893 31.16
[23] 307.7510 3.0000
[24] 107.4042 3.5000 1.80518 25.46
[25] -67.3066 0.9500 1.72916 54.67
[26] 32.7082 3.6300
[27] -82.6498 0.9500 1.71300 53.94
[28] 110.3321 2.5000
[29] 67.0168 6.3500 1.80611 40.73
[30] -87.1218 0.7200
[31] -228.2708 1.5500 1.75520 27.53
[32] 33.1513 6.6200 1.83400 37.35
[33] 581.2078 Bf
[Lens specifications]
r d nd νd
[1] 172.3015 6.2500 1.65844 50.85
[2] -240.1703 0.6000
[3] 117.3228 7.8700 1.49700 81.61
[4] -117.3228 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 51.3542 10.3700 1.49700 81.61
[7] -118.7741 1.7000 1.77250 49.62
[8] 303.8511 d8
[9] 171.2605 1.3000 1.72916 54.67
[10] 49.9070 4.2000
[11] -944.6684 4.4500 1.84666 23.78
[12] -60.4640 1.2000 1.48749 70.44
[13] 303.9765 2.2100
[14] -315.1893 1.2000 1.72916 54.67
[15] 86.6671 d15
[16] Aperture d16
[17] 99.4050 4.8500 1.72916 54.67
[18] -76.1692 0.1500
[19] 59.6187 5.8000 1.49700 81.61
[20] -59.6187 1.2000 1.80518 25.46
[21] -592.3620 d21
[22] -132.8024 1.2000 1.68893 31.16
[23] 307.7510 3.0000
[24] 107.4042 3.5000 1.80518 25.46
[25] -67.3066 0.9500 1.72916 54.67
[26] 32.7082 3.6300
[27] -82.6498 0.9500 1.71300 53.94
[28] 110.3321 2.5000
[29] 67.0168 6.3500 1.80611 40.73
[30] -87.1218 0.7200
[31] -228.2708 1.5500 1.75520 27.53
[32] 33.1513 6.6200 1.83400 37.35
[33] 581.2078 Bf

[可変間隔]
INF |β|=0.5 |β|=1.0
d8 2.4200 10.5359 20.1009
d15 24.6600 16.5441 6.9791
d16 22.5200 12.0489 2.5000
d21 2.5500 13.0211 22.5700
[Variable interval]
INF | β | = 0.5 | β | = 1.0
d8 2.4200 10.5359 20.1009
d15 24.6600 16.5441 6.9791
d16 22.5200 12.0489 2.5000
d21 2.5500 13.0211 22.5700

[レンズ群データ]
群番号 先頭面 群焦点距離
1 1 75.3347
2 9 -54.5958
3 17 46.5515
4 22 -134.5084
5 24 -34.6534
6 29 53.3397
4,5,6 22 -68.0556
[Lens group data]
Group number Front surface Group focal length
1 1 75.3347
2 9 -54.5958
3 17 46.5515
4 22 -134.5084
5 24 -34.6534
6 29 53.3397
4,5,6 22 -68.0556

[条件式対応値]
実施例2
条件式(1) 0.35
条件式(2) 0.51
条件式(3) 0.78
条件式(4) 1.76
条件式(5) 0.13
条件式(6) 71.36
条件式(7) 68.14
条件式(8) 0.50
条件式(9) 0.36
条件式(10) 0.31
条件式(11) 0.45
[Conditional expression values]
Example 2
Conditional expression (1) 0.35
Conditional expression (2) 0.51
Conditional expression (3) 0.78
Conditional expression (4) 1.76
Conditional expression (5) 0.13
Conditional expression (6) 71.36
Conditional expression (7) 68.14
Conditional expression (8) 0.50
Conditional expression (9) 0.36
Conditional expression (10) 0.31
Conditional expression (11) 0.45

