WO2023105600A1 - Power storage cell and power storage module - Google Patents

Power storage cell and power storage module Download PDF

Info

Publication number
WO2023105600A1
WO2023105600A1 PCT/JP2021/044825 JP2021044825W WO2023105600A1 WO 2023105600 A1 WO2023105600 A1 WO 2023105600A1 JP 2021044825 W JP2021044825 W JP 2021044825W WO 2023105600 A1 WO2023105600 A1 WO 2023105600A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
cell
capacity
storage cell
negative electrode
Prior art date
Application number
PCT/JP2021/044825
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 小松
靖生 鈴木
モハメド ミザヌル ラフマン
信雄 安東
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to PCT/JP2021/044825 priority Critical patent/WO2023105600A1/en
Publication of WO2023105600A1 publication Critical patent/WO2023105600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to storage cells and storage modules.
  • the inventors of the present invention have found that the conventional hybrid storage cell may not be able to suppress the deterioration of the first cell even if the second cell is provided. It was newly discovered that even if the deterioration of the second cell can be suppressed, the presence of the second cell may reduce the volumetric energy density of the storage cell.
  • An object of the present invention is to provide a storage cell that can solve the above-described problems.
  • a storage cell disclosed in this specification includes a first positive electrode, a second positive electrode having a lower capacity and lower internal resistance than the first positive electrode, and a negative electrode.
  • a first capacity ratio which is a ratio of the capacity of the second positive electrode to the capacity of the first positive electrode, is 0.7% or more and 10% or less.
  • the first cell composed of the first positive electrode and the negative electrode has relatively high internal resistance and exhibits relatively high capacity characteristics.
  • a second cell composed of a second positive electrode and a negative electrode has relatively low internal resistance, and thus exhibits relatively high output characteristics. Since the first capacity ratio is 0.7% or more, deterioration of the first cell due to current fluctuations can be suppressed due to the low capacity and low resistance characteristics of the second cell.
  • the first capacity ratio is 10% or less, it is possible to suppress a decrease in the capacity of the storage cell due to the low capacity characteristic of the second cell.
  • the present electric storage cell it is possible to simultaneously suppress deterioration of the first cell and suppress a decrease in volumetric energy density of the electric storage cell.
  • the first capacity ratio may be 1% or more. According to this storage cell, it is possible to suppress voltage fluctuations due to charge-discharge cycles in which current fluctuations are relatively large.
  • the first positive electrode material forming the first positive electrode and the second positive electrode material forming the second positive electrode may have different characteristics. According to this electric storage cell, it is possible to give the electric storage cell both the electrode characteristics based on the first positive electrode material and the electrode characteristics based on the second positive electrode material.
  • the second capacity ratio which is the ratio of the total capacity of the capacity of the first positive electrode and the capacity of the second positive electrode to the capacity of the negative electrode, is 10% or more and 90%. It is good also as a structure which is below. According to this storage cell, since the second capacity ratio is 90% or less, expansion and contraction of the negative electrode due to intercalation of lithium ions are suppressed, and the cycle life of the storage cell can be improved. . Moreover, since the second capacity ratio is 10% or more, it is possible to suppress a decrease in the volumetric energy density of the storage cell.
  • the second capacity ratio may be 50% or more and 75% or less. According to this energy storage cell, it is possible to more effectively suppress a decrease in the volume energy density of the energy storage cell while improving the cycle life of the energy storage cell.
  • the negative electrode may be configured such that the negative electrode SOC is in the range of 10% or more and 100% or less. According to this storage cell, it is possible to suppress the decrease in the life of the storage cell due to the shortage of positive ions.
  • the electric storage module includes a plurality of electric storage cells, wherein at least one of the plurality of electric storage cells is the electric storage cell according to any one of (1) to (6) above. may be According to this power storage module, it is possible to achieve both suppression of deterioration of the first cells and suppression of reduction in the volumetric energy density of the power storage cells.
  • Explanatory diagram showing the internal configuration of the electricity storage device 1 according to the embodiment Explanatory drawing showing the voltage change of the pre-doped storage cell 100
  • Explanatory diagram showing performance evaluation results Explanatory diagram showing the internal configuration of an electricity storage device 1a in a modified example of the present embodiment.
  • FIG. 1 is an explanatory diagram showing the internal configuration of an electricity storage device 1 according to the embodiment.
  • FIG. 1 shows mutually orthogonal XYZ axes for specifying directions.
  • the positive direction of the Z-axis is referred to as the “upward direction” and the negative direction of the Z-axis is referred to as the “downward direction”.
  • Orientation may be set.
  • the power storage device 1 includes a housing 30 and power storage cells 100 .
  • the housing 30 is a container in which an accommodation space is formed to accommodate the storage cell 100 .
  • the housing 30 is made of metal such as aluminum, or synthetic resin that does not absorb moisture.
  • the housing 30 is provided with a positive terminal portion 40P and a negative terminal portion 40N.
  • a part or all of the metal portion of the housing 30 may serve as either one of the positive electrode side terminal portion 40P and the negative electrode side terminal portion 40N.
  • the electric storage device 1 may have a configuration in which the electric storage cell 100 is housed in a bag such as a laminated film, for example.
  • the storage cell 100 includes a lithium ion battery (hereinafter referred to as “LIB”) that exhibits relatively high internal resistance and relatively high capacity characteristics, and a relatively low internal resistance and relatively high output characteristics. It is a so-called hybrid cell that includes a lithium ion capacitor (hereinafter referred to as “LIC”) that exhibits high performance.
  • LIB lithium ion battery
  • LIC lithium ion capacitor
  • the electricity storage device 1 since the electricity storage device 1 includes the electricity storage cell 100 which is a hybrid cell, it has a large energy capacity and is capable of rapid charging and discharging.
  • the power storage device 1 is, for example, a load leveling device for solar power generation, wind power generation, etc., an instantaneous voltage drop countermeasure device for electronic equipment typified by computers, an energy regeneration device for electric vehicles and hybrid cars, and an electric two-wheel drive. It is used as a power source, etc.
  • the storage cell 100 has multiple LIB cells 10 and multiple LIC cells 20 .
  • a plurality of LIB cells 10, a plurality of LIC cells 20, and an electrolytic solution are housed in the same space.
  • FIG. 1 shows an arrangement state of multiple LIB cells 10 and multiple LIC cells 20 .
  • a plurality of LIB cells 10 and a plurality of LIC cells 20 are arranged side by side in a predetermined direction (the Y-axis direction in this embodiment) in the same space within the housing 30 .
  • An electrolytic solution (not shown) is contained in the housing 30, and the LIB cell 10 and the LIC cell 20 are immersed in the electrolytic solution.
  • the electrolytic solution is, for example, a mixture of an electrolytic salt, an organic solvent and an additive.
  • the storage cell 100 includes multiple LIB positive plates 110P, multiple LIC positive plates 210P, multiple negative plates 110N, and a separator 120.
  • LIB positive plates 110P and LIC positive plates 210P are alternately arranged one by one in the cell arrangement direction.
  • the negative electrode plate 110N is arranged so as to be interposed between the LIB positive electrode plate 110P and the LIC positive electrode plate 210P that face each other in the cell arrangement direction.
  • the separator 120 is interposed between the LIB positive plate 110P and the negative electrode plate 110N facing each other in the cell arrangement direction and between the LIC positive plate 210P and the negative electrode plate 110N facing each other in the cell arrangement direction.
  • the storage cell 100 has a laminated structure in which the LIB positive plate 110P, the LIC positive plate 210P, the negative electrode plate 110N, and the separator 120 are arranged side by side in a predetermined direction (the cell alignment direction in this embodiment).
  • the LIB positive plate 110P is an example of the first positive electrode in the claims
  • the LIC positive plate 210P is an example of the second positive electrode in the claims
  • the negative electrode plate 110N is the It is an example of a negative electrode.
  • the LIB positive electrode plate 110P has a positive electrode current collector 112P and a pair of LIB positive electrode active materials 114P, 114P supported by the positive electrode current collector 112P.
  • the positive electrode current collector 112P is aluminum foil, and porous foil such as etched foil or punched foil may be used.
  • the positive electrode current collector 112P has a positive electrode tab protruding upward near its upper end.
  • a pair of LIB positive electrode active materials 114P are supported on both sides of the positive electrode current collector 112P.
  • the pair of LIB positive electrode active materials 114P are made of the same material.
  • Examples of materials used for forming the LIB positive electrode active material 114P include lithium cobalt oxide, ternary lithium metal composite oxides (nickel manganese cobalt, etc.), lithium manganate, lithium nickel oxide, and lithium iron phosphate.
  • the LIB positive electrode active material 114P is an example of the first positive electrode material in the claims.
  • the LIC positive electrode plate 210P has a positive electrode current collector 212P and a pair of LIC positive electrode active materials 214P, 214P supported by the positive electrode current collector 212P.
  • the positive electrode current collector 212P is aluminum foil, and porous foil such as etching foil or punching foil may be used.
  • the positive electrode current collector 212P has a positive electrode tab protruding upward near its upper end.
  • a pair of LIC positive electrode active materials 214P are supported on both sides of the positive electrode current collector 212P.
  • the pair of LIC positive electrode active materials 214P are made of the same material.
  • activated carbon such as steam activated carbon or alkali activated carbon is used.
  • the LIC cathode active material 214P is an example of the second cathode material in the claims.
  • the negative electrode plate 110N has a negative electrode current collector 112N and a pair of negative electrode active materials 114N and 114N supported by the negative electrode current collector 112N.
  • the negative electrode current collector 112N is copper foil, and porous foil such as etched foil or punched foil may be used.
  • the negative electrode current collector 112N has a negative electrode tab protruding upward near its upper end.
  • a pair of negative electrode active materials 114N are supported on both sides of the negative electrode current collector 112N.
  • the pair of negative electrode active materials 114N are made of the same material. Examples of materials used for forming the negative electrode active material 114N include graphite, silicon-based materials, hard carbon, soft carbon, and lithium titanate.
  • the separator 120 is made of an insulating material (for example, paper, glass fiber, synthetic resin (porous polyethylene film, etc.)).
  • the ears of the plurality of LIB positive plates 110P and the ears of the plurality of LIC positive plates 210P are electrically connected to the positive terminal portion 40P.
  • Ear portions of the plurality of negative electrode plates 110N are electrically connected to the negative terminal portion 40N.
  • the LIB cell 10 is configured by the LIB positive electrode active material 114P of the LIB positive plate 110P, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween.
  • the LIC cell 20 is composed of the LIC positive electrode active material 214P of the LIC positive plate 210P, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. That is, the LIB cell 10 and the LIC cell 20 are connected in parallel with each other.
  • the storage cell 100 has a configuration in which a predetermined plurality (two in FIG. 1) of the LIB cells 10 and the LIC cells 20 are alternately arranged in the cell arrangement direction.
  • the first capacity ratio is 0.7% or more and 10% or less.
  • the first capacity ratio is the ratio of the capacity of the LIC positive plate 210P to the capacity of the LIB positive plate 110P.
  • the capacity of the LIB positive plate 110P is a charge transfer amount (amount of electricity) when a half cell is configured by the LIB positive plate 110P, a test negative electrode, and a separator, and a charge/discharge test is performed on the half cell. .
  • the capacity of the LIC positive plate 210P is the amount of charge transferred (amount of electricity) when a half cell is formed by the LIC positive plate 210P, the test negative electrode, and the separator, and a charge/discharge test is performed on the half cell.
  • the test negative electrode used for these half cells has a sufficient capacity so as not to affect the measurement result of the capacity of the half cell in the charge/discharge test.
  • a test negative electrode having lithium metal as a negative electrode material is used.
  • the charge/discharge test for measuring the capacity of each pole is as follows. First, each half cell is charged at a constant current of 0.3 C until the cell voltage reaches a set voltage (for example, 3.65 V) for full charge, and then a constant voltage charge (CCCV) of the set voltage is applied. charge) for 30 minutes to reach full charge. Next, from this fully charged state, the battery is discharged at a constant current of 1 C until the cell voltage reaches the final voltage (eg, 2.2 V at which the cell voltage begins to drop rapidly). By repeating this charging and discharging three times, the half-cell was put into a steady state, and the capacity measured when discharging for the third time was taken as the capacity of each electrode.
  • a set voltage for example, 3.65 V
  • CCCV constant voltage charge
  • the LIB positive plate 110P and the LIC positive plate 210P satisfy the following second condition. ⁇ Second condition>
  • the first capacity ratio is 1% or more. It should be noted that the first capacity ratio is more preferably 2% or more.
  • the LIB positive plate 110P and the LIC positive plate 210P satisfy the following third condition.
  • ⁇ Third condition> The LIB positive electrode active material 114P forming the LIB positive electrode plate 110P and the LIC positive electrode active material 214P forming the LIC positive electrode plate 210P have different characteristics.
  • LFP lithium iron phosphate
  • AC activated carbon
  • the LIB positive electrode plate 110P has a relatively high internal resistance
  • the LIC positive electrode plate 210P has relatively low internal resistance and has the characteristics of a LIC positive electrode exhibiting relatively high output characteristics. It will be.
  • the storage cell 100 preferably satisfies the following fourth condition. ⁇ Fourth condition>
  • the second capacity ratio is 10% or more and 90% or less.
  • the second capacity ratio is the ratio of the total capacity of the LIB positive plate 110P and the LIC positive plate 210P to the capacity of the negative plate 110N.
  • the storage cell 100 preferably further satisfies the following fifth condition. ⁇ Fifth condition>
  • the second capacity ratio is 50% or more and 75% or less.
  • the storage cell 100 preferably satisfies the following sixth condition. ⁇ Sixth condition>
  • the negative electrode plate 110N is used in a range where the negative electrode SOC (state of charge) is 10% or more and 100% or less.
  • the storage cell 100 that satisfies the sixth condition can be realized, for example, by doping the negative electrode plate 110N with lithium ions (so-called pre-doping).
  • FIG. 2 is an explanatory diagram showing the voltage change of the pre-doped storage cell 100. As shown in FIG. A graph G1 in FIG. 2 is a graph showing changes in potential of the positive terminal portion 40P of the storage cell 100 during charging and discharging.
  • a graph G2 is a graph showing changes in potential of the negative electrode terminal portion 40N of the storage cell 100 during charging and discharging.
  • FIG. 2 illustrates voltage changes when the negative electrode SOC utilization range of the negative electrode plate 110N is 50%.
  • the initial discharge capacity of the negative electrode half-cell becomes larger than the positive electrode capacity.
  • the utilization range of the negative electrode SOC can be specified from the difference between the discharge capacity and the positive electrode capacity, and the negative electrode capacity.
  • FIG. 3 is an explanatory diagram showing performance evaluation results.
  • Each sample has a configuration in which lithium iron phosphate is used as the LIB positive electrode active material 114P, activated carbon is used as the LIC positive electrode active material 214P, and graphite (C) is used as the negative electrode active material 114N.
  • the samples (S1 to S10) differ from each other in the first capacity ratio (%). Note that the sample S1 has a first capacity ratio of 0%, and therefore is a single LIB storage cell.
  • each electrode (LIB positive plate 110P, LIC positive plate 210P, negative electrode plate 110N) constituting a sample is produced as follows.
  • the first positive electrode slurry was obtained by defoaming. This first positive electrode slurry was applied to both sides of a porous aluminum foil, dried, and pressed, and cut into a predetermined shape to obtain a LIB positive electrode plate 110P.
  • LIC positive electrode plate 210P (Preparation of LIC positive electrode plate 210P): Commercially available activated carbon powder (85 parts by weight) having a specific surface area of 2000 m 2 /g, acetylene black powder (5 parts by weight), acrylic resin binder (6 parts by weight), and carboxymethyl cellulose (4 parts by weight) were mixed. , and pure water were added, and the slurry was sufficiently agitated to remove air bubbles, thereby obtaining a second positive electrode slurry. Both surfaces of the porous aluminum foil were coated with the second positive electrode slurry, dried, and then cut into a predetermined shape to obtain the LIC positive electrode plate 210P.
  • negative electrode plate 110N Commercially available artificial graphite powder (96 parts by weight), acetylene black powder (1 part by weight), and styrene-butadiene rubber (SBR) powder (2 parts by weight) are mixed, carboxymethylcellulose (1 part by weight) is added, A negative electrode slurry was obtained by sufficiently stirring and defoaming. This negative electrode slurry was applied to both sides of the porous copper foil, dried, and pressed, and cut into a predetermined shape to obtain a negative electrode plate 110N.
  • SBR styrene-butadiene rubber
  • the LIB positive electrode plate 110P, the LIC positive electrode plate 210P, and the negative electrode plate 110N thus produced were laminated via a separator (polyethylene microporous film) to form an electrode assembly.
  • the first capacity ratio was made different from each other by changing the number (number ratio) of the LIB positive plate 110P and the LIC positive plate 210P.
  • external terminals were welded to each of the LIB positive plate 110P, the LIC positive plate 210P, and the negative electrode plate 110N constituting the electrode assembly, and the electrode assembly was placed in a bag-like aluminum laminate.
  • an electrolytic solution was injected into the laminate, and then the opening of the laminate was vacuum-sealed to prepare a sample electric storage cell.
  • the capacities of the LIB positive plate 110P, the LIC positive plate 210P, and the negative electrode plate 110N were measured as follows.
  • the negative electrode active material of the test negative electrode used for measuring the capacity of the sample is lithium.
  • a test negative electrode (Li electrode) was obtained by pressing a lithium foil cut into a predetermined shape onto a porous copper foil cut into a predetermined shape.
  • a half cell was constructed from the LIB positive electrode plate 110P obtained by disassembling each sample, a test negative electrode, and a separator (polyethylene microporous film).
  • the capacity of the LIB positive electrode plate 110P was used.
  • the LIC positive electrode plate 210P obtained by disassembling each sample, the test negative electrode, and the separator (polyethylene microporous film) constitute a half cell. It was set as the capacity of the positive electrode plate 210P.
  • a negative electrode plate 110N obtained by disassembling each sample, a test negative electrode, and a separator (polyethylene microporous film) constitute a half cell. The capacity was 110N. Then, the first capacity ratio of each sample was obtained based on each measured capacity.
  • a charging/discharging cycle pattern was obtained by converting the running pattern of the two electric wheels into a current value for motor drive control.
  • This charge/discharge cycle pattern is a charge/discharge pattern in which charging with a current value of about 5 C and discharging with a current value of about 5 C are switched every predetermined time (3 seconds on average).
  • a charge/discharge cycle test was performed using the above charge/discharge pattern using a sample of each fully charged storage cell, and the test was terminated when the sample was discharged to a predetermined voltage (2.2 V).
  • the first capacity ratio is set to 1% or more, the internal resistance of the storage cell is small, and the voltage fluctuation is suppressed with respect to the charging/discharging cycle pattern in which the current fluctuates sharply.
  • the first capacity ratio is less than 1%, the capacity of the LIC positive plate 210P is extremely small (the number of LIB positive plates 110P is small), and the current path of the LIC positive plate 210P is narrow.
  • the electrical resistance of 210P becomes relatively large. Therefore, even in a hybrid cell, it is considered that the internal resistance of the storage cell is not reduced.
  • the first capacity ratio to 10% or less, a decrease in the volumetric energy density of the storage cell is suppressed. If the first capacity ratio exceeds 10%, the capacity of the LIC positive plate 210P is relatively large (the number of LIB positive plates 110P is small), so the high capacity characteristics of the LIB are not sufficiently exhibited. As a result, it is believed that the volumetric energy density decreases.
  • the electric storage cell 100 is composed of the LIB positive plate 110P and the negative electrode plate 110N. Exhibit capacity characteristics.
  • the LIC cell 20 composed of the LIC positive plate 210P and the negative plate 110N has relatively low internal resistance, and thus exhibits relatively high output characteristics. Since the first capacitance ratio is 0.7% or more (first condition), the low capacitance and low resistance characteristics of the LIC cell 20 can suppress deterioration of the LIB cell 10 due to current fluctuations. . In addition, since the first capacity ratio is 10% or less (first condition), it is possible to prevent the capacity of the storage cell 100 from decreasing due to the low capacity characteristic of the LIC cell 20 . As described above, according to the present embodiment, both suppression of deterioration of the LIB cell 10 and suppression of decrease in the volumetric energy density of the storage cell 100 can be achieved.
  • the first capacity ratio is 1% or more (second condition)
  • the LIB positive electrode active material 114P constituting the LIB positive electrode plate 110P and the LIC positive electrode active material 214P constituting the LIC positive electrode plate 210P have different characteristics (third condition), the LIB positive electrode active material 114P and electrode characteristics based on the LIC positive electrode active material 214P.
  • the performance of each electrode can be changed according to the characteristics of the materials used as the LIB positive electrode active material 114P and the LIC positive electrode active material 214P.
  • the second capacity ratio exceeds 90%, the degree of expansion and contraction of the negative electrode plate 110N due to intercalation of lithium ions from the positive electrode (LIB positive electrode plate 110P) is large. Therefore, there is a possibility that the capacity of the storage cell 100 may decrease or the internal resistance of the storage cell 100 may increase due to, for example, physical damage to the electrodes.
  • the second capacity ratio is 90% or less (fourth condition)
  • the negative electrode plate 110N resulting from intercalation of lithium ions from the positive electrode (LIB positive electrode plate 110P) expansion and contraction are suppressed, and the cycle life of the storage cell 100 can be improved.
  • the second capacity ratio is less than 10%, the amount of the negative electrode active material 114N that is excessively large relative to the LIB positive electrode active material 114P and the LIC positive electrode active material 214P is not used for charging and discharging. Since the amount of material increases, the volume energy density of the storage cell 100 may decrease.
  • the second capacity ratio is 10% or more (fourth condition)
  • the second capacity ratio is 50% or more and 75% or less (fifth condition) it is possible to prevent the volume energy density of the storage cell 100 from decreasing while improving the cycle life of the storage cell 100. , can be suppressed more effectively.
  • the negative electrode SOC when used in the range of 10% or more and 100% or less (sixth condition), it is possible to suppress the decrease in the life of the storage cell 100 due to the lack of lithium ions.
  • FIG. 4 is an explanatory diagram showing the internal configuration of an electricity storage device 1a in a modification of the present embodiment.
  • the power storage device 1a of this modification differs from the power storage device 1 of the above-described embodiment in the configuration of the power storage cells.
  • the same configurations as the configuration of the electricity storage device 1 of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a power storage cell 100 a of this modification includes a plurality of hybrid positive electrode plates 110 Pa, a plurality of negative electrode plates 110 N, and a separator 120 .
  • Hybrid positive electrode plates 110Pa and negative electrode plates 110N are alternately arranged one by one in the cell arrangement direction.
  • the separator 120 is arranged so as to be interposed between the hybrid positive electrode plate 110Pa and the negative electrode plate 110N facing each other in the cell arrangement direction. That is, the storage cell 100a has a laminated structure in which the hybrid positive electrode plate 110Pa, the negative electrode plate 110N, and the separator 120 are arranged side by side in a predetermined direction (the cell alignment direction in this embodiment).
  • the hybrid positive electrode plate 110Pa includes a positive electrode current collector 112P, a LIB positive electrode active material 114P supported on one surface of the positive electrode current collector 112P (the surface on the Y-axis positive direction side in FIG. 4), and the positive electrode current collector 112P. and the LIC positive electrode active material 214P supported on the other surface (the surface on the Y-axis negative direction side in FIG. 4).
  • the portion on the side to which the LIB positive electrode active material 114P is applied is an example of the first positive electrode in the claims
  • the portion on the side to which the LIC positive electrode active material 214P is applied is the It is an example of the second positive electrode in the claims.
  • the LIB cell 10 is composed of the LIB positive electrode active material 114P of the hybrid positive electrode plate 110Pa, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween.
  • the LIC cell 20 is composed of the LIC positive electrode active material 214P of the hybrid positive electrode plate 110Pa, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. That is, the LIB cell 10 and the LIC cell 20 are connected in parallel with each other.
  • the storage cell 100a has a configuration in which a predetermined number of LIB cells 10 and LIC cells 20 (one cell in FIG. 4) are alternately arranged in the cell alignment direction.
  • the configuration of the electricity storage device 1 in the above embodiment is merely an example, and various modifications are possible.
  • the LIB positive electrode plate 110P and the LIC positive electrode plate 210P were exemplified as the first positive electrode and the second positive electrode. , and low internal resistance.
  • the first positive electrode and the second positive electrode are formed of the same material, and the first positive electrode and the second positive electrode have different coating amounts, densities, etc. of the electrode layers (active materials).
  • a configuration in which a relationship is established may also be used.
  • the number of LIB cells 10 and LIC cells 20 is not limited to the same number, and the number ratio of LIB cells 10 and LIC cells 20 may be changed.
  • a configuration in which one LIB cell 10 and one LIC cell 20 are included in each power storage device may be used.
  • the pair of LIB negative electrode active materials 114N attached to the negative electrode plate 110N may be made of different materials.
  • the plurality of LIB cells 10, the plurality of LIC cells 20, and the electrolytic solution are housed in the same space. may be housed in the same space, or the LIB cell 10 and the LIC cell 20 may be housed in different spaces (cell chambers, battery cases). In the above embodiment, both the LIB cell 10 and the LIC cell 20 have a laminated structure. may be configured to have.
  • the configuration may be such that at least one of the second to sixth conditions is not satisfied.
  • the above effect can be obtained by satisfying the first condition and further the second to sixth conditions for at least one power storage cell.
  • each member in the above embodiment is merely examples, and each member may be made of another material.
  • the method for manufacturing the storage cell in the above embodiment is merely an example, and the storage cell may be manufactured by another manufacturing method.

Abstract

The present invention achieves both suppression of deterioration of a first cell and suppression of reduction of the volume energy density of a power storage cell. This power storage cell comprises a first positive electrode, a second positive electrode having lower capacity and lower internal resistance than the first positive electrode, and a negative electrode. In this power storage cell, a first cell composed of the first positive electrode and the negative electrode has relatively high internal resistance and exhibits a relatively high capacitive characteristic. A second cell composed of the second positive electrode and the negative electrodes has relatively low internal resistance, and thus exhibits a relatively high output characteristic. A first capacity ratio is the ratio of the capacity of the second positive electrode to the capacity of the first positive electrode, and is 0.7-10% inclusive.

Description

蓄電セル、および、蓄電モジュールStorage cell and storage module
 本発明は、蓄電セル、および、蓄電モジュールに関する。 The present invention relates to storage cells and storage modules.
 従来から、遷移金属酸化物(コバルト酸リチウム等)が含まれる第1の正極と、活性炭(フェノール樹脂)が含まれる第2の正極との間に負極が配置されたハイブリッドの蓄電セルが知られている(下記特許文献1参照)。このようなハイブリッドの蓄電セルでは、第1の正極と負極とで構成される第1のセルは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮する。第2の正極と負極とで構成される第2のセルは、相対的に内部抵抗が低いため、相対的に高い出力特性(充放電の高速化)を発揮する。 Conventionally, there has been known a hybrid electric storage cell in which a negative electrode is arranged between a first positive electrode containing a transition metal oxide (lithium cobaltate, etc.) and a second positive electrode containing activated carbon (phenolic resin). (see Patent Document 1 below). In such a hybrid electric storage cell, the first cell composed of the first positive electrode and the negative electrode has relatively high internal resistance and exhibits relatively high capacity characteristics. The second cell, which is composed of the second positive electrode and the negative electrode, has relatively low internal resistance, and thus exhibits relatively high output characteristics (speeding up charging and discharging).
特許第5091573号公報Japanese Patent No. 5091573
 本発明者は、鋭意検討を重ねることにより、上記従来のハイブリッドの蓄電セルでは、第2のセルを備えていても、第1のセルの劣化を抑制できないことがあり、また、仮に、第1のセルの劣化を抑制できたとしても、第2のセルの存在に起因して蓄電セルの体積エネルギー密度が低下するおそれがあることを新たに見出した。 As a result of extensive studies, the inventors of the present invention have found that the conventional hybrid storage cell may not be able to suppress the deterioration of the first cell even if the second cell is provided. It was newly discovered that even if the deterioration of the second cell can be suppressed, the presence of the second cell may reduce the volumetric energy density of the storage cell.
 なお、このような課題は、遷移金属酸化物が含まれる第1の正極と、活性炭が含まれる第2の正極との組み合わせに限らず、互いに容量および内部抵抗が異なる2つの正極を備えるハイブリッドの蓄電セルにも共通の課題である。 Note that such a problem is not limited to the combination of the first positive electrode containing a transition metal oxide and the second positive electrode containing activated carbon, but is also applicable to hybrids having two positive electrodes having different capacities and internal resistances. This is also a common issue for storage cells.
 本発明は、上述した課題を解決することが可能な蓄電セルを提供することを目的とする。 An object of the present invention is to provide a storage cell that can solve the above-described problems.
(1)本明細書に開示される蓄電セルは、第1の正極と、前記第1の正極に比べて、容量が低く、かつ、内部抵抗が低い第2の正極と、負極と、を備える、蓄電セルであって、前記第1の正極の容量に対する前記第2の正極の容量の比率である第1の容量比は、0.7%以上、10%以下である。本蓄電セルでは、第1の正極と負極とで構成される第1のセルは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮する。第2の正極と負極とで構成される第2のセルは、相対的に内部抵抗が低いため、相対的に高い出力特性を発揮する。第1の容量比が0.7%以上であるため、第2のセルの低容量および低抵抗の特性により、電流変動に起因する第1のセルの劣化を抑制することができる。また、第1の容量比が10%以下であるため、第2のセルの低容量の特性に起因して蓄電セルの容量が低下することを抑制することができる。このように、本蓄電セルによれば、第1のセルの劣化の抑制と、蓄電セルの体積エネルギー密度の低下の抑制とを両立することができる。 (1) A storage cell disclosed in this specification includes a first positive electrode, a second positive electrode having a lower capacity and lower internal resistance than the first positive electrode, and a negative electrode. , in the storage cell, a first capacity ratio, which is a ratio of the capacity of the second positive electrode to the capacity of the first positive electrode, is 0.7% or more and 10% or less. In this electric storage cell, the first cell composed of the first positive electrode and the negative electrode has relatively high internal resistance and exhibits relatively high capacity characteristics. A second cell composed of a second positive electrode and a negative electrode has relatively low internal resistance, and thus exhibits relatively high output characteristics. Since the first capacity ratio is 0.7% or more, deterioration of the first cell due to current fluctuations can be suppressed due to the low capacity and low resistance characteristics of the second cell. Moreover, since the first capacity ratio is 10% or less, it is possible to suppress a decrease in the capacity of the storage cell due to the low capacity characteristic of the second cell. As described above, according to the present electric storage cell, it is possible to simultaneously suppress deterioration of the first cell and suppress a decrease in volumetric energy density of the electric storage cell.
(2)上記蓄電セルにおいて、前記第1の容量比は、1%以上である構成としてもよい。本蓄電セルによれば、比較的に電流変動が激しい充放電サイクルに起因する電圧変動を抑制することができる。 (2) In the storage cell, the first capacity ratio may be 1% or more. According to this storage cell, it is possible to suppress voltage fluctuations due to charge-discharge cycles in which current fluctuations are relatively large.
(3)上記蓄電セルにおいて、前記第1の正極を構成する第1の正極材料と、前記第2の正極を構成する第2の正極材料とは、互いに特性が異なる構成としてもよい。本蓄電セルによれば、蓄電セルに対して、第1の正極材料に基づく電極特性と第2の正極材料に基づく電極特性との両方を持たせることができる。 (3) In the storage cell, the first positive electrode material forming the first positive electrode and the second positive electrode material forming the second positive electrode may have different characteristics. According to this electric storage cell, it is possible to give the electric storage cell both the electrode characteristics based on the first positive electrode material and the electrode characteristics based on the second positive electrode material.
(4)上記蓄電セルにおいて、前記負極の容量に対する、前記第1の正極の容量と前記第2の正極の容量との合計容量の比率である第2の容量比は、10%以上、90%以下である構成としてもよい。本蓄電セルによれば、第2の容量比が90%以下であるため、リチウムイオンのインターカレーションに起因する負極の膨張および収縮が抑制され、蓄電セルのサイクル寿命の向上を図ることができる。また、第2の容量比が10%以上であるため、蓄電セルの体積エネルギー密度が低下することを抑制することができる。 (4) In the storage cell, the second capacity ratio, which is the ratio of the total capacity of the capacity of the first positive electrode and the capacity of the second positive electrode to the capacity of the negative electrode, is 10% or more and 90%. It is good also as a structure which is below. According to this storage cell, since the second capacity ratio is 90% or less, expansion and contraction of the negative electrode due to intercalation of lithium ions are suppressed, and the cycle life of the storage cell can be improved. . Moreover, since the second capacity ratio is 10% or more, it is possible to suppress a decrease in the volumetric energy density of the storage cell.
(5)上記蓄電セルにおいて、前記第2の容量比は、50%以上、75%以下である構成としてもよい。本蓄電セルによれば、蓄電セルのサイクル寿命の向上を図りつつ、蓄電セルの体積エネルギー密度が低下することを、より効果的に抑制することができる。 (5) In the storage cell, the second capacity ratio may be 50% or more and 75% or less. According to this energy storage cell, it is possible to more effectively suppress a decrease in the volume energy density of the energy storage cell while improving the cycle life of the energy storage cell.
(6)上記蓄電セルにおいて、前記負極は、負極SOCが10%以上、100%以下の範囲で利用される構成としてもよい。本蓄電セルによれば、正極イオンの不足に起因する蓄電セルの寿命の低下を抑制することができる。 (6) In the above electric storage cell, the negative electrode may be configured such that the negative electrode SOC is in the range of 10% or more and 100% or less. According to this storage cell, it is possible to suppress the decrease in the life of the storage cell due to the shortage of positive ions.
(7)上記蓄電モジュールにおいて、複数の蓄電セルを備える蓄電モジュールであって、前記複数の蓄電セルの少なくとも1つは、上記(1)から(6)までのいずれか一つの蓄電セルである構成としてもよい。本蓄電モジュールによれば、第1のセルの劣化の抑制と、蓄電セルの体積エネルギー密度の低下の抑制とを両立することができる。 (7) In the above electric storage module, the electric storage module includes a plurality of electric storage cells, wherein at least one of the plurality of electric storage cells is the electric storage cell according to any one of (1) to (6) above. may be According to this power storage module, it is possible to achieve both suppression of deterioration of the first cells and suppression of reduction in the volumetric energy density of the power storage cells.
実施形態における蓄電デバイス1の内部構成を示す説明図Explanatory diagram showing the internal configuration of the electricity storage device 1 according to the embodiment. プレドープされた蓄電セル100の電圧変化を示す説明図Explanatory drawing showing the voltage change of the pre-doped storage cell 100 性能評価結果を示す説明図Explanatory diagram showing performance evaluation results 本実施形態の変形例における蓄電デバイス1aの内部構成を示す説明図Explanatory diagram showing the internal configuration of an electricity storage device 1a in a modified example of the present embodiment.
A.実施形態:
A-1.蓄電デバイス1の構成:
(蓄電デバイス1の構成):
 図1は、実施形態における蓄電デバイス1の内部構成を示す説明図である。図1には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を「上方向」といい、Z軸負方向を「下方向」というものとするが、蓄電デバイス1は実際にはそのような向きとは異なる向きで設置されてもよい。
A. Embodiment:
A-1. Configuration of power storage device 1:
(Configuration of power storage device 1):
FIG. 1 is an explanatory diagram showing the internal configuration of an electricity storage device 1 according to the embodiment. FIG. 1 shows mutually orthogonal XYZ axes for specifying directions. In this specification, for the sake of convenience, the positive direction of the Z-axis is referred to as the “upward direction” and the negative direction of the Z-axis is referred to as the “downward direction”. Orientation may be set.
 図1に示すように、蓄電デバイス1は、筐体30と、蓄電セル100とを備えている。筐体30は、蓄電セル100が収容される収容空間が形成された容器である。筐体30は、例えばアルミニウムなどの金属、または水分吸収が無い合成樹脂により形成されている。筐体30には、正極側端子部40Pと、負極側端子部40Nとが設けられている。なお、例えば筐体30における一部または全部の金属部分が、正極側端子部40Pと負極側端子部40Nとのいずれか一方を兼ねる構成でもよい。また、蓄電デバイス1は、例えば、ラミネートフィルム等の袋体に蓄電セル100が収容された構成でもよい。 As shown in FIG. 1 , the power storage device 1 includes a housing 30 and power storage cells 100 . The housing 30 is a container in which an accommodation space is formed to accommodate the storage cell 100 . The housing 30 is made of metal such as aluminum, or synthetic resin that does not absorb moisture. The housing 30 is provided with a positive terminal portion 40P and a negative terminal portion 40N. For example, a part or all of the metal portion of the housing 30 may serve as either one of the positive electrode side terminal portion 40P and the negative electrode side terminal portion 40N. Moreover, the electric storage device 1 may have a configuration in which the electric storage cell 100 is housed in a bag such as a laminated film, for example.
