JP5542375B2 - Inner focus type macro lens with anti-vibration function - Google Patents

Inner focus type macro lens with anti-vibration function Download PDF

Info

Publication number
JP5542375B2
JP5542375B2 JP2009155933A JP2009155933A JP5542375B2 JP 5542375 B2 JP5542375 B2 JP 5542375B2 JP 2009155933 A JP2009155933 A JP 2009155933A JP 2009155933 A JP2009155933 A JP 2009155933A JP 5542375 B2 JP5542375 B2 JP 5542375B2
Authority
JP
Japan
Prior art keywords
lens
lens unit
optical axis
focusing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009155933A
Other languages
Japanese (ja)
Other versions
JP2011013358A5 (en
JP2011013358A (en
Inventor
了 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2009155933A priority Critical patent/JP5542375B2/en
Publication of JP2011013358A publication Critical patent/JP2011013358A/en
Publication of JP2011013358A5 publication Critical patent/JP2011013358A5/ja
Application granted granted Critical
Publication of JP5542375B2 publication Critical patent/JP5542375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Description

本発明は、インナーフォーカス式マクロレンズであって、無限遠物体から等倍付近の近距離物体までの撮影ができることを特徴とし、さらに、手ぶれ等による結像位置のずれを補正するための防振機能を有することを特徴とした、特にデジタルカメラ、銀塩カメラ及びビデオカメラ等に適した防振機能を有するインナーフォーカス式マクロレンズに関する。 The present invention is an inner focus type macro lens, characterized in that it can shoot from an object at infinity to an object at a near distance close to the same magnification, and is further anti-vibration for correcting a shift in imaging position due to camera shake or the like. The present invention relates to an inner focus type macro lens having an anti-vibration function particularly suitable for digital cameras, silver halide cameras, video cameras, and the like.

従来、写真用カメラやビデオカメラ等の光学機器において、近距離物体の撮影を主たる目的とした撮影レンズとしてマクロレンズ又はマイクロレンズ(以下「マクロレンズ」という。)と分類されるものがある。 2. Description of the Related Art Conventionally, in an optical device such as a photographic camera or a video camera, there are some which are classified as a macro lens or a micro lens (hereinafter referred to as “macro lens”) as a photographing lens mainly for photographing a short distance object.

この内、35mmフィルム用の一眼レフカメラに適した物体側入射画角12〜25度程度の所謂望遠域のマクロレンズにおいて、その最も物体側のレンズ群は、フォーカシング操作の際、光軸方向に移動せず固定であり、かつ防振機能を有するものが提案されている。 Among these, in the so-called telephoto macro lens having an object-side incident angle of view of about 12 to 25 degrees suitable for a single-lens reflex camera for 35 mm film, the most object-side lens group is arranged in the optical axis direction during the focusing operation. There has been proposed one that is fixed without moving and has an anti-vibration function.

例えば、特許文献1及び特許文献2には、光軸方向に固定された最も像面側のレンズ群を分割し、分割されたうちの負のレンズ群を光軸に対して略垂直方向へ移動させることで像ぶれの補正を行うマクロレンズが記載されている。 For example, in Patent Document 1 and Patent Document 2, the most image side lens group fixed in the optical axis direction is divided, and the negative lens group is moved in a direction substantially perpendicular to the optical axis. A macro lens that corrects image blur is described.

また、例えば、特許文献3には、光軸方向に固定された最も物体側のレンズ群を少なくとも物体より像側へ順に第1Aレンズ群、第1Bレンズ群に分割し、分割されたうちの第1Bレンズ群を光軸に対して略垂直方向へ移動させることで像ぶれの補正を行うマクロレンズが記載されている。 Further, for example, in Patent Document 3, the most object side lens group fixed in the optical axis direction is divided into a first A lens group and a first B lens group in order from at least the object to the image side. A macro lens that corrects image blur by moving the 1B lens group in a direction substantially perpendicular to the optical axis is described.

特開2003−329919JP2003-329919A

特開2006−106112JP 2006-106112 A

特開2005−062211JP2005-062211

像ぶれを補正する防振レンズ群を光軸に対して垂直方向へ移動させる移動量は、一般的に十分小さいことが望ましい。すなわち、像ぶれの迅速な補正や、防振レンズ群可動域の制限を考慮した場合、防振レンズ群の最大移動量はできるだけ小さいことが好ましい。 Generally, it is desirable that the amount of movement for moving the image stabilizing lens group for correcting image blur in the direction perpendicular to the optical axis is sufficiently small. That is, it is preferable that the maximum amount of movement of the image stabilizing lens unit be as small as possible in consideration of quick correction of image blur and limitation of the movable range of the image stabilizing lens unit.

そこで、防振レンズ群の移動量を小さくするためには、所謂防振係数を十分大きく設定することが望ましい。防振係数とは、防振レンズ群を光軸に対して垂直方向へ移動したときの移動量ΔHと、そのときの像面上における結像位置の移動量Δxとの比、すなわちΔx/ΔHを示す。 Therefore, in order to reduce the movement amount of the image stabilizing lens group, it is desirable to set a so-called image stabilization coefficient sufficiently large. The image stabilization coefficient is a ratio between the amount of movement ΔH when the image stabilization lens group is moved in the direction perpendicular to the optical axis and the amount of movement Δx of the image formation position on the image plane, that is, Δx / ΔH. Indicates.

無限遠物体への合焦時に、より長い焦点距離を有する光学系においては、同じ量の手ぶれが発生した場合であっても、短い焦点距離を有する光学系と比較して、より大きな像面上の結像位置のずれが発生するため、防振係数をより大きく設定する必要がある。 When focusing on an object at infinity, an optical system with a longer focal length has a larger image plane compared to an optical system with a shorter focal length, even if the same amount of camera shake occurs. Therefore, the image stabilization position needs to be set larger.

上記の特許文献1及び特許文献2に開示されている光学系では、防振係数が1.0程度であり、より長い焦点距離を有するマクロレンズへの適用は難しい。加えて、上記の特許文献1及び特許文献2に開示されている光学系では、防振時に大きな非点収差が発生するため、像ぶれを補正した時の光学特性が低下している。 In the optical systems disclosed in Patent Literature 1 and Patent Literature 2 described above, the image stabilization coefficient is about 1.0, and application to a macro lens having a longer focal length is difficult. In addition, in the optical systems disclosed in Patent Document 1 and Patent Document 2 described above, since large astigmatism occurs during image stabilization, the optical characteristics when image blur is corrected are deteriorated.

また、上記の特許文献3に開示されている光学系では、防振時に発生する収差の課題を解決しているが、防振係数の値が十分な大きさとはいえず、また、防振時に移動させる防振レンズ群が最も物体側のレンズ群の中に配置されているため、防振レンズ群の重量が増加する結果となり、メカ機構的に好ましくない。加えて、上記の特許文献3に開示されている光学系では、特に無限遠物体合焦時において、大きな軸上色収差と像面の湾曲、及び非点収差が発生するため、光学特性が低下している。 Further, in the optical system disclosed in Patent Document 3 above, the problem of aberration that occurs during image stabilization is solved, but the value of the image stabilization coefficient is not sufficiently large, and during image stabilization. Since the anti-vibration lens group to be moved is arranged in the lens group closest to the object side, the weight of the anti-vibration lens group increases, which is not preferable in terms of mechanical mechanism. In addition, in the optical system disclosed in Patent Document 3 described above, a large on-axis chromatic aberration, curvature of the image surface, and astigmatism are generated particularly when focusing on an object at infinity, so that the optical characteristics deteriorate. ing.

さらに、上記特許文献乃至特許文献3に開示されている光学系では、近距離物体合焦時において、いずれも大きな倍率色収差並びにコマ収差が発生してしまう。 Furthermore, in the optical systems disclosed in the above-mentioned Patent Documents to Patent Documents 3, large lateral chromatic aberration and coma aberration are generated when focusing on a short distance object.

本発明は、合焦域全域にわたり諸収差を良好に補正した上で、防振時に、防振レンズ群の小さな移動量で十分大きな像ぶれを補正することを可能とし、また、良好な結像性能を維持することを可能とする、防振機能を有するインナーフォーカス式マクロレンズの提供を目的とする。 The present invention makes it possible to correct a large amount of image blur with a small amount of movement of the anti-vibration lens group at the time of anti-vibration after correcting various aberrations over the entire in-focus region. An object of the present invention is to provide an inner focus type macro lens having an anti-vibration function capable of maintaining the performance.

上記の課題を解決するため、本出願の第1の発明は、物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4とからなり、無限遠物体から近距離物体への合焦の際に、少なくとも前記第3レンズ群L3を物体側へ移動させると同時に前記第2レンズ群L2を光軸上の任意の方向へ移動させ、かつ、前記第1レンズ群L1と前記第2レンズ群L2との光軸上間隔が変化し、同時に前記第2レンズ群L2と前記第3レンズ群L3との光軸上間隔が縮小し、また同時に前記第3レンズ群L3と前記第4レンズ群L4との光軸上間隔が拡大し、無限遠から等倍までのいずれかの倍率で近距離撮影が可能であって、前記第4レンズ群L4は、物体側から順に、負の屈折力を有する前群の第4aレンズ群L4aと、正の屈折力を有する後群の第4bレンズ群L4bとで構成され、光学系が振動された際に前記第4aレンズ群L4aを光軸に対して略垂直方向へ移動させることで像ぶれ補正を行い、 以下の条件式を満足することを特徴とする防振機能を有するインナーフォーカス式マクロレンズを提供する。
(1) 2.0<(Δx/ΔH)
(2) −2.0<β2mod<−0.2
ただし、
ΔHは前記第4aレンズ群L4aの光軸対する垂直方向への移動量
Δxは前記第4aレンズ群L4aが光軸に対して垂直方向へΔH移動したときの像面上における結像位置の移動量
β2modは最も近距離の物体に合焦した時の前記第2レンズ群L2の結像倍率
In order to solve the above-described problem, the first invention of the present application includes, in order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a positive refractive power. And a fourth lens unit L4 having negative refractive power, and at least the third lens unit L3 is moved to the object side when focusing from an infinite object to a close object. At the same time, the second lens unit L2 is moved in an arbitrary direction on the optical axis, and the distance on the optical axis between the first lens unit L1 and the second lens unit L2 is changed, and at the same time, the second lens unit L2 is changed. The distance on the optical axis between the lens group L2 and the third lens group L3 is reduced, and at the same time, the distance on the optical axis between the third lens group L3 and the fourth lens group L4 is increased from infinity to the same magnification. a possible close object at any magnification of the fourth lens group 4 includes a front group 4a lens unit L4a having a negative refractive power and a rear group 4b lens unit L4b having a positive refractive power in order from the object side, and the optical system is vibrated. An inner focus type macro lens having an anti-shake function characterized in that image blur correction is performed by moving the fourth lens group L4a in a direction substantially perpendicular to the optical axis, and satisfies the following conditional expression: provide.
(1) 2.0 <(Δx / ΔH)
(2) −2.0 <β2mod <−0.2
However,
ΔH is the amount of movement of the 4a lens unit L4a in the direction perpendicular to the optical axis Δx is the amount of movement of the image formation position on the image plane when the 4a lens unit L4a is moved ΔH in the direction perpendicular to the optical axis β2mod is the imaging magnification of the second lens unit L2 when focused on the object at the shortest distance

また、本出願の第2の発明は、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群L1及び前記第4レンズ群L4は像面に対し光軸方向に固定であることを特徴とする第1の発明の防振機能を有するインナーフォーカス式マクロレンズを提供する。 In the second invention of the present application, the first lens unit L1 and the fourth lens unit L4 are fixed in the optical axis direction with respect to the image plane when focusing from an infinitely distant object to a close object. An inner focus type macro lens having a vibration isolating function according to the first aspect of the present invention is provided.

また、本出願の第3の発明は、以下の条件式を満足することを特徴とする第1の発明又は第2の発明のいずれかに記載の防振機能を有するインナーフォーカス式マクロレンズを提供する。
(3) 0.0<(f/R2r−f/R3f)<1.0
(4) −1.0<(f/R4ar−f/R4bf)<0.0
ただし、
R2rは前記第2レンズ群L2の最も像面側のレンズ面の曲率半径
R3fは前記第3レンズ群L3の最も物体側のレンズ面の曲率半径
R4arは前記第4aレンズ群L4aの最も像面側のレンズ面の曲率半径
R4bfは前記第4bレンズ群L4bの最も物体側のレンズ面の曲率半径
fは無限遠物体に合焦した際の光学系全系の焦点距離
According to a third aspect of the present invention, there is provided an inner focus type macro lens having an image stabilization function according to the first aspect or the second aspect of the invention, wherein the following conditional expression is satisfied: To do.
(3) 0.0 <(f / R2r-f / R3f) <1.0
(4) -1.0 <(f / R4ar-f / R4bf) <0.0
However,
R2r is the radius of curvature R3f of the lens surface closest to the image plane of the second lens unit L2, and R4ar is the radius of curvature R4ar of the lens surface closest to the object side of the third lens unit L3 is closest to the image plane of the fourth lens unit L4a. The radius of curvature R4bf of the lens surface is the radius of curvature f of the lens surface closest to the object side of the 4b lens unit L4b, and the focal length of the entire optical system when focusing on an object at infinity.

さらに、本発明は次の条件式を満足することが好ましい。
(5) 0.5<f1/f<1.0
(6) 0.35<|f2/f|<0.7
(7) 0.25<f3/f<0.5
(8) 0.4<|f4/f|<0.8
(9) 0.1<|f4a/f|<0.25
(10) 0.15<f4b/f<0.5
ただし、
f1は前記第1レンズ群L1の焦点距離
f2は前記第2レンズ群L2の焦点距離
f3は前記第3レンズ群L3の焦点距離
f4は前記第4レンズ群L4の焦点距離
f4aは前記第4aレンズ群L4aの焦点距離
f4bは前記第4bレンズ群L4bの焦点距離
fは無限遠物体に合焦した際の光学系全系の焦点距離
Further, the present invention preferably satisfies the following conditional expression.
(5) 0.5 <f1 / f <1.0
(6) 0.35 <| f2 / f | <0.7
(7) 0.25 <f3 / f <0.5
(8) 0.4 <| f4 / f | <0.8
(9) 0.1 <| f4a / f | <0.25
(10) 0.15 <f4b / f <0.5
However,
f1 is the focal length f2 of the first lens unit L1, the focal length f3 of the second lens unit L2, the focal length f4 of the third lens unit L3, and the focal length f4a of the fourth lens unit L4 is the fourth lens. The focal length f4b of the group L4a is the focal length f of the fourth lens group L4b. The focal length of the entire optical system when focusing on an object at infinity.

さらに、本発明において、開口絞りの開口径は、無限遠物体から近距離物体への合焦の際に変化することが好ましい。これは、近距離物体への合焦時は、無限遠物体への合焦時に比べてマージナル光線高が低くなることに合わせるためである。 Furthermore, in the present invention, it is preferable that the aperture diameter of the aperture stop changes during focusing from an object at infinity to a near object. This is because the marginal ray height is lowered when focusing on an object at a short distance compared to when focusing on an object at infinity.

また、開口絞りは、構造上、前記第3レンズ群L3と前記第4レンズ群L4との間、若しくは前記第2レンズ群L2と前記第3レンズ群L3との間に配置されることが好ましい。 The aperture stop is preferably disposed between the third lens unit L3 and the fourth lens unit L4 or between the second lens unit L2 and the third lens unit L3 because of the structure. .

本発明によれば、無限遠物体から等倍付近の近距離物体にわたる合焦域で諸収差を良好に補正した上で、防振時に、防振レンズ群の小さい移動量によって十分大きな像ぶれの補正を可能とし、また、良好な結像性能を維持できる、防振機能を有するインナーフォーカス式マクロレンズを提供することができる。 According to the present invention, various aberrations are corrected well in an in-focus range from an object at infinity to a close object near the same magnification, and at the time of image stabilization, a sufficiently large image blur is caused by a small movement amount of the image stabilization lens unit. It is possible to provide an inner focus type macro lens having an anti-vibration function capable of correcting and maintaining good imaging performance.

本発明の実施例1のレンズ構成図FIG. 1 is a lens configuration diagram of Example 1 of the present invention. 本発明の実施例1の無限遠物体合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on an object at infinity according to Example 1 of the present invention 本発明の実施例1の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 1 of the present invention 本発明の実施例1の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図FIG. 6 is a lateral aberration diagram when focusing on an object at infinity according to Example 1 of the present invention, and a lateral aberration diagram when focusing on an object at infinity during image stabilization. 本発明の実施例1の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図FIG. 6 is a lateral aberration diagram when focusing on a short-distance object (1.0 times) and a lateral aberration diagram when focusing on a short-distance object (1.0 times) during image stabilization. 本発明の実施例2のレンズ構成図FIG. 6 is a lens configuration diagram of Example 2 of the present invention. 本発明の実施例2の無限遠物体合焦時での縦収差図Longitudinal aberration diagram when focusing on an object at infinity according to Example 2 of the present invention 本発明の実施例2の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 2 of the present invention 本発明の実施例2の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 2 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例2の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) of the image stabilization according to the second embodiment of the present invention 本発明の実施例3のレンズ構成図Lens configuration diagram of Embodiment 3 of the present invention 本発明の実施例3の無限遠物体合焦時での縦収差図Longitudinal aberration diagram of Example 3 of the present invention when focusing on an object at infinity 本発明の実施例3の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 3 of the present invention 本発明の実施例3の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 3 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例3の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) in the image stabilization according to Embodiment 3 of the present invention

以下、本発明の実施例について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る実施例1のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIGS. 1A and 1B are lens configuration diagrams of Example 1 according to the present invention, in which FIG. 1A shows a focused state with respect to an object at infinity, and FIG. Yes.

図2は、本発明に係る実施例1の無限遠物体合焦時での縦収差図であり、図3は、本発明に係る実施例1の近距離物体(1.0倍)合焦時での縦収差図である。 2 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 1 of the present invention, and FIG. 3 is when focusing on a short distance object (1.0 ×) according to Example 1 of the present invention. FIG.

図4は、本発明に係る実施例1の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.35mm移動させ、結像位置を画角0.36度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 4 is a transverse aberration diagram when focusing on an object at infinity according to Example 1 of the present invention. FIG. 4A is a transverse aberration curve from a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. b) shows a real image height of 0.0 mm and 15 when the 4a lens unit L4a is moved by 0.35 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle of view equivalent to 0.36 degrees during image stabilization. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図5は、本発明に係る実施例1の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.35mm移動させ、結像位置を画角0.36度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 5 is a transverse aberration diagram when focusing on a short-distance object (1.0 ×) according to Example 1 of the present invention. FIG. 5A shows a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.35 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.36 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図6は、本発明に係る実施例2のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIGS. 6A and 6B are lens configuration diagrams of Example 2 according to the present invention, in which FIG. 6A shows a focused state with respect to an object at infinity, and FIG. Yes.

図7は、本発明に係る実施例2の無限遠物体合焦時での縦収差図であり、図8は、本発明に係る実施例2の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 7 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 2 of the present invention, and FIG. 8 is when focusing at a short distance object (1.0 times) according to Example 2 of the present invention. FIG.

図9は、本発明に係る実施例2の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.25mm移動させ、結像位置を画角0.31度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 9 is a transverse aberration diagram when focusing on an object at infinity according to Example 2 of the present invention. FIG. 9A is a transverse aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration-proof, b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.25 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle of view equivalent to 0.31 degrees during image stabilization. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図10は、本発明に係る実施例2の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.25mm移動させ、結像位置を画角0.31度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 10 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) according to Example 2 of the present invention. FIG. 10 (a) shows a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved 0.25 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.31 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図11は、本発明に係る実施例3のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIG. 11 is a lens configuration diagram of Example 3 according to the present invention, where (a) shows a focused state with respect to an object at infinity, and (b) shows a focused state with respect to a short-range object (1.0 times). Yes.

図12は、本発明に係る実施例3の無限遠物体合焦時での縦収差図であり、図13は、本発明に係る実施例3の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 12 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 3 of the present invention, and FIG. 13 is when focusing on a short-distance object (1.0 ×) according to Example 3 according to the present invention. FIG.

図14は、本発明に係る実施例3の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.25mm移動させ、結像位置を画角0.31度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 14 is a lateral aberration diagram when focusing on an object at infinity according to Example 3 of the present invention. FIG. 14A is a lateral aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration-proof. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.25 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle of view equivalent to 0.31 degrees during image stabilization. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図15は、本発明に係る実施例3の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.25mm移動させ、結像位置を画角0.31度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 15 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) in Example 3 according to the present invention, and FIG. 15A is a diagram illustrating a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved 0.25 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.31 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

次に、各条件式の技術的意味について説明する。 Next, the technical meaning of each conditional expression will be described.

条件式(1)は、防振レンズ群の防振係数を規定するものである。防振係数とは、手ぶれ等により発生した像面上における結像位置の移動量を、防振するために移動させる防振レンズ群の移動量で割った数値を示す。 Conditional expression (1) defines the image stabilization coefficient of the image stabilization lens group. The image stabilization coefficient is a numerical value obtained by dividing the amount of movement of the imaging position on the image plane caused by camera shake or the like by the amount of movement of the image stabilizing lens group to be moved for image stabilization.

条件式(1)の下限値を超え、防振レンズ群の防振係数が小さくなると、手ぶれを補正するのに必要な第4aレンズ群L4aの移動量が大きくなり、防振レンズ群駆動機構が大型化するため好ましくない。 When the lower limit of conditional expression (1) is exceeded and the image stabilization coefficient of the image stabilization lens group becomes smaller, the amount of movement of the 4a lens group L4a necessary for correcting camera shake increases, and the image stabilization lens group drive mechanism Since it enlarges, it is not preferable.

条件式(2)は、最も近距離の物体に合焦した時の第2レンズ群L2の結像倍率を規定するものである。 Conditional expression (2) defines the imaging magnification of the second lens unit L2 when focusing on the object at the shortest distance.

条件式(2)の上限値を超え、第2レンズ群L2の結像倍率が大きくなると、レンズ系の全長や開放絞りの最大径を抑えつつ、第3レンズ群L3においてコマ収差等の諸収差の補正を行うことが困難となる。また、条件式(2)の下限値を超え、第2レンズ群L2の結像倍率が小さくなると、最も近距離の物体に合焦した時の第2レンズ群L2及び第3レンズ群L3における下光線の光軸からの距離が短くなり、これらのレンズ群によって倍率色収差やコマ収差の補正を行うことが困難となる。さらに、近距離物体合焦時の像面における周辺部の横収差補正負担が第1レンズ群L1にのみかかることとなり、好ましくない。 If the upper limit of conditional expression (2) is exceeded and the imaging magnification of the second lens unit L2 increases, various aberrations such as coma aberration in the third lens unit L3 while suppressing the overall length of the lens system and the maximum diameter of the open stop. It becomes difficult to perform correction. If the lower limit of conditional expression (2) is exceeded and the imaging magnification of the second lens unit L2 is reduced, the lower values in the second lens unit L2 and the third lens unit L3 when the object at the shortest distance is in focus are obtained. The distance from the optical axis of the light beam is shortened, and it becomes difficult to correct lateral chromatic aberration and coma aberration with these lens groups. Further, the lateral aberration correction burden on the image surface at the time of focusing on a short distance object is only applied to the first lens unit L1, which is not preferable.

条件式(3)は、第2レンズ群L2の最も像面側にあるレンズ面の曲率半径と第3レンズ群L3の最も物体側にあるレンズ面の曲率半径との差を規定するものである。 Conditional expression (3) defines the difference between the radius of curvature of the lens surface closest to the image plane of the second lens unit L2 and the radius of curvature of the lens surface closest to the object side of the third lens unit L3. .

条件式(3)の上限値を超え、R2rに対するR3fの比が大きくなると、第2レンズ群L2の最も像面側のレンズ面で発生した大きなコマ収差、非点収差を第3レンズ群L3の最も物体側のレンズ面で打ち消すことが困難となる。また、条件式(3)の下限値を超え、R2rに対するR3fの比が小さくなると、下光線をR2rのレンズ面からR3fのレンズ面に強い角度で導くことが維持できなくなり、近距離物体合焦時に第2レンズ群L2と第3レンズ群L3との間隔を確保しつつ条件式(2)の下限値を上回る状態を維持することが困難になる。 When the upper limit of conditional expression (3) is exceeded and the ratio of R3f to R2r increases, large coma and astigmatism generated on the lens surface closest to the image plane of the second lens unit L2 are caused by the third lens unit L3. It becomes difficult to cancel the lens surface closest to the object. When the lower limit of conditional expression (3) is exceeded and the ratio of R3f to R2r becomes small, it becomes impossible to maintain the lower light beam from the lens surface of R2r to the lens surface of R3f at a strong angle, and focus on short-distance objects Sometimes, it becomes difficult to maintain a state exceeding the lower limit value of the conditional expression (2) while ensuring the distance between the second lens unit L2 and the third lens unit L3.

条件式(4)は、第4aレンズ群L4aの最も像面側にあるレンズ面の曲率半径と第4bレンズ群L4bの最も物体側にあるレンズ面の曲率半径との差を規定するものである。 Conditional expression (4) defines the difference between the radius of curvature of the lens surface closest to the image plane of the 4a lens unit L4a and the radius of curvature of the lens surface closest to the object side of the 4b lens unit L4b. .

条件式(4)の上限値を超え、R4arに対するR4bfの比が大きくなると、R4arのレンズ面で光軸に対し強い角度で跳ね上げられた軸外上光線が補正不足になり、また、レンズ系の全長が巨大化するので好ましくない。
また、条件式(4)の下限値を超え、R4arに対するR4bfの比が小さくなると、第4aレンズ群L4aの最も像面側のレンズ面で発生した大きなコマ収差、非点収差を第4bレンズ群L4bの最も物体側のレンズ面で打ち消す作用が崩れてしまう。
When the upper limit of conditional expression (4) is exceeded and the ratio of R4bf to R4ar becomes large, off-axis rays jumped at a strong angle with respect to the optical axis on the lens surface of R4ar will be undercorrected, and the lens system This is not preferable because the total length of the is enlarged.
If the lower limit of conditional expression (4) is exceeded and the ratio of R4bf to R4ar becomes small, large coma and astigmatism generated on the lens surface closest to the image plane of the 4a lens unit L4a will be reduced to the 4b lens unit. The action of canceling with the lens surface closest to the object of L4b is broken.

条件式(5)は、第1レンズ群L1の焦点距離を規定するものであって、レンズの小型化と良好な収差補正を両立させるためのものである。 Conditional expression (5) defines the focal length of the first lens unit L1, and is intended to achieve both lens miniaturization and good aberration correction.

条件式(5)の上限値を超え、第1レンズ群L1の焦点距離が長くなると、収差補正に対しては有利になるが、レンズ系の全長、開放絞りの最大径が大きくなってしまう。また、条件式(5)の下限値を超え、第1レンズ群L1の焦点距離が短くなると、軸上色収差や倍率色収差を良好に補正することが困難になる。 If the upper limit of conditional expression (5) is exceeded and the focal length of the first lens unit L1 is increased, it is advantageous for aberration correction, but the total length of the lens system and the maximum diameter of the aperture stop are increased. If the lower limit of conditional expression (5) is exceeded and the focal length of the first lens unit L1 is shortened, it is difficult to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.

条件式(6)は、第2レンズ群L2の焦点距離を規定するものであって、条件式(2)の数値範囲と良好な収差補正とを両立させるためのものである。 Conditional expression (6) defines the focal length of the second lens unit L2, and is intended to achieve both the numerical range of conditional expression (2) and good aberration correction.

条件式(6)の上限値を超え、第2レンズ群L2の焦点距離が絶対値で長くなると、レンズ系の全長や開放絞りの最大径を抑制しつつ条件式(2)を満たすことが困難になる。また、条件式(6)の下限値を超え、第2レンズ群L2の焦点距離が絶対値で短くなると、合焦物体距離に依る諸収差の変動が激しくなり、非点収差、コマ収差を無限遠物体から等倍付近の近距離物体にわたる合焦範囲の全てで良好に補正することが困難になる。 If the upper limit of conditional expression (6) is exceeded and the focal length of the second lens unit L2 is increased in absolute value, it is difficult to satisfy conditional expression (2) while suppressing the total length of the lens system and the maximum diameter of the aperture stop. become. If the lower limit of conditional expression (6) is exceeded and the focal length of the second lens unit L2 is shortened in absolute value, variations in various aberrations depending on the focused object distance become severe, and astigmatism and coma are infinite. It becomes difficult to correct well in the entire focusing range from a distant object to a close object near the same magnification.

条件式(7)は、第3レンズ群L3の焦点距離を規定するものであって、レンズ系の小型化と良好な収差補正とを両立させるためのものである。 Conditional expression (7) defines the focal length of the third lens unit L3, and is intended to achieve both a reduction in the size of the lens system and good aberration correction.

条件式(7)の上限値を超え、第3レンズ群L3の焦点距離が長くなると、一定の撮影倍率を確保するためのフォーカスレンズ群の移動量が大きくなり、レンズ系の全長が大きくなってしまう。また、条件式(7)の下限値を超え、第3レンズ群L3の焦点距離が短くなると、球面収差やコマ収差等の諸収差が大きくなるのに加えて、第3レンズ群L3と第4レンズ群L4との間隔を確保することが困難になる。 When the upper limit of conditional expression (7) is exceeded and the focal length of the third lens unit L3 is increased, the amount of movement of the focus lens unit to ensure a constant photographing magnification increases, and the total length of the lens system increases. End up. When the lower limit of conditional expression (7) is exceeded and the focal length of the third lens unit L3 is shortened, various aberrations such as spherical aberration and coma increase, and in addition, the third lens unit L3 and the fourth lens unit L3. It is difficult to ensure a distance from the lens unit L4.

条件式(8)は、第4レンズ群L4の焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正とを両立させるためのものである。 Conditional expression (8) defines the focal length of the fourth lens unit L4, and is for ensuring both a sufficient anti-vibration coefficient of the anti-vibration lens unit and correction of aberrations during image stabilization. is there.

条件式(8)の上限値を超え、第4レンズ群L4の焦点距離が絶対値で長くなると、収差補正に対しては有利になるが、最も像面側のレンズの径を抑えつつ防振レンズ群の十分な防振係数を得ることが困難になる。また、条件式(8)の下限値を超え、第4レンズ群L4の焦点距離が絶対値で短くなると、第3レンズ群L3と第4レンズ群L4との間隔を確保した上で、防振レンズ群の十分な防振係数を得ることが困難になる。 If the upper limit of conditional expression (8) is exceeded and the focal length of the fourth lens unit L4 is increased in absolute value, it is advantageous for aberration correction, but the image stabilization is performed while suppressing the diameter of the lens closest to the image plane. It becomes difficult to obtain a sufficient anti-vibration coefficient for the lens group. When the lower limit of conditional expression (8) is exceeded and the focal length of the fourth lens unit L4 becomes shorter in absolute value, the image stabilization is performed after securing the interval between the third lens unit L3 and the fourth lens unit L4. It becomes difficult to obtain a sufficient anti-vibration coefficient for the lens group.

条件式(9)は、第4aレンズ群L4aの焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正とを両立させるためのものである。 Conditional expression (9) defines the focal length of the 4a lens unit L4a, and is intended to achieve both a sufficient anti-vibration coefficient of the anti-vibration lens unit and aberration correction during image stabilization. is there.

条件式(9)の下限値を超え、第4aレンズ群L4aの焦点距離が短くなると、第4aレンズ群L4aが光軸に対して垂直方向へ移動することで発生する収差、特に軸上色収差と非点収差の補正が困難になる。また、条件式(9)の上限値を超え、第4aレンズ群L4aの焦点距離が長くなると、収差補正に対しては有利になるが、最も像面側のレンズの径を抑えつつ防振レンズ群の十分な防振係数を得ることが困難になる。 When the lower limit of conditional expression (9) is exceeded and the focal length of the 4a lens unit L4a is shortened, aberrations caused by the movement of the 4a lens unit L4a in the direction perpendicular to the optical axis, particularly axial chromatic aberration, Astigmatism correction becomes difficult. If the upper limit of conditional expression (9) is exceeded and the focal length of the 4a lens unit L4a is increased, it is advantageous for aberration correction, but the image stabilizing lens is suppressed while suppressing the diameter of the lens closest to the image plane. It becomes difficult to obtain a sufficient anti-vibration coefficient for the group.

条件式(10)は第4bレンズ群L4bの焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正とを両立させるためのものである。 Conditional expression (10) defines the focal length of the 4b lens unit L4b, and is for ensuring both a sufficient anti-vibration coefficient of the anti-vibration lens unit and correction of aberrations during image stabilization. .

条件式(10)の下限値を超え、第4bレンズ群L4bの焦点距離が短くなると、合焦操作の際に移動するレンズ群に十分な屈折力を与えることが困難になる。また、条件式(10)の上限値を超え、第4bレンズ群L4bの焦点距離が長くなると、第4aレンズ群L4aと第4bレンズ群L4bとの間隔を確保しつつ防振レンズ群の十分な防振係数を得ることが困難になる。 If the lower limit of conditional expression (10) is exceeded and the focal length of the 4b lens unit L4b becomes short, it becomes difficult to give sufficient refractive power to the lens unit that moves during the focusing operation. If the upper limit of conditional expression (10) is exceeded and the focal length of the 4b lens unit L4b is increased, a sufficient amount of vibration-proof lens unit is ensured while ensuring the interval between the 4a lens unit L4a and the 4b lens unit L4b. It becomes difficult to obtain an anti-vibration coefficient.

以下、本発明の数値実施例1乃至数値実施例6について説明する。 Hereinafter, Numerical Example 1 to Numerical Example 6 of the present invention will be described.

各数値実施例において、[全体諸元]中のfは焦点距離、FnoはFナンバー、2ωは画角(単位:度)を表す。また、[レンズ諸元]中の第1列の番号Nは物体側から数えたレンズ面の面番号、第2列Rはレンズ面の曲率半径、第3列Dはレンズ面間隔、第4列ndはd線(波長λ=587.6nm)に対する屈折率、第5列νdはd線(波長λ=587.6nm)に対するアッベ数を表す。また、R=0.0000は平面を表し、Bfはバックフォーカス、「絞り」は絞り面、「フレアカット絞り」はフレアカット絞り面を示し、「*」印は非球面を示し、空気の屈折率nd=1.0000はその記載を省略する。[可変間隔]では、各撮影距離に対する可変間隔を示す。 In each numerical example, f in [general specifications] represents a focal length, Fno represents an F number, and 2ω represents an angle of view (unit: degree). In the [lens specifications], the number N in the first row is the surface number of the lens surface counted from the object side, the second row R is the radius of curvature of the lens surface, the third row D is the lens surface spacing, and the fourth row. nd represents the refractive index with respect to the d-line (wavelength λ = 587.6 nm), and the fifth column νd represents the Abbe number with respect to the d-line (wavelength λ = 587.6 nm). R = 0.0000 represents a plane, Bf represents back focus, “aperture” represents a diaphragm surface, “flare cut diaphragm” represents a flare cut diaphragm surface, “*” represents an aspheric surface, and air refraction. The description of the rate nd = 1.0000 is omitted. [Variable interval] indicates a variable interval for each shooting distance .

また、図中のd線、g線、C線はそれぞれの波長に対する収差であり、ΔSはサジタル像面、ΔMはメリジオナル像面を示す。 Further, d-line, g-line, and C-line in the figure are aberrations with respect to the respective wavelengths, ΔS represents a sagittal image plane, and ΔM represents a meridional image plane.

[非球面係数]では、面番号Nのレンズ面の非球面形状を次式で表した場合の、非球面係数を表す。

Figure 0005542375
[Aspheric coefficient] represents an aspheric coefficient when the aspheric shape of the lens surface with the surface number N is expressed by the following equation.
Figure 0005542375

ただし、zはレンズ面の頂点を基準にしたときの光軸からの高さyの位置における光軸方向への偏移量を示し、Kはコーニック係数を示し、A4、A6、A8、A10は非球面係数を示し、rは基準球面の曲率半径を示す。また、「E−n」は「×10−n」を示し、例えば「−4.7168E−06」は「−4.7168×10−6」を示す。 Here, z indicates the amount of deviation in the optical axis direction at the position of the height y from the optical axis with respect to the vertex of the lens surface, K indicates the conic coefficient, and A4, A6, A8, and A10 are An aspheric coefficient is indicated, and r indicates a radius of curvature of the reference sphere. Further, “E-n” indicates “× 10 −n ”, for example “−4.7168E-06” indicates “−4.7168 × 10 −6 ”.

以下、全ての数値実施例において、記載されている焦点距離、曲率半径、レンズ面間隔、及びその他の長さの単位については、特記のない場合「mm」を使用するが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、単位は「mm」に限られるものではない。 Hereinafter, in all the numerical examples, “mm” is used unless otherwise specified for the focal length, the radius of curvature, the lens surface interval, and other length units that are described, but the optical system is proportional. The unit is not limited to “mm” because the same optical performance can be obtained even when the magnification is enlarged or proportionally reduced.

(数値実施例1)

Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375
(Numerical example 1)
Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375

(数値実施例2)

Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375
(Numerical example 2)
Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375

(数値実施例3)

Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375
(Numerical Example 3)
Figure 0005542375
Figure 0005542375
Figure 0005542375
Figure 0005542375

Figure 0005542375
Figure 0005542375

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L4a 第4レンズ群を構成する前群の第4aレンズ群
L4b 第4レンズ群を構成する後群の第4bレンズ群
S 開口絞り
I 像面
d d線
C C線
g g線
Fno Fナンバー
ΔS サジタル像面
ΔM メリジオナル像面
Y 像高
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L4a 4a lens group L4b of the front group which constitutes the 4th lens group 4b lens group of the back group which constitutes the 4th lens group S aperture stop I image plane d d line C C line g g line Fno F number ΔS sagittal image plane ΔM meridional image plane Y image height

Claims (3)

物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4とからなり、
無限遠物体から近距離物体への合焦の際に、少なくとも前記第3レンズ群L3を物体側へ移動させると同時に前記第2レンズ群L2を光軸上の任意の方向へ移動させ、かつ、前記第1レンズ群L1と前記第2レンズ群L2との光軸上間隔が変化し、同時に前記第2レンズ群L2と前記第3レンズ群L3との光軸上間隔が縮小し、また同時に前記第3レンズ群L3と前記第4レンズ群L4との光軸上間隔が拡大し、
無限遠から等倍までのいずれかの倍率で近距離撮影が可能であって、
前記第4レンズ群L4は、物体側から順に、負の屈折力を有する前群の第4aレンズ群L4aと、正の屈折力を有する後群の第4bレンズ群L4bとで構成され、光学系が振動された際に前記第4aレンズ群L4aを光軸に対して略垂直方向へ移動させることで像ぶれ補正を行い、 以下の条件式を満足することを特徴とする防振機能を有するインナーフォーカス式マクロレンズ。
(1) 2.0<(Δx/ΔH)
(2) −2.0<β2mod<−0.2
ただし、
ΔHは前記第4aレンズ群L4aの光軸対する垂直方向への移動量
Δxは前記第4aレンズ群L4aが光軸に対して垂直方向へΔH移動したときの像面上における結像位置の移動量
β2modは最も近距離の物体に合焦した時の前記第2レンズ群L2の結像倍率
In order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a fourth lens having a negative refractive power Consisting of group L4,
When focusing from an object at infinity to an object at a short distance, at least the third lens unit L3 is moved to the object side and at the same time the second lens unit L2 is moved in an arbitrary direction on the optical axis; and The distance on the optical axis between the first lens group L1 and the second lens group L2 changes, and at the same time the distance on the optical axis between the second lens group L2 and the third lens group L3 is reduced. The distance on the optical axis between the third lens unit L3 and the fourth lens unit L4 is increased,
Close-up photography is possible at any magnification from infinity to 1x ,
The fourth lens unit L4 includes, in order from the object side, a front group 4a lens unit L4a having a negative refractive power and a rear group 4b lens unit L4b having a positive refractive power, and an optical system. When the lens 4 is vibrated, image blur correction is performed by moving the fourth lens unit L4a in a direction substantially perpendicular to the optical axis, and the following conditional expression is satisfied. Focus macro lens.
(1) 2.0 <(Δx / ΔH)
(2) −2.0 <β2mod <−0.2
However,
ΔH is the amount of movement of the 4a lens unit L4a in the direction perpendicular to the optical axis Δx is the amount of movement of the image formation position on the image plane when the 4a lens unit L4a is moved ΔH in the direction perpendicular to the optical axis β2mod is the imaging magnification of the second lens unit L2 when focused on the object at the shortest distance
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群L1及び前記第4レンズ群L4は像面に対し光軸方向に固定であることを特徴とする請求項1に記載の防振機能を有するインナーフォーカス式マクロレンズ。 The first lens unit L1 and the fourth lens unit L4 are fixed in the optical axis direction with respect to the image plane when focusing from an infinitely distant object to a close object. Inner focus type macro lens with anti-vibration function. 以下の条件式を満足することを特徴とする請求項1又は請求項2のいずれかに記載の防振機能を有するインナーフォーカス式マクロレンズ。
(3) 0.0<(f/R2r−f/R3f)<1.0
(4) −1.0<(f/R4ar−f/R4bf)<0.0
ただし、
R2rは前記第2レンズ群L2の最も像面側のレンズ面の曲率半径
R3fは前記第3レンズ群L3の最も物体側のレンズ面の曲率半径
R4arは前記第4aレンズ群L4aの最も像面側のレンズ面の曲率半径
R4bfは前記第4bレンズ群L4bの最も物体側のレンズ面の曲率半径
fは無限遠物体に合焦した際の光学系全系の焦点距離
The inner focus type macro lens having an image stabilization function according to claim 1, wherein the following conditional expression is satisfied.
(3) 0.0 <(f / R2r-f / R3f) <1.0
(4) -1.0 <(f / R4ar-f / R4bf) <0.0
However,
R2r is the radius of curvature R3f of the lens surface closest to the image plane of the second lens unit L2, and R4ar is the radius of curvature R4ar of the lens surface closest to the object side of the third lens unit L3 is closest to the image plane of the fourth lens unit L4a. The radius of curvature R4bf of the lens surface is the radius of curvature f of the lens surface closest to the object side of the 4b lens unit L4b, and the focal length of the entire optical system when focusing on an object at infinity.
JP2009155933A 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function Active JP5542375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155933A JP5542375B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155933A JP5542375B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Publications (3)

Publication Number Publication Date
JP2011013358A JP2011013358A (en) 2011-01-20
JP2011013358A5 JP2011013358A5 (en) 2012-08-16
JP5542375B2 true JP5542375B2 (en) 2014-07-09

Family

ID=43592332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155933A Active JP5542375B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Country Status (1)

Country Link
JP (1) JP5542375B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063253B2 (en) * 2011-12-12 2015-06-23 Tamron Co., Ltd. Imaging lens
JP5786265B2 (en) * 2011-12-12 2015-09-30 株式会社タムロン Shooting lens
JP6665615B2 (en) * 2016-03-22 2020-03-13 株式会社シグマ Large aperture telephoto lens
JP6978968B2 (en) * 2018-03-20 2021-12-08 Omデジタルソリューションズ株式会社 Macro lens and an image pickup device equipped with it
JP6978967B2 (en) * 2018-03-20 2021-12-08 Omデジタルソリューションズ株式会社 Macro lens and an image pickup device equipped with it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003081B2 (en) * 1990-08-31 2000-01-24 株式会社シグマ Inner focus macro lens
JP3538341B2 (en) * 1999-07-02 2004-06-14 ペンタックス株式会社 Telephoto macro lens system
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP4115742B2 (en) * 2002-05-10 2008-07-09 株式会社タムロン Telephoto macro lens optical system
JP2004061680A (en) * 2002-07-26 2004-02-26 Canon Inc Macro lens
JP5004725B2 (en) * 2007-09-05 2012-08-22 キヤノン株式会社 Imaging lens and imaging apparatus having the same
JP5126668B2 (en) * 2008-01-22 2013-01-23 株式会社ニコン Photographic lens, optical device including the same, and image blur correction method
JP5229614B2 (en) * 2008-06-23 2013-07-03 株式会社ニコン Photographic lens, optical device including the same, and image blur correction method
JP5142823B2 (en) * 2008-05-28 2013-02-13 キヤノン株式会社 Imaging lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP2011013358A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5542374B2 (en) Inner focus type macro lens with anti-vibration function
JP5378880B2 (en) Inner focus type macro lens
JP5426653B2 (en) Zoom lens
JP5558281B2 (en) Inner focus type macro lens with anti-vibration function
JP5726491B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
CN105929525B (en) Optical system and image pickup apparatus
JP5584064B2 (en) Macro lens
JP5426353B2 (en) Zoom lens with anti-vibration function
JP6558103B2 (en) Large aperture wide angle lens
JP6749632B2 (en) Large aperture lens
JP2010211102A (en) Inner zoom type and inner focus type zoom lens having vibration-proofing function
JP5542375B2 (en) Inner focus type macro lens with anti-vibration function
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP6322969B2 (en) Large aperture lens with anti-vibration function
JP6199261B2 (en) Zoom lens and imaging device
JP5562552B2 (en) Inner focus type anti-vibration lens
JP5848099B2 (en) Inner focus type large aperture telephoto macro lens with anti-vibration function
CN105785689B (en) Optical system and image pickup apparatus
JP6665615B2 (en) Large aperture telephoto lens
JP7277290B2 (en) Zoom lens and imaging device
JP6833323B2 (en) Zoom lens and imaging device with it
JP2020154060A (en) Image capturing lens system
JP6033904B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP7433851B2 (en) Optical system and imaging device
JP2014235177A (en) Inner focus type lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250