WO2012132525A1 - Pack battery - Google Patents

Pack battery Download PDF

Info

Publication number
WO2012132525A1
WO2012132525A1 PCT/JP2012/051604 JP2012051604W WO2012132525A1 WO 2012132525 A1 WO2012132525 A1 WO 2012132525A1 JP 2012051604 W JP2012051604 W JP 2012051604W WO 2012132525 A1 WO2012132525 A1 WO 2012132525A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery group
batteries
group
belonging
Prior art date
Application number
PCT/JP2012/051604
Other languages
French (fr)
Japanese (ja)
Inventor
紘文 福田
聡 足立
鈴木 浩之
章史 山脇
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012132525A1 publication Critical patent/WO2012132525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the battery pack according to the present invention has an overall capacity compared to a battery pack composed only of secondary batteries belonging to the first battery group.
  • the overall capacity can be increased as compared with a battery pack composed only of secondary batteries belonging to the second battery group.
  • the secondary battery belonging to the second battery group included in the battery pack of the present invention belongs to the first battery group because the average operating voltage of the power generating element body is higher than the secondary battery belonging to the first battery group. Compared with a battery pack composed only of secondary batteries, voltage drop at the initial stage of discharge can be suppressed.
  • Example 1 generates less heat at the time of high output as described above.
  • Example 4 Temperature measurement during high current discharge for Example 1 and Example 2 Regarding the battery pack according to Example 1 shown in FIG. 2A and Example 2 shown in FIG. Similarly, changes in battery temperature were measured while charging and discharging.
  • the temperature rise at the time of high output can be reduced by making the battery group A unevenly distributed in the central region of the block-shaped battery group.
  • the reason for this is that when there is not much difference between the currents flowing through battery A and battery B, the amount of heat generated by battery A is smaller than that of battery B.
  • the whole battery pack can be soaked in such a way as to absorb the heat generated by the battery B having a large heat generation amount on both sides.
  • the battery A is disposed at the end of the battery pack, the heat generated from the battery B cannot be sufficiently absorbed by the battery A, and the overall temperature of the battery pack cannot be equalized. The overall temperature is thought to rise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

In order to obtain high capacity and a high output characteristic in a pack battery for which multiple secondary batteries are connected in parallel, pack batteries (1, 2) are formed by connecting protection circuits (30) and connectors (31) to battery clusters, which are formed by aligning a battery group (10) wherein multiple (three) batteries (A) are connected in series and a battery group (20) wherein multiple (three) batteries (B) are connected in series, and by connecting these battery groups in parallel. The batteries (A) and the batteries (B) are lithium ion batteries and are of the same size, but the average operating voltage of the power-generating element is set higher and the internal resistance is set lower for the batteries (A) than for the batteries (B).

Description

パック電池Pack battery
 本発明は、複数の電池を備えるパック電池に関する。 The present invention relates to a battery pack including a plurality of batteries.
 パック電池は、電動工具、電動アシスト自転車、電動バイク、さらにはハイブリッド電気自動車(HEV)や電気自動車(PEV)などの動力源としても広い範囲で使用されている。
 これらのパック電池は、複数の二次電池をブロック状に配列した電池群に、リード板及び回路基板を装着し、外装ケース内に収容して構成されている。そして、電池群を構成する複数の二次電池は、直列及び並列に接続されている。
Pack batteries are used in a wide range of power sources such as electric tools, electric assist bicycles, electric motorcycles, and hybrid electric vehicles (HEV) and electric vehicles (PEV).
These battery packs are configured such that a lead plate and a circuit board are mounted on a battery group in which a plurality of secondary batteries are arranged in a block shape and accommodated in an outer case. And the some secondary battery which comprises a battery group is connected in series and parallel.
 各二次電池は、外装缶内に、正極板と負極板がセパレータを介して対向配置されてなる発電素体が収納され、その開口部が封口されて構成されている。
 二次電池の種類としては、比較的出力の高い二次電池であるリチウムイオン電池あるいはアルカリ二次電池が多く用いられている。
 そして、並列に接続される複数の二次電池は、基本的に、容量、内部抵抗及び平均動作電圧などの電池特性が同じものが用いられている。
Each secondary battery is configured such that a power generating element body in which a positive electrode plate and a negative electrode plate are arranged to face each other via a separator is housed in an outer can, and the opening is sealed.
As the type of secondary battery, a lithium ion battery or an alkaline secondary battery, which is a secondary battery having a relatively high output, is often used.
The plurality of secondary batteries connected in parallel basically have the same battery characteristics such as capacity, internal resistance, and average operating voltage.
特開2010-40226号公報JP 2010-40226 A
 このようなパック電池において、高容量で且つ高出力を得ることが要求されることも多い。特に、電気自動車などでは、走行距離が長く、高出力で走行できることが求められるので、それを駆動するパック電池においても、高容量であり且つ高出力特性に優れることが求められる。
 また、パック電池を低温下で高出力放電すると、放電初期において電圧ドロップが発生しやすいので、この放電初期における電圧ドロップを抑えることも求められる。
In such a battery pack, it is often required to obtain a high capacity and a high output. In particular, since an electric vehicle or the like is required to have a long traveling distance and can be driven at a high output, the battery pack that drives the vehicle is also required to have a high capacity and excellent high output characteristics.
Further, when the battery pack is discharged at a high output at a low temperature, a voltage drop is likely to occur in the initial stage of discharge, and it is also required to suppress the voltage drop in the initial stage of discharge.
 そこで、パック電池の容量と高出力特性を良好にするために、二次電池自体の容量と高出力特性を良好にするための開発もなされているが、二次電池の容量と高出力特性を共に高くするにも制約があり、一方の特性をさらに高めるようとすると、他方の特性が損なわれる傾向にある。
 例えば、同じサイズのリチウムイオン電池において、高容量にするために発電素体を構成する極板の厚みを大きく設定すると、高出力駆動時における発熱が大きくなってサイクル寿命が短くなったり、放電初期における電圧ドロップが大きくなりやすい。一方、高出力駆動に適するよう、内部抵抗を低くするために、発電素体を構成する極板の厚みを小さく設定すると、電池容量は低下しやすい。
Therefore, in order to improve the capacity and high output characteristics of the battery pack, development has been made to improve the capacity and high output characteristics of the secondary battery itself. There is also a restriction on increasing both, and if one characteristic is further enhanced, the other characteristic tends to be impaired.
For example, in a lithium ion battery of the same size, if the thickness of the electrode plate constituting the power generation element is set to be large in order to increase the capacity, heat generation during high output driving increases, cycle life is shortened, and initial discharge The voltage drop at is likely to be large. On the other hand, if the thickness of the electrode plate constituting the power generation element is set small in order to reduce the internal resistance so as to be suitable for high output driving, the battery capacity is likely to decrease.
 本発明は、上記課題に鑑み、複数の二次電池を並列に接続したパック電池において、高容量で且つ高出力特性の優れたものを得ることを目的とする。 In view of the above problems, an object of the present invention is to provide a battery pack in which a plurality of secondary batteries are connected in parallel with high capacity and excellent high output characteristics.
 上記目的を達成するため、本発明に係る電池パックは、第1電池グループ及び第2電池グループが並列接続された電池群を備え、第1電池グループ及び第2電池グループを、同じ種類の二次電池で構成し、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、平均動作電圧が高く且つ内部抵抗が小さくなるように設定した。 In order to achieve the above object, a battery pack according to the present invention includes a battery group in which a first battery group and a second battery group are connected in parallel, and the first battery group and the second battery group are secondary batteries of the same type. Compared with the secondary battery which consists of a battery and belongs to a 1st battery group, the secondary battery which belongs to a 2nd battery group was set so that an average operating voltage might be high and internal resistance might become small.
 一般的に二次電池は、発電素体の種類によって、リチウムイオン電池(リチウムポリマー電池を含む)、ニッケル水素電池、ニカド電池、鉛蓄電池といった種類に分けられているが、上記「同じ種類の二次電池」は、その種類が互いに同じである二次電池を指す。
 上記本発明のパック電池において、第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類は、共にリチウムイオン電池であることが好ましく、この場合、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池として、発電素体を構成する正極板(正極活物質)の作動電位が高いものを用いることによって、発電素体の平均動作電圧を高く設定することができる。
Generally, secondary batteries are classified into types such as lithium ion batteries (including lithium polymer batteries), nickel metal hydride batteries, nickel-cadmium batteries, and lead-acid batteries depending on the type of power generation element. “Secondary battery” refers to secondary batteries of the same type.
In the battery pack of the present invention, the types of secondary batteries belonging to the first battery group and secondary batteries belonging to the second battery group are preferably both lithium ion batteries, and in this case, belong to the first battery group. Compared to the secondary battery, as the secondary battery belonging to the second battery group, the average operating voltage of the power generating element body is obtained by using a positive electrode plate (positive electrode active material) having a higher operating potential. Can be set high.
 上記本発明のパック電池において、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、発電素体を構成する正極板と負極板の対向面積が大きくなるように設定することによって、電池の内部抵抗を小さくすることができる。
 上記本発明のパック電池において、第1電池グループに属する二次電池の数と、第2電池グループに属する二次電池の数を同じにして、各グループに属する二次電池同士を直列接続することも好ましい。
In the battery pack of the present invention, the secondary battery belonging to the second battery group has a larger facing area between the positive electrode plate and the negative electrode plate constituting the power generation element than the secondary battery belonging to the first battery group. By setting to, the internal resistance of the battery can be reduced.
In the battery pack of the present invention, the number of secondary batteries belonging to the first battery group and the number of secondary batteries belonging to the second battery group are made the same, and the secondary batteries belonging to each group are connected in series. Is also preferable.
 第1電池グループ及び第2電池グループを、電池群がブロック状になるように配列し、第1電池グループがその中央部に偏在させることも好ましい。 It is also preferable that the first battery group and the second battery group are arranged so that the battery group is in a block shape, and the first battery group is unevenly distributed in the center.
 上記本発明に係るパック電池においては、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、発電素体の平均動作電圧が高く且つ内部抵抗が小さいので、大電流で充放電するときに、内部抵抗の小さい第2電池グループを電流が多く流れる。従って、第1電池グループに属する二次電池と同じ二次電池だけで構成したパック電池と比べると、発熱が少ないので、サイクル寿命が向上する。 In the battery pack according to the present invention, the secondary battery belonging to the second battery group has a higher average operating voltage and lower internal resistance than the secondary battery belonging to the first battery group. When charging / discharging with a large current, a large amount of current flows through the second battery group having a small internal resistance. Accordingly, the cycle life is improved because the heat generation is less than in the case of a battery pack composed only of the same secondary batteries as the secondary batteries belonging to the first battery group.
 また、二次電池を低抵抗となるように設計すると電池容量は低下しやすいので、本発明のパック電池は、第1電池グループに属する二次電池だけで構成したパック電池と比べると全体の容量が低下する傾向にあるが、第2電池グループに属する二次電池だけで構成したパック電池と比べると全体の容量を大きくできる。
 また、本発明のパック電池に含まれる第2電池グループに属する二次電池は、第1電池グループに属する二次電池と比べて発電素体の平均動作電圧が高いので、第1電池グループに属する二次電池だけで構成したパック電池と比べると放電初期における電圧ドロップが抑えられる。
In addition, if the secondary battery is designed to have a low resistance, the battery capacity tends to decrease. Therefore, the battery pack according to the present invention has an overall capacity compared to a battery pack composed only of secondary batteries belonging to the first battery group. However, the overall capacity can be increased as compared with a battery pack composed only of secondary batteries belonging to the second battery group.
In addition, the secondary battery belonging to the second battery group included in the battery pack of the present invention belongs to the first battery group because the average operating voltage of the power generating element body is higher than the secondary battery belonging to the first battery group. Compared with a battery pack composed only of secondary batteries, voltage drop at the initial stage of discharge can be suppressed.
 以上のように、本発明のパック電池によれば、高容量で且つ高出力に適したものが得られ、放電初期における電圧ドロップも抑えることができる。すなわち、高出力と高容量をバランスよく得ることができる。
 なお、一般的に作動電圧の違う電池を並列接続するとアンバランスによる支障が生じやすいが、本発明のパック電池では、両電池グループに用いられている二次電池の種類が同じなので、第1電池グループに属する二次電池と第2電池グループに属する二次電池の電圧差はわずかであり、並列接続しても特に支障はない。
As described above, according to the battery pack of the present invention, a battery having a high capacity and suitable for high output can be obtained, and voltage drop at the initial stage of discharge can be suppressed. That is, high output and high capacity can be obtained with a good balance.
In general, when batteries having different operating voltages are connected in parallel, troubles due to imbalance are likely to occur. However, in the battery pack according to the present invention, since the types of secondary batteries used in both battery groups are the same, the first battery is used. The voltage difference between the secondary batteries belonging to the group and the secondary batteries belonging to the second battery group is small, and there is no particular problem even if they are connected in parallel.
 上記本発明のパック電池において、第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類としては、リチウムイオン電池をはじめとして、ニッケル水素電池、ニカド電池が挙げられるが、特に、リチウムイオン電池(リチウムポリマー電池を含む)を用いることによって、高エネルギー密度のパック電池を得ることができる。 この場合、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、発電素体を構成する正極活物質の作動電位が高いものを用いることによって、発電素体の平均動作電圧を高くすることができる。 In the battery pack of the present invention, the secondary battery belonging to the first battery group and the secondary battery belonging to the second battery group include lithium ion batteries, nickel metal hydride batteries, and nickel-cadmium batteries. In particular, by using a lithium ion battery (including a lithium polymer battery), a pack battery having a high energy density can be obtained. In this case, as compared with the secondary battery belonging to the first battery group, the secondary battery belonging to the second battery group uses the positive electrode active material constituting the power generation element having a higher operating potential, thereby generating the power generation element body. The average operating voltage can be increased.
 また、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、発電素体を構成する正極板と負極板の対向面積が大きくなるよう設定することによって、電池の内部抵抗を小さくすることができる。
 上記本発明のパック電池において、第1電池グループに属する二次電池の数と、第2電池グループに属する二次電池の数を同じにして、各グループに属する二次電池同士を直列接続することも、高出力を得る上で好ましい。
In addition, compared with the secondary battery belonging to the first battery group, the secondary battery belonging to the second battery group is set so that the facing area of the positive electrode plate and the negative electrode plate constituting the power generation element body is increased. The internal resistance can be reduced.
In the battery pack of the present invention, the number of secondary batteries belonging to the first battery group and the number of secondary batteries belonging to the second battery group are made the same, and the secondary batteries belonging to each group are connected in series. Is also preferable for obtaining a high output.
 第1電池グループ及び第2電池グループは、電池群がブロック状になるように配列することがパック電池のスペース効率をよくする上で好ましいが、このとき、第1電池グループをその中央部に偏在させることによって、高出力時の電池温度上昇を抑えることができる。 The first battery group and the second battery group are preferably arranged so that the battery groups are in a block shape in order to improve the space efficiency of the battery pack. However, at this time, the first battery group is unevenly distributed in the central portion. By doing so, the battery temperature rise at the time of high output can be suppressed.
実施の形態にかかるパック電池の構成を示す図である。It is a figure which shows the structure of the battery pack concerning embodiment. 実施例1,2及び比較例1,2にかかるパック電池を示す図である。It is a figure which shows the pack battery concerning Examples 1, 2 and Comparative Examples 1,2. 実施例及び比較例について、放電時における放電量と電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the discharge amount and voltage at the time of discharge about an Example and a comparative example. 実施例及び比較例について、放電時における放電量と電圧との関係、並びに電池温度変化を示す特性図である。It is a characteristic view which shows the relationship between the discharge amount and voltage at the time of discharge, and a battery temperature change about an Example and a comparative example. 実施例及び比較例について、充放電サイクル試験の結果を示す特性図である。It is a characteristic view which shows the result of a charging / discharging cycle test about an Example and a comparative example. 実施例1,2について、高電流放電時における放電量と電圧との関係を示す特性図、並びに電池温度の変化を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between a discharge amount and a voltage during high current discharge and a characteristic diagram showing a change in battery temperature in Examples 1 and 2.
 以下、本発明の構成及び作用効果について、実施形態に基づいて説明する。
 図1(a),(b)は、実施形態にかかるパック電池1,2の構成を示す図である。
 パック電池1,2は、作動電圧、内部抵抗、容量などの特性が互いに異なる電池Aと電池Bとを組み合わせて並列接続した電池群を備えている。
 電池A及び電池Bは、共に、リチウムイオン電池であって電池サイズも同一であるが、電池Bと比べて電池Aは、発電素体の平均動作電圧が高く、且つ内部抵抗が低く設定されている。
Hereinafter, the configuration and operational effects of the present invention will be described based on embodiments.
FIGS. 1A and 1B are diagrams showing the configuration of the battery packs 1 and 2 according to the embodiment.
The battery packs 1 and 2 include a battery group in which a battery A and a battery B having different characteristics such as operating voltage, internal resistance, and capacity are combined and connected in parallel.
Both the battery A and the battery B are lithium ion batteries and have the same battery size. However, the battery A has a higher average operating voltage and a lower internal resistance than the battery B. Yes.
 そして、パック電池1,2は、電池Aを複数個(3個)直列に接続した電池グループ10と、電池Bを複数個(3個)直列に接続した電池グループ20とを、並列に接続してなる電池群に、保護回路30及びコネクタ31が接続されて構成されている。
 図1(a)に示すパック電池1では、1つの電池グループ10と、3つの電池グループ20とが、並列に接続されている。一方図1(b)に示すパック電池2では、3つの電池グループ10と、1つの電池グループ20とが、並列に接続されている。
The battery packs 1 and 2 connect a battery group 10 in which a plurality (three) of batteries A are connected in series and a battery group 20 in which a plurality (three) of batteries B are connected in series. A protection circuit 30 and a connector 31 are connected to the battery group.
In the battery pack 1 shown in FIG. 1A, one battery group 10 and three battery groups 20 are connected in parallel. On the other hand, in the battery pack 2 shown in FIG. 1B, three battery groups 10 and one battery group 20 are connected in parallel.
 電池グループ10及び電池グループ20の配列の仕方については、電池群がブロック状となるよう配列することがスペース効率の上で好ましい。例えば、図1に示すように行列状に配列してもよいし、行列状に配列したものを複数積み重ねるように配列してもよい。
 保護回路30には、過充電、過放電、過電流などから電池を保護する回路が設けられている。
Regarding the arrangement of the battery group 10 and the battery group 20, it is preferable in terms of space efficiency that the battery groups are arranged in a block shape. For example, as shown in FIG. 1, it may be arranged in a matrix or may be arranged so as to stack a plurality of elements arranged in a matrix.
The protection circuit 30 is provided with a circuit that protects the battery from overcharge, overdischarge, overcurrent, and the like.
 コネクタ31は、充電器或いは外部負荷と接続したり分離したりするための外部端子である。
 充電器については、従来から一般的に用いられているリチウムイオン電池用の充電器を用いて充電することができる。
 [電池A,電池Bの構成の具体例]
 電池A:
 電池Aは、出力:5.6Wh、容量:1.5Ah、AC抵抗:約15mΩであって、以
下のように作製することができる。
The connector 31 is an external terminal for connecting to or separating from a charger or an external load.
About a charger, it can charge using the charger for lithium ion batteries generally used conventionally.
[Specific examples of configurations of battery A and battery B]
Battery A:
Battery A has an output of 5.6 Wh, a capacity of 1.5 Ah, an AC resistance of about 15 mΩ, and can be manufactured as follows.
 正極板:LiNi0.33Co0.34Mn0.332で表されるニッケルコバルトマンガン酸リチウムを正極活物質aとし、スピネル型マンガン酸リチウム(LiMn24)を正極活物質bとした。
 正極活物質aと正極活物質bとを、質量比率が正極活物質a:正極活物質b=80:20となるように混合して、正極活物質とした。
Positive electrode plate: Nickel cobalt lithium manganate represented by LiNi 0.33 Co 0.34 Mn 0.33 O 2 was used as the positive electrode active material a, and spinel type lithium manganate (LiMn 2 O 4 ) was used as the positive electrode active material b.
The positive electrode active material a and the positive electrode active material b were mixed so that the mass ratio was positive electrode active material a: positive electrode active material b = 80: 20 to obtain a positive electrode active material.
 正極活物質が94重量部、導電剤としての炭素粉末が3重量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が3重量部となるよう混合し、これをN-メチルピロリドン(NMP)溶液と混合して正極合剤スラリーを調製した。
このスラリーを厚さ15μmのアルミニウム製の正極芯体の両面にドクターブレード法により塗布し、その後圧縮ローラーを用いて圧縮することで、正極板を作製した。
94 parts by weight of the positive electrode active material, 3 parts by weight of carbon powder as a conductive agent, and 3 parts by weight of polyvinylidene fluoride (PVdF) powder as a binder were mixed, and this was mixed with N-methylpyrrolidone (NMP). A positive electrode mixture slurry was prepared by mixing with the solution.
This slurry was applied to both surfaces of an aluminum positive electrode core having a thickness of 15 μm by a doctor blade method, and then compressed using a compression roller to prepare a positive electrode plate.
 正極板の厚みは約90μmとした。
 負極板:負極活物質としての黒鉛97.5質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1.0質量部と、結着剤としてのスチレンブタジエンゴム(SBR)1.5質量部と、適量の水とを混合して、負極合剤スラリーを調製した。
 このスラリーを厚さ10μmの銅製の負極芯体の両面にドクターブレード法により塗布し、その後、乾燥機中を通過させて乾燥することにより、負極芯体の両面に負極活物質層を形成した。次いで圧縮ローラーを用いて圧縮することによって負極板を作成した。
The thickness of the positive electrode plate was about 90 μm.
Negative electrode plate: 97.5 parts by mass of graphite as a negative electrode active material, 1.0 part by mass of carboxymethyl cellulose (CMC) as a thickener, and 1.5 parts by mass of styrene butadiene rubber (SBR) as a binder An appropriate amount of water was mixed to prepare a negative electrode mixture slurry.
The slurry was applied to both surfaces of a copper negative electrode core having a thickness of 10 μm by a doctor blade method, and then passed through a dryer to dry, thereby forming a negative electrode active material layer on both surfaces of the negative electrode core. Subsequently, the negative electrode plate was created by compressing using a compression roller.
 負極板の厚みは、約80μmとした。
 非水電解液:エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を、体積比で35:20:45(25℃)となるように混合した混合溶媒に、ビニレンカーボネート(VC)を3.0質量%となるように添加し、さらに、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lとなるように溶解させて、非水電解液とした。
The thickness of the negative electrode plate was about 80 μm.
Non-aqueous electrolyte: Ethylene carbonate (EC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) were mixed in a solvent mixture so that the volume ratio was 35:20:45 (25 ° C.). VC) was added to 3.0% by mass, and lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved to 1 mol / L to obtain a non-aqueous electrolyte.
 電池の作製:上記のようにして得られた正極板及び負極板を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回して巻回電極体を作製し、円筒形の電池外装缶内に巻回電極体と上記の非水電解液を封入して、円筒形非水電解質二次電池を作製した。
 円筒形非水電解質二次電池のサイズは、高さ65mm、直径18mmであり、設計容量は1500mAhであり、正負極板の対向面サイズは、長さ約790mm×幅約56mm = 約442cm2である。
Production of battery: The positive electrode plate and the negative electrode plate obtained as described above are wound through a separator made of a polypropylene microporous film to produce a wound electrode body, which is then wound in a cylindrical battery outer can. A cylindrical electrode and a non-aqueous electrolyte secondary battery were produced by enclosing the electrode assembly and the non-aqueous electrolyte.
The size of the cylindrical non-aqueous electrolyte secondary battery is 65 mm in height and 18 mm in diameter, the design capacity is 1500 mAh, and the opposing surface size of the positive and negative electrode plates is about 790 mm long × about 56 mm wide = about 442 cm 2 . is there.
 電池B:
 電池Bは、出力:9.8Wh、容量:2.65Ah、AC抵抗:約40mΩであって、
以下のように作製できる。
 正極板:LiNi0.33Co0.34Mn0.332で表されるニッケルコバルトマンガン酸リチウムを正極活物質aとし、コバルト酸リチウム(LiCoO2)を正極活物質cとした。
Battery B:
Battery B has an output of 9.8 Wh, a capacity of 2.65 Ah, an AC resistance of about 40 mΩ,
It can be produced as follows.
Positive electrode plate: Nickel cobalt lithium manganate represented by LiNi 0.33 Co 0.34 Mn 0.33 O 2 was used as the positive electrode active material a, and lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material c.
 正極活物質aと正極活物質cとを、質量比率が正極活物質a:正極活物質c=10:90となるように混合して、正極活物質とした。
 正極活物質が94重量部、導電剤としての炭素粉末が3重量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が3重量部となるよう混合し、これをN-メチルピロリドン(NMP)溶液と混合して正極合剤スラリーを調製した。
The positive electrode active material a and the positive electrode active material c were mixed so that the mass ratio was positive electrode active material a: positive electrode active material c = 10: 90, to obtain a positive electrode active material.
94 parts by weight of the positive electrode active material, 3 parts by weight of carbon powder as a conductive agent, and 3 parts by weight of polyvinylidene fluoride (PVdF) powder as a binder were mixed, and this was mixed with N-methylpyrrolidone (NMP). A positive electrode mixture slurry was prepared by mixing with the solution.
 このスラリーを厚さ20μmのアルミニウム製の正極芯体の両面にドクターブレード法で塗布し、その後圧縮ローラーで圧縮することにより、正極板を作製した。
 正極板厚みは約145μmとした。
 負極板:負極活物質としての黒鉛95質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)2質量部と、結着剤としてのスチレンブタジエンゴム(SBR)3質量部と、適量の水とを混合して負極合剤スラリーを調製した。
The slurry was applied to both surfaces of an aluminum positive electrode core having a thickness of 20 μm by a doctor blade method, and then compressed by a compression roller to prepare a positive electrode plate.
The thickness of the positive electrode plate was about 145 μm.
Negative electrode plate: 95 parts by mass of graphite as a negative electrode active material, 2 parts by mass of carboxymethyl cellulose (CMC) as a thickener, 3 parts by mass of styrene butadiene rubber (SBR) as a binder, and an appropriate amount of water The negative electrode mixture slurry was prepared by mixing.
 このスラリーを、厚さ12μmの銅製の負極芯体の両面にドクターブレード法で塗布し、その後、乾燥機中を通過させて乾燥することにより、負極芯体の両面に負極活物質層を形成した。次いで圧縮ローラーを用いて圧縮することによって負極板を作成した。
 負極板の厚みは約150μmとした。
 非水電解液:フルオロエチレンカーボネート(FEC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)とを、体積比で20:5:75(25℃)となるように混合した混合溶媒に、ビニレンカーボネート(VC)を0.5質量%となるように添加し、さらに、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を、1mol/Lとなるように溶解させて、非水電解液とした。
The slurry was applied to both surfaces of a copper negative electrode core having a thickness of 12 μm by a doctor blade method, and then passed through a dryer to dry, thereby forming a negative electrode active material layer on both surfaces of the negative electrode core. . Subsequently, the negative electrode plate was created by compressing using a compression roller.
The thickness of the negative electrode plate was about 150 μm.
Non-aqueous electrolyte: vinylene is mixed into a mixed solvent in which fluoroethylene carbonate (FEC), propylene carbonate (PC), and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 20: 5: 75 (25 ° C.). Carbonate (VC) was added to 0.5% by mass, and lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved to 1 mol / L to obtain a nonaqueous electrolytic solution. .
 電池の作製:上記のようにして得られた正極板及び負極板を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回して巻回電極体を作製し、円筒形の電池外装缶内に巻回電極体と上記の非水電解液を封入して、円筒形非水電解質二次電池を作製した。
 得られた円筒形非水電解質二次電池のサイズは、高さ65mm、直径18mmであり、設計容量は2650mAhであり、正負極板の対向面サイズは、長さ約630mm×幅約57mm= 約360cm2である。
Production of battery: The positive electrode plate and the negative electrode plate obtained as described above are wound through a separator made of a polypropylene microporous film to produce a wound electrode body, which is then wound in a cylindrical battery outer can. A cylindrical electrode and a non-aqueous electrolyte secondary battery were produced by enclosing the electrode assembly and the non-aqueous electrolyte.
The obtained cylindrical non-aqueous electrolyte secondary battery has a height of 65 mm, a diameter of 18 mm, a design capacity of 2650 mAh, and the size of the facing surface of the positive and negative plates is about 630 mm long × about 57 mm wide = about 360 cm 2 .
 以上のように、電池Aと電池Bは、サイズは同じであるが、電池Aは電池Bと比べて、正負極板が薄長であり、正負極の対向面積が大きく設定されている。それに伴って、電池Aの内部抵抗(AC抵抗約15mΩ)が、電池Bの内部抵抗(AC抵抗約40mΩ)よりも小さくなっている。
 また、各電池の平均動作電圧(V)を、出力(Wh)/容量(Ah)で計算すると、電池Aの平均動作電圧(5.6÷1.5=3.73V)の方が、電池Bの平均動作電圧(9.8÷2.65=3.70V)よりも高い。
As described above, the battery A and the battery B have the same size, but the battery A has a thin positive and negative plate compared to the battery B, and the facing area of the positive and negative electrodes is set larger. Accordingly, the internal resistance of battery A (AC resistance of about 15 mΩ) is smaller than the internal resistance of battery B (AC resistance of about 40 mΩ).
Further, when the average operating voltage (V) of each battery is calculated by output (Wh) / capacity (Ah), the average operating voltage of battery A (5.6 ÷ 1.5 = 3.73 V) It is higher than the average operating voltage of B (9.8 ÷ 2.65 = 3.70V).
 これは、主に、電池Aの正極板に用いられている正極活物質の作動電位が、電池Bの正極板に用いられている正極活物質の作動電位よりも高いためである。
 なお、上記の例では、電池Aの正極活物質として、ニッケルコバルトマンガン酸リチウムと、スピネル型マンガン酸リチウムとを組み合わせて用い、電池Bの正極活物質として、ニッケルコバルトマンガン酸リチウムとコバルト酸リチウムとを組み合わせて用いたが、この他にLiNiO2なども組み合わせて用いてもよく、一般にリチウムイオン電池に用いられている正極活物質から選択して組み合わせて用いることができる。
This is mainly because the operating potential of the positive electrode active material used for the positive electrode plate of the battery A is higher than the operating potential of the positive electrode active material used for the positive electrode plate of the battery B.
In the above example, nickel cobalt lithium manganate and spinel type lithium manganate are used in combination as the positive electrode active material of battery A, and nickel cobalt lithium manganate and lithium cobalt oxide are used as the positive electrode active material of battery B. In addition to this, LiNiO 2 or the like may also be used in combination, and a positive electrode active material generally used in lithium ion batteries can be selected and used in combination.
 [パック電池1,2による効果]
 上記のパック電池1,2において、電池グループ20に属する電池Bと比べて、電池グループ10に属する電池Aは、内部抵抗が小さいので、電池グループ10の割合が多くなるにつれてパック電池の内部抵抗は小さくなる。従って、パック電池の電池群を電池Bだけで構成した場合と比べると、パック電池1,2は、高出力時における発熱が少なくなり、サイクル寿命が向上する。
[Effects of battery packs 1 and 2]
In the battery packs 1 and 2 described above, the battery A belonging to the battery group 10 has a smaller internal resistance than the battery B belonging to the battery group 20, so that the internal resistance of the battery pack increases as the proportion of the battery group 10 increases. Get smaller. Therefore, as compared with the case where the battery group of the battery pack is composed of only the battery B, the battery packs 1 and 2 generate less heat at the time of high output and the cycle life is improved.
 一方、電池Aは電池Bと比べて電池容量が小さいので、電池Bからなる電池グループ20を4つ並列接続した場合と比べると、パック電池1,2の容量は小さいが、パック電池の電池群を電池Aからなる電池グループ10を4つ並列接続した場合と比べると、パック電池1,2の容量は大きくなる。
 また、電池Bからなる電池グループ20だけを並列接続したパック電池においては、低温下にて大電流で放電したときに放電初期における電圧ドロップが生じやすいが、パック電池1,2においては、電池Bよりも平均動作電圧が高い電池Aからなる電池グループ10が並列接続されているので、放電初期における電圧ドロップが抑えられる。
On the other hand, since the battery A has a smaller battery capacity than the battery B, the capacity of the battery packs 1 and 2 is small compared to the case where the four battery groups 20 composed of the batteries B are connected in parallel. The capacity of the battery packs 1 and 2 is larger than when four battery groups 10 each including the battery A are connected in parallel.
Further, in the battery pack in which only the battery group 20 composed of the battery B is connected in parallel, a voltage drop at the initial stage of discharge is likely to occur when discharged with a large current at a low temperature. Since the battery group 10 composed of the batteries A having a higher average operating voltage is connected in parallel, voltage drop at the initial stage of discharge can be suppressed.
 以上のように、パック電池1,2によれば、高容量で且つ高出力に適したものとし、放電初期における電圧ドロップも抑えることができる。
 次に、パック電池1とパック電池2とを比べると、パック電池1では電池Aで構成された電池グループ10の数と電池Bで構成された電池グループ20の数の比率が1:3であり、パック電池2では電池グループ10の数と電池グループ20の数の比率が3:1である。従って、電池容量についてはパック電池2よりパック電池1の方が大きくなり、高出力特性についてはパック電池1よりパック電池2の方が高くなる。
As described above, according to the battery packs 1 and 2, it is suitable for high capacity and high output, and voltage drop at the initial stage of discharge can be suppressed.
Next, when the battery pack 1 and the battery pack 2 are compared, in the battery pack 1, the ratio of the number of battery groups 10 composed of the battery A and the number of battery groups 20 composed of the battery B is 1: 3. In the battery pack 2, the ratio of the number of battery groups 10 to the number of battery groups 20 is 3: 1. Accordingly, the battery pack 1 is larger than the battery pack 2 in terms of battery capacity, and the battery pack 2 is higher than the battery pack 1 in terms of high output characteristics.
 このように、並列に接続する電池グループ10の数と電池グループ20の数の比率を変えることによって、電池容量と高出力特性とのいずれに重点を置くかを調整することもできる。
 なお、一般的に、電圧などの特性が異なる電池を並列に接続すると、アンバランスによる支障が生じやすいと考えられているが、パック電池1,2では、用いられている電池Aの電圧と電池Bの電圧は差がわずかであって、特に支障はない。
In this way, by changing the ratio of the number of battery groups 10 and the number of battery groups 20 connected in parallel, it is possible to adjust which of the battery capacity and the high output characteristic is to be emphasized.
In general, it is considered that when batteries having different characteristics such as voltage are connected in parallel, trouble due to imbalance is likely to occur. However, in the pack batteries 1 and 2, the voltage of the battery A used and the battery The difference in the voltage of B is slight and there is no particular problem.
 電池A及び電池Bを用いて、4本の電池を並べて配置し、互いに並列に接続して、実施例及び比較例にかかるパック電池を構成した。そして、各パック電池について充放電試験などを行った。
 図2(a)~(d)は、実施例1,2及び比較例1,2にかかるパック電池を示す図である。
Using the battery A and the battery B, four batteries were arranged side by side and connected in parallel to each other to form a battery pack according to the example and the comparative example. Then, a charge / discharge test and the like were performed for each pack battery.
FIGS. 2A to 2D are diagrams showing pack batteries according to Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
 (a)の実施例1及び(b)の実施例2は、いずれも3個の電池Bと1個の電池Aを配列して並列に接続したものであるが、実施例1では電池Aを端の位置に配置し、実施例2では電池Aを中央位置に配置している。
 一方、(c)の比較例1は電池Bを4個配列して並列に接続したもの、(d)の比較例2は電池Aを4個配列して並列に接続したものである。
In Example 1 of (a) and Example 2 of (b), both three batteries B and one battery A are arranged and connected in parallel. In the second embodiment, the battery A is disposed at the center position.
On the other hand, Comparative Example 1 in (c) is one in which four batteries B are arranged and connected in parallel, and Comparative Example 2 in (d) is one in which four batteries A are arranged and connected in parallel.
 実施例1,2と比較例1,2とで、パック電池の内部抵抗及び容量を比較すると、比較例1、実施例1,2、比較例2の順に、内部抵抗は小さくなり、容量は大きくなる。
 電池Aの内部抵抗15mΩ、容量1.5Ah、電池Bの内部抵抗40mΩ、2.65Ah、パック電池に流れる電流を10Aとして計算すると、実施例1,2、比較例1,2の内部抵抗、内部抵抗損失、容量は、表1に示す通りである。
When the internal resistance and capacity of the battery pack are compared in Examples 1 and 2 and Comparative Examples 1 and 2, the internal resistance decreases and the capacity increases in the order of Comparative Example 1, Examples 1, 2 and Comparative Example 2. Become.
Assuming that the internal resistance of the battery A is 15 mΩ, the capacity is 1.5 Ah, the internal resistance of the battery B is 40 mΩ, 2.65 Ah, and the current flowing through the battery pack is 10 A, the internal resistances of Examples 1 and 2 and Comparative Examples 1 and 2 The resistance loss and capacity are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実験1)高電流放電試験
 実施例1、比較例1,2のパック電池について、高電流で放電試験を行った。
 充電は、25℃、4.2Vで一定の電流(0.5C)で行い、充電電流が1/50Cまで低下した時点で充電を停止した。
 放電は、-10℃,0℃,10℃,40℃の各温度の環境下で、一定の電流(10A)で行い、電圧が2.75Vまで低下したときに放電を停止した。そしてこの放電時における電圧の変化を測定した。
(Experiment 1) High Current Discharge Test For the battery packs of Example 1 and Comparative Examples 1 and 2, a discharge test was conducted at a high current.
Charging was performed at 25 ° C. and 4.2 V with a constant current (0.5 C), and charging was stopped when the charging current decreased to 1/50 C.
Discharging was performed at a constant current (10 A) under the respective temperatures of −10 ° C., 0 ° C., 10 ° C., and 40 ° C., and discharging was stopped when the voltage dropped to 2.75V. And the change of the voltage at the time of this discharge was measured.
 図3は、実施例1及び比較例1,2について、放電時における放電量と電圧との関係を示す特性図であって、-10℃の低温で放電したときのものである。
 図3に示される放電曲線の形状において、比較例1では、放電量が少ないとき、すなわち放電初期において電圧ドロップが見られる。このように電圧ドロップが生じると、保護回路30が誤動作する原因にもなり得るが、実施例1,比較例2では、放電初期における電圧ドロップは見られず、電圧は漸次低下している。
FIG. 3 is a characteristic diagram showing the relationship between the discharge amount and the voltage at the time of discharge in Example 1 and Comparative Examples 1 and 2, when discharging at a low temperature of −10 ° C.
In the shape of the discharge curve shown in FIG. 3, in Comparative Example 1, a voltage drop is observed when the discharge amount is small, that is, at the beginning of discharge. When the voltage drop occurs as described above, it may cause the protection circuit 30 to malfunction, but in Example 1 and Comparative Example 2, no voltage drop was observed at the initial stage of discharge, and the voltage gradually decreased.
 一方、パック電池の放電容量については、実施例1は、比較例1よりも劣るが、比較例2よりも優れていることが、図3からもわかる。
 (実験2)高電流放電時の温度測定
 実施例1及び比較例1について、上記のように充放電を行いながら、電池温度の変化を測定した。電池温度の測定については、図2(a),(b)に示すように4つの各電池の温度t1,t2,t3,t4を測定した。
On the other hand, with respect to the discharge capacity of the battery pack, Example 1 is inferior to Comparative Example 1, but it can also be seen from FIG. 3 that it is superior to Comparative Example 2.
(Experiment 2) Temperature Measurement at High Current Discharge For Example 1 and Comparative Example 1, the change in battery temperature was measured while charging and discharging as described above. Regarding the measurement of the battery temperature, the temperatures t1, t2, t3, and t4 of the four batteries were measured as shown in FIGS. 2 (a) and 2 (b).
 図4は、実施例1及び比較例1について、放電時における放電量と電圧との関係、並びに電池温度変化を示す特性図であって、-10℃で放電したときのものである。
 なお、図4に示す温度は、温度t1~t4の平均である。
 図4に示されるように、実施例1は比較例1と比べて、温度上昇が少ない。これは、実施例1の方が高出力時における発熱が少ないことを示している。
FIG. 4 is a characteristic diagram showing the relationship between the discharge amount and the voltage at the time of discharge and the battery temperature change for Example 1 and Comparative Example 1, and is the one when discharged at −10 ° C. FIG.
The temperature shown in FIG. 4 is an average of the temperatures t1 to t4.
As shown in FIG. 4, Example 1 has less temperature rise than Comparative Example 1. This indicates that Example 1 generates less heat at high output.
 これは、上述したように実施例1の方が、比較例1と比べて内部抵抗が小さいためと考えられる。
 以上の結果から、実施例1のパック電池によれば、放電容量を確保しながら高出力時における発熱を抑えることができ、放電初期の電圧低下も抑えられることがわかる。
 (実験3)充放電サイクル試験
 実施例1及び比較例1,2のパック電池について、充放電サイクル試験を行った。
This is considered because the internal resistance of Example 1 is smaller than that of Comparative Example 1 as described above.
From the above results, according to the battery pack of Example 1, it can be seen that heat generation at high output can be suppressed while securing the discharge capacity, and voltage drop at the initial stage of discharge can be suppressed.
(Experiment 3) Charge / Discharge Cycle Test For the battery packs of Example 1 and Comparative Examples 1 and 2, a charge / discharge cycle test was performed.
 充電は、25℃、4.2Vで一定の電流(2.5A)で行い、充電電流が100mAまで低下した時点で充電を停止した。
 放電は、25℃で、一定の電流(5.0A)で行い、電圧が2.5Vまで低下したときに放電を停止した。
 上記の充放電を1サイクルとして、放電容量を測定しながら充放電を繰り返した。
Charging was performed at 25 ° C. and 4.2 V with a constant current (2.5 A), and the charging was stopped when the charging current decreased to 100 mA.
Discharging was performed at 25 ° C. with a constant current (5.0 A), and discharging was stopped when the voltage dropped to 2.5V.
The charge / discharge was repeated while measuring the discharge capacity with the above charge / discharge as one cycle.
 図5は、充放電サイクル試験の結果を示すもので、サイクル数と放電容量との関係を示す特性図である。
 図5からわかるように、実施例1は、比較例2よりもサイクル寿命が短いが、比較例1と比べると、サイクル寿命は長くなっている。
 放電容量が初期の放電容量の60%に低下するサイクル数をサイクル寿命とすると、サイクル寿命は比較例1では1240サイクル、実施例1では1530サイクル、実施例2では1700サイクルであって、比較例1のサイクル寿命と比べて、実施例1ではサイクル寿命が23%増加、比較例2では37%増加している。
FIG. 5 shows the result of the charge / discharge cycle test, and is a characteristic diagram showing the relationship between the number of cycles and the discharge capacity.
As can be seen from FIG. 5, the cycle life of Example 1 is shorter than that of Comparative Example 2, but the cycle life is longer than that of Comparative Example 1.
When the cycle number at which the discharge capacity is reduced to 60% of the initial discharge capacity is defined as the cycle life, the cycle life is 1240 cycles in Comparative Example 1, 1530 cycles in Example 1, and 1700 cycles in Example 2. Compared to the cycle life of 1, the cycle life of Example 1 is increased by 23%, and that of Comparative Example 2 is increased by 37%.
 このように実施例1が比較例1と比べてサイクル寿命が長いのも、上記のように実施例1の方が高出力時における発熱が少ないためと考えられる。
 (実験4)実施例1と実施例2について高電流放電時の温度測定
 図2(a)に示す実施例1と図2(b)に示す実施例2にかかるパック電池について、上記実験2と同様に充放電を行いながら、電池温度の変化を測定した。
The reason why the cycle life of Example 1 is longer than that of Comparative Example 1 is considered to be because Example 1 generates less heat at the time of high output as described above.
(Experiment 4) Temperature measurement during high current discharge for Example 1 and Example 2 Regarding the battery pack according to Example 1 shown in FIG. 2A and Example 2 shown in FIG. Similarly, changes in battery temperature were measured while charging and discharging.
 ただし、放電は、25℃の環境下で、一定の電流(20A)で行い、電圧が2.75Vまで低下したときに放電を停止した。また、電池の温度測定は、図2(a),(b)において符号Tで示す位置(4つの電池が配列された電池群の中央位置)で行った。
 図6は、実施例1及び実施例2について、高電流放電時における放電量と電圧との関係を示す特性図、並びに電池温度の変化を示す特性図である。
However, the discharge was performed at a constant current (20 A) in an environment of 25 ° C., and the discharge was stopped when the voltage dropped to 2.75V. The temperature of the battery was measured at a position indicated by a symbol T in FIGS. 2A and 2B (a central position of a battery group in which four batteries are arranged).
FIG. 6 is a characteristic diagram showing the relationship between the discharge amount and voltage during high current discharge and a characteristic diagram showing changes in battery temperature for Example 1 and Example 2.
 図6の結果から、放電量と電圧との関係については、実施例1と実施例2との間に差はほとんどみられないが、電池温度については実施例1よりも実施例2の方が低くなっていることがわかる。
 実施例1と実施例2は、パック電池の内部抵抗は同等なので、全体の発熱量はほぼ同等と考えられるが、上記図6の結果では実施例2の方が電池群の中央部分の温度上昇が少ないことから、低抵抗の電池Aを電池群の中央位置に配置する方が、温度上昇を低減することができ、サイクル特性を向上させる上で好ましいと考えられる。
From the result of FIG. 6, regarding the relationship between the discharge amount and the voltage, there is almost no difference between Example 1 and Example 2, but with respect to the battery temperature, Example 2 is more than Example 1. You can see that it is lower.
In Example 1 and Example 2, since the internal resistance of the battery pack is the same, the total heat generation is considered to be almost the same, but in the result of FIG. 6 above, Example 2 has a temperature rise in the central part of the battery group. Therefore, it is considered preferable to dispose the low-resistance battery A at the center position of the battery group because the temperature rise can be reduced and the cycle characteristics are improved.
 このことから、電池グループAをブロック状の電池群の中央領域に偏在させることによって、高出力時の温度上昇を低減することができると考えられる。
 この理由は、電池A及び電池Bに流れる電流に差があまりない場合、電池Aの発熱量は、電池Bに比べて小さくなる。このような電池Aをパック電池の中央に配置させた場合、両側の発熱量の大きな電池Bの発熱を吸収するような形でパック電池全体を均熱化することができる。これに対して、電池Aをパック電池の端に配置させた場合、電池Bからの発熱を電池Aで十分に吸収することができず、パック電池の全体の均熱化が図れず、パック電池全体の温度が上昇すると考えられる。
From this, it is thought that the temperature rise at the time of high output can be reduced by making the battery group A unevenly distributed in the central region of the block-shaped battery group.
The reason for this is that when there is not much difference between the currents flowing through battery A and battery B, the amount of heat generated by battery A is smaller than that of battery B. When such a battery A is arranged in the center of the battery pack, the whole battery pack can be soaked in such a way as to absorb the heat generated by the battery B having a large heat generation amount on both sides. On the other hand, when the battery A is disposed at the end of the battery pack, the heat generated from the battery B cannot be sufficiently absorbed by the battery A, and the overall temperature of the battery pack cannot be equalized. The overall temperature is thought to rise.
 また、電池Aに流れる電流が非常に大きい場合、電池Aのほうが電池Bに対して発熱量が大きくなることがある。この場合でも、電池Aをパック電池の中央に配置させることにより、電池Aの両側に電池Bが隣接するため放熱性が向上して、パック電池全体の均熱効果が高くなり、温度上昇を抑制することができる。これに対して、電池Aがパック電池の端に配置している場合、電池Aに隣接する電池Bが片側だけなので放熱性が低下し、パック電池全体を均熱化できず温度が上昇すると考えられる。 In addition, when the current flowing through the battery A is very large, the battery A may generate more heat than the battery B. Even in this case, by disposing the battery A in the center of the battery pack, the battery B is adjacent to both sides of the battery A, so that the heat dissipation is improved, the heat equalizing effect of the whole battery pack is increased, and the temperature rise is suppressed. can do. On the other hand, when the battery A is arranged at the end of the battery pack, since the battery B adjacent to the battery A is only on one side, the heat dissipation is lowered, and the temperature of the battery pack rises because the whole battery pack cannot be soaked. It is done.
 (変形例など) 
 パック電池1及びパック電池2においては、3つの二次電池を直列に接続した電池ブロックを4つ並列接続して電池群を構成しているが、4つの二次電池を並列に接続した並列ブロックを3つ直列に接続しても、同様のパック電池を構成することができ、同様の効果を奏する。
(Variations, etc.)
In the battery pack 1 and the battery pack 2, four battery blocks in which three secondary batteries are connected in series are connected in parallel to form a battery group, but a parallel block in which four secondary batteries are connected in parallel Even if three are connected in series, a similar battery pack can be formed, and the same effect can be obtained.
 また、パック電池1及びパック電池2においては、平均動作電圧及び内部抵抗が異なる2つの電池グループ10,20を組み合わせて並列接続したが、平均動作電圧及び内部抵抗が異なる3つ以上の電池グループを組み合わせて並列接続することによってパック電池を構成することもできる。
 上記実施形態においては、電池Bと比べて電池Aにおいて、正極板と負極板の対向面積を広く設定することによって内部低抵を低くしたが、用いる活物質の種類によっても極板の抵抗が変わるので、より低抵抗となる活物質を選択して用いることによって電池の内部抵抗を低く設定することもできる。
Moreover, in the battery pack 1 and the battery pack 2, two battery groups 10 and 20 having different average operating voltages and internal resistances are combined and connected in parallel. However, three or more battery groups having different average operating voltages and internal resistances are connected. A battery pack can also be configured by combining and connecting in parallel.
In the above embodiment, the internal resistance is reduced by setting the facing area of the positive electrode plate and the negative electrode plate wider in the battery A than in the battery B. However, the resistance of the electrode plate also changes depending on the type of active material used. Therefore, the internal resistance of the battery can be set low by selecting and using an active material that has a lower resistance.
 上記パック電池1,2においては、電池A、電池Bともに電池の種類がリチウムイオン電池であったが、本発明のパック電池は、必ずしもリチウムイオン電池に限られず、例えば、作動電位が異なる電極活物質を用いたニッケル水素電池を組み合わせたパック電池、あるいは作動電位が異なる電極活物質を用いたニカド電池を組み合わせたパック電池にも適用できる。 In the above-described battery packs 1 and 2, both the battery A and the battery B are lithium ion batteries. However, the battery pack of the present invention is not necessarily limited to a lithium ion battery. The present invention can also be applied to a battery pack in which a nickel metal hydride battery using a material is combined, or a battery pack in which a nickel-cadmium battery using electrode active materials having different operating potentials is combined.
 本発明にかかるパック電池は、高出力と高容量をバランスよく得ることができるので、電動工具、電動アシスト自転車、電動バイク、HEVやPEVなどの動力源として適している。 The battery pack according to the present invention is suitable as a power source for electric tools, electric assist bicycles, electric bikes, HEVs, PEVs and the like because it can obtain a high output and high capacity in a balanced manner.
  1,2   パック電池
  10,20 電池グループ
  30    保護回路
  31    コネクタ
1, 2 pack battery 10, 20 battery group 30 protection circuit 31 connector

Claims (5)

  1.  第1電池グループ及び第2電池グループが並列接続された電池群を備えるパック電池であって、
     前記第1電池グループ及び第2電池グループは、同じ種類の二次電池によって構成され、
     第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、 平均動作電圧が高く且つ電池の内部抵抗が小さく設定されていることを特徴とするパック電池。
    A battery pack comprising a battery group in which a first battery group and a second battery group are connected in parallel,
    The first battery group and the second battery group are composed of secondary batteries of the same type,
    Compared to secondary batteries belonging to the first battery group, the secondary batteries belonging to the second battery group are set to have a high average operating voltage and a low internal resistance of the battery.
  2.  第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類は、 共にリチウムイオン電池であり、
     第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、 正極板を構成する正極活物質の作動電位が高いことを特徴とする請求項1記載のパック電池。
    The secondary battery belonging to the first battery group and the secondary battery belonging to the second battery group are both lithium ion batteries,
    2. The battery pack according to claim 1, wherein the secondary battery belonging to the second battery group has a higher operating potential of the positive electrode active material constituting the positive electrode plate than the secondary battery belonging to the first battery group.
  3.  第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、 発電素体を構成する正極板と負極板の対向面積が大きいことを特徴とする請求項1又は2記載のパック電池。 3. The secondary battery belonging to the second battery group has a larger facing area between the positive electrode plate and the negative electrode plate constituting the power generation element than the secondary battery belonging to the first battery group. Packed battery as described.
  4.  各第1電池グループに属する二次電池の数と、各第2電池グループに属する二次電池の数が同じで、各グループ内で二次電池同士が直列接続されていることを特徴とする請求項1~3のいずれか記載のパック電池。 The number of secondary batteries belonging to each first battery group is the same as the number of secondary batteries belonging to each second battery group, and the secondary batteries are connected in series within each group. Item 4. The battery pack according to any one of Items 1 to 3.
  5.  第1電池グループ及び第2電池グループは、電池群がブロック状になるように配列され、
     第1電池グループがその中央部に偏在していることを特徴とする請求項1~4のいずれか記載のパック電池。 
    The first battery group and the second battery group are arranged so that the battery group is in a block shape,
    5. The battery pack according to claim 1, wherein the first battery group is unevenly distributed at the center thereof.
PCT/JP2012/051604 2011-03-25 2012-01-26 Pack battery WO2012132525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-068440 2011-03-25
JP2011068440A JP2014112463A (en) 2011-03-25 2011-03-25 Battery pack

Publications (1)

Publication Number Publication Date
WO2012132525A1 true WO2012132525A1 (en) 2012-10-04

Family

ID=46930293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051604 WO2012132525A1 (en) 2011-03-25 2012-01-26 Pack battery

Country Status (2)

Country Link
JP (1) JP2014112463A (en)
WO (1) WO2012132525A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087214A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Battery pack and electric device therefor
WO2024011454A1 (en) * 2022-07-13 2024-01-18 宁德时代新能源科技股份有限公司 Battery pack and electrical device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066255B2 (en) * 2011-09-30 2017-01-25 株式会社Gsユアサ Electricity storage element
JP2015088255A (en) * 2013-10-29 2015-05-07 株式会社豊田自動織機 Battery
KR102547068B1 (en) * 2020-06-15 2023-06-23 삼성에스디아이 주식회사 Battery pack, battery module having the battery pack, power supplier having the battery module
JP2023509418A (en) 2020-09-30 2023-03-08 寧徳時代新能源科技股▲分▼有限公司 BATTERY, APPARATUS, BATTERY MANUFACTURING METHOD AND MANUFACTURING APPARATUS
EP4064421A4 (en) 2020-11-17 2023-09-13 Contemporary Amperex Technology Co., Limited Battery, device using battery, and method and device for preparing battery
EP4152479A4 (en) 2021-07-30 2023-09-13 Contemporary Amperex Technology Co., Limited Battery group, battery pack and electric apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429528A (en) * 1990-05-25 1992-01-31 Hitachi Koki Co Ltd Dc power supply
JPH11332023A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Battery for electric vehicle
JP2001268814A (en) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> Power supply device, electric equipment, and power supply method
JP2004111242A (en) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429528A (en) * 1990-05-25 1992-01-31 Hitachi Koki Co Ltd Dc power supply
JPH11332023A (en) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd Battery for electric vehicle
JP2001268814A (en) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> Power supply device, electric equipment, and power supply method
JP2004111242A (en) * 2002-09-19 2004-04-08 Nissan Motor Co Ltd Battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087214A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Battery pack and electric device therefor
WO2024011454A1 (en) * 2022-07-13 2024-01-18 宁德时代新能源科技股份有限公司 Battery pack and electrical device

Also Published As

Publication number Publication date
JP2014112463A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
WO2012132525A1 (en) Pack battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP6056125B2 (en) Battery pack and power storage device
WO2022133962A1 (en) Battery set, battery pack, electrical apparatus, and fabrication method and fabrication device for battery set
US20220399607A1 (en) Battery module, battery pack, power consumption apparatus, and manufacturing method and manufacturing device of battery module
KR20180118241A (en) Electrical device
JP2005108477A (en) Battery pack and electric automobile
US11749999B2 (en) Battery unit, battery pack, electrical device, method and apparatus for manufacturing battery unit, and method for controlling battery unit
US20230116710A1 (en) Negative electrode current collector, secondary battery containing the same, battery module, battery pack, and power consumption apparatus
US20230369556A1 (en) Long-life secondary battery, battery module, battery pack, and power consumption apparatus
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
US10186693B2 (en) Flat secondary battery
JP2013197052A (en) Lithium ion power storage device
US10431852B2 (en) Flat secondary battery
JP2013197051A (en) Lithium ion power storage device
WO2023105600A1 (en) Power storage cell and power storage module
US11799161B2 (en) Battery pack and power consuming device
JP7483910B2 (en) Electrode assembly, secondary battery, battery module, battery pack, and power consuming device
US20230207938A1 (en) Battery pack, and power consuming device thereof
EP4358176A1 (en) Positive pole piece, secondary battery, and electrical apparatus
WO2022226974A1 (en) Battery module, battery pack, electrical apparatus, and manufacturing method and device for battery module
JP2012209026A (en) Method for manufacturing battery pack
JP4576891B2 (en) Nonaqueous electrolyte secondary battery
WO2023050834A1 (en) Secondary battery, battery module containing same, battery pack and electrical device
WO2024077473A1 (en) Current collector and manufacturing method therefor, and electrode plate, secondary battery and electric apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP