WO2012132663A1 - Method for producing cellulose nanofibers - Google Patents

Method for producing cellulose nanofibers Download PDF

Info

Publication number
WO2012132663A1
WO2012132663A1 PCT/JP2012/054361 JP2012054361W WO2012132663A1 WO 2012132663 A1 WO2012132663 A1 WO 2012132663A1 JP 2012054361 W JP2012054361 W JP 2012054361W WO 2012132663 A1 WO2012132663 A1 WO 2012132663A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
raw material
mass
oxidized
dispersion
Prior art date
Application number
PCT/JP2012/054361
Other languages
French (fr)
Japanese (ja)
Inventor
志穂 辻
宮脇 正一
知章 小柳
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2013507274A priority Critical patent/JPWO2012132663A1/en
Publication of WO2012132663A1 publication Critical patent/WO2012132663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/04Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
    • D21C3/16Pulping cellulose-containing materials with acids, acid salts or acid anhydrides nitrogen oxides; nitric acid nitrates, nitrites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/18Pulping cellulose-containing materials with halogens or halogen-generating compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/007Modification of pulp properties by mechanical or physical means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/12Bleaching ; Apparatus therefor with halogens or halogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a method for producing cellulose nanofibers.
  • this invention relates to the manufacturing method of the cellulose nanofiber which gives the cellulose nanofiber aqueous dispersion of high transparency.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • sodium hypochlorite an inexpensive oxidizing agent sodium hypochlorite
  • Carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils (oxidation of cellulosic materials). It is known that when this cellulose-based raw material introduced with a carboxyl group is treated in water with a mixer or the like, a highly viscous and transparent cellulose nanofiber aqueous dispersion can be obtained (Non-Patent Document 1, Patent Documents 1 and 2). ).
  • Cellulose nanofiber is a new biodegradable water-dispersed material. Moreover, since the carboxyl group is introduce
  • An object of the present invention is to provide a cellulose nanofiber that gives a highly transparent cellulose nanofiber dispersion.
  • the present inventors have used the above-mentioned cellulose-based raw material derived from hardwood having a hemicellulose content of at least mass% as a cellulose-based raw material to be subjected to an oxidation step using an N-oxyl compound such as TEMPO. I found that the problem could be solved. That is, the said subject is solved by the following this invention.
  • A The presence of a compound selected from the group consisting of (a1) N-oxyl compounds and (a2) bromides, iodides or mixtures thereof, from a broad-leaved tree-derived raw material having a hemicellulose content of 17% by mass or more (A3) a step of oxidizing using an oxidizing agent, and (B) preparing a dispersion having a concentration of the oxidized cellulose-based raw material obtained in the step A of 0.3% (w / v) or more,
  • a method for producing cellulose nanofiber comprising a step of fibrillating and forming nanofibers while dispersing an oxidized cellulose raw material in a dispersion medium.
  • the production method of the present invention comprises (A) a cellulose-based raw material derived from hardwood having a hemicellulose content of 17% by mass or more, (a1) an N-oxyl compound, and (a2) bromide, iodide. Alternatively, in the presence of a compound selected from the group consisting of these mixtures, (a3) the step of oxidizing using an oxidizing agent, and (B) the concentration of the oxidized cellulose-based raw material obtained in step A is 0.3% (W / v) A step of preparing a dispersion liquid as described above and defibrating and dispersing into nanofibers while dispersing the oxidized cellulose raw material in a dispersion medium.
  • step A a cellulosic material derived from hardwood having a hemicellulose content of 17% by mass or more is oxidized under specific conditions.
  • Cellulose-based raw material used in the oxidation step (step A) performed using an N-oxyl compound or the like in the present invention is derived from a broad-leaved tree (hereinafter referred to as a “hard-leaved-derived cellulose-based raw material”) And the hemicellulose content is 17% by mass or more.
  • Hemicellulose is a polysaccharide that constitutes the cell wall of plants, and is a polysaccharide in which an acetyl group or a sugar residue is bonded to the main chain of xylan or glucomannan.
  • the cellulose nanofiber which is excellent in transparency can be manufactured when it is set as a dispersion liquid by using the cellulose raw material derived from hardwood with hemicellulose content of 17 mass% or more. Further, when a hardwood-derived cellulose material having a hemicellulose content of 23% by mass or more, more preferably 25% by mass or more, and further preferably 28% by mass or more is used, a cellulose nanofiber dispersion having excellent transparency can be obtained. It is preferable because not only the amount of carboxyl groups introduced into the cellulose by oxidation increases, but the amount of energy required for defibration (step B) decreases. This mechanism will be described later. Although the upper limit of hemicellulose content of a cellulosic raw material is not limited, Usually, what is necessary is just 30 mass% or less.
  • the hardwood-derived cellulose-based material refers to hardwood-derived pulp, powdered cellulose obtained by pulverizing hardwood-derived pulp with a high-pressure homogenizer, a mill, or the like, or microcrystalline cellulose powder obtained by purifying them by chemical treatment such as acid hydrolysis, etc. .
  • Examples of methods for producing pulp from hardwood include methods for producing mechanical pulp such as ground pulp and thermomechanical pulp, methods for producing chemical pulp such as kraft pulp, sulfite pulp, and organosolv pulp. .
  • methods for producing mechanical pulp such as ground pulp and thermomechanical pulp
  • methods for producing chemical pulp such as kraft pulp, sulfite pulp, and organosolv pulp.
  • Bleaching methods include chlorination (C), chlorine dioxide bleach (D), alkali extraction (E), hypochlorite bleach (H), hydrogen peroxide bleach (P), alkaline hydrogen peroxide treatment stage (Ep ), Alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q), and the like.
  • the bleaching treatment may be performed by C / D-EHD, ZEDP, Z / D-Ep-D, Z / D-Ep-DP, D-Ep-D, D- It can be carried out in a sequence such as Ep-DP, D-Ep-PD, Z-Eop-DD, Z / D-Eop-D, Z / D-Eop-DED. “/” In the sequence means that the processes before and after “/” are continuously performed without cleaning.
  • the whiteness (ISO 2470) of the cellulosic raw material (pulp) thus obtained is desirably 80% or more, and more desirably 85% or more.
  • the whiteness of the cellulosic material correlates with the amount of lignin remaining in the pulp.
  • Cellulose-based raw materials with a small amount of lignin that is, a high whiteness, facilitate the introduction of carboxyl groups into the cellulose chain because the oxidation reaction proceeds well in step A, and are easy to disperse in the next step B. This is preferable because cellulose nanofibers that give a high dispersion can be provided.
  • the method for obtaining a broad-leaved cellulosic material having a hemicellulose content of 17% by mass or more is not particularly limited.
  • the ratio of hemicellulose in a raw material falls by the process at the time of manufacturing a chemical pulp, and said bleaching process.
  • the proportion of hemicellulose originally contained varies depending on the species of the broad-leaved tree, and further, the degree of decrease due to the above treatment also varies depending on the species.
  • each condition in the pulping treatment and bleaching treatment (chemical treatment concentration, treatment time, treatment temperature, etc.), it is derived from a broad-leaved tree having a hemicellulose content of 17% by mass or more.
  • the cellulosic material can be obtained.
  • Cellulose-based raw materials derived from broad-leaved trees that can be preferably used in the present invention include, for example, Eucalyptus, Birchula, Begus, Fagus, Acer, Populus , Genus Fraxinus, or hardwood such as Carpinus.
  • Eucalyptus (hereinafter abbreviated as E.) calophylla, E .; citriodora, E .; diversiccolor, E.I. globulus, E.I. grandis, E .; gummifera, E .; marginata, E.M. nesophila, E.I. nitens, E.I.
  • alleghaniensis and the like.
  • Fagus (hereinafter abbreviated as F.), grandifolia, F.M. orientalis, F.M. sylvatica, F.M. Crenata
  • A. maple genus Acer
  • A. camprestre A.M. dasycarpum
  • A.M. ginnal A.M. platanoides
  • A.M. mono A.M. spicatum
  • A. apicatum A.M. saccharinum
  • A.M. rubrum A.R. pseudoplatanus and the like.
  • P. Populus
  • P. Populus
  • P. Populus
  • P. P. maximowiczi
  • P.M. alba P.I. sieboldii
  • P.A. coreana P.M. deltoides
  • P.A. grandidentata P.M. tacamachaca
  • P.M. tremuloids P.M. and trichocarpa.
  • F. genus Fraxinus
  • F. americana
  • F.A. excelsior F.M. mandhurica
  • F.M. pnesylvanica and the like.
  • Examples of the genus Carpinus include C.I. belulus, C.I. cordadata, C.I. japonica, C.I. laxiflora, C.I. tschonoskii, C.I. turczaninovii and the like.
  • the content of hemicellulose contained in the obtained cellulose raw material varies depending on the tree species.
  • the birch genus (Betula) is preferably used in the present invention because it tends to maintain a relatively high hemicellulose content even after pulping or bleaching to obtain a cellulose material with high whiteness.
  • a cellulose-based raw material having a high whiteness and a high hemicellulose content has an advantage that a cellulose nanofiber dispersion having a high transparency can be produced as described above.
  • Most preferred is a cellulosic material having a whiteness of 85% or more and a hemicellulose content of 23% by mass or more.
  • the hemicellulose content of the cellulosic material can be measured as follows. After reacting 300 mg of lyophilized cellulosic raw material in 3 mL of 72 mass% sulfuric acid at room temperature for 2 hours, diluted to a sulfuric acid concentration of 2.5 mass%, and further heated at 105 ° C. for 1 hour, A monosaccharide solution is obtained by an acid hydrolysis reaction. This acid hydrolyzed solution is diluted, and monosaccharides are quantified using ion chromatography (DX-500, manufactured by Dionex, column: AS-7, eluent: water, flow rate 1.1 mL / min).
  • DX-500 ion chromatography
  • Hemicellulose content (mass%) (xylose amount (mg) ⁇ 0.88 + mannose amount (mg) ⁇ 0.9) / cellulose raw material amount (mg) ⁇ 100 (%)
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes the target oxidation reaction.
  • the N-oxyl compound used in the present invention includes a compound represented by the following general formula (Formula 1).
  • R 1 to R 4 are the same or different and each represents an alkyl group having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • the N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity.
  • 4-Acetamide TEMPO which is obtained by acetylating the amino group of 4-hydroxy TEMPO derivative or 4-amino TEMPO represented by the following formula 5 and imparting appropriate hydrophobicity, is inexpensive and provides uniform oxidized cellulose. Is particularly preferable.
  • R is a straight or branched carbon chain having 4 or less carbon atoms.
  • an N-oxyl compound represented by the following formula 6, that is, an azaadamantane type nitroxy radical, is preferable because it can efficiently oxidize a cellulosic raw material in a short time and produce a cellulose nanofiber having a high degree of polymerization.
  • R 5 and R 6 are the same or different and each represents hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount that can promote the oxidation reaction to such an extent that the cellulose raw material can be converted into nanofibers.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is even more preferable with respect to 1 g of cellulosic raw material.
  • Bromide or iodide refers to a compound containing bromine, examples of which include alkali metal bromides that can dissociate and ionize in water.
  • iodide refers to a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of cellulosic raw material.
  • Oxidizing agent (a3) As the oxidizing agent used in the oxidation of the cellulosic raw material, known ones can be used, for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, etc. Can be used. Among these, from the viewpoint of cost, sodium hypochlorite, which is the most widely used in industrial processes and has a low environmental load, is particularly suitable. In general, broad-leaved cellulosic raw materials are less likely to introduce carboxyl groups (that is, less susceptible to oxidation) than coniferous cellulosic raw materials, so the amount of oxidizing agent used is adjusted to an appropriate range for oxidation.
  • the appropriate amount of the oxidizing agent to be used varies depending on the hardwood species to be used. For example, 0.5 to 500 mmol is preferable, 0.5 to 50 mmol is more preferable, and 0.5 to 50 mmol is more preferable with respect to 1 g of completely dry cellulosic material. 5 to 25 mmol is more preferable, and 5 to 20 mmol is most preferable.
  • the reaction temperature may be a room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is not particularly limited.
  • the reaction time is 0.5 to 6 hours, preferably 2 to 6 hours, more preferably about 4 to 6 hours. is there.
  • the oxidation reaction may be performed in two stages. For example, oxidized cellulose obtained by filtration after the completion of the first stage reaction is oxidized again under the same or different reaction conditions, so that the cellulose is not subject to reaction inhibition by the salt produced as a by-product in the first stage reaction.
  • the carboxyl group can be efficiently introduced into the system material, and the oxidation of the cellulosic material can be promoted.
  • the amount of carboxyl groups of the oxidized cellulose-based material is 1.0 mmol / g or more with respect to the absolutely dry mass of the oxidized cellulose-based material.
  • the carboxyl group amount is more preferably 1.0 mmol / g to 3.0 mmol / g, further preferably 1.4 mmol / g to 3.0 mmol / g, particularly preferably 1.5 mmol / g to 2.5 mmol. / G.
  • the amount of the carboxyl group can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the addition amount of the N-oxyl compound, bromide, iodide, or oxidizing agent.
  • step B it is preferable to wash the oxidized cellulosic material obtained in step A.
  • Step B using the oxidized cellulose-based material obtained in Step A, a dispersion having a concentration of the oxidized cellulose-based material of 0.3% (w / v) or higher is prepared, and the oxidized cellulose-based material is used as a dispersion medium. While being dispersed, it is defibrated into nanofibers. “To make nanofiber” means to process a cellulose-based raw material into cellulose nanofiber which is a single microfibril of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • the dispersion of oxidized cellulose material is a liquid in which the oxidized cellulose material is dispersed in a dispersion medium. From the viewpoint of ease of handling, the dispersion medium is preferably water.
  • a strong shearing force is applied to the dispersion using a high-speed rotating type, colloid mill type, high pressure type, roll mill type, ultrasonic type device, etc. Is preferably applied.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the concentration of the oxidized cellulose-based material in the dispersion to be subjected to the treatment is 0.3% (w / v) or more, preferably 1 to 2% (w / v), more preferably 3 to 5% (w / V).
  • the oxidized cellulose raw material obtained in step A (hereinafter simply referred to as “ It is preferable to reduce the viscosity of the “oxidized cellulose raw material”.
  • the viscosity reduction treatment is to appropriately cut the cellulose chain of the oxidized cellulose raw material (shorten the cellulose chain). Since the raw material treated in this way has a low viscosity when used as a dispersion, it can be said that the viscosity reduction treatment is a treatment for obtaining an oxidized cellulose-based raw material that gives a low-viscosity dispersion.
  • the viscosity-reducing treatment may be any treatment that lowers the viscosity of the oxidized cellulose-based material.
  • the treatment of irradiating the oxidized cellulose-based material with ultraviolet rays, the oxidized cellulose-based material with hydrogen peroxide and Examples include a treatment for oxidizing and decomposing with ozone, a treatment for hydrolyzing an oxidized cellulose raw material with an acid, and a combination thereof.
  • the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferred because they directly act on cellulose and hemicellulose to cause low molecular weight and shorten the oxidized cellulose raw material.
  • a light source capable of irradiating light in a wavelength region of 100 to 400 nm may be used.
  • Specific examples thereof include a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, a metal halide lamp, and the like, and one or more of these can be used in any combination.
  • ultraviolet rays having different wavelengths can be simultaneously irradiated to increase the number of cellulose chains and hemicellulose chains to be cut, thereby facilitating shortening of the fibers.
  • a container for containing the oxidized cellulosic raw material when performing ultraviolet irradiation for example, when using ultraviolet light having a wavelength longer than 300 nm, a hard glass container can be used, but ultraviolet light having a shorter wavelength than that can be used.
  • a quartz glass container which allows more ultraviolet rays to pass through.
  • a material having little deterioration with respect to the wavelength of the ultraviolet rays may be appropriately selected.
  • the concentration of cellulose nanofibers in the dispersion is preferably 0.1% by mass or more.
  • the concentration is preferably 12% by mass or less in order to improve the fluidity of the oxidized cellulose-based raw material in the ultraviolet irradiation device and increase the reaction efficiency. Accordingly, the concentration is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 3% by mass.
  • the reaction temperature is preferably 20 ° C or higher.
  • the reaction temperature is preferably 95 ° C. or lower. Accordingly, the reaction temperature is preferably 20 to 95 ° C, more preferably 20 to 80 ° C, and further preferably 20 to 50 ° C. Further, when the reaction temperature is within this range, there is an advantage that it is not necessary to design an apparatus in consideration of pressure resistance.
  • the pH of the system in the reaction is not limited, but in view of simplification of the process, a neutral region, for example, about pH 6.0 to 8.0 is preferable.
  • the degree of ultraviolet irradiation can be arbitrarily set by adjusting the residence time of the oxidized cellulose raw material in the irradiation reaction apparatus or the energy amount of the irradiation light source. Also, for example, by diluting the concentration of the oxidized cellulose raw material dispersion in the irradiation apparatus with water or the like, or by blowing and diluting with an inert gas such as air or nitrogen, the amount of ultraviolet radiation received by the oxidized cellulose raw material can be reduced. Can be adjusted. These conditions are appropriately selected so that the quality (fiber length, degree of cellulose polymerization, etc.) of the oxidized cellulose-based raw material after treatment is set to a desired value.
  • the ultraviolet irradiation treatment is carried out in the presence of an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is further improved. Since it can raise, it is preferable.
  • an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
  • ozone is generated from oxygen in the air normally present in the gas phase around the light source, and this ozone is preferably used as an auxiliary agent.
  • the ozone generated by continuously supplying air to the periphery of the light source is continuously extracted, and the ozone extracted from outside the system is injected into the oxidized cellulosic raw material.
  • ozone can be used as an auxiliary for the photo-oxidation reaction.
  • a larger amount of ozone can be generated in the system by supplying oxygen to the gas phase around the light source.
  • ozone that is secondarily generated in the ultraviolet irradiation reactor can be used.
  • the ultraviolet irradiation treatment can be repeated multiple times.
  • the number of repetitions can be appropriately set according to the relationship with the quality of the oxidized cellulose-based raw material after the treatment and the post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm can be irradiated 1 to 10 times, preferably 2 to 5 times.
  • the irradiation time per time is preferably 0.5 to 10 hours, and more preferably 0.5 to 3 hours.
  • Oxidative decomposition with hydrogen peroxide and ozone Ozone used in the treatment can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • a dispersion obtained by dispersing an oxidized cellulose-based material in a dispersion medium such as water for the reaction it is preferable to use a dispersion obtained by dispersing an oxidized cellulose-based material in a dispersion medium such as water for the reaction.
  • the amount (mass) of ozone used in the present invention is preferably 0.1 to 3 times the absolute dry mass of the oxidized cellulose raw material.
  • the amount of ozone used is at least 0.1 times the absolute dry mass of the oxidized cellulose raw material, the amorphous part of cellulose can be sufficiently decomposed, and the energy required for the defibration / dispersion treatment in the next step B Can be greatly reduced.
  • the amount of ozone used is more preferably 0.3 to 2.5 times, and even more preferably 0.5 to 1.5 times the absolute dry mass of the oxidized cellulose raw material.
  • the amount (mass) of hydrogen peroxide used is preferably 0.001 to 1.5 times the absolute dry mass of the oxidized cellulose material.
  • hydrogen peroxide is used in an amount 0.001 times or more that of the oxidized cellulose raw material, a synergistic action between ozone and hydrogen peroxide occurs, and an efficient reaction becomes possible.
  • the amount of hydrogen peroxide used is more preferably 0.1 to 1.0 times the absolute dry mass of the oxidized cellulose raw material.
  • the pH of the system in the oxidative decomposition treatment with ozone and hydrogen peroxide is preferably 2 to 12, more preferably pH 4 to 10, and further preferably pH 6 to 8.
  • the temperature is preferably 10 to 90 ° C, more preferably 20 to 70 ° C, and further preferably 30 to 50 ° C.
  • the treatment time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours.
  • a device for performing treatment with ozone and hydrogen peroxide a commonly used device can be used. Examples include a conventional reactor with a reaction chamber, a stirrer, a chemical injector, a heater, and a pH electrode.
  • ozone and hydrogen peroxide remaining in the aqueous solution effectively work even in the defibration treatment of the next step B, so that cellulose nanofibers that give a dispersion with a lower viscosity can be produced.
  • an acid is added to the oxidized cellulose raw material to hydrolyze the cellulose chain (acid hydrolysis treatment).
  • the acid it is preferable to use a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid.
  • a dispersion liquid in which an oxidized cellulose-based raw material is dispersed in a dispersion medium such as water.
  • the conditions for the acid hydrolysis treatment may be any conditions that allow the acid to act on the amorphous part of the cellulose.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of the oxidized cellulose raw material. It is preferable for the amount of acid added to be 0.01% by mass or more because hydrolysis of cellulose proceeds and the processing efficiency in the next step B is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the said addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented.
  • the pH of the system during acid hydrolysis is preferably from 2.0 to 4.0, more preferably from 2.0 to less than 3.0. From the viewpoint of acid hydrolysis efficiency, the reaction is preferably carried out at a temperature of 70 to 120 ° C. for 1 to 10 hours.
  • the reason why the reduced viscosity of the oxidized cellulose raw material can be efficiently carried out by the acid hydrolysis treatment is presumed as follows. As described above, the carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, a hydration layer is formed, and the raw materials are close to each other to form a network. ing. When an acid is added to the raw material and hydrolysis is performed, the balance of charges in the network is lost, the strong network of cellulose molecules is lost, the specific surface area of the raw material is increased, and the oxidized cellulose raw material is shortened. Is promoted, and the viscosity of the cellulosic material is reduced.
  • the cellulose nanofibers obtained by the production method of the present invention are cellulose single microfibrils having a width of 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • the dispersion of cellulose nanofibers obtained by the present invention has excellent transparency.
  • the dispersion medium in the dispersion is preferably water.
  • the transparency is evaluated by the transmittance of light having a wavelength of 660 nm. Specifically, using a UV / visible spectrophotometer, a 0.1% (v / w) dispersion in a quartz cell (optical path 10 mm). It is calculated
  • the aqueous dispersion of cellulose nanofibers obtained by the present invention has a light transmittance of 660 nm at a concentration of 0.1% (w / v), preferably 94% or more, more preferably 95% or more. Preferably it is 97% or more, particularly preferably 99% or more.
  • the transparency is 95% or more, it can be used without problems for general film applications, and when the transparency is 99% or more, high optical properties (transparency) such as a display and a touch panel are required. Can be used without problems for film applications.
  • the cellulose-based raw material derived from hardwood is considered to be superior as a raw material for cellulose nanofiber because the fibers are thinner and shorter than the cellulose-based raw material derived from conifer.
  • cellulosic materials have hemicellulose between cellulose microfibrils. If hemicellulose is present between cellulose microfibrils, it is considered that voids are formed between cellulose microfibrils because hemicellulose is eluted during an oxidation reaction under alkaline conditions. Thereby, it is estimated that the catalyst easily reaches the surface of the cellulose microfibril, and the primary hydroxyl group on the surface of the cellulose microfibril is selectively oxidized.
  • the amount of carboxyl groups of the cellulose nanofibers produced according to the present invention is preferably 1.2 mmol / g or more, more preferably 1.7 mmol / g or more, and further preferably 1.8 mmol / g or more.
  • Such a cellulose nanofiber having a carboxyl group can form a sheet excellent in barrier properties and heat resistance. Therefore, the cellulose nanofiber manufactured by this invention can be used for various uses, such as a packaging material.
  • Example 2 P. is a hardwood.
  • a cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from alba (having a hemicellulose content of 17.9% by mass and a whiteness of 86%) was used.
  • Example 3 Both are hardwoods. Crenata and C.I. Cellulose nanofibers in the same manner as in Example 1 except that bleached unbeaten kraft pulp (hemicellulose content 22.1% by mass, whiteness 84%) derived from a mixture with belulus (mixing ratio 50:50) was used. An aqueous dispersion was produced and evaluated.
  • Example 4 B. a hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from pendula (hemicellulose content: 23.3 mass%, whiteness: 86%) was used.
  • Example 5 B. a hardwood.
  • a cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from verrucosa (having a hemicellulose content of 25.6% by mass and a whiteness of 86%) was used.
  • Example 1 R. hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from pseudoacacia (having a hemicellulose content of 16.7% by mass and a whiteness of 85%) was used.
  • Example 2 Hardwood A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from Mangiumu (hemicellulose content 12.3 mass%, whiteness 86%) was used.
  • Example using the cellulosic raw material derived from hardwood having a hemicellulose content of 17% by mass or more is more transparent than the comparative example using the cellulosic raw material having a hemicellulose content of less than 17% by mass. It can be seen that cellulose nanofibers that give a high aqueous dispersion can be produced.

Abstract

Cellulose nanofibers are produced by means of a method involving a step (A) in which a cellulose-based starting material derived from hardwood having a hemicellulose content of 17 mass% or more is oxidized using an oxidizing agent (a3) in the presence of an N-oxyl compound (a1) and a compound (a2) selected from among bromide, iodide and a mixture thereof, and a step (B) in which a dispersion liquid in which the concentration of the oxidized cellulose-based starting material obtained from step (A) is 0.3% (w/v) or more is prepared and the oxidized cellulose-based starting material is formed into nanofibers by fibrillating the oxidized cellulose-based starting material while dispersing same in a dispersion medium.

Description

セルロースナノファイバーの製造方法Method for producing cellulose nanofiber
 本発明は、セルロースナノファイバーの製造方法に関する。より詳しくは、本発明は高い透明度のセルロースナノファイバー水分散液を与えるセルロースナノファイバーの製造方法に関する。 The present invention relates to a method for producing cellulose nanofibers. In more detail, this invention relates to the manufacturing method of the cellulose nanofiber which gives the cellulose nanofiber aqueous dispersion of high transparency.
 セルロース系原料を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができる(セルロース系原料の酸化)。このカルボキシル基を導入したセルロース系原料を水中にてミキサー等で処理すると、高粘度で透明なセルロースナノファイバー水分散液が得られることが知られている(非特許文献1、特許文献1および2)。 When a cellulosic raw material is treated in the presence of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite, Carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils (oxidation of cellulosic materials). It is known that when this cellulose-based raw material introduced with a carboxyl group is treated in water with a mixer or the like, a highly viscous and transparent cellulose nanofiber aqueous dispersion can be obtained (Non-Patent Document 1, Patent Documents 1 and 2). ).
 セルロースナノファイバーは、生分解性の水分散型新規素材である。またセルロースナノファイバーの表面には酸化反応によりカルボキシル基が導入されているため、セルロースナノファイバーを、カルボキシル基を基点として、自由に改質することができる。さらに、上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため各種水溶性ポリマーとブレンド、あるいは有機及び/又は無機系顔料と複合化してさらに改質することもできる。さらにまた、セルロースナノファイバーをシート化または繊維化することも可能である。セルロースナノファイバーのこれらの特性を活かし、環境循環型素材として、高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料などに応用した高機能商品の開発が期待されている。 Cellulose nanofiber is a new biodegradable water-dispersed material. Moreover, since the carboxyl group is introduce | transduced by the oxidation reaction on the surface of the cellulose nanofiber, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. Furthermore, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, they can be further modified by blending with various water-soluble polymers or by combining with organic and / or inorganic pigments. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of these characteristics of cellulose nanofibers, the development of high-performance products that are applied to high-performance packaging materials, transparent organic substrate members, high-performance fibers, separation membranes, regenerative medical materials, etc. is expected as environmentally-circulating materials. .
 しかしながら、TEMPOを用いて広葉樹由来のセルロース系原料(広葉樹パルプ)を酸化した後、超高圧ホモジナイザーで解繊して得たセルロースナノファイバーは、分散液としたときの透明度が低く、さらにはナノファイバー化しないパルプ繊維が残留してしまうという問題があった。このため、従来のセルロースナノファイバーは、前述の用途への応用が容易ではなかった。 However, cellulose nanofibers obtained by oxidizing cellulose based raw materials (hardwood pulp) derived from hardwood using TEMPO and then defibrating with an ultra-high pressure homogenizer have low transparency when used as a dispersion. There was a problem that pulp fibers that did not become remained. For this reason, the conventional cellulose nanofiber has not been easily applied to the above-described uses.
特開2008-001728号公報JP 2008-001728 A 特開2010-235679号公報JP 2010-235679 A
 本発明は、高透明性のセルロースナノファイバー分散液を与えるセルロースナノファイバーを提供することを課題とする。 An object of the present invention is to provide a cellulose nanofiber that gives a highly transparent cellulose nanofiber dispersion.
 本発明者らは鋭意検討した結果、TEMPO等のN-オキシル化合物を用いた酸化工程に供するセルロース系原料として、ヘミセルロース含有量がある質量%以上である広葉樹由来のセルロース系原料を用いることで上記課題を解決できることを見出した。すなわち、前記課題は、以下の本発明により解決される。
(A)ヘミセルロース含有量が17質量%以上である広葉樹由来のセルロース系原料を、(a1)N-オキシル化合物および(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、ならびに
(B)前記工程Aで得た酸化セルロース系原料の濃度が0.3%(w/v)以上の分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、を含む、セルロースナノファイバーの製造方法。
As a result of intensive studies, the present inventors have used the above-mentioned cellulose-based raw material derived from hardwood having a hemicellulose content of at least mass% as a cellulose-based raw material to be subjected to an oxidation step using an N-oxyl compound such as TEMPO. I found that the problem could be solved. That is, the said subject is solved by the following this invention.
(A) The presence of a compound selected from the group consisting of (a1) N-oxyl compounds and (a2) bromides, iodides or mixtures thereof, from a broad-leaved tree-derived raw material having a hemicellulose content of 17% by mass or more (A3) a step of oxidizing using an oxidizing agent, and (B) preparing a dispersion having a concentration of the oxidized cellulose-based raw material obtained in the step A of 0.3% (w / v) or more, A method for producing cellulose nanofiber, comprising a step of fibrillating and forming nanofibers while dispersing an oxidized cellulose raw material in a dispersion medium.
 本発明によれば、高透明性のセルロースナノファイバー分散液を与えるセルロースナノファイバーを提供できる。 According to the present invention, it is possible to provide a cellulose nanofiber that gives a highly transparent cellulose nanofiber dispersion.
 以下、本発明を詳細に説明する。本明細書において数値範囲を表す際に用いられる「~」は両端の値を含む。 Hereinafter, the present invention will be described in detail. In the present specification, “to” used in representing a numerical range includes values at both ends.
 1.セルロースナノファイバーの製造方法
 本発明の製造方法は、(A)ヘミセルロース含有量が17質量%以上である広葉樹由来のセルロース系原料を、(a1)N-オキシル化合物、および(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、ならびに(B)前記工程Aで得た酸化セルロース系原料の濃度が0.3%(w/v)以上の分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、を含む。
1. Production method of cellulose nanofiber The production method of the present invention comprises (A) a cellulose-based raw material derived from hardwood having a hemicellulose content of 17% by mass or more, (a1) an N-oxyl compound, and (a2) bromide, iodide. Alternatively, in the presence of a compound selected from the group consisting of these mixtures, (a3) the step of oxidizing using an oxidizing agent, and (B) the concentration of the oxidized cellulose-based raw material obtained in step A is 0.3% (W / v) A step of preparing a dispersion liquid as described above and defibrating and dispersing into nanofibers while dispersing the oxidized cellulose raw material in a dispersion medium.
 1-1.工程A
 工程Aではヘミセルロース含有量が17質量%以上である広葉樹由来のセルロース系原料を、特定の条件下で酸化する。
1-1. Process A
In step A, a cellulosic material derived from hardwood having a hemicellulose content of 17% by mass or more is oxidized under specific conditions.
 (1)セルロース系原料
 本発明でN-オキシル化合物等を用いて行われる酸化工程(工程A)に供する「セルロース系原料」は、広葉樹由来であり(以下、「広葉樹由来のセルロース系原料」ともいう)、かつヘミセルロース含有量が17質量%以上である。ヘミセルロースとは植物の細胞壁を構成する多糖であり、キシランまたはグルコマンナンの主鎖にアセチル基や糖残基が結合している多糖である。本発明においては、ヘミセルロース含有量が17質量%以上である広葉樹由来のセルロース系原料を用いることにより、分散液としたときに透明性に優れるセルロースナノファイバーを製造できる。また、ヘミセルロース含有量が23質量%以上、より好ましくは25質量%以上、さらに好ましくは28質量%以上である広葉樹由来のセルロース系原料を用いると、透明性に優れるセルロースナノファイバー分散液が得られるだけではなく、酸化によりセルロース中に導入されるカルボキシル基の量が増加して解繊(工程B)の際に必要なエネルギー量が低下するため、好ましい。この機構については後述する。セルロース系原料のヘミセルロース含有量の上限は限定されないが、通常は、30質量%以下であればよい。
(1) Cellulose-based raw material The “cellulosic raw material” used in the oxidation step (step A) performed using an N-oxyl compound or the like in the present invention is derived from a broad-leaved tree (hereinafter referred to as a “hard-leaved-derived cellulose-based raw material”) And the hemicellulose content is 17% by mass or more. Hemicellulose is a polysaccharide that constitutes the cell wall of plants, and is a polysaccharide in which an acetyl group or a sugar residue is bonded to the main chain of xylan or glucomannan. In this invention, the cellulose nanofiber which is excellent in transparency can be manufactured when it is set as a dispersion liquid by using the cellulose raw material derived from hardwood with hemicellulose content of 17 mass% or more. Further, when a hardwood-derived cellulose material having a hemicellulose content of 23% by mass or more, more preferably 25% by mass or more, and further preferably 28% by mass or more is used, a cellulose nanofiber dispersion having excellent transparency can be obtained. It is preferable because not only the amount of carboxyl groups introduced into the cellulose by oxidation increases, but the amount of energy required for defibration (step B) decreases. This mechanism will be described later. Although the upper limit of hemicellulose content of a cellulosic raw material is not limited, Usually, what is necessary is just 30 mass% or less.
 広葉樹由来のセルロース系原料とは、広葉樹由来のパルプ、広葉樹由来のパルプを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末等をいう。 The hardwood-derived cellulose-based material refers to hardwood-derived pulp, powdered cellulose obtained by pulverizing hardwood-derived pulp with a high-pressure homogenizer, a mill, or the like, or microcrystalline cellulose powder obtained by purifying them by chemical treatment such as acid hydrolysis, etc. .
 広葉樹からパルプを製造する方法(パルプ化処理)としては、グラウンドパルプ、サーモメカニカルパルプ等の機械パルプの製造方法、クラフトパルプ、サルファイトパルプ、オルガノソルブパルプ等の化学パルプの製造方法などを例示できる。中でも、本発明においては、セルロース系原料中に広葉樹由来のリグニンが多く残留してしまうと当該原料の酸化反応を阻害する恐れがあるので、化学パルプの製造方法によってリグニン含量を低下させたものをセルロース系原料として用いることが好ましい。リグニンをさらに除去するためには、このようにして得られたセルロース系原料にさらに公知の漂白処理を施すことがより好ましい。漂白処理方法は、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)などを組合せて行なってよい。例えば、漂白処理は、C/D-E-H-D、Z-E-D-P、Z/D-Ep-D、Z/D-Ep-D-P、D-Ep-D、D-Ep-D-P、D-Ep-P-D、Z-Eop-D-D、Z/D-Eop-D、Z/D-Eop-D-E-D等のシーケンスで実施できる。シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する。このようにして得られたセルロース系原料(パルプ)の白色度(ISO 2470)は80%以上であることが望ましく、85%以上であることがさらに望ましい。セルロース系原料(パルプ)の白色度は、パルプ中に残留するリグニンの量に相関する。リグニンの量が少ない、すなわち白色度の高いセルロース系原料は、工程Aにおける酸化反応が良好に進行するためセルロース鎖へのカルボキシル基の導入が促進され、次の工程Bにおいて分散しやすくなり、透明度の高い分散液となるセルロースナノファイバーを与えることができるから、好ましい。 Examples of methods for producing pulp from hardwood (pulping treatment) include methods for producing mechanical pulp such as ground pulp and thermomechanical pulp, methods for producing chemical pulp such as kraft pulp, sulfite pulp, and organosolv pulp. . Among them, in the present invention, if a large amount of hardwood-derived lignin remains in the cellulosic raw material, there is a risk of inhibiting the oxidation reaction of the raw material, so that the lignin content is reduced by the chemical pulp manufacturing method It is preferable to use it as a cellulosic material. In order to further remove lignin, it is more preferable to subject the cellulosic raw material thus obtained to a known bleaching treatment. Bleaching methods include chlorination (C), chlorine dioxide bleach (D), alkali extraction (E), hypochlorite bleach (H), hydrogen peroxide bleach (P), alkaline hydrogen peroxide treatment stage (Ep ), Alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q), and the like. For example, the bleaching treatment may be performed by C / D-EHD, ZEDP, Z / D-Ep-D, Z / D-Ep-DP, D-Ep-D, D- It can be carried out in a sequence such as Ep-DP, D-Ep-PD, Z-Eop-DD, Z / D-Eop-D, Z / D-Eop-DED. “/” In the sequence means that the processes before and after “/” are continuously performed without cleaning. The whiteness (ISO 2470) of the cellulosic raw material (pulp) thus obtained is desirably 80% or more, and more desirably 85% or more. The whiteness of the cellulosic material (pulp) correlates with the amount of lignin remaining in the pulp. Cellulose-based raw materials with a small amount of lignin, that is, a high whiteness, facilitate the introduction of carboxyl groups into the cellulose chain because the oxidation reaction proceeds well in step A, and are easy to disperse in the next step B. This is preferable because cellulose nanofibers that give a high dispersion can be provided.
 ヘミセルロース含有量が17質量%以上の広葉樹由来のセルロース系原料を得る方法は特に限定されない。一般に、化学パルプを製造する際の処理や、上記の漂白処理によって、原料中のヘミセルロースの割合は低下する。また、もともと含まれるヘミセルロースの割合は広葉樹の樹種によって異なり、さらに、上記処理による低下の度合いも樹種によって違いがみられる。したがって、例えば、用いる樹種に応じて、パルプ化処理および漂白処理における各条件(薬品の処理濃度、処理時間、処理温度など)を適宜調整することにより、ヘミセルロース含有量が17質量%以上の広葉樹由来のセルロース系原料を得ることができる。 The method for obtaining a broad-leaved cellulosic material having a hemicellulose content of 17% by mass or more is not particularly limited. Generally, the ratio of hemicellulose in a raw material falls by the process at the time of manufacturing a chemical pulp, and said bleaching process. In addition, the proportion of hemicellulose originally contained varies depending on the species of the broad-leaved tree, and further, the degree of decrease due to the above treatment also varies depending on the species. Therefore, for example, depending on the type of tree used, by appropriately adjusting each condition in the pulping treatment and bleaching treatment (chemical treatment concentration, treatment time, treatment temperature, etc.), it is derived from a broad-leaved tree having a hemicellulose content of 17% by mass or more. The cellulosic material can be obtained.
 本発明において好適に用いることができる「広葉樹由来のセルロース系原料」は、例えば、ユーカリノキ属(Eucalyptus)、シラカンバ属(Betula)、ブナ属(Fagus)、カエデ属(Acer)、ハコヤナギ属(Populus)、トネリコ属(Fraxinus)、またはクマシデ属(Carpinus)等の広葉樹から得ることができる。Eucalyptus(以下、E.と略す)としては、E.calophylla、E.citriodora、E.diversicolor、E.globulus、E.grandis、E.gummifera、E.marginata、E.nesophila、E.nitens、E.amygdalina、E.camaldulensis、E.delegatensis、E.gigantea、E.muelleriana、E.obliqua、E.regnans、E.sieberiana、E.viminalis、E.camaldulensis、E.marginataなどを挙げることができる。シラカンバ属Betula(以下、B.と略す)としては、B.ermanii、B.pendula、B.populinifolia、B.carpinifolia、B.mandshurica、B.verrucosa、B.papyrifera、B.alleghaniensisなどを挙げることができる。ブナ属Fagus(以下、F.と略す)としては、F.grandifolia、F.orientalis、F.sylvatica、F.crenataなどを挙げることができる。カエデ属Acer(以下、A.と略す)としては、A.camprestre、A.dasycarpum、A.ginnale、A.platanoides、A.mono、A.spicatum、A.apicatum、A.saccharinum、A.rubrum、A.pseudoplatanusなどを挙げることができる。 ハコヤナギ属Populus(以下、P.と略す)としては、P.maximowiczii、P.alba、P.sieboldii、P.koreana、P.deltoides、P.grandidentata、P.tacamachaca、P.tremuloides、P.trichocarpaなどを挙げることができる。トネリコ属Fraxinus(以下、F.と略す)としては、F.americana、F.excelsior、F.mandshurica、F.pneesylvanicaなどを挙げることができる。クマシデ属Carpinus(以下、C.と略す)としては、C.belulus、C.cordata、C.japonica、C.laxiflora、C.tschonoskii、C.turczaninoviiなどを挙げることができる。 “Cellulose-based raw materials derived from broad-leaved trees” that can be preferably used in the present invention include, for example, Eucalyptus, Birchula, Begus, Fagus, Acer, Populus , Genus Fraxinus, or hardwood such as Carpinus. Eucalyptus (hereinafter abbreviated as E.) calophylla, E .; citriodora, E .; diversiccolor, E.I. globulus, E.I. grandis, E .; gummifera, E .; marginata, E.M. nesophila, E.I. nitens, E.I. amygdalina, E .; camaldulensis, E .; delegenasis, E.I. gigantea, E .; muelleriana, E.M. obliqua, E .; regnans, E .; Sieberiana, E.I. viminalis, E .; camaldulensis, E .; marginata and the like. As birch genus Betala (hereinafter abbreviated as B.), ermanii, B.M. pendula, B.M. populinifolia, B.I. carpinifolia, B.I. mandhurica, B.M. verrucosa, B.M. papyrifera, B. et al. alleghaniensis and the like. As the beech genus Fagus (hereinafter abbreviated as F.), grandifolia, F.M. orientalis, F.M. sylvatica, F.M. Crenata can be mentioned. As a maple genus Acer (hereinafter abbreviated as A.), A. camprestre, A.M. dasycarpum, A.M. ginnal, A.M. platanoides, A.M. mono, A.M. spicatum, A. apicatum, A.M. saccharinum, A.M. rubrum, A.R. pseudoplatanus and the like. As the genus Populus (hereinafter abbreviated as P.), P. maximowiczi, P.M. alba, P.I. sieboldii, P.A. coreana, P.M. deltoides, P.A. grandidentata, P.M. tacamachaca, P.M. tremuloids, P.M. and trichocarpa. As the genus Fraxinus (hereinafter abbreviated as F.), americana, F.A. excelsior, F.M. mandhurica, F.M. pnesylvanica and the like. Examples of the genus Carpinus (hereinafter abbreviated as C.) include C.I. belulus, C.I. cordadata, C.I. japonica, C.I. laxiflora, C.I. tschonoskii, C.I. turczaninovii and the like.
 これら種々の広葉樹に対して、同一条件のパルプ化処理及び漂白処理を施した場合、得られるセルロース系原料に含有されるヘミセルロース含有量は樹種によって違いがみられる。特に、シラカンバ属(Betula)は、パルプ化処理や漂白処理を施して高い白色度のセルロース系原料とした後でも、比較的高いヘミセルロース含有量を維持する傾向があるため、本発明に好ましく用いることができる。高い白色度を有し、かつヘミセルロース含有量も高いセルロース系原料は、上記の通り、透明度の高いセルロースナノファイバー分散液を製造することができるという利点を有する。もっとも好ましくは、白色度が85%以上であり、かつヘミセルロース含有量が23質量%以上であるセルロース系原料である。 When these various broad-leaved trees are subjected to pulping treatment and bleaching treatment under the same conditions, the content of hemicellulose contained in the obtained cellulose raw material varies depending on the tree species. In particular, the birch genus (Betula) is preferably used in the present invention because it tends to maintain a relatively high hemicellulose content even after pulping or bleaching to obtain a cellulose material with high whiteness. Can do. A cellulose-based raw material having a high whiteness and a high hemicellulose content has an advantage that a cellulose nanofiber dispersion having a high transparency can be produced as described above. Most preferred is a cellulosic material having a whiteness of 85% or more and a hemicellulose content of 23% by mass or more.
 セルロース系原料のヘミセルロース含有量は次のように測定できる。300mgの凍結乾燥したセルロース系原料を72質量%硫酸3mL中で室温下で2時間反応させた後、硫酸濃度が2.5質量%になるように希釈し、さらに105℃で1時間加熱し、酸加水分解反応によって単糖溶液を得る。この酸加水分解溶液を希釈し、イオンクロマトグラフィー(Dionex社製 DX-500、カラム:AS-7、溶離液:水、流速1.1mL/min)を用いて単糖を定量する。酸加水分解溶液に含まれるキシロースおよびマンノース量から、下式によってヘミセルロースを求めることができる。
 ヘミセルロース含有量(質量%)=(キシロース量(mg)×0.88+マンノース量(mg)×0.9)/セルロース系原料の量(mg)×100(%)
The hemicellulose content of the cellulosic material can be measured as follows. After reacting 300 mg of lyophilized cellulosic raw material in 3 mL of 72 mass% sulfuric acid at room temperature for 2 hours, diluted to a sulfuric acid concentration of 2.5 mass%, and further heated at 105 ° C. for 1 hour, A monosaccharide solution is obtained by an acid hydrolysis reaction. This acid hydrolyzed solution is diluted, and monosaccharides are quantified using ion chromatography (DX-500, manufactured by Dionex, column: AS-7, eluent: water, flow rate 1.1 mL / min). From the amount of xylose and mannose contained in the acid hydrolysis solution, hemicellulose can be obtained by the following formula.
Hemicellulose content (mass%) = (xylose amount (mg) × 0.88 + mannose amount (mg) × 0.9) / cellulose raw material amount (mg) × 100 (%)
 (2)N-オキシル化合物(a1)
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、本発明で使用されるN-オキシル化合物としては、下記一般式(式1)で示される化合物が挙げられる。
(2) N-oxyl compound (a1)
An N-oxyl compound refers to a compound capable of generating a nitroxy radical. As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction. For example, the N-oxyl compound used in the present invention includes a compound represented by the following general formula (Formula 1).
Figure JPOXMLDOC01-appb-C000001
 式1中、R~Rは、同一または異なって、炭素数1~4程度のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000001
In Formula 1, R 1 to R 4 are the same or different and each represents an alkyl group having about 1 to 4 carbon atoms.
 式1で表される物質のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)が好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸若しくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体や、下記式5で表される4-アミノTEMPOのアミノ基をアセチル化し、適度な疎水性を付与した4-アセトアミドTEMPOは、安価であり、かつ均一な酸化セルロースを得ることができるため、とりわけ好ましい。 Of the substances represented by Formula 1, 2,2,6,6-tetramethyl-1-piperidine-oxy radical (hereinafter referred to as TEMPO) is preferable. Further, the N-oxyl compound represented by any one of the following formulas 2 to 4, that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity. 4-Acetamide TEMPO, which is obtained by acetylating the amino group of 4-hydroxy TEMPO derivative or 4-amino TEMPO represented by the following formula 5 and imparting appropriate hydrophobicity, is inexpensive and provides uniform oxidized cellulose. Is particularly preferable.
Figure JPOXMLDOC01-appb-C000002
 式2~4中、Rは炭素数4以下の直鎖または分岐状炭素鎖である。
Figure JPOXMLDOC01-appb-C000002
In the formulas 2 to 4, R is a straight or branched carbon chain having 4 or less carbon atoms.
 さらに、下記式6で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルは、短時間で効率よくセルロース系原料を酸化でき、重合度の高いセルロースナノファイバーを製造できるので好ましい。 Furthermore, an N-oxyl compound represented by the following formula 6, that is, an azaadamantane type nitroxy radical, is preferable because it can efficiently oxidize a cellulosic raw material in a short time and produce a cellulose nanofiber having a high degree of polymerization.
Figure JPOXMLDOC01-appb-C000003
 式6中、RおよびRは、同一または異なって、水素またはC~Cの直鎖もしくは分岐鎖アルキル基を示す。
Figure JPOXMLDOC01-appb-C000003
In Formula 6, R 5 and R 6 are the same or different and each represents hydrogen or a C 1 -C 6 linear or branched alkyl group.
 N-オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる程度に酸化反応を促進できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount that can promote the oxidation reaction to such an extent that the cellulose raw material can be converted into nanofibers. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is even more preferable with respect to 1 g of cellulosic raw material.
 (3)臭化物またはヨウ化物(a2)
 臭化物とは臭素を含む化合物をいい、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物をいい、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロース系原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。
(3) Bromide or iodide (a2)
Bromide refers to a compound containing bromine, examples of which include alkali metal bromides that can dissociate and ionize in water. Further, iodide refers to a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably from 0.1 to 100 mmol, more preferably from 0.1 to 10 mmol, and even more preferably from 0.5 to 5 mmol, based on 1 g of cellulosic raw material.
 (4)酸化剤(a3)
 セルロース系原料の酸化の際に用いる酸化剤としては、公知のものが使用でき、例えばハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが、特に好適である。一般に、広葉樹由来のセルロース系原料は、針葉樹由来のセルロース系原料に比べて、カルボキシル基を導入しにくい(すなわち、酸化しにくい)ので、酸化剤の使用量を適切な範囲に調整して、酸化の進行を促進することが好ましい。酸化剤の適切な使用量は、用いる広葉樹の樹種によっても異なるが、例えば、絶乾1gのセルロース系原料に対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、2.5~25mmolがさらに好ましく、5~20mmolが最も好ましい。
(4) Oxidizing agent (a3)
As the oxidizing agent used in the oxidation of the cellulosic raw material, known ones can be used, for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, etc. Can be used. Among these, from the viewpoint of cost, sodium hypochlorite, which is the most widely used in industrial processes and has a low environmental load, is particularly suitable. In general, broad-leaved cellulosic raw materials are less likely to introduce carboxyl groups (that is, less susceptible to oxidation) than coniferous cellulosic raw materials, so the amount of oxidizing agent used is adjusted to an appropriate range for oxidation. It is preferable to promote the progress of. The appropriate amount of the oxidizing agent to be used varies depending on the hardwood species to be used. For example, 0.5 to 500 mmol is preferable, 0.5 to 50 mmol is more preferable, and 0.5 to 50 mmol is more preferable with respect to 1 g of completely dry cellulosic material. 5 to 25 mmol is more preferable, and 5 to 20 mmol is most preferable.
 (5)セルロース系原料の酸化反応の条件
 本工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを9~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。
(5) Conditions for oxidation reaction of cellulosic raw material In this step, the reaction can proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced. In order to make the oxidation reaction proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、特に限定されないが、例えば、0.5~6時間、好ましくは2~6時間、さらに好ましくは4~6時間程度である。また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、セルロース系原料に効率よくカルボキシル基を導入でき、セルロース系原料の酸化を促進することができる。 The reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is not particularly limited. For example, the reaction time is 0.5 to 6 hours, preferably 2 to 6 hours, more preferably about 4 to 6 hours. is there. The oxidation reaction may be performed in two stages. For example, oxidized cellulose obtained by filtration after the completion of the first stage reaction is oxidized again under the same or different reaction conditions, so that the cellulose is not subject to reaction inhibition by the salt produced as a by-product in the first stage reaction. The carboxyl group can be efficiently introduced into the system material, and the oxidation of the cellulosic material can be promoted.
 本工程では、酸化されたセルロース系原料のカルボキシル基量が、酸化セルロース系原料の絶乾質量に対して、1.0mmol/g以上となるように条件を設定することが好ましい。この場合のカルボキシル基量は、より好ましくは1.0mmol/g~3.0mmol/g、さらに好ましくは1.4mmol/g~3.0mmol/g、特に好ましくは1.5mmol/g~2.5mmol/gである。カルボキシル基量は、酸化反応時間の調整、酸化反応温度の調整、酸化反応時のpHの調整、N-オキシル化合物や臭化物、ヨウ化物、酸化剤の添加量の調整などを行なうことにより調製できる。
酸化セルロース系原料のカルボキシル基量は、酸化セルロース系原料の0.5質量%スラリー(=0.5%(w/v)水分散液)を60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/g酸化セルロース系原料〕=a〔ml〕×0.05/酸化セルロース系原料質量〔g〕
In this step, it is preferable to set conditions so that the amount of carboxyl groups of the oxidized cellulose-based material is 1.0 mmol / g or more with respect to the absolutely dry mass of the oxidized cellulose-based material. In this case, the carboxyl group amount is more preferably 1.0 mmol / g to 3.0 mmol / g, further preferably 1.4 mmol / g to 3.0 mmol / g, particularly preferably 1.5 mmol / g to 2.5 mmol. / G. The amount of the carboxyl group can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the addition amount of the N-oxyl compound, bromide, iodide, or oxidizing agent.
The carboxyl group amount of the oxidized cellulose-based raw material was adjusted to pH 2 by preparing 60 ml of a 0.5 mass% slurry (= 0.5% (w / v) aqueous dispersion) of the oxidized cellulose-based raw material and adding 0.1 M hydrochloric acid aqueous solution. Then, 0.05N sodium hydroxide aqueous solution was added dropwise to measure the electric conductivity until the pH reached 11, and the hydroxylation consumed in the neutralization step of the weak acid where the change in electric conductivity was slow. It can calculate from the amount of sodium (a) using the following formula.
Amount of carboxyl group [mmol / g oxidized cellulose material] = a [ml] × 0.05 / oxidized cellulose material mass [g]
 次の工程Bでの解繊を効率よく行なうために、工程Aで得た酸化されたセルロース系原料を洗浄することが好ましい。 In order to efficiently perform defibration in the next step B, it is preferable to wash the oxidized cellulosic material obtained in step A.
 1-2.工程B
 工程Bでは、前記工程Aで得た酸化セルロース系原料を用いて、酸化セルロース系原料の濃度が0.3%(w/v)以上の分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する。「ナノファイバー化する」とは、セルロース系原料を、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルであるセルロースナノファイバーへと加工することを意味する。酸化セルロース系原料の分散液とは前記酸化セルロース系原料が分散媒に分散している液である。取扱い容易性から、分散媒は水であることが好ましい。
1-2. Process B
In Step B, using the oxidized cellulose-based material obtained in Step A, a dispersion having a concentration of the oxidized cellulose-based material of 0.3% (w / v) or higher is prepared, and the oxidized cellulose-based material is used as a dispersion medium. While being dispersed, it is defibrated into nanofibers. “To make nanofiber” means to process a cellulose-based raw material into cellulose nanofiber which is a single microfibril of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 μm. The dispersion of oxidized cellulose material is a liquid in which the oxidized cellulose material is dispersed in a dispersion medium. From the viewpoint of ease of handling, the dispersion medium is preferably water.
 当該酸化セルロース系原料を分散媒中に分散させながら解繊するには、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記分散液に強力なせん断力を印加することが好ましい。特に、セルロースナノファイバーを効率よく得るには、前記分散液に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。この処理により、酸化セルロース系原料が解繊してセルロースナノファイバーが形成され、かつセルロースナノファイバーが分散媒中に分散する。 In order to defibrate while dispersing the oxidized cellulose raw material in a dispersion medium, a strong shearing force is applied to the dispersion using a high-speed rotating type, colloid mill type, high pressure type, roll mill type, ultrasonic type device, etc. Is preferably applied. In particular, in order to efficiently obtain cellulose nanofibers, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the dispersion and can apply a strong shearing force. The pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more. By this treatment, the oxidized cellulose-based raw material is defibrated to form cellulose nanofibers, and the cellulose nanofibers are dispersed in the dispersion medium.
 前記処理に供する分散液中の酸化セルロース系原料濃度は、0.3%(w/v)以上であるが、好ましくは1~2%(w/v)、より好ましくは3~5%(w/v)である。 The concentration of the oxidized cellulose-based material in the dispersion to be subjected to the treatment is 0.3% (w / v) or more, preferably 1 to 2% (w / v), more preferably 3 to 5% (w / V).
 1-3.低粘度化処理
 本発明では、セルロースナノファイバー分散液としたときの粘度を低下させて取扱い性を高めるために、工程Bの前に、工程Aで得た酸化されたセルロース系原料(以下単に「酸化セルロース系原料」ともいう)を低粘度化処理することが好ましい。低粘度化処理とは、酸化されたセルロース系原料のセルロース鎖を適度に切断(セルロース鎖を短繊維化)することである。このように処理された原料は分散液としたときの粘度が低くなるので、低粘度化処理とは、低粘度の分散液を与える酸化セルロース系原料を得る処理ともいえる。低粘度化処理は、酸化セルロース系原料の粘度が低下するような処理であればよいが、例えば、酸化されたセルロース系原料に紫外線を照射する処理、酸化されたセルロース系原料を過酸化水素およびオゾンで酸化分解する処理、酸化されたセルロース系原料を酸で加水分解する処理、ならびにこれらの組み合わせなどが挙げられる。
1-3. In the present invention, in order to reduce the viscosity of the cellulose nanofiber dispersion and improve the handleability, the oxidized cellulose raw material obtained in step A (hereinafter simply referred to as “ It is preferable to reduce the viscosity of the “oxidized cellulose raw material”. The viscosity reduction treatment is to appropriately cut the cellulose chain of the oxidized cellulose raw material (shorten the cellulose chain). Since the raw material treated in this way has a low viscosity when used as a dispersion, it can be said that the viscosity reduction treatment is a treatment for obtaining an oxidized cellulose-based raw material that gives a low-viscosity dispersion. The viscosity-reducing treatment may be any treatment that lowers the viscosity of the oxidized cellulose-based material. For example, the treatment of irradiating the oxidized cellulose-based material with ultraviolet rays, the oxidized cellulose-based material with hydrogen peroxide and Examples include a treatment for oxidizing and decomposing with ozone, a treatment for hydrolyzing an oxidized cellulose raw material with an acid, and a combination thereof.
 (1)紫外線照射
 酸化されたセルロース系原料に紫外線を照射して低粘度化処理を行なう場合、紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子化を引き起こし、酸化セルロース系原料を短繊維化することができるので特に好ましい。
(1) Ultraviolet irradiation When the oxidized cellulose-based raw material is irradiated with ultraviolet rays to perform the viscosity reduction treatment, the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm. Of these, ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferred because they directly act on cellulose and hemicellulose to cause low molecular weight and shorten the oxidized cellulose raw material.
 紫外線を照射する光源としては、100~400nmの波長領域の光を照射できるものを使用すればよい。その具体例には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が含まれ、これらの1種あるいは2種以上を任意に組合せて使用できる。特に波長特性の異なる複数の光源を組合せて使用すると、異なる波長の紫外線を同時に照射してセルロース鎖やヘミセルロース鎖の切断箇所を増加させられるので短繊維化を促進できる。 As the light source for irradiating ultraviolet rays, a light source capable of irradiating light in a wavelength region of 100 to 400 nm may be used. Specific examples thereof include a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, a metal halide lamp, and the like, and one or more of these can be used in any combination. . In particular, when a plurality of light sources having different wavelength characteristics are used in combination, ultraviolet rays having different wavelengths can be simultaneously irradiated to increase the number of cellulose chains and hemicellulose chains to be cut, thereby facilitating shortening of the fibers.
 紫外線照射を行なう際の酸化されたセルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製容器を用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製容器を用いることが好ましい。容器における紫外線による反応に関与しない部分の材質は、紫外線の波長に対して劣化の少ない材質を適宜選択してよい。 As a container for containing the oxidized cellulosic raw material when performing ultraviolet irradiation, for example, when using ultraviolet light having a wavelength longer than 300 nm, a hard glass container can be used, but ultraviolet light having a shorter wavelength than that can be used. When used, it is preferable to use a quartz glass container which allows more ultraviolet rays to pass through. As the material of the portion not participating in the reaction by the ultraviolet rays in the container, a material having little deterioration with respect to the wavelength of the ultraviolet rays may be appropriately selected.
 反応を効率よく行なうために、酸化されたセルロース系原料は分散媒に分散させて分散液とし、当該分散液に紫外線を照射することが好ましい。分散媒は、副反応を抑制する観点等から水が好ましい。エネルギー効率を高める観点から、分散液中のセルロースナノファイバー濃度は0.1質量%以上が好ましい。また紫外線照射装置内での酸化セルロース系原料の流動性を良好とし反応効率を高めるために、当該濃度は12質量%以下が好ましい。従って、当該濃度は0.1~12質量%が好ましく、0.5~5質量%がより好ましく、1~3質量%がさらに好ましい。 In order to carry out the reaction efficiently, it is preferable to disperse the oxidized cellulose-based raw material in a dispersion medium to form a dispersion and to irradiate the dispersion with ultraviolet rays. The dispersion medium is preferably water from the viewpoint of suppressing side reactions. From the viewpoint of increasing energy efficiency, the concentration of cellulose nanofibers in the dispersion is preferably 0.1% by mass or more. The concentration is preferably 12% by mass or less in order to improve the fluidity of the oxidized cellulose-based raw material in the ultraviolet irradiation device and increase the reaction efficiency. Accordingly, the concentration is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and further preferably 1 to 3% by mass.
 また反応効率の点から、反応温度は20℃以上が好ましい。一方、温度が高すぎると酸化セルロース系原料の劣化や、反応装置内の圧力が大気圧を超えるおそれが生じるので、反応温度は95℃以下が好ましい。従って、反応温度は20~95℃が好ましく、20~80℃がより好ましく、20~50℃がさらに好ましい。さらに反応温度がこの範囲であると、耐圧性を考慮した装置設計を行なう必要性がないという利点もある。当該反応における系のpHは限定されないが、プロセスの簡素化を考えると中性領域、例えばpH6.0~8.0程度が好ましい。 Also, from the viewpoint of reaction efficiency, the reaction temperature is preferably 20 ° C or higher. On the other hand, if the temperature is too high, the oxidized cellulose-based raw material may be deteriorated and the pressure in the reaction apparatus may exceed atmospheric pressure. Therefore, the reaction temperature is preferably 95 ° C. or lower. Accordingly, the reaction temperature is preferably 20 to 95 ° C, more preferably 20 to 80 ° C, and further preferably 20 to 50 ° C. Further, when the reaction temperature is within this range, there is an advantage that it is not necessary to design an apparatus in consideration of pressure resistance. The pH of the system in the reaction is not limited, but in view of simplification of the process, a neutral region, for example, about pH 6.0 to 8.0 is preferable.
 紫外線照射の程度は、照射反応装置内での酸化セルロース系原料の滞留時間や照射光源のエネルギー量を調節すること等により、任意に設定できる。また例えば、照射装置内の酸化セルロース系原料分散液の濃度を水等によって希釈する、あるいは空気や窒素等の不活性気体を吹き込んで希釈することにより、酸化セルロース系原料が受ける紫外線の照射量を調整できる。これらの条件は、処理後の酸化セルロース系原料の品質(繊維長やセルロース重合度等)を所望の値とするために適宜選択される。 The degree of ultraviolet irradiation can be arbitrarily set by adjusting the residence time of the oxidized cellulose raw material in the irradiation reaction apparatus or the energy amount of the irradiation light source. Also, for example, by diluting the concentration of the oxidized cellulose raw material dispersion in the irradiation apparatus with water or the like, or by blowing and diluting with an inert gas such as air or nitrogen, the amount of ultraviolet radiation received by the oxidized cellulose raw material can be reduced. Can be adjusted. These conditions are appropriately selected so that the quality (fiber length, degree of cellulose polymerization, etc.) of the oxidized cellulose-based raw material after treatment is set to a desired value.
 紫外線照射処理は、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤の存在下で行なうと、光酸化反応の効率をより高めることができるので好ましい。特に135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部に通常存在する空気中の酸素からオゾンが生成するが、このオゾンを助剤として用いることが好ましい。本発明においては、この光源周辺部に連続的に空気を供給して生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化されたセルロース系原料へと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することができる。さらに、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることもできる。このように、本発明においては、紫外線照射反応装置で副次的に発生するオゾンを利用することができる。 When the ultraviolet irradiation treatment is carried out in the presence of an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is further improved. Since it can raise, it is preferable. In particular, when irradiating ultraviolet rays in the wavelength region of 135 to 242 nm, ozone is generated from oxygen in the air normally present in the gas phase around the light source, and this ozone is preferably used as an auxiliary agent. In the present invention, the ozone generated by continuously supplying air to the periphery of the light source is continuously extracted, and the ozone extracted from outside the system is injected into the oxidized cellulosic raw material. Without supply, ozone can be used as an auxiliary for the photo-oxidation reaction. Furthermore, a larger amount of ozone can be generated in the system by supplying oxygen to the gas phase around the light source. As described above, in the present invention, ozone that is secondarily generated in the ultraviolet irradiation reactor can be used.
 紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は、処理後の酸化セルロース系原料の品質や、漂白などの後処理などとの関係に応じて適宜設定できる。例えば、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度照射することができる。この際、1回あたりの照射時間は0.5~10時間が好ましく、0.5~3時間が好ましい。 The ultraviolet irradiation treatment can be repeated multiple times. The number of repetitions can be appropriately set according to the relationship with the quality of the oxidized cellulose-based raw material after the treatment and the post-treatment such as bleaching. For example, ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm can be irradiated 1 to 10 times, preferably 2 to 5 times. At this time, the irradiation time per time is preferably 0.5 to 10 hours, and more preferably 0.5 to 3 hours.
 (2)過酸化水素およびオゾンによる酸化分解
 当該処理で使用するオゾンは、空気あるいは酸素を原料としてオゾン発生装置にて公知の方法で発生させることができる。前述のとおり、酸化反応を効率よく行なうためには酸化セルロース系原料を水等の分散媒に分散させた分散液を反応に用いることが好ましい。本発明におけるオゾンの使用量(質量)は、酸化セルロース系原料の絶乾質量の0.1~3倍が好ましい。オゾンの使用量が酸化セルロース系原料の絶乾質量の0.1倍以上であればセルロースの非晶部を十分に分解することができ、次の工程Bでの解繊・分散処理に要するエネルギーを大幅に削減できる。一方、オゾンの使用量が過度に多くなるとセルロースの過度の分解が起こりうるが、当該使用量が酸化セルロース系原料の絶乾質量の3倍以下であると、過度の分解を抑制できる。よって、オゾン使用量は、酸化セルロース系原料の絶乾質量の0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。
(2) Oxidative decomposition with hydrogen peroxide and ozone Ozone used in the treatment can be generated by a known method using an ozone generator using air or oxygen as a raw material. As described above, in order to efficiently perform the oxidation reaction, it is preferable to use a dispersion obtained by dispersing an oxidized cellulose-based material in a dispersion medium such as water for the reaction. The amount (mass) of ozone used in the present invention is preferably 0.1 to 3 times the absolute dry mass of the oxidized cellulose raw material. If the amount of ozone used is at least 0.1 times the absolute dry mass of the oxidized cellulose raw material, the amorphous part of cellulose can be sufficiently decomposed, and the energy required for the defibration / dispersion treatment in the next step B Can be greatly reduced. On the other hand, when the amount of ozone used is excessively large, excessive decomposition of cellulose can occur, but when the amount used is three times or less the absolute dry mass of the oxidized cellulose-based raw material, excessive decomposition can be suppressed. Therefore, the amount of ozone used is more preferably 0.3 to 2.5 times, and even more preferably 0.5 to 1.5 times the absolute dry mass of the oxidized cellulose raw material.
 過酸化水素の使用量(質量)は、酸化セルロース系原料の絶乾質量の0.001~1.5倍が好ましい。酸化セルロース系原料の0.001倍以上の量で過酸化水素を使用すると、オゾンと過酸化水素との相乗作用が生じ、効率のよい反応が可能となる。一方、酸化セルロース系原料の分解には、セルロース系原料の1.5倍以下程度の量の過酸化水素を使用すれば十分であり、それより多い使用量はコストアップにつながる。よって、過酸化水素の使用量は、酸化セルロース系原料の絶乾質量の0.1~1.0倍がより好ましい。 The amount (mass) of hydrogen peroxide used is preferably 0.001 to 1.5 times the absolute dry mass of the oxidized cellulose material. When hydrogen peroxide is used in an amount 0.001 times or more that of the oxidized cellulose raw material, a synergistic action between ozone and hydrogen peroxide occurs, and an efficient reaction becomes possible. On the other hand, for the decomposition of the oxidized cellulose-based material, it is sufficient to use hydrogen peroxide in an amount about 1.5 times or less that of the cellulose-based material, and a larger amount used leads to an increase in cost. Therefore, the amount of hydrogen peroxide used is more preferably 0.1 to 1.0 times the absolute dry mass of the oxidized cellulose raw material.
 反応効率の観点から、オゾンおよび過酸化水素による酸化分解処理における系のpHは2~12が好ましく、pH4~10がより好ましく、pH6~8がさらに好ましい。温度は10~90℃が好ましく、20~70℃がより好ましく、30~50℃がさらに好ましい。処理時間は、1~20時間が好ましく、2~10時間がより好ましく、3~6時間がさらに好ましい。 From the viewpoint of reaction efficiency, the pH of the system in the oxidative decomposition treatment with ozone and hydrogen peroxide is preferably 2 to 12, more preferably pH 4 to 10, and further preferably pH 6 to 8. The temperature is preferably 10 to 90 ° C, more preferably 20 to 70 ° C, and further preferably 30 to 50 ° C. The treatment time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours.
 オゾンおよび過酸化水素による処理を行なうための装置は、通常使用される装置を用いることができる。その例には、反応室、撹拌機、薬品注入装置、加熱器、およびpH電極を備えた通常の反応器が含まれる。 As a device for performing treatment with ozone and hydrogen peroxide, a commonly used device can be used. Examples include a conventional reactor with a reaction chamber, a stirrer, a chemical injector, a heater, and a pH electrode.
 オゾンおよび過酸化水素による処理後、水溶液中に残留するオゾンや過酸化水素は次の工程Bの解繊処理でも有効に作用するので、より低粘度の分散液を与えるセルロースナノファイバーを製造できる。 After the treatment with ozone and hydrogen peroxide, ozone and hydrogen peroxide remaining in the aqueous solution effectively work even in the defibration treatment of the next step B, so that cellulose nanofibers that give a dispersion with a lower viscosity can be produced.
 過酸化水素およびオゾンにより、酸化されたセルロース系原料の低粘度化処理を効率よく実施できる理由は以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、当該原料同士は近接して存在しネットワークを形成しているので当該原料を含む分散液の粘度は高い。しかし、原料同士の間にはカルボキシル基同士の電荷反発力の作用で通常のパルプでは見られない微視的隙間が存在しており、当該原料をオゾンおよび過酸化水素で処理すると、オゾンおよび過酸化水素から酸化力に優れるヒドロキシラジカルが発生し、微視的隙間に浸透して当該原料中のセルロース鎖を効率よく酸化分解して酸化セルロース系原料を短繊維化する。 The reason why the low-viscosity treatment of the oxidized cellulose raw material can be efficiently performed with hydrogen peroxide and ozone is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, since the raw materials are close to each other and form a network, the viscosity of the dispersion containing the raw materials is high. However, there is a microscopic gap between the raw materials that cannot be seen in ordinary pulp due to the charge repulsive force between the carboxyl groups. When the raw material is treated with ozone and hydrogen peroxide, ozone and excess Hydroxyl radicals excellent in oxidizing power are generated from hydrogen oxide, penetrate into the microscopic gaps, and efficiently oxidatively decompose cellulose chains in the raw material to shorten the oxidized cellulose raw material into short fibers.
 (3)酸による加水分解
 本処理では、酸化されたセルロース系原料に酸を添加してセルロース鎖の加水分解(酸加水分解処理)を行なう。酸としては、硫酸、塩酸、硝酸、またはリン酸のような鉱酸を使用することが好ましい。前述のとおり、反応を効率よく行なうために、酸化されたセルロース系原料を水等の分散媒に分散させた分散液を用いることが好ましい。酸加水分解処理の条件としては、酸がセルロースの非晶部に作用するような条件であればよい。例えば、酸の添加量としては、酸化セルロース系原料の絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、次の工程Bでの処理効率が向上するので好ましい。また、当該添加量が0.5質量%以下であるとセルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができる。酸加水分解時の系のpHは、2.0~4.0が好ましく、2.0以上3.0未満がより好ましい。酸加水分解効率の観点から、温度70~120℃で、1~10時間反応を行なうことが好ましい。
(3) Hydrolysis with acid In this treatment, an acid is added to the oxidized cellulose raw material to hydrolyze the cellulose chain (acid hydrolysis treatment). As the acid, it is preferable to use a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid. As described above, in order to perform the reaction efficiently, it is preferable to use a dispersion liquid in which an oxidized cellulose-based raw material is dispersed in a dispersion medium such as water. The conditions for the acid hydrolysis treatment may be any conditions that allow the acid to act on the amorphous part of the cellulose. For example, the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of the oxidized cellulose raw material. It is preferable for the amount of acid added to be 0.01% by mass or more because hydrolysis of cellulose proceeds and the processing efficiency in the next step B is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the said addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented. The pH of the system during acid hydrolysis is preferably from 2.0 to 4.0, more preferably from 2.0 to less than 3.0. From the viewpoint of acid hydrolysis efficiency, the reaction is preferably carried out at a temperature of 70 to 120 ° C. for 1 to 10 hours.
 次の工程Bの処理を効率よく行なうために、酸加水分解処理後は水酸化ナトリウム等のアルカリを添加して中和することが好ましい。 In order to efficiently perform the treatment of the next step B, it is preferable to neutralize by adding an alkali such as sodium hydroxide after the acid hydrolysis treatment.
 酸加水分解処理により、酸化されたセルロース系原料の低粘度化処理を効率よく実施できる理由は以下のように推察される。前述のとおり、N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成され、当該原料同士は近接して存在しネットワークを形成している。当該原料に、酸を添加して加水分解を行なうと、ネットワーク中の電荷のバランスが崩れてセルロース分子の強固なネットワークが崩れ、当該原料の比表面積が増大し、酸化セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化する。 The reason why the reduced viscosity of the oxidized cellulose raw material can be efficiently carried out by the acid hydrolysis treatment is presumed as follows. As described above, the carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, a hydration layer is formed, and the raw materials are close to each other to form a network. ing. When an acid is added to the raw material and hydrolysis is performed, the balance of charges in the network is lost, the strong network of cellulose molecules is lost, the specific surface area of the raw material is increased, and the oxidized cellulose raw material is shortened. Is promoted, and the viscosity of the cellulosic material is reduced.
 2.本発明の製造方法により得られたセルロースナノファイバー
 本発明により製造されるセルロースナノファイバーは、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルである。本発明により得られたセルロースナノファイバーの分散液は優れた透明度を有する。分散液における分散媒は、好ましくは水である。本発明において、透明度は波長660nmの光の透過率で評価され、具体的には、紫外・可視分光光度計を用いて、石英セル(光路10mm)に0.1%(v/w)分散液を入れた試験体を透過する光の量を測定することで求められる。
2. Cellulose nanofibers obtained by the production method of the present invention The cellulose nanofibers produced by the present invention are cellulose single microfibrils having a width of 2 to 5 nm and a length of about 1 to 5 μm. The dispersion of cellulose nanofibers obtained by the present invention has excellent transparency. The dispersion medium in the dispersion is preferably water. In the present invention, the transparency is evaluated by the transmittance of light having a wavelength of 660 nm. Specifically, using a UV / visible spectrophotometer, a 0.1% (v / w) dispersion in a quartz cell (optical path 10 mm). It is calculated | required by measuring the quantity of the light which permeate | transmits the test body which put in.
 本発明により得られたセルロースナノファイバーの水分散液は、濃度0.1%(w/v)において、波長660nmの光の透過率が、好ましくは94%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上である。前記透明度が95%以上であると、一般的なフィルム用途に問題なく使用することができ、透明度が99%以上である場合はディスプレイやタッチパネルのような高い光学特性(透明性)が要求されるフィルム用途等に問題なく使用できる。 The aqueous dispersion of cellulose nanofibers obtained by the present invention has a light transmittance of 660 nm at a concentration of 0.1% (w / v), preferably 94% or more, more preferably 95% or more. Preferably it is 97% or more, particularly preferably 99% or more. When the transparency is 95% or more, it can be used without problems for general film applications, and when the transparency is 99% or more, high optical properties (transparency) such as a display and a touch panel are required. Can be used without problems for film applications.
 本発明においては、広葉樹由来のセルロース系原料中のヘミセルロース含有量を17質量%以上とすることで、このように透明度の高い水分散液を与えるセルロースナノファイバーが得られる。この理由は、限定されないが以下のように推察される。 In the present invention, by setting the hemicellulose content in the cellulose-based raw material derived from hardwood to 17% by mass or more, cellulose nanofibers that give such a highly transparent aqueous dispersion can be obtained. Although this reason is not limited, it is guessed as follows.
 広葉樹由来のセルロース系原料は、針葉樹由来のセルロース系原料に比べて、繊維が細くかつ短いのでセルロースナノファイバーの原料として優れていると考えられる。一般に、セルロース系原料は、セルロースミクロフィブリルの間にヘミセルロースが存在する。セルロースミクロフィブリルの間にヘミセルロースが存在すると、アルカリ条件下で酸化反応する際に、ヘミセルロースが溶出するのでセルロースミクロフィブリル同士の間に空隙が生じると考えられる。これにより、触媒がセルロースミクロフィブリル表面に到達しやすくなると推測され、セルロースミクロフィブリル表面の一級水酸基が選択的に酸化される。その結果セルロースミクロフィブリル表面にカルボキシル基が満遍なく導入され、電荷反発によってナノ分散しやすくなると考えられる。本発明のように、ヘミセルロース含有量が17質量%以上、好ましくは23質量%以上、より好ましくは25質量%以上、さらに好ましくは28質量%以上という高いヘミセルロース量を有する広葉樹由来のセルロース系原料を用いることにより、セルロースミクロフィブリルのナノ分散がより促進されると推察される。 The cellulose-based raw material derived from hardwood is considered to be superior as a raw material for cellulose nanofiber because the fibers are thinner and shorter than the cellulose-based raw material derived from conifer. In general, cellulosic materials have hemicellulose between cellulose microfibrils. If hemicellulose is present between cellulose microfibrils, it is considered that voids are formed between cellulose microfibrils because hemicellulose is eluted during an oxidation reaction under alkaline conditions. Thereby, it is estimated that the catalyst easily reaches the surface of the cellulose microfibril, and the primary hydroxyl group on the surface of the cellulose microfibril is selectively oxidized. As a result, it is considered that carboxyl groups are uniformly introduced on the surface of the cellulose microfibril and nano-dispersion is facilitated by charge repulsion. As in the present invention, a cellulose-based raw material derived from hardwood having a high hemicellulose content of 17% by mass or more, preferably 23% by mass or more, more preferably 25% by mass or more, and further preferably 28% by mass or more, as in the present invention. It is presumed that the nano-dispersion of cellulose microfibrils is further promoted by using.
 また、本発明により製造されるセルロースナノファイバーのカルボキシル基量は、1.2mmol/g以上が好ましく、1.7mmol/g以上がさらに好ましく、1.8mmol/g以上がさらに好ましい。セルロースナノファイバーのカルボキシル基量は、セルロースナノファイバーの0.5質量%スラリー(=0.5%(w/v)水分散液)を60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/gセルロースナノファイバー〕=a〔ml〕×0.05/セルロースナノファイバー質量〔g〕
Further, the amount of carboxyl groups of the cellulose nanofibers produced according to the present invention is preferably 1.2 mmol / g or more, more preferably 1.7 mmol / g or more, and further preferably 1.8 mmol / g or more. The amount of carboxyl groups in cellulose nanofibers was prepared by preparing 60 ml of a 0.5% by weight slurry (= 0.5% (w / v) aqueous dispersion) of cellulose nanofibers, adding 0.1 M hydrochloric acid aqueous solution to pH 2.5. Then, 0.05N sodium hydroxide aqueous solution was added dropwise to measure the electrical conductivity until the pH reached 11, and the amount of sodium hydroxide consumed in the neutralization step of the weak acid where the change in electrical conductivity was slow From (a), it can be calculated using the following equation.
Carboxyl group amount [mmol / g cellulose nanofiber] = a [ml] × 0.05 / cellulose nanofiber mass [g]
 このような量のカルボキシル基を有するセルロースナノファイバーは、バリヤー性および耐熱性に優れたシートを形成しうる。よって、本発明で製造されたセルロースナノファイバーは包装材料等の様々な用途に使用できる。 Such a cellulose nanofiber having a carboxyl group can form a sheet excellent in barrier properties and heat resistance. Therefore, the cellulose nanofiber manufactured by this invention can be used for various uses, such as a packaging material.
 以下に実施例を挙げて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 [実施例1]
 共に広葉樹であるB.ermaniiとB.pendulaの混合材(配合比率50:50)由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量28.4質量%、白色度85%)5g(絶乾)を、TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。
[Example 1]
Both are hardwoods. ermanii and B.M. 5 g (absolutely dry) of bleached unbeaten kraft pulp (hemicellulose content 28.4 mass%, whiteness 85%) derived from a mixture of pendula (mixing ratio 50:50), 78 mg of TEMPO (Sigma Aldrich) 0.5 mmol) and 754 mg (7.4 mmol) of sodium bromide were dissolved in 500 ml of an aqueous solution and stirred until the pulp was uniformly dispersed.
 反応系に2M次亜塩素酸ナトリウム水溶液16ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することで酸化パルプを得た。 After adding 16 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After making it react for 2 hours, it filtered with the glass filter and obtained the oxidized pulp by fully washing with water.
 前記反応で得た酸化パルプを1%(w/v)(=1質量%)含む水分散液2Lを準備し、当該水溶液を流動させながら20W低圧紫外線ランプで紫外線を6時間照射した。その後、超高圧ホモジナイザー(20℃、140MPa)で10回処理して透明なゲル状分散液を得た。 2 L of an aqueous dispersion containing 1% (w / v) (= 1% by mass) of oxidized pulp obtained by the above reaction was prepared, and irradiated with ultraviolet rays with a 20 W low-pressure ultraviolet lamp for 6 hours while flowing the aqueous solution. Then, it processed 10 times with the ultrahigh pressure homogenizer (20 degreeC, 140 Mpa), and obtained the transparent gel-like dispersion liquid.
 このようにして得た分散液に水を加えて濃度0.1%(w/v)のセルロースナノファイバー分散液を調製し、透明度(660nm光の透過率)をUV-VIS分光光度計 UV-265FS(株式会社島津製作所社)を用いて測定した。結果を表1に示す。 Water is added to the dispersion thus obtained to prepare a cellulose nanofiber dispersion having a concentration of 0.1% (w / v), and the transparency (transmittance of 660 nm light) is measured with a UV-VIS spectrophotometer UV-VIS. Measurement was performed using 265FS (Shimadzu Corporation). The results are shown in Table 1.
 [実施例2]
 広葉樹であるP.alba由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量17.9質量%、白色度86%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Example 2]
P. is a hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from alba (having a hemicellulose content of 17.9% by mass and a whiteness of 86%) was used.
 [実施例3]
 共に広葉樹であるF.crenataとC.belulusとの混合材(混合比率50:50)由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量22.1質量%、白色度84%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Example 3]
Both are hardwoods. Crenata and C.I. Cellulose nanofibers in the same manner as in Example 1 except that bleached unbeaten kraft pulp (hemicellulose content 22.1% by mass, whiteness 84%) derived from a mixture with belulus (mixing ratio 50:50) was used. An aqueous dispersion was produced and evaluated.
 [実施例4]
 広葉樹であるB.pendula由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量23.3質量%、白色度86%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Example 4]
B. a hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from pendula (hemicellulose content: 23.3 mass%, whiteness: 86%) was used.
 [実施例5]
 広葉樹であるB.verrucosa由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量25.6質量%、白色度86%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Example 5]
B. a hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from verrucosa (having a hemicellulose content of 25.6% by mass and a whiteness of 86%) was used.
 [比較例1]
 広葉樹であるR.pseudoacacia由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量16.7質量%、白色度85%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Comparative Example 1]
R. hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from pseudoacacia (having a hemicellulose content of 16.7% by mass and a whiteness of 85%) was used.
 [比較例2]
 広葉樹であるA.mangiumu由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量12.3質量%、白色度86%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Comparative Example 2]
A. Hardwood A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from Mangiumu (hemicellulose content 12.3 mass%, whiteness 86%) was used.
 [比較例3]
 広葉樹であるU.americana由来の漂白済み未叩解クラフトパルプ(ヘミセルロース含有量15.1質量%、白色度85%)を用いた以外は実施例1と同様にしてセルロースナノファイバー水分散液を製造し評価した。
[Comparative Example 3]
U. is a hardwood. A cellulose nanofiber aqueous dispersion was produced and evaluated in the same manner as in Example 1 except that bleached unbeaten kraft pulp derived from Americana (hemicellulose content 15.1% by mass, whiteness 85%) was used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この結果から、ヘミセルロース含有量が17質量%で以上ある広葉樹由来のセルロース系原料を用いた実施例は、ヘミセルロース含有量が17質量%未満であるセルロース系原料を用いた比較例に比べて、透明度が高い水分散液を与えるセルロースナノファイバーを製造できることがわかる。 From this result, the Example using the cellulosic raw material derived from hardwood having a hemicellulose content of 17% by mass or more is more transparent than the comparative example using the cellulosic raw material having a hemicellulose content of less than 17% by mass. It can be seen that cellulose nanofibers that give a high aqueous dispersion can be produced.

Claims (6)

  1.  (A)ヘミセルロース含有量が17質量%以上である広葉樹由来のセルロース系原料を、(a1)N-オキシル化合物および(a2)臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物の存在下で、(a3)酸化剤を用いて酸化する工程、ならびに
     (B)前記工程Aで得た酸化セルロース系原料の濃度が0.3%(w/v)以上の分散液を調製し、当該酸化セルロース系原料を分散媒中に分散させながら解繊してナノファイバー化する工程、
    を含む、セルロースナノファイバーの製造方法。
    (A) The presence of a compound selected from the group consisting of (a1) N-oxyl compounds and (a2) bromides, iodides or mixtures thereof, from a broad-leaved tree-derived raw material having a hemicellulose content of 17% by mass or more (A3) a step of oxidizing using an oxidizing agent, and (B) preparing a dispersion having a concentration of the oxidized cellulose raw material obtained in the step A of 0.3% (w / v) or more, A process of defibration and nanofiber formation while dispersing an oxidized cellulose-based raw material in a dispersion medium,
    The manufacturing method of the cellulose nanofiber containing this.
  2.  ヘミセルロース含有量が23質量%以上である広葉樹由来のセルロース系原料を用いる、請求項1に記載のセルロースナノファイバーの製造方法。 The manufacturing method of the cellulose nanofiber of Claim 1 using the cellulose raw material derived from a hardwood whose hemicellulose content is 23 mass% or more.
  3.  広葉樹由来のセルロース系原料の白色度(ISO 2470)が85%以上である、請求項2に記載のセルロースナノファイバーの製造方法。 The manufacturing method of the cellulose nanofiber of Claim 2 whose whiteness (ISO 2470) of the cellulose raw material derived from hardwood is 85% or more.
  4.  得られたセルロースナノファイバーの濃度0.1%(w/v)における水分散液の、波長660nmの光の透過率が94%以上である、請求項1~3のいずれかに記載のセルロースナノファイバーの製造方法。 The cellulose nanofiber according to any one of claims 1 to 3, wherein the transmittance of light at a wavelength of 660 nm of the aqueous dispersion at a concentration of 0.1% (w / v) of the obtained cellulose nanofiber is 94% or more. Fiber manufacturing method.
  5.  前記工程(A)で得た酸化されたセルロース系原料のカルボキシル基量が、当該酸化されたセルロース系原料の絶乾質量に対して1.2mmol/g以上である、請求項1~4のいずれかに記載のセルロースナノファイバーの製造方法。 The amount of carboxyl groups of the oxidized cellulose raw material obtained in the step (A) is 1.2 mmol / g or more with respect to the absolute dry mass of the oxidized cellulose raw material. The manufacturing method of the cellulose nanofiber of crab.
  6.  前記工程(B)において50MPa以上の圧力下で解繊を行なう、請求項1~5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein defibration is performed in the step (B) under a pressure of 50 MPa or more.
PCT/JP2012/054361 2011-03-30 2012-02-23 Method for producing cellulose nanofibers WO2012132663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507274A JPWO2012132663A1 (en) 2011-03-30 2012-02-23 Method for producing cellulose nanofiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-073966 2011-03-30
JP2011073966 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132663A1 true WO2012132663A1 (en) 2012-10-04

Family

ID=46930425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054361 WO2012132663A1 (en) 2011-03-30 2012-02-23 Method for producing cellulose nanofibers

Country Status (2)

Country Link
JP (1) JPWO2012132663A1 (en)
WO (1) WO2012132663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731298B2 (en) 2012-06-15 2020-08-04 University Of Maine System Board Of Trustees Release paper and method of manufacture
WO2021145291A1 (en) * 2020-01-16 2021-07-22 東亞合成株式会社 Methods for producing cellulose oxide and cellulose nanofiber, cellulose oxide, cellulose nanofiber, and food products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308802A (en) * 2007-06-18 2008-12-25 Univ Of Tokyo Method for producing cellulose nanofibers
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2009161613A (en) * 2007-12-28 2009-07-23 Nippon Paper Industries Co Ltd Method for oxidizing cellulose, oxidation catalyst for cellulose, and method for producing cellulose nano-fiber
JP2009173909A (en) * 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose
WO2009107795A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Method for modification of cellulose, modified cellulose, cellouronic acid, and cellulose microcrystal
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308802A (en) * 2007-06-18 2008-12-25 Univ Of Tokyo Method for producing cellulose nanofibers
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2009161613A (en) * 2007-12-28 2009-07-23 Nippon Paper Industries Co Ltd Method for oxidizing cellulose, oxidation catalyst for cellulose, and method for producing cellulose nano-fiber
JP2009173909A (en) * 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose
WO2009107795A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Method for modification of cellulose, modified cellulose, cellouronic acid, and cellulose microcrystal
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISKANDER BESBES ET AL.: "Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content", CARBOHYDRATE POLYMERS, vol. 84, no. 3, 17 March 2011 (2011-03-17), pages 975 - 983, XP028365154, DOI: doi:10.1016/j.carbpol.2010.12.052 *
SHINICHIRO IWAMOTO ET AL.: "The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics", BIOMACROMOLECULES, vol. 9, 2008, pages 1022 - 1026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731298B2 (en) 2012-06-15 2020-08-04 University Of Maine System Board Of Trustees Release paper and method of manufacture
WO2021145291A1 (en) * 2020-01-16 2021-07-22 東亞合成株式会社 Methods for producing cellulose oxide and cellulose nanofiber, cellulose oxide, cellulose nanofiber, and food products

Also Published As

Publication number Publication date
JPWO2012132663A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5731253B2 (en) Method for producing cellulose nanofiber
CA2831897C (en) Method for producing cellulose nanofibers
JP5178931B2 (en) Method for producing cellulose nanofiber
JP5285197B1 (en) Method for producing cellulose nanofiber
JP5330882B2 (en) Method for producing cellulose gel dispersion
JP5544053B1 (en) Cellulose nanofiber
JPWO2011118748A1 (en) Method for producing cellulose nanofiber
JP5381338B2 (en) Method for producing cellulose nanofiber
JP5329279B2 (en) Method for producing cellulose nanofiber
WO2013137140A1 (en) Method for producing anion-modified cellulose nanofiber dispersion liquid
JP5179616B2 (en) Method for producing cellulose nanofiber
WO2010116826A1 (en) Process for producing cellulose nanofibers
WO2011118746A1 (en) Method for producing cellulose nanofibers
JP6784709B2 (en) Manufacturing method of cellulose nanofibers
JP5404131B2 (en) Method for producing cellulose nanofiber
JP6015232B2 (en) Method for producing oxidized cellulose and cellulose nanofiber
JP6877136B2 (en) Manufacturing method of carboxylated cellulose nanofibers
WO2012132663A1 (en) Method for producing cellulose nanofibers
JP6015233B2 (en) Method for producing oxidized cellulose and cellulose nanofiber
JP2024003914A (en) Method for producing cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765779

Country of ref document: EP

Kind code of ref document: A1