WO2013031564A1 - Optical system and imaging device - Google Patents

Optical system and imaging device Download PDF

Info

Publication number
WO2013031564A1
WO2013031564A1 PCT/JP2012/070965 JP2012070965W WO2013031564A1 WO 2013031564 A1 WO2013031564 A1 WO 2013031564A1 JP 2012070965 W JP2012070965 W JP 2012070965W WO 2013031564 A1 WO2013031564 A1 WO 2013031564A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
defocus mtf
optical system
mtf
defocus
Prior art date
Application number
PCT/JP2012/070965
Other languages
French (fr)
Japanese (ja)
Inventor
慶延 岸根
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013031564A1 publication Critical patent/WO2013031564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras

Definitions

  • the optical system of the present invention forms an image on an image sensor, has a maximum principal ray angle of 35 degrees or more, and has radial and tangential directions on the axis.
  • the focus MTF peak position and the off-axis tangential defocus MTF peak position are within ⁇ 5% of the focal length from the best focus position, and the off-axis defocus MTF peak position is off-axis.
  • the peak position of the defocus MTF in the tangential direction is shifted in the plus or minus direction.
  • the off-axis radial defocus MTF peak position shift amount is Dv
  • the off-axis radial defocus MTF value is 0.2 or more
  • the defocus range is Wt
  • the off-axis radial defocus MTF is defocused.
  • the shift amount Dv satisfies Dv ⁇ 0.05 Wt ⁇ (P0 / P1).
  • An imaging apparatus of the present invention includes an optical system capable of focus adjustment, and an image sensor that photoelectrically converts an image formed by the optical system, the maximum principal ray angle of the optical system being 35 degrees or more, and an axis
  • the peak positions of the upper radial and tangential defocus MTFs and the peak position of the off-axis tangential defocus MTF are within ⁇ 5% of the best focus position.
  • the peak position of the focus MTF is shifted in the plus or minus direction with respect to the peak position of the defocus MTF in the tangential direction.
  • the image sensor 12 is a CCD or CMOS device, and has an imaging surface IP in which a plurality of pixels are two-dimensionally arranged.
  • the image sensor 12 photoelectrically converts an image formed on the imaging surface IP and outputs image data to the AF control unit 13 and the image processing unit 14.
  • the size of the image sensor 12 is, for example, 1 ⁇ 4 inch and the pixel pitch is 1.4 ⁇ m (5M pixels, 2600 ⁇ 1960 pixels, 3.640 mm ⁇ 2.744 mm).
  • the Nyquist frequency Ny determined from the pixel pitch of the image sensor 12 is about 360 lines / mm, and the image sensor 12 can resolve an image having a spatial frequency of about 360 lines / mm or less. Since the Nyquist frequency Ny, which is particularly well resolved, is about 90 lines / mm (hereinafter referred to as Ny / 4), the MTF for defocus described later is evaluated based on the spatial frequency of Ny / 4. To do.
  • the AF control unit 13 automatically determines an appropriate focal length based on input image data and the like, and inputs the result to the optical system 11.
  • the optical system 11 performs focus adjustment by moving the lens L1 (see FIG. 2) and the like in the optical axis direction based on a signal input from the AF control unit 13. Also, the determination of an appropriate focal length performed by the AF control unit 13 is performed within a predetermined range according to the characteristics of the optical system 11 described later.
  • the image processing unit 14 performs various image processing such as gamma correction processing on the image data obtained by the image sensor 12. Image data subjected to image processing by the image processing unit 14 is displayed on the display unit 16 or stored in the memory 17.
  • the optical system 11 is an optical system substantially composed of one or more lenses, and includes, for example, a diaphragm (not shown), an objective lens group L0, and a correction lens L1.
  • An optical system consisting essentially of one or more lenses means, in addition to one or more lenses or lens groups, lenses having substantially no power, optical elements other than lenses, such as a diaphragm and a cover glass, lens flanges, lenses It includes a barrel, a part or all of the image sensor (image sensor 12), a mechanism part such as a camera shake correction mechanism, and the like.
  • the diaphragm of the optical system 11 is provided, for example, in the lens group L0, in front of the lens group L0, between the lens group L0 and the correction lens L1, and behind the correction lens L1 (on the imaging surface IP side).
  • the objective lens group L0 is a lens group that includes a plurality of approximately 2 to 5 lenses and has a predetermined focal length (eg, 3 mm) as a whole.
  • the correction lens L1 is a lens for correcting the MTF of the optical system 11.
  • the correction lens L1 is a lens for correcting the MTF mode with respect to the focus shift of the lens unit L0.
  • the correction lens L1 corrects the peak position of the MTF with respect to the focus shift in the T direction outside the optical axis.
  • the optical system 19 includes a diaphragm (not shown), a lens group L2, and a lens L3.
  • the lens group L2 has a longer focal length (for example, from 4 mm) than the lens group L0 of the thin optical system 11 of the present invention.
  • the lens L3 is a lens corresponding to the correction lens L1 of the thin optical system 11 of the present invention, but the lens L2 does not have an action of correcting the MTF of the optical system 19 unlike the correction lens L1.
  • the diaphragm of the conventional optical system 19 is provided, for example, in the lens group L2, in front of the lens group L2, between the lens group L2 and the lens L3, and behind the lens L3 (on the imaging surface IP side).
  • the conventional optical system 19 shows a change in MTF (hereinafter referred to as defocus MTF) with respect to focus shift (hereinafter referred to as defocus) at a spatial frequency of Ny / 4.
  • defocus MTF MTF
  • the on-axis defocus MTF is larger than the off-axis defocus MTF in the most part including the best focus position, but the on-axis defocus MTF and the off-axis defocus MTF are larger or smaller in the part where the defocus amount is large.
  • the relationship may be reversed and the off-axis defocus MTF may exceed the on-axis defocus MTF.
  • the best focus position is the peak position of the on-axis defocus MTF at a spatial frequency of Ny / 4.
  • the position of 0 ⁇ m defocus is the best focus position.
  • the image is blurred in the first place, so that the off-axis defocus MTF and the on-axis defocus MTF are reversed, the off-axis defocus MTF in the T direction and the axis in the S direction. Difficult to remember due to reversal of outside defocus MTF.
  • both the on-axis MTF and the off-axis MTF decrease as the spatial frequency increases, as in the conventional optical system 19.
  • the on-axis MTF and the off-axis MTF in the S direction are substantially the same as those of the conventional optical system 19, but the off-axis MTF in the T direction of the thin optical system 20 decreases more steeply than the conventional optical system 19. .
  • the off-axis defocus MTF in the T direction has a method of decreasing with respect to the defocus amount as compared with the on-axis defocus MTF and the off-axis defocus MTF in the S direction. It is moderate. As a result, the range in which the off-axis defocus MTF is smaller than the on-axis defocus MTF is smaller than that of the conventional optical system 19 (see FIG. 14).
  • the width of the region E1 in which the off-axis defocus MTF in the T direction is smaller than the off-axis defocus MTF in the S direction is reduced, and the off-axis defocus MTF in the T direction is larger than the off-axis defocus MTF in the S direction.
  • the width of the region E2 is expanded.
  • the region E2 in which the off-axis defocus MTF in the T direction is larger than the off-axis defocus MTF in the S direction has a larger MTF range of 0.2 or more than the conventional optical system, and the T direction.
  • the off-axis defocus MTF and the off-axis defocus MTF in the S direction are reversed, and the gap is larger than that of the conventional optical system (see FIG. 14).
  • the thin optical system 11 of the present invention mounted on the imaging device 10 has the following characteristics by the correction lens L1, so that the on-axis defocus MTF is off-axis defocused while being thin.
  • the range in which the off-axis defocus MTF in the T direction is smaller than the off-axis defocus in the S direction is larger than the MTF.
  • the thin optical system 11 of the present invention is an optical system having the same focal length of 3 mm as the thin optical system 20 shown in FIG. 3, but is off-axis defocused MTF in the T direction by the correction lens L1.
  • the optical position is shifted in the plus direction with respect to the peak position Vs of the off-axis defocus MTF in the S direction. In this way, when the peak position Vt of the off-axis defocus MTF in the T direction is shifted from the best focus position, the position of the intersection of the graph of the off-axis defocus MTF in the T direction and the off-axis defocus MTF in the S direction.
  • the AF control unit 13 of the imaging apparatus 10 does not simply perform focus adjustment so that the main subject is in the best focus, but the above-described on-axis defocus MTF is larger than the off-axis defocus MTF, and T Focus adjustment is performed so that all the subjects are within the range in which the off-axis defocus MTF in the direction is smaller than the off-axis defocus MTF in the S direction (in the range of 47 ⁇ m in FIG. 8).
  • T Focus adjustment is performed so that all the subjects are within the range in which the off-axis defocus MTF in the direction is smaller than the off-axis defocus MTF in the S direction (in the range of 47 ⁇ m in FIG. 8).
  • the defocusing range in which an image without a sense of incongruity is obtained by shifting the peak position Vt of the off-axis defocusing MTF in the T direction is illustrated in FIG.
  • the peak position Vs of the off-axis defocus MTF in the S direction is shifted without shifting the peak position Vt of the off-axis defocus MTF in the T direction.
  • the peak position Vs of the off-axis defocus MTF in the S direction may be shifted to the opposite side of the shift direction (for example, plus side) of the peak position Vt of the focus MTF.

Abstract

Provided is a thin optical system that can eliminate reversal of resolution at a center part and peripheral parts and reversal of resolution in a tangent line direction (S direction) and radial direction (T direction) to obtain images which do not cause discomfort. Also provided is an imaging device using the same. The peak position (Vt) for defocus MTF in the T direction outside of the axis and the peak position (Vs) for defocus MTF in the S direction outside of the axis differ. The peak position for defocus MTF on the axis and the peak position (Vs) for defocus MTF in the S direction outside of the axis are in the best focus position. The peak position (Vt) for defocus MTF in the T direction is shifted to the plus side of the best focus position. Thus, the defocus MTF outside of the axis is smaller than the defocus MTF on the axis, and the defocus MTF outside the axis in the T direction is smaller than the defocus MTF outside the axis in the S direction; the range of defocus in which images which do not cause discomfort can be obtained is expanded.

Description

光学系及び撮像装置Optical system and imaging apparatus
 本発明は、光学全長が短く薄型の光学系及び撮像装置に関するものである。 The present invention relates to a thin optical system and an imaging apparatus having a short optical total length.
 近年、携帯電話機等の携帯端末に薄型の撮像ユニットが標準的に搭載されている。また、専用機であるデジタルカメラにおいても、薄型のコンパクトデジタルカメラが普及している。また、こうした薄型のデジタルカメラにおいても、大画面で高画質な画像を撮影することが求められており、レンズ等の光学系やイメージセンサの画素数の向上が望まれている。特に、携帯電話機等に搭載される撮像ユニットは、紙面の文字列等の近景や風景や人物等の遠景、あるいはこれらの混在した被写体等、様々な被写体の撮影に利用されるが、サイズやコストの点からズーム機構等の複雑な機構を組み込むことが難しい。このため、携帯電話機等に搭載されるデジタルカメラでは、ズーム機構等によらずに様々な被写体を大画面かつ高画質に撮影できるようにすることが求められている。 In recent years, a thin imaging unit is standardly mounted on a portable terminal such as a cellular phone. In addition, thin compact digital cameras are also popular in digital cameras that are dedicated machines. In addition, such a thin digital camera is also required to take a high-quality image on a large screen, and an improvement in the number of pixels of an optical system such as a lens or an image sensor is desired. In particular, an image pickup unit mounted on a mobile phone or the like is used for shooting various subjects such as a close-up view of a character string on a paper surface, a distant view of a landscape or a person, or a subject in which these are mixed. From this point, it is difficult to incorporate a complicated mechanism such as a zoom mechanism. For this reason, a digital camera mounted on a mobile phone or the like is required to be able to photograph various subjects with a large screen and high image quality without using a zoom mechanism or the like.
 一方、薄型化により、光学系の最後群のレンズとイメージセンサの撮像面との距離が近くなると、周辺部分で主光線角度(Chief Ray Angle;CRA)が大きくなるので、周辺部分の解像度が中心部分の解像度よりも低下し、画質が悪くなることがある。このような周辺部分での画質を改善した光学系としては、例えば、結像面を意図的に湾曲させておくことにより、像高によらずほぼ一定の解像度が得られるようにした光学系が知られている(特許文献1)。主光線角度とは、絞りの中心を通る光線がイメージセンサの撮像面に入射する入射角度であり、レンズのタイプにもよるが、概ね像高が7割以上の箇所で最大になる。 On the other hand, as the distance between the last lens of the optical system and the imaging surface of the image sensor becomes shorter due to the reduction in thickness, the chief ray angle (Chief Ray Angle (CRA)) increases in the peripheral part, so the resolution in the peripheral part is the center. The resolution may be lower than that of the portion, and the image quality may deteriorate. As an optical system that improves the image quality in such a peripheral portion, for example, an optical system that can obtain a substantially constant resolution regardless of the image height by intentionally curving the imaging surface. Known (Patent Document 1). The chief ray angle is an incident angle at which a light beam passing through the center of the stop is incident on the imaging surface of the image sensor. Although it depends on the lens type, the principal ray angle is maximized at a position where the image height is approximately 70% or more.
特開2008-249909号公報JP 2008-249909 A
 上述のように、薄型のデジタルカメラでは周辺部分で解像度が低下しやすいという問題があるが、単に周辺部分での解像度を向上させれば良いわけではない。人間の視覚は、中心部分の解像度が高く周辺部分の解像度が低いので、例えば、中心部分と周辺部分とで解像度の高さが逆転し、周辺部分の解像度が中心部分よりも高くなると、撮影した画像に違和感を覚えるようになる。したがって、周辺部分の解像度を向上させる場合、周辺部分の解像度が中心部の解像度を大きく超えることは好ましくない。 As described above, the thin digital camera has a problem that the resolution tends to decrease in the peripheral portion, but it is not sufficient to simply improve the resolution in the peripheral portion. For human vision, the resolution of the central part is high and the resolution of the peripheral part is low. For example, when the resolution of the central part and the peripheral part is reversed and the resolution of the peripheral part is higher than the central part, the image was taken. The image feels strange. Therefore, when improving the resolution of the peripheral part, it is not preferable that the resolution of the peripheral part greatly exceeds the resolution of the central part.
 また、同様の理由から、図15に示すように、撮影した画像30において放射方向(レンズのタンジェンシャル面と撮像面との交線方向。以下、T方向という)と接線方向(レンズのサジタル面と撮像面との交線方向。以下、S方向という)を比較すると、人間の視覚はT方向の解像力の低下(いわゆる像のボケ)に寛容である。但し、これはS方向の解像度がT方向の解像度を上回る場合である。逆に、T方向の解像度がS方向の解像度を上回る場合には、解像度の高さによらず、画像に違和感を覚えるようになる。このため、T方向の解像度がS方向の解像度を大きく上回ることは好ましくない。 For the same reason, as shown in FIG. 15, in the captured image 30, the radial direction (the intersecting direction of the tangential surface of the lens and the imaging surface; hereinafter referred to as the T direction) and the tangential direction (the sagittal surface of the lens) And the imaging plane (hereinafter referred to as the S direction), human vision is tolerant to a decrease in resolution in the T direction (so-called image blur). However, this is a case where the resolution in the S direction exceeds the resolution in the T direction. On the contrary, when the resolution in the T direction exceeds the resolution in the S direction, the image feels uncomfortable regardless of the resolution. For this reason, it is not preferable that the resolution in the T direction greatly exceeds the resolution in the S direction.
 特許文献1に記載の光学系は、結像面を球面状に意図的に湾曲させておくことにより焦点深度や解像度の面内均一性を向上させている。これは、湾曲させた光学系の結像面とイメージセンサの平面状の撮像面とのギャップが小さい場合、すなわちCRAの最大値が比較的小さい場合(例えば、特許文献1に記載のようにCRAが最大20度程度の場合)に有効な方法である。しかし、CRAがさらに大きい薄型の光学系(例えば、CRAが35度以上になる光学系)に適用すると、湾曲した結像面と平面状の撮像面のギャップが大きくなり、解像度の面内均一性が向上したとしても、全体的に解像度が低下してしまうという弊害のほうが大きい。 The optical system described in Patent Document 1 improves the in-plane uniformity of the depth of focus and resolution by intentionally curving the imaging surface into a spherical shape. This is because when the gap between the curved imaging surface of the optical system and the planar imaging surface of the image sensor is small, that is, when the maximum value of CRA is relatively small (for example, CRA as described in Patent Document 1). This is an effective method. However, when applied to a thin optical system having a larger CRA (for example, an optical system having a CRA of 35 degrees or more), the gap between the curved imaging surface and the planar imaging surface is increased, and the in-plane resolution is uniform. Even if the resolution is improved, the adverse effect that the resolution is lowered as a whole is greater.
 また、近年の薄型デジタルカメラには自動的に焦点調節を行うオートフォーカス機能(以下、AF機能という)が搭載されていることも多いが、AF機能の精度が悪い場合には必ずしもベストピントで撮影されるとは限らない。こうしたデフォーカス状態での撮影では、上述のような解像度の面内不均一性や、T方向とS方向の解像度の逆転による画質の低下がより顕著になるので違和感がある画像になる。これは手動による焦点調節に失敗した場合や、AF機能がない光学系を用いた撮影においても同様である。 In addition, recent thin digital cameras often have an autofocus function that automatically adjusts the focus (hereinafter referred to as the AF function). However, if the accuracy of the AF function is poor, the best focus is always taken. It is not always done. When shooting in such a defocused state, the in-plane non-uniformity of the resolution as described above and the deterioration in image quality due to the reversal of the resolution in the T direction and the S direction become more prominent, resulting in an uncomfortable image. The same applies to the case where the manual focus adjustment has failed or the photographing using the optical system having no AF function.
 本発明は、中心部分と周辺部分での解像度の逆転、及び、S方向とT方向の解像度の逆転を解消して、違和感がない画像を得ることができる薄型の光学系及び撮像装置を提供することを目的とする。 The present invention provides a thin optical system and an imaging apparatus capable of solving the reversal of the resolution in the central portion and the peripheral portion and the reversal of the resolution in the S direction and the T direction and obtaining an uncomfortable image. For the purpose.
 上記目的を達成するために、本発明の光学系は、イメージセンサ上に画像を結像するものであって、最大主光線角度が35度以上であり、軸上の放射方向及び接線方向のデフォーカスMTFのピーク位置、及び軸外の接線方向のデフォーカスMTFのピーク位置がベストピント位置から焦点距離の±5%以内の位置にあり、軸外において、放射方向のデフォーカスMTFのピーク位置が接線方向のデフォーカスMTFのピーク位置に対してプラスまたはマイナス方向にシフトしている。 In order to achieve the above object, the optical system of the present invention forms an image on an image sensor, has a maximum principal ray angle of 35 degrees or more, and has radial and tangential directions on the axis. The focus MTF peak position and the off-axis tangential defocus MTF peak position are within ± 5% of the focal length from the best focus position, and the off-axis defocus MTF peak position is off-axis. The peak position of the defocus MTF in the tangential direction is shifted in the plus or minus direction.
 最大主光線角度とは、絞りへの入射角が異なる複数の主光線がそれぞれイメージセンサの撮像面に入射する角度のうち、最大の角度である。例えば像高が10割の位置の像を結ぶ主光線の角度が最大主光線角度である。光学系の収差等によっては像高が10割未満の像を結ぶ主光線の角度が最大主光線角度になる場合もある。 The maximum chief ray angle is the maximum angle among the angles at which a plurality of chief rays having different angles of incidence on the diaphragm are incident on the imaging surface of the image sensor. For example, the chief ray angle connecting the images at the position where the image height is 100% is the maximum chief ray angle. Depending on the aberration of the optical system and the like, the angle of the principal ray connecting an image with an image height of less than 100% may be the maximum principal ray angle.
 軸上とは、近軸領域を言う。より具体的には、「軸上」には、イメージセンサの撮像面(あるいは撮影した画像)において、光学系の光軸に対応する点にほぼ一致するとみなせる像高が1割未満の位置にある領域が含まれる。 ”Axis” refers to the paraxial region. More specifically, “on the axis” has an image height less than 10% that can be regarded as substantially coincident with a point corresponding to the optical axis of the optical system on the imaging surface (or captured image) of the image sensor. An area is included.
 軸外とは、近軸領域外を言う。すなわち、軸外の点は、イメージセンサの撮像面(あるいは撮影した画像)において、光学系の光軸に対応する点から離れた位置にある点である。より具体的には、光学系の光軸に対応する点(撮像面または撮影した画像の中心)を基準とした像高が1割以上の領域が軸外の領域である。 ”Off-axis” means outside the paraxial region. That is, the off-axis point is a point at a position away from the point corresponding to the optical axis of the optical system on the imaging surface (or the captured image) of the image sensor. More specifically, an area having an image height of 10% or more with respect to a point corresponding to the optical axis of the optical system (an imaging surface or the center of a captured image) is an off-axis area.
 イメージセンサのナイキスト周波数の1/4の空間周波数において、軸外の放射方向のデフォーカスMTFの値が0.2以上になるデフォーカスの範囲をWt、軸外の接線方向のデフォーカスMTFのピーク位置を基準とした軸外における放射方向のデフォーカスMTFのピーク位置のシフト量をDvとする場合に、Dv≧0.05Wtを満たすことが好ましい。 At a spatial frequency of 1/4 of the Nyquist frequency of the image sensor, the defocus range where the off-axis radial defocus MTF value is 0.2 or more is Wt, and the off-axis tangential defocus MTF peak. When the shift amount of the peak position of the defocus MTF in the radial direction off the axis with respect to the position is defined as Dv, it is preferable that Dv ≧ 0.05 Wt is satisfied.
 任意の像高において、放射方向のデフォーカスMTFのピーク位置がシフトした方向が同じであることが好ましい。放射方向のデフォーカスMTFのピーク値が小さいほど前記シフト量が大きいことが好ましい。 It is preferable that the direction in which the peak position of the defocus MTF in the radial direction is shifted is the same at an arbitrary image height. The shift amount is preferably larger as the peak value of the defocus MTF in the radial direction is smaller.
 軸外における放射方向のデフォーカスMTFのピーク位置のシフト量をDv、軸外における放射方向のデフォーカスMTFの値が0.2以上になるデフォーカスの範囲をWt、軸外における放射方向のデフォーカスMTFのピーク値をP1、軸上における放射方向のデフォーカスMTFのピーク値をP0とする場合に、前記シフト量DvがDv≧0.05Wt×(P0/P1)を満たすことが好ましい。 The off-axis radial defocus MTF peak position shift amount is Dv, the off-axis radial defocus MTF value is 0.2 or more, the defocus range is Wt, and the off-axis radial defocus MTF is defocused. When the peak value of the focus MTF is P1 and the peak value of the defocus MTF in the radial direction on the axis is P0, it is preferable that the shift amount Dv satisfies Dv ≧ 0.05 Wt × (P0 / P1).
 焦点距離に対する光学全長の比が1.1以下であることが好ましい。 The ratio of the optical total length to the focal length is preferably 1.1 or less.
 本発明の撮像装置は、焦点調節が可能な光学系と、この光学系で結像された像を光電変換するイメージセンサとを備え、光学系の最大主光線角度が35度以上であり、軸上の放射方向及び接線方向のデフォーカスMTFのピーク位置、及び軸外の接線方向のデフォーカスMTFのピーク位置がベストピント位置から±5%以内の位置にあり、軸外において、放射方向のデフォーカスMTFのピーク位置が接線方向のデフォーカスMTFのピーク位置に対してプラスまたはマイナス方向にシフトしている。 An imaging apparatus of the present invention includes an optical system capable of focus adjustment, and an image sensor that photoelectrically converts an image formed by the optical system, the maximum principal ray angle of the optical system being 35 degrees or more, and an axis The peak positions of the upper radial and tangential defocus MTFs and the peak position of the off-axis tangential defocus MTF are within ± 5% of the best focus position. The peak position of the focus MTF is shifted in the plus or minus direction with respect to the peak position of the defocus MTF in the tangential direction.
 軸上におけるデフォーカスMTFが軸外におけるデフォーカスMTFよりも大きく、かつ、軸外におけるT方向のデフォーカスMTFが軸外におけるS方向のデフォーカスMTFよりも小さい範囲内で光学系の焦点調節を行う自動焦点調節手段を備えることが好ましい。 The focus adjustment of the optical system is performed within a range in which the defocus MTF on the axis is larger than the defocus MTF off the axis and the defocus MTF in the T direction off the axis is smaller than the defocus MTF in the S direction off the axis. It is preferable to provide automatic focusing means for performing.
 本発明は、軸外において、放射方向のデフォーカスMTFのピーク位置と、接線方向のデフォーカスMTFのピーク位置が異なるようにしたので、中心部分と周辺部分での解像度の逆転、及び、S方向とT方向の解像度の逆転が解消され、それによって違和感がない画像を得ることができる。 In the present invention, since the peak position of the defocus MTF in the radial direction and the peak position of the defocus MTF in the tangential direction are different from each other in the off-axis direction, the resolution is reversed between the central portion and the peripheral portion, and the S direction. And the resolution inversion in the T direction are resolved, and an image with no sense of incongruity can be obtained.
撮像装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an imaging device. 光学系の構成を示す説明図である。It is explanatory drawing which shows the structure of an optical system. 補正レンズを用いない薄型の光学系の構成を示す説明図である。It is explanatory drawing which shows the structure of the thin optical system which does not use a correction lens. 薄型の光学系のMTFを示すグラフである。It is a graph which shows MTF of a thin optical system. 薄型の光学系のデフォーカスに対するMTFの変化を示すグラフである。It is a graph which shows the change of MTF with respect to the defocus of a thin optical system. T方向の軸外デフォーカスMTFのピーク位置をシフトさせた薄型光学系のデフォーカスMTFを示すグラフである。It is a graph which shows defocus MTF of the thin optical system which shifted the peak position of off-axis defocus MTF of T direction. T方向の軸外デフォーカスMTFのピーク位置をマイナス側にシフトさせた薄型光学系のデフォーカスMTFを示すグラフである。It is a graph which shows the defocus MTF of the thin optical system which shifted the peak position of the off-axis defocus MTF of the T direction to the minus side. S方向の軸外デフォーカスMTFのピーク位置をシフトさせた薄型光学系のデフォーカスMTFを示すグラフである。It is a graph which shows defocus MTF of the thin optical system which shifted the peak position of off-axis defocus MTF of S direction. T方向の軸外デフォーカスMTFのピーク位置とS方向の軸外でフォーカスMTFのピーク位置を互いに逆方向にシフトさせた薄型光学系のデフォーカスMTFを示すグラフである。10 is a graph showing a defocus MTF of a thin optical system in which a peak position of off-axis defocus MTF in the T direction and a peak position of focus MTF off the axis in the S direction are shifted in opposite directions. 中間像高におけるT方向の軸外デフォーカスMTFのピーク位置Vtのシフト量を模式的に示す説明図である。It is explanatory drawing which shows typically the shift amount of the peak position Vt of the off-axis defocus MTF of the T direction in intermediate image height. ピーク値に応じてT方向の軸外デフォーカスMTFのピーク位置Vtのシフト量Dvが異なる例を模式的に示す説明図である。It is explanatory drawing which shows typically the example from which the shift amount Dv of the peak position Vt of the off-axis defocus MTF of a T direction differs according to a peak value. 薄型でない従来の光学系の構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional optical system which is not thin. 薄型でない従来の光学系のMTFを示すグラフである。It is a graph which shows MTF of the conventional optical system which is not thin. 薄型でない従来の光学系のデフォーカスに対するMTFの変化を示すグラフである。It is a graph which shows the change of MTF with respect to the defocus of the conventional optical system which is not thin. 撮影した画像上でT方向とS方向を表す模式図である。It is a schematic diagram showing T direction and S direction on the image | photographed image.
 図1に示すように、撮像装置10は、光学系11、イメージセンサ12、AF制御部13、画像処理部14、表示部16、メモリ17等を備える。 As shown in FIG. 1, the imaging device 10 includes an optical system 11, an image sensor 12, an AF control unit 13, an image processing unit 14, a display unit 16, a memory 17, and the like.
 光学系11は、イメージセンサ12の撮像面IP(図2参照)に被写体の像を結像させる。撮像装置10は、例えば携帯電話機等に搭載される薄型のデジタルカメラであるため、光学系11もまた薄型であり、イメージセンサ12に近接して配置される。以下、光学系11は、イメージサークルがφ4.56mm(10割像高2.28mm)であり、イメージセンサ12よりも大きい。 The optical system 11 forms an image of a subject on the imaging surface IP (see FIG. 2) of the image sensor 12. Since the imaging device 10 is a thin digital camera mounted on, for example, a mobile phone, the optical system 11 is also thin and is disposed in the vicinity of the image sensor 12. Hereinafter, the optical system 11 has an image circle of φ4.56 mm (100% image height 2.28 mm), which is larger than the image sensor 12.
 イメージセンサ12は、CCDやCMOSデバイスであり、複数の画素が二次元に配列された撮像面IPを有する。イメージセンサ12は、撮像面IPに結像された像を光電変換し、画像データをAF制御部13や画像処理部14に出力する。ここで、イメージセンサ12のサイズは例えば1/4インチ、画素ピッチは1.4μm(5Mピクセル,2600×1960画素,3.640mm×2.744mm)である。この場合、イメージセンサ12の画素ピッチから定まるナイキスト周波数Nyは約360本/mmであり、イメージセンサ12としては約360本/mm以下の空間周波数の像が解像可能である。特に良好に解像されるナイキスト周波数Nyの1/4(以下、Ny/4という)は約90本/mmであるため、後述するデフォーカスに対するMTFは、Ny/4の空間周波数を基準として評価する。 The image sensor 12 is a CCD or CMOS device, and has an imaging surface IP in which a plurality of pixels are two-dimensionally arranged. The image sensor 12 photoelectrically converts an image formed on the imaging surface IP and outputs image data to the AF control unit 13 and the image processing unit 14. Here, the size of the image sensor 12 is, for example, ¼ inch and the pixel pitch is 1.4 μm (5M pixels, 2600 × 1960 pixels, 3.640 mm × 2.744 mm). In this case, the Nyquist frequency Ny determined from the pixel pitch of the image sensor 12 is about 360 lines / mm, and the image sensor 12 can resolve an image having a spatial frequency of about 360 lines / mm or less. Since the Nyquist frequency Ny, which is particularly well resolved, is about 90 lines / mm (hereinafter referred to as Ny / 4), the MTF for defocus described later is evaluated based on the spatial frequency of Ny / 4. To do.
 AF制御部13は、入力される画像データ等に基づいて、適切な焦点距離を自動的に判別し、その結果を光学系11に入力する。光学系11は、AF制御部13から入力される信号に基づいてレンズL1(図2参照)等を光軸方向に移動して、焦点調節を行う。また、AF制御部13が行う適切な焦点距離の判別は、後述する光学系11の特性に応じた所定の範囲内で行われる。画像処理部14は、イメージセンサ12で得られた画像データに、ガンマ補正処理等の各種画像処理を施す。画像処理部14によって画像処理が施された画像データは、表示部16に表示されたり、メモリ17に記憶される。 The AF control unit 13 automatically determines an appropriate focal length based on input image data and the like, and inputs the result to the optical system 11. The optical system 11 performs focus adjustment by moving the lens L1 (see FIG. 2) and the like in the optical axis direction based on a signal input from the AF control unit 13. Also, the determination of an appropriate focal length performed by the AF control unit 13 is performed within a predetermined range according to the characteristics of the optical system 11 described later. The image processing unit 14 performs various image processing such as gamma correction processing on the image data obtained by the image sensor 12. Image data subjected to image processing by the image processing unit 14 is displayed on the display unit 16 or stored in the memory 17.
 図2に示すように、光学系11は、実質的に1以上のレンズからなる光学系であり、例えば、絞り(図示しない)と、対物レンズ群L0及び補正レンズL1とからなる。実質的に1以上のレンズからなる光学系とは、1以上のレンズまたはレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等、レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子(イメージセンサ12)の一部または全部、手ぶれ補正機構等の機構部分、等を持つものを含む。なお、光学系11の絞りは、例えばレンズ群L0内や、レンズ群L0の前面、レンズ群L0と補正レンズL1の間、補正レンズL1の後ろ(撮像面IP側)に設けられる。 As shown in FIG. 2, the optical system 11 is an optical system substantially composed of one or more lenses, and includes, for example, a diaphragm (not shown), an objective lens group L0, and a correction lens L1. An optical system consisting essentially of one or more lenses means, in addition to one or more lenses or lens groups, lenses having substantially no power, optical elements other than lenses, such as a diaphragm and a cover glass, lens flanges, lenses It includes a barrel, a part or all of the image sensor (image sensor 12), a mechanism part such as a camera shake correction mechanism, and the like. The diaphragm of the optical system 11 is provided, for example, in the lens group L0, in front of the lens group L0, between the lens group L0 and the correction lens L1, and behind the correction lens L1 (on the imaging surface IP side).
 対物レンズ群L0は、概ね2~5枚程度の複数のレンズからなり、全体として所定の焦点距離(例えば、~3mm)を有するレンズ群である。また、補正レンズL1は、光学系11のMTFを補正するためのレンズである。具体的には、補正レンズL1は、レンズ群L0のフォーカスのシフトに対するMTFの態様を補正するためのレンズである。後述するように、補正レンズL1は、光軸外におけるT方向のフォーカスシフトに対するMTFのピーク位置を補正する。 The objective lens group L0 is a lens group that includes a plurality of approximately 2 to 5 lenses and has a predetermined focal length (eg, 3 mm) as a whole. The correction lens L1 is a lens for correcting the MTF of the optical system 11. Specifically, the correction lens L1 is a lens for correcting the MTF mode with respect to the focus shift of the lens unit L0. As will be described later, the correction lens L1 corrects the peak position of the MTF with respect to the focus shift in the T direction outside the optical axis.
 本発明の光学系11との比較のために、従来の光学系(薄型でない普通の光学系)19を図12に示す。光学系19は、絞り(図示しない)、レンズ群L2、レンズL3とからなり、レンズ群L2は本発明の薄型光学系11のレンズ群L0よりも焦点距離が長い(例えば、4mm~)。また、レンズL3は、本発明の薄型光学系11の補正レンズL1に対応するレンズであるが、レンズL2は補正レンズL1のように光学系19のMTFを補正する作用はないものとする。なお、従来の光学系19の絞りは、例えばレンズ群L2内や、レンズ群L2の前面、レンズ群L2とレンズL3の間、レンズL3の後ろ(撮像面IP側)に設けられる。 For comparison with the optical system 11 of the present invention, a conventional optical system (non-thin normal optical system) 19 is shown in FIG. The optical system 19 includes a diaphragm (not shown), a lens group L2, and a lens L3. The lens group L2 has a longer focal length (for example, from 4 mm) than the lens group L0 of the thin optical system 11 of the present invention. The lens L3 is a lens corresponding to the correction lens L1 of the thin optical system 11 of the present invention, but the lens L2 does not have an action of correcting the MTF of the optical system 19 unlike the correction lens L1. The diaphragm of the conventional optical system 19 is provided, for example, in the lens group L2, in front of the lens group L2, between the lens group L2 and the lens L3, and behind the lens L3 (on the imaging surface IP side).
 本発明の光学系11と従来の光学系19を比較すると、本発明の光学系11はバックフォーカスを短くした薄型であり、光学全長(焦点距離)は短いが、破線で示すように従来の光学系19と同じ像高の像を結像する。このため、本発明の光学系11の最大主光線角度CRA1は従来の光学系19の最大主光線角度CRA2よりも大きい(CRA1>CRA2)。 Comparing the optical system 11 of the present invention with the conventional optical system 19, the optical system 11 of the present invention is thin with a short back focus and has a short optical total length (focal length). An image having the same image height as that of the system 19 is formed. Therefore, the maximum principal ray angle CRA1 of the optical system 11 of the present invention is larger than the maximum principal ray angle CRA2 of the conventional optical system 19 (CRA1> CRA2).
 なお、本明細書において、最大主光線角度が大きい光学系とは最大主光線角度が概ね35度以上(CRA≧35度)のものを言う。また、本明細書において薄型の光学系とは、光学全長と焦点距離の比が小さい(約1程度)ものをいい、例えば、光学全長と焦点距離の比が1.1以下(光学全長/焦点距離≦1.1)を概ね満たすものである。但し、これらは携帯電話機等の携帯端末に搭載される薄型のデジタルカメラにおいて求められている性能であるが、現実的な光学系11に課される薄型という点についての制約は、撮像装置10を搭載する携帯端末等の具体的な構成に依存する。 In the present specification, an optical system having a large maximum chief ray angle means an optical system having a maximum chief ray angle of approximately 35 degrees or more (CRA ≧ 35 degrees). In this specification, a thin optical system refers to an optical system having a small ratio of optical total length to focal length (about 1). For example, the ratio of optical total length to focal length is 1.1 or less (optical total length / focus). The distance ≦ 1.1) is generally satisfied. However, these are performances required for a thin digital camera mounted on a portable terminal such as a mobile phone, but the limitation on the thin point imposed on the realistic optical system 11 is that the imaging device 10 It depends on the specific configuration of the mobile terminal etc. to be installed.
 図13に示すように、従来の光学系(焦点距離4mm)19のMTFは、空間周波数の増大にともなって減少する。また、撮影した画像の中心部分に対応する光軸上でのMTF(以下、軸上MTFという)は、S方向とT方向とでほぼ一致する。一方、撮影した画像の周辺部分に対応する光軸外でのMTF(以下、軸外MTFという)の減少率はS方向とT方向とで異なり、T方向におけるMTFの減少率のほうが大きい。 As shown in FIG. 13, the MTF of the conventional optical system (focal length 4 mm) 19 decreases as the spatial frequency increases. Also, the MTF on the optical axis corresponding to the central portion of the photographed image (hereinafter referred to as the on-axis MTF) is substantially the same in the S direction and the T direction. On the other hand, the decrease rate of the MTF outside the optical axis (hereinafter referred to as off-axis MTF) corresponding to the peripheral portion of the captured image differs between the S direction and the T direction, and the decrease rate of the MTF in the T direction is larger.
 また、図14に示すように、従来の光学系19は、Ny/4の空間周波数において、フォーカスのシフト(以下、デフォーカス)に対するMTF(以下、デフォーカスMTFという)の変化をみると、デフォーカスの量が大きくなるほど、軸上デフォーカスMTF及び軸外デフォーカスMTFは、ともに小さくなる。この場合、ベストピント位置を含む大部分において、軸上デフォーカスMTFは軸外デフォーカスMTFよりも大きいが、デフォーカスの量が大きい部分では、軸上デフォーカスMTFと軸外デフォーカスMTFの大小関係が逆転し、軸外デフォーカスMTFが軸上デフォーカスMTFを上回ることがある。なお、ベストピント位置とは、Ny/4の空間周波数において、軸上デフォーカスMTFのピーク位置であり、図14ではデフォーカス0μmの位置がベストピント位置である。 Further, as shown in FIG. 14, the conventional optical system 19 shows a change in MTF (hereinafter referred to as defocus MTF) with respect to focus shift (hereinafter referred to as defocus) at a spatial frequency of Ny / 4. As the amount of focus increases, both the on-axis defocus MTF and the off-axis defocus MTF decrease. In this case, the on-axis defocus MTF is larger than the off-axis defocus MTF in the most part including the best focus position, but the on-axis defocus MTF and the off-axis defocus MTF are larger or smaller in the part where the defocus amount is large. The relationship may be reversed and the off-axis defocus MTF may exceed the on-axis defocus MTF. The best focus position is the peak position of the on-axis defocus MTF at a spatial frequency of Ny / 4. In FIG. 14, the position of 0 μm defocus is the best focus position.
 上述のように、従来の光学系19は、軸外デフォーカスMTFが軸上デフォーカスMTFを上回る焦点位置で撮影すると、画像の中心部分の解像度よりも周辺部分の解像度が大きくなり、違和感がある画像になる。このため、焦点調節は、軸外デフォーカスMTFと軸上デフォーカスMTFの大小関係が逆転しない範囲で行うことが好ましい。 As described above, when the conventional optical system 19 is photographed at a focal position where the off-axis defocus MTF exceeds the on-axis defocus MTF, the resolution of the peripheral portion becomes larger than the resolution of the central portion of the image, and there is a sense of incongruity. Become an image. For this reason, it is preferable to perform the focus adjustment within a range in which the magnitude relationship between the off-axis defocus MTF and the on-axis defocus MTF is not reversed.
 さらに、軸外デフォーカスMTFは、T方向とS方向とでデフォーカスに対するMTFの減少の仕方が異なる。具体的には、ベストピント位置を含む領域E1では、S方向の軸外デフォーカスMTFがT方向の軸外デフォーカスMTFよりも大きいが、デフォーカスの量が大きくなると、領域E2のようにS方向とT方向の軸外デフォーカスMTFが逆転し、T方向の軸外デフォーカスMTFの値がS方向の軸外デフォーカスMTFの値を上回ることがある。このように、T方向の軸外デフォーカスMTFとS方向の軸外デフォーカスMTFが逆転し、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFを上回ると、撮影した画像の周辺部分に違和感がある画像になる。このため、焦点調節は、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも小さい範囲内で行うことが好ましい。 Furthermore, the off-axis defocus MTF differs in the way of decreasing the MTF with respect to the defocus in the T direction and the S direction. Specifically, in the region E1 including the best focus position, the off-axis defocus MTF in the S direction is larger than the off-axis defocus MTF in the T direction, but when the amount of defocus increases, the S The off-axis defocus MTF in the direction and the T direction may be reversed, and the off-axis defocus MTF value in the T direction may exceed the off-axis defocus MTF value in the S direction. In this way, when the off-axis defocus MTF in the T direction and the off-axis defocus MTF in the S direction are reversed and the off-axis defocus MTF in the T direction exceeds the off-axis defocus MTF in the S direction, The image looks strange in the surrounding area. For this reason, the focus adjustment is preferably performed within a range where the off-axis defocus MTF in the T direction is smaller than the off-axis defocus MTF in the S direction.
 こうしたことから、焦点調節は、軸外デフォーカスMTFが軸上デフォーカスMTFよりも小さく、かつ、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも小さい範囲内で行うことが好ましい。図14に示す焦点距離4mmの従来の光学系19の場合、この条件を満たすデフォーカスの範囲は約45μmである。また、従来の撮影画像においては、MTFが0.2よりも小さい像は解像度が不十分であり、視認することは難しいとされる。このため、MTFが0.2よりも小さければ、そもそも像がボケているために、軸外デフォーカスMTFと軸上デフォーカスMTFの逆転や、T方向の軸外デフォーカスMTFとS方向の軸外デフォーカスMTF逆転による違和感を覚えにくい。 For this reason, the focus adjustment is performed within a range in which the off-axis defocus MTF is smaller than the on-axis defocus MTF and the off-axis defocus MTF in the T direction is smaller than the off-axis defocus MTF in the S direction. Is preferred. In the case of the conventional optical system 19 having a focal length of 4 mm shown in FIG. 14, the defocus range that satisfies this condition is about 45 μm. Further, in a conventional captured image, an image having an MTF smaller than 0.2 has insufficient resolution and is difficult to visually recognize. Therefore, if the MTF is smaller than 0.2, the image is blurred in the first place, so that the off-axis defocus MTF and the on-axis defocus MTF are reversed, the off-axis defocus MTF in the T direction and the axis in the S direction. Difficult to remember due to reversal of outside defocus MTF.
 焦点距離4mmの従来の光学系19の場合、軸外デフォーカスMTFが軸上デフォーカスMTFを上回ったり、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも大きくなるデフォーカスの範囲では、MTFはほぼ0.2よりも小さく、MTFが0.2以上の範囲でT方向の軸外デフォーカスMTFとS方向の軸外デフォーカスMTFが逆転していてもこれらの差は小さい。したがって、従来の光学系では、軸外デフォーカスMTFと軸上デフォーカスMTFの逆転や、T方向の軸外デフォーカスMTFとS方向の軸外デフォーカスMTF逆転が生じても、違和感を覚えにくい。 In the case of the conventional optical system 19 having a focal length of 4 mm, the off-axis defocus MTF exceeds the on-axis defocus MTF, or the off-axis defocus MTF in the T direction is larger than the off-axis defocus MTF in the S direction. In this range, the MTF is smaller than about 0.2, and even if the off-axis defocus MTF in the T direction and the off-axis defocus MTF in the S direction are reversed in the range where the MTF is 0.2 or more, the difference between them is small. Therefore, in the conventional optical system, even if reversal of the off-axis defocus MTF and the on-axis defocus MTF, or the off-axis defocus MTF in the T direction and the off-axis defocus MTF in the S direction occur, it is difficult to feel discomfort. .
 一方、補正レンズL1を省略して単に薄型化した図3に示す光学系(焦点距離3mm)20の場合、次のような不具合が生じる。図4に示すように、薄型の光学系20では、従来の光学系19と同様に、空間周波数の増大にともなって、軸上MTF,軸外MTFともに減少する。但し、軸上MTF及びS方向の軸外MTFは、従来の光学系19とほぼ同様であるが、薄型光学系20のT方向の軸外MTFは、従来の光学系19よりも急峻に減少する。これは、薄型であることによって、最大主光線角度が増大して、周辺部分に結像する光に光量欠損(いわゆるケラレ)が生じ易くなるためである。 On the other hand, in the case of the optical system (focal length 3 mm) 20 shown in FIG. As shown in FIG. 4, in the thin optical system 20, both the on-axis MTF and the off-axis MTF decrease as the spatial frequency increases, as in the conventional optical system 19. However, the on-axis MTF and the off-axis MTF in the S direction are substantially the same as those of the conventional optical system 19, but the off-axis MTF in the T direction of the thin optical system 20 decreases more steeply than the conventional optical system 19. . This is because the maximum chief ray angle increases due to the thinness, and light quantity deficiency (so-called vignetting) is likely to occur in the light imaged on the peripheral portion.
 図5に示すように、薄型の光学系20のデフォーカスMTFをみると、軸上デフォーカスMTF及びS方向の軸外デフォーカスMTFについては従来の光学系19のデフォーカスMTFとほぼ同様であるが、T方向の軸外デフォーカスMTFの特徴が顕著に相違する。具体的には、薄型の光学系20の場合、軸上デフォーカスMTFやS方向の軸外デフォーカスMTFと比較して、T方向の軸外デフォーカスMTFは、デフォーカス量に対する減少の仕方が緩やかである。これにより、軸外デフォーカスMTFが軸上デフォーカスMTFよりも小さくなる範囲は、従来の光学系19に比べて小さくなる(図14参照)。 As shown in FIG. 5, when the defocus MTF of the thin optical system 20 is viewed, the on-axis defocus MTF and the off-axis defocus MTF in the S direction are almost the same as the defocus MTF of the conventional optical system 19. However, the characteristics of the off-axis defocus MTF in the T direction are significantly different. Specifically, in the case of the thin optical system 20, the off-axis defocus MTF in the T direction has a method of decreasing with respect to the defocus amount as compared with the on-axis defocus MTF and the off-axis defocus MTF in the S direction. It is moderate. As a result, the range in which the off-axis defocus MTF is smaller than the on-axis defocus MTF is smaller than that of the conventional optical system 19 (see FIG. 14).
 また、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも小さい領域E1の幅は減少し、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも大きくなる領域E2の幅は拡大される。この場合、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも大きくなる領域E2は、従来の光学系と比べてMTFが0.2以上の範囲が大きくなるとともに、T方向の軸外デフォーカスMTFとS方向の軸外デフォーカスMTFが逆転するのみならず、そのギャップも従来の光学系(図14参照)と比較して大きくなる。こうしたことから、薄型の光学系20では、軸外デフォーカスMTFが軸上デフォーカスMTFよりも小さく、かつ、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも小さい、違和感がない画像を撮影可能なデフォーカス量の範囲は約40μmと、従来の光学系19よりも狭くなる。ここでは、薄型の光学系20として焦点距離が3mmの例を示したが、より薄型化した光学系では上述の傾向がより強く現れる。 Further, the width of the region E1 in which the off-axis defocus MTF in the T direction is smaller than the off-axis defocus MTF in the S direction is reduced, and the off-axis defocus MTF in the T direction is larger than the off-axis defocus MTF in the S direction. The width of the region E2 is expanded. In this case, the region E2 in which the off-axis defocus MTF in the T direction is larger than the off-axis defocus MTF in the S direction has a larger MTF range of 0.2 or more than the conventional optical system, and the T direction. The off-axis defocus MTF and the off-axis defocus MTF in the S direction are reversed, and the gap is larger than that of the conventional optical system (see FIG. 14). For this reason, in the thin optical system 20, the off-axis defocus MTF is smaller than the on-axis defocus MTF, and the off-axis defocus MTF in the T direction is smaller than the off-axis defocus MTF in the S direction. The range of the defocus amount that can capture an image with no image is about 40 μm, which is narrower than the conventional optical system 19. Here, an example in which the focal length is 3 mm is shown as the thin optical system 20, but the above-described tendency appears more strongly in a thinner optical system.
 上述のことから、撮像装置10に搭載する本発明の薄型の光学系11では補正レンズL1によって以下の特性を持つようにすることにより、薄型でありながら、軸上デフォーカスMTFが軸外デフォーカスMTFよりも大きく、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスよりも小さい範囲を拡張する。 From the above, the thin optical system 11 of the present invention mounted on the imaging device 10 has the following characteristics by the correction lens L1, so that the on-axis defocus MTF is off-axis defocused while being thin. The range in which the off-axis defocus MTF in the T direction is smaller than the off-axis defocus in the S direction is larger than the MTF.
 図6に示すように、本発明の薄型の光学系11は、図3に示す薄型の光学系20と同じ焦点距離3mmの光学系であるが、補正レンズL1によってT方向の軸外デフォーカスMTFのピーク位置Vtを、S方向の軸外デフォーカスMTFのピーク位置Vsに対してプラス方向にシフトさせた光学系となっている。このように、T方向の軸外デフォーカスMTFのピーク位置Vtをベストピント位置からシフトさせると、T方向の軸外デフォーカスMTFのグラフとS方向の軸外デフォーカスMTFのグラフの交点の位置が変化し、軸上デフォーカスMTFが軸外デフォーカスMTFよりも大きく、かつ、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスよりも小さい範囲は約47μmとなり、前述の薄型の光学系20の場合(図5参照。40μm)に比べて違和感がない画像が得られるデフォーカスの範囲が拡張される。なお、従来の光学系19の場合(図14参照)や単に薄型化だけをした光学系20の場合等では、軸上デフォーカスMTFのピーク位置、T方向の軸外デフォーカスMTFのピーク位置Vt、S方向の軸外デフォーカスMTFのピーク位置Vsは、いずれもベストピント位置である。 As shown in FIG. 6, the thin optical system 11 of the present invention is an optical system having the same focal length of 3 mm as the thin optical system 20 shown in FIG. 3, but is off-axis defocused MTF in the T direction by the correction lens L1. The optical position is shifted in the plus direction with respect to the peak position Vs of the off-axis defocus MTF in the S direction. In this way, when the peak position Vt of the off-axis defocus MTF in the T direction is shifted from the best focus position, the position of the intersection of the graph of the off-axis defocus MTF in the T direction and the off-axis defocus MTF in the S direction. The on-axis defocus MTF is larger than the off-axis defocus MTF and the off-axis defocus MTF in the T direction is smaller than the off-axis defocus in the S direction is about 47 μm. Compared to the case of the optical system 20 (see FIG. 5, 40 μm), the defocus range in which an image without a sense of incongruity is obtained is extended. Note that in the case of the conventional optical system 19 (see FIG. 14), or in the case of the optical system 20 simply reduced in thickness, the peak position of the on-axis defocus MTF and the peak position Vt of the off-axis defocus MTF in the T direction. The peak position Vs of the off-axis defocus MTF in the S direction is the best focus position.
 上述のように、T方向の軸外デフォーカスMTFのピーク位置Vtをシフトして、違和感がない画像が得られるデフォーカスの範囲を拡張するには、T方向の軸外デフォーカスMTFのピーク位置Vtのシフト量をDv、S方向の軸外デフォーカスMTFが0.2以上となるデフォーカスの範囲をWtとする場合に、シフト量Dvは、0.05Wt以上であることが好ましい(Dv≧0.05Wt)。シフト量Dvが0.05Wtよりも小さい場合には、違和感がない画像が得られるデフォーカスの範囲を拡張範囲が小さく、その効果を実感し難いからである。また、シフト量Dvは、0.5Wt以下であることが好ましい。これは、シフト量Dvが大きすぎると、ベストピント位置近傍でT方向の軸外デフォーカスMTFの値が小さくなりすぎ、画像周辺部分において常にT方向に像がボケてしまうからである。シフト量Dvが概ね0.5Wt以下であれば、画像周辺部分に置いてT方向に像がボケすぎず、かつ、違和感がない画像が得られるデフォーカスの範囲を拡張することができる。 As described above, the peak position Vt of the off-axis defocus MTF in the T direction can be shifted to expand the defocus range in which an uncomfortable image can be obtained. When the shift amount of Vt is Dv and the defocus range in which the off-axis defocus MTF in the S direction is 0.2 or more is Wt, the shift amount Dv is preferably 0.05 Wt or more (Dv ≧ 0.05 Wt). This is because when the shift amount Dv is smaller than 0.05 Wt, the defocus range in which an image without a sense of incongruity is obtained has a small extended range, and it is difficult to realize the effect. Further, the shift amount Dv is preferably 0.5 Wt or less. This is because if the shift amount Dv is too large, the off-axis defocus MTF value in the T direction is too small in the vicinity of the best focus position, and the image is always blurred in the T direction in the peripheral portion of the image. If the shift amount Dv is approximately 0.5 Wt or less, it is possible to extend the defocus range in which an image that is not too blurred in the T direction and has no sense of incongruity is placed in the peripheral portion of the image.
 なお、撮像装置10のAF制御部13は、単に主要被写体がベストピントとなるように焦点調節を行うのではなく、上述の軸上デフォーカスMTFが軸外デフォーカスMTFよりも大きく、かつ、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスMTFよりも小さい範囲内(図8における47μmの範囲内)に、全ての被写体が収まるように焦点調節を行う。これにより、遠近の被写体が混在し、ベストピントで撮影されない被写体があったとしても、全範囲で違和感がない画像を得ることができる。 Note that the AF control unit 13 of the imaging apparatus 10 does not simply perform focus adjustment so that the main subject is in the best focus, but the above-described on-axis defocus MTF is larger than the off-axis defocus MTF, and T Focus adjustment is performed so that all the subjects are within the range in which the off-axis defocus MTF in the direction is smaller than the off-axis defocus MTF in the S direction (in the range of 47 μm in FIG. 8). As a result, even if there are subjects that are far and near, and there are subjects that are not photographed with the best focus, it is possible to obtain an image that does not feel uncomfortable over the entire range.
 なお、上述の実施形態では、T方向の軸外デフォーカスMTFのピーク位置Vtをプラス方向にシフトさせる例を説明したが、図7に示すように、T方向の軸外デフォーカスMTFのピーク位置Vtをマイナス側にシフトさせても良い。この場合も、上述と同様に、軸上デフォーカスMTFが軸外デフォーカスMTFよりも大きく、かつ、T方向の軸外デフォーカスMTFがS方向の軸外デフォーカスよりも小さい範囲を拡張することができる。 In the above-described embodiment, the example in which the peak position Vt of the off-axis defocus MTF in the T direction is shifted in the plus direction has been described. However, as illustrated in FIG. Vt may be shifted to the negative side. In this case as well, the range in which the on-axis defocus MTF is larger than the off-axis defocus MTF and the off-axis defocus MTF in the T direction is smaller than the off-axis defocus in the S direction is extended as described above. Can do.
 なお、上述の実施形態では、T方向の軸外デフォーカスMTFのピーク位置Vtをシフトさせることによって、違和感がない画像が得られるデフォーカスの範囲を拡張する例を説明したが、図8に示すように、T方向の軸外デフォーカスMTFのピーク位置Vtをシフトさせずに、S方向の軸外デフォーカスMTFのピーク位置Vsをシフトさせたり、図9に示すように、T方向の軸外でフォーカスMTFのピーク位置Vtのシフト方向(例えばプラス側)とは反対側にS方向の軸外デフォーカスMTFのピーク位置Vsをシフトさせても良い。但し、図8や図9のように、S方向の軸外デフォーカスMTFは軸上デフォーカスMTFとほぼ同様の変化をするので、S方向の軸外デフォーカスMTFをシフトさせると、軸上デフォーカスMTFよりもS方向の軸外デフォーカスMTFが上回る範囲が大きくなり、違和感がない画像が得られるデフォーカスの範囲をかえって狭めてしまうことがある。このため、上述の実施形態のように、主としてT方向の軸上デフォーカスMTFのピーク位置Vtをシフトさせることが好ましく、S方向の軸外デフォーカスMTFのピーク位置をシフトさせる場合には、S方向の軸外デフォーカスMTFが軸上デフォーカスMTFを超える範囲が拡大しない範囲内で行うことが好ましい。T方向の軸外デフォーカスMTFのピーク位置Vtをシフトさせ、かつ、S方向の軸外デフォーカスMTFが軸上デフォーカスMTFを超える範囲が拡大しない範囲内でS方向の軸外デフォーカスMTFのピーク位置Vsをシフトさせれば、T方向の軸外デフォーカスMTFのピーク位置Vtだけをシフトさせた場合よりもさらに違和感がない画像が得られるデフォーカスの範囲を拡張することができる。 In the above-described embodiment, an example has been described in which the defocusing range in which an image without a sense of incongruity is obtained by shifting the peak position Vt of the off-axis defocusing MTF in the T direction is illustrated in FIG. In this way, the peak position Vs of the off-axis defocus MTF in the S direction is shifted without shifting the peak position Vt of the off-axis defocus MTF in the T direction. Thus, the peak position Vs of the off-axis defocus MTF in the S direction may be shifted to the opposite side of the shift direction (for example, plus side) of the peak position Vt of the focus MTF. However, as shown in FIGS. 8 and 9, the off-axis defocus MTF in the S direction changes in substantially the same manner as the on-axis defocus MTF. Therefore, if the off-axis defocus MTF in the S direction is shifted, the on-axis defocus MTF changes. The range in which the off-axis defocus MTF in the S direction exceeds the focus MTF is increased, and the defocus range in which an image without a sense of incongruity is obtained may be narrowed. For this reason, it is preferable to shift the peak position Vt of the on-axis defocus MTF mainly in the T direction as in the above-described embodiment, and when shifting the peak position of the off-axis defocus MTF in the S direction, It is preferable that the range in which the off-axis defocus MTF in the direction exceeds the on-axis defocus MTF is not expanded. The peak position Vt of the off-axis defocus MTF in the T direction is shifted, and the range of the off-axis defocus MTF in the S direction exceeding the on-axis defocus MTF is not expanded. If the peak position Vs is shifted, it is possible to extend the defocus range in which an image with a sense of incongruity can be obtained more than when only the peak position Vt of the off-axis defocus MTF in the T direction is shifted.
 なお、上述の実施形態では、像高10割(最大主光線角度)の位置におけるT方向の軸外デフォーカスMTFのピーク位置Vtをシフトさせる例を説明したが、図10に示すように、中間像高におけるT方向の軸外デフォーカスMTFのピーク位置Vtは、いずれも同じ方向(例えば図10のように全てプラス側)にシフトしていることが好ましい。これは、像高によってT方向の軸外デフォーカスMTFのピーク位置Vtのシフト方向が異なると、ある像高でだけT方向の解像度が高い等、像高の増大に対して解像度が一定に減少しないことが多くなり、違和感がある画像になりやすいからである。さらに、同様の理由から、各像高におけるT方向の軸外デフォーカスMTFのピーク位置Vtのシフト量Dvは、像高の増大に応じて単調に増大することが好ましい。例えば、図10においては、像高Y=10%におけるピーク位置Vtのシフト量Dv(Y=10%)、像高Y=50%におけるピーク位置Vtのシフト量Dv(Y=50%)、像高Y=90%におけるピーク位置Vtのシフト量Dv(Y=90%)とすれば、Dv(Y=90%)≧Dv(Y=50%)≧Dv(Y=10%)である。これ以外の像高に関しても同様である。 In the above-described embodiment, the example in which the peak position Vt of the off-axis defocus MTF in the T direction at the position where the image height is 100% (maximum principal ray angle) has been described. However, as illustrated in FIG. The peak position Vt of the off-axis defocus MTF in the T direction at the image height is preferably shifted in the same direction (for example, all plus side as shown in FIG. 10). This is because when the shift direction of the peak position Vt of the off-axis defocus MTF in the T direction differs depending on the image height, the resolution decreases constantly with increasing image height, such as the resolution in the T direction is high only at a certain image height. This is because there are many cases where the image is not used, and the image tends to be uncomfortable. Furthermore, for the same reason, it is preferable that the shift amount Dv of the peak position Vt of the off-axis defocus MTF in the T direction at each image height increases monotonously as the image height increases. For example, in FIG. 10, the shift amount Dv of the peak position Vt at the image height Y = 10% (Y = 10%), the shift amount Dv of the peak position Vt at the image height Y = 50% (Y = 50%), the image Assuming that the shift amount Dv (Y = 90%) of the peak position Vt at high Y = 90%, Dv (Y = 90%) ≧ Dv (Y = 50%) ≧ Dv (Y = 10%). The same applies to other image heights.
 また、各像高における、T方向の軸外デフォーカスMTFのピーク位置Vtは、各像高におけるS方向の軸外デフォーカスMTFやT方向の軸外デフォーカスMTFの曲線形状等に応じて、各々に異なっていても良い。但し、いずれの像高においても、各像高のS方向の軸外デフォーカスMTFが0.2以上となるデフォーカス範囲Wtを基準として、シフト量Dvが0.05Wt以上であることが好ましい(Dv≧0.05Wt)。 Further, the peak position Vt of the off-axis defocus MTF in the T direction at each image height depends on the curve shape of the off-axis defocus MTF in the S direction and the off-axis defocus MTF in the T direction at each image height. Each may be different. However, at any image height, the shift amount Dv is preferably 0.05 Wt or more with reference to the defocus range Wt in which the off-axis defocus MTF in the S direction at each image height is 0.2 or more ( Dv ≧ 0.05 Wt).
 なお、上述の実施形態では、T方向の軸外デフォーカスMTFのピーク値(ピーク位置VtにおけるMTF値)によらず、T方向の軸外デフォーカスMTFのピーク位置Vtをシフトさせる例を説明したが、T方向の軸外デフォーカスMTFのピーク位置Vtのシフト量Dvは、ピーク値が小さいほど大きいことが好ましい。例えば、図11に示すように、ピーク値が大きい場合のピーク位置Vt1のシフト量をDv1、ピーク値が小さい場合のピーク位置Vt2のシフト量Dv2を比較すると、シフト量Dv2は、シフト量Dv1よりも大きい(Dv2>Dv1)。より具体的には、軸上デフォーカスMTFのピーク値P0を基準とし、S方向の軸外デフォーカスMTFが0.2以上のデフォーカス範囲をWt、T方向の軸外デフォーカスMTFのピーク値をP1とする場合に、シフト量Dvは0.05Wt×(P0/P1)以上であることが好ましい(Dv≧0.05Wt×(P0/P1))。これは、ピーク値が小さいほどT方向の軸外デフォーカスMTFはブロードになるので、T方向の軸外デフォーカスMTFのピーク位置をシフトさせた効果を視認できる程度に十分に得るためには、相応に大きくピーク位置Vtをシフトさせる必要があるからである。シフト量Dvが0.05Wt×(P0/P1)よりも小さい場合には、違和感がない画像が得られるデフォーカス範囲が拡張されていても、その範囲の増加分は微小であり、顕著な効果は現れにくい。 In the above-described embodiment, the example in which the peak position Vt of the off-axis defocus MTF in the T direction is shifted regardless of the peak value of the off-axis defocus MTF in the T direction (the MTF value at the peak position Vt) has been described. However, the shift amount Dv of the peak position Vt of the off-axis defocus MTF in the T direction is preferably larger as the peak value is smaller. For example, as shown in FIG. 11, when the shift amount Dv1 of the peak position Vt1 when the peak value is large and the shift amount Dv2 of the peak position Vt2 when the peak value is small are compared, the shift amount Dv2 is greater than the shift amount Dv1. Is also large (Dv2> Dv1). More specifically, with reference to the peak value P0 of the on-axis defocus MTF, the defocus range where the off-axis defocus MTF in the S direction is 0.2 or more is Wt, and the peak value of the off-axis defocus MTF in the T direction. Is set to P1, the shift amount Dv is preferably 0.05 Wt × (P0 / P1) or more (Dv ≧ 0.05 Wt × (P0 / P1)). This is because, as the peak value is smaller, the off-axis defocus MTF in the T direction becomes broader, so that the effect of shifting the peak position of the off-axis defocus MTF in the T direction can be sufficiently recognized. This is because the peak position Vt needs to be shifted correspondingly. When the shift amount Dv is smaller than 0.05 Wt × (P0 / P1), even if the defocus range in which an image without a sense of incongruity is obtained is expanded, the increase in the range is minute, and a remarkable effect Is hard to appear.
 なお、上述の実施形態では、薄型の光学系11として、焦点距離が3mmのものを例示したが、光学系11の焦点距離は任意であり、これを搭載する撮像装置10によるものである。 In the above-described embodiment, the thin optical system 11 is illustrated with a focal length of 3 mm. However, the optical system 11 has an arbitrary focal length, and is based on the imaging device 10 on which the optical system 11 is mounted.
 なお、薄型の光学系11は、例えば、以下の表1(焦点距離3mm,プラス方向にシフト),表2(焦点距離3mm,マイナス方向にシフト),表3(焦点距離2mm,プラス方向にシフト)に示すように、補正レンズL1の少なくとも1つの面を非球面にすることにより実現することができる。下記表1,2では1つの面を非球面とする例を示しているが、レンズL1の両面を非球面としても良く、2以上のレンズを用いる場合には、これらのレンズのうち、少なくとも1面を非球面とすることにより、上述の実施形態で説明した薄型の光学系11の性能を得ることができる。 The thin optical system 11 includes, for example, the following Table 1 (focal length 3 mm, shifted in the plus direction), Table 2 (focal length 3 mm, shifted in the minus direction), and Table 3 (focal length 2 mm, shifted in the plus direction). As shown in (2), at least one surface of the correction lens L1 can be realized as an aspherical surface. In Tables 1 and 2 below, an example in which one surface is an aspherical surface is shown, but both surfaces of the lens L1 may be aspherical. When two or more lenses are used, at least one of these lenses is used. By making the surface an aspherical surface, the performance of the thin optical system 11 described in the above embodiment can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、曲率半径及び半径の単位はmmである。また、面番号2及び3のレンズ群L0は、シミュレーション用の理想レンズ(焦点距離3mm)であり、収差及び厚みはない(厚み0mm)。これは下記表2においても同様である。 In Table 1, the radius of curvature and the unit of the radius are mm. The lens group L0 with surface numbers 2 and 3 is an ideal lens for simulation (focal length 3 mm) and has no aberration and thickness (thickness 0 mm). The same applies to Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3において、曲率半径及び半径の単位はmmである。また、面番号2及び3のレンズ群L0は、シミュレーション用の理想レンズ(焦点距離2mm)であり、収差及び厚みはない(厚み0mm)。 In Table 3, the radius of curvature and the unit of the radius are mm. The lens group L0 with surface numbers 2 and 3 is an ideal lens for simulation (focal length 2 mm) and has no aberration and thickness (thickness 0 mm).
 上述の表1~3では、収差及び厚みがなく、焦点距離だけが定められた理想レンズをレンズ群L0としたが、収差や厚みがある現実的なレンズを用いたレンズ群L0を用いることができる。現実的なレンズによってレンズ群L0を構成する場合、上述の表1,2の理想レンズによるレンズ群L0を、現実的なレンズによってレンズ群L0に置き換えれば良い。また、ここではレンズ群L0を1枚の理想レンズで構成する例を説明したが、レンズ群L0は1枚のレンズからなる必要はなく、レンズ群L0を構成するレンズの枚数は任意である。現実的なレンズ群L0は、前述のように概ね2~5枚程度で構成される。したがって、実際の光学系11は、補正レンズL1を含め、3~6枚程度のレンズで構成される。 In Tables 1 to 3 described above, an ideal lens having no aberration and no thickness but only a focal length is defined as the lens group L0. However, a lens group L0 using a realistic lens having an aberration and a thickness may be used. it can. When the lens group L0 is configured by a realistic lens, the lens group L0 by the ideal lens in Tables 1 and 2 may be replaced with the lens group L0 by a realistic lens. Although an example in which the lens group L0 is configured by one ideal lens has been described here, the lens group L0 does not have to be formed by one lens, and the number of lenses constituting the lens group L0 is arbitrary. The realistic lens unit L0 is composed of about 2 to 5 lenses as described above. Therefore, the actual optical system 11 includes about 3 to 6 lenses including the correction lens L1.
 なお、上述の表1~3では補正レンズL1の片面を非球面とする例を説明したが、補正レンズL1の両面を非球面としても良い。また、上述の実施形態及び表1~3では、補正レンズL1を1枚のレンズから構成する例を説明したが、補正レンズL1を複数のレンズからなるレンズ群としても良い。この場合も、補正レンズL1の複数の面を非球面としても良い。 In the above Tables 1 to 3, an example in which one side of the correction lens L1 is aspherical has been described, but both sides of the correction lens L1 may be aspherical. In the above-described embodiment and Tables 1 to 3, an example in which the correction lens L1 is configured by one lens has been described. However, the correction lens L1 may be a lens group including a plurality of lenses. Also in this case, a plurality of surfaces of the correction lens L1 may be aspherical.
 なお、上述の実施形態では、空間周波数Ny/4(本/mm)を基準としてデフォーカスMTFを評価したが、その他の空間周波数についてデフォーカスMTFを評価する場合も上述の実施形態と実質的に同一である。例えば、上述の実施形態においては、空間周波数Ny/4(本/mm)において、シフト量Dvが0.05Wt以上であることが好ましい旨を説明したが、他の空間周波数において同様の条件式を得るとすれば、満たすべき条件式は変化する。しかし、空間周波数Ny/4(本/mm)において、シフト量Dvが0.05Wt以上となるのであれば、他の空間周波数で導いた条件式はこれと実質的に同一である。このことは、上述の実施形態で説明した他の条件式についても同様である。 In the above-described embodiment, the defocus MTF is evaluated based on the spatial frequency Ny / 4 (lines / mm). However, when the defocus MTF is evaluated for other spatial frequencies, it is substantially the same as the above-described embodiment. Are the same. For example, in the above-described embodiment, it has been described that it is preferable that the shift amount Dv is 0.05 Wt or more at the spatial frequency Ny / 4 (lines / mm). If obtained, the conditional expression to be satisfied changes. However, if the shift amount Dv is 0.05 Wt or more at the spatial frequency Ny / 4 (lines / mm), the conditional expressions derived at other spatial frequencies are substantially the same. The same applies to the other conditional expressions described in the above embodiment.
 なお、上述の実施形態で説明した各種MTFは、d線(587.5618nm)で評価した値であり、従来の光学系(図12)、薄型の光学系(図3)、本発明の薄型の光学系11(図2)のFナンバーはいずれも約2.4となるようにしてある。 The various MTFs described in the above embodiment are values evaluated with the d-line (587.5618 nm). The conventional optical system (FIG. 12), the thin optical system (FIG. 3), and the thin type of the present invention. The F number of the optical system 11 (FIG. 2) is about 2.4.
 なお、上述の実施形態では、光学系11が絞り、レンズ群L0、及び補正レンズL1からなる例を説明したが、デフォーカスMTFについて前述の条件をみたすことができれば、光学系11の具体的構成は任意である。例えば、絞りの有無や、レンズ群L0,補正レンズL1,絞りの配置等は任意である。また、上述の実施形態では、レンズ群L0とは別に補正レンズL1を備える光学系11を例に説明したが、レンズ群L0やレンズ群L0を構成する一部のレンズに、補正レンズL1に相当する効果(パワー)を組み込んでも良い。さらに、レンズ群L0や補正レンズL1を構成するレンズの枚数も任意であり、各々実質的にパワーのないレンズやカバーバラス等を含んでいても良い。さらに有機CMOSセンサのような入射角依存性が小さいイメージセンサを用いることが好適である。 In the above-described embodiment, the example in which the optical system 11 includes the stop, the lens group L0, and the correction lens L1 has been described. However, if the above-described conditions can be satisfied for the defocus MTF, the specific configuration of the optical system 11 will be described. Is optional. For example, the presence or absence of a diaphragm, the lens group L0, the correction lens L1, the arrangement of the diaphragm, and the like are arbitrary. In the above-described embodiment, the optical system 11 including the correction lens L1 is described as an example in addition to the lens group L0. However, the lens group L0 and some lenses constituting the lens group L0 correspond to the correction lens L1. The effect (power) to perform may be incorporated. Furthermore, the number of lenses constituting the lens group L0 and the correction lens L1 is arbitrary, and each lens may include a lens having no power or a cover ballast. Further, it is preferable to use an image sensor having a small incident angle dependency such as an organic CMOS sensor.
 なお、上述の実施形態では、軸上デフォーカスMTFとS方向の軸外デフォーカスMTFのピークが正確にベストピント(デフォーカス0μm)にあるが、こうしたデフォーカスMTFのピーク位置は、例えば焦点距離の±5%程度の誤差が許容される。すなわち、S方向の軸外デフォーカスMTFのピーク位置は、軸上デフォーカスMTFのピーク位置から焦点距離の±5%以内にあれば、ベストピント位置にピークがあるとみなせる。焦点距離の±5%よりも大きな差がある場合には、ピークをシフトさせた場合の効果が現れる。 In the above-described embodiment, the peak of the on-axis defocus MTF and the off-axis defocus MTF in the S direction are accurately in the best focus (defocus 0 μm). The peak position of the defocus MTF is, for example, the focal length. An error of about ± 5% is allowed. That is, if the peak position of the off-axis defocus MTF in the S direction is within ± 5% of the focal length from the peak position of the on-axis defocus MTF, it can be considered that there is a peak at the best focus position. When there is a difference larger than ± 5% of the focal length, the effect of shifting the peak appears.
 なお、上述の実施形態では、携帯電話機等の機能の一部として搭載される撮像装置10を例に説明したが、いわゆるコンパクトデジタルカメラ等、撮影専用の機器においても薄型のものであれば、本発明を好適に用いることができる。 In the above-described embodiment, the imaging device 10 mounted as a part of the function of a mobile phone or the like has been described as an example. However, if a device dedicated to shooting such as a so-called compact digital camera is thin, the present invention The invention can be suitably used.
 なお、上述の実施形態では、AF制御部13によって自動的に焦点調節を行う例を説明したが、手動で焦点調節を行う光学系や、焦点調節機能がない光学系についても本発明を好適に用いることができる。 In the above-described embodiment, an example in which focus adjustment is automatically performed by the AF control unit 13 has been described. However, the present invention is also suitable for an optical system that manually performs focus adjustment or an optical system that does not have a focus adjustment function. Can be used.
 10 撮像装置
 11,19,20 光学系
 L0 対物レンズ群
 L1 補正レンズ
 IP 撮像面
DESCRIPTION OF SYMBOLS 10 Imaging device 11, 19, 20 Optical system L0 Objective lens group L1 Correction lens IP Imaging surface

Claims (8)

  1.  イメージセンサに画像を結像するための光学系において、
     最大主光線角度が35度以上であり、
     軸上の放射方向及び接線方向のデフォーカスMTFのピーク位置、及び軸外の接線方向のデフォーカスMTFのピーク位置がベストピント位置から±5%以内の位置にあり、
     軸外の放射方向のデフォーカスMTFのピーク位置が軸外の接線方向のデフォーカスMTFのピーク位置に対してプラスまたはマイナス方向にシフトしている光学系。
    In an optical system for forming an image on an image sensor,
    The maximum chief ray angle is 35 degrees or more,
    The peak position of the defocus MTF in the radial direction and the tangential direction on the axis, and the peak position of the defocus MTF in the tangential direction off the axis are within ± 5% of the best focus position,
    An optical system in which the off-axis radial defocus MTF peak position is shifted in the plus or minus direction with respect to the off-axis tangential defocus MTF peak position.
  2.  前記イメージセンサのナイキスト周波数の1/4の空間周波数において、前記軸外の放射方向のデフォーカスMTFの値が0.2以上になるデフォーカスの範囲をWt、前記軸外の接線方向のデフォーカスMTFのピーク位置を基準とした軸外の放射方向のデフォーカスMTFのピーク位置のシフト量をDvとする場合に、Dv≧0.05Wtを満たす請求の範囲第1項に記載の光学系。 At a spatial frequency that is ¼ of the Nyquist frequency of the image sensor, the defocus range where the off-axis radial defocus MTF value is 0.2 or more is Wt, and the off-axis tangential defocus is 2. The optical system according to claim 1, wherein Dv ≧ 0.05 Wt is satisfied, where Dv is a shift amount of a defocus MTF peak position in the off-axis radial direction with reference to the MTF peak position.
  3.  任意の像高において、放射方向のデフォーカスMTFのピーク位置がシフトした方向が同じである請求の範囲第2項に記載の光学系。 3. The optical system according to claim 2, wherein the direction in which the peak position of the defocus MTF in the radial direction is shifted is the same at an arbitrary image height.
  4.  放射方向のデフォーカスMTFのピーク値が小さいほど前記シフト量が大きい請求の範囲第2項に記載の光学系。 3. The optical system according to claim 2, wherein the shift amount increases as the peak value of the defocus MTF in the radiation direction decreases.
  5.  前記軸外の放射方向のデフォーカスMTFのピーク位置のシフト量をDv、前記軸外の放射方向のデフォーカスMTFの値が0.2以上になるデフォーカスの範囲をWt、前記軸外の放射方向のデフォーカスMTFのピーク値をP1、前記軸上の放射方向のデフォーカスMTFのピーク値をP0とする場合に、前記シフト量DvがDv≧0.05Wt×(P0/P1)を満たす請求の範囲第4項に記載の光学系。 The off-axis radiation defocus MTF peak position shift amount is Dv, the off-axis radiation defocus MTF value is 0.2 or more, and the defocus range is Wt, and the off-axis radiation is off-axis radiation. When the peak value of the defocus MTF in the direction is P1, and the peak value of the defocus MTF in the radial direction on the axis is P0, the shift amount Dv satisfies Dv ≧ 0.05Wt × (P0 / P1). 5. The optical system according to the fourth item.
  6.  焦点距離に対する光学全長の比が1.1以下である請求の範囲第1項に記載の光学系。 The optical system according to claim 1, wherein the ratio of the total optical length to the focal length is 1.1 or less.
  7.  焦点調節が可能な光学系と、この光学系で結像された像を光電変換するイメージセンサを備える撮像装置において、
     前記光学系は、最大主光線角度が35度以上であり、軸上の放射方向及び接線方向のデフォーカスMTFのピーク位置、及び軸外の接線方向のデフォーカスMTFのピーク位置がベストピント位置から±5%以内の位置にあり、軸外の放射方向のデフォーカスMTFのピーク位置が軸外の接線方向のデフォーカスMTFのピーク位置に対してプラスまたはマイナス方向にシフトしている撮像装置。
    In an imaging apparatus including an optical system capable of focus adjustment and an image sensor that photoelectrically converts an image formed by the optical system,
    The optical system has a maximum principal ray angle of 35 degrees or more, and the peak position of the defocus MTF in the radial and tangential directions on the axis and the peak position of the defocus MTF in the tangential direction off the axis are from the best focus position. An imaging apparatus which is located within ± 5% and whose off-axis radial defocus MTF peak position is shifted in the plus or minus direction with respect to the off-axis tangential defocus MTF peak position.
  8.  軸上におけるデフォーカスMTFが軸外におけるデフォーカスMTFよりも大きく、かつ、軸外におけるT方向のデフォーカスMTFが軸外におけるS方向のデフォーカスMTFよりも小さい範囲内で前記光学系の焦点調節を行う自動焦点調節手段を備える請求の範囲第7項に記載の撮像装置。 Focus adjustment of the optical system within a range where the on-axis defocus MTF is larger than the off-axis defocus MTF and the off-axis T-direction defocus MTF is smaller than the off-axis S-focus defocus MTF. The image pickup apparatus according to claim 7, further comprising an automatic focus adjustment unit that performs the operation.
PCT/JP2012/070965 2011-08-26 2012-08-20 Optical system and imaging device WO2013031564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011184303A JP2014219426A (en) 2011-08-26 2011-08-26 Optical system and imaging device employing the same
JP2011-184303 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031564A1 true WO2013031564A1 (en) 2013-03-07

Family

ID=47756058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070965 WO2013031564A1 (en) 2011-08-26 2012-08-20 Optical system and imaging device

Country Status (2)

Country Link
JP (1) JP2014219426A (en)
WO (1) WO2013031564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312028A (en) * 2020-11-20 2021-02-02 歌尔光学科技有限公司 Camera module focusing method and device and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus
JP2011007869A (en) * 2009-06-23 2011-01-13 Enplas Corp Imaging lens
JP2011018031A (en) * 2009-07-08 2011-01-27 Nalux Co Ltd Imaging optical system
WO2011096193A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Image pickup lens, image pickup device using same, and portable apparatus equipped with the image pickup device
JP2011154336A (en) * 2009-12-28 2011-08-11 Sony Corp Optical unit and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus
JP2011007869A (en) * 2009-06-23 2011-01-13 Enplas Corp Imaging lens
JP2011018031A (en) * 2009-07-08 2011-01-27 Nalux Co Ltd Imaging optical system
JP2011154336A (en) * 2009-12-28 2011-08-11 Sony Corp Optical unit and imaging device
WO2011096193A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Image pickup lens, image pickup device using same, and portable apparatus equipped with the image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312028A (en) * 2020-11-20 2021-02-02 歌尔光学科技有限公司 Camera module focusing method and device and computer readable storage medium

Also Published As

Publication number Publication date
JP2014219426A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP4633379B2 (en) Fisheye lens and imaging apparatus using the same
JP3072988B1 (en) Imaging device
US10192296B2 (en) Image pickup apparatus, camera system, and image processing apparatus that restore an image with a filter corresponding to an image pickup plane position
JP2008048293A (en) Imaging device and method for manufacturing same
JP2008211679A (en) Imaging apparatus and method thereof
JP2017017445A (en) Imaging apparatus, image processing system, imaging method by imaging apparatus, image processing method thereby and program
US8743266B2 (en) Focus extending optical system and EDOF imaging system
JP5972010B2 (en) Imaging device
WO2012132685A1 (en) Focus extending optical system and imaging system
JP3800420B2 (en) Macro lens
CN111751965A (en) Zoom lens and imaging apparatus having the same
JP2021039304A (en) Optical system and image capturing device having the same
US20100295973A1 (en) Determinate and indeterminate optical systems
JP2009086017A (en) Imaging device and imaging method
JP4914121B2 (en) Eyepiece optical system and viewfinder optical system having the same
JP4418618B2 (en) Single focus lens focus method
KR102378519B1 (en) Single focus lens and photographing lens having the same
JP6410462B2 (en) Optical system and imaging apparatus having the same
JP2014053700A (en) Image pickup and image processing apparatus and image processing method
WO2013031564A1 (en) Optical system and imaging device
JP5248543B2 (en) Imaging module
JP5409588B2 (en) Focus adjustment method, focus adjustment program, and imaging apparatus
EP3343261B1 (en) Image pickup optical system, image pickup apparatus having the image pickup optical system, lens apparatus having the image pickup optical system, and image pickup system having the image pickup optical system
JP2008211678A (en) Imaging apparatus and method thereof
RU2431165C1 (en) Large-aperture lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP