WO2012132062A1 - ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン - Google Patents
ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン Download PDFInfo
- Publication number
- WO2012132062A1 WO2012132062A1 PCT/JP2011/072233 JP2011072233W WO2012132062A1 WO 2012132062 A1 WO2012132062 A1 WO 2012132062A1 JP 2011072233 W JP2011072233 W JP 2011072233W WO 2012132062 A1 WO2012132062 A1 WO 2012132062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- gas compressor
- compressor
- suction
- flow rate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000000446 fuel Substances 0.000 claims abstract description 102
- 238000012937 correction Methods 0.000 claims abstract description 65
- 238000013461 design Methods 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 590
- 239000000203 mixture Substances 0.000 claims description 50
- 238000011017 operating method Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012719 wet electrostatic precipitator Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/22—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/16—Control of working fluid flow
- F02C9/20—Control of working fluid flow by throttling; by adjusting vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0246—Surge control by varying geometry within the pumps, e.g. by adjusting vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/301—Pressure
- F05D2270/3015—Pressure differential pressure
Definitions
- the present invention relates to a gas fuel, such as a gas compressor for compressing gas fuel, which is used in a low calorie gas-fired gas turbine that uses low calorie gas such as ironworks byproduct gas (BFG) as fuel.
- the present invention relates to a gas compressor operation method applied to a gas compressor whose supply conditions vary, and a gas turbine operated by this operation method.
- gas turbines that are operated using low-calorie gas such as Blast Furnace Gas (BFG) that is generated in large quantities in the steelmaking process, that is, low-calorie that is operated using low-calorie gas as fuel.
- BFG Blast Furnace Gas
- gas turbines Gas-fired gas turbines
- a gas compressor that compresses low-pressure gas fuel and supplies it to a combustor is used. Therefore, in order to prevent surging of the gas compressor, for example, as indicated by a solid line in FIG. 1, the “pressure ratio” on the vertical axis with respect to the “variable vane opening” on the horizontal axis is the “restricted pressure ratio” in operation. Is provided.
- This limit pressure ratio is a value that defines an operational upper limit for preventing surging with respect to the pressure ratio of the absolute suction pressure and the absolute discharge pressure in the gas compressor. Therefore, in order to prevent surging of the gas compressor, the opening control of the variable stationary blade (suction flow rate adjusting mechanism) is adjusted so as not to exceed the limit pressure ratio, and operation control is performed to ensure a margin for surging limitation. ing.
- the operation is not possible to raise the pressure ratio any further because the pressure ratio matches the limit pressure ratio at point A ′ unless the variable vane opening is changed.
- the limit pressure ratio also increases, for example, from point A to point B in FIG.
- the operating range of the ratio is widened, and there is a margin in the safe driving range. Increasing the opening of the variable stationary blade in this way means that the gas turbine that receives the supply of the gas fuel boosted by the gas compressor performs the gas fuel bypass operation.
- the gas turbine that receives the supply of gas fuel whose pressure has been increased by the gas compressor is provided with an interlock for urgently stopping the operation in order to protect the equipment when the operation pressure ratio exceeds the limit pressure ratio.
- a compressor surge prevention system for a carbon dioxide recovery power plant as disclosed in Patent Document 1 is known as a conventional technique related to the prevention of compressor surging.
- the concentration ratio of the water vapor and carbon dioxide that is fluctuated by the flow rate adjustment valve is controlled.
- the power generation output also varies due to the calorie fluctuation of the generated blast furnace gas.
- calorie adjustment is performed by adding a heat reducing gas or a heat increasing gas according to the measurement result of the gas fuel calorie. Since stable combustion and blowout may occur, it is described that the system is stabilized by performing quick control that calculates calories of gas fuel in real time.
- the above-described low-calorie gas-fired gas turbine changes the temperature (suction gas temperature) of the gas fuel supplied to the gas compressor, or mixes a plurality of gas fuels having different compositions, for example.
- An unstable gas fuel whose gas fuel composition changes greatly may be used.
- the suction gas temperature (T), the gas constant (R), and the values that affect the limiting pressure ratio of surging The specific heat ratio ( ⁇ ) also varies. That is, when the gas fuel supply conditions such as the suction gas temperature and the gas fuel composition change, the characteristics of the limiting pressure ratio that prevents surging of the gas compressor also change.
- a conventional gas turbine operation method including a gas compressor that compresses gas fuel whose supply conditions fluctuate and supplies the gas fuel to a combustor, and in which the variable stator blades are provided in the gas compressor, is provided with gas turbine control and interfacing. Changes in gas fuel supply conditions are not considered in the lock. Accordingly, if the gas fuel supply conditions fluctuate greatly and the surging pressure limit ratio decreases, the surging of the gas compressor cannot be prevented, and in the worst case, the equipment may be damaged. Concerned.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas turbine operating method and gas capable of reliably preventing surging of a gas compressor in response to changes in gas fuel supply conditions. It is to provide a turbine.
- the operation method of the gas compressor according to the first aspect of the present invention is an operation method of the gas compressor in which the gas fuel whose supply conditions fluctuate are compressed and a suction flow rate adjusting mechanism is provided,
- the limiting pressure ratio for preventing the surging of the gas compressor by defining the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening degree of the suction flow rate adjusting mechanism was calculated according to the design conditions of the gas compressor.
- the reference limit pressure ratio is corrected by multiplying the reference correction pressure ratio by a first correction coefficient calculated according to the operating condition detection value of the gas compressor.
- the limit pressure for preventing the surging of the gas compressor by defining the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening degree of the suction flow rate adjusting mechanism.
- the ratio is corrected by multiplying the reference limit pressure ratio calculated according to the design condition of the gas compressor by a first correction coefficient calculated according to the operating condition detection value of the gas compressor.
- the first correction coefficient is calculated from a suction gas temperature of the gas compressor, and is expressed by a state equation.
- the correction reflecting the state of the gas fuel which fluctuates according to the temperature becomes possible.
- the first correction coefficient includes a reference rotational speed of the gas compressor as N 0 and a reference specific heat ratio of the suction gas of the gas compressor as ⁇ . 0 , the reference gas constant of the suction gas of the gas compressor is R 0 , the reference temperature of the suction gas of the gas compressor is T 0 , the actual rotational speed of the gas compressor is N, the suction gas of the gas compressor is
- the current specific heat ratio is ⁇
- the current gas constant of the suction gas of the gas compressor is R
- the current temperature of the suction gas of the gas compressor is T
- the corrected rotational speed ratio obtained by the following (Formula 1) It is preferable to be obtained from ( ⁇ ).
- the gas constant (R) and specific heat ratio ( ⁇ ) of the suction gas of the gas compressor are calculated from the gas composition measured on the inlet side of the gas compressor. Is preferred.
- the suction gas of the gas compressor is a gas in which a plurality of gases are mixed
- the mixed gas constant (R) and specific heat ratio ( ⁇ ) are obtained from the composition and flow rate ratio of each gas. .
- the gas constant (R) and specific heat ratio ( ⁇ ) of the suction gas of the gas compressor are calculated from the gas density or gas calorific value measured on the inlet side of the gas compressor. You may calculate by the gas composition calculated
- the suction flow rate of the gas compressor or the suction flow rate adjusting mechanism is further increased. It is preferable that the correction is performed by multiplying a predetermined second correction coefficient in accordance with the opening degree and the operation direction. As a result, the limit pressure ratio becomes a more optimized value, so that the occurrence of surging can be further ensured. Prevented operation becomes possible.
- the suction flow rate of the gas compressor is the actual suction flow rate of the gas compressor as Q (unit system is volume flow rate),
- the reference rotational speed is N 0
- the reference specific heat ratio of the suction gas of the gas compressor is ⁇ 0
- the reference gas constant of the suction gas of the gas compressor is R 0
- the reference temperature of the suction gas of the gas compressor is T 0
- the actual rotational speed of the gas compressor is N
- the current specific heat ratio of the suction gas of the gas compressor is ⁇
- the current gas constant of the suction gas of the gas compressor is R
- the current temperature of the suction gas of the gas compressor Is the corrected flow rate Q 0 (unit system is volumetric flow rate) calculated by the following (Equation 2)
- the actual suction flow rate of the gas compressor is G (unit system is mass flow rate)
- the reference rotation speed of the gas compressor is N 0
- the suction flow rate of the gas compressor for obtaining the limiting pressure ratio is the actual suction flow rate of the gas compressor, the suction gas temperature, the suction gas pressure, the gas constant (R) and the specific heat ratio ( ⁇ ) of the gas fuel. ) Is used, even if a gas whose gas composition fluctuates is used as the gas fuel, an appropriate limiting pressure ratio corrected according to the operating condition of the gas compressor is used. As a result, it is possible to perform an operation that reliably prevents the occurrence of surging.
- a gas turbine operating method includes a gas compressor that compresses gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and a suction flow rate adjusting mechanism is provided in the gas compressor.
- An operating method of the gas turbine provided, the operating method for preventing surging of the gas compressor by defining an upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjusting mechanism This is performed by the operation method of the gas compressor according to the first aspect of the present invention.
- the operation method for preventing surging of the gas compressor includes gas fuel bypass operation.
- an interlock is provided to urgently stop the operation when the operation pressure ratio of the gas compressor exceeds the limit pressure ratio.
- a gas turbine includes a gas compressor that compresses a gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and the gas compressor is provided with a suction flow rate adjusting mechanism.
- the gas turbine is configured to prevent the surging of the gas compressor by regulating the upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjusting mechanism. It is performed by the operation method of the gas compressor which concerns on an aspect.
- the operation upper limit of the pressure ratio with respect to the suction flow rate of the gas compressor or the opening of the suction flow rate adjustment mechanism Since the operation for preventing the surging of the gas compressor by defining the gas compressor is performed by the operating method of the gas compressor according to the first aspect of the present invention, the surging of the gas compressor that compresses the gas fuel whose supply conditions vary Can be reliably prevented and stable operation becomes possible.
- a gas turbine including a gas compressor that compresses a gas whose supply conditions fluctuate as gas fuel and supplies the compressed gas to a combustor, and the gas compressor is provided with variable stationary blades.
- the limiting pressure ratio of the gas compressor is corrected corresponding to the change in the gas fuel supply condition, and the limiting pressure ratio having a value optimized in accordance with the gas fuel supply condition is applied.
- the surging of the gas compressor is surely prevented and stable operation is possible, and therefore the surging of the gas compressor is possible even when using a low calorie gas fuel whose fuel composition changes. It is possible to reliably prevent the occurrence of equipment damage and the like with high reliability.
- the gas turbine 1 of the present embodiment shown in FIG. 4 is a plant that operates using low-calorie gas fuel, for example, when a plurality of gas fuels having different compositions are mixed with an ironworks byproduct gas (BFG). is there.
- BFG ironworks byproduct gas
- the gas turbine 1 is a device having a compressor Ca, a combustor (gas turbine combustor) 2 and a turbine Tu as main components.
- the compressor Ca takes in air and compresses it, and discharges high-pressure compressed air.
- the compressed air discharged from the compressor Ca is taken into the combustor 2 as combustion air, and burns with the gas fuel supplied to the combustor 2 to become high-temperature combustion gas.
- the combustion gas is taken into the turbine Tu, and the turbine Tu is driven by the combustion gas flowing between the moving blade and the stationary blade.
- the combustion gas that has driven the turbine Tu is used for generating steam by passing through the exhaust heat recovery boiler 3, for example, and then discharged to the atmosphere after performing the necessary exhaust gas treatment.
- a filter and a silencer are generally installed upstream of the compressor Ca that introduces outside air.
- the illustrated gas turbine 1 includes a coaxial generator 4 on the compressor Ca side.
- the generator 4 is driven together with the compressor Ca by the output of the turbine Tu to generate electric power.
- the illustrated gas turbine 1 includes a gas compressor Cg that compresses the gas fuel and supplies it to the combustor 2 in order to use low-calorie gas fuel. Since this gas compressor Cg is driven by the output of the turbine Tu like the compressor Ca for air and the generator 4, it is connected to the opposite side of the compressor Ca of the generator 4 via the power transmission mechanism 5.
- the gas compressor Cg may be driven by power independent from the gas turbine 1 and is not limited to the present embodiment.
- the gas compressor Cg includes a variable stationary blade 10 (suction flow rate adjusting mechanism) that can change the cross-sectional area of the gas fuel to be sucked.
- the variable stationary blade 10 has a function of preventing a stall phenomenon (compressor stall) called surging from occurring in the gas compressor by adjusting the opening degree (pressure loss).
- a gas obtained by introducing a gas such as BFG from the fuel gas pipe 6 and mixing coke oven gas (COG) as required is used as required.
- This gas fuel passes through the wet electrostatic precipitator 7 before being supplied to the gas compressor Cg.
- the wet electric machine dust collector 7 is a device that separates and collects dust in the gas.
- the main flow of the gas fuel compressed by the gas compressor Cg is supplied to the combustor 2 and burned, and a part thereof is returned to the fuel gas pipe 6 via the flow rate adjusting valve 8. That is, the amount of gas supplied to the combustor 2 is adjusted by adjusting the opening of the flow rate adjusting valve 8 for the gas fuel compressed by the gas compressor Cg.
- the gas fuel returned to the fuel gas pipe 6 is cooled by passing through the gas cooler 9.
- the gas turbine 1 that includes the gas compressor Cg that compresses the gas fuel whose supply conditions fluctuate and supplies the gas fuel to the combustor 2 and is provided with the variable stationary blades 10 is operated.
- the limit pressure ratio for preventing the surging of the gas compressor Cg by defining the operation upper limit of the pressure ratio with respect to the suction flow rate or the opening degree of the variable stationary blade 10 is designed for the gas compressor Cg.
- the reference limit pressure ratio calculated according to the conditions is corrected to a value obtained by multiplying the first correction coefficient calculated according to the operating condition detection value of the gas compressor Cg.
- the corrected limiting pressure ratio obtained by multiplying the reference limiting pressure ratio by the first correction coefficient will be referred to as “corrected limiting pressure ratio” in the following description.
- the first correction coefficient calculated according to the operation state detection value of the gas compressor Cg is, for example, a value calculated from the suction gas temperature T of the gas compressor Cg.
- the suction gas temperature T in this case is the temperature of the gas fuel detected in the vicinity of the inlet of the gas compressor Cg, and is therefore corrected so as to reflect the state (pressure and flow rate) of the gas fuel that varies depending on the temperature. Is to do. That is, the characteristic of the gas fuel varies according to the change in the suction gas temperature T as represented by the state equation, and thus correction that reflects the state of the gas fuel that is actually compressed becomes possible.
- the correction coefficient corresponding to the suction gas temperature T has a characteristic that changes so as to decrease as the suction gas temperature T on the horizontal axis increases, for example, as shown in FIG. Yes.
- Such characteristics of the correction coefficient are determined in advance with the correction coefficient of the design specification point as the reference 1 according to the specification of the gas compressor Cg.
- the post-correction limiting pressure ratio that is corrected with the limiting pressure ratio shown in FIG. 1 as the reference limiting pressure ratio has a limiting pressure ratio according to the change in the suction gas temperature T as indicated by an arrow C in the figure. Move up and down.
- the corrected limit pressure ratio when the suction gas temperature T changes in a direction higher than the reference design specification point is corrected in a direction (downward) to reduce the limit pressure ratio compared to the reference limit pressure ratio.
- the corrected limiting pressure ratio when the suction gas temperature T changes in a direction lower than the standard design specification point is corrected in the direction of increasing the limiting pressure ratio (upward) compared to the standard limiting pressure ratio. Is done. In other words, the limit pressure ratio becomes larger (higher) as the suction gas temperature T is lower, so that the range in which the gas compressor Cg can be stably operated without surging is widened. .
- the calculation of the first correction coefficient uses values calculated from the suction gas temperature T of the gas compressor Cg, the gas constant R of the gas fuel, and the specific heat ratio ⁇ .
- a corrected rotation speed ratio ⁇ shown in the following (Equation 1) is obtained, and the reference limiting pressure ratio is corrected using a correction coefficient corresponding to the corrected rotation speed ratio ⁇ . That is, as shown in FIG. 2B, the characteristic of the correction coefficient corresponding to the correction rotation speed ratio ⁇ is determined in advance, and the reference limiting pressure ratio is corrected using the correction coefficient corresponding to the calculated reference limiting pressure ratio.
- N 0 is the reference rotational speed of the gas compressor Cg
- ⁇ 0 is the reference specific heat ratio of the gas fuel
- R 0 is the reference gas constant of the gas fuel
- T 0 is the reference temperature of the gas fuel (suction gas temperature).
- N is the actual rotation speed (current rotation speed) of the gas compressor Cg
- ⁇ is the current specific heat ratio of the gas fuel
- R is the current gas constant of the gas fuel
- T is the current temperature of the gas fuel (suction gas temperature).
- Equation 1 regarding the calculation of the corrected rotation speed ratio ⁇ , the rotation speed ratio (N / N 0 ) in the gas compressor Cg, the ratio of the specific heat ratio in gas fuel ( ⁇ / ⁇ 0 ), gas It is also possible to calculate as a constant ratio (R / R 0 ) and a gas temperature ratio (T / T 0 ).
- the rotation speed ratio (N / N 0 ) of the gas compressor Cg, the gas compressor Cg At least one of the ratio of specific heat ratio ( ⁇ / ⁇ 0 ), the ratio of gas constant (R / R 0 ) and the ratio of gas temperature (T / T 0 ) measured at the inlet side is used.
- the corrected rotation speed ratio ⁇ can be calculated.
- the calculation of the first correction coefficient described above is usually the most influential of the gas temperature, specific heat ratio, gas constant, and actual rotation speed of the gas compressor Cg as the operating condition detection value of the gas compressor Cg.
- the specific heat ratio and gas constant, and the actual rotational speed In addition to the high gas temperature, it is desirable to add one or both of the specific heat ratio and gas constant, and the actual rotational speed. If the number of operating condition detection values used for calculating the first correction coefficient is large, a corrected limiting pressure ratio that reflects the actual operating condition including the composition of the gas fuel is set in detail.
- the ratio correction can be further optimized to prevent surging.
- the correction coefficient corresponding to the corrected rotational speed ratio ⁇ thus calculated has a characteristic that changes so as to increase as the corrected rotational speed ratio ⁇ on the horizontal axis increases. ing. That is, when the corrected rotation speed ratio ⁇ becomes larger than the reference value corresponding to the design point, the correction coefficient becomes a large value. Conversely, when the corrected rotation speed ratio ⁇ becomes smaller than the reference value, the correction coefficient becomes a small value. Accordingly, the post-correction limiting pressure ratio obtained by multiplying the reference limiting pressure ratio by the correction coefficient described above is such that the limiting pressure ratio becomes small when the correction coefficient is 1 or less of the reference value, for example, as shown in FIG. On the contrary, when the correction coefficient becomes 1 or more of the reference value, it moves upward so that the limit pressure ratio becomes large.
- the corrected rotational speed ratio ⁇ is used for calculating the corrected limiting pressure ratio
- a gas fuel whose gas composition varies greatly is used, such as when a plurality of gas fuels having different compositions are mixed.
- the gas compressor Cg is operated with the limited pressure ratio measured based on the specific heat ratio ⁇ and gas constant R measured on the inlet side and corrected based on the gas constant R, even if the composition of the gas fuel fluctuates A stable operation that can always reliably prevent the occurrence of surging is possible by setting an optimized limit pressure ratio.
- the gas composition of the gas fuel compressed by the gas compressor Cg is preferably measured at the inlet side of the gas compressor Cg.
- the gas fuel is a mixed gas containing a plurality of gas components
- the composition and flow ratio of each gas before being mixed are obtained.
- the gas constant R and the specific heat ratio ⁇ of the mixed gas are obtained and used to calculate the first correction coefficient.
- the gas composition of the gas fuel can be measured using a gas analyzer (gas chromatograph) capable of directly analyzing the gas composition.
- a gas analyzer gas chromatograph
- the gas density is measured by a gas density meter.
- the gas composition can be estimated by conversion. Specifically, as shown in Table 1, it is assumed that the density of gas A is 1.314 kg / m 3 N and the density of gas B is 1.269 kg / m 3 N, and the respective compositions are known. At this time, if the measured density of the gas fuel is 1.29 kg / m 3 N, the estimated composition can be calculated by interpolation from the gas compositions of the gas A and the gas B.
- the gas calorific value can be measured with a gas calorimeter and converted from the calorific value to estimate the gas composition.
- the lower heating value of gas A is 7.25 MJ / m 3 N
- the lower heating value of gas B is 7.31 MJ / m 3 N.
- the estimated composition can be calculated by interpolation from the gas compositions of the gas A and the gas B.
- gas chromatographs are expensive, the cost of measuring instruments can be reduced by using a relatively inexpensive gas density meter or gas calorimeter.
- the gas composition is measured for a gas component whose composition varies, or the gas density or the calorific value of the gas is measured, and the measured density or calorific value is measured.
- the composition may be estimated from Thereby, since it becomes unnecessary to measure the gas component whose composition does not vary, the cost of the measuring instrument necessary for measuring the gas composition can be reduced.
- the corrected limit pressure ratio described above that is, the corrected limit pressure ratio obtained by multiplying the reference limit pressure ratio by the first correction coefficient depends on the suction flow rate or the opening degree and the operation direction of the variable stationary blade 10. It is desirable to further correct by multiplying by a predetermined second correction coefficient. That is, the corrected limit pressure ratio is a value that is further optimized in accordance with the actual driving situation if a value corrected by multiplying the reference limit pressure ratio by the first correction coefficient and the second correction coefficient is adopted. Therefore, it is possible to perform an operation that more reliably prevents the occurrence of surging.
- the second correction coefficient described above varies depending on the specifications of the gas compressor Cg. For example, the value of the first correction coefficient decreases as the suction flow rate or the opening of the variable stationary blade 10 increases. That is, it is a value that is appropriately set according to various conditions such as the gas fuel, the gas compressor Cg, and the gas turbine 1 such as setting a second correction coefficient having a value smaller than 1.
- suction flow rate of the gas compressor for obtaining the limit pressure ratio may be a corrected flow rate obtained by the following (Equation 2).
- Q0 is the corrected flow rate of the gas compressor Cg
- the unit system is the volume flow rate.
- Q is an actual suction flow rate (current suction flow rate) of the gas compressor Cg
- a unit system is a volume flow rate.
- Other characters are the same as in (Formula 1).
- the unit system of the corrected flow rate may use the definition according to the following (Equation 3) as the mass flow rate.
- G0 is the corrected flow rate of the gas compressor Cg
- the unit system is the mass flow rate.
- P0 is the reference pressure (suction gas pressure) of the gas fuel.
- G is the actual suction flow rate (current suction flow rate) of the gas compressor Cg
- the unit system is the mass flow rate.
- P is the current pressure of gas fuel (suction gas pressure).
- the suction flow rate for obtaining the limit pressure ratio As the suction flow rate for obtaining the limit pressure ratio, the actual suction flow rate, the suction gas temperature, the suction gas pressure, the gas constant (R) and the specific heat ratio of the gas fuel are obtained by the above (Formula 2) or (Formula 3). Since the corrected flow rate calculated by ( ⁇ ) is used, an appropriate limiting pressure ratio corrected according to the operating condition of the gas compressor is used even when using gas fuel whose gas composition varies. As a result, it is possible to perform an operation that reliably prevents the occurrence of surging.
- the limiting pressure ratio for preventing the surging of the gas compressor by defining the operation upper limit of the pressure ratio with respect to the suction flow rate or the opening degree of the variable stationary blade 10 is: Since the reference limiting pressure ratio calculated according to the design condition of the gas compressor Cg is corrected by multiplying by the first correction coefficient calculated according to the operating condition detection value of the gas compressor Cg, the operation of the gas compressor is performed. An appropriate limit pressure ratio corrected in accordance with the situation can be set, and accordingly, an operation that reliably prevents the occurrence of surging becomes possible.
- an appropriate limit pressure ratio of the gas compressor Cg corrected according to the operation status of the gas compressor Cg can be set, so this limit pressure ratio is monitored.
- an interlock for emergency stop of operation can be provided to protect the equipment.
- the gas turbine 1 which employ
- the correction reflecting the fluctuating gas fuel supply condition is set, and the optimized post-correction limit pressure ratio is set to reliably prevent the surging of the gas compressor Cg, thereby enabling stable operation to be continued.
- limiting pressure ratio which is an operation
- the gas turbine 1 of the present embodiment optimizes the corrected limiting pressure ratio by applying the corrected rotation speed ratio ⁇ to the correction when setting the limiting pressure ratio for preventing surging, so that the suction of the gas compressor Cg Surging can be reliably prevented even when the gas composition of the gas fuel and the actual rotational speed of the gas compressor Cg change as well as the gas temperature.
- the equipment such as the gas compressor Cg constituting the gas turbine 1 is prevented from being damaged due to the surging of the gas compressor Cg accompanying the change in the gas fuel composition and the decrease in the actual rotational speed, and the surging is prevented. It is also possible to expand the range that can be stably operated without causing it. In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Geometry (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
Description
このようにして可変静翼の開度を増すことは、ガス圧縮機により昇圧されたガス燃料の供給を受けるガスタービンが、ガス燃料のバイパス運用を行うことを意味している。
上述した吸込ガス温度やガス燃料組成のように、ガス燃料の供給条件に大きな変化が生じると、サージングの制限圧力比に影響を及ぼす値である吸込ガス温度(T)、ガス定数(R)及び比熱比(κ)も変動する。すなわち、吸込ガス温度やガス燃料組成のようなガス燃料の供給条件が変動することにより、ガス圧縮機のサージングを防止する制限圧力比の特性も変化することになる。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、ガス燃料供給条件の変化に対応してガス圧縮機のサージングを確実に防止できるガスタービン運転方法及びガスタービンを提供することにある。
本発明の第一の態様に係るガス圧縮機の運転方法は、供給条件が変動するガス燃料を圧縮し、吸込流量調整機構が設けられている場合のガス圧縮機の運転方法であって、前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する制限圧力比が、前記ガス圧縮機の設計条件により算出された基準制限圧力比に対し、前記ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正されるものである。
このようなガス圧縮機の運転方法においては、前記第1補正係数の算出に、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)を加えることが好ましい。すなわち、第1補正係数は、ガス圧縮機の吸込ガス温度と、ガス定数(R)及び比熱比(κ)とにより算出されるので、ガス組成が変動するようなガスをガス燃料として使用する場合であっても、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
さらに、上記のガス圧縮機の運転方法においては、前記第1補正係数の算出に、前記ガス圧縮機の実回転数を加えることが好ましく、これにより、制限圧力比の補正をより一層最適化してサージングの発生を防止することができる。
この場合、前記ガス圧縮機の吸込ガスが複数のガスを混合したガスの場合には、各ガスの組成及び流量比から混合後のガス定数(R)及び比熱比(κ)を求めて使用する。
この場合、制限圧力比を求めるためのガス圧縮機の吸込流量を、ガス圧縮機の実吸込流量と、吸込ガス温度と、吸込ガス圧力と、ガス燃料のガス定数(R)及び比熱比(κ)とにより算出された修正流量を用いるので、ガス組成が変動するようなガスをガス燃料として使用する場合であっても、ガス圧縮機の運転状況に応じて補正した適切な制限圧力比を用いることで、サージングの発生を確実に防止した運転が可能になる。
図4に示す本実施形態のガスタービン1は、たとえば製鉄所副生ガス(BFG)や組成の異なる複数のガス燃料を混合する場合ように、低カロリーのガス燃料を使用して運転するプラントである。
圧縮機Caは空気を取り込んで圧縮し、高圧の圧縮空気を吐出する。圧縮機Caから吐出された圧縮空気は、燃焼用空気として燃焼器2に取り入れられ、燃焼器2に供給されたガス燃料とともに燃焼して高温の燃焼ガスとなる。この燃焼ガスはタービンTuに取り入れられ、動翼及び静翼間を燃焼ガスが流れることによりタービンTuを駆動する。
さて、図示のガスタービン1は、低カロリーのガス燃料を使用するため、ガス燃料を圧縮して燃焼器2に供給するガス圧縮機Cgを備えている。このガス圧縮機Cgは、空気用の圧縮機Ca及び発電機4と同様にタービンTuの出力で駆動されるため、発電機4の圧縮機Caと反対側に、動力伝達機構5を介して連結されている。なお、ガス圧縮機Cgはガスタービン1とは独立した動力により駆動される場合もあり、本実施例に限定されるものではない。
ガス圧縮機Cgで圧縮するガス燃料は、たとえば燃料ガス配管6からBFG等のガスを導入し、必要に応じてコークス炉ガス(COG)を混合したガスが使用される。このガス燃料は、ガス圧縮機Cgに供給する前に湿式電気集塵機7を通過させる。湿式電機集塵機7は、ガス中のダストを分離させて捕集する装置である。
このように、基準制限圧力比に第1補正係数を乗じて得られる補正後の制限圧力比は、以下の説明において「補正後制限圧力比」と呼ぶことにする。
具体的には、下記の(数式1)に示す修正回転数比αを求め、この修正回転数比αに対応する補正係数を使用して基準制限圧力比を補正する。すなわち、図2(b)に示すように、補正回転数比αに対応する補正係数の特性を予め定めておき、算出した基準制限圧力比に対応する補正係数を用いて基準制限圧力比を補正する。
一方、Nはガス圧縮機Cgの実回転数(現状回転数)、κはガス燃料の現状比熱比、Rはガス燃料の現状ガス定数、Tはガス燃料の現状温度(吸込ガス温度)であり、いずれもガス圧縮機Cgが実際に運転されている時点における測定値である。この場合、ガス燃料の現状比熱比κ、ガス燃料の現状ガス定数R及びガス燃料の現状温度Tについては、ガス圧縮機Cgの入口側(吸入側)で計測した実測値を使用する。
従って、上述した補正係数を基準制限圧力比に乗じて得られる補正後制限圧力比は、たとえば図3に示すように、補正係数が基準値の1以下となる場合、制限圧力比が小さくなるように下方へ移動し、反対に、補正係数が基準値の1以上となる場合、制限圧力比が大きくなるように上方へ移動する。
一般に、ガスクロマトグラフは高価であるため、比較的安価なガス密度計またはガス発熱量計を用いることにより、計測器のコストを低減することができる。
なお、上述した第2補正係数は、ガス圧縮機Cgの仕様に応じて異なるものであり、たとえば吸込流量または可変静翼10の開度が増すにつれて第1補正係数の値が小さくなるような値、すなわち1より小さい値の第2補正係数を設定するなど、ガス燃料、ガス圧縮機Cg及びガスタービン1等の諸条件に応じて適宜設定される値である。
また、仮にガス圧縮機Cgの運転圧力比が、この制限圧力比を超過した場合に、機器を保護するため、運転を緊急停止するインターロックを設けることもできる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
2 燃焼器
4 発電機
10 可変静翼(吸込流量調整機構)
Ca 圧縮機
Tu タービン
Cg ガス圧縮機
Claims (15)
- 供給条件が変動するガスを圧縮し、吸込流量調整機構を備えるガス圧縮機の運転方法であって、
前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する制限圧力比が、前記ガス圧縮機の設計条件により算出された基準制限圧力比に対し、前記ガス圧縮機の運転状況検出値に応じて算出される第1補正係数を乗じて補正されるガス圧縮機の運転方法。 - 前記第1補正係数が、前記ガス圧縮機の吸込ガス温度により算出される請求項1に記載のガス圧縮機の運転方法。
- 前記第1補正係数の算出に、前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)を加えた請求項2に記載のガス圧縮機の運転方法。
- 前記第1補正係数の算出に、前記ガス圧縮機の実回転数を加えた請求項2または3に記載のガス圧縮機の運転方法。
- 前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)は、前記ガス圧縮機の入口側で計測されたガス組成により算出される請求項3または5に記載のガス圧縮機の運転方法。
- 前記ガス圧縮機の吸込ガスのガス定数(R)及び比熱比(κ)は、前記ガス圧縮機の入口側で計測されたガス密度またはガス発熱量から換算して求めたガス組成により算出される請求項3または5に記載のガス圧縮機の運転方法。
- 前記ガス圧縮機の吸込ガスが複数のガスを混合したガスの場合には、各ガスの組成及び流量比から混合後のガス定数(R)及び比熱比(κ)を求める請求項3または5に記載のガス圧縮機の運転方法。
- 複数のガスのうち少なくとも一つのガスの組成を、ガス密度またはガス発熱量から換算して求める請求項8に記載のガス圧縮機の運転方法。
- 前記ガス圧縮機の吸込流量は、前記ガス圧縮機の実吸込流量をQ(単位系は体積流量)、前記ガス圧縮機の基準回転数をN0、前記ガス圧縮機の吸込ガスの基準比熱比をκ0、前記ガス圧縮機の吸込ガスの基準ガス定数をR0、前記ガス圧縮機の吸込ガスの基準温度をT0、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式2)により求められる修正流量Q0(単位系は体積流量)であるか、または、前記ガス圧縮機の実吸込流量をG(単位系は質量流量)、前記ガス圧縮機の基準回転数をN0、前記ガス圧縮機の吸込ガスの基準比熱比をκ0、前記ガス圧縮機の吸込ガスの基準ガス定数をR0、前記ガス圧縮機の吸込ガスの基準温度をT0、前記ガス圧縮機の実回転数をN、前記ガス圧縮機の吸込ガスの現状比熱比をκ、前記ガス圧縮機の吸込ガスの現状ガス定数をR、前記ガス圧縮機の吸込ガスの現状温度をT、としたときに、下記の(数式3)により求められる修正流量G0(単位系は質量流量)である請求項1から9のいずれか一項に記載のガス圧縮機の運転方法。
- 前記制限圧力比は、前記第1補正係数を乗じて補正後に、さらに前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度及び動作方向に応じて予め定めた第2補正係数を乗じて補正される請求項1から10のいずれか一項に記載のガス圧縮機の運転方法。
- 供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンの運転方法であって
前記ガス圧縮機の吸込流量または前記吸込流量調整機構の開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転方法が、請求項1から11のいずれか一項に記載されたガス圧縮機の運転方法により行われるガスタービンの運転方法。 - 前記ガス圧縮機のサージングを防止する運転方法が、ガス燃料のバイパス運用を含む請求項12に記載のガスタービンの運転方法。
- 前記ガス圧縮機の運転圧力比が制限圧力比を超過した場合に、運転を緊急停止するインターロックを備える請求項12または13に記載のガスタービンの運転方法。
- 供給条件が変動するガスをガス燃料として圧縮して燃焼器に供給するガス圧縮機を備え、該ガス圧縮機に吸込流量調整機構が設けられているガスタービンであって、
前記ガス圧縮機の吸込流量または前記吸込流量調整機構開度に対する圧力比の運用上限を規定して前記ガス圧縮機のサージングを防止する運転が、請求項1から11のいずれか一項に記載されたガス圧縮機の運転方法により行われるガスタービン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507037A JP5276756B2 (ja) | 2011-03-31 | 2011-09-28 | ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン |
EP11862606.8A EP2693059A4 (en) | 2011-03-31 | 2011-09-28 | METHOD FOR CONTROLLING GAS COMPRESSOR, AND GAS TURBINE HAVING GAS COMPRESSOR |
CN201180039750.4A CN103080560B (zh) | 2011-03-31 | 2011-09-28 | 气体压缩机的运转方法及具备气体压缩机的燃气涡轮 |
KR1020137003471A KR101298828B1 (ko) | 2011-03-31 | 2011-09-28 | 가스 압축기의 운전 방법 및 가스 압축기를 구비하는 가스 터빈 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-081101 | 2011-03-31 | ||
JP2011081101 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132062A1 true WO2012132062A1 (ja) | 2012-10-04 |
Family
ID=46925438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072233 WO2012132062A1 (ja) | 2011-03-31 | 2011-09-28 | ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン |
Country Status (6)
Country | Link |
---|---|
US (1) | US8756938B2 (ja) |
EP (1) | EP2693059A4 (ja) |
JP (1) | JP5276756B2 (ja) |
KR (1) | KR101298828B1 (ja) |
CN (1) | CN103080560B (ja) |
WO (1) | WO2012132062A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052542A (ja) * | 2010-08-31 | 2012-03-15 | Nuovo Pignone Spa | 圧縮機内のサージを検出しサージマージンを再配置するデバイスおよび方法 |
WO2014208668A1 (ja) * | 2013-06-27 | 2014-12-31 | 三菱日立パワーシステムズ株式会社 | 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置 |
JP2017180134A (ja) * | 2016-03-28 | 2017-10-05 | 三菱日立パワーシステムズ株式会社 | 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント |
KR20230175302A (ko) | 2021-08-30 | 2023-12-29 | 미츠비시 파워 가부시키가이샤 | 가스 터빈의 제어 장치, 가스 터빈 설비, 가스 터빈의 제어 방법 및 가스 터빈의 제어 프로그램을 기록한 컴퓨터로 독취 가능한 기록 매체 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2738372B1 (en) * | 2012-11-29 | 2018-02-28 | Ansaldo Energia Switzerland AG | Gas turbine temperature measurement |
CN105829730B (zh) * | 2013-05-29 | 2018-09-21 | 西门子公司 | 用于运行压缩机的方法和具有压缩机的装置 |
JP6313718B2 (ja) * | 2015-02-19 | 2018-04-18 | 三菱日立パワーシステムズ株式会社 | ガスタービンの設計及び製造方法 |
JP2016205237A (ja) * | 2015-04-23 | 2016-12-08 | 株式会社日立製作所 | 圧縮機の性能予測装置及び性能予測方法 |
KR102488575B1 (ko) * | 2016-03-11 | 2023-01-16 | 한화파워시스템 주식회사 | 압축기 제어 시스템 및 압축기의 제어 방법 |
US10036325B2 (en) * | 2016-03-30 | 2018-07-31 | General Electric Company | Variable flow compressor of a gas turbine |
US11655757B2 (en) * | 2021-07-30 | 2023-05-23 | Rolls-Royce North American Technologies Inc. | Modular multistage compressor system for gas turbine engines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000337109A (ja) | 1999-05-27 | 2000-12-05 | Mitsubishi Heavy Ind Ltd | 二酸化炭素回収型発電プラントの圧縮機サージ防止システム |
JP2004190633A (ja) | 2002-12-13 | 2004-07-08 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃料ガスカロリー推定装置 |
JP2005146927A (ja) * | 2003-11-12 | 2005-06-09 | Mitsubishi Heavy Ind Ltd | 圧縮機の制御装置、タービンシステム、圧縮機の制御方法 |
JP2007040171A (ja) * | 2005-08-03 | 2007-02-15 | Mitsubishi Heavy Ind Ltd | ガスタービンの入口案内翼制御装置 |
JP2007239696A (ja) * | 2006-03-10 | 2007-09-20 | Mitsubishi Heavy Ind Ltd | 圧縮機の制御装置、圧縮機装置及び圧縮機装置の制御方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4156578A (en) * | 1977-08-02 | 1979-05-29 | Agar Instrumentation Incorporated | Control of centrifugal compressors |
US4581888A (en) * | 1983-12-27 | 1986-04-15 | United Technologies Corporation | Compressor rotating stall detection and warning system |
DE3544822A1 (de) * | 1985-12-18 | 1987-06-19 | Gutehoffnungshuette Man | Verfahren zur pumpgrenzregelung von turbokomporessoren |
JPH0816479B2 (ja) | 1987-06-23 | 1996-02-21 | 株式会社日立製作所 | 圧縮機のサ−ジング防止装置 |
US5508943A (en) * | 1994-04-07 | 1996-04-16 | Compressor Controls Corporation | Method and apparatus for measuring the distance of a turbocompressor's operating point to the surge limit interface |
US5908462A (en) * | 1996-12-06 | 1999-06-01 | Compressor Controls Corporation | Method and apparatus for antisurge control of turbocompressors having surge limit lines with small slopes |
US7210895B2 (en) | 2002-08-12 | 2007-05-01 | Hitachi Industries Co., Ltd. | Turbo compressor and method of operating the turbo compressor |
DE10304063A1 (de) * | 2003-01-31 | 2004-08-12 | Man Turbomaschinen Ag | Verfahren zum sicheren Betreiben von Turbokompressoren mit einer Pumpgrenzregelung und einem Pumpgrenzregelventil |
US7762084B2 (en) * | 2004-11-12 | 2010-07-27 | Rolls-Royce Canada, Ltd. | System and method for controlling the working line position in a gas turbine engine compressor |
EP1659294B1 (en) * | 2004-11-17 | 2017-01-11 | Mitsubishi Heavy Industries Compressor Corporation | Compressor control unit and gas turbine power plant including this unit |
KR100644418B1 (ko) * | 2005-02-11 | 2006-11-10 | 가부시키가이샤 히다치 인더스트리즈 | 터보압축기 및 그 운전방법 |
DE102009003978A1 (de) * | 2009-01-07 | 2010-07-08 | Man Turbo Ag | Verfahren zur Bestimmung einer Eigenschaft eines Gases mittels einer Strömungsmaschine |
ES2571212T3 (es) * | 2009-07-21 | 2016-05-24 | Alstom Technology Ltd | Método para el control de motores de turbina de gas |
-
2011
- 2011-09-28 CN CN201180039750.4A patent/CN103080560B/zh active Active
- 2011-09-28 EP EP11862606.8A patent/EP2693059A4/en not_active Withdrawn
- 2011-09-28 WO PCT/JP2011/072233 patent/WO2012132062A1/ja active Application Filing
- 2011-09-28 KR KR1020137003471A patent/KR101298828B1/ko active IP Right Grant
- 2011-09-28 JP JP2013507037A patent/JP5276756B2/ja active Active
- 2011-10-07 US US13/268,763 patent/US8756938B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000337109A (ja) | 1999-05-27 | 2000-12-05 | Mitsubishi Heavy Ind Ltd | 二酸化炭素回収型発電プラントの圧縮機サージ防止システム |
JP2004190633A (ja) | 2002-12-13 | 2004-07-08 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃料ガスカロリー推定装置 |
JP2005146927A (ja) * | 2003-11-12 | 2005-06-09 | Mitsubishi Heavy Ind Ltd | 圧縮機の制御装置、タービンシステム、圧縮機の制御方法 |
JP2007040171A (ja) * | 2005-08-03 | 2007-02-15 | Mitsubishi Heavy Ind Ltd | ガスタービンの入口案内翼制御装置 |
JP2007239696A (ja) * | 2006-03-10 | 2007-09-20 | Mitsubishi Heavy Ind Ltd | 圧縮機の制御装置、圧縮機装置及び圧縮機装置の制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2693059A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012052542A (ja) * | 2010-08-31 | 2012-03-15 | Nuovo Pignone Spa | 圧縮機内のサージを検出しサージマージンを再配置するデバイスおよび方法 |
WO2014208668A1 (ja) * | 2013-06-27 | 2014-12-31 | 三菱日立パワーシステムズ株式会社 | 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置 |
JP2015010506A (ja) * | 2013-06-27 | 2015-01-19 | 三菱重工業株式会社 | 圧縮機の修正回転数算出方法、圧縮機の制御方法、及びこれらの方法を実行する装置 |
CN105247222A (zh) * | 2013-06-27 | 2016-01-13 | 三菱日立电力系统株式会社 | 压缩机的校正转数的计算方法、压缩机的控制方法,以及执行这些方法的装置 |
US10260513B2 (en) | 2013-06-27 | 2019-04-16 | Mitsubishi Hitachi Power Systems, Ltd. | Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity |
DE112014003023B4 (de) | 2013-06-27 | 2023-05-04 | Mitsubishi Heavy Industries, Ltd. | Kompressorsteuervorrichtung, Kompressionsausrüstung, Kompressorsteuerungsverfahren und Kompressionsverschlechterungsbestimmungsverfahren |
JP2017180134A (ja) * | 2016-03-28 | 2017-10-05 | 三菱日立パワーシステムズ株式会社 | 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント |
KR20230175302A (ko) | 2021-08-30 | 2023-12-29 | 미츠비시 파워 가부시키가이샤 | 가스 터빈의 제어 장치, 가스 터빈 설비, 가스 터빈의 제어 방법 및 가스 터빈의 제어 프로그램을 기록한 컴퓨터로 독취 가능한 기록 매체 |
Also Published As
Publication number | Publication date |
---|---|
US20120247115A1 (en) | 2012-10-04 |
CN103080560A (zh) | 2013-05-01 |
EP2693059A4 (en) | 2014-11-12 |
US8756938B2 (en) | 2014-06-24 |
CN103080560B (zh) | 2014-12-10 |
JPWO2012132062A1 (ja) | 2014-07-24 |
EP2693059A1 (en) | 2014-02-05 |
KR101298828B1 (ko) | 2013-08-23 |
KR20130020936A (ko) | 2013-03-04 |
JP5276756B2 (ja) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276756B2 (ja) | ガス圧縮機の運転方法及びガス圧縮機を備えるガスタービン | |
US10900420B2 (en) | Gas turbine combustor diagnostic system and method | |
JP4592513B2 (ja) | ガスタービン制御装置、及びガスタービンシステム | |
US6364602B1 (en) | Method of air-flow measurement and active operating limit line management for compressor surge avoidance | |
KR101690444B1 (ko) | 가스 터빈 시스템, 제어 장치 및 가스 터빈 운전 방법 | |
US8408007B2 (en) | Integrated gasification combined cycle and operation control method thereof | |
KR20010007259A (ko) | 가스 터빈 제어 방법 | |
EP3176405B1 (en) | Two-shaft gas turbine having steam injection mechanism | |
US7905082B2 (en) | Method and system for increasing Modified Wobbe Index control range | |
CN107849981B (zh) | 燃气轮机的控制装置及方法、存储燃气轮机的控制程序的存储介质、燃气轮机 | |
EP0590829B1 (en) | Apparatus and method of automatic NOx control for a gas turbine | |
US20070193249A1 (en) | Air pressure control device in integrated gasification combined cycle system | |
KR20160003759A (ko) | 압축기의 수정 회전수 산출방법, 압축기의 제어 방법, 및 이들 방법을 실행하는 장치 | |
JP4929226B2 (ja) | 一軸型複合サイクルプラントのガスタービン制御装置及びその方法 | |
US9726085B2 (en) | Method for controlling a gas turbine group | |
US20190128183A1 (en) | Control device and control method of gasification combined cycle power plant, and gasification combined cycle power plant | |
JP6673733B2 (ja) | 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント | |
CN102953837B (zh) | 燃气轮机装置、其控制装置以及其控制方法 | |
JP3811033B2 (ja) | ガスタービン設備の制御装置 | |
JP2004124851A (ja) | ガスタービンプラントおよびガスタービンの燃料供給方法 | |
WO2024112558A1 (en) | Systems and methods for model-based control of gas turbine system considering fluid injection | |
CN113123870A (zh) | 用于操作燃气涡轮组件的方法和燃气涡轮组件 | |
Malakhov et al. | Testing the type GT-10S (SGT 700) gas turbine units at the Sochi thermal power station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180039750.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862606 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011862606 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137003471 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013507037 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |