WO2012131747A1 - 光電変換素子の製造方法及び光電変換素子 - Google Patents

光電変換素子の製造方法及び光電変換素子 Download PDF

Info

Publication number
WO2012131747A1
WO2012131747A1 PCT/JP2011/001759 JP2011001759W WO2012131747A1 WO 2012131747 A1 WO2012131747 A1 WO 2012131747A1 JP 2011001759 W JP2011001759 W JP 2011001759W WO 2012131747 A1 WO2012131747 A1 WO 2012131747A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
organic semiconductor
type organic
conversion element
poly
Prior art date
Application number
PCT/JP2011/001759
Other languages
English (en)
French (fr)
Inventor
百瀬 悟
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013506815A priority Critical patent/JP5673799B2/ja
Priority to PCT/JP2011/001759 priority patent/WO2012131747A1/ja
Publication of WO2012131747A1 publication Critical patent/WO2012131747A1/ja
Priority to US13/946,126 priority patent/US20130298986A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element and a photoelectric conversion element.
  • the photoelectric conversion element includes a transparent electrode, a hole injection layer on the transparent electrode, a bulk heterojunction photoelectric conversion film on the hole injection layer, and a metal electrode made of metal such as aluminum on the photoelectric conversion film.
  • the bulk heterojunction photoelectric conversion film is an organic thin film formed by combining a P-type organic semiconductor polymer and an n-type organic semiconductor such as fullerene.
  • the bulk hetero photoelectric conversion film is formed by applying a liquid mixture of a P-type organic semiconductor polymer and an n-type organic semiconductor such as fullerene to a base and drying it.
  • the P-type organic semiconductor polymer and the n-type organic semiconductor such as fullerene spontaneously aggregate and phase-separate, and after drying, a small region of the P-type organic semiconductor polymer and N Adjacent to a small region of the type organic semiconductor.
  • a PN junction having a large specific surface area is formed in the photoelectric conversion film (US Pat. No. 5,331,183).
  • the hole injection layer is a layer for facilitating transfer of electrons or holes between the bulk heterojunction photoelectric conversion film and the transparent electrode.
  • the aggregated N-type organic semiconductor occupies the gap between the aggregated P-type semiconductor polymers in the photoelectric conversion film, the aggregated N-type organic semiconductor and the hole injection layer Will come into contact.
  • a leak current is generated due to the combination of holes inside the hole injection layer and electrons generated from the N-type organic semiconductor. Therefore, when the amount of received light decreases and the number of carriers decreases, the leakage current increases relatively, which causes the open voltage Voc and the fill factor FF of the organic solar cell to decrease.
  • carrier (electron or hole) conduction between the agglomerated semiconductor polymers is performed by carrier hopping at the contact point between the agglomerated same-type semiconductor polymers.
  • An object of the present invention is to provide a method for producing a photoelectric conversion element including a photoelectric conversion film made of an organic thin film having a high open circuit voltage Voc or a fill factor FF in a low light quantity region, and a photoelectric conversion element.
  • a first P-type organic semiconductor and an oxidizing agent capable of oxidizing the first P-type organic semiconductor are formed on the transparent substrate and the transparent electrode disposed on the transparent substrate.
  • a step of forming a hole injection layer by applying and drying a solvent containing the solution and oxidizing the first P-type organic semiconductor with the oxidizing agent; and a solvent containing the N-type organic semiconductor and the second P-type organic semiconductor on the hole injection layer.
  • a method for producing a photoelectric conversion element comprising: a step of applying and drying a film to form a photoelectric conversion layer; and a step of forming a metal layer on the photoelectric conversion layer and forming a metal electrode.
  • a photoelectric conversion element including a photoelectric conversion film made of an organic thin film having a high open circuit voltage Voc or a high fill factor FF in a low light quantity region.
  • FIG. 1A and FIG. 1B are cross-sectional views of an element illustrating a manufacturing process of a photoelectric conversion element in the present embodiment.
  • 2A and 2B are cross-sectional views of the element showing the manufacturing process of the photoelectric conversion element in the present embodiment.
  • 3A and 3B are cross-sectional views of the device showing the manufacturing process of the photoelectric conversion device in the present embodiment.
  • FIG. 4 is a cross-sectional view of an element showing a manufacturing process of the photoelectric conversion element in the present embodiment.
  • FIG. 5 shows chemical formulas of poly-3-hexylthiophene (P3HT) 60 and PCBM (phenyl-C61-Butyric-Acid-MethylEster) 50.
  • P3HT poly-3-hexylthiophene
  • PCBM phenyl-C61-Butyric-Acid-MethylEster
  • FIG. 6 shows a thiophene polymer in which a thiophene polymer is the main chain and an R group other than a hexyl group is bonded to the 3-position, and a thiophene polymer in which a hexyloxy group is bonded as the R group.
  • FIG. 7 shows a chemical structural formula of PEDOT (polyethylenedioxythiophene) doped with PSS (polystyrene sulfonic acid).
  • 8A, FIG. 8B, and FIG. 8C show IV curve graphs under fluorescent lamp light for the photoelectric conversion element of Example 1, the photoelectric conversion element of Example 2, and the photoelectric conversion element of Comparative Example.
