WO2012132062A1 - ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン - Google Patents

ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン Download PDF

Info

Publication number
WO2012132062A1
WO2012132062A1 PCT/JP2011/072233 JP2011072233W WO2012132062A1 WO 2012132062 A1 WO2012132062 A1 WO 2012132062A1 JP 2011072233 W JP2011072233 W JP 2011072233W WO 2012132062 A1 WO2012132062 A1 WO 2012132062A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas compressor
compressor
suction
flow rate
Prior art date
Application number
PCT/JP2011/072233
Other languages
English (en)
French (fr)
Inventor
淳 笹原
昌光 奥薗
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2013507037A priority Critical patent/JP5276756B2/ja
Priority to EP11862606.8A priority patent/EP2693059A4/en
Priority to CN201180039750.4A priority patent/CN103080560B/zh
Priority to KR1020137003471A priority patent/KR101298828B1/ko
Publication of WO2012132062A1 publication Critical patent/WO2012132062A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure

Definitions

  • the present invention relates to a gas fuel, such as a gas compressor for compressing gas fuel, which is used in a low calorie gas-fired gas turbine that uses low calorie gas such as ironworks byproduct gas (BFG) as fuel.
  • the present invention relates to a gas compressor operation method applied to a gas compressor whose supply conditions vary, and a gas turbine operated by this operation method.
  • gas turbines that are operated using low-calorie gas such as Blast Furnace Gas (BFG) that is generated in large quantities in the steelmaking process, that is, low-calorie that is operated using low-calorie gas as fuel.
  • BFG Blast Furnace Gas
  • gas turbines Gas-fired gas turbines
  • a gas compressor that compresses low-pressure gas fuel and supplies it to a combustor is used. Therefore, in order to prevent surging of the gas compressor, for example, as indicated by a solid line in FIG. 1, the “pressure ratio” on the vertical axis with respect to the “variable vane opening” on the horizontal axis is the “restricted pressure ratio” in operation. Is provided.
  • This limit pressure ratio is a value that defines an operational upper limit for preventing surging with respect to the pressure ratio of the absolute suction pressure and the absolute discharge pressure in the gas compressor. Therefore, in order to prevent surging of the gas compressor, the opening control of the variable stationary blade (suction flow rate adjusting mechanism) is adjusted so as not to exceed the limit pressure ratio, and operation control is performed to ensure a margin for surging limitation. ing.
  • the operation is not possible to raise the pressure ratio any further because the pressure ratio matches the limit pressure ratio at point A ′ unless the variable vane opening is changed.
  • the limit pressure ratio also increases, for example, from point A to point B in FIG.
  • the operating range of the ratio is widened, and there is a margin in the safe driving range. Increasing the opening of the variable stationary blade in this way means that the gas turbine that receives the supply of the gas fuel boosted by the gas compressor performs the gas fuel bypass operation.
  • the gas turbine that receives the supply of gas fuel whose pressure has been increased by the gas compressor is provided with an interlock for urgently stopping the operation in order to protect the equipment when the operation pressure ratio exceeds the limit pressure ratio.
  • a compressor surge prevention system for a carbon dioxide recovery power plant as disclosed in Patent Document 1 is known as a conventional technique related to the prevention of compressor surging.
  • the concentration ratio of the water vapor and carbon dioxide that is fluctuated by the flow rate adjustment valve is controlled.
  • the power generation output also varies due to the calorie fluctuation of the generated blast furnace gas.
  • calorie adjustment is performed by adding a heat reducing gas or a heat increasing gas according to the measurement result of the gas fuel calorie. Since stable combustion and blowout may occur, it is described that the system is stabilized by performing quick control that calculates calories of gas fuel in real time.
  • the above-described low-calorie gas-fired gas turbine changes the temperature (suction gas temperature) of the gas fuel supplied to the gas compressor, or mixes a plurality of gas fuels having different compositions, for example.
  • An unstable gas fuel whose gas fuel composition changes greatly may be used.
  • the suction gas temperature (T), the gas constant (R), and the values that affect the limiting pressure ratio of surging The specific heat ratio ( ⁇ ) also varies. That is, when the gas fuel supply conditions such as the suction gas temperature and the gas fuel composition change, the characteristics of the limiting pressure ratio that prevents surging of the gas compressor also change.
  • a conventional gas turbine operation method including a gas compressor that compresses gas fuel whose supply conditions fluctuate and supplies the gas fuel to a combustor, and in which the variable stator blades are provided in the gas compressor, is provided with gas turbine control and interfacing. Changes in gas fuel supply conditions are not considered in the lock. Accordingly, if the gas fuel supply conditions fluctuate greatly and the surging pressure limit ratio decreases, the surging of the gas compressor cannot be prevented, and in the worst case, the equipment may be damaged. Concerned.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas turbine operating method and gas capable of reliably preventing surging of a gas compressor in response to changes in gas fuel supply conditions. It is to provide a turbine.
  • the operation method of the gas compressor according to the first aspect of the present invention is an operation method of the gas compressor in which the gas fuel whose supply conditions fluctuate are compressed and a suction flow rate adjusting mechanism is provided,
  • the limiting pressure ratio for preventing the surging of the gas compressor by defining the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening degree of the suction flow rate adjusting mechanism was calculated according to the design conditions of the gas compressor.
  • the reference limit pressure ratio is corrected by multiplying the reference correction pressure ratio by a first correction coefficient calculated according to the operating condition detection value of the gas compressor.
  • the limit pressure for preventing the surging of the gas compressor by defining the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening degree of the suction flow rate adjusting mechanism.
  • the ratio is corrected by multiplying the reference limit pressure ratio calculated according to the design condition of the gas compressor by a first correction coefficient calculated according to the operating condition detection value of the gas compressor.
  • the first correction coefficient is calculated from a suction gas temperature of the gas compressor, and is expressed by a state equation.
  • the correction reflecting the state of the gas fuel which fluctuates according to the temperature becomes possible.
  • the first correction coefficient includes a reference rotational speed of the gas compressor as N 0 and a reference specific heat ratio of the suction gas of the gas compressor as ⁇ . 0 , the reference gas constant of the suction gas of the gas compressor is R 0 , the reference temperature of the suction gas of the gas compressor is T 0 , the actual rotational speed of the gas compressor is N, the suction gas of the gas compressor is
  • the current specific heat ratio is ⁇
  • the current gas constant of the suction gas of the gas compressor is R
  • the current temperature of the suction gas of the gas compressor is T
  • the corrected rotational speed ratio obtained by the following (Formula 1) It is preferable to be obtained from ( ⁇ ).
  • the gas constant (R) and specific heat ratio ( ⁇ ) of the suction gas of the gas compressor are calculated from the gas composition measured on the inlet side of the gas compressor. Is preferred.
  • the suction gas of the gas compressor is a gas in which a plurality of gases are mixed
  • the mixed gas constant (R) and specific heat ratio ( ⁇ ) are obtained from the composition and flow rate ratio of each gas. .
  • the gas constant (R) and specific heat ratio ( ⁇ ) of the suction gas of the gas compressor are calculated from the gas density or gas calorific value measured on the inlet side of the gas compressor. You may calculate by the gas composition calculated
  • the suction flow rate of the gas compressor or the suction flow rate adjusting mechanism is further increased. It is preferable that the correction is performed by multiplying a predetermined second correction coefficient in accordance with the opening degree and the operation direction. As a result, the limit pressure ratio becomes a more optimized value, so that the occurrence of surging can be further ensured. Prevented operation becomes possible.
  • the suction flow rate of the gas compressor is the actual suction flow rate of the gas compressor as Q (unit system is volume flow rate),
  • the reference rotational speed is N 0
  • the reference specific heat ratio of the suction gas of the gas compressor is ⁇ 0
  • the reference gas constant of the suction gas of the gas compressor is R 0
  • the reference temperature of the suction gas of the gas compressor is T 0
  • the actual rotational speed of the gas compressor is N
  • the current specific heat ratio of the suction gas of the gas compressor is ⁇
  • the current gas constant of the suction gas of the gas compressor is R
  • the current temperature of the suction gas of the gas compressor Is the corrected flow rate Q 0 (unit system is volumetric flow rate) calculated by the following (Equation 2)
  • the actual suction flow rate of the gas compressor is G (unit system is mass flow rate)
  • the reference rotation speed of the gas compressor is N 0
  • the suction flow rate of the gas compressor for obtaining the limiting pressure ratio is the actual suction flow rate of the gas compressor, the suction gas temperature, the suction gas pressure, the gas constant (R) and the specific heat ratio ( ⁇ ) of the gas fuel. ) Is used, even if a gas whose gas composition fluctuates is used as the gas fuel, an appropriate limiting pressure ratio corrected according to the operating condition of the gas compressor is used. As a result, it is possible to perform an operation that reliably prevents the occurrence of surging.
  • a gas turbine operating method includes a gas compressor that compresses gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and a suction flow rate adjusting mechanism is provided in the gas compressor.
  • An operating method of the gas turbine provided, the operating method for preventing surging of the gas compressor by defining an upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjusting mechanism This is performed by the operation method of the gas compressor according to the first aspect of the present invention.
  • the operation method for preventing surging of the gas compressor includes gas fuel bypass operation.
  • an interlock is provided to urgently stop the operation when the operation pressure ratio of the gas compressor exceeds the limit pressure ratio.
  • a gas turbine includes a gas compressor that compresses a gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and the gas compressor is provided with a suction flow rate adjusting mechanism.
  • the gas turbine is configured to prevent the surging of the gas compressor by regulating the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjusting mechanism. It is performed by the operation method of the gas compressor which concerns on an aspect.
  • the operation upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjustment mechanism Since the operation for preventing the surging of the gas compressor by defining the gas compressor is performed by the operating method of the gas compressor according to the first aspect of the present invention, the surging of the gas compressor that compresses the gas fuel whose supply conditions vary Can be reliably prevented and stable operation becomes possible.
  • a gas turbine including a gas compressor that compresses a gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and the gas compressor is provided with variable stationary blades.
  • the limiting pressure ratio of the gas compressor is corrected corresponding to the change in the gas fuel supply condition, and the limiting pressure ratio having a value optimized in accordance with the gas fuel supply condition is applied.
  • the surging of the gas compressor is surely prevented and stable operation is possible, and therefore the surging of the gas compressor is possible even when using a low calorie gas fuel whose fuel composition changes. It is possible to reliably prevent the occurrence of equipment damage and the like with high reliability.
  • the gas turbine 1 of the present embodiment shown in FIG. 4 is a plant that operates using low-calorie gas fuel, for example, when a plurality of gas fuels having different compositions are mixed with an ironworks byproduct gas (BFG). is there.
  • BFG ironworks byproduct gas
  • the gas turbine 1 is a device having a compressor Ca, a combustor (gas turbine combustor) 2 and a turbine Tu as main components.
  • the compressor Ca takes in air and compresses it, and discharges high-pressure compressed air.
  • the compressed air discharged from the compressor Ca is taken into the combustor 2 as combustion air, and burns with the gas fuel supplied to the combustor 2 to become high-temperature combustion gas.
  • the combustion gas is taken into the turbine Tu, and the turbine Tu is driven by the combustion gas flowing between the moving blade and the stationary blade.
  • the combustion gas that has driven the turbine Tu is used for generating steam by passing through the exhaust heat recovery boiler 3, for example, and then discharged to the atmosphere after performing the necessary exhaust gas treatment.
  • a filter and a silencer are generally installed upstream of the compressor Ca that introduces outside air.
  • the illustrated gas turbine 1 includes a coaxial generator 4 on the compressor Ca side.
  • the generator 4 is driven together with the compressor Ca by the output of the turbine Tu to generate electric power.
  • the illustrated gas turbine 1 includes a gas compressor Cg that compresses the gas fuel and supplies it to the combustor 2 in order to use low-calorie gas fuel. Since this gas compressor Cg is driven by the output of the turbine Tu like the compressor Ca for air and the generator 4, it is connected to the opposite side of the compressor Ca of the generator 4 via the power transmission mechanism 5.
  • the gas compressor Cg may be driven by power independent from the gas turbine 1 and is not limited to the present embodiment.
  • the gas compressor Cg includes a variable stationary blade 10 (suction flow rate adjusting mechanism) that can change the cross-sectional area of the gas fuel to be sucked.
  • the variable stationary blade 10 has a function of preventing a stall phenomenon (compressor stall) called surging from occurring in the gas compressor by adjusting the opening degree (pressure loss).
  • a gas obtained by introducing a gas such as BFG from the fuel gas pipe 6 and mixing coke oven gas (COG) as required is used as required.
  • This gas fuel passes through the wet electrostatic precipitator 7 before being supplied to the gas compressor Cg.
  • the wet electric machine dust collector 7 is a device that separates and collects dust in the gas.
  • the main flow of the gas fuel compressed by the gas compressor Cg is supplied to the combustor 2 and burned, and a part thereof is returned to the fuel gas pipe 6 via the flow rate adjusting valve 8. That is, the amount of gas supplied to the combustor 2 is adjusted by adjusting the opening of the flow rate adjusting valve 8 for the gas fuel compressed by the gas compressor Cg.
  • the gas fuel returned to the fuel gas pipe 6 is cooled by passing through the gas cooler 9.
  • the gas turbine 1 that includes the gas compressor Cg that compresses the gas fuel whose supply conditions fluctuate and supplies the gas fuel to the combustor 2 and is provided with the variable stationary blades 10 is operated.
  • the limit pressure ratio for preventing the surging of the gas compressor Cg by defining the operation upper limit of the pressure ratio with respect to the suction flow rate or the opening degree of the variable stationary blade 10 is designed for the gas compressor Cg.
  • the reference limit pressure ratio calculated according to the conditions is corrected to a value obtained by multiplying the first correction coefficient calculated according to the operating condition detection value of the gas compressor Cg.
  • the corrected limiting pressure ratio obtained by multiplying the reference limiting pressure ratio by the first correction coefficient will be referred to as “corrected limiting pressure ratio” in the following description.
  • the first correction coefficient calculated according to the operation state detection value of the gas compressor Cg is, for example, a value calculated from the suction gas temperature T of the gas compressor Cg.
  • the suction gas temperature T in this case is the temperature of the gas fuel detected in the vicinity of the inlet of the gas compressor Cg, and is therefore corrected so as to reflect the state (pressure and flow rate) of the gas fuel that varies depending on the temperature. Is to do. That is, the characteristic of the gas fuel varies according to the change in the suction gas temperature T as represented by the state equation, and thus correction that reflects the state of the gas fuel that is actually compressed becomes possible.
  • the correction coefficient corresponding to the suction gas temperature T has a characteristic that changes so as to decrease as the suction gas temperature T on the horizontal axis increases, for example, as shown in FIG. Yes.
  • Such characteristics of the correction coefficient are determined in advance with the correction coefficient of the design specification point as the reference 1 according to the specification of the gas compressor Cg.
  • the post-correction limiting pressure ratio that is corrected with the limiting pressure ratio shown in FIG. 1 as the reference limiting pressure ratio has a limiting pressure ratio according to the change in the suction gas temperature T as indicated by an arrow C in the figure. Move up and down.
  • the corrected limit pressure ratio when the suction gas temperature T changes in a direction higher than the reference design specification point is corrected in a direction (downward) to reduce the limit pressure ratio compared to the reference limit pressure ratio.
  • the corrected limiting pressure ratio when the suction gas temperature T changes in a direction lower than the standard design specification point is corrected in the direction of increasing the limiting pressure ratio (upward) compared to the standard limiting pressure ratio. Is done. In other words, the limit pressure ratio becomes larger (higher) as the suction gas temperature T is lower, so that the range in which the gas compressor Cg can be stably operated without surging is widened. .
  • the calculation of the first correction coefficient uses values calculated from the suction gas temperature T of the gas compressor Cg, the gas constant R of the gas fuel, and the specific heat ratio ⁇ .
  • a corrected rotation speed ratio ⁇ shown in the following (Equation 1) is obtained, and the reference limiting pressure ratio is corrected using a correction coefficient corresponding to the corrected rotation speed ratio ⁇ . That is, as shown in FIG. 2B, the characteristic of the correction coefficient corresponding to the correction rotation speed ratio ⁇ is determined in advance, and the reference limiting pressure ratio is corrected using the correction coefficient corresponding to the calculated reference limiting pressure ratio.
  • N 0 is the reference rotational speed of the gas compressor Cg
  • ⁇ 0 is the reference specific heat ratio of the gas fuel
  • R 0 is the reference gas constant of the gas fuel
  • T 0 is the reference temperature of the gas fuel (suction gas temperature).
  • N is the actual rotation speed (current rotation speed) of the gas compressor Cg
  • is the current specific heat ratio of the gas fuel
  • R is the current gas constant of the gas fuel
  • T is the current temperature of the gas fuel (suction gas temperature).
  • Equation 1 regarding the calculation of the corrected rotation speed ratio ⁇ , the rotation speed ratio (N / N 0 ) in the gas compressor Cg, the ratio of the specific heat ratio in gas fuel ( ⁇ / ⁇ 0 ), gas It is also possible to calculate as a constant ratio (R / R 0 ) and a gas temperature ratio (T / T 0 ).
  • the rotation speed ratio (N / N 0 ) of the gas compressor Cg, the gas compressor Cg At least one of the ratio of specific heat ratio ( ⁇ / ⁇ 0 ), the ratio of gas constant (R / R 0 ) and the ratio of gas temperature (T / T 0 ) measured at the inlet side is used.
  • the corrected rotation speed ratio ⁇ can be calculated.
  • the calculation of the first correction coefficient described above is usually the most influential of the gas temperature, specific heat ratio, gas constant, and actual rotation speed of the gas compressor Cg as the operating condition detection value of the gas compressor Cg.
  • the specific heat ratio and gas constant, and the actual rotational speed In addition to the high gas temperature, it is desirable to add one or both of the specific heat ratio and gas constant, and the actual rotational speed. If the number of operating condition detection values used for calculating the first correction coefficient is large, a corrected limiting pressure ratio that reflects the actual operating condition including the composition of the gas fuel is set in detail.
  • the ratio correction can be further optimized to prevent surging.
  • the correction coefficient corresponding to the corrected rotational speed ratio ⁇ thus calculated has a characteristic that changes so as to increase as the corrected rotational speed ratio ⁇ on the horizontal axis increases. ing. That is, when the corrected rotation speed ratio ⁇ becomes larger than the reference value corresponding to the design point, the correction coefficient becomes a large value. Conversely, when the corrected rotation speed ratio ⁇ becomes smaller than the reference value, the correction coefficient becomes a small value. Accordingly, the post-correction limiting pressure ratio obtained by multiplying the reference limiting pressure ratio by the correction coefficient described above is such that the limiting pressure ratio becomes small when the correction coefficient is 1 or less of the reference value, for example, as shown in FIG. On the contrary, when the correction coefficient becomes 1 or more of the reference value, it moves upward so that the limit pressure ratio becomes large.
  • the corrected rotational speed ratio ⁇ is used for calculating the corrected limiting pressure ratio
  • a gas fuel whose gas composition varies greatly is used, such as when a plurality of gas fuels having different compositions are mixed.
  • the gas compressor Cg is operated with the limited pressure ratio measured based on the specific heat ratio ⁇ and gas constant R measured on the inlet side and corrected based on the gas constant R, even if the composition of the gas fuel fluctuates A stable operation that can always reliably prevent the occurrence of surging is possible by setting an optimized limit pressure ratio.
  • the gas composition of the gas fuel compressed by the gas compressor Cg is preferably measured at the inlet side of the gas compressor Cg.
  • the gas fuel is a mixed gas containing a plurality of gas components
  • the composition and flow ratio of each gas before being mixed are obtained.
  • the gas constant R and the specific heat ratio ⁇ of the mixed gas are obtained and used to calculate the first correction coefficient.
  • the gas composition of the gas fuel can be measured using a gas analyzer (gas chromatograph) capable of directly analyzing the gas composition.
  • a gas analyzer gas chromatograph
  • the gas density is measured by a gas density meter.
  • the gas composition can be estimated by conversion. Specifically, as shown in Table 1, it is assumed that the density of gas A is 1.314 kg / m 3 N and the density of gas B is 1.269 kg / m 3 N, and the respective compositions are known. At this time, if the measured density of the gas fuel is 1.29 kg / m 3 N, the estimated composition can be calculated by interpolation from the gas compositions of the gas A and the gas B.
  • the gas calorific value can be measured with a gas calorimeter and converted from the calorific value to estimate the gas composition.
  • the lower heating value of gas A is 7.25 MJ / m 3 N
  • the lower heating value of gas B is 7.31 MJ / m 3 N.
  • the estimated composition can be calculated by interpolation from the gas compositions of the gas A and the gas B.
  • gas chromatographs are expensive, the cost of measuring instruments can be reduced by using a relatively inexpensive gas density meter or gas calorimeter.
  • the gas composition is measured for a gas component whose composition varies, or the gas density or the calorific value of the gas is measured, and the measured density or calorific value is measured.
  • the composition may be estimated from Thereby, since it becomes unnecessary to measure the gas component whose composition does not vary, the cost of the measuring instrument necessary for measuring the gas composition can be reduced.
  • the corrected limit pressure ratio described above that is, the corrected limit pressure ratio obtained by multiplying the reference limit pressure ratio by the first correction coefficient depends on the suction flow rate or the opening degree and the operation direction of the variable stationary blade 10. It is desirable to further correct by multiplying by a predetermined second correction coefficient. That is, the corrected limit pressure ratio is a value that is further optimized in accordance with the actual driving situation if a value corrected by multiplying the reference limit pressure ratio by the first correction coefficient and the second correction coefficient is adopted. Therefore, it is possible to perform an operation that more reliably prevents the occurrence of surging.
  • the second correction coefficient described above varies depending on the specifications of the gas compressor Cg. For example, the value of the first correction coefficient decreases as the suction flow rate or the opening of the variable stationary blade 10 increases. That is, it is a value that is appropriately set according to various conditions such as the gas fuel, the gas compressor Cg, and the gas turbine 1 such as setting a second correction coefficient having a value smaller than 1.
  • suction flow rate of the gas compressor for obtaining the limit pressure ratio may be a corrected flow rate obtained by the following (Equation 2).
  • Q0 is the corrected flow rate of the gas compressor Cg
  • the unit system is the volume flow rate.
  • Q is an actual suction flow rate (current suction flow rate) of the gas compressor Cg
  • a unit system is a volume flow rate.
  • Other characters are the same as in (Formula 1).
  • the unit system of the corrected flow rate may use the definition according to the following (Equation 3) as the mass flow rate.
  • G0 is the corrected flow rate of the gas compressor Cg
  • the unit system is the mass flow rate.
  • P0 is the reference pressure (suction gas pressure) of the gas fuel.
  • G is the actual suction flow rate (current suction flow rate) of the gas compressor Cg
  • the unit system is the mass flow rate.
  • P is the current pressure of gas fuel (suction gas pressure).
  • the suction flow rate for obtaining the limit pressure ratio As the suction flow rate for obtaining the limit pressure ratio, the actual suction flow rate, the suction gas temperature, the suction gas pressure, the gas constant (R) and the specific heat ratio of the gas fuel are obtained by the above (Formula 2) or (Formula 3). Since the corrected flow rate calculated by ( ⁇ ) is used, an appropriate limiting pressure ratio corrected according to the operating condition of the gas compressor is used even when using gas fuel whose gas composition varies. As a result, it is possible to perform an operation that reliably prevents the occurrence of surging.
  • the limiting pressure ratio for preventing the surging of the gas compressor by defining the operation upper limit of the pressure ratio with respect to the suction flow rate or the opening degree of the variable stationary blade 10 is: Since the reference limiting pressure ratio calculated according to the design condition of the gas compressor Cg is corrected by multiplying by the first correction coefficient calculated according to the operating condition detection value of the gas compressor Cg, the operation of the gas compressor is performed. An appropriate limit pressure ratio corrected in accordance with the situation can be set, and accordingly, an operation that reliably prevents the occurrence of surging becomes possible.
  • an appropriate limit pressure ratio of the gas compressor Cg corrected according to the operation status of the gas compressor Cg can be set, so this limit pressure ratio is monitored.
  • an interlock for emergency stop of operation can be provided to protect the equipment.
  • the gas turbine 1 which employ
  • the correction reflecting the fluctuating gas fuel supply condition is set, and the optimized post-correction limit pressure ratio is set to reliably prevent the surging of the gas compressor Cg, thereby enabling stable operation to be continued.
  • limiting pressure ratio which is an operation
  • the gas turbine 1 of the present embodiment optimizes the corrected limiting pressure ratio by applying the corrected rotation speed ratio ⁇ to the correction when setting the limiting pressure ratio for preventing surging, so that the suction of the gas compressor Cg Surging can be reliably prevented even when the gas composition of the gas fuel and the actual rotational speed of the gas compressor Cg change as well as the gas temperature.
  • the equipment such as the gas compressor Cg constituting the gas turbine 1 is prevented from being damaged due to the surging of the gas compressor Cg accompanying the change in the gas fuel composition and the decrease in the actual rotational speed, and the surging is prevented. It is also possible to expand the range that can be stably operated without causing it. In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

 供給条件が変動するガス燃料を圧縮し、吸込流量調整機構を備えるガス圧縮機の運転方法において、ガス圧縮機の吸込流量または吸込流量調整機構の開度に対する圧力比の運用上限を規定してガス圧縮機のサージングを防止する制限圧力比が、ガス圧縮機の設計条件により算出された基準制限圧力比に対し、ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正される。

Description

ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン
 本発明は、たとえば製鉄所副生ガス(BFG)のような低カロリーガスを燃料として使用する低カロリーガス焚きガスタービンに用いられる、ガス燃料を圧縮するためのガス圧縮機のように、ガス燃料の供給条件が変動するガス圧縮機に適用されるガス圧縮機の運転方法及びこの運転方法により運転されるガスタービンに関する。
 従来、製鉄プロセスにおいて大量に発生する製鉄所副生ガス(Blast Furnace Gas:BFG)のような低カロリーガスを燃料として運転されるガスタービンプラント、すなわち、低カロリーガスを燃料として運転される低カロリーガス焚きガスタービン(以下、「ガスタービン」と呼ぶ)が知られている。このようなガスタービンでは、圧力の低いガス燃料を圧縮して燃焼器に供給するガス圧縮機が用いられている。従って、ガス圧縮機のサージングを防止するため、たとえば図1に実線で示すように、横軸の「可変静翼開度」に対する縦軸の「圧力比」について、運用上の「制限圧力比」が設けられている。
 この制限圧力比は、ガス圧縮機における吸入絶対圧力及び吐出絶対圧力の圧力比について、サージングを防止する運用上の上限を規定した値である。従って、ガス圧縮機のサージングを防止するためには、制限圧力比を超過しないよう可変静翼(吸込流量調整機構)の開度を調整し、サージング制限に対する余裕を確保するような運転制御を行っている。
 すなわち、図1において圧力比が点Aから上昇して大きくなると、可変静翼開度を変更しないと点A′で制限圧力比と一致するため、これ以上圧力比を上昇させる運転はできなくなる。しかし、点Aからの圧力比上昇に応じて可変静翼を開方向に動作させると、たとえば図1の点Aから点Bのように制限圧力比も上昇するので、サージングの発生を防止できる圧力比の運転領域が広がり、安全に運転できる領域に余裕が生じることとなる。
 このようにして可変静翼の開度を増すことは、ガス圧縮機により昇圧されたガス燃料の供給を受けるガスタービンが、ガス燃料のバイパス運用を行うことを意味している。
 また、ガス圧縮機により昇圧されたガス燃料の供給を受けるガスタービンには、運転圧力比が制限圧力比を超過した場合に機器を保護するため、運転を緊急停止するインターロックが設けられている。
 圧縮機のサージング防止に関する従来技術としては、たとえば特許文献1に開示されているような二酸化炭素回収型発電プラントの圧縮機サージ防止システムが知られている。この場合、水蒸気及び二酸化炭素の混合気体を差動流体とする圧縮機のサージングを防止するため、流量調整弁により変動する水蒸気及び二酸化炭素の濃度比を制御している。
 また、高炉ガスを主原料とするガスタービン発電システムは、発生する高炉ガスのカロリー変動により発電出力も変動する。このため、たとえば特許文献2に開示されているように、ガス燃料カロリーの測定結果に応じて減熱ガスや増熱ガスを添加してカロリー調整を行うが、急激なカロリー変動に対する応答遅れによって不安定燃焼や吹き消えに至ることがあるため、ガス燃料のカロリーをリアルタイムで算出する速やかな制御を行ってシステムの安定化を図ることが記載されている。
特開2000-337109号公報 特開2004-190633号公報
 ところで、上述した低カロリーガス焚きのガスタービンは、ガス圧縮機に供給されるガス燃料の温度(吸込ガス温度)が変動することや、たとえば組成の異なる複数のガス燃料を混合する場合のように、ガス燃料組成が大きく変化する不安定なガス燃料を使用する場合もある。
 上述した吸込ガス温度やガス燃料組成のように、ガス燃料の供給条件に大きな変化が生じると、サージングの制限圧力比に影響を及ぼす値である吸込ガス温度(T)、ガス定数(R)及び比熱比(κ)も変動する。すなわち、吸込ガス温度やガス燃料組成のようなガス燃料の供給条件が変動することにより、ガス圧縮機のサージングを防止する制限圧力比の特性も変化することになる。
 しかし、供給条件が変動するガス燃料を圧縮して燃焼器に供給するガス圧縮機を備え、このガス圧縮機に可変静翼が設けられている従来のガスタービン運転方法は、ガスタービン制御やインターロックにガス燃料供給条件の変動が考慮されていない。従って、ガス燃料の供給条件が大きく変動してサージングの制限圧力比が低下するようなことになれば、ガス圧縮機のサージングを防止することはできず、最悪の場合は機器損傷に至ることが懸念される。
 このような背景から、供給条件が変動するガス燃料を圧縮して燃焼器に供給するガス圧縮機を備えており、かつ、ガス圧縮機に可変静翼が設けられているガスタービンにおいては、ガス燃料供給条件の変化に対応してサージングを確実に防止できるガスタービン運転方法の開発が望まれる。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、ガス燃料供給条件の変化に対応してガス圧縮機のサージングを確実に防止できるガスタービン運転方法及びガスタービンを提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の第一の態様に係るガス圧縮機の運転方法は、供給条件が変動するガス燃料を圧縮し、吸込流量調整機構が設けられている場合のガス圧縮機の運転方法であって、前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する制限圧力比が、前記ガス圧縮機の設計条件により算出された基準制限圧力比に対し、前記ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正されるものである。
 このような本発明のガス圧縮機の運転方法によれば、ガス圧縮機の吸込流量または吸込流量調整機構の開度に対する圧力比の運用上限を規定してガス圧縮機のサージングを防止する制限圧力比が、ガス圧縮機の設計条件により算出された基準制限圧力比に対し、ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正されるので、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
 本発明の第一の態様に係るガス圧縮機の運転方法においては、前記第1補正係数は、前記ガス圧縮機の吸込ガス温度により算出されることが好ましく、これにより、状態方程式で表されるように、温度に応じて変動するガス燃料の状態を反映した補正が可能になる。
 このようなガス圧縮機の運転方法においては、前記第1補正係数の算出に、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)を加えることが好ましい。すなわち、第1補正係数は、ガス圧縮機の吸込ガス温度と、ガス定数(R)及び比熱比(κ)とにより算出されるので、ガス組成が変動するようなガスをガス燃料として使用する場合であっても、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
 さらに、上記のガス圧縮機の運転方法においては、前記第1補正係数の算出に、前記ガス圧縮機の実回転数を加えることが好ましく、これにより、制限圧力比の補正をより一層最適化してサージングの発生を防止することができる。
 本発明の第一の態様に係るガス圧縮機の運転方法においては、前記第1補正係数は、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をTとしたときに、下記の(数式1)により求められる修正回転数比(α)から求められることが好ましい。
Figure JPOXMLDOC01-appb-M000004
 
 上記のガス圧縮機の運転方法においては、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)は、前記ガス圧縮機の入口側で計測されたガス組成により算出されることが好ましい。
 この場合、前記ガス圧縮機の吸込ガスが複数のガスを混合したガスの場合には、各ガスの組成及び流量比から混合後のガス定数(R)及び比熱比(κ)を求めて使用する。
 上記のガス圧縮機の運転方法においては、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)を、前記ガス圧縮機の入口側で計測されたガス密度またはガス発熱量から換算して求めたガス組成により算出しても良い。また、前記ガス圧縮機の吸込ガスが複数のガスを混合したガスの場合には、少なくとも一つのガスの組成を、ガス密度またはガス発熱量から換算して求めても良い。
 本発明の第一の態様に係るガス圧縮機の運転方法においては、前記制限圧力比は、前記第1補正係数を乗じて補正後に、さらに前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度及び動作方向に応じて予め定めた第2補正係数を乗じて補正されることが好ましく、これにより制限圧力比はより一層最適化された値となるので、サージングの発生をより一層確実に防止した運転が可能になる。
 本発明の第一の態様に係るガス圧縮機の運転方法においては、前記ガス圧縮機の吸込流量は、前記ガス圧縮機の実吸込流量をQ(単位系は体積流量)、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式2)により求められる修正流量Q(単位系は体積流量)であるか、または、前記ガス圧縮機の実吸込流量をG(単位系は質量流量)、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式3)により求められる修正流量G(単位系は質量流量)であることが好ましい。
 この場合、制限圧力比を求めるためのガス圧縮機の吸込流量を、ガス圧縮機の実吸込流量と、吸込ガス温度と、吸込ガス圧力と、ガス燃料のガス定数(R)及び比熱比(κ)とにより算出された修正流量を用いるので、ガス組成が変動するようなガスをガス燃料として使用する場合であっても、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
 本発明の第二の態様に係るガスタービンの運転方法は、供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンの運転方法であって、前記ガス圧縮機の吸込流量または吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転方法が、本発明の第一の態様に係るガス圧縮機の運転方法により行われることを特徴とするものである。
 本発明の第二の態様に係るガスタービンの運転方法においては、前記ガス圧縮機のサージングを防止する運転方法が、ガス燃料のバイパス運用を含むことが好ましい。
 本発明の第二の態様に係るガスタービンの運転方法においては、前記ガス圧縮機の運転圧力比が制限圧力比を超過した場合に、運転を緊急停止するインターロックを備えることが好ましい。
 本発明の第三の態様に係るガスタービンは、供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンであって、前記ガス圧縮機の吸込流量または吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転が、本発明の第一の態様に係るガス圧縮機の運転方法により行われることを特徴とするものである。
 本発明の第二の態様に係るガスタービンおよび本発明の第三の態様に係るガスタービンの運転方法によれば、ガス圧縮機の吸込流量または吸込流量調整機構の開度に対する圧力比の運用上限を規定してガス圧縮機のサージングを防止する運転が、本発明の第一の態様に係るガス圧縮機の運転方法により行われるので、供給条件が変動するガス燃料を圧縮するガス圧縮機のサージングを確実に防止して安定した運転が可能になる。
 上述した本発明によれば、供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備えており、かつ、ガス圧縮機に可変静翼が設けられているガスタービンにおいて、ガス圧縮機の制限圧力比がガス燃料供給条件の変化に対応して補正され、ガス燃料供給条件に応じて最適化した値の制限圧力比が適用される。この結果、ガス圧縮機のサージングを確実に防止して安定した運転が可能になり、従って、燃料組成が変化するような低カロリーのガス燃料を使用する場合であっても、ガス圧縮機のサージングを確実に防止して機器損傷等に至ることのない信頼性の高い運転が可能になる。
本発明に係るガス圧縮機の運転方法及びガス圧縮機を備えるガスタービンの一実施形態を示す図で、ガス圧縮機の制限圧力比補正に関する説明図である。 制限圧力比の補正係数(第1補正係数)を示す図で、(a)は吸込ガス温度Tと補正係数との関係、(b)は修正回転数比αと補正係数との関係である。 修正回転数比による基準制限圧力比の補正例を説明する図である。 本発明に係るガスタービンの構成例を示す概略系統図である。
 以下、本発明に係るガス圧縮機の運転方法及びガス圧縮機を備えるガスタービンの一実施形態を図面に基づいて説明する。
 図4に示す本実施形態のガスタービン1は、たとえば製鉄所副生ガス(BFG)や組成の異なる複数のガス燃料を混合する場合ように、低カロリーのガス燃料を使用して運転するプラントである。
 ガスタービン1は、圧縮機Caと、燃焼器(ガスタービン燃焼器)2と、タービンTuとを主な構成要素とする装置である。
 圧縮機Caは空気を取り込んで圧縮し、高圧の圧縮空気を吐出する。圧縮機Caから吐出された圧縮空気は、燃焼用空気として燃焼器2に取り入れられ、燃焼器2に供給されたガス燃料とともに燃焼して高温の燃焼ガスとなる。この燃焼ガスはタービンTuに取り入れられ、動翼及び静翼間を燃焼ガスが流れることによりタービンTuを駆動する。
 タービンTuを駆動した燃焼ガスは、たとえば排熱回収ボイラ3を通過することで蒸気の生成に使用された後、必要な排ガス処理を施してから大気へ放出される。なお、外気を導入する圧縮機Caの上流側には、一般的にフィルタや消音器が設置されている。
 図示のガスタービン1は、圧縮機Ca側に同軸の発電機4を備えている。この発電機4は、タービンTuの出力により圧縮機Caとともに駆動されて発電する。
 さて、図示のガスタービン1は、低カロリーのガス燃料を使用するため、ガス燃料を圧縮して燃焼器2に供給するガス圧縮機Cgを備えている。このガス圧縮機Cgは、空気用の圧縮機Ca及び発電機4と同様にタービンTuの出力で駆動されるため、発電機4の圧縮機Caと反対側に、動力伝達機構5を介して連結されている。なお、ガス圧縮機Cgはガスタービン1とは独立した動力により駆動される場合もあり、本実施例に限定されるものではない。
 ガス圧縮機Cgは、吸入するガス燃料の流路断面積を可変とする可変静翼10(吸込流量調整機構)を備えている。この可変静翼10は、その開度(圧力損失)を調整することにより、サージングと呼ばれる失速現象(コンプレッサ・ストール)がガス圧縮機に生じることを防止する機能を有している。
 ガス圧縮機Cgで圧縮するガス燃料は、たとえば燃料ガス配管6からBFG等のガスを導入し、必要に応じてコークス炉ガス(COG)を混合したガスが使用される。このガス燃料は、ガス圧縮機Cgに供給する前に湿式電気集塵機7を通過させる。湿式電機集塵機7は、ガス中のダストを分離させて捕集する装置である。
 ガス圧縮機Cgで圧縮されたガス燃料は、その主流が燃焼器2に供給されて燃焼し、一部が流量調整弁8を介して燃料ガス配管6に戻される。すなわち、ガス圧縮機Cgで圧縮されたガス燃料は、流量調整弁8の開度調整により燃焼器2へ供給するガス量が調整されている。なお、燃料ガス配管6に戻すガス燃料は、ガス冷却器9を通すことにより冷却されている。
 上述したように、供給条件が変動するガス燃料を圧縮して燃焼器2に供給するガス圧縮機Cgを備え、該ガス圧縮機Cgに可変静翼10が設けられているガスタービン1を運転する場合、本実施形態の運転方法では、吸込流量または可変静翼10の開度に対する圧力比の運用上限を規定してガス圧縮機Cgのサージングを防止する制限圧力比が、ガス圧縮機Cgの設計条件により算出された基準制限圧力比に対し、ガス圧縮機Cgの運転状況検出値に応じて算出される第1補正係数を乗じた値に補正される。
 このように、基準制限圧力比に第1補正係数を乗じて得られる補正後の制限圧力比は、以下の説明において「補正後制限圧力比」と呼ぶことにする。
 さて、上記のガスタービン運転方法において、ガス圧縮機Cgの運転状況検出値に応じて算出される第1補正係数は、たとえばガス圧縮機Cgの吸込ガス温度Tにより算出される値である。この場合の吸込ガス温度Tは、ガス圧縮機Cgの入口近傍で検出したガス燃料の温度であり、従って、温度に応じて変動するガス燃料の状況(圧力及び流量)が反映されるように補正を行うものである。すなわち、ガス燃料の特性は、状態方程式で表されるように、吸込ガス温度Tの変化に応じて変動するので、実際に圧縮するガス燃料の状態を反映した補正が可能になる。
 具体的に説明すると、吸込ガス温度Tに対応する補正係数は、たとえば図2(a)に示すように、横軸の吸込ガス温度Tが高くなるにつれて小さくなるように変化する特性を有している。このような補正係数の特性は、ガス圧縮機Cgの仕様等に応じて、設計仕様点の補正係数を基準の1にして事前に定めたものである。このため、図1に示す制限圧力比を基準制限圧力比として補正される補正後制限圧力比は、図中に矢印Cで示すように、吸込ガス温度Tの変化に応じて、制限圧力比が上下に移動する。
 すなわち、吸込ガス温度Tが基準の設計仕様点より高くなる方向に変化する場合の補正後制限圧力比は、基準制限圧力比と比較して、制限圧力比を小さくする方向(下向き)に補正される。反対に、吸込ガス温度Tが基準の設計仕様点より低くなる方向に変化する場合の補正後制限圧力比は、基準制限圧力比と比較して、制限圧力比を大きくする方向(上向き)に補正される。換言すれば、吸込ガス温度Tが低い運転状況にある場合ほど制限圧力比は大きい(高い)値になるため、ガス圧縮機Cgは、サージングを生じることなく安定して運転可能な範囲が広くなる。
 また、上述したガスタービン運転方法では、第1補正係数の算出に、ガス燃料のガス定数(R)及び比熱比(κ)を加えることが望ましい。すなわち、第1補正係数の算出は、ガス圧縮機Cgの吸込ガス温度Tと、ガス燃料のガス定数R及び比熱比κとにより算出された値を使用する。
 具体的には、下記の(数式1)に示す修正回転数比αを求め、この修正回転数比αに対応する補正係数を使用して基準制限圧力比を補正する。すなわち、図2(b)に示すように、補正回転数比αに対応する補正係数の特性を予め定めておき、算出した基準制限圧力比に対応する補正係数を用いて基準制限圧力比を補正する。
Figure JPOXMLDOC01-appb-M000007
 
 ここで、Nはガス圧縮機Cgの基準回転数、κはガス燃料の基準比熱比、Rはガス燃料の基準ガス定数、Tはガス燃料の基準温度(吸込ガス温度)であり、いずれもガス圧縮機Cgの設計仕様点により定まる基準値である。
 一方、Nはガス圧縮機Cgの実回転数(現状回転数)、κはガス燃料の現状比熱比、Rはガス燃料の現状ガス定数、Tはガス燃料の現状温度(吸込ガス温度)であり、いずれもガス圧縮機Cgが実際に運転されている時点における測定値である。この場合、ガス燃料の現状比熱比κ、ガス燃料の現状ガス定数R及びガス燃料の現状温度Tについては、ガス圧縮機Cgの入口側(吸入側)で計測した実測値を使用する。
 上述した(数式1)によれば、修正回転数比αの算出については、ガス圧縮機Cgにおける回転数比(N/N)、ガス燃料における比熱比の比(κ/κ)、ガス定数の比(R/R)及びガス温度の比(T/T)として算出することも可能である。従って、他の値が一定であると仮定した場合や、他の値が及ぼす影響は小さいと判断した場合には、ガス圧縮機Cgの回転数比(N/N)、ガス圧縮機Cgの入口側で計測したガス燃料の比熱比の比(κ/κ)、ガス定数の比(R/R)及びガス温度の比(T/T)のうち、少なくともいずれか一つを用いて修正回転数比αを算出することも可能である。
 すなわち、上述した第1補正係数の算出は、ガス圧縮機Cgの運転状況検出値となるガス燃料のガス温度、比熱比、ガス定数及びガス圧縮機Cgの実回転数のうち、通常最も影響の大きいガス温度に加えて、比熱比及びガス定数と、実回転数とのうち、いずれか一方または両方を加えることが望ましい。第1補正係数の算出に用いる運転状況検出値の項目数が多ければ、ガス燃料の組成を含む実際の運転状況を詳細に反映した補正後制限圧力比が設定されることになるので、制限圧力比の補正をより一層最適化してサージングの発生を防止することができる。
 こうして算出した修正回転数比αに対応する補正係数は、たとえば図2(b)に示すように、横軸の修正回転数比αが大きくなるにつれて大きな値となるように変化する特性を有している。すなわち、設計点に対応する基準値より修正回転数比αが大きくなると補正係数も大きな値となり、反対に基準値より修正回転数比αが小さくなると補正係数も小さな値となる。
 従って、上述した補正係数を基準制限圧力比に乗じて得られる補正後制限圧力比は、たとえば図3に示すように、補正係数が基準値の1以下となる場合、制限圧力比が小さくなるように下方へ移動し、反対に、補正係数が基準値の1以上となる場合、制限圧力比が大きくなるように上方へ移動する。
 このように、補正制限圧力比の算出に修正回転数比αを用いると、たとえば組成の異なる複数のガス燃料を混合する場合のように、ガス組成が大きく変動するようなガス燃料を使用する場合でも、ガス圧縮機Cgの運転状況に応じて補正した適切な制限圧力比を用いて運転することが可能になる。すなわち、ガス組成により変動する比熱比κやガス定数Rの値を反映した補正後制限圧力比を得ることができるので、換言すれば、実際に使用するガス燃料のガス組成をガス圧縮機Cgの入口側で測定し、実際のガス燃料に対応する比熱比κやガス定数Rに基づいた補正した制限圧力比を設定してガス圧縮機Cgを運転するので、ガス燃料の組成が変動しても常に最適化された制限圧力比を設定し、サージングの発生を確実に防止できる安定した運転が可能になる。
 ところで、ガス圧縮機Cgで圧縮するガス燃料のガス組成は、ガス圧縮機Cgの入口側で計測することが好ましい。このとき、ガス燃料が複数のガス成分を含む混合ガスの場合には、最初に、混合される前の各ガスの組成及び流量比を求める。この後、各ガスの流量比を及びガス組成から混合ガスの組成を求めた後、混合ガスのガス定数R及び比熱比κを求めて第1補正係数の算出に使用する。
 ここで、ガス燃料のガス組成は、ガス組成を直接分析可能なガス分析計(ガスクロマトグラフ)を用いて計測することができる。あるいは、ガス組成が大きく変動するようなガス燃料であっても、ガスの密度とガス組成との間に相関があるようなガス燃料であれば、ガス密度計でガス密度を計測し、密度から換算してガス組成を推定することができる。具体的には、表1に記載のように、ガスAの密度が1.314kg/mN、ガスBの密度が1.269kg/mNで、各々の組成が解っているとする。この時、ガス燃料の計測密度が1.29kg/mNであれば、ガスAとガスBのガス組成から内挿によって、推定組成を算出することができる。
Figure JPOXMLDOC01-appb-T000008
 また、ガス発熱量とガス組成との間に相関がるようなガス燃料であれば、ガス発熱量計でガス発熱量を計測し、発熱量から換算してガス組成を推定することができる。具体的には、表2に記載のように、ガスAの低位発熱量が7.25MJ/mN、ガスBの低位発熱量が7.31MJ/mNで、各々の組成が解っているとする。この時、ガス燃料の計測された低位発熱量が7.27/mNであれば、ガスAとガスBのガス組成から内挿によって、推定組成を算出することができる。
 一般に、ガスクロマトグラフは高価であるため、比較的安価なガス密度計またはガス発熱量計を用いることにより、計測器のコストを低減することができる。
Figure JPOXMLDOC01-appb-T000009
 また、ガス燃料が複数のガス成分を含む混合ガスの場合には、組成が変動するガス成分についてガス組成を計測するか、ガス密度またはガスの発熱量を計測し、計測された密度又は発熱量から組成を推定すれば良い。これにより、組成が変動しないガス成分については計測が不要となるため、ガス組成の計測に必要な計測器のコストを低減できる。
 また、上述した補正後制限圧力比は、すなわち、基準制限圧力比に第1補正係数を乗じて得られた補正後制限圧力比は、吸込流量または可変静翼10の開度及び動作方向に応じて予め定めた第2補正係数を乗じてさらに補正することが望ましい。すなわち、補正後制限圧力比は、基準制限圧力比に対して第1補正係数及び第2補正係数を乗じて補正した値を採用すれば、実際の運転状況に応じてより一層最適化された値となるので、サージングの発生をより一層確実に防止した運転が可能になる。
 なお、上述した第2補正係数は、ガス圧縮機Cgの仕様に応じて異なるものであり、たとえば吸込流量または可変静翼10の開度が増すにつれて第1補正係数の値が小さくなるような値、すなわち1より小さい値の第2補正係数を設定するなど、ガス燃料、ガス圧縮機Cg及びガスタービン1等の諸条件に応じて適宜設定される値である。
 また、制限圧力比を求めるためのガス圧縮機の吸込流量を、下記(数式2)により求めた修正流量としてもよい。
Figure JPOXMLDOC01-appb-M000010
 
 ここで、Q0はガス圧縮機Cgの修正流量であり、単位系は体積流量である。一方、Qはガス圧縮機Cgの実吸込流量(現状吸込流量)であり、単位系は体積流量である。その他の文字については(数式1)と同じである。なお、修正流量の単位系は質量流量として下記(数式3)による定義を用いてもよい。
Figure JPOXMLDOC01-appb-M000011
 
 ここで、G0はガス圧縮機Cgの修正流量であり、単位系は質量流量である。P0はガス燃料の基準圧力(吸込ガス圧力)である。一方、Gはガス圧縮機Cgの実吸込流量(現状吸込流量)であり、単位系は質量流量である。Pはガス燃料の現状圧力(吸込ガス圧力)である。
 制限圧力比を求めるための吸込流量として、上述した(数式2)または(数式3)により、実吸込流量と、吸込ガス温度と、吸込ガス圧力と、ガス燃料のガス定数(R)及び比熱比(κ)とにより算出された修正流量を用いるので、ガス組成が変動するようなガス燃料を使用する場合であっても、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
 このような本実施形態のガス圧縮機の運転方法によれば、吸込流量または可変静翼10の開度に対する圧力比の運用上限を規定してガス圧縮機のサージングを防止する制限圧力比が、ガス圧縮機Cgの設計条件により算出された基準制限圧力比に対し、ガス圧縮機Cgの運転状況検出値に応じて算出される第1補正係数を乗じて補正されるので、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を設定でき、従って、サージングの発生を確実に防止した運転が可能になる。
 この結果、ガス圧縮機Cgのサージングを確実に防止して安定した運転が可能になり、特に、燃料組成が変化するような低カロリーのガス燃料を使用する場合でも、ガス圧縮機Cgのサージングを確実に防止し、機器損傷等に至ることのない信頼性の高い運転が可能になる。すなわち、ガス燃料組成の変化に伴うガス圧縮機Cgの損傷を防止し、サージングを生じることなく運転可能な運用範囲の拡大が可能になる。
 また、本実施形態のガスタービン1の運転方法によれば、ガス圧縮機Cgの運転状況に応じて補正した適切なガス圧縮機Cgの制限圧力比を設定できるので、この制限圧力比を監視しながら、ガス燃料のバイパス運用を行うことが可能となる。
 また、仮にガス圧縮機Cgの運転圧力比が、この制限圧力比を超過した場合に、機器を保護するため、運転を緊急停止するインターロックを設けることもできる。
 この結果、ガス圧縮機Cgのサージングを確実に防止して安定した運転が可能になり、特に、燃料組成が変化するような低カロリーのガス燃料を使用する場合でも、ガス圧縮機Cgのサージングを確実に防止し、機器損傷等に至ることのない信頼性の高い運転が可能になる。すなわち、ガス燃料組成の変化に伴うガス圧縮機Cgの損傷を防止し、サージングを生じることなく運転可能な運用範囲の拡大が可能になる。
 そして、上述したガスタービン運転方法を採用したガスタービン1は、吸込流量または可変静翼10の開度に対する圧力比の運用上限である制限圧力比を規定してガス圧縮機Cgのサージングを防止する運転において、変動するガス燃料の供給条件が反映された補正により、最適化された補正後制限圧力比を設定してガス圧縮機Cgのサージングを確実に防止し、安定した運転の継続が可能になる。すなわち、本実施形態のガスタービン1は、サージング防止の制限圧力比を設定する際の補正に修正回転数比αを適用して補正後制限圧力比を最適化するので、ガス圧縮機Cgの吸込ガス温度のみならず、ガス燃料のガス組成やガス圧縮機Cgの実回転数が変化しても確実にサージングを防止することができる。
 従って、ガスタービン1を構成するガス圧縮機Cg等の機器類は、ガス燃料組成変化及び実回転数低下に伴うガス圧縮機Cgのサージングに起因して損傷することが防止され、しかも、サージングを生じることなく安定して運用可能な範囲を拡大することも可能になる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
  1  ガスタービン
  2  燃焼器
  4  発電機
 10  可変静翼(吸込流量調整機構)
 Ca  圧縮機
 Tu  タービン
 Cg  ガス圧縮機

Claims (15)

  1.  供給条件が変動するガスを圧縮し、吸込流量調整機構を備えるガス圧縮機の運転方法であって、
     前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する制限圧力比が、前記ガス圧縮機の設計条件により算出された基準制限圧力比に対し、前記ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正されるガス圧縮機の運転方法。
  2.  前記第1補正係数が、前記ガス圧縮機の吸込ガス温度により算出される請求項1に記載のガス圧縮機の運転方法。
  3.  前記第1補正係数の算出に、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)を加えた請求項2に記載のガス圧縮機の運転方法。
  4.  前記第1補正係数の算出に、前記ガス圧縮機の実回転数を加えた請求項2または3に記載のガス圧縮機の運転方法。
  5.  前記第1補正係数が、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をTとしたときに、下記の(数式1)により求められる修正回転数比(α)から求められる請求項1から4のいずれか一項に記載のガス圧縮機の運転方法。
    Figure JPOXMLDOC01-appb-M000001
     
  6.  前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)は、前記ガス圧縮機の入口側で計測されたガス組成により算出される請求項3または5に記載のガス圧縮機の運転方法。
  7.  前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)は、前記ガス圧縮機の入口側で計測されたガス密度またはガス発熱量から換算して求めたガス組成により算出される請求項3または5に記載のガス圧縮機の運転方法。
  8.  前記ガス圧縮機の吸込ガスが複数のガスを混合したガスの場合には、各ガスの組成及び流量比から混合後のガス定数(R)及び比熱比(κ)を求める請求項3または5に記載のガス圧縮機の運転方法。
  9.  複数のガスのうち少なくとも一つのガスの組成を、ガス密度またはガス発熱量から換算して求める請求項8に記載のガス圧縮機の運転方法。
  10.  前記ガス圧縮機の吸込流量は、前記ガス圧縮機の実吸込流量をQ(単位系は体積流量)、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式2)により求められる修正流量Q(単位系は体積流量)であるか、または、前記ガス圧縮機の実吸込流量をG(単位系は質量流量)、前記ガス圧縮機の基準回転数をN、前記ガス圧縮機の吸込ガスの基準比熱比をκ、前記ガス圧縮機の吸込ガスの基準ガス定数をR、前記ガス圧縮機の吸込ガスの基準温度をT、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式3)により求められる修正流量G(単位系は質量流量)である請求項1から9のいずれか一項に記載のガス圧縮機の運転方法。
    Figure JPOXMLDOC01-appb-M000002
     
    Figure JPOXMLDOC01-appb-M000003
     
  11.  前記制限圧力比は、前記第1補正係数を乗じて補正後に、さらに前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度及び動作方向に応じて予め定めた第2補正係数を乗じて補正される請求項1から10のいずれか一項に記載のガス圧縮機の運転方法。
  12.  供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンの運転方法であって
     前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転方法が、請求項1から11のいずれか一項に記載されたガス圧縮機の運転方法により行われるガスタービンの運転方法。
  13.  前記ガス圧縮機のサージングを防止する運転方法が、ガス燃料のバイパス運用を含む請求項12に記載のガスタービンの運転方法。
  14.  前記ガス圧縮機の運転圧力比が制限圧力比を超過した場合に、運転を緊急停止するインターロックを備える請求項12または13に記載のガスタービンの運転方法。
  15.  供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンであって、
     前記ガス圧縮機の吸込流量または前記吸込流量調整機構開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転が、請求項1から11のいずれか一項に記載されたガス圧縮機の運転方法により行われるガスタービン。
PCT/JP2011/072233 2011-03-31 2011-09-28 ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン WO2012132062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013507037A JP5276756B2 (ja) 2011-03-31 2011-09-28 ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン
EP11862606.8A EP2693059A4 (en) 2011-03-31 2011-09-28 METHOD FOR CONTROLLING GAS COMPRESSOR, AND GAS TURBINE HAVING GAS COMPRESSOR
CN201180039750.4A CN103080560B (zh) 2011-03-31 2011-09-28 气体压缩机的运转方法及具备气体压缩机的燃气涡轮
KR1020137003471A KR101298828B1 (ko) 2011-03-31 2011-09-28 가스 압축기의 운전 방법 및 가스 압축기를 구비하는 가스 터빈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081101 2011-03-31
JP2011081101 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132062A1 true WO2012132062A1 (ja) 2012-10-04

Family

ID=46925438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072233 WO2012132062A1 (ja) 2011-03-31 2011-09-28 ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン

Country Status (6)

Country Link
US (1) US8756938B2 (ja)
EP (1) EP2693059A4 (ja)
JP (1) JP5276756B2 (ja)
KR (1) KR101298828B1 (ja)
CN (1) CN103080560B (ja)
WO (1) WO2012132062A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052542A (ja) * 2010-08-31 2012-03-15 Nuovo Pignone Spa 圧縮機内のサージを検出しサージマージンを再配置するデバイスおよび方法
WO2014208668A1 (ja) * 2013-06-27 2014-12-31 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
JP2017180134A (ja) * 2016-03-28 2017-10-05 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント
KR20230175302A (ko) 2021-08-30 2023-12-29 미츠비시 파워 가부시키가이샤 가스 터빈의 제어 장치, 가스 터빈 설비, 가스 터빈의 제어 방법 및 가스 터빈의 제어 프로그램을 기록한 컴퓨터로 독취 가능한 기록 매체

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738372B1 (en) * 2012-11-29 2018-02-28 Ansaldo Energia Switzerland AG Gas turbine temperature measurement
CN105829730B (zh) * 2013-05-29 2018-09-21 西门子公司 用于运行压缩机的方法和具有压缩机的装置
JP6313718B2 (ja) * 2015-02-19 2018-04-18 三菱日立パワーシステムズ株式会社 ガスタービンの設計及び製造方法
JP2016205237A (ja) * 2015-04-23 2016-12-08 株式会社日立製作所 圧縮機の性能予測装置及び性能予測方法
KR102488575B1 (ko) * 2016-03-11 2023-01-16 한화파워시스템 주식회사 압축기 제어 시스템 및 압축기의 제어 방법
US10036325B2 (en) * 2016-03-30 2018-07-31 General Electric Company Variable flow compressor of a gas turbine
US11655757B2 (en) * 2021-07-30 2023-05-23 Rolls-Royce North American Technologies Inc. Modular multistage compressor system for gas turbine engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337109A (ja) 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd 二酸化炭素回収型発電プラントの圧縮機サージ防止システム
JP2004190633A (ja) 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービンの燃料ガスカロリー推定装置
JP2005146927A (ja) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置、タービンシステム、圧縮機の制御方法
JP2007040171A (ja) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd ガスタービンの入口案内翼制御装置
JP2007239696A (ja) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置、圧縮機装置及び圧縮機装置の制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156578A (en) * 1977-08-02 1979-05-29 Agar Instrumentation Incorporated Control of centrifugal compressors
US4581888A (en) * 1983-12-27 1986-04-15 United Technologies Corporation Compressor rotating stall detection and warning system
DE3544822A1 (de) * 1985-12-18 1987-06-19 Gutehoffnungshuette Man Verfahren zur pumpgrenzregelung von turbokomporessoren
JPH0816479B2 (ja) 1987-06-23 1996-02-21 株式会社日立製作所 圧縮機のサ−ジング防止装置
US5508943A (en) * 1994-04-07 1996-04-16 Compressor Controls Corporation Method and apparatus for measuring the distance of a turbocompressor's operating point to the surge limit interface
US5908462A (en) * 1996-12-06 1999-06-01 Compressor Controls Corporation Method and apparatus for antisurge control of turbocompressors having surge limit lines with small slopes
US7210895B2 (en) 2002-08-12 2007-05-01 Hitachi Industries Co., Ltd. Turbo compressor and method of operating the turbo compressor
DE10304063A1 (de) * 2003-01-31 2004-08-12 Man Turbomaschinen Ag Verfahren zum sicheren Betreiben von Turbokompressoren mit einer Pumpgrenzregelung und einem Pumpgrenzregelventil
US7762084B2 (en) * 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
EP1659294B1 (en) * 2004-11-17 2017-01-11 Mitsubishi Heavy Industries Compressor Corporation Compressor control unit and gas turbine power plant including this unit
KR100644418B1 (ko) * 2005-02-11 2006-11-10 가부시키가이샤 히다치 인더스트리즈 터보압축기 및 그 운전방법
DE102009003978A1 (de) * 2009-01-07 2010-07-08 Man Turbo Ag Verfahren zur Bestimmung einer Eigenschaft eines Gases mittels einer Strömungsmaschine
ES2571212T3 (es) * 2009-07-21 2016-05-24 Alstom Technology Ltd Método para el control de motores de turbina de gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337109A (ja) 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd 二酸化炭素回収型発電プラントの圧縮機サージ防止システム
JP2004190633A (ja) 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービンの燃料ガスカロリー推定装置
JP2005146927A (ja) * 2003-11-12 2005-06-09 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置、タービンシステム、圧縮機の制御方法
JP2007040171A (ja) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd ガスタービンの入口案内翼制御装置
JP2007239696A (ja) * 2006-03-10 2007-09-20 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置、圧縮機装置及び圧縮機装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693059A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052542A (ja) * 2010-08-31 2012-03-15 Nuovo Pignone Spa 圧縮機内のサージを検出しサージマージンを再配置するデバイスおよび方法
WO2014208668A1 (ja) * 2013-06-27 2014-12-31 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
JP2015010506A (ja) * 2013-06-27 2015-01-19 三菱重工業株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置
CN105247222A (zh) * 2013-06-27 2016-01-13 三菱日立电力系统株式会社 压缩机的校正转数的计算方法、压缩机的控制方法,以及执行这些方法的装置
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity
DE112014003023B4 (de) 2013-06-27 2023-05-04 Mitsubishi Heavy Industries, Ltd. Kompressorsteuervorrichtung, Kompressionsausrüstung, Kompressorsteuerungsverfahren und Kompressionsverschlechterungsbestimmungsverfahren
JP2017180134A (ja) * 2016-03-28 2017-10-05 三菱日立パワーシステムズ株式会社 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント
KR20230175302A (ko) 2021-08-30 2023-12-29 미츠비시 파워 가부시키가이샤 가스 터빈의 제어 장치, 가스 터빈 설비, 가스 터빈의 제어 방법 및 가스 터빈의 제어 프로그램을 기록한 컴퓨터로 독취 가능한 기록 매체

Also Published As

Publication number Publication date
US20120247115A1 (en) 2012-10-04
CN103080560A (zh) 2013-05-01
EP2693059A4 (en) 2014-11-12
US8756938B2 (en) 2014-06-24
CN103080560B (zh) 2014-12-10
JPWO2012132062A1 (ja) 2014-07-24
EP2693059A1 (en) 2014-02-05
KR101298828B1 (ko) 2013-08-23
KR20130020936A (ko) 2013-03-04
JP5276756B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5276756B2 (ja) ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン
US10900420B2 (en) Gas turbine combustor diagnostic system and method
JP4592513B2 (ja) ガスタービン制御装置、及びガスタービンシステム
US6364602B1 (en) Method of air-flow measurement and active operating limit line management for compressor surge avoidance
KR101690444B1 (ko) 가스 터빈 시스템, 제어 장치 및 가스 터빈 운전 방법
US8408007B2 (en) Integrated gasification combined cycle and operation control method thereof
KR20010007259A (ko) 가스 터빈 제어 방법
EP3176405B1 (en) Two-shaft gas turbine having steam injection mechanism
US7905082B2 (en) Method and system for increasing Modified Wobbe Index control range
CN107849981B (zh) 燃气轮机的控制装置及方法、存储燃气轮机的控制程序的存储介质、燃气轮机
EP0590829B1 (en) Apparatus and method of automatic NOx control for a gas turbine
US20070193249A1 (en) Air pressure control device in integrated gasification combined cycle system
KR20160003759A (ko) 압축기의 수정 회전수 산출방법, 압축기의 제어 방법, 및 이들 방법을 실행하는 장치
JP4929226B2 (ja) 一軸型複合サイクルプラントのガスタービン制御装置及びその方法
US9726085B2 (en) Method for controlling a gas turbine group
US20190128183A1 (en) Control device and control method of gasification combined cycle power plant, and gasification combined cycle power plant
JP6673733B2 (ja) 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント
CN102953837B (zh) 燃气轮机装置、其控制装置以及其控制方法
JP3811033B2 (ja) ガスタービン設備の制御装置
JP2004124851A (ja) ガスタービンプラントおよびガスタービンの燃料供給方法
WO2024112558A1 (en) Systems and methods for model-based control of gas turbine system considering fluid injection
CN113123870A (zh) 用于操作燃气涡轮组件的方法和燃气涡轮组件
Malakhov et al. Testing the type GT-10S (SGT 700) gas turbine units at the Sochi thermal power station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039750.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011862606

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003471

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013507037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE