WO2011118746A1 - Method for producing cellulose nanofibers - Google Patents

Method for producing cellulose nanofibers Download PDF

Info

Publication number
WO2011118746A1
WO2011118746A1 PCT/JP2011/057283 JP2011057283W WO2011118746A1 WO 2011118746 A1 WO2011118746 A1 WO 2011118746A1 JP 2011057283 W JP2011057283 W JP 2011057283W WO 2011118746 A1 WO2011118746 A1 WO 2011118746A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
dispersion
raw material
oxidized
cellulose nanofiber
Prior art date
Application number
PCT/JP2011/057283
Other languages
French (fr)
Japanese (ja)
Inventor
志穂 勝川
宮脇 正一
裕 阿部
知章 小柳
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2012507077A priority Critical patent/JPWO2011118746A1/en
Publication of WO2011118746A1 publication Critical patent/WO2011118746A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/02Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from solutions of cellulose in acids, bases or salts
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/11Halides

Definitions

  • the present invention relates to a method capable of producing a cellulose nanofiber dispersion liquid having a lower concentration and lower energy than conventional cellulose-based raw materials oxidized with an N-oxyl compound.
  • Non-Patent Document 1 Cellulose-based raw materials in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite When treated, carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils.
  • Cellulosic raw materials into which these carboxyl groups have been introduced are highly viscous and transparent by performing a simple mechanical treatment with a mixer in water. It is known that it can be prepared into an aqueous cellulose nanofiber dispersion (Non-Patent Document 1).
  • Cellulose nanofiber is a new biodegradable water-dispersible material. Since the carboxyl group is introduced into the surface of the cellulose nanofiber by an oxidation reaction, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. In addition, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, the quality can be modified by blending with various water-soluble polymers or by combining with organic / inorganic pigments. it can. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of these characteristics of cellulose nanofibers, it is envisaged to be applied to highly functional packaging materials, transparent organic base members, high performance fibers, separation membranes, regenerative medical materials, and the like. In the future, it is expected to develop new high-functional products that are essential for the formation of a recycling-type safety and security society by making the best use of the characteristics of cellulose nanofibers.
  • the cellulose nanofiber dispersion obtained by oxidizing the above-described method that is, oxidizing the cellulosic raw material with TEMPO and defibrating with a mixer is 0.3 to 0.5% (w / v).
  • the B-type viscosity 60 rpm, 20 ° C.
  • the B-type viscosity has a very high viscosity such as 800 to 4000 mPa ⁇ s, it is not easy to handle, and its application range is actually limited. It was.
  • the dispersion when a cellulose nanofiber dispersion is applied to a substrate to form a film on the substrate, the dispersion cannot be uniformly applied if the viscosity of the dispersion is too high, so the B-type viscosity of the dispersion (60 rpm, 20 ° C.) must be adjusted to about 500 to 3000 mPa ⁇ s, and for this purpose, the concentration of cellulose nanofibers in the dispersion is reduced to a low concentration of about 0.2 to 0.4% (w / v). I had to set it.
  • a low-concentration dispersion when such a low-concentration dispersion is used, there is a problem that the application and drying must be repeated many times until the desired film thickness is achieved, resulting in poor efficiency.
  • the dispersion when the cellulose nanofiber dispersion is mixed with a paint containing a pigment and a binder and applied to paper or the like, the dispersion cannot be uniformly mixed if the viscosity of the dispersion is too high. However, if such a low-concentration dispersion liquid is used, the concentration of the paint becomes dilute, making it difficult to apply the sufficient viscosity necessary for application and increasing the drying load. In addition, there is also a problem that the desired function expected for the coating film such as gloss development, surface strength, and suppression of printing unevenness does not appear because the effective coating film becomes thin by the penetration of the paint into the base paper. .
  • the viscosity of the obtained dispersion becomes very high, causing various problems. Further, if the viscosity is too high, the dispersion proceeds only around the stirring blades, resulting in non-uniform dispersion, resulting in a dispersion with low transparency.
  • the oxidized cellulosic material is defibrated using a homogenizer with higher defibration / dispersion power than the mixer, the cellulosic material will thicken significantly in the initial stage of dispersion and fluidity will deteriorate.
  • the amount of power consumption required sometimes increases significantly, the cellulose nanofiber dispersion liquid adheres to the inside of the apparatus and the dispersion is not sufficiently performed, and operations such as taking out the dispersion liquid from the apparatus are performed.
  • the yield of the dispersion is lowered due to difficulty.
  • the present invention provides a method capable of efficiently producing a cellulose nanofiber dispersion having low viscosity even at high concentration, excellent fluidity, and excellent transparency with low energy. With the goal.
  • an oxidizing agent in the presence of (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof.
  • An oxidized cellulosic material is prepared by oxidizing a cellulosic material in water, cellulase and / or hemicellulase is added to the oxidized cellulosic material, and an ultrahigh pressure homogenizer is used in the presence of these enzymes.
  • a cellulosic material is oxidized in the presence of an N-oxyl compound and bromide, iodide, or a mixture thereof, and cellulase and / or hemicellulase is added to the resulting oxidized cellulosic material.
  • defibration and dispersion at a pressure of 100 MPa or more using an ultra-high pressure homogenizer enables low viscosity even at high concentrations, excellent fluidity, and easy handling.
  • a dispersion of cellulose nanofibers having excellent transparency can be efficiently produced with lower power consumption than in the past.
  • the cellulose nanofiber dispersion obtained by the present invention is excellent in fluidity even at a high concentration.
  • a paint containing cellulose nanofibers at a high concentration of 1 to 3% (w / v) can be prepared at a low viscosity of 500 to 3000 mPa ⁇ s (B type viscosity, 60 rpm, 20 ° C.).
  • B type viscosity, 60 rpm, 20 ° C. There is an advantage that a film having a thickness of about 5 to 30 ⁇ m can be formed only by coating.
  • the concentration of cellulose nanofiber is 0.2 to 0.4% (w / v).
  • the concentration of cellulose nanofiber is very excellent.
  • the cellulose-based raw material is oxidized in water using an oxidizing agent in the presence of (1) N-oxyl compound, and (2) bromide, iodide, or a mixture thereof to obtain an oxidized cellulose-based raw material.
  • oxidizing agent in the presence of (1) N-oxyl compound, and (2) bromide, iodide, or a mixture thereof.
  • Cellulose and / or hemicellulase is added, and in the presence of these enzymes, fibrillation / dispersion is performed at 100 MPa or more with an ultra-high pressure homogenizer, so that power consumption in defibration / dispersion treatment can be reduced, and cellulose nanofiber Can be efficiently manufactured with low energy.
  • N-oxyl compounds As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction.
  • examples of the N-oxyl compound used in the present invention include substances represented by the following general formula (Formula 1).
  • R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity.
  • a 4-hydroxy TEMPO derivative is particularly preferable because it is inexpensive and can provide uniform oxidized cellulose.
  • R is a linear or branched carbon chain having 4 or less carbon atoms.
  • an N-oxyl compound represented by the following formula 5, that is, an azaadamantane-type nitroxy radical is particularly preferable because cellulose nanofibers having a high degree of polymerization can be produced in a short time.
  • R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose raw material into nanofibers.
  • 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol can be used with respect to 1 g of cellulosic raw material.
  • bromide or iodide As the bromide or iodide used in oxidizing the cellulosic raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. For example, 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol can be used for 1 g of cellulosic raw material.
  • the target oxidation reaction such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide
  • Any oxidizing agent can be used as long as it is an oxidizing agent.
  • sodium hypochlorite which is currently most widely used in industrial processes and has a low environmental load, is particularly suitable.
  • the amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol can be used for 1 g of cellulosic raw material.
  • the cellulose-based raw material used in the present invention is not particularly limited, and kraft pulp or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer or a mill, or chemical treatment such as acid hydrolysis.
  • plants such as kenaf, hemp, rice, bacus, and bamboo can also be used.
  • bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost.
  • it is particularly preferable to use powdered cellulose and microcrystalline cellulose powder because a cellulose nanofiber dispersion having a lower viscosity can be produced even at a high concentration.
  • the method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. In addition, since a carboxyl group produces
  • the reaction time in the oxidation reaction can be appropriately set and is not particularly limited, but is, for example, about 0.5 to 6 hours.
  • cellulase which is a cellulose-degrading enzyme, or hemicellulase (for example, xylanase or mannase), which is a degrading enzyme of hemicellulase
  • cellulase which is a cellulose-degrading enzyme, or hemicellulase (for example, xylanase or mannase), which is a degrading enzyme of hemicellulase
  • hemicellulase is not particularly limited, cellulase or hemicellulase-producing filamentous fungus, bacteria, actinomycetes, basidiomycete-derived, those produced by genetic manipulation such as genetic recombination, cell fusion, It can be used alone or in combination of two or more. Commercial products can also be used. Examples of commercially available cellulases include Novozymes® 476 manufactured by Novozymes Japan, Cellulase AP3 manufactured by Amano Enzyme, Cellulase Onozuka RS manufactured by Yakult Pharmaceutical Co., Ltd., Optimase CX40L manufactured by Genencor Kyowa Co., Ltd.
  • Chemtex Cellulase XL-522, Nitto Kasei Kogyo Entilon CM, and other commercially available hemicellulases include Novozymes Japan Pulpzyme (registered trademark), Amano Enzyme Hemicellulase Amano 90, Shin Nippon Chemical Co., Ltd. Sumiteam X manufactured by Kogyo Co., Ltd. can be used.
  • the amount of the enzyme added is 0.001% by mass or more based on the absolutely dry cellulosic material, it is sufficient to cause the desired enzyme reaction from the viewpoint of processing time and efficiency, and 10% by mass or less. If so, it is preferable because excessive hydrolysis of cellulose can be suppressed and a decrease in the yield of cellulose nanofibers can be prevented. Therefore, the addition amount of the enzyme is preferably 0.001 to 10% by mass with respect to the absolutely dry cellulosic material. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass.
  • the “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
  • the oxidized cellulose raw material in the presence of cellulase and / or hemicellulase, is defibrated and dispersed at a pressure of 100 MPa or more using an ultrahigh pressure homogenizer.
  • an ultra-high pressure homogenizer apparatus a known apparatus can be used alone or in combination of two or more as required.
  • the pressure during defibration / dispersion treatment is 100 MPa or more.
  • the pressure is preferably 120 MPa or more, more preferably 140 MPa or more.
  • the present inventors have found that by placing cellulase and / or hemicellulase under an ultra-high pressure of 100 MPa or more, the thermal stability of the enzyme is improved and the hydrolysis activity of cellulose and hemicellulose is also improved. Therefore, the pressure of 100 MPa or more is preferable not only for mechanical defibration / dispersion of cellulose nanofibers but also from the viewpoint of promoting enzyme reaction.
  • the pH, temperature, and treatment time when performing defibration / dispersion treatment in the presence of the enzyme are not particularly limited as long as the hydrolysis reaction by the enzyme proceeds, but pH 4 to 10, preferably pH 5 to 9, More preferably, the pH is 6 to 8, the temperature is 40 to 70 ° C., preferably 45 to 65 ° C., more preferably 50 to 60 ° C., and the treatment time and the number of passes are appropriately changed until the desired viscosity is obtained. Is preferable from the viewpoint of enzyme reaction efficiency.
  • the oxidized cellulosic raw material Prior to defibration / dispersion treatment with an ultra-high pressure homogenizer, if necessary, the oxidized cellulosic raw material is pretreated using a known mixing, stirring, emulsifying and dispersing device such as a high-speed shear mixer or high-pressure homogenizer. May be.
  • the enzyme may be deactivated by irradiating the cellulose nanofiber dispersion liquid treated with the enzyme with ultraviolet rays and / or heating as necessary.
  • the enzyme When the enzyme is deactivated by heating, it may be treated at a temperature of 90 to 120 ° C. for about 5 to 30 minutes using a pressure autoclave or the like according to the heat resistance of the enzyme.
  • the wavelength of the ultraviolet rays used is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm not only act on the enzyme, but also act on cellulose and hemicellulose to promote further shortening of the cellulose nanofibers. In particular, it is also preferable from the viewpoint of lowering the viscosity of the cellulose nanofiber.
  • a light source for irradiating ultraviolet rays a light source having a wavelength of 100 to 400 nm can be used.
  • a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, A metal halide lamp etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations.
  • the number of cut sites in the enzyme, cellulose chain, and hemicellulose chain increases by simultaneously irradiating ultraviolet rays of different wavelengths, deactivating the enzyme and shortening the cellulose nanofibers. Is preferable because it is promoted.
  • an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.) is added.
  • oxygen oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.) is added.
  • peroxide hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.
  • the oxidized cellulose-based material may be subjected to a viscosity reduction treatment before the oxidized cellulose-based material is fibrillated and dispersed in the presence of an enzyme.
  • the viscosity reduction treatment refers to a treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material. Any treatment can be used as long as the viscosity of the cellulosic raw material is lowered.
  • the treatment of irradiating the oxidized cellulosic raw material with ultraviolet rays, and oxidizing and decomposing the oxidized cellulosic raw material with hydrogen peroxide and ozone treatment, hydrolyzing an oxidized cellulosic raw material with an acid, and combinations thereof.
  • the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferable because they directly act on cellulose or hemicellulose to cause low molecular weight, and the cellulose raw material can be shortened.
  • a light source for irradiating ultraviolet rays a light source having a wavelength of 100 to 400 nm can be used.
  • a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, A hydrogen lamp, a metal halide lamp, etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations.
  • a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more.
  • a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
  • the concentration of the oxidized cellulose raw material when irradiated with ultraviolet rays is preferably 0.1% by mass or more because energy efficiency is increased, and if it is 12% by mass or less, the concentration of cellulose raw materials in the ultraviolet irradiation device is preferable. It is preferable because the fluidity is good and the reaction efficiency is increased. Therefore, the range of 0.1 to 12% by mass is preferable. More preferably, it is 0.5 to 5% by mass, and still more preferably 1 to 3% by mass.
  • the temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. This is preferable because there is no fear and there is no possibility that the pressure in the reactor exceeds atmospheric pressure. Therefore, the range of 20 to 95 ° C. is preferable. Within this range, there is also an advantage that there is no need to design a device in consideration of pressure resistance. More preferably, it is 20 to 80 ° C., and further preferably 20 to 50 ° C.
  • the pH at the time of irradiation with ultraviolet rays is not particularly limited, but in consideration of simplification of the process, it is preferable to perform the treatment in a neutral region, for example, pH of about 6.0 to 8.0.
  • the degree of irradiation received by the cellulosic raw material in the ultraviolet irradiation reaction can be arbitrarily set by adjusting the residence time of the cellulosic raw material in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. Also, for example, by adjusting the concentration of the cellulosic material in the irradiation device by diluting with water, or by adjusting the concentration of the cellulosic material by blowing an inert gas such as air or nitrogen into the cellulosic material.
  • the irradiation amount of ultraviolet rays received by the cellulosic material in the irradiation reaction apparatus can be arbitrarily controlled. These conditions such as residence time and concentration can be appropriately set in accordance with the quality (fiber length, cellulose polymerization degree, etc.) of the oxidized cellulose raw material after the target ultraviolet irradiation reaction.
  • the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. Can be further increased, which is preferable.
  • an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
  • ozone is generated because air is usually present in the gas phase around the light source.
  • the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulosic raw material, so that the outside of the system is removed.
  • ozone can be used as an auxiliary for the photo-oxidation reaction.
  • oxygen supplied to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can be used as an auxiliary agent for the photooxidation reaction.
  • the ultraviolet irradiation treatment can be repeated a plurality of times.
  • the number of repetitions can be appropriately set according to the relationship with the target quality of the oxidized cellulosic raw material and the post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm are applied 1 to 10 times, preferably about 2 to 5 times, 0.5 to 10 hours per time, preferably 0.5 to 3 times. It can be irradiated for as long as an hour.
  • ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • the addition amount (mass) of ozone in the present invention is preferably 0.1 to 3 times the absolute dry mass of the cellulosic material. If the amount of ozone added is at least 0.1 times the absolute dry mass of the cellulosic material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for defibration and dispersion treatment in the next step.
  • the amount of ozone added is more preferably 0.3 to 2.5 times, more preferably 0.5 to 1.5 times the absolute dry mass of the cellulosic material.
  • the addition amount (mass) of hydrogen peroxide is preferably 0.001 to 1.5 times the absolute dry mass of the cellulosic material.
  • hydrogen peroxide is used in an amount of 0.001 times or more of the addition amount of the cellulosic material, a synergistic effect between ozone and hydrogen peroxide is exhibited.
  • the amount of hydrogen peroxide added is more preferably 0.1 to 1.0 times the absolute dry mass of the cellulosic material.
  • the oxidative decomposition treatment with ozone and hydrogen peroxide is pH 2 to 12, preferably pH 4 to 10, more preferably pH 6 to 8, and temperature is 10 to 90 ° C., preferably 20 to 70 ° C., more preferably 30. From the viewpoint of oxidative decomposition reaction efficiency, it is preferable to carry out the reaction at -50 ° C. for 1-20 hours, preferably 2-10 hours, more preferably 3-6 hours.
  • a device for performing treatment with ozone and hydrogen peroxide a device commonly used by those skilled in the art can be used.
  • a reactor can be used.
  • ozone and hydrogen peroxide remaining in the aqueous solution can effectively work in the defibration / dispersion treatment in the next step, and can further promote the lowering of the viscosity of the cellulose nanofiber dispersion. .
  • the acid used is sulfuric acid, hydrochloric acid, nitric acid, or phosphorus. It is preferred to use a mineral acid such as an acid.
  • the conditions for the acid hydrolysis treatment can be set as appropriate as long as the acid acts on the amorphous part of the cellulose, and are not particularly limited.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulosic material.
  • the amount of acid added is 0.01% by mass or more, hydrolysis of cellulose proceeds and the fibrillation / dispersion efficiency of the cellulose-based raw material in the next step is improved, and preferably 0.5% by mass or less.
  • the pH of the reaction solution during acid hydrolysis is 2.0 to 4.0, preferably 2.0 or more and less than 3.0.
  • the acid hydrolysis treatment is preferably performed at a temperature of 70 to 120 ° C. for 1 to 10 hours from the viewpoint of acid hydrolysis efficiency.
  • an alkali such as sodium hydroxide from the viewpoint of the efficiency of the subsequent defibration / dispersion treatment.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by the acid hydrolysis treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the electric repulsion between carboxyl groups. Then, when an acid is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
  • the cellulose nanofiber of the present invention is a cellulose single microfibril having a width of 2 to 5 nm and a length of 1 to 5 ⁇ m.
  • “to form nanofibers” means that powdered cellulose is processed into cellulose nanofibers which are single microfibrils of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • the cellulose nanofiber dispersion obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 2% (w / v) of 500 to 3000 mPa ⁇ s, preferably 500 to 2000 mPa ⁇ s. Preferably, it is 600 to 1500 mPa ⁇ s. Since the cellulose nanofiber dispersion obtained by the present invention has a low viscosity and good fluidity, it has an advantage that it is easy to process such as preparation of a paint.
  • the cellulose nanofiber dispersion obtained by the present invention has a light transmittance (660 nm) (which is an index of transparency) at a concentration of 0.1% (w / v) of 90% or more, preferably 95%. Or more, most preferably 97% or more.
  • a light transmittance 660 nm
  • concentration 0.1% (w / v) of 90% or more, preferably 95%. Or more, most preferably 97% or more.
  • the cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and are also excellent in barrier properties and heat resistance, so that they are used for various applications such as packaging materials. It is possible.
  • the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
  • the transparency of the cellulose nanofiber dispersion can be measured as a transmittance of 660 nm light using an ultraviolet / visible spectrophotometer.
  • the carboxyl group amount of the cellulose nanofiber of the present invention is preferably 0.5 mmol / g or more.
  • the amount of carboxyl groups in cellulose nanofibers was prepared by adding 60 ml of a 0.5% by weight slurry of cellulose nanofibers, adding 0.1M hydrochloric acid aqueous solution to pH 2.5, and then dropping 0.05N sodium hydroxide aqueous solution dropwise. Then, the electrical conductivity is measured until the pH reaches 11, and can be calculated from the amount of sodium hydroxide (a) consumed in the weak acid neutralization stage where the change in electrical conductivity is gradual, using the following equation. .
  • Amount of carboxyl group [mmol / g pulp] a [ml] ⁇ 0.05 / oxidized pulp mass [g]
  • a cellulose-based raw material oxidized using an N-oxyl compound is defibrated and dispersed under a pressure of 100 MPa or more in the presence of cellulase and / or hemicellulase, so that even at a high concentration.
  • a cellulose nanofiber dispersion having a low viscosity and excellent fluidity and transparency can be obtained. The reason is guessed as follows.
  • Cellulose-based raw materials oxidized with an N-oxyl compound are composed of microfibrils, carboxyl groups are localized on the surface thereof, and a hydrated layer is formed.
  • the cellulose-based raw material is fibrillated and converted into nanofibers to increase the specific area of the cellulose-based raw material and further accelerate the polysaccharide decomposition reaction.
  • the cellulose chains constituting the cellulose nanofibers are efficiently divided, and finally the shortening of the cellulose nanofibers is promoted.
  • This shortening of the cellulose chain is thought to significantly reduce the B-type viscosity of the resulting dispersion and improve the fluidity. Further, it is considered that the transparency of the dispersion is remarkably improved by shortening the fiber length of the cellulose chain.
  • Example 1 5 g (absolutely dried) of bleached unbeaten kraft pulp derived from coniferous tree (absolutely dried) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 18 ml (7.2 mmol / g) of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
  • TEMPO Sigma Aldrich
  • Example 2 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 1.
  • Example 3 Dispersing cellulose nanofibers in the same manner as in Example 1 except that, when cellulase was deactivated, instead of treating at 105 ° C. for 30 minutes, ultraviolet rays having a main peak at 254 nm were irradiated for 2 hours using a 20 W low-pressure mercury lamp. A liquid was obtained. The results are shown in Table 1.
  • Example 4 When inactivating cellulase, a nanofiber dispersion was obtained in the same manner as in Example 1 except that instead of treatment at 105 ° C. for 30 minutes, ultraviolet rays of 254 nm and 185 nm were simultaneously irradiated using a 20 W low-pressure ultraviolet lamp. It was. The results are shown in Table 1.
  • Example 5 A cellulose nanofiber dispersion was obtained in the same manner as in Example 3 except that 1% (w / v) of hydrogen peroxide was added to the oxidized cellulose raw material during ultraviolet irradiation. The results are shown in Table 1.
  • Example 6 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1, except that bleached unbeaten kraft pulp derived from hardwood was used instead of bleached unbeaten kraft pulp derived from softwood. The results are shown in Table 1.
  • Example 7 Example 6 except that 2% by mass of commercially available cellulase (Novozymes Japan, Novozyme 476) and hemicellulase (Novozymes Japan, Pulpzyme HC) were added to the oxidized cellulose raw material. In the same manner as above, a cellulose nanofiber dispersion was obtained. The results are shown in Table 1.
  • Example 8 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the temperature during the treatment with the ultrahigh pressure homogenizer was 40 ° C. The results are shown in Table 1.
  • Example 9 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the temperature during the treatment with the ultra-high pressure homogenizer was 70 ° C. The results are shown in Table 1.
  • Example 10 Before adding cellulase to the oxidized cellulose raw material, the oxidized cellulose raw material (1% by mass) was irradiated with ultraviolet rays for 6 hours using a 20 W low-pressure ultraviolet lamp (main peak 254 nm) (low viscosity) A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except for the treatment. The results are shown in Table 1.
  • Example 11 A cellulose nanofiber dispersion was obtained in the same manner as in Example 3 except that 1% (w / v) of ozone was added to the oxidized cellulose raw material at the time of ultraviolet irradiation. The results are shown in Table 1.
  • Example 12 Dispersion of cellulose nanofibers in the same manner as in Example 6 except that, when cellulase was deactivated, instead of treating at 105 ° C. for 30 minutes, ultraviolet rays having a main peak at 254 nm were irradiated for 2 hours using a 20 W low-pressure mercury lamp. A liquid was obtained. The results are shown in Table 1.
  • Example 1 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 80 MPa. The results are shown in Table 1.
  • Example 2 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment was performed at 50 ° C. for 20 minutes using a rotary blade mixer (peripheral speed 140 m / sec) instead of the ultrahigh pressure homogenizer. The results are shown in Table 1.
  • Example 4 A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that no cellulase was added during the treatment with the ultrahigh pressure homogenizer and the cellulase was not deactivated. The results are shown in Table 1.
  • Comparative Example 1 treated with less than 100 MPa and a mixer were used. It can be seen that cellulose nanofibers having a low B-type viscosity and high transparency can be obtained with relatively low power consumption as compared with Comparative Examples 2 and 3 used and Comparative Example 4 in which no enzyme was added. Therefore, according to the method for producing cellulose nanofibers of the present invention, it is possible to obtain a cellulose nanofiber dispersion liquid having a low viscosity even at a high concentration and having high fluidity and transparency with high efficiency.
  • Example 13 A 2% (w / v) cellulose nanofiber dispersion (B-type viscosity 1646 mPa ⁇ s) produced according to Example 1 was used on one side of a polyethylene terephthalate film (thickness 20 ⁇ m), and a bar exclusively for hand coating (bar No. 16). And dried at 50 ° C. to form a film. The thickness of the film was about 18.2 ⁇ m.
  • Comparative Example 5 The concentration of the 2% (w / v) cellulose nanofiber dispersion produced in Comparative Example 2 was adjusted to have a B-type viscosity of 1600 mPa ⁇ s (60 rpm, 20 ° C.). The cellulose nanofiber concentration at this time was 0.76% (w / v).
  • This dispersion was applied to one side of a polyethylene terephthalate film (thickness: 20 ⁇ m) with a hand-painted bar (bar No. 16) and dried at 50 ° C. to form a film. The thickness of the film was about 6.9 ⁇ m. In order to form an 18.2 ⁇ m film having the same thickness as in Example 13, it was necessary to repeat coating and drying twice or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

Provided is a method for producing a highly concentrated cellulose nanofiber dispersion liquid with outstanding fluidity and transparency, with low energy and high efficiency. Specifically, in the presence of (1) an N-oxyl compound and (2) bromides, iodides, or a mixture thereof, a cellulose starting material is oxidized in water using an oxidizing agent to prepare an oxidized cellulose starting material, and in the presence of cellulase and/or hemicellulase, an ultra-high pressure homogenizer is used to perform defibration/dispersion at a pressure of at least 100 MPa.

Description

セルロースナノファイバーの製造方法Method for producing cellulose nanofiber
 本発明は、N-オキシル化合物で酸化したセルロース系原料から、従来よりも低エネルギーで高濃度のセルロースナノファイバー分散液を製造できる方法に関する。 The present invention relates to a method capable of producing a cellulose nanofiber dispersion liquid having a lower concentration and lower energy than conventional cellulose-based raw materials oxidized with an N-oxyl compound.
 セルロース系原料を触媒量の2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができ、このカルボキシル基を導入したセルロース系原料は、水中でミキサーなどの簡単な機械処理を行なうことにより、高粘度で透明なセルロースナノファイバー水分散液へと調製することができることが知られている(非特許文献1)。 Cellulose-based raw materials in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite When treated, carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils. Cellulosic raw materials into which these carboxyl groups have been introduced are highly viscous and transparent by performing a simple mechanical treatment with a mixer in water. It is known that it can be prepared into an aqueous cellulose nanofiber dispersion (Non-Patent Document 1).
 セルロースナノファイバーは、生分解性のある水分散型新規素材である。セルロースナノファイバーの表面には酸化反応によりカルボキシル基が導入されているため、セルロースナノファイバーを、カルボキシル基を基点として、自由に改質することができる。また、上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため、各種水溶性ポリマーとブレンドしたり、或いは有機・無機系顔料と複合化することで品質の改変を図ることもできる。さらに、セルロースナノファイバーをシート化したり繊維化することも可能である。セルロースナノファイバーのこのような特性を活かし、高機能包装材料、透明有機基盤部材、高機能繊維、分離膜、再生医療材料などに応用することが想定されている。今後、セルロースナノファイバーの特徴を最大限活用することで循環型の安全・安心社会形成に不可欠な新規高機能性商品の開発が期待されている。 Cellulose nanofiber is a new biodegradable water-dispersible material. Since the carboxyl group is introduced into the surface of the cellulose nanofiber by an oxidation reaction, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. In addition, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, the quality can be modified by blending with various water-soluble polymers or by combining with organic / inorganic pigments. it can. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of these characteristics of cellulose nanofibers, it is envisaged to be applied to highly functional packaging materials, transparent organic base members, high performance fibers, separation membranes, regenerative medical materials, and the like. In the future, it is expected to develop new high-functional products that are essential for the formation of a recycling-type safety and security society by making the best use of the characteristics of cellulose nanofibers.
 しかしながら、上記の方法、すなわち、セルロース系原料をTEMPOを用いて酸化してミキサーで解繊することにより得られたセルロースナノファイバー分散液は、0.3~0.5%(w/v)といった程度の低い濃度でもB型粘度(60rpm、20℃)が800~4000mPa・s程度というように、非常に高い粘度を有しており、取り扱いが容易ではなく、その応用範囲は実際には限られていた。例えば、セルロースナノファイバー分散液を基材に塗布して基材上にフィルムを形成させる場合、分散液の粘度が高すぎると均質に塗布することができないため、分散液のB型粘度(60rpm、20℃)を500~3000mPa・s程度に調整しなければならず、そのためには、分散液中のセルロースナノファイバーの濃度を0.2~0.4%(w/v)程度の低い濃度に設定せざるを得なかった。しかしながら、そのような低濃度の分散液を用いる場合には、所望のフィルム厚みが達成されるまで何度も塗布と乾燥とを繰り返し実施せざるを得ず、効率が悪いという問題があった。 However, the cellulose nanofiber dispersion obtained by oxidizing the above-described method, that is, oxidizing the cellulosic raw material with TEMPO and defibrating with a mixer is 0.3 to 0.5% (w / v). Even at a low concentration, the B-type viscosity (60 rpm, 20 ° C.) has a very high viscosity such as 800 to 4000 mPa · s, it is not easy to handle, and its application range is actually limited. It was. For example, when a cellulose nanofiber dispersion is applied to a substrate to form a film on the substrate, the dispersion cannot be uniformly applied if the viscosity of the dispersion is too high, so the B-type viscosity of the dispersion (60 rpm, 20 ° C.) must be adjusted to about 500 to 3000 mPa · s, and for this purpose, the concentration of cellulose nanofibers in the dispersion is reduced to a low concentration of about 0.2 to 0.4% (w / v). I had to set it. However, when such a low-concentration dispersion is used, there is a problem that the application and drying must be repeated many times until the desired film thickness is achieved, resulting in poor efficiency.
 また、セルロースナノファイバー分散液を顔料及びバインダーを含む塗料に混ぜて紙などに塗布する場合、分散液の粘度が高すぎると塗料中に均一に混合させることができないため、分散液の濃度を低くして低粘度化させなければならないが、このような低濃度の分散液を用いると塗料の濃度が希薄となり、塗布に必要な十分な粘性が確保できないため塗布し難くなったり、乾燥負荷が増大したり、また、塗料が原紙に浸透することにより有効塗膜が薄くなって光沢発現性や表面強度、印刷むらの抑制などの塗膜に期待される所望の機能が発現しないという問題もあった。 In addition, when the cellulose nanofiber dispersion is mixed with a paint containing a pigment and a binder and applied to paper or the like, the dispersion cannot be uniformly mixed if the viscosity of the dispersion is too high. However, if such a low-concentration dispersion liquid is used, the concentration of the paint becomes dilute, making it difficult to apply the sufficient viscosity necessary for application and increasing the drying load. In addition, there is also a problem that the desired function expected for the coating film such as gloss development, surface strength, and suppression of printing unevenness does not appear because the effective coating film becomes thin by the penetration of the paint into the base paper. .
 このように、TEMPOを用いて酸化して得られたセルロース系原料をミキサーを用いて解繊処理する従来の方法では、得られる分散液の粘度が非常に高くなり、様々な問題を生じていた。また、粘度が高すぎると、攪拌羽周辺のみで分散が進行するため、不均一な分散が生じ、透明性の低い分散液となるという問題もあった。 Thus, in the conventional method in which the cellulose-based raw material obtained by oxidation using TEMPO is defibrated using a mixer, the viscosity of the obtained dispersion becomes very high, causing various problems. . Further, if the viscosity is too high, the dispersion proceeds only around the stirring blades, resulting in non-uniform dispersion, resulting in a dispersion with low transparency.
 また、酸化されたセルロース系原料を、ミキサーよりも解繊・分散力の高いホモジナイザーを用いて解繊処理すると、分散初期にセルロース系原料が顕著に増粘して流動性が悪化し、分散処理時に要する消費電力量が大幅に増大するという問題があり、また、装置内部にセルロースナノファイバー分散液が付着して分散が十分に行なわれなくなったり、また、装置から分散液を取り出すなどの操作が困難になって分散液の歩留りが低下するという問題もあった。 In addition, if the oxidized cellulosic material is defibrated using a homogenizer with higher defibration / dispersion power than the mixer, the cellulosic material will thicken significantly in the initial stage of dispersion and fluidity will deteriorate. There is a problem that the amount of power consumption required sometimes increases significantly, the cellulose nanofiber dispersion liquid adheres to the inside of the apparatus and the dispersion is not sufficiently performed, and operations such as taking out the dispersion liquid from the apparatus are performed. There is also a problem that the yield of the dispersion is lowered due to difficulty.
 本発明は、高濃度であっても低い粘度を有し、流動性に優れており、かつ、透明性にも優れたセルロースナノファイバー分散液を、低エネルギーで効率良く製造できる方法を提供することを目的とする。 The present invention provides a method capable of efficiently producing a cellulose nanofiber dispersion having low viscosity even at high concentration, excellent fluidity, and excellent transparency with low energy. With the goal.
 本発明者らは、かかる従来技術の問題を解決するために鋭意検討した結果、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にてセルロース系原料を酸化して酸化されたセルロース系原料を調製し、該酸化されたセルロース系原料にセルラーゼ及び/またはヘミセルラーゼを添加し、これら酵素の存在下で超高圧ホモジナイザーを用いて100MPa以上の圧力で解繊・分散することにより、1~3%(w/v)くらいの高濃度であっても流動性と透明性とに優れているセルロースナノファイバー分散液を効率良く製造できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the problems of the prior art, the present inventors have used an oxidizing agent in the presence of (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof. An oxidized cellulosic material is prepared by oxidizing a cellulosic material in water, cellulase and / or hemicellulase is added to the oxidized cellulosic material, and an ultrahigh pressure homogenizer is used in the presence of these enzymes. By defibrating and dispersing at a pressure of 100 MPa or more, it is possible to efficiently produce a cellulose nanofiber dispersion excellent in fluidity and transparency even at a high concentration of about 1 to 3% (w / v). As a result, the present invention has been completed.
 本発明によれば、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物との存在下でセルロース系原料を酸化し、得られた酸化されたセルロース系原料にセルラーゼ及び/またはヘミセルラーゼを添加し、これら酵素の存在下で超高圧ホモジナイザーを用いて100MPa以上の圧力で解繊・分散することにより、高濃度であっても低粘度であり、流動性に優れていて取り扱いがしやすく、かつ透明性にも優れているセルロースナノファイバーの分散液を、従来よりも低い消費電力量で効率的に製造することができる。本発明により得られたセルロースナノファイバー分散液は、高濃度であっても流動性に優れているため、例えば、セルロースナノファイバーを基材に塗布して基材上にフィルムを形成させる際に、1~3%(w/v)といった高濃度のセルロースナノファイバーを含有する塗料を500~3000mPa・s(B型粘度、60rpm、20℃)といった低い粘度で調製することができ、塗料を1回塗布するだけで5~30μm程度の厚さを有するフィルムを形成できるといった利点がある。従来は、500~3000mPa・s(B型粘度、60rpm、20℃)程度の粘度を有する塗料を調製するためには、セルロースナノファイバーの濃度を0.2~0.4%(w/v)といった低い濃度に設定せざるを得ず、5~30μm程度の厚さを有するフィルムを作成するには、塗布と乾燥を何度も繰り返し行なう必要があった。本発明により得られるセルロースナノファイバー分散液の高濃度で流動性が高いという特徴は、非常に優れたものである。 According to the present invention, a cellulosic material is oxidized in the presence of an N-oxyl compound and bromide, iodide, or a mixture thereof, and cellulase and / or hemicellulase is added to the resulting oxidized cellulosic material. In the presence of these enzymes, defibration and dispersion at a pressure of 100 MPa or more using an ultra-high pressure homogenizer enables low viscosity even at high concentrations, excellent fluidity, and easy handling. A dispersion of cellulose nanofibers having excellent transparency can be efficiently produced with lower power consumption than in the past. The cellulose nanofiber dispersion obtained by the present invention is excellent in fluidity even at a high concentration.For example, when a cellulose nanofiber is applied to a substrate to form a film on the substrate, A paint containing cellulose nanofibers at a high concentration of 1 to 3% (w / v) can be prepared at a low viscosity of 500 to 3000 mPa · s (B type viscosity, 60 rpm, 20 ° C.). There is an advantage that a film having a thickness of about 5 to 30 μm can be formed only by coating. Conventionally, in order to prepare a coating material having a viscosity of about 500 to 3000 mPa · s (B type viscosity, 60 rpm, 20 ° C.), the concentration of cellulose nanofiber is 0.2 to 0.4% (w / v). In order to produce a film having a thickness of about 5 to 30 μm, it was necessary to repeat coating and drying many times. The feature of the cellulose nanofiber dispersion obtained by the present invention having a high fluidity at a high concentration is very excellent.
 本発明では、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にてセルロース系原料を酸化し、酸化されたセルロース系原料にセルラーゼ及び/またはヘミセルラーゼを添加し、これら酵素の存在下で超高圧ホモジナイザーで100MPa以上で解繊・分散することにより、解繊・分散処理における消費電力量を低減させることができ、セルロースナノファイバーを低エネルギーで効率よく製造することができる。 In the present invention, the cellulose-based raw material is oxidized in water using an oxidizing agent in the presence of (1) N-oxyl compound, and (2) bromide, iodide, or a mixture thereof to obtain an oxidized cellulose-based raw material. Cellulose and / or hemicellulase is added, and in the presence of these enzymes, fibrillation / dispersion is performed at 100 MPa or more with an ultra-high pressure homogenizer, so that power consumption in defibration / dispersion treatment can be reduced, and cellulose nanofiber Can be efficiently manufactured with low energy.
 (N-オキシル化合物)
 本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、本発明で使用されるN-オキシル化合物としては、下記一般式(式1)で示される物質が挙げられる。
(N-oxyl compounds)
As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction. For example, examples of the N-oxyl compound used in the present invention include substances represented by the following general formula (Formula 1).
Figure JPOXMLDOC01-appb-C000001
(式1中、R1~R4は同一又は異なる炭素数1~4程度のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000001
(In Formula 1, R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.)
 式1で表される化合物のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)が好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸若しくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体は、安価であり、かつ均一な酸化セルロースを得ることができるため、とりわけ好ましい。 Of the compounds represented by Formula 1, 2,2,6,6-tetramethyl-1-piperidine-oxy radical (hereinafter referred to as TEMPO) is preferable. Further, the N-oxyl compound represented by any one of the following formulas 2 to 4, that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity. A 4-hydroxy TEMPO derivative is particularly preferable because it is inexpensive and can provide uniform oxidized cellulose.
Figure JPOXMLDOC01-appb-C000002
(式2~4中、Rは炭素数4以下の直鎖又は分岐状炭素鎖である。)
Figure JPOXMLDOC01-appb-C000002
(In formulas 2 to 4, R is a linear or branched carbon chain having 4 or less carbon atoms.)
 さらに、下記式5で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルは、短時間で、重合度の高いセルロースナノファイバーを製造できるため、とりわけ好ましい。 Furthermore, an N-oxyl compound represented by the following formula 5, that is, an azaadamantane-type nitroxy radical, is particularly preferable because cellulose nanofibers having a high degree of polymerization can be produced in a short time.
Figure JPOXMLDOC01-appb-C000003
(式5中、R5及びR6は、同一又は異なる水素又はC1~C6の直鎖若しくは分岐鎖アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000003
(In Formula 5, R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.)
 N-オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmol、好ましくは0.01~1mmol、さらに好ましくは0.05~0.5mmol程度を用いることができる。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose raw material into nanofibers. For example, 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol can be used with respect to 1 g of cellulosic raw material.
 (臭化物またはヨウ化物)
 セルロース系原料の酸化の際に用いる臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などを使用することができる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.1~100mmol、好ましくは0.1~10mmol、さらに好ましくは0.5~5mmol程度を用いることができる。
(Bromide or iodide)
As the bromide or iodide used in oxidizing the cellulosic raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. For example, 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol can be used for 1 g of cellulosic raw material.
 (酸化剤)
 セルロース系原料の酸化の際に用いる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。中でも、セルロースナノファイバー生産コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが、特に好適である。酸化剤の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol程度を用いることができる。
(Oxidant)
As the oxidizing agent used for oxidizing the cellulosic raw material, the target oxidation reaction such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide can be promoted. Any oxidizing agent can be used as long as it is an oxidizing agent. Among them, from the viewpoint of cellulose nanofiber production cost, sodium hypochlorite, which is currently most widely used in industrial processes and has a low environmental load, is particularly suitable. The amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol can be used for 1 g of cellulosic raw material.
 (セルロース系原料)
 本発明で用いるセルロース系原料は特に限定されるものではなく、各種木材由来のクラフトパルプ又はサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末などを使用することができる他、ケナフ、麻、イネ、バカス、竹等の植物を使用することもできる。このうち、漂白済みクラフトパルプ、漂白済みサルファイトパルプ、粉末セルロース、または微結晶セルロース粉末を用いることが量産化やコストの観点から好ましい。また、粉末セルロース及び微結晶セルロース粉末を用いると、高濃度であってもより低い粘度を有するセルロースナノファイバー分散液を製造することができるから、とりわけ好ましい。
(Cellulosic material)
The cellulose-based raw material used in the present invention is not particularly limited, and kraft pulp or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer or a mill, or chemical treatment such as acid hydrolysis. In addition to the microcrystalline cellulose powder purified by the above, plants such as kenaf, hemp, rice, bacus, and bamboo can also be used. Of these, bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost. In addition, it is particularly preferable to use powdered cellulose and microcrystalline cellulose powder because a cellulose nanofiber dispersion having a lower viscosity can be produced even at a high concentration.
 (酸化反応条件)
 本発明の方法は温和な条件であっても酸化反応を円滑に進行させることができるという特色がある。そのため、反応温度は15~30℃程度の室温であってもよい。なお、反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率良く進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加することにより、反応液のpHを9~12、好ましくは10~11程度に維持することが望ましい。酸化反応における反応時間は、適宜設定することができ、特に限定されないが、例えば、0.5~6時間程度である。
(Oxidation reaction conditions)
The method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. In addition, since a carboxyl group produces | generates in a cellulose with progress of reaction, the fall of pH of a reaction liquid is recognized. In order to advance the oxidation reaction efficiently, it is desirable to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11, by adding an alkaline solution such as an aqueous sodium hydroxide solution. The reaction time in the oxidation reaction can be appropriately set and is not particularly limited, but is, for example, about 0.5 to 6 hours.
 (酵素の存在下での解繊・分散処理)
 本発明のセルロースナノファイバーは、前述の方法により得られた酸化セルロースに、セルロースの分解酵素であるセルラーゼや、ヘミセルラーゼの分解酵素であるヘミセルラーゼ(例えば、キシラナーゼやマンナーゼ)を単独、又は2種以上混合して添加し、超高圧ホモジナイザーを用いて、100MPa以上の圧力で解繊・分散処理することにより製造することができる。
(Defibration / dispersion treatment in the presence of enzyme)
In the cellulose nanofiber of the present invention, cellulase, which is a cellulose-degrading enzyme, or hemicellulase (for example, xylanase or mannase), which is a degrading enzyme of hemicellulase, is used alone or in combination with the oxidized cellulose obtained by the above-described method. It mixes and adds, It can manufacture by carrying out a fibrillation and a dispersion | distribution process by the pressure of 100 Mpa or more using an ultrahigh pressure homogenizer.
 添加するセルラーゼ、ヘミセルラーゼは、特に限定されず、セルラーゼまたはヘミセルラーゼ生産性糸状菌、細菌、放線菌、担子菌由来のものや、遺伝子組換え、細胞融合等の遺伝子操作により製造したものを、単独又は2種以上混合して用いることができる。また、市販品を用いることもできる。市販セルラーゼとしては、例えば、ノボザイムズジャパン社製Novozyme 476、天野エンザイム社製セルラーゼAP3、ヤクルト薬品工業社製セルラーゼオノズカRS、ジェネンコア協和社製オプチマーゼCX40L、合同酒精社製のGODO-TCL、ナガセケムテックス社製セルラーゼXL-522、洛東化成工業社製エンチロンCMなどを、市販ヘミセルラーゼとしては、ノボザイムズジャパン社製パルプザイム(登録商標)、天野エンザイム社製ヘミセルラーゼアマノ90、新日本化学工業社製スミチームXなどを用いることができる。 Cellulase to be added, hemicellulase is not particularly limited, cellulase or hemicellulase-producing filamentous fungus, bacteria, actinomycetes, basidiomycete-derived, those produced by genetic manipulation such as genetic recombination, cell fusion, It can be used alone or in combination of two or more. Commercial products can also be used. Examples of commercially available cellulases include Novozymes® 476 manufactured by Novozymes Japan, Cellulase AP3 manufactured by Amano Enzyme, Cellulase Onozuka RS manufactured by Yakult Pharmaceutical Co., Ltd., Optimase CX40L manufactured by Genencor Kyowa Co., Ltd. Chemtex Cellulase XL-522, Nitto Kasei Kogyo Entilon CM, and other commercially available hemicellulases include Novozymes Japan Pulpzyme (registered trademark), Amano Enzyme Hemicellulase Amano 90, Shin Nippon Chemical Co., Ltd. Sumiteam X manufactured by Kogyo Co., Ltd. can be used.
 酵素の添加量は、絶乾したセルロース系原料に対して0.001質量%以上であれば処理時間と効率の観点から所望の酵素反応を行わせるのに十分であり、また、10質量%以下であればセルロースの過度の加水分解を抑制し、セルロースナノファイバーの収率の低下を防ぐことができるから好ましい。したがって、酵素の添加量は、絶乾したセルロース系原料に対して、0.001~10質量%が好ましい。より好ましくは、0.01~5質量%、さらに好ましくは、0.05~2質量%である。なお、ここでいう「酵素の量」とは、酵素水溶液の乾燥固形分量のことをいう。 If the amount of the enzyme added is 0.001% by mass or more based on the absolutely dry cellulosic material, it is sufficient to cause the desired enzyme reaction from the viewpoint of processing time and efficiency, and 10% by mass or less. If so, it is preferable because excessive hydrolysis of cellulose can be suppressed and a decrease in the yield of cellulose nanofibers can be prevented. Therefore, the addition amount of the enzyme is preferably 0.001 to 10% by mass with respect to the absolutely dry cellulosic material. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass. The “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
 本発明では、セルラーゼ及び/またはヘミセルラーゼの存在下で、超高圧ホモジナイザーを用いて100MPa以上の圧力で、酸化されたセルロース系原料を解繊・分散する。超高圧ホモジナイザー装置は、公知の装置を必要に応じて単独もしくは2種類以上組合せて用いることができる。 In the present invention, in the presence of cellulase and / or hemicellulase, the oxidized cellulose raw material is defibrated and dispersed at a pressure of 100 MPa or more using an ultrahigh pressure homogenizer. As the ultra-high pressure homogenizer apparatus, a known apparatus can be used alone or in combination of two or more as required.
 解繊・分散処理時の圧力は、100MPa以上とする。圧力が100MPa未満であると、得られる分散液のB型粘度が増大して分散液の流動性が悪化し、さらに、透明度も顕著に悪化する。圧力は、好ましくは120MPa以上、より好ましくは140MPa以上である。 The pressure during defibration / dispersion treatment is 100 MPa or more. When the pressure is less than 100 MPa, the B-type viscosity of the obtained dispersion increases, the fluidity of the dispersion deteriorates, and the transparency also deteriorates remarkably. The pressure is preferably 120 MPa or more, more preferably 140 MPa or more.
 本発明者らは、セルラーゼ及び/またはヘミセルラーゼを100MPa以上という超高圧下におくことにより、酵素の熱安定性が向上し、また、セルロース及びヘミセルロースの加水分解活性も向上することを見出した。したがって、100MPa以上という圧力は、セルロースナノファイバーの機械的な解繊・分散のためだけではなく、酵素反応の促進の観点からも好ましい。 The present inventors have found that by placing cellulase and / or hemicellulase under an ultra-high pressure of 100 MPa or more, the thermal stability of the enzyme is improved and the hydrolysis activity of cellulose and hemicellulose is also improved. Therefore, the pressure of 100 MPa or more is preferable not only for mechanical defibration / dispersion of cellulose nanofibers but also from the viewpoint of promoting enzyme reaction.
 酵素の存在下で解繊・分散処理を行なう際のpH、温度、処理時間は、酵素による加水分解反応が進行する条件であれば特に制限されないが、pH4~10、好ましくは、pH5~9、さらに好ましくは、pH6~8で、温度40~70℃、好ましくは、45℃~65℃、さらに好ましくは、50℃~60℃で、所望の粘度となるまで処理時間やパス回数を適宜変更することが、酵素反応効率の観点から好ましい。 The pH, temperature, and treatment time when performing defibration / dispersion treatment in the presence of the enzyme are not particularly limited as long as the hydrolysis reaction by the enzyme proceeds, but pH 4 to 10, preferably pH 5 to 9, More preferably, the pH is 6 to 8, the temperature is 40 to 70 ° C., preferably 45 to 65 ° C., more preferably 50 to 60 ° C., and the treatment time and the number of passes are appropriately changed until the desired viscosity is obtained. Is preferable from the viewpoint of enzyme reaction efficiency.
 超高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーや高圧ホモジナイザーなどの公知の混合、攪拌、乳化、分散装置を用いて、酸化されたセルロース系原料を予備処理してもよい。 Prior to defibration / dispersion treatment with an ultra-high pressure homogenizer, if necessary, the oxidized cellulosic raw material is pretreated using a known mixing, stirring, emulsifying and dispersing device such as a high-speed shear mixer or high-pressure homogenizer. May be.
 (酵素の失活処理)
 本発明では、必要に応じて、酵素処理したセルロースナノファイバー分散液に紫外線を照射し、及び/または加熱することにより、酵素を失活させてもよい。
(Enzyme deactivation)
In the present invention, the enzyme may be deactivated by irradiating the cellulose nanofiber dispersion liquid treated with the enzyme with ultraviolet rays and / or heating as necessary.
 加熱して酵素を失活させる場合には、酵素の耐熱性に応じて、加圧型オートクレーブなどを用い、温度90~120℃で5~30分間程度処理すればよい。 When the enzyme is deactivated by heating, it may be treated at a temperature of 90 to 120 ° C. for about 5 to 30 minutes using a pressure autoclave or the like according to the heat resistance of the enzyme.
 紫外線を照射して酵素を失活させる場合には、用いる紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、酵素に作用するだけでなく、セルロースやヘミセルロースにも作用して、セルロースナノファイバーのさらなる短繊維化を促進することができるから、酵素の失活のみならず、セルロースナノファイバーの低粘度化の観点からも特に好ましい。 When the enzyme is inactivated by irradiation with ultraviolet rays, the wavelength of the ultraviolet rays used is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm not only act on the enzyme, but also act on cellulose and hemicellulose to promote further shortening of the cellulose nanofibers. In particular, it is also preferable from the viewpoint of lowering the viscosity of the cellulose nanofiber.
 紫外線を照射する光源としては、100~400nmの波長領域の光を持つものが使用でき、具体的には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が一例として挙げられ、これらの1種あるいは2種以上を任意に組合せて使用することができる。特に波長特性の異なる複数の光源を組み合わせて使用すると、異なる波長の紫外線を同時に照射することにより酵素やセルロース鎖、ヘミセルロース鎖における切断箇所が増加し、酵素の失活やセルロースナノファイバーの短繊維化が促進されるため好ましい。 As a light source for irradiating ultraviolet rays, a light source having a wavelength of 100 to 400 nm can be used. Specifically, a xenon short arc lamp, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a deuterium lamp, A metal halide lamp etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations. In particular, when multiple light sources with different wavelength characteristics are used in combination, the number of cut sites in the enzyme, cellulose chain, and hemicellulose chain increases by simultaneously irradiating ultraviolet rays of different wavelengths, deactivating the enzyme and shortening the cellulose nanofibers. Is preferable because it is promoted.
 紫外線を照射して酵素を失活させる際には、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤を添加すると、紫外線による光酸化反応の効率をより高めることができ、好ましい。 When an enzyme is deactivated by irradiating with ultraviolet rays, an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.) is added. The efficiency of the photo-oxidation reaction due to can be further increased, which is preferable.
 (低粘度化処理)
 本発明では、上記の酸化されたセルロース系原料を酵素存在下で解繊・分散処理する前に、酸化されたセルロース系原料を低粘度化処理してもよい。低粘度化処理とは、酸化されたセルロース系原料のセルロース鎖を適度に切断し(セルロース鎖の短繊維化)、原料を低粘度化させる処理をいう。セルロース系原料の粘度が低下するような処理であれば、いずれでもよいが、例えば、酸化されたセルロース系原料に紫外線を照射する処理、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解する処理、酸化されたセルロース系原料を酸で加水分解する処理、並びにこれらの組み合わせなどが挙げられる。
(Low viscosity treatment)
In the present invention, the oxidized cellulose-based material may be subjected to a viscosity reduction treatment before the oxidized cellulose-based material is fibrillated and dispersed in the presence of an enzyme. The viscosity reduction treatment refers to a treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material. Any treatment can be used as long as the viscosity of the cellulosic raw material is lowered. For example, the treatment of irradiating the oxidized cellulosic raw material with ultraviolet rays, and oxidizing and decomposing the oxidized cellulosic raw material with hydrogen peroxide and ozone. Treatment, hydrolyzing an oxidized cellulosic raw material with an acid, and combinations thereof.
 (紫外線照射)
 本発明の低粘度化処理において、酸化されたセルロース系原料に紫外線を照射する場合、紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子かを引き起こし、セルロース系原料を短繊維化することができるから、特に好ましい。
(UV irradiation)
In the low viscosity treatment of the present invention, when the oxidized cellulose raw material is irradiated with ultraviolet rays, the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferable because they directly act on cellulose or hemicellulose to cause low molecular weight, and the cellulose raw material can be shortened.
 紫外線を照射する光源としては、100~400nmの波長領域の光を持つものを使用することができ、具体的には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が一例として挙げられ、これらの1種あるいは2種以上を任意に組合せて使用することができる。特に波長特性の異なる複数の光源を組み合わせて使用すると、異なる波長の紫外線を同時に照射することによりセルロース鎖やヘミセルロース鎖における切断箇所が増加し、短繊維化が促進されるため好ましい。 As a light source for irradiating ultraviolet rays, a light source having a wavelength of 100 to 400 nm can be used. Specifically, a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, A hydrogen lamp, a metal halide lamp, etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations. In particular, it is preferable to use a combination of a plurality of light sources having different wavelength characteristics, because ultraviolet rays having different wavelengths are simultaneously irradiated to increase the number of cut portions in the cellulose chain and hemicellulose chain, thereby promoting shortening of the fiber.
 紫外線照射を行う際の酸化されたセルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製のものを用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製のものを用いる方がよい。なお、容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切なものを選定することができる。 As a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation, for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more. In addition, about the material of the part which does not participate in the light transmission reaction of a container, a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
 紫外線を照射する際の酸化されたセルロース系原料の濃度は、0.1質量%以上であればエネルギー効率が高まるため好ましく、また12質量%以下であれば紫外線照射装置内でのセルロース系原料の流動性が良好であり反応効率が高まるため、好ましい。したがって、0.1~12質量%の範囲が好ましい。より好ましくは、0.5~5質量%、さらに好ましくは、1~3質量%である。 The concentration of the oxidized cellulose raw material when irradiated with ultraviolet rays is preferably 0.1% by mass or more because energy efficiency is increased, and if it is 12% by mass or less, the concentration of cellulose raw materials in the ultraviolet irradiation device is preferable. It is preferable because the fluidity is good and the reaction efficiency is increased. Therefore, the range of 0.1 to 12% by mass is preferable. More preferably, it is 0.5 to 5% by mass, and still more preferably 1 to 3% by mass.
 また、紫外線を照射する際のセルロース系原料の温度は、20℃以上であれば光酸化反応の効率が高まるため好ましく、一方、95℃以下であればセルロース系原料の品質の悪化などの悪影響のおそれがなく、また反応装置内の圧力が大気圧を超えるおそれもなくなるため好ましい。したがって、20~95℃の範囲が好ましい。この範囲内であれば、耐圧性を考慮した装置設計を行なう必要性が特にないという利点もある。より好ましくは、20~80℃、さらに好ましくは、20~50℃である。 The temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. This is preferable because there is no fear and there is no possibility that the pressure in the reactor exceeds atmospheric pressure. Therefore, the range of 20 to 95 ° C. is preferable. Within this range, there is also an advantage that there is no need to design a device in consideration of pressure resistance. More preferably, it is 20 to 80 ° C., and further preferably 20 to 50 ° C.
 また、紫外線を照射する際のpHは特に限定はないが、プロセスの簡素化を考えると中性領域、例えばpH6.0~8.0程度で処理することが好ましい。 Further, the pH at the time of irradiation with ultraviolet rays is not particularly limited, but in consideration of simplification of the process, it is preferable to perform the treatment in a neutral region, for example, pH of about 6.0 to 8.0.
 紫外線照射反応においてセルロース系原料が受ける照射の程度は、照射反応装置内でのセルロース系原料の滞留時間を調節することや、照射光源のエネルギー量を調節すること等により、任意に設定できる。また、例えば、照射装置内のセルロース系原料の濃度を水希釈によって調節することや、あるいは空気や窒素等の不活性気体をセルロース系原料中に吹き込むことによってセルロース系原料の濃度を調節することにより、照射反応装置内でセルロース系原料が受ける紫外線の照射量を、任意に制御することができる。これらの滞留時間や濃度などの条件は、目標とする紫外線照射反応後の酸化されたセルロース系原料の品質(繊維長やセルロース重合度等)にあわせて、適宜設定できる。 The degree of irradiation received by the cellulosic raw material in the ultraviolet irradiation reaction can be arbitrarily set by adjusting the residence time of the cellulosic raw material in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. Also, for example, by adjusting the concentration of the cellulosic material in the irradiation device by diluting with water, or by adjusting the concentration of the cellulosic material by blowing an inert gas such as air or nitrogen into the cellulosic material. The irradiation amount of ultraviolet rays received by the cellulosic material in the irradiation reaction apparatus can be arbitrarily controlled. These conditions such as residence time and concentration can be appropriately set in accordance with the quality (fiber length, cellulose polymerization degree, etc.) of the oxidized cellulose raw material after the target ultraviolet irradiation reaction.
 また、紫外線照射処理は、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤の存在下で行なうと、光酸化反応の効率をより高めることができるため、好ましい。 In addition, when the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. Can be further increased, which is preferable.
 本発明において、特に135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部には通常空気が存在するためオゾンが生成する。本発明においては、この光源周辺部に連続的に空気を供給する一方で、生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化されたセルロース系原料へと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することができる。また更に、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることができ、発生したオゾンを光酸化反応の助剤として使用することができる。このように、本発明では、紫外線照射反応装置で副次的に発生するオゾンを利用することができることも大きな利点である。 In the present invention, particularly when ultraviolet rays having a wavelength region of 135 to 242 nm are irradiated, ozone is generated because air is usually present in the gas phase around the light source. In the present invention, while continuously supplying air to the periphery of the light source, the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulosic raw material, so that the outside of the system is removed. Without supplying ozone, ozone can be used as an auxiliary for the photo-oxidation reaction. Furthermore, by supplying oxygen to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can be used as an auxiliary agent for the photooxidation reaction. As described above, in the present invention, it is also a great advantage that ozone generated by the ultraviolet irradiation reactor can be used.
 また、本発明において、紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は目標とする酸化されたセルロース系原料の品質や、漂白などの後処理などとの関係に応じて適宜設定できる。例えば、特に制限されないが、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度、1回あたり0.5~10時間、好ましくは0.5~3時間くらいの長さで、照射することができる。 In the present invention, the ultraviolet irradiation treatment can be repeated a plurality of times. The number of repetitions can be appropriately set according to the relationship with the target quality of the oxidized cellulosic raw material and the post-treatment such as bleaching. For example, although not particularly limited, ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm, are applied 1 to 10 times, preferably about 2 to 5 times, 0.5 to 10 hours per time, preferably 0.5 to 3 times. It can be irradiated for as long as an hour.
 (過酸化水素及びオゾンによる酸化分解)
 本発明の低粘度化処理において、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解処理する場合、オゾンは、空気あるいは酸素を原料としてオゾン発生装置で公知の方法で発生させることができる。本発明におけるオゾンの添加量(質量)は、セルロース系原料の絶乾質量の0.1~3倍が好ましい。オゾンの添加量がセルロース系原料の絶乾質量の0.1倍以上であればセルロースの非晶部を十分に分解することができ、次工程での解繊・分散処理に要するエネルギーを大幅に削減することができる。また、3倍以下であればセルロースの過度の分解を抑制でき、セルロース系原料の収率の低下を防ぐことができる。オゾン添加量は、セルロース系原料の絶乾質量の0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。
(Oxidative decomposition with hydrogen peroxide and ozone)
In the low viscosity treatment of the present invention, when the oxidized cellulose raw material is oxidatively decomposed with hydrogen peroxide and ozone, ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material. . The addition amount (mass) of ozone in the present invention is preferably 0.1 to 3 times the absolute dry mass of the cellulosic material. If the amount of ozone added is at least 0.1 times the absolute dry mass of the cellulosic material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for defibration and dispersion treatment in the next step. Can be reduced. Moreover, if it is 3 times or less, the excessive decomposition | disassembly of a cellulose can be suppressed and the fall of the yield of a cellulose raw material can be prevented. The amount of ozone added is more preferably 0.3 to 2.5 times, more preferably 0.5 to 1.5 times the absolute dry mass of the cellulosic material.
 また、過酸化水素の添加量(質量)は、セルロース系原料の絶乾質量の0.001~1.5倍が好ましい。セルロース系原料の添加量の0.001倍以上の量で過酸化水素を使用すると、オゾンと過酸化水素との相乗作用が発揮される。また、セルロース系原料の分解には、過酸化水素を、セルロース系原料の1.5倍以下程度の量で使用すれば十分であり、それより多い添加量はコストアップにつながると考えられる。過酸化水素の添加量は、セルロース系原料の絶乾質量の0.1~1.0倍がより好ましい。 The addition amount (mass) of hydrogen peroxide is preferably 0.001 to 1.5 times the absolute dry mass of the cellulosic material. When hydrogen peroxide is used in an amount of 0.001 times or more of the addition amount of the cellulosic material, a synergistic effect between ozone and hydrogen peroxide is exhibited. In addition, it is sufficient to use hydrogen peroxide in an amount about 1.5 times or less that of the cellulosic raw material for decomposing the cellulosic raw material, and it is thought that a larger addition amount leads to an increase in cost. The amount of hydrogen peroxide added is more preferably 0.1 to 1.0 times the absolute dry mass of the cellulosic material.
 オゾン及び過酸化水素による酸化分解処理は、pH2~12、好ましくは、pH4~10、さらに好ましくは、pH6~8で、温度は10~90℃、好ましくは、20~70℃、さらに好ましくは30~50℃で、1~20時間、好ましくは、2~10時間、さらに好ましくは、3~6時間程度行なうことが、酸化分解反応効率の観点から好ましい。 The oxidative decomposition treatment with ozone and hydrogen peroxide is pH 2 to 12, preferably pH 4 to 10, more preferably pH 6 to 8, and temperature is 10 to 90 ° C., preferably 20 to 70 ° C., more preferably 30. From the viewpoint of oxidative decomposition reaction efficiency, it is preferable to carry out the reaction at -50 ° C. for 1-20 hours, preferably 2-10 hours, more preferably 3-6 hours.
 オゾン及び過酸化水素による処理を行なうための装置は、当業者に通常使用される装置を用いることができ、例えば、反応室、攪拌機、薬品注入装置、加熱器、及びpH電極を備えた通常の反応器を使用することができる。 As a device for performing treatment with ozone and hydrogen peroxide, a device commonly used by those skilled in the art can be used. For example, a normal chamber equipped with a reaction chamber, a stirrer, a chemical injection device, a heater, and a pH electrode. A reactor can be used.
 オゾン及び過酸化水素による処理後、水溶液中に残留するオゾンや過酸化水素は次工程の解繊・分散処理でも有効に作用し、セルロースナノファイバー分散液の低粘度化を一層促進することができる。 After the treatment with ozone and hydrogen peroxide, ozone and hydrogen peroxide remaining in the aqueous solution can effectively work in the defibration / dispersion treatment in the next step, and can further promote the lowering of the viscosity of the cellulose nanofiber dispersion. .
 過酸化水素及びオゾンにより、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料をオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から、酸化力に優れるヒドロキシラジカルが発生し、該原料中のセルロース鎖を効率良く酸化分解し、最終的にセルロース系原料を短繊維化し、セルロース系原料を低粘度化すると考えられる。 The reason why the viscosity of the oxidized cellulose raw material can be efficiently reduced by hydrogen peroxide and ozone is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups. Then, when the raw material is treated with ozone and hydrogen peroxide, hydroxy radicals having excellent oxidizing power are generated from ozone and hydrogen peroxide, and the cellulose chains in the raw material are efficiently oxidized and decomposed, and finally the cellulose-based raw material It is considered that the fiber is shortened to lower the viscosity of the cellulosic material.
 (酸による加水分解)
 本発明の低粘度化処理において、酸化されたセルロース系原料に酸を添加してセルロース鎖の加水分解を行なう(酸加水分解処理)場合、使用する酸としては、硫酸、塩酸、硝酸、又はリン酸のような鉱酸を使用することが好ましい。
(Hydrolysis with acid)
In the viscosity reduction treatment of the present invention, when an acid is added to the oxidized cellulose raw material to hydrolyze the cellulose chain (acid hydrolysis treatment), the acid used is sulfuric acid, hydrochloric acid, nitric acid, or phosphorus. It is preferred to use a mineral acid such as an acid.
 酸加水分解処理の条件としては、酸がセルロースの非晶部に作用するような条件であれば適宜設定することができ、特に限定されない。例えば、酸の添加量としては、セルロース系原料の絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、次工程でのセルロース系原料の解繊・分散効率が向上するから好ましく、0.5質量%以下であれば、セルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができるから好ましい。酸加水分解時の反応液のpHは、2.0~4.0、好ましくは2.0以上3.0未満である。また、酸加水分解処理は、温度70~120℃で、1~10時間行なうことが、酸加水分解効率の観点から好ましい。 The conditions for the acid hydrolysis treatment can be set as appropriate as long as the acid acts on the amorphous part of the cellulose, and are not particularly limited. For example, the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulosic material. When the amount of acid added is 0.01% by mass or more, hydrolysis of cellulose proceeds and the fibrillation / dispersion efficiency of the cellulose-based raw material in the next step is improved, and preferably 0.5% by mass or less. For example, excessive hydrolysis of cellulose can be prevented, and a decrease in the yield of cellulose nanofibers can be prevented. The pH of the reaction solution during acid hydrolysis is 2.0 to 4.0, preferably 2.0 or more and less than 3.0. The acid hydrolysis treatment is preferably performed at a temperature of 70 to 120 ° C. for 1 to 10 hours from the viewpoint of acid hydrolysis efficiency.
 また、酸加水分解処理後は、水酸化ナトリウム等のアルカリを添加して中和することが、その後の解繊・分散処理の効率の観点から好ましい。 Moreover, after the acid hydrolysis treatment, it is preferable to neutralize by adding an alkali such as sodium hydroxide from the viewpoint of the efficiency of the subsequent defibration / dispersion treatment.
 酸加水分解処理により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電化反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に、酸を添加して加水分解を行なうと、セルロース分子の強固なネットワークが崩れ、該原料の比表面積が増大し、セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。 The reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by the acid hydrolysis treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the electric repulsion between carboxyl groups. Then, when an acid is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
 (セルロースナノファイバー)
 本発明のセルロースナノファイバーは、幅2~5nm、長さ1~5μm程度のセルロースシングルミクロフィブリルである。本発明において、「ナノファイバー化する」とは、粉末セルロースを、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルであるセルロースナノファイバーへと加工することを意味する。
(Cellulose nanofiber)
The cellulose nanofiber of the present invention is a cellulose single microfibril having a width of 2 to 5 nm and a length of 1 to 5 μm. In the present invention, “to form nanofibers” means that powdered cellulose is processed into cellulose nanofibers which are single microfibrils of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 μm.
 本発明により得られるセルロースナノファイバー分散液は、濃度2%(w/v)におけるB型粘度(60rpm、20℃)が500~3000mPa・sであり好ましくは、500~2000mPa・sであり、最も好ましくは、600~1500mPa・sである。本発明により得られるセルロースナノファイバー分散液は、低粘度であり良好な流動性を有するため、塗料の調製などの加工がし易いという利点を有する。 The cellulose nanofiber dispersion obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 2% (w / v) of 500 to 3000 mPa · s, preferably 500 to 2000 mPa · s. Preferably, it is 600 to 1500 mPa · s. Since the cellulose nanofiber dispersion obtained by the present invention has a low viscosity and good fluidity, it has an advantage that it is easy to process such as preparation of a paint.
 また、本発明により得られるセルロースナノファイバー分散液は、濃度0.1%(w/v)における光透過率(660nm)(透明度の指標である。)が90%以上であり、好ましくは95%以上である、最も好ましくは97%以上である。透明度が上記の範囲であると、分散液中に、ナノファイバー化されていないセルロースや、ナノファイバー同士の凝集がほとんど存在していないと言うことができ、そのような分散液を用いてフィルムを形成すると、透明性及びバリアー性に優れたフィルムを得ることができる。 The cellulose nanofiber dispersion obtained by the present invention has a light transmittance (660 nm) (which is an index of transparency) at a concentration of 0.1% (w / v) of 90% or more, preferably 95%. Or more, most preferably 97% or more. When the transparency is in the above range, it can be said that cellulose that has not been made into nanofibers and aggregation of nanofibers are hardly present in the dispersion, and the film can be formed using such dispersion. When formed, a film excellent in transparency and barrier properties can be obtained.
 以上の通り、本発明により製造されるセルロースナノファイバーは、流動性と透明性に優れており、さらには、バリアー性や耐熱性にも優れているので、包装材料等の様々な用途に使用することが可能である。 As described above, the cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and are also excellent in barrier properties and heat resistance, so that they are used for various applications such as packaging materials. It is possible.
 なお、本発明において、セルロースナノファイバー分散液のB型粘度は、当業者に慣用される通常のB型粘度計を用いて測定することができ、例えば、東機産業社のTV-10型粘度計を用いて、20℃及び60rpmの条件で測定することができる。 In the present invention, the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
 また、セルロースナノファイバー分散液の透明度は、紫外・可視分光光度計を用いて660nm光の透過率として測定することができる。 Further, the transparency of the cellulose nanofiber dispersion can be measured as a transmittance of 660 nm light using an ultraviolet / visible spectrophotometer.
 また、本発明のセルロースナノファイバーのカルボキシル基量としては0.5mmol/g以上であるものが望ましい。セルロースナノファイバーのカルボキシル基量は、セルロースナノファイバーの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる。
 カルボキシル基量〔mmol/gパルプ〕= a〔ml〕× 0.05/酸化パルプ質量〔g〕
In addition, the carboxyl group amount of the cellulose nanofiber of the present invention is preferably 0.5 mmol / g or more. The amount of carboxyl groups in cellulose nanofibers was prepared by adding 60 ml of a 0.5% by weight slurry of cellulose nanofibers, adding 0.1M hydrochloric acid aqueous solution to pH 2.5, and then dropping 0.05N sodium hydroxide aqueous solution dropwise. Then, the electrical conductivity is measured until the pH reaches 11, and can be calculated from the amount of sodium hydroxide (a) consumed in the weak acid neutralization stage where the change in electrical conductivity is gradual, using the following equation. .
Amount of carboxyl group [mmol / g pulp] = a [ml] × 0.05 / oxidized pulp mass [g]
 (本発明の作用)
 本発明では、N-オキシル化合物を用いて酸化されたセルロース系原料を、セルラーゼ及び/またはヘミセルラーゼの存在下で、100MPa以上の圧力下で解繊・分散することにより、高濃度であっても低粘度であり、流動性と透明性に優れているセルロースナノファイバー分散液を得ることができる。その理由は、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料はミクロフィブリルから構成され、その表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、ミクロフィブリル同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。該原料にセルラーゼ及び/またはヘミセルラーゼを共存させた状態で100MPa以上という超高圧下で処理すると、加圧により酵素の熱安定性が向上し、また、セルロース、へミセルロース等の多糖の加水分解活性も向上して、高い酵素反応効率で、セルロース鎖、ヘミセルロース鎖の加水分解が起こると考えられる。さらに、セルロース系原料が解繊してナノファイバー化することによりセルロース系原料の比面積が増大し、多糖の分解反応がさらに加速されると考えられる。その結果、セルロースナノファイバーを構成するセルロース鎖が効率よく分断され、最終的にセルロースナノファイバーの短繊維化が促進されると考えられる。このセルロース鎖の短繊維化により、得られる分散液のB型粘度が顕著に低下し、流動性が向上すると考えられる。また、セルロース鎖の短繊維化により、分散液の透明度が顕著に向上すると考えられる。
(Operation of the present invention)
In the present invention, a cellulose-based raw material oxidized using an N-oxyl compound is defibrated and dispersed under a pressure of 100 MPa or more in the presence of cellulase and / or hemicellulase, so that even at a high concentration. A cellulose nanofiber dispersion having a low viscosity and excellent fluidity and transparency can be obtained. The reason is guessed as follows. Cellulose-based raw materials oxidized with an N-oxyl compound are composed of microfibrils, carboxyl groups are localized on the surface thereof, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between microfibrils that cannot be seen in ordinary pulp due to the action of the charge repulsion between carboxyl groups. When the raw material is treated with cellulase and / or hemicellulase in an ultrahigh pressure of 100 MPa or more, the thermal stability of the enzyme is improved by pressurization, and hydrolysis of polysaccharides such as cellulose and hemicellulose is performed. The activity is also improved, and it is considered that hydrolysis of cellulose chains and hemicellulose chains occurs with high enzyme reaction efficiency. Furthermore, it is considered that the cellulose-based raw material is fibrillated and converted into nanofibers to increase the specific area of the cellulose-based raw material and further accelerate the polysaccharide decomposition reaction. As a result, it is considered that the cellulose chains constituting the cellulose nanofibers are efficiently divided, and finally the shortening of the cellulose nanofibers is promoted. This shortening of the cellulose chain is thought to significantly reduce the B-type viscosity of the resulting dispersion and improve the fluidity. Further, it is considered that the transparency of the dispersion is remarkably improved by shortening the fiber length of the cellulose chain.
 次に実施例に基づき、本発明をさらに詳細に説明する。 Next, the present invention will be described in more detail based on examples.
 [実施例1]
 針葉樹由来の漂白済み未叩解クラフトパルプ(日本製紙社製)5g(絶乾)をTEMPO(Sigma Aldrich)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。反応系に2M次亜塩素酸ナトリウム水溶液18ml(7.2mmol/g)を添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中、系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することで、酸化されたセルロース系原料を得た。酸化されたセルロース系原料の2%(w/v)スラリーに、市販のセルラーゼ(ノボザイムズジャパン社製、Novozyme 476)を、酸化されたセルロース系原料に対して2質量%添加し、超高圧ホモジナイザーにより50℃、140MPaの圧力で5回処理した(解繊・分散処理)ところ、透明なゲル状分散液が得られた。得られたゲル状分散液を、105℃で30分間処理してセルラーゼを失活させた(セルラーゼの失活処理)。得られた2%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)をTV-10型粘度計(東機産業社)を用いて測定し、0.1%(w/v)のセルロースナノファイバー分散液の透明度(660nm 光の透過率)をUV-VIS分光光度計 UV-265FS(島津製作所社)を用いて測定した。また、解繊・分散処理に要した消費電力を(処理時における電力)×(処理時間)/(処理したサンプル量)により求めた。結果を表1に示す。
[Example 1]
5 g (absolutely dried) of bleached unbeaten kraft pulp derived from coniferous tree (absolutely dried) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 18 ml (7.2 mmol / g) of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After making it react for 2 hours, it filtered with the glass filter and obtained the cellulose-type raw material oxidized by fully washing with water. To a 2% (w / v) slurry of oxidized cellulosic raw material, 2% by mass of commercially available cellulase (Novozyme 476, manufactured by Novozymes Japan) is added to the oxidized cellulosic raw material, and ultra-high pressure is added. When a homogenizer was used 5 times at 50 ° C. and a pressure of 140 MPa (defibration / dispersion treatment), a transparent gel dispersion was obtained. The obtained gel dispersion was treated at 105 ° C. for 30 minutes to inactivate cellulase (cellulase inactivation treatment). The B-type viscosity (60 rpm, 20 ° C.) of the obtained 2% (w / v) cellulose nanofiber dispersion was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.), and 0.1% ( The transparency (w / v) of the cellulose nanofiber dispersion (660 nm light transmittance) was measured using a UV-VIS spectrophotometer UV-265FS (Shimadzu Corporation). In addition, the power consumption required for the defibration / dispersion processing was obtained by (power during processing) × (processing time) / (amount of processed sample). The results are shown in Table 1.
 [実施例2]
 超高圧ホモジナイザーの圧力を100MPaとした以外、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 2]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 1.
 [実施例3]
 セルラーゼを失活させる際に、105℃で30分間処理する代わりに、20W低圧水銀ランプを用いて254nmに主ピークを有する紫外線を2時間照射した以外、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 3]
Dispersing cellulose nanofibers in the same manner as in Example 1 except that, when cellulase was deactivated, instead of treating at 105 ° C. for 30 minutes, ultraviolet rays having a main peak at 254 nm were irradiated for 2 hours using a 20 W low-pressure mercury lamp. A liquid was obtained. The results are shown in Table 1.
 [実施例4]
 セルラーゼを失活させる際に、105℃で30分間処理する代わりに、20W低圧紫外線ランプを用いて254nmと185nmの紫外線を同時に照射した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
[Example 4]
When inactivating cellulase, a nanofiber dispersion was obtained in the same manner as in Example 1 except that instead of treatment at 105 ° C. for 30 minutes, ultraviolet rays of 254 nm and 185 nm were simultaneously irradiated using a 20 W low-pressure ultraviolet lamp. It was. The results are shown in Table 1.
 [実施例5]
 紫外線照射時に、酸化されたセルロース系原料に対して過酸化水素を1%(w/v)添加した以外は、実施例3と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 5]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 3 except that 1% (w / v) of hydrogen peroxide was added to the oxidized cellulose raw material during ultraviolet irradiation. The results are shown in Table 1.
 [実施例6]
 針葉樹由来の漂白済み未叩解クラフトパルプの代わりに、広葉樹由来の漂白済み未叩解クラフトパルプ(日本製紙社製)を用いた以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 6]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1, except that bleached unbeaten kraft pulp derived from hardwood was used instead of bleached unbeaten kraft pulp derived from softwood. The results are shown in Table 1.
 [実施例7]
 酸化されたセルロース系原料に対し、市販のセルラーゼ(ノボザイムズジャパン社製、Novozyme 476)とヘミセルラーゼ(ノボザイムズジャパン社製、Pulpzyme HC)を各々2質量%添加した以外は、実施例6と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 7]
Example 6 except that 2% by mass of commercially available cellulase (Novozymes Japan, Novozyme 476) and hemicellulase (Novozymes Japan, Pulpzyme HC) were added to the oxidized cellulose raw material. In the same manner as above, a cellulose nanofiber dispersion was obtained. The results are shown in Table 1.
 [実施例8]
 超高圧ホモジナイザーでの処理時の温度を40℃とした以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 8]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the temperature during the treatment with the ultrahigh pressure homogenizer was 40 ° C. The results are shown in Table 1.
 [実施例9]
 超高圧ホモジナイザーでの処理時の温度を70℃とした以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 9]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the temperature during the treatment with the ultra-high pressure homogenizer was 70 ° C. The results are shown in Table 1.
 [実施例10]
 酸化されたセルロース系原料にセルラーゼを添加する前に、酸化されたセルロース系原料(1質量%)に、20W低圧紫外線ランプ(主ピーク254nm)を用いて、6時間紫外線を照射した(低粘度化処理)以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 10]
Before adding cellulase to the oxidized cellulose raw material, the oxidized cellulose raw material (1% by mass) was irradiated with ultraviolet rays for 6 hours using a 20 W low-pressure ultraviolet lamp (main peak 254 nm) (low viscosity) A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except for the treatment. The results are shown in Table 1.
 [実施例11]
 紫外線照射時に、酸化されたセルロース系原料に対してオゾンを1%(w/v)添加した以外は、実施例3と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 11]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 3 except that 1% (w / v) of ozone was added to the oxidized cellulose raw material at the time of ultraviolet irradiation. The results are shown in Table 1.
 [実施例12]
 セルラーゼを失活させる際に、105℃で30分間処理する代わりに、20W低圧水銀ランプを用いて254nmに主ピークを有する紫外線を2時間照射した以外、実施例6と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Example 12]
Dispersion of cellulose nanofibers in the same manner as in Example 6 except that, when cellulase was deactivated, instead of treating at 105 ° C. for 30 minutes, ultraviolet rays having a main peak at 254 nm were irradiated for 2 hours using a 20 W low-pressure mercury lamp. A liquid was obtained. The results are shown in Table 1.
 [比較例1]
 超高圧ホモジナイザーの処理圧を80MPaとした以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 1]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 80 MPa. The results are shown in Table 1.
 [比較例2]
 超高圧ホモジナイザーの代わりに、回転刃ミキサー(周速140m/秒)を用いて50℃で20分間処理した以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 2]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment was performed at 50 ° C. for 20 minutes using a rotary blade mixer (peripheral speed 140 m / sec) instead of the ultrahigh pressure homogenizer. The results are shown in Table 1.
 [比較例3]
 酸化されたセルロース系原料の2%(w/v)スラリーを、回転刃ミキサー(周速140m/秒)を用いて10分間処理し、その後、市販のセルラーゼ(ノボザイムズジャパン社製、Novozyme 476)を、酸化されたセルロース系原料に対して2質量%添加し、回転刃ミキサー(周速140m/秒)を用いて70℃で10分間処理した以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 3]
A 2% (w / v) slurry of the oxidized cellulosic material was treated for 10 minutes using a rotary blade mixer (circumferential speed 140 m / sec), and then commercially available cellulase (Novozyme Japan, Novozymes 476). ) Was added in an amount of 2% by mass to the oxidized cellulose raw material and treated at 70 ° C. for 10 minutes using a rotary blade mixer (peripheral speed 140 m / sec), in the same manner as in Example 1, cellulose nano A fiber dispersion was obtained. The results are shown in Table 1.
 [比較例4]
 超高圧ホモジナイザーでの処理時にセルラーゼを添加せず、また、セルラーゼの失活処理も行なわなかった以外は、実施例1と同様にしてセルロースナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 4]
A cellulose nanofiber dispersion was obtained in the same manner as in Example 1 except that no cellulase was added during the treatment with the ultrahigh pressure homogenizer and the cellulase was not deactivated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004


 酸化されたセルロース系原料を、酵素の存在下で、超高圧ホモジナイザーを用いて100MPa以上の条件で解繊・分散処理した実施例1~10では、100MPa未満で処理した比較例1や、ミキサーを用いた比較例2及び3、また、酵素を添加しなかった比較例4に比べて、B型粘度が低く、透明度が高いセルロースナノファイバーを、比較的低い消費電力で得られることがわかる。したがって、本発明のセルロースナノファイバーの製造方法によれば、高濃度であっても低粘度であり、流動性及び透明度が高いセルロースナノファイバー分散液を、高い効率で得ることができる。 In Examples 1 to 10 in which the oxidized cellulosic raw material was defibrated and dispersed under the condition of 100 MPa or more using an ultrahigh pressure homogenizer in the presence of an enzyme, Comparative Example 1 treated with less than 100 MPa and a mixer were used. It can be seen that cellulose nanofibers having a low B-type viscosity and high transparency can be obtained with relatively low power consumption as compared with Comparative Examples 2 and 3 used and Comparative Example 4 in which no enzyme was added. Therefore, according to the method for producing cellulose nanofibers of the present invention, it is possible to obtain a cellulose nanofiber dispersion liquid having a low viscosity even at a high concentration and having high fluidity and transparency with high efficiency.
 [実施例13]
 実施例1により製造した2%(w/v)のセルロースナノファイバー分散液(B型粘度1646mPa・s)を、ポリエチレンテレフタレートフィルム(厚み20μm)片面に、手塗り専用のバー(バーNo.16)で塗工し、50℃で乾燥させてフィルムを形成した。フィルムの厚みは約18.2μmであった。
[Example 13]
A 2% (w / v) cellulose nanofiber dispersion (B-type viscosity 1646 mPa · s) produced according to Example 1 was used on one side of a polyethylene terephthalate film (thickness 20 μm), and a bar exclusively for hand coating (bar No. 16). And dried at 50 ° C. to form a film. The thickness of the film was about 18.2 μm.
 [比較例5]
 比較例2により製造した2%(w/v)のセルロースナノファイバー分散液を、B型粘度1600mPa・s(60rpm、20℃)となるように濃度を調整した。このときのセルロースナノファイバー濃度は、0.76%(w/v)であった。この分散液を、ポリエチレンテレフタレートフィルム(厚み20μm)片面に、手塗り専用のバー(バーNo.16)で塗工し、50℃で乾燥させてフィルムを形成した。フィルムの厚みは約6.9μmであった。実施例13と同じ厚さである18.2μmのフィルムを形成させるためには、塗布と乾燥を2回以上繰り返す必要があった。
[Comparative Example 5]
The concentration of the 2% (w / v) cellulose nanofiber dispersion produced in Comparative Example 2 was adjusted to have a B-type viscosity of 1600 mPa · s (60 rpm, 20 ° C.). The cellulose nanofiber concentration at this time was 0.76% (w / v). This dispersion was applied to one side of a polyethylene terephthalate film (thickness: 20 μm) with a hand-painted bar (bar No. 16) and dried at 50 ° C. to form a film. The thickness of the film was about 6.9 μm. In order to form an 18.2 μm film having the same thickness as in Example 13, it was necessary to repeat coating and drying twice or more.
 なお、比較例2により製造した2%(w/v)のセルロースナノファイバー分散液をそのままの濃度で使用したところ、塗布ムラが生じ、均一なフィルムは形成できなかった。 When the 2% (w / v) cellulose nanofiber dispersion produced in Comparative Example 2 was used at the same concentration, coating unevenness occurred and a uniform film could not be formed.

Claims (5)

  1.  (A)(1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いてセルロース系原料を酸化すること、
     (B)前記(A)からのセルロース系原料を、セルラーゼ及び/またはヘミセルラーゼの存在下、超高圧ホモジナイザーで100MPa以上の圧力で処理し、セルロース系原料を解繊・分散してナノファイバー化すること、
    を含む、セルロースナノファイバーの製造方法。
    Oxidizing the cellulosic raw material using an oxidizing agent in the presence of (A) (1) an N-oxyl compound and (2) a compound selected from the group consisting of bromide, iodide or a mixture thereof;
    (B) The cellulosic material from (A) is treated with an ultra-high pressure homogenizer in the presence of cellulase and / or hemicellulase at a pressure of 100 MPa or more, and the cellulosic material is fibrillated and dispersed to form nanofibers. thing,
    The manufacturing method of the cellulose nanofiber containing this.
  2.  得られたセルロースナノファイバーの濃度2%(w/v)におけるB型粘度(60rpm、20℃)が、500~3000mPa・sである、請求項1に記載のセルロースナノファイバーの製造方法。 The method for producing cellulose nanofibers according to claim 1, wherein the obtained cellulose nanofibers have a B-type viscosity (60 rpm, 20 ° C) at a concentration of 2% (w / v) of 500 to 3000 mPa · s.
  3.  前記解繊・分散を40~70℃で行う、請求項1または2に記載のセルロースナノファイバーの製造方法。 The method for producing cellulose nanofiber according to claim 1 or 2, wherein the defibrating and dispersing is performed at 40 to 70 ° C.
  4.  前記(A)及び(B)の間に、前記(A)からのセルロース系原料を低粘度化処理することをさらに含む、請求項1~3のいずれかに記載のセルロースナノファイバーの製造方法。 The method for producing cellulose nanofiber according to any one of claims 1 to 3, further comprising subjecting the cellulose-based material from (A) to a low viscosity treatment between (A) and (B).
  5.  前記(B)の後に、紫外線を照射し、および/または加熱することにより、前記セルラーゼ及び/またはヘミセルラーゼを失活させることをさらに含む、請求項1から4のいずれかに記載のセルロースナノファイバーの製造方法。 The cellulose nanofiber according to any one of claims 1 to 4, further comprising inactivating the cellulase and / or hemicellulase by irradiating ultraviolet rays and / or heating after (B). Manufacturing method.
PCT/JP2011/057283 2010-03-26 2011-03-25 Method for producing cellulose nanofibers WO2011118746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507077A JPWO2011118746A1 (en) 2010-03-26 2011-03-25 Method for producing cellulose nanofiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010072264 2010-03-26
JP2010-072264 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118746A1 true WO2011118746A1 (en) 2011-09-29

Family

ID=44673288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057283 WO2011118746A1 (en) 2010-03-26 2011-03-25 Method for producing cellulose nanofibers

Country Status (2)

Country Link
JP (1) JPWO2011118746A1 (en)
WO (1) WO2011118746A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047218A1 (en) * 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2014009414A (en) * 2012-06-29 2014-01-20 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
JP2014114332A (en) * 2012-12-06 2014-06-26 Kao Corp Method for producing cellulose nanofiber
JP2016501926A (en) * 2012-11-03 2016-01-21 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for producing nanofibrillated cellulose
JP2016535123A (en) * 2013-10-15 2016-11-10 レンツィング アクチェンゲゼルシャフト Cellulose suspension, process for its preparation and use
JP2018059217A (en) * 2016-10-03 2018-04-12 大王製紙株式会社 Producing method of cellulose nanofiber
WO2020085479A1 (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for manufacturing same
US10731298B2 (en) 2012-06-15 2020-08-04 University Of Maine System Board Of Trustees Release paper and method of manufacture
US20220002442A1 (en) * 2018-10-16 2022-01-06 Oji Holdings Corporation Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
EP4230658A1 (en) * 2022-02-16 2023-08-23 Fundación Centro Technológico de Investigación Multisectorial A method for obtaining nanocellulose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
JP2008169497A (en) * 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd Method for producing nanofiber, and nanofiber
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
WO2010116826A1 (en) * 2009-03-30 2010-10-14 日本製紙株式会社 Process for producing cellulose nanofibers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
JP2008169497A (en) * 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd Method for producing nanofiber, and nanofiber
WO2009122982A1 (en) * 2008-03-31 2009-10-08 日本製紙株式会社 Additive for papermaking and paper containing the same
WO2010116826A1 (en) * 2009-03-30 2010-10-14 日本製紙株式会社 Process for producing cellulose nanofibers

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285197B1 (en) * 2011-09-30 2013-09-11 日本製紙株式会社 Method for producing cellulose nanofiber
CN103827146A (en) * 2011-09-30 2014-05-28 日本制纸株式会社 Method for producing cellulose nanofibers
WO2013047218A1 (en) * 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
US9365973B2 (en) 2011-09-30 2016-06-14 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
CN103827146B (en) * 2011-09-30 2016-09-07 日本制纸株式会社 Cellulose nano-fibrous manufacture method
US10731298B2 (en) 2012-06-15 2020-08-04 University Of Maine System Board Of Trustees Release paper and method of manufacture
JP2014009414A (en) * 2012-06-29 2014-01-20 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
US9797093B2 (en) 2012-11-03 2017-10-24 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
JP2016501926A (en) * 2012-11-03 2016-01-21 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for producing nanofibrillated cellulose
JP2014114332A (en) * 2012-12-06 2014-06-26 Kao Corp Method for producing cellulose nanofiber
JP2016535123A (en) * 2013-10-15 2016-11-10 レンツィング アクチェンゲゼルシャフト Cellulose suspension, process for its preparation and use
JP2018059217A (en) * 2016-10-03 2018-04-12 大王製紙株式会社 Producing method of cellulose nanofiber
JP7219533B2 (en) 2016-10-03 2023-02-08 大王製紙株式会社 Method for producing cellulose nanofiber
US20220002442A1 (en) * 2018-10-16 2022-01-06 Oji Holdings Corporation Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
US11945884B2 (en) * 2018-10-16 2024-04-02 Oji Holdings Corporation Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
WO2020085479A1 (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for manufacturing same
JPWO2020085479A1 (en) * 2018-10-26 2021-10-07 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for producing the same
JP7355028B2 (en) 2018-10-26 2023-10-03 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for producing the same
EP4230658A1 (en) * 2022-02-16 2023-08-23 Fundación Centro Technológico de Investigación Multisectorial A method for obtaining nanocellulose
WO2023156575A1 (en) 2022-02-16 2023-08-24 Fundación Centro Tecnológico De Investigación Multisectorial A method for obtaining nanocellulose

Also Published As

Publication number Publication date
JPWO2011118746A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5178931B2 (en) Method for producing cellulose nanofiber
WO2011118746A1 (en) Method for producing cellulose nanofibers
JP5285197B1 (en) Method for producing cellulose nanofiber
JP5330882B2 (en) Method for producing cellulose gel dispersion
WO2010116826A1 (en) Process for producing cellulose nanofibers
WO2011118748A1 (en) Method for producing cellulose nanofibers
WO2012132903A1 (en) Method for producing cellulose nanofibers
JP5329279B2 (en) Method for producing cellulose nanofiber
JP5381338B2 (en) Method for producing cellulose nanofiber
JP5731253B2 (en) Method for producing cellulose nanofiber
JP2010235679A (en) Method for manufacturing cellulose nano-fiber
JP2009263652A (en) Method of producing cellulose nanofibers
WO2013137140A1 (en) Method for producing anion-modified cellulose nanofiber dispersion liquid
JP5179616B2 (en) Method for producing cellulose nanofiber
JP5404131B2 (en) Method for producing cellulose nanofiber
JP6405751B2 (en) Method for producing fine cellulose
JP2018100383A (en) Method for producing carboxylated cellulose nanofiber
JPWO2012132663A1 (en) Method for producing cellulose nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507077

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759550

Country of ref document: EP

Kind code of ref document: A1