[数値実施例3]
[全体諸元]
INF |β|=0.5|β|=1.0
f 145.55 105.14 77.74
Fno 2.92 4.37 5.83
Y 21.63 21.63 21.63
[Numerical Example 3]
[Overall specifications]
INF | β | = 0.5 | β | = 1.0
f 145.55 105.14 77.74
Fno 2.92 4.37 5.83
Y 21.63 21.63 21.63

[レンズ諸元]
r d nd νd
[1] 167.5839 6.0000 1.65844 50.85
[2] -251.8143 0.2000
[3] 115.7602 7.7000 1.49700 81.61
[4] -115.7602 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 54.3555 9.8500 1.49700 81.61
[7] -112.5151 1.7000 1.77250 49.62
[8] 391.6986 d8
[9] 258.3442 1.3000 1.72916 54.67
[10] 57.6938 3.6900
[11] -862.1512 4.2400 1.84666 23.78
[12] -64.3349 1.2000 1.48749 70.44
[13] 106.6494 2.4200
[14] 615.4091 1.2000 1.72916 54.67
[15] 89.6157 d15
[16] 絞り d16
[17] 105.1738 4.7500 1.72916 54.67
[18] -76.6488 0.1500
[19] 60.3732 5.6500 1.49700 81.61
[20] -60.3732 1.2000 1.80518 25.46
[21] -480.5250 d21
[22] -126.4582 1.2000 1.68893 31.16
[23] 163.8536 3.0000
[24] 83.9198 3.8500 1.80518 25.46
[25] -80.7029 0.9500 1.72916 54.67
[26] 32.2459 3.7000
[27] -79.7819 0.9500 1.71300 53.94
[28] 115.3757 2.5200
[29] 65.3628 6.4500 1.80611 40.73
[30] -84.9715 0.7500
[31] -198.7778 1.3000 1.75520 27.53
[32] 32.2918 6.7000 1.83400 37.35
[33] 521.3975 Bf
[Lens specifications]
r d nd νd
[1] 167.5839 6.0000 1.65844 50.85
[2] -251.8143 0.2000
[3] 115.7602 7.7000 1.49700 81.61
[4] -115.7602 1.8000 1.80518 25.46
[5] ∞ 0.2000
[6] 54.3555 9.8500 1.49700 81.61
[7] -112.5151 1.7000 1.77250 49.62
[8] 391.6986 d8
[9] 258.3442 1.3000 1.72916 54.67
[10] 57.6938 3.6900
[11] -862.1512 4.2400 1.84666 23.78
[12] -64.3349 1.2000 1.48749 70.44
[13] 106.6494 2.4200
[14] 615.4091 1.2000 1.72916 54.67
[15] 89.6157 d15
[16] Aperture d16
[17] 105.1738 4.7500 1.72916 54.67
[18] -76.6488 0.1500
[19] 60.3732 5.6500 1.49700 81.61
[20] -60.3732 1.2000 1.80518 25.46
[21] -480.5250 d21
[22] -126.4582 1.2000 1.68893 31.16
[23] 163.8536 3.0000
[24] 83.9198 3.8500 1.80518 25.46
[25] -80.7029 0.9500 1.72916 54.67
[26] 32.2459 3.7000
[27] -79.7819 0.9500 1.71300 53.94
[28] 115.3757 2.5200
[29] 65.3628 6.4500 1.80611 40.73
[30] -84.9715 0.7500
[31] -198.7778 1.3000 1.75520 27.53
[32] 32.2918 6.7000 1.83400 37.35
[33] 521.3975 Bf

[可変間隔]
INF |β|=0.5 |β|=1.0
d8 2.3000 11.1885 21.5813
d15 26.2200 17.3315 6.9387
d16 22.0600 11.9094 2.5006
d21 2.5000 12.6506 22.0594
[Variable interval]
INF | β | = 0.5 | β | = 1.0
d8 2.3000 11.1885 21.5813
d15 26.2200 17.3315 6.9387
d16 22.0600 11.9094 2.5006
d21 2.5000 12.6506 22.0594

