WO2012132471A1 - Glass sheet production method - Google Patents

Glass sheet production method Download PDF

Info

Publication number
WO2012132471A1
WO2012132471A1 PCT/JP2012/002250 JP2012002250W WO2012132471A1 WO 2012132471 A1 WO2012132471 A1 WO 2012132471A1 JP 2012002250 W JP2012002250 W JP 2012002250W WO 2012132471 A1 WO2012132471 A1 WO 2012132471A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
glass
temperature
power supply
glass plate
Prior art date
Application number
PCT/JP2012/002250
Other languages
French (fr)
Japanese (ja)
Inventor
次伸 村上
宣之 日沖
Original Assignee
AvanStrate株式会社
アヴァンストレート コリア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, アヴァンストレート コリア インコーポレイテッド filed Critical AvanStrate株式会社
Priority to KR1020127031323A priority Critical patent/KR101300883B1/en
Priority to JP2012525554A priority patent/JP5456895B2/en
Priority to CN201280002926.3A priority patent/CN103118994B/en
Publication of WO2012132471A1 publication Critical patent/WO2012132471A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Definitions

  • the present invention relates to a method for producing a glass plate.
  • a fining agent is generally contained in the glass raw material.
  • the fining agent uses an oxide that decomposes at a high temperature when the glass raw material dissolves to become a low-viscosity liquid and generates a gas (bubble) such as O 2 and SO 2 .
  • the gas component contained in the gas diffuses into the gas (bubbles) to form large bubbles, which rises and defoams, and clarification proceeds.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-298657 proposes a technique for performing degassing of molten glass in a vacuum housing that is sucked in vacuum to effectively clarify the molten glass. .
  • the present invention has been made in view of the above-mentioned problems, and provides a method for producing a glass plate capable of clarifying molten glass simply and effectively.
  • molten glass is flowed into a longitudinally extending tubular container made of a refractory metal having a first portion and a second portion located downstream of the first portion.
  • the molten glass is clarified while the molten glass is made to have a first temperature at the first portion, and the second temperature is lower than the first temperature at the second portion. It is characterized by including.
  • the temperature of the molten glass can be lowered to a temperature suitable for the subsequent process in the second part.
  • bubbles generated in the first part can be easily removed. Therefore, if the manufacturing method of the glass plate which concerns on this invention is used, it is possible to clarify a molten glass simply and effectively.
  • the second part is adjacent to the first part, and when the container is divided into two parts, an upstream part and a downstream part, in the flowing direction of the molten glass, the first part
  • the portion is an upstream portion and the second portion is a downstream portion.
  • the container is provided with three power supply terminals at different positions in the direction in which the molten glass flows, and an area located between two adjacent power supply terminals located upstream of the three power supply terminals. It is preferable that a region located between two adjacent power supply terminals located on the downstream side among the three power supply terminals is the second part.
  • the upstream end and the downstream end of the container are connected to different transfer pipes, and the maximum inner diameter of the container is preferably larger than the maximum inner diameter of the transfer pipe.
  • the container has an obstacle wall which is a wall substantially perpendicular to the longitudinal direction of the container on the inside.
  • the refractory metal is preferably platinum or a platinum alloy.
  • the molten glass can be clarified simply and effectively.
  • the tubular container extended in the longitudinal direction which consists of a refractory metal which concerns on this invention is the clarification tank (clarification pipe
  • the clarification tank 102 is preferably provided with a device for heating the molten glass therein.
  • the clarification tank 102 according to the present embodiment includes a tube main body 102a and a total of three power supply terminals (a first power supply terminal 201a, a second power supply terminal 201b, and a third power supply) provided substantially at both ends of the tube main body 102a. Terminal 201c).
  • the first power supply terminal 201a and the third power supply terminal 201c are disposed at both ends of the tube main body 102a, and the second power supply terminal 201b is disposed at a position approximately in the middle between the first power supply terminal 201a and the third power supply terminal 201c. It is preferable. As a result, the first half (first portion) of the clarification tank 102 defined by the first power supply terminal 201a and the second power supply terminal 201b, and the second half defined by the second power supply terminal 201b and the third power supply terminal 201c ( It is possible to separately control the heating of the molten glass in the second part).
  • the clarification tank (clarification tube) 102 is divided into two parts, an upstream part and a downstream part, in the direction in which the molten glass flows.
  • the first part is the upstream part
  • the second part is the downstream part.
  • the clarification tank (clarification tube) 102 is provided with three power supply terminals (first power supply terminal 201a, second power supply terminal 201b, and third power supply terminal 201c) at different positions in the direction in which the molten glass flows.
  • a region located between two adjacent power supply terminals located on the upstream side among the power supply terminals is a first portion, and between two adjacent power supply terminals located on the downstream side among the three power supply terminals.
  • region located is a 2nd part.
  • the tube body 102a is preferably cylindrical.
  • the thickness is preferably, for example, 1 mm to 1.5 mm.
  • the tube body 102a is made of a refractory metal, but is preferably made of platinum or a platinum alloy.
  • the maximum inner diameter of the pipe body 102a is preferably larger than the first transfer pipe 105a connected to the upstream end of the clarification tank 102 and the second transfer pipe 105b connected to the downstream end of the clarification tank 102. Is preferably 20% or more, more preferably 40% or more. For example, if both the first transfer pipe 105a and the second transfer pipe 105b have an inner diameter of 250 mm, the inner diameter of the pipe body 102a may be about 300 mm or more. Thereby, the residence time of the molten glass in the clarification tank 102 can be lengthened, and the clarification of a molten glass can be promoted.
  • FIG. 4 shows a cross-sectional view of the pipe body 102a of the clarification tank 102 cut in the longitudinal direction.
  • the tube body 102a preferably includes an obstacle wall 202 inside the tube body 102a, as shown in FIGS. 4 and 5, which is a wall substantially perpendicular to the longitudinal direction of the tube body 102a. It is preferable that a plurality of obstacle walls 202 are provided.
  • the obstacle wall 202 has a cross-sectional area perpendicular to the longitudinal direction of the tube main body 102a (an area of a cross section perpendicular to the longitudinal direction of the tube main body 102a of the passage through which molten glass is passed) of 1/3 or more and 2/3 or less.
  • the obstacle wall 202 has a diameter of the tube body 102a from a first position, which is a predetermined position on the inner surface of the tube body 102a, to the inner surface of the opposite tube body 102a. And the first type of obstacle wall 202a extending including the first main body 102a and the first main body 102a on the circumference of the inner diameter of the tube main body 102a when viewed from the direction perpendicular to the cross section.
  • the second type of obstacle wall 202b protrudes from both the second position different from the first position and the inner surface facing the second position so as not to include the diameter of the tube main body 102a. And it is preferable that these two types of obstacle walls 202a and 202b are alternately arranged in the longitudinal direction on the inner surface of the tube body 102a. Further, the second position is determined from the first position on the circumference of the cross section perpendicular to the longitudinal direction of the tube main body 102a when the cross section perpendicular to the longitudinal direction of the tube main body 102a is viewed from the direction perpendicular to the cross section. A position rotated by about 90 ° C. is preferable.
  • the obstacle wall 202 is arranged so that the position of the obstacle wall 202 on the cross section perpendicular to the longitudinal direction of the tube body 102a is alternately reversed in the longitudinal direction of the tube body 102a.
  • the molten glass is prevented from flowing linearly from the upstream to the downstream in the clarification tank 102, and the temperature and clarification effect of the molten glass in the clarification tank 102 can be made uniform. It can be promoted more.
  • the tube main body 102a generates heat when energized by the first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c, and the molten glass in the tube main body 102a is heated by the Joule heat.
  • the first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c are composed of a flange and an electrode drawn from the flange, and the current is between the first power supply terminal 201a and the second power supply terminal 201b. And between the second power supply terminal 201b and the third power supply terminal 201c. For example, if the molten glass passing through the clarification tank 102 flows from the left to the right in FIG.
  • the molten glass is clarified between the first power supply terminal 201a and the second power supply terminal 201b (first portion). It is preferable to be heated to a suitable temperature (first temperature). As the temperature of the molten glass increases, the viscosity decreases. When the viscosity is low, the bubbles easily escape from the molten glass. In addition, heating to a temperature suitable for clarification facilitates the release of oxygen ions due to the progress of the oxidation-reduction reaction of the oxide contained in the glass raw material, and agglomeration with other gas components contained in the glass raw material Thus, bubbles are generated and easily removed from the molten glass. Some oxides promote this action, and it is preferable to add such an oxide as a fining agent to the glass raw material.
  • the first temperature depends on the type of glass and what is used as the fining agent.
  • the temperature is preferably 1650 ° C. to 1700 ° C.
  • the gas component in molten glass forms a bubble or vaporizes, and becomes easy to escape from molten glass.
  • the refining agent releases the gas component in the molten glass captured at a predetermined temperature or higher, and the released gas component escapes out of the molten glass.
  • tin oxide (SnO 2 ) is used as a fining agent
  • the molten glass is preferably heated to 1600 ° C. or higher, more preferably 1650 ° C. or higher.
  • heating is performed between the second power supply terminal 201b and the third power supply terminal 201c (second portion) so as to be a predetermined temperature (second temperature) lower than the first temperature.
  • second temperature a predetermined temperature
  • the fining agent absorbs the gas component of the bubbles remaining in the molten glass in this way when the temperature of the molten glass reaches a predetermined temperature.
  • the predetermined temperature is lower than the temperature at which the fining agent releases the gas component.
  • tin oxide (SnO 2 ) when used as the fining agent, tin oxide (SnO 2 ) has a molten glass temperature of about 1600 ° C. When it becomes lower, the gas component in the molten glass is absorbed. Therefore, by lowering the temperature of the molten glass to the second temperature lower than the first temperature, the action of absorbing the gas component of the bubbles in the molten glass of the fining agent is promoted, and the glass is clarified effectively. Can do.
  • the gas component may melt into the molten glass from the outside, or the gas component in the molten glass may form bubbles in the molten glass. This phenomenon is also called reboil. It is. In order to prevent this, it is preferable to lower the temperature of the molten glass heated to the first temperature below the first temperature. For this reason, in the step after defoaming of the molten glass, the temperature of the molten glass is preferably lowered to a temperature lower than the first temperature.
  • the second temperature is preferably 1590 ° C. to 1640 ° C., and is about 1590 ° C.
  • the molten glass is effectively clarified by lowering the temperature of the molten glass to the second temperature lower than the first temperature in the second portion located downstream of the first portion of the clarification tank 102. .
  • the temperature of the molten glass can be lowered to a temperature suitable for the subsequent steps, and the formation of bubbles in the glass is effectively suppressed. be able to.
  • a larger amount of current for heating the clarification tank (clarification tube) 102 is supplied to the first portion than in the second portion. Is preferred.
  • the first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c are composed of a flange and an electrode drawn from the flange. Therefore, when the flange is relatively large, the flange functions as a cooling fin. In some cases, the temperature of the molten glass is locally decreased. In such a case, setting the molten glass to the first temperature in the first portion means that the molten glass is set to the first temperature in substantially the entire first portion.
  • the substantially entire first portion is more preferably a region within a range of ⁇ 40% of the longitudinal length of the first portion with reference to the longitudinal center of the tube body 102a in the first portion. Is an area within a range of ⁇ 45%.
  • setting the molten glass to the second temperature in the second part means that the molten glass is set to the second temperature in substantially the entire second part.
  • the substantially entire second portion is more preferably a region within a range of ⁇ 40% of the longitudinal length of the second portion with respect to the longitudinal center of the tube body 102a in the second portion. Is an area within a range of ⁇ 45%. In this way, even if the portions where the temperature of the molten glass is the first temperature and the second temperature are substantially the whole of the first portion and the whole of the second portion, the whole first portion is melted. The same effect as when the temperature of the glass is the first temperature and the temperature of the molten glass is the second temperature in the entire second portion can be obtained.
  • the glass plate production method according to the present invention can be applied to the production of any glass plate, particularly a liquid crystal display device, a plasma display device, etc. It is suitable for manufacturing a glass substrate for flat panel display or a cover glass covering the display portion.
  • glass raw materials are first mixed so as to have a desired glass composition.
  • a desired glass composition For example, when manufacturing a glass substrate for a flat panel display, it is preferable to mix the raw materials so as to have the following composition.
  • P RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba),
  • SiO 2 50 to 70% by mass
  • B 2 O 3 3 to 15% by mass
  • Al 2 O 3 8 to 25% by mass
  • MgO 0 to 10% by mass
  • CaO 0 to 20% by mass
  • SrO 0 to 20% by mass
  • BaO 0 to 10% by mass
  • RO 5 to 20% by mass
  • R is at least one selected from Mg, Ca, Sr and Ba
  • R ′ 2 O more than 0.10% by mass and 2.0% by mass or less (provided that R ′ is at least one selected from Li, Na, and K), 0.05 to 1.5 mass% in total of at least one metal oxide selected from tin oxide, iron oxide, cerium oxide, and the like.
  • R ' includes 2 O over 0.10 mass%, R' may contain less than the 2 O 0.10 wt% may not include substantially no R '2 O .
  • Glass that contains substantially no R ′ 2 O is called alkali-free glass.
  • said glass substrate for flat panel displays does not contain arsenic and antimony substantially. That is, even if these substances are included, they are as impurities. Specifically, these substances include 0.1% by mass including oxides of As 2 O 3 and Sb 2 O 3. The following is preferable.
  • the glasses of the present invention may contain various other oxides to adjust the various physical, melting, fining, and forming characteristics of the glass.
  • examples of such other oxides include, but are not limited to, SnO 2 , TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and it includes La 2 O 3.
  • Nitrate and carbonate can be used as a supply source of RO in the above glass composition.
  • nitrate it is more desirable to use nitrate as a supply source of RO at a ratio suitable for the process.
  • the glass plate manufactured in the present embodiment is manufactured continuously unlike a system in which a certain amount of glass raw material is supplied to a melting furnace and batch processing is performed.
  • the glass plate applied in the production method of the present invention may be a glass plate having any thickness and width.
  • a glass plate manufacturing method includes a series of steps shown in the flowchart of FIG. Is used.
  • the glass raw material mixed to have the above composition is first melted in the melting step (step S101).
  • the raw material is put into the melting tank 101 and heated to a predetermined temperature.
  • the predetermined temperature is preferably 1550 ° C. or higher.
  • the heated raw material melts to form molten glass.
  • the molten glass is fed into the clarification tank 102 where the next clarification step (step S102) is performed through the first transfer pipe 105a.
  • the molten glass is clarified. Specifically, when the molten glass is heated to a predetermined temperature in the clarification tank 102, the gas component contained in the molten glass forms bubbles or vaporizes and escapes out of the molten glass.
  • the predetermined temperature has already been described in the above “(1) Clarification tank”.
  • the clarified molten glass is sent through the second transfer pipe 105b to the agitation tank 103 where the next step, the homogenization step (step S103), is performed.
  • the molten glass is homogenized. Specifically, the molten glass is homogenized in the stirring tank 103 by being stirred by a stirring blade (not shown) provided in the stirring tank 103.
  • the molten glass fed into the stirring vessel 103 is heated so as to be in a predetermined temperature range.
  • the predetermined temperature range is preferably 1440 ° C. to 1500 ° C.
  • the homogenized molten glass is sent from the stirring tank 103 to the third transfer pipe 105c.
  • the molten glass is heated to a temperature suitable for molding in the third transfer pipe 105c, and sent to the molding apparatus 104 where the next molding process (step S105) is performed.
  • a temperature suitable for molding is preferably about 1200 ° C.
  • the molten glass is formed into a plate-like glass.
  • the molten glass is continuously formed into a ribbon shape by the overflow downdraw method.
  • the formed ribbon-shaped glass is cut into a glass plate.
  • the overflow downdraw method is a method known per se. For example, as described in U.S. Pat. No. 3,338,696, the molten glass poured into the molded body and overflowed, It is a method of forming a ribbon-like glass by drawing down the outer surface and flowing down and joining the bottom of the molded body downward.
  • composition SiO 2: 60.9 wt%, B 2 O 3: 11.6 wt%, Al 2 O 3: 16.9 wt%, MgO: 1.7 wt%, CaO: 5.1 Weight %, SrO: 2.6 mass%, BaO: 0.7 mass%, K 2 O: 0.25 mass%, Fe 2 O 3 : 0.15 mass%, SnO 2 : 0.13 mass%
  • the raw materials were mixed so that Next, the raw material was charged into the dissolution tank 101.
  • the glass plate production line 100 shown in FIG. 2 including the clarification tank 102 having the configuration shown in FIGS. 3, 4, and 5 is used for the molten glass produced in the melting tank 101, and the above-described present invention.
  • the glass plate was manufactured using the glass plate manufacturing method concerning this embodiment.
  • the tube main body 102a is made of an alloy of platinum and rhodium
  • the first power supply terminal 201a is installed at the upstream end of the tube main body 102a
  • the third power supply terminal 201c is installed at the downstream end of the tube main body 102a.
  • 201b was installed in the middle of the 1st electric supply terminal 201a and the 3rd electric supply terminal 201c.
  • the maximum inner diameter was about 40% larger than the inner diameters of the first transfer pipe 105a and the second transfer pipe 105b.
  • a plurality of obstacle walls 202 were provided inside the clarification tank 102 in the arrangement as shown in FIGS. 4 and 5.
  • the molten glass is heated to about 1700 ° C., and the second power supply terminal 201b and the third power supply terminal 201c in the latter half are heated. In the meantime, the temperature of the molten glass was lowered and controlled to be about 1590 ° C. immediately before flowing out to the second transfer pipe 105b.
  • the forming step (step S105) a glass plate having a size of 1100 mm ⁇ 1300 mm was manufactured using the overflow downdraw method.
  • the molten glass can be clarified simply and effectively as described above.
  • a clarification tank 102 made of platinum or a platinum alloy having a first portion (first half) and a second portion (second half) located downstream of the first portion. While the molten glass is flowing, the molten glass is clarified, the molten glass is heated to a predetermined temperature (first temperature) in the first half of the clarification tank 102, and the molten glass is heated to a temperature lower than the first temperature in the second half.
  • a glass plate is manufactured using the manufacturing method of a glass plate including the refining process (step S102) made into temperature of 2.
  • the viscosity of the molten glass can be set to a relatively low viscosity suitable for removing bubbles, and then in the molten glass.
  • the gas component can be absorbed by the fining agent from the remaining bubbles to eliminate the bubbles, or the temperature can be lowered to a temperature suitable for preventing reboiling.
  • the temperature of the molten glass can be lowered to a temperature suitable for the subsequent steps before being sent to an apparatus in which the next step of the clarification step (step S102) is performed. Therefore, if the manufacturing method of the glass plate which concerns on this invention is used, it is possible to clarify a molten glass simply and effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

A glass sheet production method includes a step in which molten glass is clarified while the molten glass is caused to flow into a clarification tank which is a tubular container extending in the longitudinal direction, comprises a fire-retardant metal, and has a first section and a second section positioned downstream from the first section. Said step includes steps in which the molten glass in the first section is set to a first temperature and the molten glass in the second section is set to a second temperature lower than the first temperature.

Description

ガラス板製造方法Glass plate manufacturing method
 本発明は、ガラス板の製造方法に関する。 The present invention relates to a method for producing a glass plate.
 ガラス製造業者は、製造過程においてガラス中に形成される気泡に悩まされてきた。特に液晶表示装置のガラス基板用やカバーガラス用のガラス板は、極少な気泡含有量が求められる。そこで、気泡を取り除くために溶融ガラスを清澄することが行われている。清澄効果を高めるためには、一般にガラス原料中に清澄剤を含有させることが行われる。清澄剤は高温下で、ガラス原料が溶解して粘度の低い液体となった時点で分解して、O2、SO2等のガス(泡)を発生する酸化物を使用する。このガス(泡)中にガラス中に含まれているガス成分が拡散して大きな泡となり浮上脱泡し、清澄が進む。このような清澄を行うための様々な方法が開発されてきた。例えば、特許文献1(特開2006-298657号公報)では、溶融ガラスの清澄を効果的に行なうために、真空吸引される減圧ハウジング内で溶融ガラスの減圧脱泡を行う技術が提案されている。 Glass manufacturers have been plagued by bubbles that form in the glass during the manufacturing process. In particular, a glass plate for a glass substrate or a cover glass of a liquid crystal display device is required to have an extremely small bubble content. Therefore, clarification of the molten glass is performed to remove bubbles. In order to enhance the fining effect, a fining agent is generally contained in the glass raw material. The fining agent uses an oxide that decomposes at a high temperature when the glass raw material dissolves to become a low-viscosity liquid and generates a gas (bubble) such as O 2 and SO 2 . The gas component contained in the gas diffuses into the gas (bubbles) to form large bubbles, which rises and defoams, and clarification proceeds. Various methods for performing such fining have been developed. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-298657) proposes a technique for performing degassing of molten glass in a vacuum housing that is sucked in vacuum to effectively clarify the molten glass. .
 しかし、上記の方法は複雑で高価な設備を必要とする。そこで、簡便で効果的に溶融ガラスを清澄する方法が依然として要請されている。 However, the above method requires complicated and expensive equipment. Therefore, there is still a need for a simple and effective method for refining molten glass.
 本発明は、上記課題に鑑みなされたものであり、簡便で効果的に溶融ガラスを清澄することが可能なガラス板の製造方法を提供するものである。 The present invention has been made in view of the above-mentioned problems, and provides a method for producing a glass plate capable of clarifying molten glass simply and effectively.
 本発明に係るガラス板の製造方法は、第1の部分と当該第1の部分の下流に位置する第2の部分とを有する耐火金属からなる長手方向に延長する管状の容器に溶融ガラスを流動させながら、当該溶融ガラスを清澄する工程を含み、当該工程は、第1の部分において溶融ガラスを第1の温度にし、第2の部分において溶融ガラスを第1の温度よりも低い第2の温度にすることを含むことを特徴とする。 In the method for producing a glass plate according to the present invention, molten glass is flowed into a longitudinally extending tubular container made of a refractory metal having a first portion and a second portion located downstream of the first portion. The molten glass is clarified while the molten glass is made to have a first temperature at the first portion, and the second temperature is lower than the first temperature at the second portion. It is characterized by including.
 これにより、第1の部分において溶融ガラスを清澄に適した温度にまで加熱した後、第2の部分において溶融ガラスの温度を以後の工程に適した温度まで下げることができる。第2の部分で溶融ガラスの温度を下げることで、第1の部分で発生した泡が除去されやすくなる。よって、本発明に係るガラス板の製造方法を用いれば、簡便で効果的に溶融ガラスを清澄することが可能である。 Thereby, after the molten glass is heated to a temperature suitable for fining in the first part, the temperature of the molten glass can be lowered to a temperature suitable for the subsequent process in the second part. By reducing the temperature of the molten glass in the second part, bubbles generated in the first part can be easily removed. Therefore, if the manufacturing method of the glass plate which concerns on this invention is used, it is possible to clarify a molten glass simply and effectively.
 また、前記第2の部分は、前記第1の部分に隣接し、溶融ガラスの流動する方向において、前記容器を上流側の部分と下流側の部分の2つに分けたとき、前記第1の部分が上流側の部分であり、前記第2の部分が下流側の部分である、ことが好ましい。 The second part is adjacent to the first part, and when the container is divided into two parts, an upstream part and a downstream part, in the flowing direction of the molten glass, the first part Preferably, the portion is an upstream portion and the second portion is a downstream portion.
 また、前記容器には、溶融ガラスが流動する方向の異なる位置に3つの給電端子が設けられ、前記3つの給電端子のうち上流側に位置する隣り合う2つの給電端子の間に位置する領域が、前記第1の部分であり、前記3つの給電端子のうち下流側に位置する隣り合う2つの給電端子の間に位置する領域が、前記第2の部分である、ことが好ましい。 The container is provided with three power supply terminals at different positions in the direction in which the molten glass flows, and an area located between two adjacent power supply terminals located upstream of the three power supply terminals. It is preferable that a region located between two adjacent power supply terminals located on the downstream side among the three power supply terminals is the second part.
 前記第1の部分には、前記第2の部分に比べて前記容器を通電加熱するための電流が多く流れる、ことが好ましい。 It is preferable that a larger amount of current for energizing and heating the container flows in the first portion than in the second portion.
 また、本発明に係るガラス板の製造方法は、容器の上流端及び下流端は、それぞれ異なる移送管に接続されており、容器の最大内径は、移送管の最大内径よりも大きいことが好ましい。 Further, in the method for producing a glass plate according to the present invention, the upstream end and the downstream end of the container are connected to different transfer pipes, and the maximum inner diameter of the container is preferably larger than the maximum inner diameter of the transfer pipe.
 また、本発明に係るガラス板の製造方法は、容器は、内側に容器の長手方向に略垂直な壁である障害壁を備えることが好ましい。 Further, in the method for producing a glass plate according to the present invention, it is preferable that the container has an obstacle wall which is a wall substantially perpendicular to the longitudinal direction of the container on the inside.
 また、本発明に係るガラス板の製造方法は、耐火金属は、白金又は白金合金であることが好ましい。 In the method for producing a glass plate according to the present invention, the refractory metal is preferably platinum or a platinum alloy.
 本発明に係るガラス板の製造方法によれば、簡便で効果的に溶融ガラスを清澄することができる。 According to the method for producing a glass plate according to the present invention, the molten glass can be clarified simply and effectively.
本発明の実施形態に係るガラス板製造工程のフローチャートThe flowchart of the glass plate manufacturing process which concerns on embodiment of this invention. 本発明の実施形態に係るガラス板製造ラインGlass plate production line according to an embodiment of the present invention 本発明の実施形態に係る清澄槽Clarification tank according to an embodiment of the present invention 本発明の実施形態に係る清澄槽の長手方向における断面図Sectional drawing in the longitudinal direction of the clarification tank which concerns on embodiment of this invention 本発明の実施形態に係る清澄槽の長手方向に垂直な方向における断面図Sectional drawing in the direction perpendicular | vertical to the longitudinal direction of the clarification tank which concerns on embodiment of this invention
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.
 (1)清澄槽
 本実施形態おいて本発明に係る耐火金属からなる長手方向に延長する管状の容器は、図3及び図4に示す清澄槽(清澄管)102である。清澄槽102は、中の溶融ガラスを加熱するための装置を備えていることが好ましい。例えば、本実施形態にかかる清澄槽102は、管本体102aと、管本体102aの両端と略中間に設けられた合計3つの給電端子(第1給電端子201a、第2給電端子201b、第3給電端子201c)とを備えている。なお、第1給電端子201aと第3給電端子201cは、管本体102aの両端に、第2給電端子201bは、第1給電端子201aと第3給電端子201cとの略中間となる位置に配置されることが好ましい。これにより、第1給電端子201aと第2給電端子201bとにより画される清澄槽102の前半(第1の部分)と、第2給電端子201bと第3給電端子201cとにより画される後半(第2の部分)、とで中の溶融ガラスの加熱制御を別々に行なうことができる。
 すなわち、上記第2の部分は、上記第1の部分に隣接し、溶融ガラスの流動する方向において、清澄槽(清澄管)102を上流側の部分と下流側の部分の2つに分けたとき、第1の部分が上流側の部分であり、第2の部分が下流側の部分である。
 清澄槽(清澄管)102には、溶融ガラスが流動する方向の異なる位置に3つの給電端子(第1給電端子201a、第2給電端子201b、第3給電端子201c)が設けられ、この3つの給電端子のうち上流側に位置する隣り合う2つの給電端子の間に位置する領域が、第1の部分であり、3つの給電端子のうち下流側に位置する隣り合う2つの給電端子の間に位置する領域が、第2の部分である。
(1) Clarification tank In this embodiment, the tubular container extended in the longitudinal direction which consists of a refractory metal which concerns on this invention is the clarification tank (clarification pipe | tube) 102 shown in FIG.3 and FIG.4. The clarification tank 102 is preferably provided with a device for heating the molten glass therein. For example, the clarification tank 102 according to the present embodiment includes a tube main body 102a and a total of three power supply terminals (a first power supply terminal 201a, a second power supply terminal 201b, and a third power supply) provided substantially at both ends of the tube main body 102a. Terminal 201c). The first power supply terminal 201a and the third power supply terminal 201c are disposed at both ends of the tube main body 102a, and the second power supply terminal 201b is disposed at a position approximately in the middle between the first power supply terminal 201a and the third power supply terminal 201c. It is preferable. As a result, the first half (first portion) of the clarification tank 102 defined by the first power supply terminal 201a and the second power supply terminal 201b, and the second half defined by the second power supply terminal 201b and the third power supply terminal 201c ( It is possible to separately control the heating of the molten glass in the second part).
That is, when the second part is adjacent to the first part and the clarification tank (clarification tube) 102 is divided into two parts, an upstream part and a downstream part, in the direction in which the molten glass flows. The first part is the upstream part, and the second part is the downstream part.
The clarification tank (clarification tube) 102 is provided with three power supply terminals (first power supply terminal 201a, second power supply terminal 201b, and third power supply terminal 201c) at different positions in the direction in which the molten glass flows. A region located between two adjacent power supply terminals located on the upstream side among the power supply terminals is a first portion, and between two adjacent power supply terminals located on the downstream side among the three power supply terminals. The area | region located is a 2nd part.
 管本体102aは、円筒状の形状であることが好適である。その厚みは、例えば1mm~1.5mmであることが好ましい。この管本体102aは、耐火金属からなるが、白金又は白金合金からなることが好ましい。管本体102aの最大内径は、清澄槽102の上流端に接続されている第1移送管105a及び清澄槽102の下流端に接続されている第2移送管105bよりも大きい方が好ましく、具体的には、20%以上大きいほうが好ましく、さらには、40%以上大きいほうがより好ましい。例えば、第1移送管105a及び第2移送管105bがともに内径250mmであれば、管本体102aの内径は、約300mm以上であることがよい。これにより、清澄槽102における溶融ガラスの滞在時間を長くすることができ、溶融ガラスの清澄を促進させることができる。 The tube body 102a is preferably cylindrical. The thickness is preferably, for example, 1 mm to 1.5 mm. The tube body 102a is made of a refractory metal, but is preferably made of platinum or a platinum alloy. The maximum inner diameter of the pipe body 102a is preferably larger than the first transfer pipe 105a connected to the upstream end of the clarification tank 102 and the second transfer pipe 105b connected to the downstream end of the clarification tank 102. Is preferably 20% or more, more preferably 40% or more. For example, if both the first transfer pipe 105a and the second transfer pipe 105b have an inner diameter of 250 mm, the inner diameter of the pipe body 102a may be about 300 mm or more. Thereby, the residence time of the molten glass in the clarification tank 102 can be lengthened, and the clarification of a molten glass can be promoted.
 図4に、清澄槽102の管本体102aを長手方向に切断した断面図を示す。管本体102aは、管本体102aの内側に、管本体102aの長手方向に略垂直な壁である、図4及び図5に示すような、障害壁202を備えることが好ましい。障害壁202は、複数備えられていることが好ましい。障害壁202は、管本体102aの長手方向に垂直な断面積(溶融ガラスを通す通路の管本体102aの長手方向に垂直な断面の面積)を3分の1以上かつ3分の2以下にするように管本体102a内に設置されていることが好ましく、当該断面積を約2分の1にするように設置されていることがより好ましい。障害壁202は、図5(a)、(b)に描かれているように管本体102aの内面の所定の位置である第1の位置から対向する管本体102aの内面まで管本体102aの直径を含んで伸びる第1のタイプの障害壁202a、および、管本体102aの長手方向に垂直な断面を当該断面に垂直な方向から見たときに管本体102aの内径の円周上において上記第1の位置とは異なる第2の位置及び当該第2の位置に対向する内面の双方から管本体102aの直径を含まないように突き出る第2のタイプの障害壁202bからなることが好ましい。そして、これらの2つのタイプの障害壁202a、202bが管本体102aの内面に長手方向に交互に配置されていることが好ましい。また、上記第2の位置は、管本体102aの長手方向に垂直な断面を当該断面に垂直な方向から見て管本体102aの長手方向に垂直な断面の円周上における上記第1の位置から約90℃回転した位置であることが好ましい。すなわち、管本体102aの長手方向において、管本体102aの長手方向に垂直な断面上の障害壁202の位置が交互に反転するように障害壁202が配置されていることが好ましい。これにより、溶融ガラスが清澄槽102の中を上流から下流に向けて直線的に流れるのを妨げ、清澄槽102における溶融ガラスの温度や清澄効果を均一化することができ、溶融ガラスの清澄をより促進させることができる。 FIG. 4 shows a cross-sectional view of the pipe body 102a of the clarification tank 102 cut in the longitudinal direction. The tube body 102a preferably includes an obstacle wall 202 inside the tube body 102a, as shown in FIGS. 4 and 5, which is a wall substantially perpendicular to the longitudinal direction of the tube body 102a. It is preferable that a plurality of obstacle walls 202 are provided. The obstacle wall 202 has a cross-sectional area perpendicular to the longitudinal direction of the tube main body 102a (an area of a cross section perpendicular to the longitudinal direction of the tube main body 102a of the passage through which molten glass is passed) of 1/3 or more and 2/3 or less. It is preferable to be installed in the tube main body 102a as described above, and it is more preferable that the cross-sectional area is set to about ½. As shown in FIGS. 5A and 5B, the obstacle wall 202 has a diameter of the tube body 102a from a first position, which is a predetermined position on the inner surface of the tube body 102a, to the inner surface of the opposite tube body 102a. And the first type of obstacle wall 202a extending including the first main body 102a and the first main body 102a on the circumference of the inner diameter of the tube main body 102a when viewed from the direction perpendicular to the cross section. Preferably, the second type of obstacle wall 202b protrudes from both the second position different from the first position and the inner surface facing the second position so as not to include the diameter of the tube main body 102a. And it is preferable that these two types of obstacle walls 202a and 202b are alternately arranged in the longitudinal direction on the inner surface of the tube body 102a. Further, the second position is determined from the first position on the circumference of the cross section perpendicular to the longitudinal direction of the tube main body 102a when the cross section perpendicular to the longitudinal direction of the tube main body 102a is viewed from the direction perpendicular to the cross section. A position rotated by about 90 ° C. is preferable. That is, it is preferable that the obstacle wall 202 is arranged so that the position of the obstacle wall 202 on the cross section perpendicular to the longitudinal direction of the tube body 102a is alternately reversed in the longitudinal direction of the tube body 102a. As a result, the molten glass is prevented from flowing linearly from the upstream to the downstream in the clarification tank 102, and the temperature and clarification effect of the molten glass in the clarification tank 102 can be made uniform. It can be promoted more.
 管本体102aは、第1給電端子201a、第2給電端子201b、及び、第3給電端子201cにより通電されることによって発熱し、そのジュール熱で管本体102a内の溶融ガラスを加熱する。第1給電端子201a、第2給電端子201b、及び、第3給電端子201cは、フランジとフランジから引き出された電極とからなり、電流は、第1給電端子201aと第2給電端子201bとの間及び第2給電端子201bと第3給電端子201cとの間を流れる。清澄槽102の中を通る溶融ガラスは、例えば図3の左から右に流れるとすると、第1給電端子201aと第2給電端子201bとの間(第1の部分)で、溶融ガラスの清澄に適した温度(第1の温度)まで加熱されることが好ましい。溶融ガラスの温度が高くなると粘度が低くなる。粘度が低いと気泡が溶融ガラスから抜けやすくなる。また、清澄に適した温度まで加熱されることにより、ガラス原料に含まれる酸化物の酸化還元反応の進行によって、酸素イオンを放出しやすくなり、ガラス原料に含まれていた他のガス成分と凝集して気泡を生成し、溶融ガラスから除去されやすくなる。酸化物のなかには、この作用を助長するものがあり、このような酸化物を清澄剤としてガラス原料に添加すると好適である。第1の温度は、ガラスの種類や清澄剤として何を用いるかに依存する。例えば下記(2-1)の組成を有するフラットパネルディスプレイ用のガラス基板を製造する場合、1650℃~1700℃であることが好ましい。これにより、溶融ガラス中のガス成分が気泡を形成し、又は、気化し、溶融ガラスから抜け出やすくなる。また、清澄剤は、所定の温度以上で捕獲した溶融ガラス中のガス成分を放出し、放出されたガス成分は溶融ガラスの外へ抜けていく。例えば酸化スズ(SnO2)を清澄剤として用いる場合、溶融ガラスを1600℃以上に加熱することが好ましく、1650℃以上に加熱することがより好ましい。こうすることにより、清澄剤による溶融ガラス中のガス成分の溶融ガラス外への放出作用が促進される。 The tube main body 102a generates heat when energized by the first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c, and the molten glass in the tube main body 102a is heated by the Joule heat. The first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c are composed of a flange and an electrode drawn from the flange, and the current is between the first power supply terminal 201a and the second power supply terminal 201b. And between the second power supply terminal 201b and the third power supply terminal 201c. For example, if the molten glass passing through the clarification tank 102 flows from the left to the right in FIG. 3, the molten glass is clarified between the first power supply terminal 201a and the second power supply terminal 201b (first portion). It is preferable to be heated to a suitable temperature (first temperature). As the temperature of the molten glass increases, the viscosity decreases. When the viscosity is low, the bubbles easily escape from the molten glass. In addition, heating to a temperature suitable for clarification facilitates the release of oxygen ions due to the progress of the oxidation-reduction reaction of the oxide contained in the glass raw material, and agglomeration with other gas components contained in the glass raw material Thus, bubbles are generated and easily removed from the molten glass. Some oxides promote this action, and it is preferable to add such an oxide as a fining agent to the glass raw material. The first temperature depends on the type of glass and what is used as the fining agent. For example, when a glass substrate for a flat panel display having the following composition (2-1) is produced, the temperature is preferably 1650 ° C. to 1700 ° C. Thereby, the gas component in molten glass forms a bubble or vaporizes, and becomes easy to escape from molten glass. Further, the refining agent releases the gas component in the molten glass captured at a predetermined temperature or higher, and the released gas component escapes out of the molten glass. For example, when tin oxide (SnO 2 ) is used as a fining agent, the molten glass is preferably heated to 1600 ° C. or higher, more preferably 1650 ° C. or higher. By carrying out like this, the discharge | release operation | movement to the exterior of a molten glass of the gas component in the molten glass by a clarifying agent is accelerated | stimulated.
 その後、第2給電端子201bと第3給電端子201cとの間(第2の部分)で、第1の温度よりも低い所定の温度(第2の温度)になるように加熱されることが好ましい。上記第1の温度において溶融ガラス中のガス成分の溶融ガラス外への放出が促進されるが、外へ抜け切れなかった極小な気泡が溶融ガラス中に残る場合がある。清澄剤は、このように溶融ガラス中に残った気泡のガス成分を溶融ガラスの温度が所定の温度になったときに吸収してくれる。当該所定の温度は、清澄剤がガス成分を放出する温度より低く、例えば、清澄剤として酸化スズ(SnO2)を用いる場合、酸化スズ(SnO2)は、溶融ガラスの温度が約1600℃より低くなると溶融ガラス中のガス成分を吸収するようになる。したがって、上記第1の温度より低い第2の温度に溶融ガラスの温度を下げることにより、清澄剤の溶融ガラス中の気泡のガス成分を吸収する作用を促進し、ガラスを効果的に清澄することができる。 After that, it is preferable that heating is performed between the second power supply terminal 201b and the third power supply terminal 201c (second portion) so as to be a predetermined temperature (second temperature) lower than the first temperature. . Although the release of the gas component in the molten glass to the outside of the molten glass is promoted at the first temperature, there may be a case where extremely small bubbles that cannot be completely removed remain in the molten glass. The fining agent absorbs the gas component of the bubbles remaining in the molten glass in this way when the temperature of the molten glass reaches a predetermined temperature. The predetermined temperature is lower than the temperature at which the fining agent releases the gas component. For example, when tin oxide (SnO 2 ) is used as the fining agent, tin oxide (SnO 2 ) has a molten glass temperature of about 1600 ° C. When it becomes lower, the gas component in the molten glass is absorbed. Therefore, by lowering the temperature of the molten glass to the second temperature lower than the first temperature, the action of absorbing the gas component of the bubbles in the molten glass of the fining agent is promoted, and the glass is clarified effectively. Can do.
 また、溶融ガラス中からガス成分を抜いた後、ガス成分が外から溶融ガラス中に溶け込んだり、溶融ガラス中のガス成分が溶融ガラス中に気泡を形成することがあり、この現象はリボイルとも呼ばれている。これを防止するためには上記第1の温度まで加熱された溶融ガラスの温度を第1の温度より低く下げることが好ましい。このため、溶融ガラスの脱泡後の工程では、溶融ガラスの温度は、上記第1の温度より低い温度に下げられることが好ましい。第2の温度は、例えば下記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1590℃~1640℃であることが好ましく、溶融ガラスが清澄槽102から流れ出る出口で約1590℃であることが好ましい。したがって、清澄槽102の第1の部分の下流に位置する第2の部分で溶融ガラスの温度を上記第1の温度より低い第2の温度に下げることにより、溶融ガラスが効果的に清澄される。また、清澄された溶融ガラスが、次の工程が行われる装置へ送り込まれる前に溶融ガラスの温度を以後の工程に適した温度まで下げることができ、ガラス中の気泡の形成を効果的に抑えることができる。
 このような溶融ガラスの温度制御のために、具体的には、第1の部分には、第2の部分に比べて清澄槽(清澄管)102を通電加熱するための電流を多く流す、ことが好ましい。
In addition, after removing the gas component from the molten glass, the gas component may melt into the molten glass from the outside, or the gas component in the molten glass may form bubbles in the molten glass. This phenomenon is also called reboil. It is. In order to prevent this, it is preferable to lower the temperature of the molten glass heated to the first temperature below the first temperature. For this reason, in the step after defoaming of the molten glass, the temperature of the molten glass is preferably lowered to a temperature lower than the first temperature. For example, in the case of a glass substrate for a flat panel display having the following composition, the second temperature is preferably 1590 ° C. to 1640 ° C., and is about 1590 ° C. at the outlet where the molten glass flows out of the fining tank 102. preferable. Therefore, the molten glass is effectively clarified by lowering the temperature of the molten glass to the second temperature lower than the first temperature in the second portion located downstream of the first portion of the clarification tank 102. . Moreover, before the refined molten glass is sent to an apparatus in which the next step is performed, the temperature of the molten glass can be lowered to a temperature suitable for the subsequent steps, and the formation of bubbles in the glass is effectively suppressed. be able to.
In order to control the temperature of the molten glass, specifically, a larger amount of current for heating the clarification tank (clarification tube) 102 is supplied to the first portion than in the second portion. Is preferred.
 なお、第1給電端子201a、第2給電端子201b、及び、第3給電端子201cは、フランジとフランジから引き出された電極とからなるので、フランジが比較的大きい場合、フランジが冷却フィンとして機能し、溶融ガラスの温度を局部的に低下させる場合がある。このような場合、第1の部分において溶融ガラスを第1の温度にするとは、第1の部分の略全体において溶融ガラスを第1の温度にすることを意味する。第1の部分の略全体とは、第1の部分における管本体102aの長手方向の中心を基準にして、第1の部分の長手方向の長さの±40%の範囲内の領域、より好ましくは±45%の範囲内の領域である。
 第2の部分についても第1の部分と同様に、第2の部分において溶融ガラスを第2の温度にするとは、第2の部分の略全体において溶融ガラスを第2の温度にすることを意味する。第2の部分の略全体とは、第2の部分における管本体102aの長手方向の中心を基準にして、第2の部分の長手方向の長さの±40%の範囲内の領域、より好ましくは±45%の範囲内の領域である。
 このように,溶融ガラスの温度を第1の温度、第2の温度とする部分が、第1の部分の略全体および第2の部分の略全体であっても、第1の部分全体において溶融ガラスの温度を第1の温度とし、第2の部分全体において溶融ガラスの温度を第2の温度とする場合と同様の効果を得ることができる。
The first power supply terminal 201a, the second power supply terminal 201b, and the third power supply terminal 201c are composed of a flange and an electrode drawn from the flange. Therefore, when the flange is relatively large, the flange functions as a cooling fin. In some cases, the temperature of the molten glass is locally decreased. In such a case, setting the molten glass to the first temperature in the first portion means that the molten glass is set to the first temperature in substantially the entire first portion. The substantially entire first portion is more preferably a region within a range of ± 40% of the longitudinal length of the first portion with reference to the longitudinal center of the tube body 102a in the first portion. Is an area within a range of ± 45%.
Similarly to the first part, in the second part, setting the molten glass to the second temperature in the second part means that the molten glass is set to the second temperature in substantially the entire second part. To do. The substantially entire second portion is more preferably a region within a range of ± 40% of the longitudinal length of the second portion with respect to the longitudinal center of the tube body 102a in the second portion. Is an area within a range of ± 45%.
In this way, even if the portions where the temperature of the molten glass is the first temperature and the second temperature are substantially the whole of the first portion and the whole of the second portion, the whole first portion is melted. The same effect as when the temperature of the glass is the first temperature and the temperature of the molten glass is the second temperature in the entire second portion can be obtained.
 (2)ガラス板の製造方法の概要
 (2-1)ガラスの原料
 本発明に係るガラス板の製造方法は、あらゆるガラス板の製造に適用可能であるが、特に液晶表示装置やプラズマディスプレイ装置などのフラットパネルディスプレイ用のガラス基板、あるいは、表示部を覆うカバーガラスの製造に好適である。
(2) Outline of glass plate production method (2-1) Glass raw material The glass plate production method according to the present invention can be applied to the production of any glass plate, particularly a liquid crystal display device, a plasma display device, etc. It is suitable for manufacturing a glass substrate for flat panel display or a cover glass covering the display portion.
 本発明に従ってガラス板を製造するには、まず所望のガラス組成となるようにガラス原料を混合する。例えば、フラットパネルディスプレイ用のガラス基板を製造する場合は、以下の組成を有するように原料を混合するのが好適である。
(a)SiO2:50~70質量%、
(b)B23:5~18質量%、
(c)Al23:10~25質量%、
(d)MgO:0~10質量%、
(e)CaO:0~20質量%、
(f)SrO:0~20質量%、
(o)BaO:0~10質量%、
(p)RO:5~20質量%(但し、Rは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種である)、
(q)R’2O:0.10質量%を超え2.0質量%以下(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)、
(r)酸化スズ、酸化鉄、および、酸化セリウムなどから選ばれる少なくとも1種の金属酸化物を合計で0.05~1.5質量%。
In order to produce a glass plate according to the present invention, glass raw materials are first mixed so as to have a desired glass composition. For example, when manufacturing a glass substrate for a flat panel display, it is preferable to mix the raw materials so as to have the following composition.
(A) SiO 2 : 50 to 70% by mass,
(B) B 2 O 3 : 5 to 18% by mass,
(C) Al 2 O 3 : 10 to 25% by mass,
(D) MgO: 0 to 10% by mass,
(E) CaO: 0 to 20% by mass,
(F) SrO: 0 to 20% by mass,
(O) BaO: 0 to 10% by mass,
(P) RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba),
(Q) R ′ 2 O: more than 0.10% by mass and 2.0% by mass or less (provided that R ′ is at least one selected from Li, Na, and K),
(R) 0.05 to 1.5 mass% in total of at least one metal oxide selected from tin oxide, iron oxide, cerium oxide, and the like.
 また、以下のガラス組成となるようにガラスの原料を混合してもよい。
SiO2:50~70質量%、
23:3~15質量%、
Al23:8~25質量%、
MgO:0~10質量%、
CaO:0~20質量%、
SrO:0~20質量%、
BaO:0~10質量%、
RO:5~20質量%(但し、Rは、Mg、Ca、SrおよびBaから選ばれる少なくとも1種である)、
R’2O:0.10質量%を超え2.0質量%以下(但し、R’は、Li、Na、およびKから選ばれる少なくとも1種である)、
酸化スズ、酸化鉄、および、酸化セリウムなどから選ばれる少なくとも1種の金属酸化物を合計で0.05~1.5質量%。
 また、上記ガラス組成では、R’2Oを0.10質量%以上含むが、R’2Oを0.10質量%未満含んでもよく、R’2Oを実質的に全く含まなくてもよい。R’2Oを実質的に全く含まないガラスは、無アルカリガラスと呼ばれる。
Moreover, you may mix the raw material of glass so that it may become the following glass compositions.
SiO 2 : 50 to 70% by mass,
B 2 O 3 : 3 to 15% by mass,
Al 2 O 3 : 8 to 25% by mass,
MgO: 0 to 10% by mass,
CaO: 0 to 20% by mass,
SrO: 0 to 20% by mass,
BaO: 0 to 10% by mass,
RO: 5 to 20% by mass (wherein R is at least one selected from Mg, Ca, Sr and Ba),
R ′ 2 O: more than 0.10% by mass and 2.0% by mass or less (provided that R ′ is at least one selected from Li, Na, and K),
0.05 to 1.5 mass% in total of at least one metal oxide selected from tin oxide, iron oxide, cerium oxide, and the like.
Further, in the above glass composition, R 'includes 2 O over 0.10 mass%, R' may contain less than the 2 O 0.10 wt% may not include substantially no R '2 O . Glass that contains substantially no R ′ 2 O is called alkali-free glass.
 なお、上記のフラットパネルディスプレイ用のガラス基板は、ヒ素およびアンチモンを実質的に含まないことが好ましい。すなわち、これらの物質を含むとしても、それは不純物としてであり、具体的には、これらの物質は、As23、および、Sb23という酸化物のものも含め、0.1質量%以下であることが好ましい。 In addition, it is preferable that said glass substrate for flat panel displays does not contain arsenic and antimony substantially. That is, even if these substances are included, they are as impurities. Specifically, these substances include 0.1% by mass including oxides of As 2 O 3 and Sb 2 O 3. The following is preferable.
 上述した成分に加え、本発明のガラスは、ガラスの様々な物理的、溶融、清澄、および、成形の特性を調節するために、様々な他の酸化物を含有しても差し支えない。そのような他の酸化物の例としては、以下に限られないが、SnO2、TiO2、MnO、ZnO、Nb25、MoO3、Ta25、WO3、Y23、および、La23が挙げられる。 In addition to the components described above, the glasses of the present invention may contain various other oxides to adjust the various physical, melting, fining, and forming characteristics of the glass. Examples of such other oxides include, but are not limited to, SnO 2 , TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and it includes La 2 O 3.
 上記のガラス組成におけるROの供給源には、硝酸塩や炭酸塩を用いることができる。なお、溶融ガラスの酸化性を高めるには、ROの供給源として硝酸塩を工程に適した割合で用いることがより望ましい。 Nitrate and carbonate can be used as a supply source of RO in the above glass composition. In order to increase the oxidizability of the molten glass, it is more desirable to use nitrate as a supply source of RO at a ratio suitable for the process.
 本実施形態で製造されるガラス板は、一定量のガラス原料を溶解用の炉に供給してバッチ処理を行う方式とは異なり、連続的に製造される。本発明の製造方法で適用されるガラス板は、いかなる厚さおよび幅を有するガラス板でもよい。 The glass plate manufactured in the present embodiment is manufactured continuously unlike a system in which a certain amount of glass raw material is supplied to a melting furnace and batch processing is performed. The glass plate applied in the production method of the present invention may be a glass plate having any thickness and width.
 (2-2)ガラス板製造の一連の工程の概要
 本発明の一実施形態に係るガラス板の製造方法は、図1のフローチャートが示す一連の工程を含み、図2が示すガラス板製造ライン100を用いる。
(2-2) Outline of a series of steps for manufacturing a glass plate A glass plate manufacturing method according to an embodiment of the present invention includes a series of steps shown in the flowchart of FIG. Is used.
 上記の組成となるように混合されたガラスの原料は、まず溶解工程(ステップS101)において、溶解される。原料は、溶解槽101に投入され、所定の温度まで加熱される。所定の温度は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1550℃以上であることが好ましい。加熱された原料は、溶解し、溶融ガラスを形成する。溶融ガラスは、第1移送管105aを通して次の清澄工程(ステップS102)が行われる清澄槽102へ送り込まれる。 The glass raw material mixed to have the above composition is first melted in the melting step (step S101). The raw material is put into the melting tank 101 and heated to a predetermined temperature. For example, in the case of a glass substrate for a flat panel display having the above composition, the predetermined temperature is preferably 1550 ° C. or higher. The heated raw material melts to form molten glass. The molten glass is fed into the clarification tank 102 where the next clarification step (step S102) is performed through the first transfer pipe 105a.
 次の清澄工程(ステップS102)では、溶融ガラスが清澄される。具体的には、清澄槽102において溶融ガラスが所定の温度まで加熱されると溶融ガラス中に含まれるガス成分は、気泡を形成し、あるいは、気化して溶融ガラスの外へ抜け出る。所定の温度については、上記「(1)清澄槽」にて既に説明した。清澄された溶融ガラスは、第2移送管105bを通して次の工程である均質化工程(ステップS103)が行われる攪拌槽103へ送り込まれる。 In the next clarification step (step S102), the molten glass is clarified. Specifically, when the molten glass is heated to a predetermined temperature in the clarification tank 102, the gas component contained in the molten glass forms bubbles or vaporizes and escapes out of the molten glass. The predetermined temperature has already been described in the above “(1) Clarification tank”. The clarified molten glass is sent through the second transfer pipe 105b to the agitation tank 103 where the next step, the homogenization step (step S103), is performed.
 次の均質化工程(ステップS103)では、溶融ガラスが均質化される。具体的には、溶融ガラスは、攪拌槽103において、攪拌槽103が備える攪拌翼(図示せず)により撹拌されることにより均質化される。攪拌槽103に送り込まれる溶融ガラスは、所定の温度範囲になるように加熱される。所定の温度範囲は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、1440℃~1500℃であることが好ましい。均質化された溶融ガラスは、攪拌槽103から第3移送管105cへ送り込まれる。 In the next homogenization step (step S103), the molten glass is homogenized. Specifically, the molten glass is homogenized in the stirring tank 103 by being stirred by a stirring blade (not shown) provided in the stirring tank 103. The molten glass fed into the stirring vessel 103 is heated so as to be in a predetermined temperature range. For example, in the case of a glass substrate for a flat panel display having the above composition, the predetermined temperature range is preferably 1440 ° C. to 1500 ° C. The homogenized molten glass is sent from the stirring tank 103 to the third transfer pipe 105c.
 次の供給工程(ステップS104)では、溶融ガラスは、第3移送管105cにおいて成形するのに適した温度になるように加熱され、次の成形工程(ステップS105)が行われる成形装置104へ送り込まれる。成形に適した温度は、例えば上記の組成を有するフラットパネルディスプレイ用のガラス基板の場合、約1200℃であることが好ましい。 In the next supply process (step S104), the molten glass is heated to a temperature suitable for molding in the third transfer pipe 105c, and sent to the molding apparatus 104 where the next molding process (step S105) is performed. It is. For example, in the case of a glass substrate for a flat panel display having the above composition, the temperature suitable for molding is preferably about 1200 ° C.
 次の成形工程(ステップS105)では、溶融ガラスが板状のガラスに成形される。本実施形態では、溶融ガラスは、オーバーフローダウンドロー法により連続的にリボン状に成形される。成形されたリボン状のガラスは、切断され、ガラス板となる。オーバーフローダウンドロー法は、それ自体公知の方法であり、例えば米国特許第3,338,696号明細書に記載されているように、成形体に流し込まれて溢れ出た溶融ガラスが当該成形体の各外表面をつたって流れ落ち、当該成形体の底で合流したところを下方に延伸してリボン状のガラスに成形する方法である。 In the next forming step (step S105), the molten glass is formed into a plate-like glass. In the present embodiment, the molten glass is continuously formed into a ribbon shape by the overflow downdraw method. The formed ribbon-shaped glass is cut into a glass plate. The overflow downdraw method is a method known per se. For example, as described in U.S. Pat. No. 3,338,696, the molten glass poured into the molded body and overflowed, It is a method of forming a ribbon-like glass by drawing down the outer surface and flowing down and joining the bottom of the molded body downward.
 (3)具体例
 以下のとおり、実際に本発明にかかるガラス板の製造方法を用いると簡便で効果的に溶融ガラスを清澄することができる。
(3) Specific example As follows, when the manufacturing method of the glass plate concerning this invention is actually used, a molten glass can be clarified simply and effectively.
 まず、組成が、SiO2:60.9質量%、B23:11.6質量%、Al23:16.9質量%、MgO:1.7質量%、CaO:5.1質量%、SrO:2.6質量%、BaO:0.7質量%、K2O:0.25質量%、Fe23:0.15質量%、SnO2:0.13質量%となるガラスが製造されるように原料を混合した。次いで、原料を溶解槽101内に投入した。溶解槽101内で生成された溶融ガラスを図3、図4、および、図5で示す構成を持つ清澄槽102を含む、図2に示したガラス板製造ライン100、及び、上述した本発明の本実施形態にかかるガラス板製造方法を用いてガラス板を製造した。管本体102aは、白金とロジウムとの合金からなり、第1給電端子201aは、管本体102aの上流端に、第3給電端子201cは、管本体102aの下流端に設置され、第2給電端子201bは、第1給電端子201aと第3給電端子201cとの略中間に設置された。最大内径は、第1移送管105a及び第2移送管105bの内径よりも約40%大きかった。清澄槽102の内側には、図4及び図5に示されているとおりの配置で障害壁202が複数設けられていた。清澄槽102においては、前半の第1給電端子201aと第2給電端子201bとの間では、溶融ガラスを約1700℃になるまで加熱し、後半の第2給電端子201bと第3給電端子201cとの間では、溶融ガラスの温度を下げ、第2移送管105bへ流れ出る直前で約1590℃になるように制御した。成形工程(ステップS105)では、オーバーフローダウンドロー法を用いて、サイズが1100mm×1300mmのガラス板を製造した。 First, composition, SiO 2: 60.9 wt%, B 2 O 3: 11.6 wt%, Al 2 O 3: 16.9 wt%, MgO: 1.7 wt%, CaO: 5.1 Weight %, SrO: 2.6 mass%, BaO: 0.7 mass%, K 2 O: 0.25 mass%, Fe 2 O 3 : 0.15 mass%, SnO 2 : 0.13 mass% The raw materials were mixed so that Next, the raw material was charged into the dissolution tank 101. The glass plate production line 100 shown in FIG. 2 including the clarification tank 102 having the configuration shown in FIGS. 3, 4, and 5 is used for the molten glass produced in the melting tank 101, and the above-described present invention. The glass plate was manufactured using the glass plate manufacturing method concerning this embodiment. The tube main body 102a is made of an alloy of platinum and rhodium, the first power supply terminal 201a is installed at the upstream end of the tube main body 102a, and the third power supply terminal 201c is installed at the downstream end of the tube main body 102a. 201b was installed in the middle of the 1st electric supply terminal 201a and the 3rd electric supply terminal 201c. The maximum inner diameter was about 40% larger than the inner diameters of the first transfer pipe 105a and the second transfer pipe 105b. A plurality of obstacle walls 202 were provided inside the clarification tank 102 in the arrangement as shown in FIGS. 4 and 5. In the clarification tank 102, between the first power supply terminal 201a and the second power supply terminal 201b in the first half, the molten glass is heated to about 1700 ° C., and the second power supply terminal 201b and the third power supply terminal 201c in the latter half are heated. In the meantime, the temperature of the molten glass was lowered and controlled to be about 1590 ° C. immediately before flowing out to the second transfer pipe 105b. In the forming step (step S105), a glass plate having a size of 1100 mm × 1300 mm was manufactured using the overflow downdraw method.
 上記ガラス板を4分割したガラス板を40枚サンプリングし、ガラス板が含有する気泡の個数を数えた。その結果、ガラス1kgあたりの気泡の個数は、0.04個であった。 40 glass plates obtained by dividing the glass plate into four were sampled, and the number of bubbles contained in the glass plate was counted. As a result, the number of bubbles per kg of glass was 0.04.
 本発明に係るガラス板の製造方法によれば、上記のように簡便で効果的に溶融ガラスを清澄することが可能なことが分かる。 According to the method for producing a glass plate according to the present invention, it is understood that the molten glass can be clarified simply and effectively as described above.
 (4)特徴
 本発明の上記実施形態においては、第1の部分(前半)と当該第1の部分の下流に位置する第2の部分(後半)とを有する白金又は白金合金からなる清澄槽102に溶融ガラスを流動させながら、当該溶融ガラスを清澄し、清澄槽102の前半において溶融ガラスを所定の温度(第1の温度)まで加熱し、後半において溶融ガラスを第1の温度よりも低い第2の温度にする清澄工程(ステップS102)を含むガラス板の製造方法を用いてガラス板を製造する。
(4) Features In the above embodiment of the present invention, a clarification tank 102 made of platinum or a platinum alloy having a first portion (first half) and a second portion (second half) located downstream of the first portion. While the molten glass is flowing, the molten glass is clarified, the molten glass is heated to a predetermined temperature (first temperature) in the first half of the clarification tank 102, and the molten glass is heated to a temperature lower than the first temperature in the second half. A glass plate is manufactured using the manufacturing method of a glass plate including the refining process (step S102) made into temperature of 2.
 これにより、溶融ガラスから気泡を除去するのに適した温度にまで加熱し、溶融ガラスの粘度も気泡を除去するのに適した比較的低い粘度にすることができるとともに、その後、溶融ガラス中に残存した気泡からガス成分を清澄剤に吸収させて気泡を消滅させたり、リボイルを防止するのに適した温度まで下げることができる。また、清澄工程(ステップS102)の次の工程が行われる装置へ送り込まれる前に溶融ガラスの温度を以後の工程に適した温度まで下げることができる。よって、本発明に係るガラス板の製造方法を用いれば、簡便で効果的に溶融ガラスを清澄することが可能である。 Thereby, it can be heated to a temperature suitable for removing bubbles from the molten glass, and the viscosity of the molten glass can be set to a relatively low viscosity suitable for removing bubbles, and then in the molten glass. The gas component can be absorbed by the fining agent from the remaining bubbles to eliminate the bubbles, or the temperature can be lowered to a temperature suitable for preventing reboiling. In addition, the temperature of the molten glass can be lowered to a temperature suitable for the subsequent steps before being sent to an apparatus in which the next step of the clarification step (step S102) is performed. Therefore, if the manufacturing method of the glass plate which concerns on this invention is used, it is possible to clarify a molten glass simply and effectively.
100            ガラス板製造ライン
101            溶解槽
102            清澄槽(容器)
102a           管(清澄槽)本体
202(202a、202b) 障害壁
100 Glass plate production line 101 Dissolution tank 102 Clarification tank (container)
102a Tube (clarification tank) body 202 (202a, 202b) Obstacle wall

Claims (7)

  1.  第1の部分と前記第1の部分の下流に位置する第2の部分とを有する耐火金属からなる長手方向に延長する管状の容器に溶融ガラスを流動させながら、前記溶融ガラスを清澄する工程を含むガラス板の製造方法であって、
     前記工程は、
     前記第1の部分において前記溶融ガラスを第1の温度にし、
     前記第2の部分において前記溶融ガラスを前記第1の温度よりも低い第2の温度にすること、
     を含むことを特徴とする、
    ガラス板の製造方法。
    Refining the molten glass while flowing the molten glass in a tubular container extending in the longitudinal direction made of a refractory metal having a first portion and a second portion located downstream of the first portion. A method for producing a glass plate comprising:
    The process includes
    Bringing the molten glass to a first temperature in the first portion;
    Bringing the molten glass into a second temperature lower than the first temperature in the second portion;
    Including,
    Manufacturing method of glass plate.
  2.  前記第2の部分は、前記第1の部分に隣接し、
     溶融ガラスの流動する方向において、前記容器を上流側の部分と下流側の部分の2つに分けたとき、前記第1の部分が上流側の部分であり、前記第2の部分が下流側の部分である、
    請求項1に記載のガラス板の製造方法。
    The second portion is adjacent to the first portion;
    When the container is divided into two parts, an upstream part and a downstream part, in the flowing direction of the molten glass, the first part is the upstream part, and the second part is the downstream part. Part,
    The manufacturing method of the glass plate of Claim 1.
  3.  前記容器には、溶融ガラスが流動する方向の異なる位置に3つの給電端子が設けられ、前記3つの給電端子のうち上流側に位置する隣り合う2つの給電端子の間に位置する領域が、前記第1の部分であり、前記3つの給電端子のうち下流側に位置する隣り合う2つの給電端子の間に位置する領域が、前記第2の部分である、
    請求項1または2に記載のガラス板の製造方法。
    The container is provided with three power supply terminals at different positions in the direction in which the molten glass flows, and the region located between two adjacent power supply terminals located on the upstream side of the three power supply terminals, The first part, and the region located between two adjacent power supply terminals located on the downstream side of the three power supply terminals is the second part.
    The manufacturing method of the glass plate of Claim 1 or 2.
  4.  前記第1の部分には、前記第2の部分に比べて前記容器を通電加熱するための電流が多く流れる、
    請求項3に記載のガラス板の製造方法。
    In the first part, a larger amount of current for energizing and heating the container flows than in the second part.
    The manufacturing method of the glass plate of Claim 3.
  5.  前記容器の上流端及び下流端は、それぞれ異なる移送管に接続されており、
     前記容器の最大内径は、前記移送管の最大内径よりも大きいことを特徴とする、
    請求項1~4のいずれかに記載のガラス板の製造方法。
    The upstream end and the downstream end of the container are respectively connected to different transfer pipes,
    The maximum inner diameter of the container is larger than the maximum inner diameter of the transfer pipe,
    The method for producing a glass plate according to any one of claims 1 to 4.
  6.  前記容器は、前記容器の内側に前記容器の長手方向に略垂直な壁である障害壁を備えることを特徴とする、
    ~5のいずれか1項に記載のガラス板の製造方法。
    The container includes an obstacle wall that is a wall substantially perpendicular to the longitudinal direction of the container inside the container.
    6. The method for producing a glass plate according to any one of 1 to 5.
  7.  前記耐火金属は、白金又は白金合金であることを特徴とする、
    請求項1~6のいずれかに記載のガラス板の製造方法。
    The refractory metal is platinum or a platinum alloy,
    The method for producing a glass plate according to any one of claims 1 to 6.
PCT/JP2012/002250 2011-03-31 2012-03-30 Glass sheet production method WO2012132471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127031323A KR101300883B1 (en) 2011-03-31 2012-03-30 Glass sheet production method
JP2012525554A JP5456895B2 (en) 2011-03-31 2012-03-30 Glass plate manufacturing method
CN201280002926.3A CN103118994B (en) 2011-03-31 2012-03-30 Glass plate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081274 2011-03-31
JP2011081274 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132471A1 true WO2012132471A1 (en) 2012-10-04

Family

ID=46930240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002250 WO2012132471A1 (en) 2011-03-31 2012-03-30 Glass sheet production method

Country Status (5)

Country Link
JP (2) JP5456895B2 (en)
KR (1) KR101300883B1 (en)
CN (2) CN103118994B (en)
TW (1) TWI462886B (en)
WO (1) WO2012132471A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099133A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
WO2015099143A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Glass substrate production method and glass substrate production apparatus
WO2015099157A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Method for producing glass substrate and glass-substrate production device
WO2015099136A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JPWO2014119709A1 (en) * 2013-02-01 2017-01-26 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate
US20180273416A1 (en) * 2015-08-26 2018-09-27 Corning Incorporated Glass melting system and method for increased homogeneity
JP2019011226A (en) * 2017-06-30 2019-01-24 AvanStrate株式会社 Method for manufacturing glass substrate for display device, and device for manufacturing glass substrate for display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150107306A1 (en) * 2013-10-18 2015-04-23 Corning Incorporated Apparatus and methods for producing glass ribbon
TWI629248B (en) * 2014-06-30 2018-07-11 安瀚視特控股股份有限公司 Method for producing glass substrate, glass substrate and glass substrate laminate
JP6494969B2 (en) * 2014-09-30 2019-04-03 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6433224B2 (en) * 2014-09-30 2018-12-05 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6396744B2 (en) * 2014-09-30 2018-09-26 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR20180075696A (en) * 2015-11-23 2018-07-04 코닝 인코포레이티드 Glass melting system and method for increased batch melting and glass homogeneity
KR102107301B1 (en) * 2017-06-30 2020-05-07 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and glass substrate manufacturing apparatus
KR20190078512A (en) * 2017-12-26 2019-07-04 아반스트레이트 가부시키가이샤 Glass substrate manufacturing apparatus and method for manufacturing glass substrate
TWI809751B (en) * 2022-03-09 2023-07-21 日商安瀚視特控股股份有限公司 Liquid glass circulation device for glass manufacturing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035395A (en) * 2002-06-07 2004-02-05 Carl-Zeiss-Stiftung Apparatus for clarifying glass melt
JP2005060134A (en) * 2003-08-08 2005-03-10 Hoya Corp Manufacturing method of molten glass and manufacturing method of glass molding
JP2006503784A (en) * 2002-10-25 2006-02-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
WO2008069150A1 (en) * 2006-11-30 2008-06-12 Asahi Glass Co., Ltd. Glass melting apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711982B1 (en) * 1993-11-02 1996-01-19 Saint Gobain Vitrage Transfer and conditioning channel for molten glass.
JP4739468B2 (en) * 1997-05-20 2011-08-03 旭硝子株式会社 Alkali-free glass and its clarification method
JP2000239023A (en) * 1999-02-18 2000-09-05 Nippon Electric Glass Co Ltd Production of glass
DE19939771B4 (en) * 1999-08-21 2004-04-15 Schott Glas Process for refining glass melts
JP2002293547A (en) * 2001-03-28 2002-10-09 Asahi Glass Co Ltd Method for producing glass for cathode ray tube
KR101117062B1 (en) * 2005-05-18 2012-02-29 아사히 가라스 가부시키가이샤 Method of electrically heating composite tube structure made of platinum
JP4946216B2 (en) * 2005-07-06 2012-06-06 旭硝子株式会社 Method for producing alkali-free glass
JP4581877B2 (en) * 2005-07-19 2010-11-17 旭硝子株式会社 Method of energizing and heating a depressurization defoaming tank of a depressurization defoaming device, method of energizing and heating a depressurization defoaming device, and depressurization defoaming method, glass manufacturing method, and depressurization defoaming device using them
DE102005039919B9 (en) * 2005-08-24 2010-01-21 Schott Ag Process for refining a glass melt
DE102006003521B4 (en) * 2006-01-24 2012-11-29 Schott Ag Apparatus and method for the continuous refining of glasses with high purity requirements
CN1948196B (en) * 2006-09-30 2010-04-14 河南安彩高科股份有限公司 Method and equipment for improving glass quality
JP5070828B2 (en) * 2006-12-14 2012-11-14 旭硝子株式会社 Alkali-free glass and method for producing the same
US8196434B2 (en) * 2007-08-08 2012-06-12 Corning Incorporated Molten glass delivery apparatus for optical quality glass
WO2009151034A1 (en) * 2008-06-09 2009-12-17 旭硝子株式会社 Apparatus for degassing molten glass
JP4790783B2 (en) * 2008-11-05 2011-10-12 AvanStrate株式会社 Manufacturing method of glass plate
US20100199721A1 (en) * 2008-11-12 2010-08-12 Keisha Chantelle Ann Antoine Apparatus and method for reducing gaseous inclusions in a glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035395A (en) * 2002-06-07 2004-02-05 Carl-Zeiss-Stiftung Apparatus for clarifying glass melt
JP2006503784A (en) * 2002-10-25 2006-02-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
JP2005060134A (en) * 2003-08-08 2005-03-10 Hoya Corp Manufacturing method of molten glass and manufacturing method of glass molding
WO2008069150A1 (en) * 2006-11-30 2008-06-12 Asahi Glass Co., Ltd. Glass melting apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119709A1 (en) * 2013-02-01 2017-01-26 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JPWO2015099136A1 (en) * 2013-12-26 2017-03-23 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
CN105377773B (en) * 2013-12-26 2018-04-10 安瀚视特控股株式会社 The manufacture method and glass substrate manufacture device of glass substrate
WO2015099143A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Glass substrate production method and glass substrate production apparatus
CN104903259A (en) * 2013-12-26 2015-09-09 安瀚视特控股株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
CN105377773A (en) * 2013-12-26 2016-03-02 安瀚视特控股株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
CN105377774A (en) * 2013-12-26 2016-03-02 安瀚视特控股株式会社 Glass substrate production method and glass substrate production apparatus
JP5937704B2 (en) * 2013-12-26 2016-06-22 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5938112B2 (en) * 2013-12-26 2016-06-22 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
WO2015099136A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
WO2015099133A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
CN104903259B (en) * 2013-12-26 2017-09-29 安瀚视特控股株式会社 The manufacture method and glass substrate manufacture device of glass substrate
JPWO2015099133A1 (en) * 2013-12-26 2017-03-23 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
CN105377774B (en) * 2013-12-26 2019-04-05 安瀚视特控股株式会社 The manufacturing method and glass substrate manufacturing device of glass substrate
WO2015099157A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Method for producing glass substrate and glass-substrate production device
US20180273416A1 (en) * 2015-08-26 2018-09-27 Corning Incorporated Glass melting system and method for increased homogeneity
JP2018528922A (en) * 2015-08-26 2018-10-04 コーニング インコーポレイテッド Glass melting system and method for enhancing homogeneity
US10875804B2 (en) 2015-08-26 2020-12-29 Corning Incorporated Glass melting system and method for increased homogeneity
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate
JP2019011226A (en) * 2017-06-30 2019-01-24 AvanStrate株式会社 Method for manufacturing glass substrate for display device, and device for manufacturing glass substrate for display device

Also Published As

Publication number Publication date
JP2014055100A (en) 2014-03-27
JP5456895B2 (en) 2014-04-02
CN105645737A (en) 2016-06-08
TW201302645A (en) 2013-01-16
KR20120138249A (en) 2012-12-24
CN103118994B (en) 2016-03-16
KR101300883B1 (en) 2013-08-27
JP5827985B2 (en) 2015-12-02
JPWO2012132471A1 (en) 2014-07-24
CN105645737B (en) 2018-08-07
TWI462886B (en) 2014-12-01
CN103118994A (en) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5827985B2 (en) Glass plate manufacturing method
KR101486133B1 (en) Method and apparatus for making glass sheet
TWI538889B (en) Manufacture of glass plates
JP5616450B2 (en) Manufacturing method of glass plate
TWI564258B (en) Manufacture of glass plates
WO2012133467A1 (en) Method for producing glass plate
JP5719797B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
KR101522198B1 (en) Method for producing glass plate
KR101432413B1 (en) Glass plate production method
JP2016033099A (en) Method for manufacturing glass plate, and agitator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002926.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012525554

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031323

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765605

Country of ref document: EP

Kind code of ref document: A1