  • FIG. PEDOT polyethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Example 9 shows a table summarizing the characteristics and electrical characteristics of Example 1, Example 2, and Comparative Example.
  • 10 shows a schematic diagram of a cross-sectional view of the photoelectric conversion element of Example 1, and a cross-sectional STEM image of the photoelectric conversion element corresponding to the cross-sectional view.
  • FIG. 1A and FIG. 1B are cross-sectional views of an element showing a manufacturing process of a photoelectric conversion element in the present embodiment.
  • FIG. 1A shows a cross-sectional view of a transparent electrode (ITO 40) formed on a glass substrate of a photoelectric conversion element. The film thickness of ITO 40 is about 200 nm.
  • FIG. 1B is a cross-sectional view showing a state where an o-dichlorobenzene solution containing poly-3-hexylthiophene (P3HT) 60 is applied onto ITO 40 by spin coating.
  • P3HT poly-3-hexylthiophene
  • FIG. 2A and 2B are cross-sectional views of the element showing the manufacturing process of the photoelectric conversion element in the present embodiment.
  • FIG. 2A is a cross-sectional view showing a poly-3-hexylthiophene (P3HT) 60 thin film prepared by spin coating from an o-dichlorobenzene solution and a ferric chloride (FeCl 3 ) 70 isopropanol solution applied in layers.
  • FIG. FIG. 2B shows an example in which a thin film containing poly-3-hexylthiophene (P3HT) 60 and ferric chloride (FeCl 3 ) 70 is annealed at about 150 ° C., and the poly doped with ferric chloride (FeCl 3 ) 70 is obtained.
  • FIG. 2A is a cross-sectional view showing a poly-3-hexylthiophene (P3HT) 60 thin film prepared by spin coating from an o-dichlorobenzene solution and a ferric
  • FIG. 5 is a cross-sectional view showing a state where an underlayer 35 of about 5 nm made of -3-hexylthiophene (P3HT) 60 was obtained.
  • an underlayer 35 of about 5 nm made of -3-hexylthiophene (P3HT) 60 was obtained.
  • aggregated poly-3-hexylthiophene (P3HT) 60 indicated by a black thick line and ferric chloride (FeCl 3 ) 70 as a dopant exist in the gap indicated by a white circle.
  • ferric chloride (FeCl 3 ) 70 has a role as an oxidizing agent for poly-3-hexylthiophene (P3HT) 60.
  • the underlayer 35 made of poly-3-hexylthiophene (P3HT) 60 and ferric chloride is composed of PEDOT (polyethylenedioxythiophene) and PSS (polystyrene sulfone) used for the underlayer 35 of a general photoelectric conversion element. Transparency is low compared to acid. Then, when the underlayer 35 made of poly-3-hexylthiophene (P3HT) 60 and ferric chloride is used as the hole injection layer 30, the thickness is preferably about 10 nm or less so that incident light is not absorbed.
  • FIG. 3A and 3B are cross-sectional views of the device showing the manufacturing process of the photoelectric conversion device in the present embodiment.
  • FIG. 3A shows an o-di solution in which poly-3-hexylthiophene (P3HT) 60 and PCBM (phenyl-C61-butyric-acid-methyl ester) 50 are dissolved after the surface of the base layer 35 is washed with isopropanol and dried. It is sectional drawing which shows the place which apply
  • P3HT poly-3-hexylthiophene
  • PCBM phenyl-C61-butyric-acid-methyl ester
  • FIG. 3B shows a photoelectric conversion layer 20 obtained by drying a thin film of an o-dichlorobenzene solution in which poly-3-hexylthiophene (P3HT) 60 and PCBM (phenyl-C61-butyric-acid-methyl ester) 50 are dissolved.
  • P3HT poly-3-hexylthiophene
  • PCBM phenyl-C61-butyric-acid-methyl ester
  • the o-dichlorobenzene solution evaporates from the o-dichlorobenzene solution in which poly-3-hexylthiophene (P3HT) 60 and PCBM (phenyl-C61-butyric-acid-methyl ester) 50 are dissolved, and the surface of the underlayer 35 A region mainly composed of aggregated poly-3-hexylthiophene (P3HT) 60 is grown in the photoelectric conversion layer 20 formed after drying, using poly-3-hexylthiophene (P3HT) 60 shown in FIG. To do.
  • P3HT poly-3-hexylthiophene
  • PCBM phenyl-C61-butyric-acid-methyl ester
  • the poly-3-hexylthiophene (P3HT) 60 on the base layer 35 side is relatively deficient in electrons due to the action of the oxidizing agent, ferric chloride (FeCl 3 ) 70.
  • poly-3-hexylthiophene (P3HT) 60 in a solution of poly-3-hexylthiophene (P3HT) 60 and PCBM50 in which the photoelectric conversion layer 20 is dissolved depends on the inherent properties of the P-type semiconductor. Relatively electron-rich.
  • the poly-3-hexylthiophene (P3HT) 60 in the underlayer 35 and the poly-3-hexylthiophene (P3HT) 60 on the photoelectric conversion layer 20 side have an attractive interaction through the overlap of molecular orbitals. Then, the poly-3-hexylthiophene (P3HT) 60 on the photoelectric conversion layer 20 side aggregates based on the poly-3-hexylthiophene (P3HT) 60 exposed on the surface of the underlayer 35.
  • the P-type organic semiconductor polymer contained in the photoelectric conversion layer 20 is poly-3-hexylthiophene (P3HT) 60 in the above description, but the main chain is the same as that of poly-3-hexylthiophene (P3HT) 60.
  • it may be a poly-thiophene derivative in which different groups are bonded to the side chain. This is because, with respect to poly-3-hexylthiophene (P3HT) contained in the underlayer 35, the poly-thiophene derivative similarly acts as an electron-sharing attractive interaction through overlapping molecular orbitals.
  • ferric chloride (FeCl 3 ) 70 is a polymerization reaction between thiophenes by oxidizing a thiophene ring in forming a thiophene polymer, which is generally a main chain of poly-3-hexylthiophene (P3HT). It is known to play a role in advancing.
  • FIG. 4 is a cross-sectional view of an element showing a manufacturing process of the photoelectric conversion element in the present embodiment. It is sectional drawing which shows the place which formed the aluminum upper electrode 10 about 150 nm thick by the vapor deposition method on the photoelectric converting layer 20, and performed the annealing process at about 170 degreeC for about 5 minutes. Since the underlayer 35 functions as the hole injection layer 30, the hole injection layer 30 is shown instead of the underlayer 35 in FIG. Note that the hole injection layer is a layer between the bulk heterojunction photoelectric conversion film and the transparent electrode for facilitating transfer of electrons or holes.
  • the photoelectric conversion element 100 includes the ITO (transparent electrode) 40, the oxidizing agent provided on the ITO (transparent electrode) 40, and the P-type organic semiconductor polymer (poly-3-hexylthiophene (P3HT) 60).
  • An organic thin film photoelectric conversion element including a photoelectric conversion layer 20 made of the same P-type organic semiconductor polymer (poly-3-hexylthiophene (P3HT) 60).
  • the oxidant is an oxidant having the ability to make a P-type organic semiconductor polymer (poly-3-hexylthiophene (P3HT) 60) in an electron-deficient state by oxidation.
  • P3HT poly-3-hexylthiophene
  • the method of manufacturing the organic thin film photoelectric conversion element poly-3-hexylthiophene (P3HT) is formed after the step of forming the hole injection layer 30 made of an oxidant and a P-type organic semiconductor on the ITO (transparent electrode) 40. And a step of forming a thin film of an o-dichlorobenzene solution in which 60 and PCBM50 are dissolved. Accordingly, as described with reference to FIG.
  • the poly-3-hexylthiophene (P3HT) 60 on the photoelectric conversion layer 20 side is based on the poly-3-hexylthiophene (P3HT) 60 exposed on the surface of the hole injection layer 30. 60 aggregates.
  • poly-3-hexylthiophene (P3HT) 60 aggregates also at the interface between the hole injection layer 30 and the photoelectric conversion layer 20, so that the area where the N-type organic semiconductor in the photoelectric conversion layer 20 contacts decreases. To do. As a result, the leakage current due to the combination of the holes in the hole injection layer 30 and the electrons generated from the N-type organic semiconductor is reduced.
  • the transparency of the hole injection layer 30 containing poly-3-hexylthiophene (P3HT) 60 and ferric chloride is determined by the PEDOT (polyethylene diethylene) contained in a general hole injection layer. Compared to a layer containing oxythiophene) and PSS (polyethylene sulfonic acid).
  • the film thickness is reduced (for example, 5 nm), so that the poly-3 -The absorption of incident light into the hole injection layer 30 composed of hexylthiophene (P3HT) 60 and ferric chloride (FeCl 3 ) 70 is suppressed.
  • Example 1 The photoelectric conversion element 100 of Example 1 is created by the following process. First, on a glass substrate on which ITO 40 having a film thickness of 200 nm is formed as a transparent electrode, P-type semiconductor polymer poly-3-hexylthiophene (P3HT, manufactured by ALDRICH, average molecular weight 87,000, regioregular type) is 0. A 1 wt% o-dichlorobenzene solution was applied by spin coating. By applying a 0.2 wt% isopropanol solution of ferric chloride on the obtained poly-3-hexylthiophene (P3HT) 60 thin film and performing an annealing treatment at 150 ° C., ferric chloride is obtained.
  • P3HT P-type semiconductor polymer poly-3-hexylthiophene
  • a hole injection layer 30 having a thickness of 5 nm and made of poly-3-hexylthiophene doped with (P3HT) was formed. After the surface of the hole injection layer 30 was washed with isopropanol and dried, an o-dichlorobenzene solution in which poly-3-hexylthiophene (P3HT) 60 and PCBM50 at a weight ratio of 1: 1 were dissolved at a ratio of 1% by weight, respectively. And applied by spin coating. After evaporating the solvent, an Al upper electrode film having a thickness of 150 nm was formed by vapor deposition, and an annealing treatment at 170 ° C. was performed for 5 minutes.
  • P3HT poly-3-hexylthiophene doped with
  • FIG. 5 shows chemical formulas of poly-3-hexylthiophene (P3HT) 60 and PCBM50.
  • Poly-3-hexylthiophene (P3HT) is a P-type organic semiconductor polymer having a thiophene polymer as a main chain and a hexyl group C6H13 (structural formula: CH3CH2CH2CH2CH2CH2) bonded to the 3-position of thiophene.
  • PCBM50 is an N-type organic semiconductor in which butyric acid methyl ester is bonded to C60 fullerene, and is a substance that can be dissolved in an organic solvent.
  • Example 2 The photoelectric conversion element 20 of Example 2 is the following photoelectric conversion element.
  • the P-type semiconductor polymer used for the hole injection layer 30 in Example 1 is changed from poly-3-hexylthiophene (P3HT) 60 to poly-3-hexyloxythiophene.
  • the photoelectric conversion layer 20 having a thickness of 100 nm was formed so as to contain poly-3-hexylthiophene (P3HT) 60 and PCBM50 in a weight ratio of 1: 1 under the same method and conditions as in Example 1.
  • poly-3-hexyloxythiophene is a P-type organic semiconductor.
  • the photoelectric conversion element of a comparative example is the following photoelectric conversion element.
  • the comparative example is a photoelectric conversion element using general PEDOT (polyethylenedioxythiophene) and PSS (polyethylenesulfonic acid) as materials for the hole injection layer. That is, in the hole injection layer of the comparative example, instead of poly-3-hexylthiophene (P3HT) and ferric chloride (FeCl 3) in Example 1, PEDOT (polyethylenedioxythiophene) and PSS (polyethylenesulfonic acid) ( Including a film thickness of 40 nm).
  • PEDOT polyethylenedioxythiophene
  • PSS polyethylenesulfonic acid
  • the photoelectric conversion layer having a thickness of 100 nm was formed so as to contain poly-3-hexylthiophene (P3HT) 60 and PCBM50 in a weight ratio of 1: 1 under the same method and conditions as in Example 1.
  • FIG. 7 shows PEDOT (polyethylene dioxythiophene) and PSS (polystyrene sulfonic acid).
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • FIG. 8A, FIG. 8B, and FIG. 8C show IV curve graphs under fluorescent lamp light for the photoelectric conversion element of Example 1, the photoelectric conversion element of Example 2, and the photoelectric conversion element of Comparative Example.
  • the horizontal axis represents the generated voltage (V)
  • the vertical axis represents the current density (mA / cm 2).
  • any photoelectric conversion element was irradiated with a fluorescent lamp (white light) having an irradiance of 89 ⁇ W / cm 2.
  • FIG. 8A is an IV curve graph of the photoelectric conversion element of Example 1. From the graph of FIG. 8A, in the photoelectric conversion element of Example 1, the open circuit voltage Voc was 0.45 V, and the short circuit current density Jsc was 16.0 ⁇ A / cm 2.
  • the fill factor FF was 0.63, and the photoelectric conversion efficiency was 5.02%.
  • the fill factor FF is given by the maximum output (0.013 ⁇ 0.35) / open-circuit voltage (0.45) / short-circuit current density (0.016).
  • the photoelectric conversion efficiency is given by open circuit voltage (0.45) ⁇ short circuit current density (0.016) ⁇ fill factor FF (0.63) / irradiance (0.089) / 100.
  • the series resistance RS of the element was 44.7 ohm ⁇ cm 2
  • the parallel resistance Rsh was 3.28 ⁇ 10 5 ohm ⁇ cm 2.
  • the parallel resistance Rsh and the series resistance RS were obtained by measurement. 8A, from the IV curve, the photoelectric conversion element of Example 1 has a current density of 14 ⁇ A / cm 2 at a bias voltage of 0.3 V.
  • the open circuit voltage Voc is a voltage when the current density is zero.
  • the short-circuit current density is the current density when the generated voltage is 0V.
  • the fill factor FF is a ratio between the maximum output and the product of the open circuit voltage Voc and the short circuit current density Jsc in the IV curve graph. Therefore, the photoelectric conversion efficiency is given by open circuit voltage Voc ⁇ short circuit current density Jsc ⁇ fill factor FF / irradiance of incident light.
  • FIG. 8B is an IV curve graph of the photoelectric conversion element of Example 2. From the graph of FIG. 8B, in the photoelectric conversion element of Example 2, the open circuit voltage Voc was 0.407 V, and the short circuit current density Jsc was 17.0 ⁇ A / cm 2. The fill factor FF was 0.61, and the photoelectric conversion efficiency was 4.79%. Furthermore, the series resistance RS of the element was 19.1 ohm ⁇ cm 2, and the parallel resistance Rsh was 3.49 ⁇ 10 5 ohm ⁇ cm 2. 8B, from the IV curve, the photoelectric conversion element of Example 2 has a current density of 14 ⁇ A / cm 2 when the bias voltage is 0.3 Vn.
  • FIG. 8C is an IV curve graph of the photoelectric conversion element of the comparative example. From the graph of FIG. 8C, in the photoelectric conversion element of the comparative example, the open circuit voltage Voc was 0.391 V, and the short circuit current density Jsc was 18.2 ⁇ A / cm 2. The fill factor FF was 0.41 and the photoelectric conversion efficiency was 3.27%. Furthermore, the series resistance RS of the element was 670 ohm ⁇ cm 2, and the parallel resistance Rsh was 4.51 ⁇ 10 4 ohm ⁇ cm 2. In FIG. 8C, from the IV curve, the photoelectric conversion element of the comparative example has a current density of 10 ⁇ A / cm 2 at a bias voltage of 0.3 V, which is significantly lower than those of Examples 1 and 2.
  • FIG. 9 shows a table summarizing the characteristics and electrical characteristics of Example 1, Example 2, and Comparative Example.
  • the series resistance of the photoelectric conversion element of Example 1 was reduced to 1/15 compared with the series resistance of the photoelectric conversion element of the comparative example.
  • the parallel resistance of the photoelectric conversion element of Example 1 was improved by about 7 times compared to the parallel resistance of the photoelectric conversion element of the comparative example.
  • the open circuit voltage of the photoelectric conversion element of Example 1 was improved about 1.15 times compared with the open circuit voltage of the photoelectric conversion element of the comparative example.
  • the curve factor of the photoelectric conversion element of Example 1 was improved by about 1.54 times as compared with the curve factor of the photoelectric conversion element of the comparative example.
  • the conversion efficiency of the photoelectric conversion element of Example 1 was improved by about 1.54 times compared to the conversion efficiency of the photoelectric conversion element of the comparative example.
  • FIG. 10 shows a schematic diagram of a cross-sectional view of the photoelectric conversion element of Example 1, and a cross-sectional photograph of the photoelectric conversion element corresponding to the cross-sectional view.
  • the brightly observed region is considered to be poly-3-hexylthiophene (P3HT) 60 having a low density.
  • the brightly observed region has a columnar shape protruding from the hole injection layer 30. Therefore, it is presumed that in the photoelectric conversion layer of Example 1, poly-3-hexylthiophene (P3HT) 60 is aggregated in the columnar region protruding from the hole injection layer.
  • P3HT poly-3-hexylthiophene
  • P3HT poly-3-hexylthiophene
  • a photoelectric conversion element including a photoelectric conversion film made of an organic thin film having a high open circuit voltage Voc or a high fill factor FF in a low light quantity region.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】 低光量領域において、開放電圧Voc又は曲線因子FFが高い、有機薄膜からなる光電変換膜を含む光電変換素子の製造方法及び光電変換素子を提供することを目的とする。 【解決手段】 透明基板及び前記透明基板上に配置された透明電極上に、第1P型有機半導体と、第1P型有機半導体を酸化できる酸化剤を含む溶剤を塗布及び乾燥させ、第1P型有機半導体を前記酸化剤によって酸化させることにより、ホール注入層を形成する工程と、ホール注入層上にN型有機半導体及び第2P型有機半導体を含む溶剤を塗布、乾燥させて光電変換層を形成する工程と、光電変換層上に金属層を形成し、金属電極を形成する工程と、を備える光電変換素子の製造方法。

Description

光電変換素子の製造方法及び光電変換素子
 光電変換素子の製造方法及び光電変換素子に関する。
 いわゆる、バルクヘテロ接合型といわれる有機薄膜を光電変換膜として用いた光電変換素子を、有機太陽電池とする技術に注目が集まっている。ここで、光電変換素子は、透明電極、透明電極上のホール注入層、ホール注入層上のバルクヘテロ接合型の光電変換膜、光電変換膜上のアルミニウム等の金属からなる金属電極を含む。
 バルクヘテロ接合型の光電変換膜は、P型有機半導体ポリマーと、フラーレン等のn型有機半導体とを組み合わせて形成された有機薄膜である。そして、バルクヘテロ型の光電変換膜は、P型有機半導体ポリマーと、フラーレン等のn型有機半導体との混合液を下地に塗布し、乾燥させることで形成される。
 ここで、混合液の乾燥過程において、P型有機半導体ポリマーと、フラーレン等のn型有機半導体は自発的に凝集して相分離し、乾燥後において、P型有機半導体ポリマーの小領域と、N型有機半導体の小領域とが隣接する。そうすると、光電変換膜内において、比表面積が大きいPN接合が形成される(米国特許US5331183)。
 ホール注入層はバルクヘテロ接合型の光電変換膜と、透明電極との間にあって、電子又はホールの授受を容易にするための層である。ホール注入層として、ポリチオフェンの一種であるポリエチレンオキシチオフェン(PEDOT)に、酸化力を持たない酸であるポリエチレンスルホン酸(PSS)をドープしたものが、一般的に用いられる(非特許文献1)。
 上記のようなバルクヘテロ型有機膜太陽電池において、光電変換膜中で、凝集したP型半導体ポリマーの間隙を凝集したN型有機半導体が占めているとすると、凝集したN型有機半導体とホール注入層とが接触することになる。そうすると、ホール注入層内部のホールとN型有機半導体から発生した電子とが結合することによるリーク電流が発生する。そこで、受光量が低下し、キャリヤが減少すると、相対的に、リーク電流が大きくなり、有機太陽電池の開放電圧Voc及び曲線因子FFが低下する要因となる。
 また、凝集した半導体ポリマー間のキャリヤ(電子又はホール)伝導は、凝集した同型半導体ポリマー同士の接点におけるキャリヤホッピングにより行われる。そうすると、光電変換膜中において、P型有機半導体ポリマーとN型有機半導体によるPN接合の比表面積が大きくなる一方で、同型半導体ポリマー同士の接点面積が減少する結果となると、バルクヘテロ型有機膜太陽電池の直列抵抗が大きくなる。そこで、受光量が低下し、発生するキャリヤの濃度が低下すると、直列抵抗が大きい場合には、短絡電流密度と曲線因子が低下する要因となる。
米国特許US5331183
C.J.Brabec, S.E.Sgaheen,T.Fromherz, F.Padinger, J.C.Hummelen, A.Dhanabalan, R.A.J.Janssen,N.S.Sariciftci: Synthetic Metals 121, 1517-1520 (2001)
 低光量領域において、開放電圧Voc又は曲線因子FFが高い、有機薄膜からなる光電変換膜を含む光電変換素子の製造方法及び光電変換素子を提供することを目的とする。
 上記の課題を解決するため、発明の一観点によれば、透明基板及び前記透明基板上に配置された透明電極上に、第1P型有機半導体と、第1P型有機半導体を酸化できる酸化剤を含む溶剤を塗布及び乾燥させ、第1P型有機半導体を前記酸化剤によって酸化させることにより、ホール注入層を形成する工程と、ホール注入層上にN型有機半導体及び第2P型有機半導体を含む溶剤を塗布、乾燥させて光電変換層を形成する工程と、光電変換層上に金属層を形成し、金属電極を形成する工程と、を備える光電変換素子の製造方法が提供される。
 低光量領域において、開放電圧Voc又は曲線因子FFが高い、有機薄膜からなる光電変換膜を含む光電変換素子を提供することができる。
図1A、図1Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。 図2A、図2Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。 図3A、図3Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。 図4は本実施形態における光電変換素子の製造工程を示す素子の断面図である。 図5はポリ-3-ヘキシルチオフェン(P3HT)60とPCBM(phenyl-C61-Butyric-Acid-MethylEster)50の化学式を示す。 図6はチオフェンの重合体を主鎖とし、3位にヘキシル基以外のR基が結合しているチオフェン重合体及び、上記のR基としてヘキロキシ基が結合しているチオフェン重合体を示す。 図7にPEDOT(ポリエチレンジオキシチオフェン)にPSS(ポリスチレンスルホン酸)がドープされた状態の化学構造式を示す。 図8A、図8B、及び、図8Cにより、実施例1の光電変換素子、実施例2の光電変換素子、及び、比較例の光電変換素子に対する蛍光灯光下でのI-V曲線グラフを示す。 図9は、実施例1、実施例2、及び、比較例について、その特徴及び電気的な特性についてまとめた表を示す。 図10は、実施例1の光電変換素子の断面図の模式図、及び、その断面図に対応する光電変換素子の断面STEM像を示す。
 以下において、発明を実施するための形態を説明する。
 図1A、図1Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。図1Aは光電変換素子のガラス基板上に形成された透明電極(ITO40)の断面図を示す。ITO40の膜厚は約200nmである。図1BはITO40上にポリ-3-ヘキシルチオフェン(P3HT)60を含むo-ジクロロベンゼン溶液を、スピンコートによって塗布したところを示す断面図である。
 図2A、図2Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。図2Aは、o-ジクロロベンゼン溶液からスピンコートによって作成されたポリ-3-ヘキシルチオフェン(P3HT)60の薄膜に、塩化第二鉄(FeCl)70イソプロパノール溶液を重ねて塗布したところを示す断面図である。
 図2Bはポリ-3-ヘキシルチオフェン(P3HT)60および塩化第二鉄(FeCl)70を含む薄膜を約150℃でアニール処理をし、塩化第二鉄(FeCl)70がドープされたポリ-3-ヘキシルチオフェン(P3HT)60からなる約5nmの下地層35を得たところを示す断面図である。下地層35には、黒の太線で示した、凝集したポリ-3-ヘキシルチオフェン(P3HT)60と、白丸で示した、その隙間にドーパントである塩化第二鉄(FeCl)70が存在する。ここで、塩化第二鉄(FeCl)70はポリ-3-ヘキシルチオフェン(P3HT)60に対して酸化剤としての役割を示す。
 ところで、ポリ-3-ヘキシルチオフェン(P3HT)60と塩化第2鉄からなる、下地層35は、一般的な光電変換素子の下地層35に用いられるPEDOT(ポリエチレンジオキシチオフェン)とPSS(ポリスチレンスルホン酸)に比較し、透明度が低い。そうすると、ポリ-3-ヘキシルチオフェン(P3HT)60と塩化第2鉄からなる下地層35がホール注入層30として用いられた場合、入射光が吸収されないためには10nm程度以下であることが望ましい。
 図3A、図3Bは本実施形態における光電変換素子の製造工程を示す素子の断面図である。図3Aは上記の下地層35の表面をイソプロパノールで洗浄し、乾燥した後にポリ-3-ヘキシルチオフェン(P3HT)60とPCBM(phenyl-C61-butyric-acid-methyl ester)50を溶解したo-ジクロロベンゼン溶液を塗布したところを示す断面図である。
 図3Bはポリ-3-ヘキシルチオフェン(P3HT)60とPCBM(phenyl-C61-butyric-acid-methyl ester)50を溶解したo-ジクロロベンゼン溶液の薄膜を乾燥させ、光電変換層20を得たところを示す断面図である。ポリ-3-ヘキシルチオフェン(P3HT)60とPCBM(phenyl-C61-butyric-acid-methyl ester)50を溶解したo-ジクロロベンゼン溶液から、o-ジクロロベンゼン溶液が蒸発するとともに、下地層35の表面に表出しているポリ-3-ヘキシルチオフェン(P3HT)60を種として、凝集したポリ-3-ヘキシルチオフェン(P3HT)60が主成分である領域が、乾燥後にできた光電変換層20内に成長する。下地層35側のポリ-3-ヘキシルチオフェン(P3HT)60は酸化剤、塩化第二鉄(FeCl)70の作用により、相対的に、電子が不足している状態となっている。一方、光電変換層20となるポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を溶解したo-ジクロロベンゼン溶液中のポリ-3-ヘキシルチオフェン(P3HT)60は、P型半導体本来の性質により、相対的に電子過剰な状態にある。従って、下地層35中のポリ-3-ヘキシルチオフェン(P3HT)60と、光電変換層20側のポリ-3-ヘキシルチオフェン(P3HT)60は分子軌道の重なりを通じて、引力となる相互作用が働くため、下地層35の表面に表出しているポリ-3-ヘキシルチオフェン(P3HT)60を基点として、光電変換層20側のポリ-3-ヘキシルチオフェン(P3HT)60が凝集する。なお、光電変換層20中に含まれる、P型有機半導体ポリマーとして、上記ではポリ-3-ヘキシルチオフェン(P3HT)60としたが、ポリ-3-ヘキシルチオフェン(P3HT)60と主鎖を同一とし、側鎖に異なる基が結合しているポリ-チオフェンの誘導体であってもよい。下地層35に含まれるポリ-3-ヘキシルチオフェン(P3HT)に対して、ポリ-チオフェンの誘導体は、同様に、分子軌道の重なりを通じて、電子共有型の引力となる相互作用が働くためである。なお、塩化第二鉄(FeCl)70は、一般的にポリ-3-ヘキシルチオフェン(P3HT)の主鎖であるチオフェン重合体の形成に際し、チオフェン環を酸化することによって、チオフェン同士の重合反応を進行させる役割を果たすことが知られている。
 図4は本実施形態における光電変換素子の製造工程を示す素子の断面図である。光電変換層20上に、蒸着法によって約150nm厚のアルミニウム上部電極10を形成し、約170℃でのアニール処理を約5分間行ったところを示す断面図である。なお、下地層35はホール注入層30として作用するので、図4においては、下地層35の代わりに、ホール注入層30として表示した。なお、ホール注入層はバルクヘテロ接合型の光電変換膜と、透明電極との間にあって、電子又はホールの授受を容易にするための層である。
 以上より、光電変換素子100は、ITO(透明電極)40と、ITO(透明電極)40上に設けられた酸化剤とP型有機半導体ポリマー(ポリ-3-ヘキシルチオフェン(P3HT)60)を含むホール注入層30と、ホール注入層30上に設けられ、N型有機半導体とホール注入層30中に含まれるP型有機半導体ポリマー(ポリ-3-ヘキシルチオフェン(P3HT)60)と少なくとも主鎖が同一のP型有機半導体ポリマー(ポリ-3-ヘキシルチオフェン(P3HT)60)からなる光電変換層20と、を備える有機薄膜光電変換素子である。そして、上記の酸化剤はP型有機半導体ポリマー(ポリ-3-ヘキシルチオフェン(P3HT)60)を、酸化によって電子不足状態とする能力を持つ酸化剤である。
 また、上記の有機薄膜光電変換素子の製造方法は、ITO(透明電極)40上に酸化剤とP型有機半導体からなるホール注入層30を形成する工程の後、ポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を溶解したo-ジクロロベンゼン溶液の薄膜を形成する工程を含む。
 従って、図3で説明したように、ホール注入層30の表面に表出しているポリ-3-ヘキシルチオフェン(P3HT)60を基点として、光電変換層20側のポリ-3-ヘキシルチオフェン(P3HT)60が凝集する。
 これに伴って、ホール注入層30と光電変換層20の界面にも、ポリ-3-ヘキシルチオフェン(P3HT)60が凝集するので、光電変換層20内のN型有機半導体が接触する面積が減少する。その結果、ホール注入層30内部のホールとN型有機半導体から発生した電子とが結合することによるリーク電流が減少する。そこで、受光量が低下し、キャリヤが減少した場合において、有機太陽電池内部におけるリーク電流が減少するので、有機太陽電池の開放電圧Voc及び曲線因子FFが向上する。
 ところで、図2A、2Bで説明したように、ポリ-3-ヘキシルチオフェン(P3HT)60と塩化第2鉄を含むホール注入層30の透明度は、一般的なホール注入層に含まれるPEDOT(ポリエチレンジオキシチオフェン)とPSS(ポリエチレンスルホン酸)を含む層に比較し、低い。そこで、ホール注入層30としてポリ-3-ヘキシルチオフェン(P3HT)60と塩化第2鉄からなる層を用いる際には、その膜厚をうすくすること(例えば5nmとすること)により、ポリ-3-ヘキシルチオフェン(P3HT)60と塩化第2鉄(FeCl)70からなるホール注入層30に入射光が吸収されることを抑制している。
(実施例1)
 実施例1の光電変換素子100は、以下のような工程により作成される。まず、透明電極として膜厚200nmのITO40を形成したガラス基板上に、P型半導体ポリマーである、ポリ-3-ヘキシルチオフェン(P3HT、ALDRICH社製・平均分子量87,000、レジオレギュラー型)の0.1重量%・o-ジクロロベンゼン溶液を、スピンコートによって塗布した。得られたポリ-3-ヘキシルチオフェン(P3HT)60の薄膜上に、塩化第二鉄の0.2重量%・イソプロパノール溶液を塗布し、150℃でのアニール処理を行うことで、塩化第二鉄がドープされたポリ-3-ヘキシルチオフェン(P3HT)からなる、厚さ5nmのホール注入層30を形成した。ホール注入層30表面をイソプロパノールで洗浄し、乾燥した後に、重量比1:1のポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を、それぞれ1重量%の割合で溶解したo-ジクロロベンゼン溶液を、スピンコートによって塗布した。溶媒を蒸発させた後、蒸着によって150nm厚のAl上部電極膜を作成し、170℃でのアニール処理を5分間行った。得られたポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を含む光電変換層20の膜厚は、100nmであった。
 なお、図5はポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50の化学式を示す。ポリ-3-ヘキシルチオフェン(P3HT)は、チオフェンの重合体を主鎖とし、チオフェンの3位の位置にヘキシル基C6H13(構造式:CH3CH2CH2CH2CH2CH2)が結合しているP型有機半導体ポリマーである。PCBM50は、C60のフラーレンに酪酸メチルエステルが結合しているN型有機半導体であり、有機溶媒に溶解可能な物質である。
(実施例2)
 実施例2の光電変換素子20は、以下のような光電変換素子である。まず、実施例1におけるホール注入層30に用いるP型半導体ポリマーが、ポリ-3-ヘキシルチオフェン(P3HT)60からpoly-3-hexyloxythiopheneに変更されている。厚さ100nmの光電変換層20は実施例1と同様の方法・条件において、重量比1:1のポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を含むように形成された。
 なお、図6はチオフェンの重合体を主鎖とし、3位にヘキシル基以外のR基が結合しているチオフェン重合体及び、上記のR基としてヘキロキシ基が結合しているチオフェン重合体を示す。また、poly-3-hexyloxythiopheneはP型有機半導体である。
(比較例)
 比較例の光電変換素子は、以下のような光電変換素子である。比較例はホール注入層の材料として一般なPEDOT(ポリエチレンジオキシチオフェン)およびPSS(ポリエチレンスルホン酸)を用いた光電変換素子である。すなわち、比較例のホール注入層は実施例1におけるポリ-3-ヘキシルチオフェン(P3HT)及び塩化第2鉄(FeCl3)の代わりに、PEDOT(ポリエチレンジオキシチオフェン)及びPSS(ポリエチレンスルホン酸)(膜厚40nm)を含む。なお、厚さ100nmの光電変換層は、実施例1と同様の方法・条件で、重量比1:1のポリ-3-ヘキシルチオフェン(P3HT)60とPCBM50を含むように形成された。
 なお、図7にPEDOT(ポリエチレンジオキシチオフェン)及びPSS(ポリスチレンスルホン酸)を示す。PEDOT(ポリエチレンジオキシチオフェン)はPSS(ポリスチレンスルホン酸)をドープするとP型導伝性を示す有機半導体である。
 図8A、図8B、及び、図8Cにより、実施例1の光電変換素子、実施例2の光電変換素子、及び、比較例の光電変換素子に対する蛍光灯光下でのI-V曲線グラフを示す。いずれのグラフにおいても、横軸は発生電圧(V)を示し、縦軸は電流密度(mA/cm2)を示す。また、いずれの光電変換素子に対しても、放射照度89μW/cm2の蛍光灯(白色光)を照射した。
 図8Aは実施例1の光電変換素子についてのI-V曲線グラフである。図8Aのグラフより、実施例1の光電変換素子において、開放電圧Vocは0.45V、短絡電流密度Jscは16.0μA/cm2であった。また、曲線因子FFは0.63であり、光電変換効率は5.02%であった。なお、曲線因子FFは最大出力(0.013×0.35)/開放電圧(0.45)/短絡電流密度(0.016)で与えられる。また、光電変換効率は開放電圧(0.45)×短絡電流密度(0.016)×曲線因子FF(0.63)/放射照度(0.089)/100で与えられる。さらに、素子の直列抵抗RSは44.7オーム・cm2であり、並列抵抗Rshは3.28×10オーム・cm2であった。なお、並列抵抗Rshと直列抵抗RSは測定により求めた。
 また、図8Aにおいて、I-V曲線から、実施例1の光電変換素子は、バイアス電圧0.3Vにおいて、電流密度14μA/cm2が保たれている。
 ここで、開放電圧Vocは、電流密度0のときの電圧である。短絡電流密度は発生電圧0Vのときの電流密度である。曲線因子FFは、I-V曲線グラフにおける、最大出力と、開放電圧Vocと短絡電流密度Jscとの積との比である。従って、光電変換効率は開放電圧Voc×短絡電流密度Jsc×曲線因子FF/入射光の放射照度で与えられる。
 図8Bは実施例2の光電変換素子についてのI-V曲線グラフである。図8Bのグラフより、実施例2の光電変換素子において、開放電圧Vocは0.407V、短絡電流密度Jscは17.0μA/cm2であった。また、曲線因子FFは0.61であり、光電変換効率は4.79%であった。さらに、素子の直列抵抗RSは19.1オーム・cm2であり、並列抵抗Rshは3.49×10オーム・cm2であった。
 また、図8Bにおいて、I-V曲線から、実施例2の光電変換素子は、バイアス電圧0.3Vn時点において、電流密度14μA/cm2が保たれている。
 図8Cは比較例の光電変換素子についてのI-V曲線グラフである。図8Cのグラフより、比較例の光電変換素子において、開放電圧Vocは0.391V、短絡電流密度Jscは18.2μA/cm2であった。また、曲線因子FFは0.41であり、光電変換効率は3.27%であった。さらに、素子の直列抵抗RSは670オーム・cm2であり、並列抵抗Rshは4.51×10オーム・cm2であった。
 また、図8Cにおいて、I-V曲線から、比較例の光電変換素子は、バイアス電圧0.3Vにおいて、電流密度は10μA/cm2と、実施例1、2と比較して大きく低下している。
 図9は、実施例1、実施例2、及び、比較例について、その特徴及び電気的な特性についてまとめた表を示す。
 実施例1の光電変換素子の直列抵抗は比較例の光電変換素子の直列抵抗と比較し、1/15に低下した。実施例1の光電変換素子の並列抵抗は比較例の光電変換素子の並列抵抗と比較し、約7倍に向上した。実施例1の光電変換素子の開放電圧は比較例の光電変換素子の開放電圧と比較し、約1.15倍に向上した。実施例1の光電変換素子の曲線因子は比較例の光電変換素子の曲線因子と比較し、約1.54倍に向上した。実施例1の光電変換素子の変換効率は比較例の光電変換素子の変換効率と比較し、約1.54倍に向上した。
 図10は、実施例1の光電変換素子の断面図の模式図、及び、その断面図に対応する光電変換素子の断面写真を示す。
 断面写真はにおいて、明るく観測されている領域は、密度が低いポリ-3-ヘキシルチオフェン(P3HT)60であると考えられる。ここで、明るく観測されている領域は、ホール注入層30から突出した柱状の形状をしている。そこで、実施例1の光電変換層内において、ホール注入層から突出した柱状領域内に、ポリ-3-ヘキシルチオフェン(P3HT)60が凝集していることが推測される。すなわち、ホール注入層30と光電変換層20との界面にポリ-3-ヘキシルチオフェン(P3HT)60が凝集していると推測される。その結果、光電変換層20中のPCBM50とホール注入層30中のポリ-3-ヘキシルチオフェン(P3HT)60の接触が抑制される。そうすると、ホール注入層30と光電変換層20界面でのリーク電流が減少する。
 低光量領域において、開放電圧Voc又は曲線因子FFが高い、有機薄膜からなる光電変換膜を含む光電変換素子を提供することができる。
10 アルミニウム上部電極
20 光電変換層
30 ホール注入層
35 下地層
40 ITO(透明電極)
50 PCBM(phenyl-C61-butyric-acid-methyl ester)
60 ポリ-3-ヘキシルチオフェン(P3HT)
70 塩化第2鉄
100 光電変換素子
 
 
 

Claims (5)

  1.  透明基板及び前記透明基板上に配置された透明電極上に、第1P型有機半導体と、前記第1P型有機半導体を酸化できる酸化剤を含む溶剤を塗布及び乾燥させ、前記第1P型有機半導体を前記酸化剤によって酸化させることにより、ホール注入層を形成する工程と、
     前記ホール注入層上にN型有機半導体及び第2P型有機半導体を含む溶剤を塗布、乾燥させて光電変換層を形成する工程と、
     前記光電変換層上に金属層を形成し、金属電極を形成する工程と、を備える光電変換素子の製造方法。
  2.  前記第1P型有機半導体と、前記第2P型有機半導体とは、主鎖が同一であることを特徴とする請求項1記載の光電変換素子の製造方法。
  3.  前記第1P型有機半導体及び前記第2P型有機半導体は第3位に側鎖を有するポリチオフェンであることを特徴とする請求項2記載の光電変換素子の製造方法。
  4.  前記酸化剤は、塩化第1鉄、塩化第2鉄、フッ素、塩素、臭素.ヨウ素のいずれかであることを特徴とする、請求項1乃至請求項3のいずれかに記載の光電変換素子の製造方法。
  5.  透明基板と、
     前記透明基板上に形成された透明電極と、
     前記透明基板及び前記透明電極上に形成され、第1P型有機半導体と、前記第1P型有機半導体を酸化できる酸化剤を含むホール注入層と、
     前記ホール注入層上に形成され、N型有機半導体と、前記第1P型有機半導体と主鎖が同一な第2P型有機半導体を含む光電変換層と、
     前記光電変換層上に形成され、金属からなる金属電極と、を備える光電変換素子。
     
PCT/JP2011/001759 2011-03-25 2011-03-25 光電変換素子の製造方法及び光電変換素子 WO2012131747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013506815A JP5673799B2 (ja) 2011-03-25 2011-03-25 光電変換素子の製造方法及び光電変換素子
PCT/JP2011/001759 WO2012131747A1 (ja) 2011-03-25 2011-03-25 光電変換素子の製造方法及び光電変換素子
US13/946,126 US20130298986A1 (en) 2011-03-25 2013-07-19 Method for manufacturing photoelectric conversion element and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001759 WO2012131747A1 (ja) 2011-03-25 2011-03-25 光電変換素子の製造方法及び光電変換素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/946,126 Continuation US20130298986A1 (en) 2011-03-25 2013-07-19 Method for manufacturing photoelectric conversion element and photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2012131747A1 true WO2012131747A1 (ja) 2012-10-04

Family

ID=46929603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001759 WO2012131747A1 (ja) 2011-03-25 2011-03-25 光電変換素子の製造方法及び光電変換素子

Country Status (3)

Country Link
US (1) US20130298986A1 (ja)
JP (1) JP5673799B2 (ja)
WO (1) WO2012131747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056591A1 (ja) * 2013-10-18 2015-04-23 Dic株式会社 塗工液、それを用いた物品及び印刷物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502535A (ja) * 2002-08-22 2006-01-19 アグフア−ゲヴエルト 実質的に透明な伝導層構成の製造方法
WO2010113606A1 (ja) * 2009-03-31 2010-10-07 リンテック株式会社 有機薄膜太陽電池およびその製造方法
JP2011016988A (ja) * 2009-06-08 2011-01-27 Mitsubishi Chemicals Corp チアジアゾール含有高分子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI74715C (fi) * 1985-07-24 1988-03-10 Neste Oy Elledande polytiofen och foerfarande foer dess framstaellning och anvaendning.
JP2003264085A (ja) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd 有機半導体素子、有機エレクトロルミネッセンス素子及び有機太陽電池
US20070085061A1 (en) * 2005-10-14 2007-04-19 Elder Delwin L Conductivity enhancement of conductive polymers by solvent exposure
KR101312269B1 (ko) * 2007-01-05 2013-09-25 삼성전자주식회사 고분자 태양전지 및 그의 제조방법
JP4951497B2 (ja) * 2007-12-27 2012-06-13 株式会社日立製作所 有機薄膜太陽電池およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502535A (ja) * 2002-08-22 2006-01-19 アグフア−ゲヴエルト 実質的に透明な伝導層構成の製造方法
WO2010113606A1 (ja) * 2009-03-31 2010-10-07 リンテック株式会社 有機薄膜太陽電池およびその製造方法
JP2011016988A (ja) * 2009-06-08 2011-01-27 Mitsubishi Chemicals Corp チアジアゾール含有高分子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. W. LIANG ET AL.: "Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 buthyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthophene) as a buffer layer", APPLIED PHYSICS LETTERS, vol. 95, no. 13, 1 October 2009 (2009-10-01), pages 133303 - 1-3 *
S. UKAI ET AL.: "Electrical Conduction of Regioregular and Regiorandom Poly(3- hexylthiophene) Doped with Iodine", JOURNAL OF PHYSICAL SOCIETY OF JAPAN, vol. 74, no. 12, December 2005 (2005-12-01), pages 3314 - 3319 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056591A1 (ja) * 2013-10-18 2015-04-23 Dic株式会社 塗工液、それを用いた物品及び印刷物
JP6031197B2 (ja) * 2013-10-18 2016-11-24 Dic株式会社 塗工液、それを用いた物品及び印刷物

Also Published As

Publication number Publication date
US20130298986A1 (en) 2013-11-14
JP5673799B2 (ja) 2015-02-18
JPWO2012131747A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
Shi et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application
Jung et al. High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer
Liu et al. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
Pan et al. MoO3–Au composite interfacial layer for high efficiency and air-stable organic solar cells
Cheng et al. Thermal-annealing-free inverted polymer solar cells using ZnO/Cs2CO3 bilayer as electron-selective layer
Aïch et al. Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells
Chou et al. Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells
Salinas et al. On the use of Woods metal for fabricating and testing polymeric organic solar cells: An easy and fast method
Chochos et al. Synthesis of a soluble n-type cyano substituted polythiophene derivative: A potential electron acceptor in polymeric solar cells
Kim et al. Nanoscale optical and photoresponsive electrical properties of P3HT and PCBM composite nanowires
Chaudhary et al. An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells
Elawad et al. Enhanced performance of perovskite solar cells using p-type doped PFB: F4TCNQ composite as hole transport layer
JPWO2011148717A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
Wu et al. Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells
US20130263916A1 (en) All spray see-through organic solar array with encapsulation
Günes et al. Effect of shifting of aromatic rings on charge carrier mobility and photovoltaic response of anthracene and thiophene-containing MEH-PPE-PPVs
Zhang et al. PTFE/MoO3 anode bilayer buffer layers for improved performance in PCDTBT: PC71BM blend organic solar cells
Lee et al. Improved photovoltaic effect of polymer solar cells with nanoscale interfacial layers
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
Liu et al. Light illumination intensity dependence of current-voltage characteristics in polymer solar cells with solution-processed titanium chelate as electron extraction layer
Bhargav et al. Improved performance of organic solar cells with solution processed hole transport layer
JP5381619B2 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
Kobori et al. Effect of annealing-induced oxidation of molybdenum oxide on organic photovoltaic device performance
JP5673799B2 (ja) 光電変換素子の製造方法及び光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862729

Country of ref document: EP

Kind code of ref document: A1