[レンズ群データ]
群番号 先頭面 群焦点距離
1 1 76.2551
2 9 -57.6335
3 17 47.0426
4 22 -118.0983
5 24 -37.1256
6 29 54.0399
4,5,6 22 -68.7533
[Lens group data]
Group number Front surface
1 1 76.2551
2 9 -57.6335
3 17 47.0426
4 22 -118.0983
5 24 -37.1256
6 29 54.0399
4,5,6 22 -68.7533

[条件式対応値]
実施例3
条件式(1) 0.40
条件式(2) 0.54
条件式(3) 0.79
条件式(4) 1.65
条件式(5) 0.13
条件式(6) 71.36
条件式(7) 68.14
条件式(8) 0.52
条件式(9) 0.40
条件式(10) 0.32
条件式(11) 0.47
[Conditional expression values]
Example 3
Conditional expression (1) 0.40
Conditional expression (2) 0.54
Conditional expression (3) 0.79
Conditional expression (4) 1.65
Conditional expression (5) 0.13
Conditional expression (6) 71.36
Conditional expression (7) 68.14
Conditional expression (8) 0.52
Conditional expression (9) 0.40
Conditional expression (10) 0.32
Conditional expression (11) 0.47

[数値実施例4]
[全体諸元]
INF |β|=0.5|β|=1.0
f 150.00 110.38 81.92
Fno 2.92 4.37 5.85
Y 21.63 21.63 21.63
[Numerical Example 4]
[Overall specifications]
INF | β | = 0.5 | β | = 1.0
f 150.00 110.38 81.92
Fno 2.92 4.37 5.85
Y 21.63 21.63 21.63

[レンズ諸元]
r d nd νd
[1] 110.1005 7.3000 1.58913 61.25
[2] -334.3556 0.2000
[3] 95.8862 1.8000 1.67270 32.17
[4] 59.2389 7.7300 1.49700 81.61
[5] 436.3191 0.2000
[6] 53.0246 9.1000 1.49700 81.61
[7] -140.2128 1.6000 1.83400 37.35
[8] 149.0724 d8
[9] 144.3289 1.3000 1.71300 53.94
[10] 45.2358 3.8900
[11] 964.9900 1.2000 1.56384 60.83
[12] 32.9256 4.5900 1.84666 23.78
[13] 56.9258 d13
[14] 絞り d14
[15] 108.9916 4.4800 1.72916 54.67
[16] -87.9894 0.1500
[17] 60.6020 5.8800 1.49700 81.61
[18] -57.0139 1.2000 1.80518 25.46
[19] -182.4864 d19
[20] -210.0706 1.2000 1.69895 30.05
[21] 153.0289 3.2900
[22] 103.6003 3.0600 1.80518 25.46
[23] -111.8029 0.8500 1.56384 60.83
[24] 28.9364 4.2500
[25] -66.9219 0.8500 1.72916 54.67
[26] 92.4549 3.2300
[27] 63.0365 4.2600 1.72916 54.67
[28] -262.8279 0.8700
[29] 466.8804 1.3000 1.84666 23.78
[30] 123.9887 4.2000 1.77250 49.62
[31] -225.2904 Bf
[Lens specifications]
r d nd νd
[1] 110.1005 7.3000 1.58913 61.25
[2] -334.3556 0.2000
[3] 95.8862 1.8000 1.67270 32.17
[4] 59.2389 7.7300 1.49700 81.61
[5] 436.3191 0.2000
[6] 53.0246 9.1000 1.49700 81.61
[7] -140.2128 1.6000 1.83400 37.35
[8] 149.0724 d8
[9] 144.3289 1.3000 1.71300 53.94
[10] 45.2358 3.8900
[11] 964.9900 1.2000 1.56384 60.83
[12] 32.9256 4.5900 1.84666 23.78
[13] 56.9258 d13
[14] Aperture d14
[15] 108.9916 4.4800 1.72916 54.67
[16] -87.9894 0.1500
[17] 60.6020 5.8800 1.49700 81.61
[18] -57.0139 1.2000 1.80518 25.46
[19] -182.4864 d19
[20] -210.0706 1.2000 1.69895 30.05
[21] 153.0289 3.2900
[22] 103.6003 3.0600 1.80518 25.46
[23] -111.8029 0.8500 1.56384 60.83
[24] 28.9364 4.2500
[25] -66.9219 0.8500 1.72916 54.67
[26] 92.4549 3.2300
[27] 63.0365 4.2600 1.72916 54.67
[28] -262.8279 0.8700
[29] 466.8804 1.3000 1.84666 23.78
[30] 123.9887 4.2000 1.77250 49.62
[31] -225.2904 Bf

[可変間隔]
INF |β|=0.5 |β|=1.0
d8 3.0000 12.8271 24.3397
d13 29.8200 19.9929 8.4803
d14 21.6600 11.5327 2.0002
d19 2.0000 12.1273 21.6598
[Variable interval]
INF | β | = 0.5 | β | = 1.0
d8 3.0000 12.8271 24.3397
d13 29.8200 19.9929 8.4803
d14 21.6600 11.5327 2.0002
d19 2.0000 12.1273 21.6598

[レンズ群データ]
群番号 先頭面 群焦点距離
1 1 81.6540
2 9 -59.6260
3 15 45.5861
4 20 -126.4960
5 22 -35.1241
6 27 53.8809
4,5,6 20 -70.2213
[Lens group data]
Group number Front surface Group focal length
1 1 81.6540
2 9 -59.6260
3 15 45.5861
4 20 -126.4960
5 22 -35.1241
6 27 53.8809
4,5,6 20 -70.2213

[条件式対応値]
実施例4
条件式(1) 0.36
条件式(2) 0.50
条件式(3) 0.77
条件式(4) 1.76
条件式(5) 0.13
条件式(6) 74.82
条件式(7) 68.14
条件式(8) 0.54
条件式(9) 0.40
条件式(10) 0.30
条件式(11) 0.47
[Conditional expression values]
Example 4
Conditional expression (1) 0.36
Conditional expression (2) 0.50
Conditional expression (3) 0.77
Conditional expression (4) 1.76
Conditional expression (5) 0.13
Conditional expression (6) 74.82
Conditional expression (7) 68.14
Conditional expression (8) 0.54
Conditional expression (9) 0.40
Conditional expression (10) 0.30
Conditional expression (11) 0.47

[数値実施例5]
[全体諸元]
INF |β|=0.5|β|=1.0
f 150.00 110.47 82.21
Fno 2.92 4.37 5.82
Y 21.63 21.63 21.63
[Numerical Example 5]
[Overall specifications]
INF | β | = 0.5 | β | = 1.0
f 150.00 110.47 82.21
Fno 2.92 4.37 5.82
Y 21.63 21.63 21.63