 蓄電セル100は、相対的に内部抵抗が高く、相対的に高い容量特性を発揮するリチウムイオン電池(以下、「LIB」という)と、相対的に内部抵抗が低く、相対的に高い出力特性を発揮するリチウムイオンキャパシタ(以下、「LIC」という)とを備える、いわゆるハイブリッドセルである。このように、蓄電デバイス1は、ハイブリッドセルである蓄電セル100を備えるため、エネルギー容量が大きくてかつ急速充放電が可能である。蓄電デバイス1は、例えば、太陽光発電や風力発電等の負荷平準化装置、コンピュータ等に代表される電子機器の瞬時電圧低下対策装置、電気自動車やハイブリッドカーのエネルギー回生装置、電動二輪の駆動用電源等として利用される。 The storage cell 100 includes a lithium ion battery (hereinafter referred to as “LIB”) that exhibits relatively high internal resistance and relatively high capacity characteristics, and a relatively low internal resistance and relatively high output characteristics. It is a so-called hybrid cell that includes a lithium ion capacitor (hereinafter referred to as “LIC”) that exhibits high performance. As described above, since the electricity storage device 1 includes the electricity storage cell 100 which is a hybrid cell, it has a large energy capacity and is capable of rapid charging and discharging. The power storage device 1 is, for example, a load leveling device for solar power generation, wind power generation, etc., an instantaneous voltage drop countermeasure device for electronic equipment typified by computers, an energy regeneration device for electric vehicles and hybrid cars, and an electric two-wheel drive. It is used as a power source, etc.
 本実施形態では、蓄電セル100は、複数のLIBセル10と複数のLICセル20とを有している。筐体30内では、複数のLIBセル10と複数のLICセル20と電解液(図示しない)とが同一の空間内に収容されている。図1には、複数のLIBセル10と複数のLICセル20との配列状態が示されている。図1に示すように、筐体30内の同一の空間において、複数のLIBセル10と複数のLICセル20とが所定方向(本実施形態ではY軸方向)に並べて配置されている。筐体30内には、電解液(図示しない)が収容されており、LIBセル10とLICセル20とが電解液中に浸かっている。以下、LIBセル10とLICセル20とが並ぶ方向(Y軸方向)を、「セル並び方向」という。なお、電解液は、例えば電解質塩と有機溶媒と添加剤とを混合したものである。 In this embodiment, the storage cell 100 has multiple LIB cells 10 and multiple LIC cells 20 . Inside the housing 30, a plurality of LIB cells 10, a plurality of LIC cells 20, and an electrolytic solution (not shown) are housed in the same space. FIG. 1 shows an arrangement state of multiple LIB cells 10 and multiple LIC cells 20 . As shown in FIG. 1, a plurality of LIB cells 10 and a plurality of LIC cells 20 are arranged side by side in a predetermined direction (the Y-axis direction in this embodiment) in the same space within the housing 30 . An electrolytic solution (not shown) is contained in the housing 30, and the LIB cell 10 and the LIC cell 20 are immersed in the electrolytic solution. Hereinafter, the direction in which the LIB cells 10 and the LIC cells 20 are arranged (the Y-axis direction) is referred to as the "cell arrangement direction". The electrolytic solution is, for example, a mixture of an electrolytic salt, an organic solvent and an additive.
 具体的には、図1に示すように、蓄電セル100は、複数のLIB正極板110Pと、複数のLIC正極板210Pと、複数の負極板110Nと、セパレータ120とを備えている。LIB正極板110PとLIC正極板210Pとが、セル並び方向に、1つずつ交互に配列されている。負極板110Nは、セル並び方向において互いに対向するLIB正極板110PとLIC正極板210Pとの間に介在するように配置されている。また、セパレータ120は、セル並び方向において互いに対向するLIB正極板110Pと負極板110Nとの間と、セル並び方向において互いに対向するLIC正極板210Pと負極板110Nとの間とにそれぞれ介在するように配置されている。すなわち、蓄電セル100は、LIB正極板110PとLIC正極板210Pと負極板110Nとセパレータ120とが所定方向(本実施形態ではセル並び方向)に並べて配置された積層構造を有している。LIB正極板110Pは、特許請求の範囲における第1の正極の一例であり、LIC正極板210Pは、特許請求の範囲における第2の正極の一例であり、負極板110Nは、特許請求の範囲における負極の一例である。 Specifically, as shown in FIG. 1, the storage cell 100 includes multiple LIB positive plates 110P, multiple LIC positive plates 210P, multiple negative plates 110N, and a separator 120. LIB positive plates 110P and LIC positive plates 210P are alternately arranged one by one in the cell arrangement direction. The negative electrode plate 110N is arranged so as to be interposed between the LIB positive electrode plate 110P and the LIC positive electrode plate 210P that face each other in the cell arrangement direction. In addition, the separator 120 is interposed between the LIB positive plate 110P and the negative electrode plate 110N facing each other in the cell arrangement direction and between the LIC positive plate 210P and the negative electrode plate 110N facing each other in the cell arrangement direction. are placed in That is, the storage cell 100 has a laminated structure in which the LIB positive plate 110P, the LIC positive plate 210P, the negative electrode plate 110N, and the separator 120 are arranged side by side in a predetermined direction (the cell alignment direction in this embodiment). The LIB positive plate 110P is an example of the first positive electrode in the claims, the LIC positive plate 210P is an example of the second positive electrode in the claims, and the negative electrode plate 110N is the It is an example of a negative electrode.
 LIB正極板110Pは、正極集電体112Pと、正極集電体112Pに支持された一対のLIB正極活物質114P,114Pとを有する。正極集電体112Pは、アルミニウム箔であり、エッチング箔やパンチング箔等の多孔箔を使用しても良い。また、正極集電体112Pは、その上端付近に、上方に突出する正極耳部を有している。一対のLIB正極活物質114Pは、正極集電体112Pの両面にそれぞれ支持されている。一対のLIB正極活物質114Pは、互いに同一材料により形成されている。LIB正極活物質114Pの形成材料としては、例えばコバルト酸リチウム、三元系リチウム金属複合酸化物(ニッケルマンガンコバルト系等)、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウムが使用される。LIB正極活物質114Pは、特許請求の範囲における第1の正極材料の一例である。 The LIB positive electrode plate 110P has a positive electrode current collector 112P and a pair of LIB positive electrode active materials 114P, 114P supported by the positive electrode current collector 112P. The positive electrode current collector 112P is aluminum foil, and porous foil such as etched foil or punched foil may be used. In addition, the positive electrode current collector 112P has a positive electrode tab protruding upward near its upper end. A pair of LIB positive electrode active materials 114P are supported on both sides of the positive electrode current collector 112P. The pair of LIB positive electrode active materials 114P are made of the same material. Examples of materials used for forming the LIB positive electrode active material 114P include lithium cobalt oxide, ternary lithium metal composite oxides (nickel manganese cobalt, etc.), lithium manganate, lithium nickel oxide, and lithium iron phosphate. The LIB positive electrode active material 114P is an example of the first positive electrode material in the claims.
 LIC正極板210Pは、正極集電体212Pと、正極集電体212Pに支持された一対のLIC正極活物質214P,214Pとを有する。正極集電体212Pは、アルミニウム箔であり、エッチング箔やパンチング箔等の多孔箔を使用しても良い。また、正極集電体212Pは、その上端付近に、上方に突出する正極耳部を有している。一対のLIC正極活物質214Pは、正極集電体212Pの両面にそれぞれ支持されている。一対のLIC正極活物質214Pは、互いに同一材料により形成されている。LIC正極活物質214Pの形成材料としては、例えば水蒸気賦活炭、アルカリ賦活炭等の活性炭が使用される。LIC正極活物質214Pは、特許請求の範囲における第2の正極材料の一例である。 The LIC positive electrode plate 210P has a positive electrode current collector 212P and a pair of LIC positive electrode active materials 214P, 214P supported by the positive electrode current collector 212P. The positive electrode current collector 212P is aluminum foil, and porous foil such as etching foil or punching foil may be used. In addition, the positive electrode current collector 212P has a positive electrode tab protruding upward near its upper end. A pair of LIC positive electrode active materials 214P are supported on both sides of the positive electrode current collector 212P. The pair of LIC positive electrode active materials 214P are made of the same material. As a material for forming the LIC positive electrode active material 214P, for example, activated carbon such as steam activated carbon or alkali activated carbon is used. The LIC cathode active material 214P is an example of the second cathode material in the claims.
 負極板110Nは、負極集電体112Nと、負極集電体112Nに支持された一対の負極活物質114N,114Nとを有する。負極集電体112Nは、銅箔であり、エッチング箔やパンチング箔等の多孔箔を使用しても良い。また、負極集電体112Nは、その上端付近に、上方に突出する負極耳部を有している。一対の負極活物質114Nは、負極集電体112Nの両面にそれぞれ支持されている。一対の負極活物質114Nは、互いに同一材料により形成されている。負極活物質114Nの形成材料としては、例えば黒鉛(グラファイト)、シリコン系材料、ハードカーボン、ソフトカーボン、チタン酸リチウムが使用される。セパレータ120は、絶縁性材料(例えば、紙、ガラス繊維や合成樹脂(多孔質のポリエチレン膜など))により形成されている。 The negative electrode plate 110N has a negative electrode current collector 112N and a pair of negative electrode active materials 114N and 114N supported by the negative electrode current collector 112N. The negative electrode current collector 112N is copper foil, and porous foil such as etched foil or punched foil may be used. In addition, the negative electrode current collector 112N has a negative electrode tab protruding upward near its upper end. A pair of negative electrode active materials 114N are supported on both sides of the negative electrode current collector 112N. The pair of negative electrode active materials 114N are made of the same material. Examples of materials used for forming the negative electrode active material 114N include graphite, silicon-based materials, hard carbon, soft carbon, and lithium titanate. The separator 120 is made of an insulating material (for example, paper, glass fiber, synthetic resin (porous polyethylene film, etc.)).
 複数のLIB正極板110Pの耳部と、複数のLIC正極板210Pの耳部とが、正極側端子部40Pに電気的に接続されている。複数の負極板110Nの耳部が、負極側端子部40Nに電気的に接続されている。 The ears of the plurality of LIB positive plates 110P and the ears of the plurality of LIC positive plates 210P are electrically connected to the positive terminal portion 40P. Ear portions of the plurality of negative electrode plates 110N are electrically connected to the negative terminal portion 40N.
 以上の構成により、LIB正極板110PのLIB正極活物質114Pと、負極板110Nの負極活物質114Nと、それらの間に介在するセパレータ120とによって、LIBセル10が構成されている。また、LIC正極板210PのLIC正極活物質214Pと、負極板110Nの負極活物質114Nと、それらの間に介在するセパレータ120とによって、LICセル20が構成されている。すなわち、LIBセル10とLICセル20とは、互いに並列接続されている。また、蓄電セル100は、LIBセル10とLICセル20とが、所定の複数個(図1では2つ)ずつ、セル並び方向に交互に並ぶように配置された構成とされている。 With the above configuration, the LIB cell 10 is configured by the LIB positive electrode active material 114P of the LIB positive plate 110P, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. The LIC cell 20 is composed of the LIC positive electrode active material 214P of the LIC positive plate 210P, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. That is, the LIB cell 10 and the LIC cell 20 are connected in parallel with each other. Moreover, the storage cell 100 has a configuration in which a predetermined plurality (two in FIG. 1) of the LIB cells 10 and the LIC cells 20 are alternately arranged in the cell arrangement direction.
(蓄電セル100の詳細構成):
 蓄電セル100では、LIB正極板110PとLIC正極板210Pとについて、次の第1の条件が満たされている。
 <第1の条件>
 第1の容量比は、0.7%以上、10%以下である。
  第1の容量比は、LIB正極板110Pの容量に対する、LIC正極板210Pの容量の比率である。
 ここで、LIB正極板110Pの容量は、LIB正極板110Pと、試験用負極と、セパレータとでハーフセルを構成し、そのハーフセルについて充放電試験を行ったときの電荷移動量(電気量)である。また、LIC正極板210Pの容量は、LIC正極板210Pと、試験用負極と、セパレータとでハーフセルを構成し、そのハーフセルについて充放電試験を行ったときの電荷移動量(電気量)である。これらのハーフセルに使用する試験用負極は、充放電試験においてハーフセルの容量の測定結果に影響を与えない程度に充分な容量を有するものを利用する。本実施形態では、例えば、試験用負極として、リチウム金属を負極材料として有するものを利用する。
(Detailed configuration of storage cell 100):
In the storage cell 100, the following first condition is satisfied for the LIB positive plate 110P and the LIC positive plate 210P.
<First condition>
The first capacity ratio is 0.7% or more and 10% or less.
The first capacity ratio is the ratio of the capacity of the LIC positive plate 210P to the capacity of the LIB positive plate 110P.
Here, the capacity of the LIB positive plate 110P is a charge transfer amount (amount of electricity) when a half cell is configured by the LIB positive plate 110P, a test negative electrode, and a separator, and a charge/discharge test is performed on the half cell. . The capacity of the LIC positive plate 210P is the amount of charge transferred (amount of electricity) when a half cell is formed by the LIC positive plate 210P, the test negative electrode, and the separator, and a charge/discharge test is performed on the half cell. The test negative electrode used for these half cells has a sufficient capacity so as not to affect the measurement result of the capacity of the half cell in the charge/discharge test. In this embodiment, for example, a test negative electrode having lithium metal as a negative electrode material is used.