[レンズ諸元]
r d nd νd
[1] 117.7006 6.0000 1.77250 49.62
[2] -1364.1695 0.2000
[3] 109.6048 1.8000 1.72825 28.32
[4] 64.2152 8.1000 1.45860 90.19
[5] -1279.0416 0.2000
[6] 52.7127 9.0000 1.49700 81.61
[7] -145.8681 1.6000 1.83400 37.35
[8] 142.3900 d8
[9] 141.1378 1.3000 1.71300 53.94
[10] 48.6529 3.5900
[11] 749.5201 1.2000 1.58913 61.25
[12] 33.7721 4.5400 1.84666 23.78
[13] 58.2608 d13
[14] 絞り d14
[15] 116.2118 4.1900 1.77250 49.62
[16] -97.4614 0.5600
[17] 64.6532 5.6300 1.59282 68.62
[18] -57.9634 1.2000 1.80518 25.46
[19] -357.8029 d19
[20] -308.8472 1.2000 1.83400 37.35
[21] 92.4220 3.6300
[22] 98.5724 3.1000 1.80518 25.46
[23] -110.6194 0.8500 1.51680 64.20
[24] 30.8101 4.6500
[25] -74.5307 0.8500 1.72916 54.67
[26] 84.3267 3.2500
[27] 64.7996 5.1200 1.72916 54.67
[28] -251.4259 0.7200
[29] 166.5131 1.3000 1.84666 23.78
[30] 71.0597 4.6600 1.71300 53.94
[31] -480.6700 Bf
[Lens specifications]
r d nd νd
[1] 117.7006 6.0000 1.77250 49.62
[2] -1364.1695 0.2000
[3] 109.6048 1.8000 1.72825 28.32
[4] 64.2152 8.1000 1.45860 90.19
[5] -1279.0416 0.2000
[6] 52.7127 9.0000 1.49700 81.61
[7] -145.8681 1.6000 1.83400 37.35
[8] 142.3900 d8
[9] 141.1378 1.3000 1.71300 53.94
[10] 48.6529 3.5900
[11] 749.5201 1.2000 1.58913 61.25
[12] 33.7721 4.5400 1.84666 23.78
[13] 58.2608 d13
[14] Aperture d14
[15] 116.2118 4.1900 1.77250 49.62
[16] -97.4614 0.5600
[17] 64.6532 5.6300 1.59282 68.62
[18] -57.9634 1.2000 1.80518 25.46
[19] -357.8029 d19
[20] -308.8472 1.2000 1.83400 37.35
[21] 92.4220 3.6300
[22] 98.5724 3.1000 1.80518 25.46
[23] -110.6194 0.8500 1.51680 64.20
[24] 30.8101 4.6500
[25] -74.5307 0.8500 1.72916 54.67
[26] 84.3267 3.2500
[27] 64.7996 5.1200 1.72916 54.67
[28] -251.4259 0.7200
[29] 166.5131 1.3000 1.84666 23.78
[30] 71.0597 4.6600 1.71300 53.94
[31] -480.6700 Bf

[可変間隔]
INF |β|=0.5 |β|=1.0
d8 3.0000 13.2735 25.6349
d13 31.1000 20.8265 8.4651
d14 21.0000 11.1804 2.0000
d19 2.0200 11.8396 21.0200
[Variable interval]
INF | β | = 0.5 | β | = 1.0
d8 3.0000 13.2735 25.6349
d13 31.1000 20.8265 8.4651
d14 21.0000 11.1804 2.0000
d19 2.0200 11.8396 21.0200

[レンズ群データ]
群番号 先頭面 群焦点距離
1 1 83.1675
2 9 -62.7787
3 15 45.2342
4 20 -85.1778
5 22 -41.1289
6 27 54.1256
4,5,6 20 -69.4821
[Lens group data]
Group number Front surface Group focal length
1 1 83.1675
2 9 -62.7787
3 15 45.2342
4 20 -85.1778
5 22 -41.1289
6 27 54.1256
4,5,6 20 -69.4821

[条件式対応値]
実施例5
条件式(1) 0.53
条件式(2) 0.59
条件式(3) 0.78
条件式(4) 1.50
条件式(5) 0.13
条件式(6) 73.81
条件式(7) 59.12
条件式(8) 0.55
条件式(9) 0.42
条件式(10) 0.30
条件式(11) 0.46
[Conditional expression values]
Example 5
Conditional expression (1) 0.53
Conditional expression (2) 0.59
Conditional expression (3) 0.78
Conditional expression (4) 1.50
Conditional expression (5) 0.13
Conditional expression (6) 73.81
Conditional expression (7) 59.12
Conditional expression (8) 0.55
Conditional expression (9) 0.42
Conditional expression (10) 0.30
Conditional expression (11) 0.46

S:開口絞り
I:像面
L1:第1レンズ群
L2:第2レンズ群
L3:第3レンズ群
L4:第4レンズ群
L5:第5レンズ群
L6:第6レンズ群
C C線(波長λ=656.3nm)
d d線(波長λ=587.6nm)
g g線(波長λ=435.8nm)
Y 像高
ΔS サジタル像面
ΔM メジオナル像面
S: aperture stop I: image plane L1: first lens group L2: second lens group L3: third lens group L4: fourth lens group L5: fifth lens group L6: sixth lens group CC line (wavelength λ = 656.3 nm)
dd line (wavelength λ = 587.6 nm)
g g line (wavelength λ = 435.8 nm)
Y Image height ΔS Sagittal image plane ΔM Medianal image plane

Claims (4)

物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4、負の屈折力を有する第5レンズ群L5、正の屈折力を有する第6レンズ群L6で構成され、
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群L1は像面に対し固定であり、前記第2レンズ群L2が像面側へ移動すると同時に前記第3レンズ群L3が物体側へ移動し、
前記第5レンズ群L5が光軸に対して略垂直方向に移動することで、像を光軸に対して略垂直方向に移動させることが可能であり、
以下の条件式を満足することを特徴とする防振機能を有するインナーフォーカス式マクロレンズ。
(1) 0.05 < |f3/f4| < 1.00
(2) 0.30 < |f5/f456| < 1.10
(3) 0.50 < |f6/f456| < 1.30
(4) 1.00 < |(1−β)×β| < 2.50
f3:第3レンズ群L3の焦点距離
f4:第4レンズ群L4の焦点距離
f5:第5レンズ群L5の焦点距離
f6:第6レンズ群L6の焦点距離
f456:第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離
β:第5レンズ群L5の無限遠合焦時の横倍率
β:第6レンズ群L6の無限遠合焦時の横倍率
In order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a fourth lens having a negative refractive power A group L4, a fifth lens unit L5 having a negative refractive power, and a sixth lens unit L6 having a positive refractive power;
When focusing from an object at infinity to an object at a short distance, the first lens unit L1 is fixed with respect to the image plane, and at the same time the second lens unit L2 moves to the image plane side, the third lens unit L3. Moves to the object side,
By moving the fifth lens unit L5 in a direction substantially perpendicular to the optical axis, it is possible to move the image in a direction substantially perpendicular to the optical axis,
An inner focus type macro lens having an anti-vibration function characterized by satisfying the following conditional expression:
(1) 0.05 <| f3 / f4 | <1.00
(2) 0.30 <| f5 / f456 | <1.10
(3) 0.50 <| f6 / f456 | <1.30
(4) 1.00 <| (1 -β 5) × β 6 | <2.50
f3: focal length of the third lens unit L3 f4: focal length of the fourth lens unit L4 f5: focal length of the fifth lens unit L5 f6: focal length of the sixth lens unit L6 f456: fourth lens unit L4, fifth Composite focal length β 5 of the lens group L5 and the sixth lens group L6: Lateral magnification when the fifth lens group L5 is focused at infinity β 6 : Lateral magnification when the sixth lens group L6 is focused at infinity
以下の条件式を満足することを特徴とする請求項1記載の防振機能を有するインナーフォーカス式マクロレンズ。
(5) 0.05 < |Δx3/f| <0.17
(6) 60 < P1ν
(7) 55 < P3ν < 85
Δx3:無限遠物体から近距離物体への合焦時における第3レンズ群L3の移動量
f:無限遠合焦時の全レンズ系の焦点距離
P1ν:第1レンズ群L1の全ての正レンズのd線に対するアッベ数の平均値
P3ν:第3レンズ群L3の全ての正レンズのd線に対するアッベ数の平均値
2. The inner focus type macro lens having an anti-vibration function according to claim 1, wherein the following conditional expression is satisfied.
(5) 0.05 <| Δx3 / f | <0.17
(6) 60 <P1ν
(7) 55 <P3ν <85
Δx3: Amount of movement of the third lens unit L3 when focusing from an object at infinity to a near object f: Focal length P1ν of all lens systems when focusing at infinity: All positive lenses of the first lens unit L1 Average Abbe number for d-line P3ν: Average Abbe number for d-line of all positive lenses in third lens unit L3
以下の条件式を満足することを特徴とする請求項1又は請求項2記載の防振機能を有するインナーフォーカス式マクロレンズ。
(8) 0.35 < f1/f < 0.65
(9) 0.25 < |f2/f| < 0.50
(10) 0.20 < f3/f < 0.40
(11) 0.30 < |f456/f| < 0.60
f:無限遠合焦時の全レンズ系の焦点距離
f1:第1レンズ群L1の焦点距離
f2:第2レンズ群L2の焦点距離
f3:第3レンズ群L3の焦点距離
f456:第4レンズ群L4、第5レンズ群L5、第6レンズ群L6の合成焦点距離
The inner focus type macro lens having an image stabilization function according to claim 1 or 2, wherein the following conditional expression is satisfied.
(8) 0.35 <f1 / f <0.65
(9) 0.25 <| f2 / f | <0.50
(10) 0.20 <f3 / f <0.40
(11) 0.30 <| f456 / f | <0.60
f: focal length of all lens systems at the time of focusing on infinity f1: focal length of first lens unit L1 f2: focal length of second lens unit L2 f3: focal length of third lens unit L3 f456: fourth lens unit L4, the combined focal length of the fifth lens unit L5 and the sixth lens unit L6
無限遠物体から近距離物体への合焦の際に、開口絞り、前記第4レンズ群L4、前記第5レンズ群L5、前記第6レンズ群L6が像面に対し固定であることを特徴とする請求項1乃至請求項3のいずれかに記載の防振機能を有するインナーフォーカス式マクロレンズ。   An aperture stop, the fourth lens unit L4, the fifth lens unit L5, and the sixth lens unit L6 are fixed with respect to the image plane during focusing from an infinitely distant object to a close object. An inner focus type macro lens having an anti-vibration function according to any one of claims 1 to 3.
JP2010205393A 2010-09-14 2010-09-14 Inner focus type macro lens with anti-vibration function Active JP5558281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205393A JP5558281B2 (en) 2010-09-14 2010-09-14 Inner focus type macro lens with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205393A JP5558281B2 (en) 2010-09-14 2010-09-14 Inner focus type macro lens with anti-vibration function

Publications (2)

Publication Number Publication Date
JP2012063403A true JP2012063403A (en) 2012-03-29
JP5558281B2 JP5558281B2 (en) 2014-07-23

Family

ID=46059211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205393A Active JP5558281B2 (en) 2010-09-14 2010-09-14 Inner focus type macro lens with anti-vibration function

Country Status (1)

Country Link
JP (1) JP5558281B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220828A (en) * 2011-04-12 2012-11-12 Nikon Corp Optical system, optical device, and method for manufacturing optical system
JP2014006487A (en) * 2012-05-29 2014-01-16 Konica Minolta Inc Telephoto lens, imaging optical device, and digital device
JP2014026023A (en) * 2012-07-25 2014-02-06 Konica Minolta Inc Telephoto lens, imaging optical device and digital instrument
WO2016036210A1 (en) * 2014-09-05 2016-03-10 Samsung Electronics Co., Ltd. Inner foucing telephoto lens system and photographing apparatus including the same
US9398201B2 (en) 2013-09-27 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens apparatus and camera system
JP2017173409A (en) * 2016-03-22 2017-09-28 株式会社シグマ Large-aperture telephoto lens
CN108508579A (en) * 2017-02-28 2018-09-07 富士胶片株式会社 Imaging len and photographic device
JP2019164277A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
JP2019164276A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
US10564407B2 (en) 2016-12-28 2020-02-18 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN114153105A (en) * 2022-02-09 2022-03-08 嘉兴中润光学科技股份有限公司 Anti-shake camera device and zoom lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2006106112A (en) * 2004-09-30 2006-04-20 Nikon Corp Interchangeable lens
JP2009063715A (en) * 2007-09-05 2009-03-26 Canon Inc Photographic lens and imaging apparatus having the same
JP2009175202A (en) * 2008-01-22 2009-08-06 Nikon Corp Imaging lens, optical device with the same, and image blur correction method
JP2009288384A (en) * 2008-05-28 2009-12-10 Canon Inc Photographic lens and imaging apparatus having the same
JP2010002790A (en) * 2008-06-23 2010-01-07 Nikon Corp Imaging lens, optical device provided therewith, and image blur correction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2006106112A (en) * 2004-09-30 2006-04-20 Nikon Corp Interchangeable lens
JP2009063715A (en) * 2007-09-05 2009-03-26 Canon Inc Photographic lens and imaging apparatus having the same
JP2009175202A (en) * 2008-01-22 2009-08-06 Nikon Corp Imaging lens, optical device with the same, and image blur correction method
JP2009288384A (en) * 2008-05-28 2009-12-10 Canon Inc Photographic lens and imaging apparatus having the same
JP2010002790A (en) * 2008-06-23 2010-01-07 Nikon Corp Imaging lens, optical device provided therewith, and image blur correction method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220828A (en) * 2011-04-12 2012-11-12 Nikon Corp Optical system, optical device, and method for manufacturing optical system
JP2014006487A (en) * 2012-05-29 2014-01-16 Konica Minolta Inc Telephoto lens, imaging optical device, and digital device
JP2014026023A (en) * 2012-07-25 2014-02-06 Konica Minolta Inc Telephoto lens, imaging optical device and digital instrument
US9398201B2 (en) 2013-09-27 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens apparatus and camera system
WO2016036210A1 (en) * 2014-09-05 2016-03-10 Samsung Electronics Co., Ltd. Inner foucing telephoto lens system and photographing apparatus including the same
JP2017173409A (en) * 2016-03-22 2017-09-28 株式会社シグマ Large-aperture telephoto lens
US10564407B2 (en) 2016-12-28 2020-02-18 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN108508579A (en) * 2017-02-28 2018-09-07 富士胶片株式会社 Imaging len and photographic device
CN108508579B (en) * 2017-02-28 2021-08-31 富士胶片株式会社 Imaging lens and imaging device
JP2019164277A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
JP2019164276A (en) * 2018-03-20 2019-09-26 オリンパス株式会社 Macro lens and imaging apparatus with the same
CN114153105A (en) * 2022-02-09 2022-03-08 嘉兴中润光学科技股份有限公司 Anti-shake camera device and zoom lens
CN114153105B (en) * 2022-02-09 2022-04-22 嘉兴中润光学科技股份有限公司 Anti-shake camera device and zoom lens

Also Published As

Publication number Publication date
JP5558281B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5558281B2 (en) Inner focus type macro lens with anti-vibration function
CN105929525B (en) Optical system and image pickup apparatus
JP5542374B2 (en) Inner focus type macro lens with anti-vibration function
JP5584064B2 (en) Macro lens
JP2012118097A (en) Large-aperture telephoto zoom lens having vibration control function
JP2016161650A5 (en)
JP2010113179A (en) Compact high-magnification telephoto zoom lens having vibration isolation function
JP5658498B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP5912788B2 (en) Imaging optics
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP5562552B2 (en) Inner focus type anti-vibration lens
JP2018109712A (en) Zoom lens and imaging device
JP5542375B2 (en) Inner focus type macro lens with anti-vibration function
JP2015102559A (en) Large aperture lens with anti-shake capability
JP2006139187A (en) Zoom lens
JP5848099B2 (en) Inner focus type large aperture telephoto macro lens with anti-vibration function
JP6584085B2 (en) Optical system and imaging apparatus
JP2009058818A (en) Zoom lens
JP2013246354A (en) Imaging optical system
JP2016126277A (en) Optical system and image capturing device
JP6584086B2 (en) Optical system and imaging apparatus
JP6546752B2 (en) Optical system and imaging device
JP6518067B2 (en) Optical system and imaging device
JP2014038255A (en) Imaging optical system
JP2016126275A (en) Optical system and image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250