 各極の容量測定における上記充放電試験は、次の通りである。まず、各ハーフセルを、0.3Cの定電流にてセル電圧が満充電にかかる設定電圧(例えば3.65V)になるまで充電した後、当該設定電圧の定電圧を印加する一定電圧充電(CCCV充電)を30分間行って満充電の状態にする。次いで、この満充電の状態から、1Cの定電流にてセル電圧が終止電圧(セル電圧が急激に低下し始める電圧 例えば2.2V)になるまで放電する。この充放電を3回繰り返すことでハーフセルを定常状態とし、3回目に放電したときに測定される容量を、各極の容量とした。 The charge/discharge test for measuring the capacity of each pole is as follows. First, each half cell is charged at a constant current of 0.3 C until the cell voltage reaches a set voltage (for example, 3.65 V) for full charge, and then a constant voltage charge (CCCV) of the set voltage is applied. charge) for 30 minutes to reach full charge. Next, from this fully charged state, the battery is discharged at a constant current of 1 C until the cell voltage reaches the final voltage (eg, 2.2 V at which the cell voltage begins to drop rapidly). By repeating this charging and discharging three times, the half-cell was put into a steady state, and the capacity measured when discharging for the third time was taken as the capacity of each electrode.
 蓄電セル100では、LIB正極板110PとLIC正極板210Pとについて、次の第2の条件が満たされていることが好ましい。
 <第2の条件>
 第1の容量比は、1%以上である。
 なお、第1の容量比は、2%以上であることがより好ましい。
In the storage cell 100, it is preferable that the LIB positive plate 110P and the LIC positive plate 210P satisfy the following second condition.
<Second condition>
The first capacity ratio is 1% or more.
It should be noted that the first capacity ratio is more preferably 2% or more.
 蓄電セル100では、LIB正極板110PとLIC正極板210Pとについて、次の第3の条件が満たされていることが好ましい。
 <第3の条件>
 LIB正極板110Pを構成するLIB正極活物質114Pと、LIC正極板210Pを構成するLIC正極活物質214Pとは、互いに特性が異なっている。
 例えば、LIB正極活物質114Pとしてリン酸鉄リチウム(LFP)が使用され、LIC正極活物質214Pとして活性炭(AC)が使用された構成では、LIB正極板110Pは、相対的に内部抵抗が高く、相対的に高い容量特性を発揮するLICの正極としての特性を有し、LIC正極板210Pは、相対的に内部抵抗が低く、相対的に高い出力特性を発揮するLICの正極としての特性を有することになる。
In the storage cell 100, it is preferable that the LIB positive plate 110P and the LIC positive plate 210P satisfy the following third condition.
<Third condition>
The LIB positive electrode active material 114P forming the LIB positive electrode plate 110P and the LIC positive electrode active material 214P forming the LIC positive electrode plate 210P have different characteristics.
For example, in a configuration in which lithium iron phosphate (LFP) is used as the LIB positive electrode active material 114P and activated carbon (AC) is used as the LIC positive electrode active material 214P, the LIB positive electrode plate 110P has a relatively high internal resistance, The LIC positive electrode plate 210P has relatively low internal resistance and has the characteristics of a LIC positive electrode exhibiting relatively high output characteristics. It will be.
 蓄電セル100では、次の第4の条件が満たされていることが好ましい。
 <第4の条件>
 第2の容量比は、10%以上、90%以下である。
  第2の容量比は、負極板110Nの容量に対する、LIB正極板110Pの容量とLIC正極板210Pの容量との合計容量の比率である。
The storage cell 100 preferably satisfies the following fourth condition.
<Fourth condition>
The second capacity ratio is 10% or more and 90% or less.
The second capacity ratio is the ratio of the total capacity of the LIB positive plate 110P and the LIC positive plate 210P to the capacity of the negative plate 110N.
 蓄電セル100では、さらに次の第5の条件が満たされていることが好ましい。
 <第5の条件>
 上記第2の容量比は、50%以上、75%以下である。
The storage cell 100 preferably further satisfies the following fifth condition.
<Fifth condition>
The second capacity ratio is 50% or more and 75% or less.
 蓄電セル100では、次の第6の条件が満たされていることが好ましい。
 <第6の条件>
 負極板110Nは、負極SOC(State of charge)が10%以上、100%以下の範囲で利用される。
 第6の条件を満たす蓄電セル100は、例えば、負極板110Nにリチウムイオンをドープさせること(いわゆるプレドープ)により実現できる。図2は、プレドープされた蓄電セル100の電圧変化を示す説明図である。図2中のグラフG1は、蓄電セル100の正極側端子部40Pの充放電における電位変化を示すグラフである。グラフG2は、蓄電セル100の負極側端子部40Nの充放電における電位変化を示すグラフである。図2に示すように、負極板110Nにリチウムイオンをドープすることにより、負極板110Nの容量に対応する負極SOC領域R1に対して、蓄電セル100における負極板110Nの利用領域R2を小さくすることができる。すなわち、負極板110Nにリチウムイオンをドープすることにより、負極板110Nの負極SOCの利用範囲(=R2/R1)を調整することができる。図2では、負極板110Nの負極SOCの利用範囲が50%である場合の電圧変化が例示されている。
The storage cell 100 preferably satisfies the following sixth condition.
<Sixth condition>
The negative electrode plate 110N is used in a range where the negative electrode SOC (state of charge) is 10% or more and 100% or less.
The storage cell 100 that satisfies the sixth condition can be realized, for example, by doping the negative electrode plate 110N with lithium ions (so-called pre-doping). FIG. 2 is an explanatory diagram showing the voltage change of the pre-doped storage cell 100. As shown in FIG. A graph G1 in FIG. 2 is a graph showing changes in potential of the positive terminal portion 40P of the storage cell 100 during charging and discharging. A graph G2 is a graph showing changes in potential of the negative electrode terminal portion 40N of the storage cell 100 during charging and discharging. As shown in FIG. 2, by doping the negative electrode plate 110N with lithium ions, the utilization region R2 of the negative electrode plate 110N in the storage cell 100 can be made smaller than the negative electrode SOC region R1 corresponding to the capacity of the negative electrode plate 110N. can be done. That is, by doping the negative electrode plate 110N with lithium ions, it is possible to adjust the negative electrode SOC utilization range (=R2/R1) of the negative electrode plate 110N. FIG. 2 illustrates voltage changes when the negative electrode SOC utilization range of the negative electrode plate 110N is 50%.
 負極板110Nの負極SOCの利用範囲の特定方法は、次の通りである。まず、満充電の状態とした蓄電セル100を解体し、LIB正極板110PとLIC正極板210Pと負極板110Nのそれぞれについて、上記充放電試験で利用したものと同じ構造のハーフセルを作製し、各ハーフセルについて放電容量を測定する。そして、正極容量(=LIB正極板110Pの放電容量+LIC正極板210Pの放電容量)/負極容量(=負極板110Nの放電容量)の算出結果を、第2の容量比として特定した。なお、負極板110Nにリチウムイオンをドープしている場合は、負極ハーフセルの初回の放電容量が正極容量よりも大きくなる。この放電容量と正極容量との差分と、負極容量とから負極SOCの利用範囲を特定できる。 A method for specifying the range of use of the negative electrode SOC of the negative electrode plate 110N is as follows. First, the storage cell 100 in a fully charged state was disassembled, and a half cell having the same structure as that used in the charge/discharge test was produced for each of the LIB positive plate 110P, the LIC positive plate 210P, and the negative electrode plate 110N. Measure the discharge capacity of the half cell. Then, the calculation result of positive electrode capacity (=discharge capacity of LIB positive plate 110P+discharge capacity of LIC positive plate 210P)/negative electrode capacity (=discharge capacity of negative electrode plate 110N) was specified as the second capacity ratio. When the negative electrode plate 110N is doped with lithium ions, the initial discharge capacity of the negative electrode half-cell becomes larger than the positive electrode capacity. The utilization range of the negative electrode SOC can be specified from the difference between the discharge capacity and the positive electrode capacity, and the negative electrode capacity.
A-2.性能評価:
 以下、蓄電セル100のサンプルを用いて行った性能評価について説明する。図3は、性能評価結果を示す説明図である。各サンプルは、LIB正極活物質114Pとしてリン酸鉄リチウムが使用され、LIC正極活物質214Pとして活性炭が使用され、負極活物質114Nとして黒鉛(C)が使用された構成である。図3に示すように、各サンプル(S1~S10)は、第1の容量比(%)が互いに異なっている。なお、サンプルS1は、第1の容量比が0%であるため、LIB単体の蓄電セルである。
A-2. Performance evaluation:
Performance evaluations performed using samples of the storage cell 100 will be described below. FIG. 3 is an explanatory diagram showing performance evaluation results. Each sample has a configuration in which lithium iron phosphate is used as the LIB positive electrode active material 114P, activated carbon is used as the LIC positive electrode active material 214P, and graphite (C) is used as the negative electrode active material 114N. As shown in FIG. 3, the samples (S1 to S10) differ from each other in the first capacity ratio (%). Note that the sample S1 has a first capacity ratio of 0%, and therefore is a single LIB storage cell.
A-2-1.サンプルの作製方法:
 以下の作製方法に従い、蓄電セル100の各サンプルを製造した。まずは、サンプルを構成する各電極(LIB正極板110P、LIC正極板210P、負極板110N)を、次のように作製する。
(LIB正極板110Pの作製):
 市販のLiFePO粉末(90重量部)と、アセチレンブラック粉末(5重量部)と、ポリフッ化ビニリデン(PVdF)粉末(5重量部)とを混合し、N-メチルピロリドンを加えて、充分に撹拌して脱泡することによって第1の正極用スラリーを得た。この第1の正極用スラリーを多孔アルミニウム箔の両面に塗工して乾燥し、プレスしたものから所定形状で切り出して、LIB正極板110Pとした。
A-2-1. Sample preparation method:
Each sample of the storage cell 100 was manufactured according to the following manufacturing method. First, each electrode (LIB positive plate 110P, LIC positive plate 210P, negative electrode plate 110N) constituting a sample is produced as follows.
(Preparation of LIB positive electrode plate 110P):
Commercially available LiFePO 4 powder (90 parts by weight), acetylene black powder (5 parts by weight), and polyvinylidene fluoride (PVdF) powder (5 parts by weight) are mixed, N-methylpyrrolidone is added, and the mixture is thoroughly stirred. The first positive electrode slurry was obtained by defoaming. This first positive electrode slurry was applied to both sides of a porous aluminum foil, dried, and pressed, and cut into a predetermined shape to obtain a LIB positive electrode plate 110P.
(LIC正極板210Pの作製):
 比表面積2000m/gの市販活性炭粉末(85重量部)と、アセチレンブラック粉体(5重量部)と、アクリル系樹脂バインダ(6重量部)と、カルボキシメチルセルロース(4重量部)とを混合し、純水を加えて、充分に撹拌して脱泡することによって第2の正極用スラリーを得た。この第2の正極用スラリーを上記多孔アルミ箔の両面に塗工して乾燥したものから所定形状で切り出して、LIC正極板210Pとした。
(Preparation of LIC positive electrode plate 210P):
Commercially available activated carbon powder (85 parts by weight) having a specific surface area of 2000 m 2 /g, acetylene black powder (5 parts by weight), acrylic resin binder (6 parts by weight), and carboxymethyl cellulose (4 parts by weight) were mixed. , and pure water were added, and the slurry was sufficiently agitated to remove air bubbles, thereby obtaining a second positive electrode slurry. Both surfaces of the porous aluminum foil were coated with the second positive electrode slurry, dried, and then cut into a predetermined shape to obtain the LIC positive electrode plate 210P.
(負極板110Nの作製):
 市販の人造黒鉛粉末(96重量部)と、アセチレンブラック粉末(1重量部)と、スチレンブタジエンゴム(SBR)粉末(2重量部)とを混合し、カルボキシメチルセルロース(1重量部)を加えて、充分に撹拌して脱泡することによって負極用スラリーを得た。この負極用スラリーを多孔銅箔の両面に塗工して乾燥し、プレスしたものから所定形状で切り出して、負極板110Nとした。
(Preparation of negative electrode plate 110N):
Commercially available artificial graphite powder (96 parts by weight), acetylene black powder (1 part by weight), and styrene-butadiene rubber (SBR) powder (2 parts by weight) are mixed, carboxymethylcellulose (1 part by weight) is added, A negative electrode slurry was obtained by sufficiently stirring and defoaming. This negative electrode slurry was applied to both sides of the porous copper foil, dried, and pressed, and cut into a predetermined shape to obtain a negative electrode plate 110N.
 このように作製された、LIB正極板110PとLIC正極板210Pと負極板110Nとを、セパレータ(ポリエチレン微多孔フィルム)を介して積層して電極体とした。ここで、各サンプルについて、LIB正極板110PとLIC正極板210Pとのそれぞれの枚数(枚数比)を変えることにより、第1の容量比が互いに異なるようにした。次に、電極体を構成するLIB正極板110PとLIC正極板210Pと負極板110Nとのそれぞれに外部端子を溶接し、電極体を袋状のアルミニウム製のラミネートに入れた。次に、そのラミネート内に電解液を注液し、その後、ラミネートの開口を真空封止して、蓄電セルのサンプルを作製した。 The LIB positive electrode plate 110P, the LIC positive electrode plate 210P, and the negative electrode plate 110N thus produced were laminated via a separator (polyethylene microporous film) to form an electrode assembly. Here, for each sample, the first capacity ratio was made different from each other by changing the number (number ratio) of the LIB positive plate 110P and the LIC positive plate 210P. Next, external terminals were welded to each of the LIB positive plate 110P, the LIC positive plate 210P, and the negative electrode plate 110N constituting the electrode assembly, and the electrode assembly was placed in a bag-like aluminum laminate. Next, an electrolytic solution was injected into the laminate, and then the opening of the laminate was vacuum-sealed to prepare a sample electric storage cell.
A-2-2.サンプルの容量測定:
 LIB正極板110PとLIC正極板210Pと負極板110Nとのそれぞれの容量を、次のようにして測定した。サンプルの容量測定に用いる試験用負極の負極活物質は、リチウムである。例えば、所定形状に切り出した多孔銅箔に、同じく所定形状に切り出したリチウム箔を圧着して試験用負極(Li極)とした。
A-2-2. Sample volume measurement:
The capacities of the LIB positive plate 110P, the LIC positive plate 210P, and the negative electrode plate 110N were measured as follows. The negative electrode active material of the test negative electrode used for measuring the capacity of the sample is lithium. For example, a test negative electrode (Li electrode) was obtained by pressing a lithium foil cut into a predetermined shape onto a porous copper foil cut into a predetermined shape.
 各サンプルを分解して取り出したLIB正極板110Pと、試験用負極と、セパレータ(ポリエチレン微多孔フィルム)とでハーフセルを構成し、そのハーフセルについて上記充放電試験を行ったときの電荷移動量を、LIB正極板110Pの容量とした。各サンプルを分解して取り出したLIC正極板210Pと、試験用負極と、セパレータ(ポリエチレン微多孔フィルム)とでハーフセルを構成し、そのハーフセルについて充放電試験を行ったときの電荷移動量を、LIC正極板210Pの容量とした。各サンプルを分解して取り出した負極板110Nと、試験用負極と、セパレータ(ポリエチレン微多孔フィルム)とでハーフセルを構成し、そのハーフセルについて充放電試験を行ったときの電荷移動量を、負極板110Nの容量とした。そして、測定した各容量に基づき、各サンプルの第1の容量比を求めた。 A half cell was constructed from the LIB positive electrode plate 110P obtained by disassembling each sample, a test negative electrode, and a separator (polyethylene microporous film). The capacity of the LIB positive electrode plate 110P was used. The LIC positive electrode plate 210P obtained by disassembling each sample, the test negative electrode, and the separator (polyethylene microporous film) constitute a half cell. It was set as the capacity of the positive electrode plate 210P. A negative electrode plate 110N obtained by disassembling each sample, a test negative electrode, and a separator (polyethylene microporous film) constitute a half cell. The capacity was 110N. Then, the first capacity ratio of each sample was obtained based on each measured capacity.
A-2-3.各種の性能評価: A-2-3. Various performance evaluations:
(電動車両走行パターン試験):
 電動2輪の走行パターンをモーター駆動制御の電流値に換算したものを充放電サイクルパターンとした。なお、この充放電サイクルパターンは、5C程度の電流値の充電と、5C程度の電流値の放電とが、所定時間(平均3秒)ごとに切り替わる充放電パターンである。満充電した各蓄電セルのサンプルを用いて、上記充放電パターンで充放電サイクル試験を行い、所定電圧(2.2V)まで放電した時に試験終了とした。充放電パターンの一のサイクルにおける蓄電セルの電圧変動幅が低いほど、蓄電セルの内部抵抗が小さく、電流変動が激しい充放電サイクルパターンに対する電圧変動が抑制されることを意味する。本評価では、各サンプルの電圧変動率が、サンプルS1(LIB単体)の電圧変動幅の70%以下になったものを「Passed(合格)」とした。図3に示すように、第1の容量比が1%未満であるサンプルS1~S3では、「Failed(不合格)」と評価され、第1の容量比が1%以上であるサンプルS4~S10では、「Passed」と評価された。この結果から、第1の容量比を1%以上にすることにより、蓄電セルの内部抵抗が小さく、電流変動が激しい充放電サイクルパターンに対する電圧変動が抑制されることが分かる。なお、第1の容量比が1%未満である場合、LIC正極板210Pの容量が極めて小さい(LIB正極板110Pの枚数が少ない)ことからLIC正極板210Pの電流経路が狭いため、LIC正極板210Pの電気抵抗が比較的に大きくなる。そのため、ハイブリッドセルであっても蓄電セルの内部抵抗が低減されないと考えられる。
(Electric vehicle running pattern test):
A charging/discharging cycle pattern was obtained by converting the running pattern of the two electric wheels into a current value for motor drive control. This charge/discharge cycle pattern is a charge/discharge pattern in which charging with a current value of about 5 C and discharging with a current value of about 5 C are switched every predetermined time (3 seconds on average). A charge/discharge cycle test was performed using the above charge/discharge pattern using a sample of each fully charged storage cell, and the test was terminated when the sample was discharged to a predetermined voltage (2.2 V). The lower the voltage fluctuation width of the storage cell in one cycle of the charge/discharge pattern, the smaller the internal resistance of the storage cell, which means that the voltage fluctuation in the charge/discharge cycle pattern with large current fluctuations is suppressed. In this evaluation, when the voltage fluctuation rate of each sample was 70% or less of the voltage fluctuation width of sample S1 (LIB alone), it was defined as "Passed". As shown in FIG. 3, samples S1 to S3 with a first capacity ratio of less than 1% are evaluated as "Failed", and samples S4 to S10 with a first capacity ratio of 1% or more was evaluated as "Passed". From this result, it can be seen that by setting the first capacity ratio to 1% or more, the internal resistance of the storage cell is small, and the voltage fluctuation is suppressed with respect to the charging/discharging cycle pattern in which the current fluctuates sharply. When the first capacity ratio is less than 1%, the capacity of the LIC positive plate 210P is extremely small (the number of LIB positive plates 110P is small), and the current path of the LIC positive plate 210P is narrow. The electrical resistance of 210P becomes relatively large. Therefore, even in a hybrid cell, it is considered that the internal resistance of the storage cell is not reduced.
(サイクル試験):
 各サンプルについて、カットオフ電圧を3.65Vと2.2Vとし、1C充電および5C放電の充放電サイクル試験を、60℃の温度環境下で実施した。充放電パターンの最初のサイクルにおける蓄電セルの放電容量に対する、現時点のサイクルにおける蓄電セルの放電容量である容量維持率が高いほど、LIBの劣化が抑制され、充放電サイクルの継続による蓄電セルの容量劣化が抑制されていることを意味する。本評価では、蓄電セルの容量維持率が、LIBセル10の容量維持率よりも高いものを「Passed」とした。図3に示すように、第1の容量比が0.7以上であるサンプルS2~S10では、「Passed」と評価された。この結果から、第1の容量比が0.7以上であれば、蓄電セルの容量維持率を、LIBセル10の容量維持率よりも高くできることが分かる。なお、第1の容量比が0.7%未満である場合、LIC正極板210Pの容量が極めて小さい(LIB正極板110Pの枚数が少ない)ことから、LICセル20の高い出力特性が十分に発揮されず、その結果、LIBセル10の劣化を抑制できないと考えられる。
(cycle test):
For each sample, the cut-off voltage was set to 3.65 V and 2.2 V, and a charge-discharge cycle test of 1C charge and 5C discharge was performed under a temperature environment of 60°C. The higher the capacity retention rate, which is the discharge capacity of the storage cell in the current cycle with respect to the discharge capacity of the storage cell in the first cycle of the charge/discharge pattern, the more the deterioration of LIB is suppressed and the capacity of the storage cell due to the continuation of the charge/discharge cycle. It means that deterioration is suppressed. In this evaluation, when the capacity retention rate of the storage cell is higher than the capacity retention rate of the LIB cell 10, it is defined as “Passed”. As shown in FIG. 3, samples S2 to S10 having a first capacity ratio of 0.7 or more were evaluated as "Passed." From this result, it can be seen that when the first capacity ratio is 0.7 or more, the capacity retention rate of the storage cell can be made higher than the capacity retention rate of the LIB cell 10 . When the first capacity ratio is less than 0.7%, the capacity of the LIC positive plate 210P is extremely small (the number of LIB positive plates 110P is small), so the high output characteristics of the LIC cell 20 are fully exhibited. As a result, it is considered that deterioration of the LIB cell 10 cannot be suppressed.
(体積エネルギー密度試験):
 各サンプルについて、カットオフ電圧を3.65Vと2.2Vとし、0.3C充電で30分保持し、その後、1C放電を行う充放電試験を行い、その後、上記の測定方法により、各蓄電セルの容量を測定した。そして、得られた放電曲線から放電エネルギーを算出し、電極体積から体積エネルギー密度を算出した。本評価では、体積エネルギー密度が、LIBセル10の体積エネルギー密度に対して50%以上のものを「Passed」とした。図3に示すように、第1の容量比が1.0%以下であるサンプルS1~S9では、「Passed」と評価され、第1の容量比が1.0%を超えるサンプルS10では、「Failed」と評価された。この結果から、第1の容量比を10%以下にすることにより、蓄電セルの体積エネルギー密度の低下が抑制されることが分かる。なお、第1の容量比が10%を超える場合、LIC正極板210Pの容量が比較的に大きい(LIB正極板110Pの枚数が少ない)ことから、LIBの高い容量特性が十分に発揮されず、その結果、体積エネルギー密度が低下すると考えられる。
(Volume Energy Density Test):
For each sample, a charge-discharge test was performed with a cutoff voltage of 3.65 V and 2.2 V, held at 0.3 C charge for 30 minutes, and then discharged at 1 C. After that, each storage cell was measured by the above measurement method. was measured. Then, the discharge energy was calculated from the obtained discharge curve, and the volume energy density was calculated from the electrode volume. In this evaluation, when the volume energy density was 50% or more of the volume energy density of the LIB cell 10, it was determined as "Passed". As shown in FIG. 3, samples S1 to S9 with a first capacity ratio of 1.0% or less are evaluated as "Passed", and sample S10 with a first capacity ratio exceeding 1.0% is evaluated as " Failed”. From this result, it can be seen that by setting the first capacity ratio to 10% or less, a decrease in the volumetric energy density of the storage cell is suppressed. If the first capacity ratio exceeds 10%, the capacity of the LIC positive plate 210P is relatively large (the number of LIB positive plates 110P is small), so the high capacity characteristics of the LIB are not sufficiently exhibited. As a result, it is believed that the volumetric energy density decreases.
A-3.本実施形態の効果:
 以上説明したように、本実施形態の蓄電デバイス1では、蓄電セル100は、LIB正極板110Pと負極板110Nとで構成されるLIBセル10は、相対的に内部抵抗が高く、相対的に高い容量特性を発揮する。LIC正極板210Pと負極板110Nとで構成されるLICセル20は、相対的に内部抵抗が低いため、相対的に高い出力特性を発揮する。第1の容量比が0.7%以上であるため(第1の条件)、LICセル20の低容量および低抵抗の特性により、電流変動に起因するLIBセル10の劣化を抑制することができる。また、第1の容量比が10%以下であるため(第1の条件)、LICセル20の低容量の特性に起因して蓄電セル100の容量が低下することを抑制することができる。このように、本実施形態によれば、LIBセル10の劣化の抑制と、蓄電セル100の体積エネルギー密度の低下の抑制とを両立することができる。
A-3. Effect of this embodiment:
As described above, in the electric storage device 1 of the present embodiment, the electric storage cell 100 is composed of the LIB positive plate 110P and the negative electrode plate 110N. Exhibit capacity characteristics. The LIC cell 20 composed of the LIC positive plate 210P and the negative plate 110N has relatively low internal resistance, and thus exhibits relatively high output characteristics. Since the first capacitance ratio is 0.7% or more (first condition), the low capacitance and low resistance characteristics of the LIC cell 20 can suppress deterioration of the LIB cell 10 due to current fluctuations. . In addition, since the first capacity ratio is 10% or less (first condition), it is possible to prevent the capacity of the storage cell 100 from decreasing due to the low capacity characteristic of the LIC cell 20 . As described above, according to the present embodiment, both suppression of deterioration of the LIB cell 10 and suppression of decrease in the volumetric energy density of the storage cell 100 can be achieved.
 本実施形態では、第1の容量比が、1%以上である場合(第2の条件)、比較的に電流変動が激しい充放電サイクルに起因する電圧変動を抑制することができる。また、LIB正極板110Pを構成するLIB正極活物質114Pと、LIC正極板210Pを構成するLIC正極活物質214Pとが、互いに特性が異なっている場合(第3の条件)、LIB正極活物質114Pに基づく電極特性とLIC正極活物質214Pに基づく電極特性との両方を持たせることができる。また、蓄電セル100の製造段階において、LIB正極活物質114PとLIC正極活物質214Pとしてそれぞれ使用される材料の特性によって各電極性能を変えることができる。 In this embodiment, when the first capacity ratio is 1% or more (second condition), it is possible to suppress voltage fluctuations caused by charge-discharge cycles in which current fluctuations are relatively large. When the LIB positive electrode active material 114P constituting the LIB positive electrode plate 110P and the LIC positive electrode active material 214P constituting the LIC positive electrode plate 210P have different characteristics (third condition), the LIB positive electrode active material 114P and electrode characteristics based on the LIC positive electrode active material 214P. Also, in the manufacturing stage of the storage cell 100, the performance of each electrode can be changed according to the characteristics of the materials used as the LIB positive electrode active material 114P and the LIC positive electrode active material 214P.
 仮に、第2の容量比が90%を超える場合、正極(LIB正極板110P)からのリチウムイオンのインターカレーションに起因する負極板110Nの膨張および収縮の度合いが大きい。このため、例えば電極の物理的損傷等に起因して、蓄電セル100の容量が低下したり、蓄電セル100の内部抵抗が増大したりするおそれがある。これに対して、本実施形態では、第2の容量比が90%以下である場合(第4の条件)、正極(LIB正極板110P)からのリチウムイオンのインターカレーションに起因する負極板110Nの膨張および収縮が抑制され、蓄電セル100のサイクル寿命の向上を図ることができる。 If the second capacity ratio exceeds 90%, the degree of expansion and contraction of the negative electrode plate 110N due to intercalation of lithium ions from the positive electrode (LIB positive electrode plate 110P) is large. Therefore, there is a possibility that the capacity of the storage cell 100 may decrease or the internal resistance of the storage cell 100 may increase due to, for example, physical damage to the electrodes. In contrast, in the present embodiment, when the second capacity ratio is 90% or less (fourth condition), the negative electrode plate 110N resulting from intercalation of lithium ions from the positive electrode (LIB positive electrode plate 110P) expansion and contraction are suppressed, and the cycle life of the storage cell 100 can be improved.
 また、仮に、第2の容量比が10%未満である場合、負極活物質114Nが、LIB正極活物質114PやLIC正極活物質214Pに対して過剰に多くなる分だけ、充放電に利用されない活物質が多くなるため、蓄電セル100の体積エネルギー密度が低下するおそれがある。これに対して、本実施形態では、第2の容量比が10%以上である場合(第4の条件)、蓄電セル100の体積エネルギー密度が低下することを抑制することができる。さらに、第2の容量比が、50%以上、75%以下である場合(第5の条件)、蓄電セル100のサイクル寿命の向上を図りつつ、蓄電セル100の体積エネルギー密度が低下することを、より効果的に抑制することができる。 Further, if the second capacity ratio is less than 10%, the amount of the negative electrode active material 114N that is excessively large relative to the LIB positive electrode active material 114P and the LIC positive electrode active material 214P is not used for charging and discharging. Since the amount of material increases, the volume energy density of the storage cell 100 may decrease. On the other hand, in the present embodiment, when the second capacity ratio is 10% or more (fourth condition), it is possible to suppress the volumetric energy density of the storage cell 100 from decreasing. Furthermore, when the second capacity ratio is 50% or more and 75% or less (fifth condition), it is possible to prevent the volume energy density of the storage cell 100 from decreasing while improving the cycle life of the storage cell 100. , can be suppressed more effectively.
 本実施形態では、負極SOCが10%以上、100%以下の範囲で利用される場合(第6の条件)、リチウムイオンの不足に起因する蓄電セル100の寿命の低下を抑制することができる。 In this embodiment, when the negative electrode SOC is used in the range of 10% or more and 100% or less (sixth condition), it is possible to suppress the decrease in the life of the storage cell 100 due to the lack of lithium ions.
A-4.本実施形態の変形例:
 図4は、本実施形態の変形例における蓄電デバイス1aの内部構成を示す説明図である。本変形例の蓄電デバイス1aは、上記実施形態の蓄電デバイス1に対して、蓄電セルの構成が異なる。以下では、本変形例の蓄電デバイス1aの構成の内、上述した実施形態の蓄電デバイス1の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
A-4. Modification of this embodiment:
FIG. 4 is an explanatory diagram showing the internal configuration of an electricity storage device 1a in a modification of the present embodiment. The power storage device 1a of this modification differs from the power storage device 1 of the above-described embodiment in the configuration of the power storage cells. In the following, of the configuration of the electricity storage device 1a of this modified example, the same configurations as the configuration of the electricity storage device 1 of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本変形例の蓄電セル100aは、複数のハイブリッド正極板110Paと、複数の負極板110Nと、セパレータ120とを備えている。ハイブリッド正極板110Paと負極板110Nとが、セル並び方向に、1つずつ交互に配列されている。セパレータ120は、セル並び方向において互いに対向するハイブリッド正極板110Paと負極板110Nとの間に介在するように配置されている。すなわち、蓄電セル100aは、ハイブリッド正極板110Paと負極板110Nとセパレータ120とが所定方向(本実施形態ではセル並び方向)に並べて配置された積層構造を有している。 A power storage cell 100 a of this modification includes a plurality of hybrid positive electrode plates 110 Pa, a plurality of negative electrode plates 110 N, and a separator 120 . Hybrid positive electrode plates 110Pa and negative electrode plates 110N are alternately arranged one by one in the cell arrangement direction. The separator 120 is arranged so as to be interposed between the hybrid positive electrode plate 110Pa and the negative electrode plate 110N facing each other in the cell arrangement direction. That is, the storage cell 100a has a laminated structure in which the hybrid positive electrode plate 110Pa, the negative electrode plate 110N, and the separator 120 are arranged side by side in a predetermined direction (the cell alignment direction in this embodiment).
 ハイブリッド正極板110Paは、正極集電体112Pと、正極集電体112Pの一方の面(図4のY軸正方向側の面)に支持されたLIB正極活物質114Pと、正極集電体112Pの他方の面(図4のY軸負方向側の面)に支持されたLIC正極活物質214Pとを有する。ハイブリッド正極板110Paのうち、LIB正極活物質114Pが塗布された側の部分が、特許請求の範囲における第1の正極の一例であり、LIC正極活物質214Pが塗布された側の部分が、特許請求の範囲における第2の正極の一例である。 The hybrid positive electrode plate 110Pa includes a positive electrode current collector 112P, a LIB positive electrode active material 114P supported on one surface of the positive electrode current collector 112P (the surface on the Y-axis positive direction side in FIG. 4), and the positive electrode current collector 112P. and the LIC positive electrode active material 214P supported on the other surface (the surface on the Y-axis negative direction side in FIG. 4). Of the hybrid positive electrode plate 110Pa, the portion on the side to which the LIB positive electrode active material 114P is applied is an example of the first positive electrode in the claims, and the portion on the side to which the LIC positive electrode active material 214P is applied is the It is an example of the second positive electrode in the claims.
 以上の構成により、ハイブリッド正極板110PaのLIB正極活物質114Pと、負極板110Nの負極活物質114Nと、それらの間に介在するセパレータ120とによって、LIBセル10が構成されている。また、ハイブリッド正極板110PaのLIC正極活物質214Pと、負極板110Nの負極活物質114Nと、それらの間に介在するセパレータ120とによって、LICセル20が構成されている。すなわち、LIBセル10とLICセル20とは、互いに並列に接続されている。また、蓄電セル100aは、LIBセル10とLICセル20とが、所定の複数個(図4では1つ)ずつ、セル並び方向に交互に並ぶように配置された構成とされている。 With the above configuration, the LIB cell 10 is composed of the LIB positive electrode active material 114P of the hybrid positive electrode plate 110Pa, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. The LIC cell 20 is composed of the LIC positive electrode active material 214P of the hybrid positive electrode plate 110Pa, the negative electrode active material 114N of the negative electrode plate 110N, and the separator 120 interposed therebetween. That is, the LIB cell 10 and the LIC cell 20 are connected in parallel with each other. Further, the storage cell 100a has a configuration in which a predetermined number of LIB cells 10 and LIC cells 20 (one cell in FIG. 4) are alternately arranged in the cell alignment direction.
 このような構成においても、上述した第1の条件から第6の条件を満たすことにより、上記実施形態の同様の効果を得ることができる。 Even in such a configuration, by satisfying the first to sixth conditions described above, the same effect as the above embodiment can be obtained.
B.変形例:
 本発明は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Variant:
The present invention is not limited to the above-described embodiments, and can be modified in various forms without departing from the scope of the invention. For example, the following modifications are possible.
 上記実施形態における蓄電デバイス1の構成は、あくまで一例であり、種々変形可能である。例えば上記実施形態では、第1の正極および第2の正極として、LIB正極板110PおよびLIC正極板210Pを例示したが、第2の正極が、第1の正極に比べて、容量が低く、かつ、内部抵抗が低い関係が成立する構成であればよい。例えば第1の正極と第2の正極とが同一材料により形成され、かつ、第1の正極と第2の正極とで、電極層(活物質)の塗布量や密度等が互いに異なることにより上記関係が成立する構成でもよい。 The configuration of the electricity storage device 1 in the above embodiment is merely an example, and various modifications are possible. For example, in the above embodiment, the LIB positive electrode plate 110P and the LIC positive electrode plate 210P were exemplified as the first positive electrode and the second positive electrode. , and low internal resistance. For example, the first positive electrode and the second positive electrode are formed of the same material, and the first positive electrode and the second positive electrode have different coating amounts, densities, etc. of the electrode layers (active materials). A configuration in which a relationship is established may also be used.
 上記実施形態では、蓄電セル100は、複数の=LIBセル10と複数のLICセル20とを備え、所定数ずつのLIBセル10とLICセル20とがセル並び方向に交互に並ぶように配置された構成であったが、例えばLIBセル10のみ、または、LICセルのみをセル並び方向に連続して配置しても良い。また、LIBセル10とLICセル20とは同数に限らず、LIBセル10とLICセル20と数の比率を変更しても良い。また、例えばLIBセル10とLICセル20とを蓄電デバイス1つずつ備える構成でもよい。また、上記実施形態の図1や図4の構成に対して、負極板110Nに付された一対のLIB負極活物質114Nが互いに異なる材料により形成されていてもよい。 In the above embodiment, the storage cell 100 includes a plurality of =LIB cells 10 and a plurality of LIC cells 20, and a predetermined number of LIB cells 10 and LIC cells 20 are arranged alternately in the cell arrangement direction. However, for example, only the LIB cells 10 or only the LIC cells may be arranged continuously in the cell arrangement direction. Also, the number of LIB cells 10 and LIC cells 20 is not limited to the same number, and the number ratio of LIB cells 10 and LIC cells 20 may be changed. Alternatively, for example, a configuration in which one LIB cell 10 and one LIC cell 20 are included in each power storage device may be used. 1 and 4 of the above embodiments, the pair of LIB negative electrode active materials 114N attached to the negative electrode plate 110N may be made of different materials.
 上記実施形態では、複数のLIBセル10と複数のLICセル20と電解液とが同一の空間内に収容された構成であったが、1つのLIBセル10と1つのLICセル20と電解液とが同一の空間内に収容された構成でもよいし、LIBセル10とLICセル20とが互いに異なる空間(セル室、電槽)にそれぞれ収容された構成でもよい。上記実施形態では、LIBセル10及びLICセル20は、いずれも積層構造を有する構成であったが、これに限らず、例えば正極と負極との一方が他方の周りに巻かれた巻回構造を有する構成でもよい。 In the above embodiment, the plurality of LIB cells 10, the plurality of LIC cells 20, and the electrolytic solution are housed in the same space. may be housed in the same space, or the LIB cell 10 and the LIC cell 20 may be housed in different spaces (cell chambers, battery cases). In the above embodiment, both the LIB cell 10 and the LIC cell 20 have a laminated structure. may be configured to have.
 上記実施形態において、第2の条件から第6の条件のうち、少なくとも1つを満たさない構成でもよい。また、複数の蓄電セルを備える蓄電モジュールにおいて、少なくとも1つの蓄電セルについて、第1の条件、さらには第2の条件から第6の条件を満たすことにより、上記効果を得ることができる。 In the above embodiment, the configuration may be such that at least one of the second to sixth conditions is not satisfied. In addition, in a power storage module having a plurality of power storage cells, the above effect can be obtained by satisfying the first condition and further the second to sixth conditions for at least one power storage cell.
 上記実施形態における各部材を構成する材料は、あくまで例示であり、各部材が他の材料により構成されていてもよい。また、上記実施形態における蓄電セルの作製方法は、あくまで例示であり、他の作製方法により作製されてもよい。 The materials that make up each member in the above embodiment are merely examples, and each member may be made of another material. In addition, the method for manufacturing the storage cell in the above embodiment is merely an example, and the storage cell may be manufactured by another manufacturing method.
1,1a:蓄電デバイス 10:LIBセル 20:LICセル 30:筐体 40N:負極側端子部 40P:正極側端子部 100,100a:蓄電セル 110N:負極板 110P:LIB正極板 110Pa:ハイブリッド正極板 112N:負極集電体 112P:正極集電体 114N:負極活物質 114P:LIB正極活物質 120:セパレータ 210P:LIC正極板 212P:正極集電体 214P:LIC正極活物質 1, 1a: power storage device 10: LIB cell 20: LIC cell 30: housing 40N: negative electrode side terminal portion 40P: positive electrode side terminal portion 100, 100a: storage cell 110N: negative electrode plate 110P: LIB positive electrode plate 110Pa: hybrid positive electrode plate 112N: negative electrode current collector 112P: positive electrode current collector 114N: negative electrode active material 114P: LIB positive electrode active material 120: separator 210P: LIC positive electrode plate 212P: positive electrode current collector 214P: LIC positive electrode active material

Claims (7)

  1.  第1の正極と、
     前記第1の正極に比べて、容量が低く、かつ、内部抵抗が低い第2の正極と、
     負極と、
     を備える、蓄電セルであって、
     前記第1の正極の容量に対する前記第2の正極の容量の比率である第1の容量比は、0.7%以上、10%以下である、
     蓄電セル。
    a first positive electrode;
    a second positive electrode having a lower capacity and a lower internal resistance than the first positive electrode;
    a negative electrode;
    A storage cell comprising
    A first capacity ratio, which is a ratio of the capacity of the second positive electrode to the capacity of the first positive electrode, is 0.7% or more and 10% or less.
    storage cell.
  2.  請求項1に記載の蓄電セルであって、
     前記第1の容量比は、1%以上である、
     蓄電セル。
    The storage cell according to claim 1,
    The first capacity ratio is 1% or more,
    storage cell.
  3.  請求項1または請求項2に記載の蓄電セルであって、
     前記第1の正極を構成する第1の正極材料と、前記第2の正極を構成する第2の正極材料とは、互いに特性が異なる、
     蓄電セル。
    The storage cell according to claim 1 or 2,
    The first positive electrode material constituting the first positive electrode and the second positive electrode material constituting the second positive electrode have different characteristics,
    storage cell.
  4.  請求項1から請求項3までのいずれか一項に記載の蓄電セルであって、
     前記負極の容量に対する、前記第1の正極の容量と前記第2の正極の容量との合計容量の比率である第2の容量比は、10%以上、90%以下である、
     蓄電セル。
    The storage cell according to any one of claims 1 to 3,
    A second capacity ratio, which is a ratio of the total capacity of the capacity of the first positive electrode and the capacity of the second positive electrode to the capacity of the negative electrode, is 10% or more and 90% or less.
    storage cell.
  5.  請求項4に記載の蓄電セルであって、
     前記第2の容量比は、50%以上、75%以下である、
     蓄電セル。
    The storage cell according to claim 4,
    The second capacity ratio is 50% or more and 75% or less.
    storage cell.
  6.  請求項1から請求項5までのいずれか一項に記載の蓄電セルであって、
     前記負極は、負極SOCが10%以上、100%以下の範囲で利用される、
     蓄電セル。
    The storage cell according to any one of claims 1 to 5,
    The negative electrode is used in a negative electrode SOC range of 10% or more and 100% or less,
    storage cell.
  7.  複数の蓄電セルを備える蓄電モジュールであって、
     前記複数の蓄電セルの少なくとも1つは、請求項1から請求項6までのいずれか一項に記載の蓄電セルである、
     蓄電モジュール。
    A power storage module comprising a plurality of power storage cells,
    At least one of the plurality of storage cells is the storage cell according to any one of claims 1 to 6,
    storage module.
PCT/JP2021/044825 2021-12-07 2021-12-07 Power storage cell and power storage module WO2023105600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044825 WO2023105600A1 (en) 2021-12-07 2021-12-07 Power storage cell and power storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044825 WO2023105600A1 (en) 2021-12-07 2021-12-07 Power storage cell and power storage module

Publications (1)

Publication Number Publication Date
WO2023105600A1 true WO2023105600A1 (en) 2023-06-15

Family

ID=86729802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044825 WO2023105600A1 (en) 2021-12-07 2021-12-07 Power storage cell and power storage module

Country Status (1)

Country Link
WO (1) WO2023105600A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306609A (en) * 1999-04-20 2000-11-02 Asahi Glass Co Ltd Secondary power supply
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2009070781A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
WO2015199101A1 (en) * 2014-06-24 2015-12-30 株式会社カネカ Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
CN105551816A (en) * 2015-12-21 2016-05-04 中航锂电(洛阳)有限公司 Positive plate of hybrid super capacitor and preparation method of positive plate and hybrid super capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306609A (en) * 1999-04-20 2000-11-02 Asahi Glass Co Ltd Secondary power supply
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
JP2009070781A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
WO2015199101A1 (en) * 2014-06-24 2015-12-30 株式会社カネカ Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
CN105551816A (en) * 2015-12-21 2016-05-04 中航锂电(洛阳)有限公司 Positive plate of hybrid super capacitor and preparation method of positive plate and hybrid super capacitor

Similar Documents

Publication Publication Date Title
JP4857073B2 (en) Lithium ion capacitor
US9245691B1 (en) High energy density electrochemical capacitors
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP6355163B2 (en) Lithium ion battery
JP4305111B2 (en) Battery pack and electric vehicle
JP6692123B2 (en) Lithium ion secondary battery
JP2014096238A (en) Process of manufacturing positive electrode for power storage device and positive electrode
CN114982035A (en) Battery pack, battery pack, electrical device, and method and apparatus for manufacturing battery pack
JP2009259607A (en) Battery pack
WO2012132525A1 (en) Pack battery
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
KR20220015222A (en) Anode for lithium secondary battery and lithium secondary battery including the same
JP2000090932A (en) Lithium secondary battery
JP6573150B2 (en) Electricity storage element
JP2013197052A (en) Lithium ion power storage device
WO2023105600A1 (en) Power storage cell and power storage module
JP2005327489A (en) Positive electrode for power storage element
JP2007018834A (en) Electrochemical device
JP2018078029A (en) Negative electrode and nonaqueous electrolyte power storage device
JPH11283612A (en) Lithium secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JP7462476B2 (en) Secondary battery
JP7164509B2 (en) lithium ion battery
CN220569725U (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565707

Country of ref document: JP