WO2012131128A1 - Método diva de diferenciación de animales vacunados frente a la brucelosis - Google Patents

Método diva de diferenciación de animales vacunados frente a la brucelosis Download PDF

Info

Publication number
WO2012131128A1
WO2012131128A1 PCT/ES2012/070177 ES2012070177W WO2012131128A1 WO 2012131128 A1 WO2012131128 A1 WO 2012131128A1 ES 2012070177 W ES2012070177 W ES 2012070177W WO 2012131128 A1 WO2012131128 A1 WO 2012131128A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
antigen
brucella
formylperosamine
gram
Prior art date
Application number
PCT/ES2012/070177
Other languages
English (en)
French (fr)
Inventor
Yolanda GIL RAMÍREZ
Maite IRIARTE CILVETI
Ignacio MORIYÓN URÍA
Original Assignee
Universidad De Navarra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Navarra filed Critical Universidad De Navarra
Publication of WO2012131128A1 publication Critical patent/WO2012131128A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/23Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Brucella (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K2039/10Brucella; Bordetella, e.g. Bordetella pertussis; Not used, see subgroups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/23Assays involving biological materials from specific organisms or of a specific nature from bacteria from Brucella (G)

Definitions

  • the invention is attached to the technical field of animal health, in particular the differentiation between animals infected by a bacterium of the Brucella genus of animals vaccinated against said bacterium. STATE OF THE TECHNIQUE
  • Brucellosis is an endemic zoonosis in much of the world. It affects animal health and production, has an important impact on international trade in animals, as well as products derived from them (among others: milk, cheese, dairy products, etc.) and is the cause of brucellosis human Human disease is rarely fatal, but it is disabling, long lasting and can leave permanent sequelae. Its treatment is expensive, because it requires the combination of antibiotics for prolonged periods, with a risk of relapse.
  • Brucellosis is produced by the bacteria of the genus Brucella, which includes several species. Among them, the so-called smooth species (or S “smooth”) infect domestic animals such as ruminants and swine, in addition to wild mammals.
  • LPS lipopolysaccharide
  • S-LPS smooth type
  • O antigen or O chain carrier of a polysaccharide O
  • Some mutants of these smooth species may lose the polysaccharide O on the surface (rough mutants) and, nevertheless, be able to synthesize precursors of the polysaccharide O that remain inside the bacteria.
  • GFP green fluorescent protein
  • the O chain is a polysaccharide, specifically in Brucella it is a homopolymer of perosamine (4-amino-4,6-dideoxy-D-mannose), substituted by formyl groups in N position and that plays an essential role in its antigenic structure ( Bundle, DR et al, Infec ⁇ Immun 1989; 57: 2829-2836).
  • the present invention underlies the manipulation of the O antigen to generate labeled strains that differ antigenically from wild virulent strains, since it has now been proven that at least one epitope characteristic of the labeled strains is generated, useful for differentiating antibodies directed against the vaccine (modified O chain), of those directed against the virulent strains (original O chain) and, therefore, the vaccinated animals of the infected.
  • modify O chain modified O chain
  • substituents other than the formyl group have been incorporated into the perosamine residues.
  • Figure 1 Demonstration of the modification of perosamine and appearance of N-acetylperosamine in the O chain of the BPS-acet LPS. Analysis by 'H-NMR of the O-PS of B.abortus (A) and of BAB-acet (B). At 1 'H / ppm the signal corresponding to methyl group is observed, around 2' H / ppm corresponding to acetyl group, around 4 'H / ppm corresponding to perosamine and around 8' H / ppm corresponding to formyl group.
  • Rabbit serum immunized with BAB-acet not absorbed (triangles); absorbed with BAB-parental (black circles); absorbed with BAB-parental and BABacet (white circles) and negative control (rhombuses). Rabbit serum immunized with s. coli 0157: H7 (squares).
  • FIG. 4 Schematic representation of the construction of the BABAwadB mutant by mutagenesis by phase deletion PCR.
  • the ORF to be removed is represented by a gray arrow (the striped rectangle represents the deleted codons); the regions Intergenic above and below the ORF sequence are represented in black; oligonucleotides used in mutagenesis are indicated as Fl, R2, F3 and R4 (the complementary region between oligos R2 and F3 is represented with lighter stripes); rectangles filled with squares denote kanamycin resistance (KmR) and sucrose sensitivity cassette (sacBR).
  • KmR kanamycin resistance
  • sucrose sensitivity cassette sucrose sensitivity cassette
  • one embodiment thereof consists of a gram-negative bacterium of the Brucella genus comprising an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, characterized in that at least one of the N-formylperosamine residues of said O antigen has been modified by replacing the 4-amino formyl group of perosamine, with an acyl group, other than the formyl group, or by a sugar, selected from the group comprising hexoses and pentoses.
  • the acyl group other than the formyl group that replaces it in the N-formyl perosamine residues is selected from the group consisting of: an acetyl group, a 3-deoxy-L-glycerotetronyl group, a group 3-hydroxypropionyl, an S (+) 2-hydroxypropionyl group and an R (-) 2-hydroxypropionyl group; preferably the acyl group is an acetyl group.
  • gram-negative bacteria are preferred where at least 20%, preferably at least 40% and more preferably at least 60% of the N-formylperosamine residues of the O antigen have been replaced by N-acylperosamine residues other than N-formylperosamine; preferably they have been replaced by N-acetylperosamines.
  • the gram-negative bacteria mentioned above further comprise a heterologous gene encoding:
  • N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines
  • N-glycosyltransferase capable of transferring a sugar, selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen.
  • the aforementioned gram-negative bacteria comprise a heterologous gene encoding an N-acyltransferase capable of transferring an acyl group selected from the group comprising: an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, and a R (-) 2-hydroxypropionyl group; preferably N-acyltransferase is an N-acetyltransferase.
  • the heterologous gene encoding said N-acetyltransferase comes from Escherichia coli 0157: H7, Escherichia hermanii, Vibrio cholerae Hakata, Salmonella group N, Stenotrophomonas maltophila, Citrobacter gillenü, Citrobacter youngae, or Caulobacter crescentus.
  • the gram-negative bacterium of the genus Brucella which is used to carry out this invention is preferably Brucella melitensis Rev-1, Brucella abortus S 19, or the Brucella BABAwadB mutant.
  • all this set of bacteria of the genus Brucella comprising a modified O antigen as described above, are called bacteria of the invention.
  • the present invention also encompasses a product that consists of or comprises, a molecule that, in turn, comprises the LPS O antigen, or an NH, or a biosynthetic precursor thereof, or a fragment of any of the previous, characterized in that:
  • a) comes from a gram-negative bacterium with an O antigen comprising a homopolymer of N-formylperosamine; and where in at least one of the waste
  • N-formylperosamine of the O antigen the 4-amino formyl group of perosamine has been replaced by:
  • an acyl group other than the formyl group; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, a R (-) 2-hydroxypropionyl group ; more preferably the acyl group is an acetyl group; or by
  • a sugar selected from the group comprising hexoses and pentoses; or b) comes from a gram-negative bacterium with an O antigen comprising a heteropolymer formed by residues
  • N-formylperosamine and N-acylperosamine where this N-acylp ero s amine is different from N-formylperosamine, or
  • heteropolymer is formed by N-formylperosamine and N-acetylperosamine residues.
  • a preferred product among those mentioned above is that where the molecule comprising the O antigen comes from a gram-negative bacterium of the Brucella genus of the invention.
  • a preferred embodiment of the invention consists of a product such as those mentioned above, where the molecule comprising the O antigen comes from a genetically modified bacterium, to which a heterologous gene encoding:
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the perosamines of the O antigen; preferably an acyl group selected from the group consisting of: an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, and an R (-) 2-hydroxypropionyl group ; more preferably the enzyme N-acyltransferase is an N-acetyltransferase; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen.
  • Said product has at least 20%, preferably at least 40%> and more preferably, at least 60%> of the O antigen residues, with an N-acylperosamine other than N-formylperosamine; preferably N-acylperosamine is an N-acetylperosamine.
  • N-acylperosamine is an N-acetylperosamine.
  • the set of products is generically referred to as the product of the invention.
  • the invention also describes a process for obtaining a product of the invention as defined above, said process comprising the steps:
  • N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen; where the bacterium is preferably a bacterium of the invention; and b) isolate and / or purify said product of the invention.
  • a subject of the invention is also a method for obtaining antibodies, comprising:
  • Object of the present invention are also the antibodies obtainable by the procedure indicated above. Accordingly, a specific antibody against an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, characterized in that:
  • an acyl group other than the formyl group; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, a R (-) 2-hydroxypropionyl group , and more preferably the acyl group is an acetyl group; or by
  • a sugar selected from the group comprising hexoses and pentoses; or b) said O antigen comprises a heteropolymer formed by residues
  • N-formylperosamine and N-acylperosamine where this N-acylperosamine is different from N-formylperosamine, or
  • N-formylperosamine and S (+) 2-hydroxypropionylperosamine or also
  • the heteropolymer is formed by N-formylperosamine and N-acetylperosamine residues.
  • the antibodies described above are specific against an O antigen that comes from a bacterium of the invention.
  • the different antibodies described above are called antibodies of the invention.
  • the invention also relates to a bacterium of the invention, or a product of the invention, for use in medicine. More specifically, the invention concerns the use of a bacterium of the invention, or a product of the invention, in the manufacture of a medicament or a vaccine.
  • the invention is about a bacterium of the invention, or a product of the invention, for use in the prevention of brucellosis.
  • the invention also comprises the use of a bacterium of the invention, or a product of the invention, in the manufacture of a medicament or a vaccine for the prevention of brucellosis.
  • the invention consists, in turn, of a medicament for the treatment of brucellosis, or a vaccine for the prevention of the occurrence of said disease comprising a bacterium of the invention, or a product of the invention.
  • Another preferred embodiment of the invention consists of a bacterium of the invention, or a product of the invention, or an antibody of the invention, for use in the diagnosis of brucellosis; preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella.
  • the invention also relates to the use of a bacterium of the invention, or a product of the invention, or an antibody of the invention, in the manufacture of a composition, reagent or kit, for the diagnosis of brucellosis; preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella.
  • Another embodiment of the present invention is the use of a marker to differentiate Brucella-infected animals from vaccinated animals against the Brucella, wherein said marker is selected between:
  • an O antigen of an LPS or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, from a bacterium of the invention
  • a DNA or RNA molecule that encodes: i) an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group ; and more preferably the acyl group is an acetyl group; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen;
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group ; and more preferably the acyl group is an acetyl group, the enzyme N-acyltransferase being therefore an N-acetyltransferase; or in front of
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen
  • markers of the invention For the purposes of the present description this set of different markers are called markers of the invention.
  • the invention describes an in vitro diagnostic method for differentiating Brucella-infected animals from vaccinated animals against Brucella, which comprises detecting the presence in an animal sample of a marker selected from:
  • an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment thereof, from a bacterium of the invention a) an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment thereof, from a bacterium of the invention
  • a DNA or RNA molecule that encodes: i) an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, a R (-) 2-hydroxypropionyl group , and more preferably the acyl group is an acetyl group, the N-acyltransferase enzyme being therefore an N-acetyltransferase; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen;
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group , and more preferably the acyl group is an acetyl group, the N-acyltransferase enzyme being therefore an N-acetyltransferase; or in front of
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen
  • the method described above is an immunoassay, preferably selected from an ELISA, a plaque agglutination test and a tube agglutination test.
  • the invention in relation to the above-mentioned method comprises the following steps:
  • a) detect the presence in the sample of specific antibodies against an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the above, from a gram-like bacterium. negative of the Brucella genus, other than a bacterium of the invention;
  • Y b) detect the presence in the sample of specific antibodies against an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the above, from a bacterium of the invention.
  • the method of the invention in a variant, further comprises an intermediate step between a) and b) in which the sample is contacted with a specific ligand to absorb the antibodies detected in a).
  • Said probe or specific ligand to absorb the antibodies detected in a) is selected from the group consisting of:
  • the invention in relation to the diagnostic method, can be carried out in vivo to differentiate Brucella infected animals from vaccinated animals against the Brucella.
  • Said in vivo method in accordance with the present invention, comprises:
  • an N-acyltransferase capable of transferring, to the 4-amino position of the perosamines of the O antigen, an acyl group, distinct from the formyl group; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycol erotetroni lo group, a group or 3-hydroxypropionyl, an S (+) 2-hydroxypropionyl group, an R (- ) 2-hydroxypropionyl, and more preferably the acyl group is an acetyl group, the enzyme N-acyltransferase being therefore an N-acetyltransferase; or of
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen
  • the invention also describes a diagnostic kit, to differentiate Brucella infected animals from vaccinated animals against Brucella, comprising at least one component selected from:
  • an N-acyltransferase capable of transferring, to the 4-amino position of the perosamines of the O antigen, an acyl group, other than the formyl group; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, a R (-) 2-hydroxypropionyl group , and more preferably the acyl group is an acetyl group, the N-acyltransferase enzyme being therefore an N-acetyltransferase;
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen; and e) a polynucleotide for amplifying a gene encoding an N-acyltransferase according to c) or an N-glycosyltransferase according to d); preferably a polynucleotide to amplify the wbdR gene of E. coli 0157: H7; more preferably the polynucleotide sequence is SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, and SEQ.ID.NO. 12.
  • the kit comprises at least one probe or ligand a) for the specific antibodies selected from the group consisting of:
  • the kit of the invention in an alternative, further comprises at least one reagent selected from:
  • the invention also describes a polynucleotide that comprises, or consists of, a sequence selected from: SEQ.ID.NO. 1, SEQ.ID.NO. 2, SEQ.ID.NO. 3, SEQ.ID.NO. 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, or SEQ.ID.NO. 12.
  • SEQ.ID.NO. 1 SEQ.ID.NO. 2
  • SEQ.ID.NO. 3 SEQ.ID.NO. 4
  • SEQ.ID.NO. 5 SEQ.ID.NO. 6
  • SEQ.ID.NO. 9 SEQ.ID.NO. 10
  • SEQ.ID.NO. 11 SEQ.ID.NO. 12.
  • the aforementioned polmucleotides are called polmucleotides of the invention.
  • this also refers to the polmucleotides of the invention for use in the diagnosis of brucellosis and related thereto, the use of the polmucleotides of the invention for the manufacture of a composition, a reagent or a kit for the diagnosis of brucellosis.
  • the invention also relates to a method of prevention and / or treatment of brucellosis in a subject, preferably an animal, which comprises the administration to said subject, preferably an animal, of a therapeutically effective amount of a bacterium of the invention.
  • the invention relates to a gram-negative bacterium of the Brucella genus comprising an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the above (O antigen, LPS, NH or biosynthetic precursors), characterized in that at least one of the N-formylperosamine residues of said O antigen, has been modified by replacing the formyl group, in the 4-amino position of perosamine, by :
  • a sugar selected from the group comprising hexoses and pentoses.
  • bacteria of the invention For brevity, as already mentioned, we will also refer to this gram-negative bacterium of the genus Brucella as "bacteria of the invention”.
  • the Brucella is a smooth Brucella.
  • Smooth bacteria of the Brucella genus are those that comprise a smooth lipopolysaccharide (smooth LPS, LPS-S, or S-LPS) as a component of the outer membrane.
  • This smooth lipopolysaccharide comprises 3 typical domains: lipid A, which allows anchoring of the membrane lipopolysaccharide bacterial extema; the oligosaccharide nucleus; and the polysaccharide O, also referred to as the O chain, O antigen, or O polymer.
  • the Brucella is a rough Brucella mutant that has no O chain attached to the rest of the LPS, but still has biosynthetic precursors thereof in its inside, like smooth bacteria.
  • the O antigen is a polysaccharide which in Brucella essentially comprises an unbranched chain formed by a homopolymer of 4-formamido-4,6-dideoxy-D-mannose residues (alternatively called N-formylperosamine), linked by links to [1-2 ].
  • the native hapten (or also NH) is another polysaccharide component of the bruises, antigenically related to the LPS.
  • the native hapten of these bacteria comprises a homopolymer of N-formylperosamines structurally equivalent to the LPS O antigen, but not bound to the polysaccharide nucleus and lipid A, which we will also call as O antigen or one of its terms equivalent.
  • biosynthetic precussor thereof refers to any polysaccharide or oligosaccharide of free N-formylperosamine in the cytoplasm of a Brucella, or attached to its cellular envelope by means of a lipid of the bactoprenol type.
  • the bacterium of the invention can be any O-chain carrying bacterium of any species of the Brucella genus (smooth or rough) to which a modification has been made as defined in this description.
  • said Brucella is a B. melitensis or a B. abortus or a B. suis.
  • the O-chain carrier Brucella is a vaccine strain of any of the mentioned species.
  • the Brucella is B. melitensis Rev-1, B. abortus SI 9, or B. abortus BABAwadB.
  • the bacterium of the invention is characterized in that at least one of the N-formylperosamine residues of the O antigen of the LPS, NH, biosynthetic precursor thereof or of a fragment of any of the above, is modified, so that the formyl group in the 4-amino position of perosamine is substituted: a) by an acyl group other than the formyl group; or b) for a sugar, which can be a hexose or a pentose.
  • the hexose or pentose that replaces the formyl group may be or be selected from allosa, altrosa, glucose, mannose, gully, galactose, idosa, talose, fructose, sorbose, abecuous, ribose, arabinose, xylose, lyxose, ribulose , or xylulose.
  • acyl group refers to a group derived from oxoacid by elimination of at least one hydroxyl group. It is a structure component R-CO-O-, where R is an aliphatic chain with or without additional groups.
  • the acyl group has been selected from the group comprising: an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, and a R (-) 2-hydroxypropionyl group.
  • the acyl group is an acetyl group, so that the O antigen will comprise at least one N-acetylperosamine (4-acetamido-4,6-dideoxy-D-mannose) residue.
  • the O antigen of the LPS, of the NH, of the biosynthetic precursor thereof or of a fragment of any of the foregoing comprises a heteropolymer formed by N-formylperosamine and N-acylperosamine residues, this being an N -acylperosamine other than N-formylperosamine, or alternatively by N-formylperosamine and N-glycosylperosamine residues. It preferably comprises a heteropolymer formed by residues:
  • N-formylperosamine and R (-) 2-hydroxypropionylperosamine N-formylperosamine and R (-) 2-hydroxypropionylperosamine.
  • the heteropolymer is formed by the alternation of residues N-formylperosamine and N-acetylperosamine.
  • each of the residues can be varied according to the embodiments.
  • at least 20%, preferably at least 40%> and more preferably At least 60% of the N-formylperosamine residues have been replaced by residues of the alternative N-acylperosamine.
  • at least 20%, preferably at least 40% and more preferably at least 60% of the O antigen residues are N-acetylperosamines.
  • the distribution of the two residues in the heteropolymer chain may vary, although it is preferable that the alternation of both residues be homogeneous along the chain.
  • the modified O antigen of the bacterium of the invention has at least one new immunogenic epitope, nonexistent in the field strains, and against which specific antibodies are generated.
  • the bacterium of the invention is therefore antigenically labeled.
  • the bacterium of the invention comprises an O antigen of an LPS, an NH or a biosynthetic precursor thereof, or a fragment of any of the foregoing, so that said, O antigen of an LPS, NH or a biosynthetic precursor thereof, or of a fragment of any of the foregoing, comprises at least one new immunogenic epitope that is not present in field brucellas.
  • field wild or wild refer interchangeably to strains originally obtained from natural hosts.
  • immunogenic epitope capable of generating specific antibodies can be determined, for example, by assays:
  • an immunoassay to determine whether in animals immunized with the bacterium of the invention or with an extract comprising the modified O antigen, specific antibodies against the modified O antigen are generated, for example an agglutination or an ELISA, as described in the example 4; and optionally
  • the bacterium of the invention can be prepared by chemical modification methods, or also by techniques of genetic engineering.
  • the bacterium of the invention is obtained by genetic modification.
  • the bacterium of the invention is a bacterium that further comprises a heterologous gene that encodes
  • N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen.
  • the acyl group that said N-acyltransferase is capable of transferring, or the hexose or pentose that N-glycosyltransferase is capable of transferring, can be any of those previously mentioned in the description of the characteristics of the bacterium O antigen invention.
  • the acyl group is selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, an R (-) 2 group -hydroxypropionyl, and more preferably the acyl group is an acetyl group.
  • the heterologous gene encoding N-acyltransferase can be obtained by cloning the gene of any field bacteria comprising said gene.
  • said gene can be a heterologous gene that encodes a variant of a mutated or modified N-acyltransferase, as long as this variant is capable of transferring the acyl group other than the formyl group to the 4-amino position of the perosamines of the O antigen .
  • said heterologous gene encodes an N-acetyltransferase or a variant thereof capable of transferring an acetyl group to the 4-amino position of perosamine.
  • This heterologous gene may be, among others, the gene encoding an N-acetyltransferase from Escherichia coli 0157: H7, Escherichia hermanii, Vibrio cholerae Hakata, Salmonella group N, Stenotrophomonas maltophila, Citrobacter gillenii, Citrobacter youngae, or Caulobacter crescent
  • the heterologous gene capable of transferring acetyl groups to the indicated position is, for example, the wbdR gene (NCBI; 16.12.2010; ID: 962088; locus tag: z3192; ORF in SEQ ID NO: 7); encoding E. coli N-acetyltransferase 0157: H7.
  • heterologous gene encoding N-acyltransferase or N-glycosyltransferase will be part of and integrated into an expression cassette or transcriptional unit, which allows transcription and production of N-acyltransferase or N-glycosyltransferase in the recipient Brucella of the heterologous gene, and comprising:
  • regulatory-promoter region functional in Brucella, which directs and regulates the transcription of the sequence encoding N-acyltransferase or N-glycosyltransferase;
  • the heterologous gene includes the polynucleotide sequence encoding N-acyltransferase or N-glycosyltransferase and also the rest of the elements that complete the transcriptional unit of the gene in the bacterium from which said heterologous gene is obtained and which regulate the transcription and expression of said N-acyltransferase or N-glycosyltransferase in said bacterium.
  • non-coding polynucleotide sequences could be replaced by others (for example, a promoter region determined by another promoter region different from the previous one can be replaced), or even sequences with additional functionality could be introduced.
  • the resulting heterologous gene will allow the transcription and expression of N-acyltransferase or N-glycosyltransferase in the recipient Brucella of said heterologous gene.
  • expression cassettes that form the heterologous gene; its introduction into expression vectors suitable for the introduction and genetic transfer of heterologous genes in bacteria; as well as the introduction and transfer of said vector to Brucella bacteria can be carried out by conventional genetic engineering and genetic transfer techniques known to those skilled in the art (Sambrook et al., 2001, “Molecular cloning, to Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, NY Vol 1-3 a).
  • An object of the invention is a method for obtaining a bacterium, which comprises transferring an expression vector, capable of expressing in Brucella, to a gram-negative bacterium of the Brucella genus, which comprises a heterologous gene encoding: i) an N acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the perosamines of the O antigen; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen.
  • the expression vector may be for example pYRI-6 (see Table 1).
  • N-acyltransferase or N-glycosyltransferase into the Brucella genome itself.
  • This insertion could be carried out, for example, by using an expression vector derived from the mini-Tn7, for example the mini-Tn7TpUC18T-Gm vector (Choi KH et al, Nat Methods 2005; 2 (6): 443-448 ), which directs the insertion of the heterologous gene to the region immediately downstream of the stop codon of the glms gene (glucosamine-6-phosphate synthetase).
  • the N-acyltransferase can be any N-acyltransferase according to the embodiments described for the bacterium of the invention. In a particular embodiment, it is an N-acetyltransferase with the amino acid sequence depicted in SEQ ID NO: 8, which is encoded by the nucleotide sequence depicted in SEQ ID NO: 7. As already indicated, the bacterium of the invention can be particularly useful in DIVA systems, as a labeled vaccine strain.
  • DIVA means "Differentiation of Infected from Vaccinated Animáis", a term coined in 1999 by JT van Oirschot (Central Veterinary Institute, Netherlands), which enables mass vaccination of a population of susceptible animals, without compromising the serological identification of convalescent individuals. This strategy requires the use of appropriate vaccines and specific diagnostic tests.
  • the invention also relates to a bacterium of the invention for use in medicine or as a medicament or vaccine; and also to the use of a bacterium of the invention in the preparation of a medicament or vaccine; and also to a medicament or vaccine comprising a bacterium of the invention.
  • the invention relates to a bacterium of the invention for the prevention and treatment of brucellosis, and more preferably for the prevention of brucellosis.
  • the invention also relates to the use of a bacterium of the invention in the preparation of a medicament or vaccine for the prevention and treatment of brucellosis, more preferably for the prevention of brucellosis.
  • the invention also relates to a method for the prevention and / or treatment of brucellosis in a subject, preferably an animal, comprising the administration to said subject or animal of a therapeutically effective amount of a bacterium of the invention.
  • a therapeutically effective amount for the purposes of the present specification, should be interpreted as an amount capable of preventing the onset of the disease and / or of remitting the symptoms inherent in said disease in an infected subject or animal until its complete cure.
  • the bacterium of the invention can be useful in the complementary diagnostic methods and kits of a DIVA system, for example as probes or ligands for the binding, absorption and / or capture or blocking of specific antibodies against the O antigen.
  • characteristic of the bacterium of the invention present in a biological sample of a subject or animal; or as a control reagent.
  • the invention also relates to the use of a bacterium of the invention in the preparation of a composition, reagent or diagnostic kit, preferably for the diagnosis of brucellosis, more preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the use of a bacterium of the invention in the preparation of a composition, reagent or kit for DIVA diagnosis of brucellosis.
  • the invention also relates to a bacterium of the invention for diagnostic use, preferably for diagnosis of brucellosis, more preferred for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the bacterium of the invention for use in DIVA diagnosis of brucellosis.
  • a modified O antigen in the manner indicated may also be useful, for example, in vaccine compositions comprising cell fractions (subcellular vaccines) or as a reagent in methods and kits for diagnosis.
  • the invention relates to a product consisting of, or comprising, a molecule comprising, in turn, the LPS O antigen, of NH, of a biosynthetic precursor thereof, or of a fragment of any of the above, characterized in that:
  • a) comes from a gram-negative b-acteria whose O antigen comprises a homopolymer of N-formylperosamines and where at least one of the N-formylperosamine residues of the O antigen, the 4-amino positionyl group of perosamine has been replaced by:
  • a sugar selected from the group comprising hexoses and pentoses; or b) comes from a gram-negative bacterium with an O antigen comprising a heteropolymer formed by residues
  • N-formylperosamine and N-acylperosamine where this N-acylperosamine is different from N-formylperosamine, or
  • the substituent is an acyl group other than the formyl group, it is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+ ) 2-hydroxypropionyl and an R (-) 2-hydroxypropionyl group; and more preferably the acyl group is an acetyl group.
  • the sugar is selected from alosa, altrosa, glucose, mannose, gulose, galactose, idosa, talose, fructose, sorbose, abecuous, ribose, arabinose, xylose, lyxose, ribulose, or xylulose.
  • N-formylperosamine and S (+) 2-hydroxypropionylperosamine or also
  • the heteropolymer consists of N-formylperosamine and N-acetylperosamine residues.
  • the product is a composition or mixture containing the molecule of the invention comprising said O antigen, for example a bacterial extract or fraction comprising the LPS, NH, or biosynthetic precursors thereof, or a fragment of any of these.
  • said composition or mixture is a medicament or a vaccine comprising the molecule of the invention.
  • the O antigen of the molecule of the invention comes from Brucella.
  • the O antigen of the molecule of the invention comes from a genetically modified bacterium, to which a heterologous gene encoding an N-acyltransferase or N-glycosyltransferase has been introduced as defined above in the description of the bacterium of the invention; preferably N-acyltransferase is an N-acetyltransferase.
  • said genetically modified bacterium is a bacterium of the invention.
  • the O antigen of the molecule of the invention can also come from a gram-negative bacterium other than Brucella and which, with the introduction of the heterologous gene encoding a suitable N-acyltransferase or N-glycosyltransferase, is capable of producing an LPS, a NH, biosynthetic precursors thereof, or a fragment of any of the foregoing, with an O antigen having the heteropolymeric structure already indicated.
  • the Yersinia enterocolitica serotype 0: 9 O antigen is essentially formed by a chain of a homopolymer of N-formylperosamines with a structure similar to that of the Brucella O antigen.
  • the proportion of each of the residues in the O antigen of the molecule of the invention may vary according to embodiments.
  • at least 20%, preferably at least 40%> and more preferably at least 60%> of the residues are N-acylperosamine other than N-formylperosamine.
  • at least 20%>, preferably at least 40%) and more preferably at least 60%> of the O antigen residues are N-acetylperosamine.
  • the invention relates to a method for obtaining the product with the molecule of the invention, comprising:
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen; Y b) isolate and / or purify said product.
  • N-acyltransferase and N-glycosyltransferase have been described previously in describing the bacteria of the invention.
  • the gram-negative bacterium is preferably a bacterium of the invention (a genetically modified Brucella as described above).
  • culture under suitable conditions refers to the fact that it is grown under conditions that allow the expression and production of the N-acyltransferase or N-glycosyltransferase encoded by the heterologous gene and under suitable conditions for this enzyme to act, thus forming the LPS , NH and biosynthetic precursors thereof, or a fragment of any of the foregoing, containing the modified O antigen.
  • suitable conditions for this enzyme to act, thus forming the LPS , NH and biosynthetic precursors thereof, or a fragment of any of the foregoing, containing the modified O antigen.
  • the isolation and purification of the product can be carried out by conventional methods for the isolation and purification of LPS, NH, biosynthetic precursors thereof, or a fragment of any of the above, containing the commonly used O antigen in bacteriology.
  • Some suitable methods for isolation and purification can be found in Aragón et al. (J Bacteriol
  • the product of the invention for the prevention and treatment of brucellosis more preferably for the prevention of brucellosis; or in other words, the use of the product of the invention in the preparation of a medicament or vaccine for the prevention and treatment of brucellosis, more preferably for the prevention of brucellosis;
  • a method for the prevention and treatment of brucellosis in a subject or animal comprising administering to said subject or animal a therapeutically effective amount of the product of the invention;
  • the use of the product of the invention in the preparation of a composition, reagent or diagnostic kit preferably for the diagnosis of brucellosis; more preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the use of the product of the invention in the preparation of a composition, reagent or kit for DIVA diagnosis of brucellosis;
  • the product of the invention for diagnostic use preferably for the diagnosis of brucellosis, more preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the product of the invention for use in the DIVA diagnosis of brucellosis;
  • the inoculation or immunization of an animal with the bacterium, molecule or product of the invention causes the formation of specific antibodies against the modified O antigen already described.
  • These specific antibodies are antibodies that do not recognize, that is to say that they do not form immune antigen-antibody complexes with the O-antigen of field bristles, constituted by the homopolymeric chain of N-formylperosamines.
  • the invention also relates to a specific antibody against an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, characterized in that :
  • a sugar selected from the group comprising hexoses and pentoses; or b) said O antigen comprises a heteropolymer formed by residues
  • N-formylperosamine and N-acylperosamine where this N-acylperosamine is different from N-formylperosamine, or ii) N-formylperosamine and N-glycosylperosamine.
  • the formyl group substituent is an acyl group selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3- hydroxypropionyl group, an S (+) 2 hydroxypropionyl group, an R ( -) 2-hydroxypropionyl, and more preferably it is an acetyl group.
  • the heteropolymer is formed by residues
  • the antibody is specific for an O antigen that comes from a gram-negative bacterium of the Brucella genus, preferably from a bacterium of the invention.
  • the immunization and antibody acquisition steps can be performed according to conventional methods and techniques for obtaining antibodies, all of them techniques known by the person skilled in the art (Hay, FC and Westwood, OMR, 2002. Practical Immunology, 4rth edition, Blackwell Science Ltd., Oxford. ISBN: 978-0-86542-961-1).
  • the antibodies described in this section for diagnostic use, preferably for diagnosis of brucellosis, more preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the antibodies described above for use in the DIVA diagnosis of brucellosis.
  • Methods, reagents and kits for diagnosis of brucellosis preferably for diagnosis of brucellosis, more preferably for the differentiation of Brucella infected animals from vaccinated animals against Brucella; or in other words, the antibodies described above for use in the DIVA diagnosis of brucellosis.
  • the characteristic of the modified O chain of the bacterium and product of the invention of generating a new immunogenic epitope can be very useful and can be exploited as a marker in a system for DIVA diagnosis of brucellosis.
  • the invention relates in a further aspect to the use of a marker to differentiate Brucella-infected animals from vaccinated animals against the Brucella, wherein said marker is selected from:
  • an O antigen of an LPS or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, from a bacterium of the invention
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- group hydroxypropionyl, a R (-) 2-hydroxypropionyl group; and more preferably the acyl group is an acetyl group; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen;
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group ; and more preferably the acyl group is an acetyl group, the enzyme N-acyltransferase being therefore an N-acetyltransferase; or in front of
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen
  • markers of the invention For the purposes of the present description, as mentioned above, the aforementioned markers will hereinafter be referred to as markers of the invention.
  • the invention relates in another aspect to an in vitro diagnostic method, to differentiate Brucella-infected animals from vaccinated animals against Brucella (animals vaccinated with a bacterium of the invention), which comprises detecting the presence in a sample of the animal of a bookmark selected from:
  • an O antigen of an LPS or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the foregoing, from a bacterium of the invention
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines;
  • the group acyl is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group, and more preferably the acyl group is an acetyl group, the enzyme N-acyltransferase being therefore an N-acetyltransferase; or
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen;
  • an N-acyltransferase capable of transferring an acyl group, other than the formyl group, to the 4-amino position of the O antigen perosamines; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2- hydroxypropionyl group, a R (-) 2-hydroxypropionyl group , and more preferably the acyl group is an acetyl group, the N-acyltransferase enzyme being therefore an N-acetyltransferase; or in front of
  • N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen
  • the diagnostic method hereinafter referred to as the DIVA method of the invention, can be performed on any biological sample of the animal.
  • it can be performed on any type of biological fluid; preferably on a sample of blood serum, whey or tears.
  • the sample is blood serum.
  • the detection of the marker of the invention can be carried out by means of conventional biomarker detection techniques, selected according to the chemical characteristics of the chosen marker and the requirements of the specific application.
  • biomarker detection techniques selected according to the chemical characteristics of the chosen marker and the requirements of the specific application.
  • Immunoassay techniques hybridization and DNA amplification techniques (eg PCR), and combinations thereof can be used.
  • the DIVA diagnostic method is an immunoassay.
  • An "immunoassay” refers to any analytical immunochemical technique that includes in some of its stages the formation of immune complexes, that is to say those resulting from the conjugation of antibodies and antigens, as quantification references of an analyte (substance present in the sample which is the object of analysis) determined.
  • the analyte can be the antibody [eg, in our method the antibodies of the markers of the invention b) od)] or the antigen of the invention [eg, in our method the antigen O of the marker a)] .
  • the immunoassay is an immunoassay for the detection of a specific antibody against the O antigen from a bacterium of the invention.
  • the method of immunoens a is selected from an ELI SA (direct, indirect or competitive), an agglutination test (eg a plate agglutination, for example, with Bengal Rose antigen), tube agglutination, complement fixation and fluorescence polarization assay).
  • Rosa Bengal antigen immunoassay is a method that detects binding antibodies using inactivated Brucella cells, stained with Rose Bengal and suspended in an acidic buffer that potentiates algutination against Brucella smooth LPS.
  • the DIVA diagnostic method by immunoassay comprises the following steps:
  • fragment means a part or partial sequence with antigenic capacity, obtained from an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof.
  • the objective of step a) is to identify the presence in the antibody sample against the distinctive epitopes of the natural, unmodified O antigen, of the LPS, of the NH, of biosynthetic precursors thereof, or of a fragment of any of the above, of the bacteria of the genus Brucella (homopolymeric chain of N-formylperosamines).
  • any Gram-negative bacterium of the genus Brucella whose antigen O keeps its immunogenic properties unchanged, eg a field Brucella can be used as a probe or ligand. This probe or ligand would act as an antigen in complex or immune formation with the antibody.
  • Any product that contains a molecule comprising the O antigen (immunogenically unchanged) of the LPS, of NH, of a biosynthetic precursor thereof, or of a fragment of any of them p. eg a bacterial extract).
  • a bacterium of the invention (preferably the one that was used as a vaccine strain in the vaccination campaign) is used as a probe or ligand, or a molecule of the invention comprising the O antigen from said bacterium of the invention.
  • probes or ligands that allow specific binding of these antibodies eg a molecule, or a bacterium containing it
  • these antibodies eg a molecule, or a bacterium containing it
  • N-formylperosamine and N-acylpero s amine residues could also be used [ or N-glycosylperosamine according to the embodiment] than the O antigen of the bacterium of the invention, for example an antigen from other gram-negative bacteria, or molecules obtained by chemical synthesis).
  • the probes or ligands used in steps a) and b) can be either suspended or fixed to a substrate.
  • the immunoassay further comprises, at an intermediate stage between steps a) and b), contacting the sample with a specific ligand to absorb the antibodies detected in step a).
  • This specific ligand can be for example a Field Brucella, or an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of these, originating from a Field Brucella.
  • the immunoassay can be carried out using a double Rose Bengal.
  • the sample eg a serum
  • the classic Bengal Rose with bacteria of the same antigenic structure as the field strains.
  • the sample is absorbed with smooth field compasses (intermediate stage) and then in stage c), a second modified Bengal Rose is made with a suspension of a bacterium of the invention [the same which was used as a complementary vaccine strain of the DIVA system (for example BABacet, which has an O antigen with acetylated residues)].
  • a positive reaction at this stage c) would indicate that the sample has antibodies against the new epitope formed, as the case may be, by the N-acylperosamine (different from the N-formylp ero s amine; eg N-acetylperosamine) or by N-glycosylperosamine; and that, therefore, comes from a vaccinated animal.
  • N-acylperosamine different from the N-formylp ero s amine; eg N-acetylperosamine
  • N-glycosylperosamine N-glycosylperosamine
  • the immunoassay can be carried out by a double enzyme immunoassay.
  • the sample eg a serum
  • an indirect ELISA with antigens of the same antigenic structure as the field strains.
  • the sample is absorbed with smooth br ⁇ celas de camp o (etap a interme di a); and, then, etap ac), a second enzyme immunoassay is performed with plates coated with the bacterium or molecule of the invention [the same one that was used as a complementary vaccine strain of the DIVA system (for example BABacet, which has an O antigen with acetylated residues)].
  • a positive reaction at this stage c) would indicate that the sample has antibodies against the new epitope formed, according to the case or, for N-acylperosamine (other than N-formylperosamine; eg N-acetylperosamine) or by N-glycosylperosamine; and that, therefore, comes from a vaccinated animal.
  • N-acylperosamine other than N-formylperosamine; eg N-acetylperosamine
  • N-glycosylperosamine e.g., a negative reaction in this second trial, but positive in the first one, would indicate an infection.
  • the immunoassay can be carried out by means of a competition enzyme immunoassay.
  • the sample eg a serum
  • the bacterium or molecule of the invention [the same as it was used as a complementary vaccine strain of the DIVA system (for example BABacet, which has an O antigen with acetylated residues)] in the presence of an antibody, hence the term "competition” is used, against the characteristic epitope (s) new (s) of the O antigen of the bacterium of the invention, previously labeled with an enzyme.
  • the invention relates to an in vivo method of DIVA diagnosis of brucellosis in an animal, which comprises inoculating the animal intracutaneously with a suitable dose, according to its species and weight.
  • the DIVA method of the invention comprises detecting in the sample a DNA or RNA molecule that encodes an N-acyltransferase capable of transferring, to the 4-amino position of the perosamines of the O antigen, an acyl group other than the formyl group ; or an N-glycosyltransferase capable of transferring to that same position a sugar selected from the group comprising hexoses and pentoses.
  • the detection can be performed by hybridization and amplification, using for example one of the following initiator pairs:
  • a polynucleotide comprising, or consisting of, a sequence selected from SEQ.ID.NO . 1, SEQ.ID.NO. 2, SEQ.ID.NO. 3 SEQ.ID.NO. 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11 and SEQ.ID.NO. 12; as well as the use of any of said polynucleotides for the molecular diagnosis of brucellosis, particularly for DIVA diagnosis.
  • the invention also includes the use of any of the aforementioned polynucleotides in the manufacture of brucellosis diagnostic compositions, reagents or kits, particularly of the DIVA type.
  • the invention relates to a diagnostic kit, to differentiate Brucella infected animals from vaccinated animals against Brucella, which comprises at least one component selected from:
  • an N-acyltransferase capable of transferring, to the 4-amino position of the perosamines of the O antigen, an acyl group, other than the formyl group; wherein the acyl group is preferably selected from the group comprising an acetyl group, a 3-deoxy-L-glycerotetronyl group, a 3-hydroxypropionyl group, an S (+) 2-hydroxypropionyl group, a R (-) 2-hydroxypropionyl group ; and more preferably the acyl group is an acetyl group, where, therefore, the N-acyltransferase enzyme an N-acetyltransferase;
  • an N-glycosyltransferase capable of transferring a sugar selected from the group comprising hexoses and pentoses, to the 4-amino position of the perosamines of the O antigen; Y e) a polynucleotide to amplify a gene encoding an N-acyltransferase according to c) or an N-glycosyltransferase according to d), preferably to amplify the wbdR gene of E. coli 0157: H7; more preferably the polynucleotide sequence is selected from: SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11 and SEQ.ID.NO. 12.
  • the kit comprises a probe or ligand for the specific antibodies as described in section a) selected from the group consisting of:
  • the kit further comprises at least one reagent selected from: a) a molecule comprising an O antigen of an LPS, or of an NH, or of a biosynthetic precursor thereof, or of a fragment of any of the above, from a gram-negative bacterium of the genus Brucella, other than a bacterium of the invention; or
  • O antigen is the characteristic O antigen of the field compasses, formed by a homopolymer of N-formylperosamines.
  • Bacterial strains and plasmids The relevant characteristics of the bacterial strains and plasmids used are presented in Table 1.
  • E. coli wbdR acetyltransferase
  • pDONR221 Cloning vector It contains the Invitrogen; Cod. 12535029
  • the bacteria were grown in tripticase-soy broth (TSB, BioMérieux) or in TSB plates with 1.5% bacteriological agar (TSA, Pronadisa). If necessary, for example when injecting bacteria carrying plasmid pYRI-6, the culture media were supplemented with 50 ⁇ g / mL kanamycin (Km) or 20 ⁇ g / mL chloramphenicol (Cm) or 25 ⁇ g / mL nalidixic acid (Nal ) or 1.5 ⁇ g / mL polymyxin (Pmx). The strains were preserved in vials with skim milk at -80 ° C (Scharlau).
  • the mutant in ORF BAB1 0351 was constructed by phase deletion, eliminating the region encoding the catalytic domain, using the genomic DNA of B. abortus 2308 as a template ( Figure 4).
  • the deletion was made maintaining the reading frame so that it did not have polar effects that altered the reading frame of adjacent genes.
  • the primers used were designed from the sequence of B. abortus 2308 available in the NCBI database (ht ⁇ : // w w.iicbi.nlra.nih.gov/ as of 02/15/2011).
  • the mutant strain obtained was called BABAwadB.
  • two primers called wadB-F ⁇ SEQ ID NO: 3
  • wadB-R2 SEQ ID NO: 4
  • wadB-F3 SEQ ID NO: 5
  • wadB-R4 SEQ ID NO: 6
  • 139 bp subsequent to the stop codon (codon siop) of the wadB gene.
  • Both fragments obtained were ligated by superposition PCR using on the one hand the primers wadB-F ⁇ (SEQ ID NO: 3) and wadB-R4 (SEQ ID NO: 6) for their amplification and the complementary regions of the wadB- primers R2 (SEQ ID NO: 4) and wadB-F3 (SEQ ID NO: 5) for overlap.
  • the resulting fragment which contains the deletion allele of the wadB gene, was cloned into the vector pCR2.1 (Invirogen, Barcelona, Spain), giving rise to plasmid pYRI-1, which was subjected to a sequencing process to guarantee the maintenance of the reading frame and subsequently subcloned into the BamHI and Xbal positions of the suicide plasmid pJQK (Scupham and Triplett, Gene 1997; 202: 53-59).
  • the resulting mutant plasmid (pYRI-2) was introduced by transformation into E. coli S17. -pyr (Simón et al; Nature Biotechonology 1983; 1: 784-791) and then transferred to the bacterial strain B. abortus 2308 by conjugation.
  • the exconjugants where the first recombination had occurred were selected in tripticase-soy agar (TSA) plates with nalidixic acid (25 ⁇ g / mL) and kanamycin (50 ⁇ g / mL).
  • TSA tripticase-soy agar
  • kanamycin 50 ⁇ g / mL
  • the bacteria were grown in the absence of kanamycin and were selected in TSA plates with 5% nalidixic acid and sucrose.
  • the resulting colonies were selected by PCR using the wadB-F ⁇ (SEQ ID NO: 3) and wadB-R4 (SEQ ID NO: 6) primers, which amplify a 570 bp fragment in the mutant and a 1011 fragment pb in the parental strain.
  • the generated mutation resulted in a 60% loss of the coding region of the wadB gene and an 88% loss of the glycosyltransferase domain.
  • the mutant strain as mentioned above, was named BABAwadB.
  • the E. coli strain (0157: H7) containing the wbdR gene that codes for the acetyl transferase used in the present invention to modify the Brucella strains is deposited in the Spanish Type Culture Collection, in the Pa ⁇ erna Science Park (Valencia , Spain), with the number CECT4783 (year 1996).
  • pYRI-6 Construction of plasmid pYRI-6.
  • the construction of pYRI-6 was carried out using the "Gaieway® Recombination Cloning Technology" system from Invi ⁇ rogen.
  • the primers wbdR a ⁇ Fw (SEQ ID NO: 1) and wbdR a ⁇ Rv (SEQ ID NO: 2) specific to wbdR (ORF z3192; SEQ ID NO: 7), which encodes the O-chain oily transferase in E. coli 0157: H7 (SEQ ID NO: 8), were designed according to the manufacturing instructions and synergized by Sigma-Genosys Lid. (Haverhill, Uni ⁇ ed Kingdom).
  • Plasmid pYRI-6 was introduced into E. coli S I 7-1 ⁇ and transferred to B. abortus 2308, by conjugation, thus obtaining the modified bacteria BAB-acet. Plasmid-bearing conjugates were selected in the tripticase-soy culture medium with bacteriological agar (TSA) and supplemented with nalidixic acid (Nal) and chloramphenicol (Cm), as described in example 1 (TSA-Nal-Cm) , at 37 ° C. These markers and the results of Example 2 demonstrate the presence of the plasmid and its genes in the construct.
  • TSA tripticase-soy culture medium with bacteriological agar
  • Nal nalidixic acid
  • Cm chloramphenicol
  • B. abortus 2308 gene carrier (wbdR) of an acetyl transferase expresses normal amounts of a smooth O-chain LPS containing N-acetylperosamine.
  • the BAB-parental LPS was extracted using the phenol method: water described by Leong et al. (Leong D. et al, Infec ⁇ Immun 1970; 1: 174-182) and adapted to Brucella by Aragón et al., J Bacteriol. , nineteen ninety six; 178: 1070-1079; Velasco et al, Infec ⁇ Immun 2000; 68: 3210-3218).
  • the aforementioned protocol was modified using 6 volumes of methanol and 1% methanol saturated with sodium acetate.
  • the cell debris was removed by centrifugation (20,000 xg, 15 min, 4 ° C), and the supernatant was precipitated with 3 volumes of methanol and 1% methanol saturated with sodium acetate for 1 h at -20 ° C.
  • the precipitate was resuspended in 10 mL of distilled water and precipitated again under the same conditions.
  • the new precipitate was resuspended in 2-3 mL of 62.5 mM Tris-Hcl buffer (pH 6.8) by ultrasound, treated with DNase (Sigma-Aldrich) and RNAase (Mobio), both at a final concentration of 10 ⁇ g / mL, at 37 ° C for 30 min and then with proteinase K at 55 ° C for 3h and one night at room temperature. Finally, the sample was precipitated using the conditions described above, settled (5,000 xg, 15 min, 4 ° C) and the solvent residues were evaporated with a stream of nitrogen. NMR-H analysis 1 . The spectra were performed at 25 and 70 ° C in a solution of
  • the mixture was frightened and neutralized with a 0.2M NaOH solution, followed by centrifugation 5000 xg, 10 min, the recovered supernatant was precipitated with 5 volumes of ethanol at -20 ° C for 24 h.
  • the mixture was then centrifuged at 5000 xg, 10 min, the precipitate was recovered and dialyzed for 3 cycles in acid methanol: distilled water (50:50 v / v) followed by 3 cycles in distilled water to remove the remains of SDS Finally, the sample (O chain) was recovered by centrifugation under the conditions mentioned above, resuspended in ultrapure water, lyophilized and its purity was evaluated by double gel diffusion.
  • Coagglutination It was performed following the technique described by (D ⁇ az et al, Laboratorio (Granada) 1980; 70: 509-525). Bacteria resuspended in saline were mixed with 10 ⁇ L of a suspension of staphylococci sensitized with serum from rabbits infected with smooth bruises.
  • the LPS of BAB-acet and the parental strain were subjected to acid hydrolysis and the resulting polysaccharide was purified by chromatography and analyzed by 1 H-NMR. While the polysaccharide spectrum of the parental strain showed the signals described for the homopolymers of N-formylperosamine in links to (1, 2) (Perry and Bundle, Advances in brucellosis research. Texas A & M.
  • Example 3 The presence of wbdR-dependent N-acetylperosamine in the O chain eliminates the typical A-epitope of the LPS-S of B. abortus.
  • Monoclonal antibodies Monoclonal monoclonal antibodies against epitopes A, M and C used have been described in previous studies (Monreal et al, Infec. Immun 2003; 71: 3261-3271 González et al., PlosOne 2008 3: e2760).
  • ELISA ELISA It was performed on 96-well flat bottom polystyrene plates (Thermo Scientific). The antigen used (LPS of BAB-parental, BAB-acet or E. coli 0157 ⁇ 7) was adsorbed to the plate at a concentration of 2.5 ⁇ g / ml or 5 ⁇ g / ml in PBS. Incubation was performed at 4 ° C overnight. After several washes with PBS-Tween 20 (PBS-T), successive dilutions of the antibodies were added and incubated 5 hours at 37 ° C.
  • LPS antigen used
  • the plates were then washed three times with PBS-T and, for the detection of the antigen-antibody complexes, a mouse anti-Ig conjugate (Nordic was used Immunological Laboratories, Tilburg, Holland) labeled with peroxidase.
  • the development was performed with 0.2 mM ABTS and 0.13 mM / H 2 0 2 in citrate buffer solution for 15 to 30 min at room temperature, in the dark and with stirring. The absorbance was measured at 405 nm. To determine whether the presence of the acetyl group alters the epitopes A and C characteristic of B.
  • the epitope A requires five or more consecutive N-formylperosamines bound together (at 1-2), while epitope C is associated with four or less consecutive N-formylperosamines bound together (at 1-2) (which could include to a greater or lesser extent a link (to 1-3), depending on the degree of overlap.) Therefore, the acetylation generated eliminates the continuity of five N-formylperosamines in bond ( ⁇ 1 -2), but respects four or less. Therefore, these results not only demonstrate the disappearance of the epitope A typical of B. abortus, but also indicate that the N-acetylperosamine has not been concentrated in a section of the O chain, but has been distributed homogeneously, otherwise, the epitope A. would remain.
  • Example 4 The presence of wbdR-dependent N-acetylperosamine in the O-chain of the B. abortus LPS generates new epitopes.
  • the maintenance and slaughter of the animals was carried out following the Spanish (RD 1201/2005) and European (directive 86/609 / EEC) regulations in force under the supervision of the Ethical Committee of the Animal Maintenance Service of the Institution.
  • the rabbit immunoserum was contacted with a suspension of these phenol-inactivated bacteria at a rate of 1 mg. bacteria / 100 ⁇ of serum.
  • the mixture was incubated at room temperature for 4 h with timely stirring, centrifuged at 13200 rpm for 10 min (Eppendorf 5415R centrifuge) and the supernatant recovered. The same procedure was repeated with this supernatant once more, and the resulting final supernatant was considered free of antibodies against B. abortus 2308.
  • the same procedure was followed, but using bacteria of BAB-acet inactivated with phenol.
  • Coagglutination It was performed following the technique described by (D ⁇ az et al, Laboratorio (Granada) 1980; 70: 509-525). Bacteria resuspended in saline serum were mixed with 10 ⁇ of a suspension of staphylococci sensitized with rabbit serum immunized with BAB-acet and absorbed with whole BAB-parental cells.
  • ELISA ELISA It was performed on 96-well flat bottom polystyrene plates (Thermo Scientific). The antigen used (LPS of BAB-parental, BAB-acet or E. coli 0157: H7) was adsorbed to the plate at a concentration of 2.5 ⁇ g / ml or 5 ⁇ g / ml in PBS. Incubation was performed at 4 ° C overnight. After several washes with PBS-Tween 20 (PBS-T), successive dilutions of the sera were added and incubated 5 hours at 37 ° C.
  • PBS-T PBS-Tween 20
  • the plates were then washed three times with PBS-T and, for the detection of antigen-antibody complexes, a goat anti-rabbit conjugate (Nordic Immunological Laboratories, Tilburg, Holland) labeled with peroxidase was used.
  • the development was performed with 0.2 mM ABTS and 0.13 mM / H 2 0 2 in citrate buffer solution for 15 to 30 min at room temperature, in the dark and with stirring. The absorbance was measured at 405 nm.
  • Example 5 Epitopes generated by N-acetylperosamine do not stimulate antibodies that react in diagnostic tests of brucellosis.
  • Coagglutination and ELISA were carried out as in example 4 above.
  • the LPS-S there are two types of diagnostic tests for brucellosis: those that use purified LPS-S and those that employ smooth phase suspension of bruises.
  • the first prototype is the ELISA with LPS-S of B. abortus; that of the second the Bengal Rose test.
  • the reaction involves antibodies of the IgG, IgM and IgA classes.
  • Example 4 with an ELISA with BPS-parental LPS-S ( Figure 3, panel A) and the specific immunoserum (absorbed immunoserum) of the epitopes associated with N-acetylperosamine demonstrate that these epitopes do not generate detectable antibodies in the tests of the first type.
  • the Bengal Rose test was mixing 30 ⁇ of the immunoabsorbed serum or without absorbing with 15 ⁇ of the commercial antigen (Veterinary Laboratories Agency, New Haw Addlestone, UK) and this mixture was incubated with orbital agitation for 8 minutes. After this time, the test was read.
  • Coagglutination and ELISA were carried out as in example 4 above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Communicable Diseases (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)

Abstract

Método DIVA de identificación de animales vacunados frente a la brucelosis. Se describen cepas de Brucella modificadas en su antígeno O, de forma que producen un nuevo epítopo inmunogénico, distinto a los producidos por las cepas de Brucella silvestres y que permite diferenciar, por consiguiente, a los animales vacunados de los infectados sin vacunar.

Description

MÉTODO DIVA DE DIFERENCIACIÓN DE ANIMALES VACUNADOS FRENTE A LA BRUCELOSIS
OBJETO DE LA INVENCION
La invención se adscribe al campo técnico de la sanidad animal, en concreto a la diferenciación entre animales infectados por una bacteria del género Brucella de los animales vacunados frente a dicha bacteria. ESTADO DE LA TECNICA
La brucelosis es una zoonosis endémica en gran parte del mundo. Afecta a la sanidad y la producción animal, tiene una importante repercusión en el comercio internacional de animales, así como de los productos derivados de los mismos (entre otros: leche, quesos, derivados lácteos, etc.) y es la causa de la brucelosis humana. La enfermedad humana es rara vez mortal, pero es invalidante, de larga duración y puede dejar secuelas permanentes. Su tratamiento es costoso, pues precisa de la combinación de antibióticos durante periodos prolongados, con riesgo de recaídas. La brucelosis es producida por las bacterias del género Brucella, que incluye varias especies. De entre ellas, las llamadas especies lisas (o S "smooth") infectan a animales domésticos como rumiantes y suidos, además de mamíferos salvajes. Estas especies lisas llevan en su superficie un antígeno característico, el lipopolisacárido (LPS) de tipo liso (S-LPS), portador de un polisacárido O (también llamado antígeno O ó cadena O). Algunos mutantes de estas especies lisas pueden perder el polisacárido O en la superficie (mutantes rugosos) y, sin embargo, ser capaces de sintetizar precursores del polisacárido O que permanecen en el interior de la bacteria.
No hay vacunas para uso humano, y el control de la brucelosis se basa en la vacunación animal, con la subsiguiente identificación de los animales infectados y la eliminación de éstos. La única evidencia segura de la infección por Brucella es el aislamiento en cultivo, pero dada su dificultad técnica, costo y riesgos, las pruebas serológicas son la herramienta diagnóstica más común. La vacunación animal es el pilar más importante en el control y la erradicación de la enfermedad. Sin embargo, las vacunas animales existentes son portadoras de un LPS de tipo liso y estimulan una respuesta inmune frente a la cadena O muy semejante a la de la infección. Este problema es muy importante, ya que dificulta o hace imposible distinguir los animales vacunados de los infectados cuando, por ejemplo, se produce un brote epidémico, pues el diagnóstico está basado en la detección de anticuerpos frente a la cadena O del LPS de tipo liso.
Las únicas vacunas frente a la brucelosis empleadas con éxito en animales son vacunas vivas atenuadas. La dos vacunas clásicas de referencia, B. abortus SI 9 en gañado vacuno y B. melitensis Revi en ganado ovino y caprino, han demostrado su eficacia tanto en experimentos controlados como en el uso en el campo. Sin embargo conservan la cadena O del LPS, que es el antígeno inmuno- dominante en las pruebas serológicas. Por lo tanto, su uso interfiere en el diagnóstico y dificulta la diferenciación entre animales vacunados e infectados.
Hasta el momento, se han empleado varias estrategias de uso de estas vacunas para minimizar, que no eliminar totalmente, la problemática de diferenciar entre animales vacunados y animales infectados (Nicoletti P, Vaccination. Animal Brucellosis. CRC Press, Boca Ratón, 1990;283-299; Blasco JM, Prev Vet Med 1997:31 :275-283), como son:
1 ) acotar la vacunación a animales j óvenes
2) emplear dosis vacunales reducidas en adultos.
3) utilizar la vía conjuntival como ruta para la vacunación, en vez de la subcutánea.
Estas estrategias están basadas en la observación de que (1), los animales que no han alcanzado la madurez sexual producen una respuesta de anticuerpos frente a al LPS de Brucella de más corta duración que los adultos; (2), la menor carga antigénica existente en una dosis reducida; y (3), el que la vía conjuntival distribuye la vacuna directamente a los ganglios linfáticos peri-exofágicos y, de esta forma, las brúcelas alcanzan más rápidamente las células diana (células dendríticas del nodulo linfático). Aunque estas estrategias reducen la intensidad y duración de los anticuerpos frente a la cadena O del LPS, no resuelven completamente el problema y, además, son inaplicables en la mayoría de los países, o en áreas geográficas de cría extensiva, pues requieren sistemas de mareaje y control de los animales y servicios veterinarios muy eficientes y costosos.
También se han investigado pruebas diagnósticas que, aunque utilizan como antígeno el S-LPS, el polisacárido O o el hapteno nativo (NH), son sensibles a la cantidad y afinidad de los anticuerpos, habitualmente mayores en la infección que en la vacunación. Sin embargo, ninguna de las soluciones técnicas anteriormente mencionadas permite diferenciar animales vacunados de animales infectados con sensibilidad y especificad del 100% en todos las estrategias de vacunación, particularmente en la vacunación de adultos (W091/06633, Nielsen K, Vet Microbio! 2002;90:447-459; Moriyón, L, et al, Vet Res 2004;35: 1-38). Finalmente, se han investigado modificaciones de las vacunas para anular este problema. Una de ellas son las vacunas mutantes rugosas, desprovistas del polisacárido O unido al resto del LPS en la superficie de la bacteria, pero éstas no son suficientemente efectivas (W093/16728; Moriyón, L, et al, Vet Res 2004;35: 1-38; González D, et al, PLoS. One 2008;3:e2760.2008; Barrio, MB., et al, Vaccine 2009;27: 1741-1749).
Otra posibilidad es el uso de proteínas recombinantes, vacunas subcelulares o basadas en DNA y/o vectores vacunales, pero éstas inducen una protección menor a la proporcionada por las vacunas vivas atenuadas. La última aproximación propuesta ha sido la incorporación de la proteína verde fluorescente (GFP) mediante un plásmido de expresión en Brucella a la cepa vacunal S 19 (Chacón-Díaz C. et al, Vaccine 2011 ;29(3):577-582). La cepa S 19-GFP mantiene las mismas propiedades biológicas que la de referencia en el modelo murino y los anticuerpos generados frente a esta proteína permiten la discriminación de los ratones inmunizados con SI 9-GFP, que presentan fluorescencia, de los infectados con S 19, que no la presentarían. No obstante, la experiencia enseña que, en la brucelosis, la respuesta anti-proteínas es de una duración más corta que la respuesta frente a la cadena O del LPS. Por lo tanto, aunque falta experimentación con SI 9-GFP en los huéspedes naturales (vacas, en este caso), la evidencia existente indica que la respuesta frente a GFP será transitoria comparada con la respuesta frente a la cadena O del LPS. Esto es una clara desventaja, ya que una respuesta frente a solamente la cadena O del LPS no permite diferenciar los animales infectados de los vacunados, y así el problema queda sin solución. La cadena O de las brúcelas lisas lleva los epítopos inmuno- dominantes que confieren a las correspondientes pruebas serológicas la mejor sensibilidad, pero es también la causa de la interferencia de la vacunación con vacunas lisas en el diagnóstico de la brucelosis.
La cadena O es un polisacárido, en concreto en Brucella es un homopolímero de perosamina (4-amino-4,6-dideoxi-D-manosa), sustituida por grupos formilo en posición N y que juega un papel esencial en su estructura antigénica (Bundle, DR. et al, Infecí Immun 1989;57:2829-2836). La presente invención subyace en manipular el antígeno O para generar cepas marcadas que se diferencien antigénicamente de las cepas virulentas silvestres, pues se ha comprobado ahora que se genera al menos un epítopo característicos de las cepas marcadas, útil para diferenciar los anticuerpos dirigidos contra la vacuna (cadena O modificada), de los dirigidos contra las cepas virulentas (cadena O original) y, por tanto, los animales vacunados de los infectados. Para alterar la estructura de la cadena O de Brucella se han incorporado en los residuos de perosamina sustituyentes distintos del grupo formilo.
DESCRIPCION DE LA FIGURAS
Figura 1. Demostración de la modificación de la perosamina y aparición de la N- acetilperosamina en la cadena O del LPS de BAB-acet. Análisis por 'H-NMR del O-PS de B.abortus (A) y de BAB-acet (B). Entorno a 1 'H/ppm se observa la señal correspondiente a grupo metilo, entorno a 2 'H/ppm la correspondiente a grupo acetilo, entorno a 4 'H/ppm la correspondiente a perosamina y entorno a 8 'H/ppm la correspondiente a grupo formilo.
Figura 2. La incorporación de grupos acetilo a la cadena O de BAB-acet elimina un epítopo típico de B. abortus. Reactividad de los anticuerpos monoclonales contra los epítopos A (triángulos), M (cuadrados) y C (círculos), frente al LPS de BAB-parental (panel A), y frente al LPS de BAB-acet (panel B). Abcisas: dilución del suero; Ordenadas: Absorbancia medida como densidad óptica (D.O.) a 405 nm.
Figura 3. La incorporación de grupos acetilo a la cadena O de B. abortus 2308 genera un nuevo o nuevos epítopo(s) inmunogénico (s). Reactividad frente al LPS de BAB-parental (A), BAB-acet (B) y E. coli 0157Ή7 (C) del suero de conejo inmunizado con células enteras de BAB-acet absorbido y sin absorber. Abcisas: Título; Ordenadas Ab unido medido como D.O. a 405 nm.
Suero de conejo inmunizado con BAB-acet: sin absorber (triángulos); absorbido con BAB-parental (círculos negros); absorbido con BAB-parental y BABacet (círculos blancos) y control negativo (rombos). Suero de conejo inmunizado con s. coli 0157:H7 (cuadrados).
Figura 4. Representación esquemática de la construcción del mutante BABAwadB por mutagénesis mediante PCR por deleción en fase. La ORF a eliminar está representada por una flecha gris (el rectángulo rayado representa los codones eliminados); las regiones intergénicas arriba y debajo de la secuencia de la ORF están representadas en color negro; los oligonucleótidos empleados en la mutagénesis están indicados como Fl, R2, F3 y R4 (la región complementaria entre los oligos R2 y F3 está representada con rayas más claras); los rectángulos con relleno de cuadrados denotan la resistencia a kanamicina (KmR) y el "cassette" de sensibilidad a la sacarosa (sacBR).
DESCRIPCION GENERAL DE LA INVENCION
Para resolver el problema técnico subsistente en el estado de la técnica relativo a la imposibilidad actual de distinguir de forma eficaz, sin requerir una gran infraestructura sanitaria o veterinaria, animales vacunados frente a la brucelosis de animales no vacunados pero afectados por un brote de la enfermedad, los inventores de la presente invención han desarrollado la solución técnica que se detalla a continuación. Dicha realización técnica conlleva diferentes elementos, aplicaciones y variantes, pero en todas ellas subyace el mismo concepto técnico: modificar el antígeno O de un LPS mediante la sustitución, en al menos un residuo N-formilperosamina existente en el mismo, de un grupo formilo en posición 4-amino por un grupo acilo distinto del grupo formilo, o por un azúcar. La administración a los animales vacunados de este antígeno O modificado, bien directamente formando parte de un compuesto o composición, o bien formando parte de microorganismos que lo contengan y/o sean capaces de expresarlo, permite su identificación como animales vacunados. Esta identificación es posible tanto si la cepa vacunal suministrada que les confiere protección contra la brucelosis contiene dicho antígeno O modificado, como si no lo contiene pero conjuntamente con dicha cepa vacunal se administra: a) bien el compuesto o la composición que lo contenga, b) bien una cepa que no confiera inmunidad contra brucelosis, pero que contenga y/o exprese dicho antígeno O modificado y que sirva, por consiguiente, como marcador de vacunación.
Siguiendo esta aproximación unitaria de la invención, una realización de la misma consiste en una bacteria gram-negativa del género Brucella que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque al menos uno de los residuos N-formilperosamina de dicho antígeno O ha sido modificado mediante la sustitución del grupo formilo en posición 4-amino de la perosamina, por un grupo acilo, distinto del grupo formilo, o por un azúcar, seleccionado del grupo que comprende hexosas y pentosas. Más en concreto en dicha bacteria gram-negativa el grupo acilo distinto al grupo formilo que reemplaza a éste en los residuos N-formil perosamina se selecciona del grupo comprendido por: un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo y un grupo R(-)2-hidroxipropionilo; preferentemente el grupo acilo es un grupo acetilo.
En cuanto al porcentaje de sustitución se prefieren bacterias gram-negativas donde al menos el 20%, preferentemente al menos el 40% y más preferentemente al menos el 60% de los residuos N-formilperosamina del antígeno O han sido sustituidos por residuos N-acilperosamina distintos de la N-formilperosamina; preferentemente han sido sustituidos por N-acetilperosaminas.
En otra realización preferida de la invención las bacterias gram-negativas mencionadas anteriormente comprenden, además, un gen heterólogo que codifica:
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar, seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O. En una realización concreta las bacterias gram-negativas arriba mencionadas, comprenden un gen heterólogo que codifica para una N-aciltransferasa capaz de transferir un grupo acilo seleccionado del grupo comprendido por: un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, y un grupo R(-)2-hidroxipropionilo; preferentemente la N-aciltransferasa es una N-acetiltransferasa.
En una realización particular, el gen heterólogo que codifica para dicha N- acetiltransferasa procede de Escherichia coli 0157:H7, Escherichia hermanii, Vibrio cholerae Hakata, Salmonella grupo N, Stenotrophomonas maltophila, Citrobacter gillenü, Citrobacter youngae, o Caulobacter crescentus.
En una realización preferida la bacteria gram-negativa del género Brucella que se utiliza para llevar a cabo esta invención es preferentemente Brucella melitensis Rev-1 , Brucella abortus S 19, o el muíante de Brucella BABAwadB. En la presente descripción todo este conjunto de bacterias del género Brucella que comprenden un antígeno O modificado según se ha descrito anteriormente, se denominan bacterias de la invención. La presente invención abarca también un producto que consiste en o comprende, una molécula que, a su vez, comprende el antígeno O del LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) proviene de una bacteria gram-negativa con un antígeno O que comprende un homopolímero de N-formilperosamina; y donde en al menos uno de los residuos
N-formilperosamina del antígeno O, el grupo formilo en posición 4-amino de la perosamina ha sido sustituido por:
i) un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; más preferentemente el grupo acilo es un grupo acetilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) proviene de una bacteria gram-negativa con un antígeno O que comprende un heteropolímero formado por residuos
i) N-formilperosamina y N-acilperosamina, donde esta N-acilp ero s amina es distinta de la N-formilperosamina, o
i i ) N-formilperosamina y N-glicosilperosamina; preferentemente el heteropolímero está formado por residuos
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente el heteropolímero está formado por residuos N-formilperosamina y N-acetilperosamina.
Un producto preferido de entre los mencionados anteriormente es aquél donde la molécula que comprende el antígeno O proviene de una bacteria gram-negativa del género Brucella de la invención. Una realización preferida de la invención consiste en un producto como los mencionados anteriormente, donde la molécula que comprende el antígeno O proviene de una bacteria modificada genéticamente, a la que se ha introducido un gen heterólogo que codifica:
a) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; preferentemente un grupo acilo seleccionado del grupo comprendido por: un grupo acetilo, un grupo 3-deoxi- L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, y un grupo R(-)2-hidroxipropionilo; más preferentemente la enzima N-aciltransferasa es una N-acetiltransferasa; o
b) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O.
Dicho producto presenta al menos el 20%, preferentemente al menos el 40%> y más preferentemente, al menos el 60%> de los residuos del antígeno O, con una N-acilperosamina distinta de N-formilperosamina; de forma preferida la N-acilperosamina es una N-acetilperosamina. En la presente descripción, el conjunto de productos se denomina de forma genérica, producto de la invención.
La invención también describe un procedimiento para la obtención de un producto de la invención tal y como se ha definido más arriba, comprendiendo dicho procedimiento, las etapas:
a) cultivar, en condiciones adecuadas, una bacteria gram-negativa modificada genéticamente mediante la introducción de un gen heterólogo que codifica
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; donde la bacteria es preferentemente una bacteria de la invención; y b) aislar y/o purificar dicho producto de la invención.
La invención también tiene por objeto un procedimiento para la obtención de anticuerpos, que comprende:
a) inmunizar un animal con
i) una bacteria de la invención, tal y como se ha definido anteriormente, o ii) un producto de la invención, también tal y como se ha detallado más arriba; y b) aislar y/o purificar dichos anticuerpos. Objeto de la presente invención son también los anticuerpos obtenibles por el procedimiento arriba indicado. Por consiguiente, es también objeto de la presente invención un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) al menos uno de los residuos N-formilperosamina de dicho antígeno O, ha sido modificado mediante la sustitución de al menos un grupo formilo, en posición 4-amino de la perosamina, por:
i) un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) dicho antígeno O comprende un heteropolímero formado por residuos
i) N-formilperosamina y N-acilperosamina, donde esta N-acilperosamina es distinta de la N-formilperosamina, o
i i ) N-formilperosamina y N-glicosilperosamina; preferentemente el heteropolímero está formado por residuos
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también
N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente el heteropolímero está formado por residuos N-formilperosamina y N-acetilperosamina. Preferentemente los anticuerpos descritos anteriormente son específicos frente a un antígeno O que proviene de una bacteria de la invención. A los efectos de esta descripción, los diferentes anticuerpos descritos anteriormente se denominan anticuerpos de la invención.
La invención se refiere también a una bacteria de la invención, o un producto de la invención, para uso en medicina. Más en concreto la invención concierne al uso de una bacteria de la invención, o un producto de la invención, en la fabricación de un medicamento o de una vacuna.
Específicamente la invención trata sobre una bacteria de la invención, o un producto de la invención, para uso en la prevención de la brucelosis.
Así pues, la invención también comprende el uso de una bacteria de la invención, o un producto de la invención, en la fabricación de un medicamento o de una vacuna para la prevención de la brucelosis.
La invención consiste, a su vez, en un medicamento para el tratamiento de la brucelosis, o una vacuna para la prevención de la aparición de dicha enfermedad que comprende una bacteria de la invención, o un producto de la invención.
Otra realización preferida de la invención consiste en una bacteria de la invención, o un producto de la invención, o un anticuerpo de la invención, para uso en el diagnóstico de brucelosis; preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella.
De forma análoga la invención se relaciona también con el uso de una bacteria de la invención, o un producto de la invención, o un anticuerpo de la invención, en la fabricación de una composición, reactivo o kit, para diagnóstico de la brucelosis; preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella.
Otra realización de la presente invención, basada en la misma solución técnica común a todas las realizaciones comprendidas en la patente, la constituye el uso de un marcador para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, en donde dicho marcador se selecciona entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención;
b) un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención;
c) una molécula de DNA o RNA que codifica: i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de los anteriores.
A efectos de la presente descripción este conjunto de distintos marcadores se denominan marcadores de la invención. En esta misma línea, la invención describe un método de diagnóstico in vitro para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, que comprende detectar la presencia en una muestra del animal de un marcador seleccionado entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria de la invención;
b) un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria de la invención;
c) una molécula de DNA o RNA que codifica: i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de varios de los marcadores de los anteriores;
donde la presencia de al menos uno de dichos marcadores es indicativa de que dicho animal ha sido vacunado frente a la brucelosis. En una forma preferida de poner en práctica la presente invención el método anteriormente descrito es un inmunoensayo, preferentemente seleccionado entre un ELISA, un ensayo de aglutinación en placa y un ensayo de aglutinación en tubo.
La invención en lo relativo al método anteriormente mencionado comprende las siguientes etapas:
a) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención; y b) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno O de un LPS, o de un NH, o de un precursosr biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención. El método de la invención, en una variante, comprende, además, una etapa intermedia entre a) y b) en la que la muestra se pone en contacto con un ligando específico para absorber los anticuerpos detectados en a). Dicha sonda o ligando específico para absorber los anticuerpos detectados en a) está seleccionado del grupo formado por:
a) una molécula que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención; o
b) una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención.
La invención, en lo relativo al método de diagnóstico, puede llevarse a cabo in vivo para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella. Dicho método in vivo, de acuerdo con la presente invención, comprende:
a) inocular intracutáneamente al sujeto, preferentemente un animal, una dosis adecuada, según su especie y peso, de
i) una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un gr u p o 3-deoxi-L-glic erotetroni lo , un grup o 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o de
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
b) observar el desarrollo de una reacción cutánea de hipersensibilidad retardada, preferentemente detectable por la formación de induraciones o pápulas. La invención también describe un kit de diagnóstico, para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, que comprende al menos un componente seleccionado entre:
a) una sonda o ligando para anticuerpos específicos frente al antígeno O de un lipopolisacárido o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, donde dicho antígeno O proviene de una bacteria de la invención;
b) un anticuerpo de la invención;
c) una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa;
d) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y e) un polinucleótido para amplificar un gen que codifica una N-aciltransferasa según c) o una N-glicosiltransferasa según d); preferentemente un polinucleótido para amplificar el gen wbdR de E. coli 0157:H7; más preferentemente la secuencia del polinucleótido es SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, y SEQ.ID.NO. 12.
En una realización preferente de la invención, el kit comprende al menos una sonda o ligando a) para los anticuerpos específicos seleccionado del grupo formado por:
a) una bacteria de la invención; y
b) un producto de la invención.
El kit de la invención, en una alternativa, comprende además al menos un reactivo seleccionado entre:
a) una molécula que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención; o
b) una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención. Por último la invención también describe un polinucleótido que comprende, o consiste en, una secuencia seleccionada entre: SEQ.ID.NO. 1 , SEQ.ID.NO. 2, SEQ.ID.NO. 3, SEQ.ID.NO. 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, o SEQ.ID.NO. 12. A los efectos de la presente descripción los polmucleótidos arriba mencionados se denominan polmucleótidos de la invención.
Relacionado con este último aspecto de la invención, ésta se refiere también a los polmucleótidos de la invención para uso en el diagnóstico de la brucelosis y relacionado con ello, el uso de los polmucleótidos de la invención para la fabricación de una composición, un reactivo o un kit para el diagnóstico de la brucelosis.
En otro aspecto, la invención también se refiere a un método de prevención y/o tratamiento de la brucelosis en un sujeto, preferentemente un animal, que comprende la administración a dicho sujeto, preferentemente un animal, de una cantidad terapéuticamente efectiva de una bacteria de la invención.
DESCRIPCION DETALLADA DE LA INVENCION
Bacterias de Brucella portadoras de antígeno O modificado
Por tanto, en un primer aspecto la invención se refiere a una bacteria gram-negativa del género Brucella que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores (antígeno O, LPS, NH o precursores biosintéticos), caracterizada porque al menos uno de los residuos N-formilperosamina de dicho antígeno O, ha sido modificado mediante la sustitución del grupo formilo, en posición 4-amino de la perosamina, por:
a) un grupo acilo distinto del grupo formilo; o por
b) un azúcar, seleccionado del grupo que comprende hexosas y pentosas.
Para mayor brevedad, como ya se ha comentado, en adelante también nos referiremos a esta bacteria gram-negativa del género Brucella como "bacteria de la invención".
En una realización particular la Brucella es una Brucella lisa. Las bacterias lisas del género Brucella son aquellas que comprenden un lipopolisacárido liso (smooth LPS, LPS-S, o S-LPS) como componente de la membrana externa. Este lipopolisacárido liso comprende 3 dominios típicos: el lípido A, que permite el anclaje del lipopolisacárido a la membrana extema de la bacteria; el núcleo oligosacarídico; y el polisacárido O, también denominado como cadena O, antígeno O, o polímero O. En otra realización la Brucella es un muíante rugoso de Brucella que no presenta cadena O unida al resto del LPS, pero presenta aún precursores biosintéticos de la misma en su interior, como las bacterias lisas.
El antígeno O es un polisacárido que en Brucella comprende esencialmente una cadena no ramificada formada por un homopolímero de residuos 4-formamido-4,6-dideoxi- D-manosa (alternativamente denominado N-formilperosamina), unidos mediante enlaces a [l-2].
El hapteno nativo (native hapten, o también NH) es otro componente polisacárido de las brúcelas, antigénicamente relacionado con el LPS. Al igual que el LPS, el hapteno nativo de estas bacterias comprende un homopolímero de N-formilperosaminas estructuralmente equivalente al antígeno O del LPS, pero no unido al núcleo polisacarídico y al lípido A, al que igualmente denominaremos como antígeno O o uno de sus términos equivalentes.
El término "precusor biosintético de los mismos" se refiere a cualquier polisacárido u oligosacárido de N-formilperosamina libre en el citoplasma de una Brucella, o unido a su envoltura celular por medio de un lípido del tipo del bactoprenol.
La bacteria de la invención puede ser cualquier bacteria portadora de cadena O de cualquier especie del género Brucella (lisa o rugosa) a la que se le haya realizado una modificación según se define en esta descripción. Preferentemente, dicha Brucella es una B. melitensis o una B. abortus o una B. suis.
En una realización de la invención la Brucella portadora de cadena O es una cepa vacunal de cualquiera de las especies mencionadas.
En una realización preferida de la invención la Brucella es B. melitensis Rev-1, B. abortus SI 9, o B. abortus BABAwadB.
La bacteria de la invención se caracteriza porque al menos uno de los residuos N- formilperosamina del antígeno O del LPS, NH, precursor biosintético de los mismos o de un fragmento de cualquiera de los anteriores, está modificado, de manera que el grupo formilo en posición 4-amino de la perosamina está sustituido: a) por un grupo acilo distinto del grupo formilo; o b) por un azúcar, que puede ser una hexosa o una pentosa.
En una realización, la hexosa o pentosa que sustituye al grupo formilo puede ser o estar seleccionada entre alosa, altrosa, glucosa, mañosa, gulosa, galactosa, idosa, talosa, fructosa, sorbosa, abecuosa, ribosa, arabinosa, xilosa, lixosa, ribulosa, o xilulosa.
El término "grupo acilo" se refiere a un grupo derivado del oxoácido por eliminación de al menos un grupo hidroxilo. Se trata de un componente de estructura R-CO-O-, donde R es una cadena alifática con o sin grupos adicionales.
En una realización preferida de la invención, el grupo acilo se ha seleccionado del grupo comprendido por: un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, y un grupo R(-)2-hidroxipropionilo. En una realización más preferida el grupo acilo es un grupo acetilo, de manera que el antígeno O comprenderá al menos un residuo N-acetilperosamina (4-acetamido-4,6-dideoxi- D-manosa).
De esta manera, en una realización el antígeno O del LPS, del NH, del precursor biosintético de los mismos o de un fragmento de cualquiera de los anteriores, comprende un heteropolímero formado por residuos N-formilperosamina y N-acilperosamina, siendo esta una N-acilperosamina distinta de N-formilperosamina, o alternativamente por residuos N- formilperosamina y N-glicosilperosamina. Preferentemente comprende un heteropolímero formado por residuos:
N-formilperosamina y N-acetilperosamina;
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina;
N-formilperosamina y 3-hidroxipropionilperosamina;
N-formilperosamina y S(+)2-hidroxipropionilperosamina; o
N-formilperosamina y R(-)2-hidroxipropionilperosamina.
En una realización más preferida el heteropolímero está formado por la alternancia de residuos N-formilperosamina y N-acetilperosamina.
La proporción de cada uno de los residuos puede variarse según las realizaciones. En una realización, al menos el 20%, preferentemente al menos el 40%> y más preferentemente al menos el 60% de los residuos N-formilperosamina han sido sustituidos por residuos de la N-acilperosamina alternativa. En una realización preferida, al menos el 20%, preferentemente al menos el 40% y más prefentemente al menos el 60% de los residuos del antígeno O son N-acetilperosaminas.
Igualmente, la distribución de los dos residuos en la cadena del heteropolímero puede variar, aunque es preferible que la alternancia de ambos residuos sea homogénea a lo largo de la cadena.
El antígeno O modificado de la bacteria de la invención presenta al menos un nuevo epítopo inmunogénico, inexistente en las cepas de campo, y frente al cual se generan anticuerpos específicos. La bacteria de la invención está por tanto marcada antigénicamente.
De acuerdo con esto, es suficiente que la bacteria de la invención comprenda un antígeno O de un LPS, de un NH o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, de forma que dicho, antígeno O de un LPS, NH o un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, comprenda al menos un nuevo epítopo inmunogénico que no está presente en brucellas de campo. Los términos "de campo", "salvaje" o "silvestres" se refieren indistintamente a cepas originalmente obtenidas de los huéspedes naturales.
La presencia de dicho epítopo inmunogénico capaz de generar anticuerpos específicos puede determinarse por ejemplo mediante los ensayos:
- extracción del LPS, NH, precursores biosintéticos de los mismos, o de un fragmento de cualquiera de los anteriores y caracterización del antígeno O por resonancia magnética nuclear ('H-NMR), como se describe en el ejemplo 2;
- un inmunoensayo para determinar si en animales inmunizados con la bacteria de la invención o con un extracto que comprende el antígeno O modificado, se generan anticuerpos específicos frente al antígeno O modificado, por ejemplo una aglutinación o un ELISA, según se describen en el ejemplo 4; y, opcionalmente,
- un inmunoensayo para determinar la eliminación de alguno de los epítopos típicos del antígeno O de las brúcelas de campo, según se describe en el ejemplo 3.
Como el experto en la materia sabrá apreciar, la bacteria de la invención puede prepararse mediante métodos de modificación química, o también mediante técnicas de ingeniería genética. En una realización preferente, la bacteria de la invención se obtiene mediante modificación genética.
Así, en una realización, la bacteria de la invención es una bacteria que comprende además, un gen heterólogo que codifica
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O.
El grupo acilo que dicha N-aciltransferasa es capaz de transferir, o la hexosa o la pentosa que la N-glicosiltransferasa es capaz de transferir, puede ser cualquiera de los mencionados previamente en la descripción de las características del antígeno O de la bacteria de la invención.
En una realización, el grupo acilo se selecciona del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo. En este caso, el gen heterólogo que codifica la N-aciltransferasa puede obtenerse por clonación del gen de cualquier bacteria de campo que comprenda dicho gen. Igualmente, dicho gen puede ser un gen heterólogo que codifica una variante de una N- aciltransferasa mutada o modificada, siempre y cuando esta variante sea capaz de transferir el grupo acilo distinto del grupo formilo a la posición 4-amino de las perosaminas del antígeno O.
Para la selección de un gen heterólogo adecuado puede seguirse la siguiente estrategia: i) realizar una revisión de las bacterias (Tabla 2) que tienen un antígeno O constituido por residuos N-acilperosamina con un grupo en posición N distinto del grupo formilo característico del antígeno O de las especies lisas de Brucella (un homopolímero de N- formilperosamina);
ii) identificar la enzima encargada de incorporar la sustitución diferente del grupo formilo en posición 4-amino;
iii) clonar en un plásmido de expresión el DNA codificante para dicho enzima e introducir tal plásmido en Brucella; y
iv) analizar la estructura y propiedades inmunogénicas del LPS así modificado. En una realización preferida dicho gen heterólogo codifica una N-acetiltransferasa o una variante de ésta capaz de transferir un grupo acetilo a la posición 4-amino de la perosamina. Este gen heterólogo puede ser, entre otros, el gen que codifica una N- acetiltransferasa de Escherichia coli 0157:H7, Escherichia hermanii, Vibrio cholerae Hakata, Salmonella grupo N, Stenotrophomonas maltophila, Citrobacter gillenii, Citrobacter youngae, o Caulobacter crescentus.
En una realización, el gen heterólogo capaz de transferir grupos acetilo a la posición indicada es, por ejemplo, el gen wbdR (NCBI; 16.12.2010; ID: 962088; locus tag: z3192; ORF en SEQ ID NO: 7); que codifica la N-acetiltransferasa de E. coli 0157:H7.
Generalmente, el gen heterólogo que codifica la N-aciltransferasa o la N- glicosiltransferasa formará parte de y estará integrado en un cassette de expresión o unidad transcripcional, que permite la transcripción y producción de la N-aciltransferasa o N- glicosiltransferasa en la Brucella receptora del gen heterólogo, y que comprende:
- una región reguladora - promotora, funcional en Brucella, que dirige y regula la transcripción de la secuencia que codifica la N-aciltransferasa o la N-glicosiltransferasa;
- una secuencia señal de inicio de la transcripción;
- la secuencia que codifica la N-aciltransferasa o N-glicosiltransferasa; y
- una secuencia señal de terminación de la transcripción.
En una realización, el gen heterólogo incluye la secuencia polinucleotídica que codifica la N-aciltransferasa o la N-glicosiltransferasa y también el resto de elementos que completan la unidad transcripcional del gen en la bacteria de la que se obtiene dicho gen heterólogo y que regulan la transcripción y expresión de dicha N-aciltransferasa o N- glicosiltransferasa en dicha bacteria.
No obstante, todas o parte de estas secuencias polinucleotídicas no codificantes podrían ser reemplazadas por otras (por ejemplo se puede reemplazar una región promotora determinada por otra región promotora diferente de la anterior), o incluso podrían introducirse secuencias con una funcionalidad adicional. En todo caso, el gen heterólogo resultante permitirá la transcripción y expresión de la N-aciltransferasa o N- glicosiltransferasa en la Brucella receptora de dicho gen heterólogo. La construcción de los cassettes de expresión que forman el gen heterólogo; su introducción en vectores de expresión adecuados para la introducción y transferencia genética de genes heterólogos en bacterias; así como la introducción y transferencia de dicho vector a las bacterias de Brucella puede realizarse mediante las técnicas convencionales de ingeniería genética y transferencia genética conocidas del experto en este campo (Sambrook et al., 2001 , "Molecular cloning, to Laboratory Manual", 2nd ed., Cold Spring Harbor Laboratory Press, N.Y. Vol 1-3 a).
Es un objeto de la invención un procedimiento para la obtención de una bacteria, que comprende transferir a una bacteria gram-negativa del género Brucella un vector de expresión, capaz de expresarse en Brucella, que comprende un gen heterólogo que codifica: i) una N aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O.
En una realización el vector de expresión puede ser por ejemplo pYRI-6 (ver Tabla 1).
Alternativamente, según la presente invención es posible utilizar vectores adecuados para la expresión estable del gen heterólogo.
Como el experto en la materia podrá apreciar, empleando técnicas convencionales, tales como la inserción dirigida por transposición, es posible integrar el gen que codifica la N-aciltransferasa o la N-glicosiltransferasa en el propio genoma de la Brucella. Esta inserción podría llevarse a cabo por ejemplo, mediante el uso de un vector de expresión derivado del mini-Tn7, por ejemplo el vector mini-Tn7TpUC18T-Gm (Choi KH et al, Nat Methods 2005;2(6):443-448), que dirige la inserción del gen heterólogo a la región inmediatamente corriente abajo del codón stop del gen glms (glucosamina- 6-fosfato sintetasa).
La N-aciltransferasa puede ser cualquier N-aciltransferasa según las realizaciones descritas para la bacteria de la invención. En una realización particular, es una N- acetiltransferasa con la secuencia aminoacídica representada en SEQ ID NO: 8, que está codificada por la secuencia nucleotídica representada en SEQ ID NO: 7. Como ya se ha indicado, la bacteria de la invención puede ser particularmente útil en sistemas DIVA, como cepa vacunal marcada. DIVA significa "Differentiation of Infected from Vaccinated Animáis", término acuñado en 1999 por J. T. van Oirschot (Central Veterinary Institute, Netherlands), que posibilita la vacunación masiva de una población de animales susceptibles, sin comprometer la identificación serológica de los individuos convalecientes. Dicha estrategia requiere el empleo de vacunas apropiadas y pruebas diagnósticas específicas.
En otro aspecto, la invención se refiere también a una bacteria de la invención para uso en medicina o como medicamento o vacuna; y también al uso de una bacteria de la invención en la preparación de un medicamento o vacuna; y también a un medicamento o vacuna que comprende una bacteria de la invención.
En otro aspecto, la invención se refiere a una bacteria de la invención para la prevención y tratamiento de la brucelosis, y más preferentemente para la prevención de la brucelosis. Dicho de otro modo, la invención se refiere también al uso de una bacteria de la invención en la preparación de un medicamento o vacuna para la prevención y tratamiento de la brucelosis, más preferentemente para prevención de la brucelosis. La invención se refiere también a un método para la prevención y/o tratamiento de la brucelosis en un sujeto, preferentemente un animal, que comprende la administración a dicho sujeto o animal de una cantidad terapéuticamente efectiva de una bacteria de la invención. Una cantidad terapéuticamente eficaz, a efectos de la presente memoria descriptiva, debe interpretarse como una cantidad capaz de prevenir la aparición de la enfermedad y/o de remitir los síntomas inherentes a dicha enfermedad en un sujeto o animal infectado hasta su completa curación.
Por otra parte, la bacteria de la invención puede ser útil en los métodos y kits de diagnóstico complementarios de un sistema DIVA, por ejemplo como sondas o ligandos para la unión, absorción y/o captura o bloqueo de los anticuerpos específicos frente al antígeno O característico de la bacteria de la invención, presentes en una muestra biológica de un sujeto o animal; o como reactivo de control.
Por tanto la invención se refiere también al uso de una bacteria de la invención en la preparación de una composición, reactivo o kit para diagnóstico, preferentemente para el diagnóstico de brucelosis, más preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo, al uso de una bacteria de la invención en la preparación de una composición, reactivo o kit para diagnóstico DIVA de la brucelosis.
La invención se refiere también a una bacteria de la invención para uso en diagnóstico, preferentemente para diagnóstico de la brucelosis, más preferente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo, la bacteria de la invención para uso en diagnóstico DIVA de la brucelosis.
Producto que comprende un antígeno O modificado
Como se desprende de lo descrito anteriormente, un antígeno O modificado de la manera indicada puede tener también utilidad, por ejemplo, en composiciones vacunales que comprendan fracciones celulares (vacunas subcelulares) o como reactivo en métodos y kits para diagnóstico.
Por tanto, en otro aspecto la invención se refiere a un producto que consiste en, o que comprende, una molécula que comprende, a su vez, el antígeno O del LPS, del NH, de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) proviene de una b acteria gram-negativa cuyo antígeno O comprende un homopolímero de N-formilperosaminas y donde en al meno s uno de los residuos N-formilperosamina del antígeno O, el grupo formilo en posición 4-amino de la perosamina ha sido sustituido por:
i) un grupo acilo, distinto del grupo formilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) proviene de una bacteria gram-negativa con un antígeno O que comprende un heteropolímero formado por residuos
i) N-formilperosamina y N-acilperosamina, donde esta N-acilperosamina es distinta de la N-formilperosamina, o
ii) N-formilperosamina y N-glicosilperosamina. Para mayor brevedad, como se ha comentado anteriormente, en adelante también nos referiremos a dicho producto como "producto de la invención"; y a dicha molécula que comprende el antígeno O como "molécula de la invención". En una realización en la que el sustituyente es un grupo acilo distinto del grupo formilo, éste se selecciona preferentemente del grupo que comprende un grupo acetilo, un g r u p o 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo y un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo. En otra realización en la que el sustituyente del grupo formilo es una hexosa o pentosa, el azúcar se selecciona entre alosa, altrosa, glucosa, mañosa, gulosa, galactosa, idosa, talosa, fructosa, sorbosa, abecuosa, ribosa, arabinosa, xilosa, lixosa, ribulosa, o xilulosa.
En una realización preferida el heteropolímero del antígeno está formado por residuos seleccionados entre:
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también
N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente, el heteropolímero está formado por residuos N-formilperosamina y N- acetilperosamina.
En una realización el producto es una composición o mezcla que contiene la molécula de la invención que comprende dicho antígeno O, por ejemplo un extracto o fracción bacteriana que comprende el LPS, NH, o precursores biosintéticos de los mismos, o un fragmento de cualquiera de éstos. En una realización dicha composición o mezcla es un medicamento o una vacuna que comprende la molécula de la invención. En una realización el antígeno O de la molécula de la invención proviene de Brucella.
En una realización el antígeno O de la molécula de la invención proviene de una bacteria modificada genéticamente, a la que se ha introducido un gen heterólogo que codifica una N-aciltransferasa o N-glicosiltransferasa según se ha definido anteriormente en la descripción de la bacteria de la invención; preferentemente la N-aciltransferasa es una N-acetiltransferasa.
Más preferentemente, dicha bacteria modificada genéticamente es una bacteria de la invención.
El antígeno O de la molécula de la invención puede provenir también de una bacteria gram-negativa distinta de Brucella y que, con la introducción del gen heterólogo que codifica una N-aciltransferasa o N-glicosiltransferasa adecuada, es capaz de producir un LPS, un NH, precursores biosintéticos de los mismos, o un fragmento de cualquiera de los anteriores, con un antígeno O que tiene la estructura heteropolimérica ya indicada. Por ejemplo, el antígeno O de Yersinia enterocolitica serotipo 0:9 está esencialmente formado por una cadena de un homopolímero de N-formilperosaminas con una estructura similar a la del antígeno O de Brucella. A partir de esta bacteria es posible obtener el antígeno O heteropolimérico descrito, también mediante la introducción de un gen heterólogo que codifique una N-aciltransferasa o N-glicosiltransferasa adecuada, preferentemente una N- acetiltransferasa.
Por otra parte, al igual que en la bacteria de la invención, la proporción de cada uno de los residuos en el antígeno O de la molécula de la invención puede variar según realizaciones. En una realización al menos el 20%, preferentemente al menos el 40%> y más preferentemente al menos el 60%> de los residuos son la N-acilperosamina distinta de N- formilperosamina. En una realización preferida, al menos el 20%>, preferentemente al menos el 40%) y más preferentemente al menos el 60%> de los residuos del antígeno O son N-acetilperosamina.
En un aspecto adicional, la invención se refiere a un método para la obtención del producto con la molécula de la invención, que comprende:
a) cultivar, en condiciones adecuadas, una bacteria gram-negativa modificada genéticamente mediante la introducción en la bacteria de un gen heterólogo que codifica i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y b) aislar y/o purificar dicho producto.
Las características y realizaciones de la N-aciltransferasa y de la N-glicosiltransferasa han sido ya descritas con anterioridad al describir la bacteria de la invención.
Así, en una realización preferida la bacteria gram-negativa es preferentemente una bacteria de la invención (una Brucella modificada genéticamente según se ha descrito anteriormente).
El término "cultivar en condiciones adecuadas" se refiere a que se cultiva en condiciones que permitan la expresión y producción de la N-aciltransferasa o N- glicosiltransferasa codificada por el gen heterólogo y en condiciones adecuadas para que esta enzima actúe, formándose así el LPS, NH y precursores biosintéticos de los mismos, o un fragmento de cualquiera de los anteriores, que contienen el antígeno O modificado. Las características del gen heterólogo y de sus distintas realizaciones han sido descritas con anterioridad.
Por otra parte, el aislamiento y la purificación del producto puede realizarse mediante los métodos convencionales para el aislamiento y purificación de LPS, NH, precursores biosintéticos de los mismos, o un fragmento de cualquiera de los anteriores, que contienen el antígeno O, comúnmente utilizados en bacteriología. Algunos métodos adecuados para el aislamiento y la purificación pueden encontrarse en Aragón et al. (J Bacteriol
1996;178:1070-1079).
Son también objeto de la invención los siguientes aspectos:
* El producto de la invención para uso en medicina, particularmente como medicamento o vacuna; y, dicho de otro modo, también el uso del producto de la invención en la preparación de un medicamento o una vacuna;
* El producto de la invención para la prevención y tratamiento de la brucelosis, más preferentemente para la prevención de la brucelosis; o dicho de otro modo, el uso del producto de la invención en la preparación de un medicamento o vacuna para la prevención y tratamiento de la brucelosis, más preferentemente para prevención de la brucelosis;
* Un método para la prevención y tratamiento de la brucelosis en un sujeto o animal, que comprende la administración a dicho sujeto o animal de una cantidad terapéuticamente efectiva del producto de la invención; * El uso del producto de la invención en la preparación de una composición, reactivo o kit para diagnóstico, preferentemente para el diagnóstico de brucelosis; más preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo, el uso del producto de la invención en la preparación de una composición, reactivo o kit para diagnóstico DIVA de la brucelosis;
* El producto de la invención para uso en diagnóstico; preferentemente para diagnóstico de la brucelosis, más preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo, el producto de la invención para uso en el diagnóstico DIVA de la brucelosis;
* El uso del producto de la invención como inmunógeno en la preparación de una composición inmunogénica para la producción de anticuerpos (específicos frente al antígeno O característico de la bacteria, molécula o producto de la invención).
Anticuerpos frente al antígeno O modificado
La inoculación o inmunización de un animal con la bacteria, molécula o producto de la invención produce la formación de anticuerpos específicos frente al antígeno O modificado ya descrito. Estos anticuerpos específicos son anticuerpos que no reconocen, es decir que no forman complejos inmunes antígeno - anticuerpo con el antígeno O de brúcelas de campo, constituido por la cadena homopolimérica de N-formilperosaminas.
Estos anticuerpos pueden ser utilizados por ejemplo en métodos y kits para diagnóstico de brucelosis, por ejemplo en inmunoensayos de competición de tipo ELISA. Por tanto, en otro aspecto la invención se refiere también a un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) al menos uno de los residuos N-formilperosamina de dicho antígeno O, ha sido modificado mediante la sustitución de al menos un grupo formilo, en posición 4 amino de la perosamina, por:
i) un grupo acilo, distinto del grupo formilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) dicho antígeno O comprende un heteropolímero formado por residuos
i) N-formilperosamina y N-acilperosamina, donde esta N-acilperosamina es distinta de la N-formilperosamina, o ii) N-formilperosamina y N-glicosilperosamina.
Las características de este antígeno O modificado, así como algunas de las realizaciones posibles para los grupos formilo y glicosilo sutituyente del grupo formilo y de su estructura heteropolimérica han sido ya proporcionadas en la descripción de la bacteria y producto de la invención.
En una realización el sustituyente de grupo formilo es un grupo acilo seleccionado del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3- hidroxipropionilo, un grupo S(+)2 hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente es un grupo acetilo.
En una realización el antígeno O comprende un heteropolímero formado por residuos seleccionados entre:
N-formilperosamina y N-acetilperosamina,
N formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también N formilperosamina y R(-)2-hidroxipropionilperosamina; En una realización todavía más concreta, el heteropolímero está formado por residuos
N-formilperosamina y N-acetilperosamina.
En una realización el anticuerpo es específico para un antígeno O que proviene de una bacteria gram-negativa del género Brucella, preferentemente de una bacteria de la invención.
Son también objeto de la invención:
- un procedimiento para la obtención de anticuerpos, que comprende:
a) inmunizar un animal con:
i) una bacteria de la invención, o
ii) un producto de la invención; y
b) aislar y/o purificar los anticuerpos; así como
- un anticuerpo obtenible por este procedimiento.
Las etapas de inmunización y obtención del anticuerpo pueden realizarse según métodos y técnicas convencionales para la obtención de anticuerpos, técnicas todas ellas conocidas del experto en la materia (Hay, F.C. and Westwood, O.M.R., 2002. Practical Immunology, 4rth edition, Blackwell Science Ltd., Oxford. ISBN: 978-0-86542-961-1).
Son también un objeto adicional de la invención:
* El uso de estos anticuerpos en la preparación de una composición, reactivo o kit para diagnóstico, preferentemente para el diagnóstico de brucelosis, más preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo, el uso de estos anticuerpos en la preparación de una composición, reactivo o kit para diagnóstico DIVA de la brucelosis; y
* Los anticuerpos descritos en este apartado para uso en diagnóstico, preferentemente para diagnóstico de la brucelosis, más preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella; o dicho de otro modo los anticuerpos anteriormente descritos para uso en el diagnóstico DIVA de la brucelosis. Métodos, reactivos y kits para diagnóstico de la brucelosis
La característica de la cadena O modificada de la bacteria y producto de la invención de generar un nuevo epítopo inmunogénico, puede resultar de gran utilidad y ser explotada como marcador en un sistema para diagnóstico DIVA de la brucelosis.
Así por tanto, la invención se refiere en otro aspecto adicional al uso de un marcador para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, en donde dicho marcador se selecciona entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención;
b) un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención;
c) una molécula de DNA o RNA que codifica
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de los anteriores.
A efectos de la presente descripción, como se ha mencionado anteriormente, los marcadores anteriormente mencionados se denominarán de ahora en adelante, marcadores de la invención.
La invención se refiere en otro aspecto a un método de diagnóstico in vitro, para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella (animales vacunados con una bacteria de la invención), que comprende detectar la presencia en una muestra del animal de un marcador seleccionado entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria de la invención;
b) un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria de la invención;
c) una molécula de DNA o RNA que codifica:
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N- acetiltransferasa; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo, siendo, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de varios de los marcadores de los anteriores;
donde la presencia de uno de dichos marcadores es indicativa de que dicho animal ha sido vacunado frente a la brucelosis.
Estos antígenos O, anticuerpos, N-aciltransferasas, y N-glicosiltransferasas han sido ya descritos en las secciones anteriores; sus características y realizaciones son aplicables al uso del marcador y al método de diagnóstico ahora propuestos.
El método de diagnóstico, denominado a partir de ahora método DIVA de la invención, puede realizarse sobre cualquier muestra biológica del animal. En particular puede realizarse sobre cualquier tipo de fluido biológico; preferentemente sobre una muestra de suero sanguíneo, suero lácteo o lágrimas. En una realización mas prefente la muestra es suero sanguíneo.
La detección del marcador de la invención puede realizarse por medio de técnicas convencionales de detección de biomarcadores, seleccionadas de acuerdo a las características químicas del marcador elegido y los requerimientos de la aplicación concreta. Entre otras, pueden utilizarse técnicas de inmunoensayo, técnicas de hibridación y amplificación de DNA (p.ej. PCR), y sus combinaciones.
En una realización el método de diagnóstico DIVA es un inmunoensayo. Un "inmunoensayo" se refiere a cualquier técnica inmunoquímica analítica que incluye en alguna de sus etapas la formación de complej os inmunes, es decir los resultantes de la conjugación de anticuerpos y antígenos, como referencias de cuantificación de un analito (sustancia presente en la muestra que es el objeto de análisis) determinado. El analito puede ser el anticuerpo [p.ej, en nuestro método los anticuerpos de los marcadores de la invención b) o d)] o el antígeno de la invención [p.ej., en nuestro método el antígeno O del marcador a)] . Más preferentemente el inmunoensayo es un inmunoensayo para la detección de un anticuerpo específico frente al antígeno O proveniente de una bacteria de la invención.
Sin que esto suponga limitación del alcance de la invención, en una realización el método de inmunoens ayo se selecciona entre un ELI SA (directo, indirecto o de competición), un ensayo de aglutinación (p.ej una aglutinación en placa, por ejemplo, con antígeno Rosa de Bengala), una aglutinación en tubo, una fijación de complemento y un ensayo de polarización de fluorescencia). El inmunoensayo con antígeno Rosa Bengala es un método que detecta anticuerpos aglutinantes empleando células de Brucella inactivadas, teñidas con Rosa de Bengala y suspendidas en un tampón ácido que potencia la algutinación frente al LPS liso de Brucella.
En una realización particular el método de diagnóstico DIVA por inmunoensayo comprende las siguientes etapas:
a) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno
O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención; y
b) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria de la invención. A efectos de la presente descripción el término "fragmento" significa una parte o secuencia parcial con capacidad antigénica, obtenido a partir de un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos. El objetivo de la etapa a) es identificar la presencia en la muestra de anticuerpos frente a los epitopos distintivos del antígeno O natural, no modificado, del LPS, del NH, de precursores biosintéticos de los mismos, o de un fragmento de cualquiera de los anteriores, de las bacterias del género Brucella (cadena homopolimérica de N-formilperosaminas). Con este fin puede utilizarse como sonda o ligando cualquier bacteria gram-negativa del género Brucella cuyo antígeno O mantenga inalteradas sus propiedades inmunogénicas, p.ej. una Brucella de campo. Esta sonda o ligando actuaría como antígeno en la formación del complej o inmune con el anticuerpo. Podría utilizarse también como sonda o ligando cualquier pro ducto que c ontenga una mo lécula que comprenda el antígeno O (inmunogénicamente inalterado) del LPS, del NH, de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos (p.ej. un extracto bacteriano).
En una realización, para la detección de los anticuerpos en la etapa b) se utiliza como sonda o ligando una bacteria de la invención (preferentemente la que se utilizó como cepa vacunal en la campaña de vacunación), o una molécula de la invención que comprende el antígeno O proveniente de dicha bacteria de la invención. No obstante, podrían utilizarse también otras sondas o ligandos que permitan la unión específica de estos anticuerpos (p.ej. una molécula, o una bacteria que la contenga, con la misma estructura heteropolimérica de residuos N-formilperosamina y N-acilpero s amina [ o N-glicosilperosamina según la realización] que el antígeno O de la bacteria de la invención; por ejemplo un antígeno proveniente de otras bacterias gram-negativas, o moléculas obtenidas por síntesis química).
Las sondas o ligandos utilizados en las etapas a) y b) pueden estar indistintamente en suspensión o fijados a un sustrato.
En una realización más particular, el inmunoensayo comprende además, en una etapa intermedia entre las etapas a) y b), poner la muestra en contacto con un ligando específico para absorber los anticuerpos detectados en la etapa a). Este ligando específico puede ser por ejemplo una Brucella de campo, o un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de éstos, procedente de una Brucella de campo.
Inmunoensayo por doble Rosa de Bengala.
En una realización simple, el inmunoensayo puede llevarse a la práctica mediante un doble Rosa de Bengala. En primer lugar, en la etapa a), la muestra (p.ej un suero) se analiza mediante el Rosa de Bengala clásico, con bacterias de la misma estructura antigénica que las cepas de campo. En caso de reacción positiva, la muestra se absorbe con brúcelas lisas de campo (etapa intermedia) y, a continuación, en la etapa c), se realiza un segundo Rosa de Bengala modificado con una suspensión de una bacteria de la invención [la misma que se utilizó como cepa vacunal complementaria del sistema DIVA (por ejemplo BABacet, que posee un antígeno O con residuos acetilados)] . Una reacción positiva en ésta etapa c) indicaría que la muestra tiene anticuerpos frente al nuevo epítopo formado, según sea el c a s o , p o r l a N-acilperosamina (diferente de la N-formilp ero s amina; p . ej . N- acetilperosamina) o por la N-glicosilperosamina; y que, por lo tanto, procede de un animal vacunado. Por el contrario, una reacción negativa en este segundo test, pero positiva en el primero, indicaría una infección.
Aunque este doble Rosa de Bengala requiere el paso intermedio de absorción de anticuerpos, es un procedimiento económico y de fácil realización, y por lo tanto asequible en zonas de baja infraestructura sanitaria/veterinaria.
Inmunoensayo por ELISA indirecto
En una realización tipo, el inmunoensayo puede llevarse a la práctica mediante un doble enzimoinmunoensayo. En primer lugar, en la etapa a), la muestra (p.ej un suero) se analiza mediante un ELISA indirecto, con antígenos de la misma estructura antigénica que las cepas de campo. En caso de reacción positiva, la muestra se absorbe con brúcelas lisas de camp o (etap a interme di a) ; y, a c ontinuación, etap a c) , s e re aliza un s egundo enzimoinmunoensayo con placas cubiertas con la bacteria o molécula de la invención [la misma que se utilizó como cepa vacunal complementaria del sistema DIVA (por ejemplo BABacet, que posee un antígeno O con residuos acetilados)] . Una reacción positiva en ésta etapa c) indicaría que la muestra tiene anticuerpos frente al nuevo epítopo formado, según s ea el cas o , p or la N-acilperosamina (diferente de la N-formilperosamina; p. ej . N- acetilperosamina) o por la N-glicosilperosamina; y que, por lo tanto, procede de un animal vacunado. Por el contrario, una reacción negativa en este segundo ensayo, pero positiva en el primero, indicaría una infección.
Inmunoensayo por ELISA de competición
En una realización tipo, el inmunoensayo puede llevarse a la práctica mediante un enzimoinmunoensayo de competición. En primer lugar la muestra (p.ej. un suero) se incuba en placas de tipo ELISA cubiertas con la bacteria o molécula de la invención [la misma que se utilizó como cepa vacunal complementaria del sistema DIVA (por ejemplo BABacet, que posee un antígeno O con residuos acetilados)] en presencia de un anticuerpo, de ahí el emplear el término "competición", frente al epitopo(s) característico(s) nuevo(s) del antígeno O de la bacteria de la invención, previamente marcado con una enzima. Una disminución en la reactividad (o actividad asociada con el enzima de mareaje) entre el anticuerpo marcado y la bacteria o molécula de la invención que recubre la placa indica la presencia (competición) en el suero de anticuerpos frente al antígeno de la invención y, en consecuencia, se interpreta como suero procedente de un animal vacunado. Método de diagnóstico mediante ensayo de reacción cutánea de hipersensibilidad retardada En un aspecto adicional, la invención se refiere a un método in vivo de diagnóstico DIVA de la brucelosis en un animal, que comprende inocular intracutáneamente al animal una dosis adecuada, según su especie y peso, de una N-aciltransferasa o una N- glicosiltransferasa (purificada por clonaje, siendo ésta la misma N-aciltransferasa o N- glicosiltransferasa del gen heterólogo con que se modificó la bacteria de la invención utilizada como cepa vacunal) y observar el desarrollo de una reacción cutánea de hipersensibilidad retardada (detectable por la formación de induraciones o pápulas).
Detección molecular por PCR
En una realización el método DIVA de la invención comprende detectar en la muestra una molécula de DNA o RNA que codifica una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo distinto del grupo formilo; o una N-glicosiltransferasa capaz de transferir a esa misma posición un azúcar seleccionado del grupo que comprende hexosas y pentosas.
En una ralización concreta en la que la N-aciltransferasa es la N-acetiltransferasa codificada por el gen wbdR mencionado previamente, la detección puede realizarse mediante hibridación y amplificación, utilizando por ejemplo una de las siguientes parejas de iniciadores:
Pareja A
Iniciador directo, wbdR Fw (forward)
5 ' ATGAATTTGTATGGTATTTTTGGT 3 ' (SEQ.ID.NO. 9),
cuya temperatura de fusión (Tm) es 55,84 °C
Iniciador reverso, wbdR Rv (reverse): 5 ' TTAAATAGATGTTGGCGATCTT 3 ' (SEQ.ID.NO. 10), (Tm: 55,74 °C)
Tamaño producto PCR: 666 pares de bases
Pareja B
Iniciador directo, wbdR Fw:
5' TGATGTTTTGGCAGGAAAGA 3 ' (SEQ.ID.NO. 11), (Tm: 59,25 °C)
Iniciador reverso, wbdR Rv:
5' TGGATTTCCGCACACAGTTA 3' (SEQ.ID.NO. 12), (Tm: 60,11 °C) Es también un objeto adicional de la invención un polinucleótido que comprende, o consiste en, una secuencia seleccionada entre SEQ.ID.NO. 1, SEQ.ID.NO. 2, SEQ.ID.NO. 3 SEQ.ID.NO. 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11 y SEQ.ID.NO. 12; así como el uso de cualquiera de dichos polinucleótidos para el diagnóstico molecular de la brucelosis, particularmente para diagnóstico DIVA. Análogamente, la invención comprende también el uso de cualquiera de los polinucleótidos anteriormente mencionados en la fabricación de composiciones, reactivos o kits de diagnóstico de la brucelosis, particularmente del tipo DIVA.
En un aspecto adicional, la invención se refiere a un kit de diagnóstico, para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, que comprende al menos un componente seleccionado entre:
a) una sonda o ligando para anticuerpos específicos frente al antígeno O de un lipopolisacárido o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, donde dicho antígeno O proviene de una bacteria, molécula o producto de la invención;
b) un anticuerpo de la invención
c) una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo, donde, por tanto, la enzima N-aciltransferasa una N-acetiltransferasa;
d) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y e) un polinucleótido para amplificar un gen que codifica una N-aciltransferasa según c) o una N-glicosiltransferasa según d), preferentemente para amplificar el gen wbdR de E. coli 0157:H7; más preferentemente la secuencia del polinucleótido se selecciona entre: SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11 y SEQ.ID.NO. 12.
Estos antígenos O, anticuerpos, N-aciltransferasas, y N-glicosiltransferasas han sido ya descritos en las secciones anteriores; sus características y realizaciones son aplicables a los componentes de este kit. En una realización el kit comprende una sonda o ligando para los anticuerpos específicos según se describe en el apartado a) seleccionada del grupo formado por:
a) una bacteria de la invención; y
b) un producto de la invención. No obstante, podría incluir alternativamente otras sondas o ligandos, por ejemplo una
Yersinia modificada genéticamente, o una molécula o producto que comprenda el antígeno O de una Yersinia modificada genéticamente, con un gen heterólogo que codifica una N- aciltransferasa o una N-glicosiltransferasa según se ha definido con anterioridad. En otra realización, el kit comprende además al menos un reactivo seleccionado entre: a) una molécula que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención; o
b) una bacteria gram-negativa del género Brucella, distinta de una bacteria de la invención.
En ambos casos el antígeno O es el antígeno O característico de las brúcelas de campo, formado por un homopolímero de N-formilperosaminas. EJEMPLOS
A continuación se describen algunos ejemplos concretos de realizaciones de la invención, así como pruebas experimentales, que no tienen en ningún caso carácter limitativo de la invención. En todos los casos de utilización de kits descritos a continuación en los ejemplos, se realizaron los experimentos siguiendo las instrucciones de los fabricantes de los respectivos kits. Ejemplo 1. Construcción de cepas de Brucella portadoras del gen {wbdR) de una acetil-transferasa.
Cepas bacterianas y plásmidos. Las características relevantes de las cepas bacterianas y plásmidos empleados se presentan en la Tabla 1.
Tabla 1 Cepas y Plásmidos
Cepa/Plásmido Características relevantes Referencia/Procedencia
Brucella abortus
BAB-parental Muíante espontáneo Nal de (Sangari and Agüero, Microb. Pathog.
B. abortus 2308, que conserva las 1991 ; 11 :443-446 características antigénicas de la
cepa original de campo
BAB-acet BAB-parental que expresa el gen Invención
wbdR (acetiltransferasa) de E. coli
0157:H7; presenta una cadena O
formada por residuos de N- formilperosamina y N- acetilperosamina.
BABAwadB Muíante en el núcleo del LPS; S- Invención
LPS; aíenuado en células
dendrííicas y raíones
BABAwadB-aceí Muíaníe en el núcleo del LPS; S- Invención
LPS; expresa el gen wbdR
(aceíilíransferasa) de E. coli
0157:H7
S19 Cepa vacunal empleada en ganado (Nicoleííi,P.L. 1990. Vaccinaíion, p.
bovino 283-299. In K.H.Nielsen and
J.R.Duncan (ed.), Animal Brucellosis, CRC Press, Boca Raíon)
S19 -pYRI-6 Cepa SI 9; expresa el gen wbdR Invención
(aceíilíransferasa) de E. coli
0157:H7
Revi Cepa vacunal de referencia para (Elberg and Faunce, J.Bacíeriol. 1957;
B. melitensis 73: 211-217).
Revl- pYRI-6 Cepa Revi ; expresa el gen wbdR Invención
(aceíilíransferasa) de E. coli
0157:H7 Tabla 1 Cepas y Plásmidos (Continuación)
Cepa/Plásmido Características relevantes Referencia/Procedencia
E. coli
E. coli 0157 E. coli enterohemorrágico Colección Española de Cultivos Tipo
(CECT 4783)
S17-Rpir Cepa conjugante con el plásmido (Simón et al., Nature Biotechnology
RP4 insertado en el cromosoma 1983; 1 :784-791)
ToplOF' F' {laclq, TnlO(TetR)} mcrA Invitrogen; Cod. C303003
A(mrr-hsdRMS-mcrBC)
O801acZAM15 AlacX74 recAl
araD139 A(ara leu) 7697 galU
galK rpsL (StrR) endAl nupG
One shot F ' {proABladqlacZAMl 5Tnl 0 Invitrogen; Cod. 12535029
OMNIMAX™ (TetR)A(ccdAB)mcrA A(mrr
hsdRMS-mcrBC) Φ
80(lacZ)AM15 A(lacZYA
argF)Ul 69endAlrecAl supE44thi
lgyrA96relAltonApa nD
Tabla 1 Cepas y Plásmidos (Continuación)
Cepa/Plásmido Características relevantes Referencia/Procedencia
Plásmidos
pDONR221 Vector de clonación; contiene las Invitrogen; Cod. 12535029
regions attP que posibilitan la
reacción BP (sistema Gateway)
pRHOOl Derivado de pMRlO KmR; CmR; (Hallez et al., Appl. Environ.
contiene las regiones attR que Microbiol. 2007; 73:1375-1379) posibilitan la reacción LR
(sistema Gateway)
pYRI-5 Fragmento de 727-bp Invención
amplificado mediante PCR a
partir del DNA de E. coli
0157:H7 que contiene la ORF
wbdR completa junto con los
sitios attB, clonado en el vector
pDONR221
pYRI-6 Fragmento attLl-attL2 del Invención
plásmido pYRI-5 clonado en los
sitios attRl-attR2 de pRHOOl
pYRI-1 Plásmido conteniendo la deleción Invención
del alelo wadB
pYRI-2 Plásmido obtenido por Invención
subclonación de pYRI-1 en el
plásmido suicida pJQK
Las bacterias se crecieron en caldo tripticasa-soja (TSB, BioMérieux) o en placas de TSB con un 1,5% de agar bacteriológico (TSA, Pronadisa). En caso necesario, por ejemplo cuando se inoculan bacterias portadoras del plásmido pYRI-6, los medios de cultivo se suplementaron con 50 μg/mL kanamicina (Km) o 20 μg/mL cloranfenicol (Cm) o 25 μg/mL ácido nalidíxico (Nal) ó 1 ,5 μg/mL polimixina (Pmx). Las cepas fueron conservadas en viales con leche descremada a -80°C (Scharlau). Análisis del DNA. El DNA plasmídico o cromosomal fue extraído empleando los kits Qiaprep spin Miniprep (Qiagen GmbH, Hilden, Germany) y Ultraclean Microbial DNA Isolation Kit (Mo Bio Laboratories) respectivamente. En caso necesario, por ejemplo cuando tras visualizar una reacción de PCR en gel de agarosa, y una vez verificado que el producto obtenido tiene el tamaño esperado y que en dicha reacción no se han generado otros productos de PCR inespecíficos, es necesario recuperar desde el gel de agarosa el producto de PCR obtenido (ejemplo: clonación del producto de PCR en un plásmido), los fragmentos de DNA fueron extraídos desde gel de agarosa empleando el kit Qiack Gel extraction kit (Qiagen). La secuenciación de DNA fue realizada empleando el kit BigDye 3.1 y un secuenciador Applied Biosystems modelo 3130XL Genetic Analyzer. Todos los cebadores fueron sintetizados por Sigma-Genosys Ltd. (Haverhill, United Kingdom).
Construcción del muíante BABAwadB.
El muíante en la ORF BAB1 0351 (wadB) se construyó por deleción en fase, eliminando la región que codifica el dominio catalítico, empleando como molde el DNA genómico de B. abortus 2308 (Figura 4). La deleción se realizó manteniendo el marco de lectura para que no tuviese efectos polares que alterasen el marco de lectura de los genes adyacentes. Los cebadores utilizados se diseñaron a partir de la secuencia de B. abortus 2308 disponible en la base de datos del NCBI (ht^://w w.iicbi.nlra.nih.gov/ a fecha 15.02.2011).
La cepa muíante obtenida se denominó BABAwadB. Para su consírucción, se siníeíizaron, en primer lugar, dos cebadores denominados wadB-F\ (SEQ ID NO: 3) y wadB-R2 (SEQ ID NO: 4) que se uíilizaron para amplificar un fragmento de 296 pb que incluía los codones comprendidos eníre los pares de bases 1 a 48 del gen wadB, así como los 152 pb localizados por delaníe del codón de iniciación del gen wadB. Además, se siníeíizaron oíros dos cebadores denominados wadB-F3 (SEQ ID NO: 5) y wadB-R4 (SEQ ID NO:6) que se uíilizaron para amplificar un fragmento de 274 pb que incluía los codones comprendidos eníre las pares de bases 196 a 239 de la región codificaníe (CDS) del gen wadB, y los 139 pb posíeriores al codón de parada (codon síop) del gen wadB.
Ambos fragmentos obíenidos, se ligaron medianíe PCR de superposición utilizando por un lado los cebadores wadB-F\ (SEQ ID NO: 3) y wadB-R4 (SEQ ID NO:6) para su amplificación y las regiones complemeníarias de los cebadores wadB-R2 (SEQ ID NO: 4) y wadB-F3 (SEQ ID NO: 5) para la superposición. El fragmento resulíaníe, que coníiene el alelo de supresión del gen wadB, se clonó en el vector pCR2.1 (Inviírogen, Barcelona, España), dando lugar al plásmido pYRI-1, que fue sometido a un proceso de secuenciación para garantizar el mantenimiento del marco de lectura y, posteriormente se subclonó en las posiciones BamHI y Xbal del plásmido suicida pJQK (Scupham y Triplett, Gene 1997;202:53-59). El plásmido resultante mutador (pYRI-2) se introdujo por transformación en E. coli S17. -pir (Simón et al; Nature Biotechonology 1983;1 :784-791) y luego se transfirió a la cepa bacteriana B. abortus 2308 mediante conjugación.
Los exconjugantes donde se había producido la primera recombinación (integración del vector suicida en el cromosoma) fueron seleccionados en placas de tripticasa-soja agar (TSA) con ácido nalidíxico (25μg/mL) y kanamicina (50μg/mL). Para favorecer la segunda recombinación (escisión del vector suicida previo intercambio alélico), las bacterias se crecieron en ausencia de kanamicina y se seleccionaron en placas de TSA con ácido nalidíxico y sacarosa al 5%. Las colonias resultantes fueron seleccionadas mediante PCR haciendo uso de los cebadores wadB-F\ (SEQ ID NO: 3) y wadB-R4 (SEQ ID NO:6), que amplifican un fragmento de 570 pb en el muíante y un fragmento de 1011 pb en la cepa parental. La mutación generada dio lugar a una pérdida del 60% de la región codificante del gen wadB y a una pérdida del 88% del dominio glicosiltransferasa. La cepa muíante, como se ha mencionado aníeriormeníe, se denominó BABAwadB.
La cepa de E. coli (0157:H7) que contiene el gen wbdR que codifica para la aceíilíransferasa utilizada en la preseníe invención para modificar las cepas de Brucella esíá deposiíada en la Colección Española de Cultivos Tipo, en el Parque Científico de Paíerna (Valencia, España), con el n° CECT4783 (año 1996).
Construcción del plásmido pYRI-6. La consírucción de pYRI-6 se realizó empleando el sisíema "Gaíeway® Recombinaíion Cloning Technology" de Inviírogen. Los cebadores wbdR aííB Fw (SEQ ID NO: 1) y wbdR aííB Rv (SEQ ID NO: 2) específicos de wbdR (ORF z3192; SEQ ID NO: 7), que codifica la aceíilíransferasa de cadena O en E. coli 0157:H7 (SEQ ID NO: 8), fueron diseñados según las insírucciones del fabricaníe y siníeíizados por Sigma-Genosys Lid. (Haverhill, Uniíed Kingdom). Esíos cebadores se emplearon para amplificar el gen wbdR a partir del DNA de E. coli 0157:H7. A coníinuación, el producío de PCR fue clonado en el vecíor pDONR221 medianíe recombinación sitio- específica para dar lugar al plásmido pYRI-5, y posíeriormeníe se subclonó en pRHOOl (Hallez et al., Appl Environ Microbio! 2007;73:1375-1379), para obtener el plásmido pYRI-6, capaz de replicarse en Brucella.
El plásmido pYRI-6 se introdujo en E. coli S I 7-1 λρη y se transfirió a B. abortus 2308, por conjugación, obteniéndose así la bacteria modificada BAB-acet. Los conjugantes portadores del plásmido, se seleccionaron en el medio de cultivo tripticasa-soja con agar bacteriológico (TSA) y suplementado con ácido nalidíxico (Nal) y cloranfenicol (Cm), según se describe en el ejemplo 1 (TSA-Nal-Cm), a 37°C. Estos marcadores y los resultados del Ejemplo 2 demuestran la presencia del plásmido y sus genes en la construcción.
Del mismo modo, se realizó una transferencia del plásmido pYRI-6 a las cepas vacunales Revi y S19 y al muíante BABAwadB, obteniéndose las cepas modificadas Revl- pYRI-6, S 19-pYRI-6 y BABAwadB-acet respectivamente. Ejemplo 2. B. abortus 2308 portadora del gen (wbdR) de una acetil-transferasa expresa cantidades normales de un LPS liso con cadena O que contiene N- acetilperosamina.
Extracción del LPS. El LPS de BAB-parental se extrajo utilizando el método del fenol: agua descrito por Leong y colaboradores (Leong D. et al, Infecí Immun 1970;1 :174-182) y adaptado a Brucella por Aragón et al., J Bacteriol., 1996; 178:1070-1079; Velasco et al, Infecí Immun 2000;68:3210-3218). Para la obtención del LPS de BAB-acet el protocolo antes mencionado se modificó empleando 6 volúmenes de metanol y 1% de metanol saturado con acetato sódico. Para la extracción del LPS de E. coli 0157:H7, se empleó el método de SDS-proteinasa K (Garin-Bastuji B. et al, Clin Microbiol 1990;28:2169-2174) modificado. Las bacterias inactivadas (0,5 g peso húmedo) se resuspendieron mediante ultrasonidos en un tampón 2% SDS - 62,5 mM Tris-HCl (pH 6,8; 10 mL) y la mezcla se incubó a 100°C durante 10 min con agitación intermitente. Una vez llevada la mezcla a temperatura ambiente, se añadió proteinasa K (150 μg/mL; Merck) y se incubó durante 3h a 55°C, y durante una noche a temperatura ambiente. Los restos celulares se eliminaron por centrifugación (20.000 x g, 15 min, 4°C), y el sobrenadante se precipitó con 3 volúmenes de metanol y 1% de metanol saturado con acetato sódico durante lh a -20°C. El precipitado se resuspendió en 10 mL de agua destilada y se precipitó de nuevo en las mismas condiciones. El nuevo precipitado se resuspendió en 2-3 mL de buffer 62,5 mM Tris-Hcl (pH 6,8) por ultrasonidos, se trató con DNasa (Sigma-Aldrich) y RNAasa (Mobio), ambas a una concentración final de 10 μg/mL, a 37°C durante 30 min y después con proteinasa K a 55°C durante 3h y una noche a temperatura ambiente. Por último, la muestra se precipitó empleando las condiciones anteriormente descritas, se sedimentó (5.000 x g, 15 min, 4°C) y los restos de disolvente se evaporaron con una corriente de nitrógeno. Análisis de NMR-H1. Los espectros fueron realizados a 25 y 70°C en una solución de
D20 empleando un equipo Varían Innova 600 y un espectrofotómetro equipado con sonda 5 mm PFG-triple resonancia. El desplazamiento químico fue anotado como ppm (datos en partes por millón) empleando como control externo 3-trimetilsilil-(2,2,3,3-2H4)-propanoato sódico (TSP, δΗ 0.00). Los datos fueron procesados empleando el programa informático suministrado por la casa comercial. Previamente, para la obtención de la cadena O de BAB- acet a partir de una preparación de LPS purificado, se realizo una hidrólisis acida en tampón acetato 10 mM a pH 4,5 en presencia de 1% SDS (Caroff et al., Carbohydr. Res. 1988; 175:273-282) durante 2h a 100°C. La mezcla se atemperó y neutralizó con una solución de NaOH 0,2M, seguida de una centrifugación 5000 x g, 10 min, el sobrenadante recuperado se precipitó con 5 volúmenes de etanol a -20°C durante 24 h. A continuación, la mezcla se centrifugó a 5000 x g, 10 min, se recuperó el precipitado y se dializó durante 3 ciclos en metanol ácido: agua destilada (50:50 v/v) seguidos de 3 ciclos en agua destilada para eliminar los restos de SDS. Finalmente, la muestra (cadena O) se recuperó mediante centrifugación en las condiciones arriba citadas, se resuspendió en agua ultrapura, se liofilizó y su pureza se evaluó mediante doble difusión en gel.
Coaglutinación. Se realizó siguiendo la técnica descrita por (Díaz et al, Laboratorio (Granada) 1980;70:509-525). Las bacterias resuspendidas en suero salino se mezclaron con 10 \L de una suspensión de estafilococos sensibilizados con suero de conejos infectados con brúcelas lisas.
Para verificar si la expresión heteróloga de wbdR en Brucella suponía una alteración del proceso de síntesis del LPS, se extrajo éste de BAB-acet y se comparó mediante SDS- PAGE y tinción de plata con el de BAB-parental. Los rendimientos obtenidos en cada una de las etapas de la extracción y purificación del LPS tanto de BAB-acet como de la cepa parental fueron muy similares, sugiriendo que no hay diferencias cuantitativas en el LPS sintetizado por ambas. Por otro lado, no observamos diferencias en las pruebas de coaglutinación de BAB-parental y BAB-acet con estafilococos sensibilizados con suero de animales infectados con brúcelas lisas. Esto muestra que la expresión de wbdR en Brucella es compatible con la síntesis de un LPS completo, de tipo liso, que se localiza en la superficie bacteriana.
A continuación, los LPS de BAB-acet y de la cepa parental se sometieron a hidrólisis acida y el polisacárido resultante se purificó por cromatografía y se analizó mediante lH- NMR. Mientras que el espectro del polisacárido de la cepa parental mostró las señales descritas para los homopolímeros de N-formilperosamina en enlaces a(l,2) (Perry y Bundle, Advances in brucelosis research. Texas A & M. Univerisity Press, College station 1990: 76- 88), más pequeñas señales del núcleo oligosacarídico (González et al, PlosOne 2008;3:e2760) (Figura 1), el del polisacárido de BAB-acet mostró todas éstas y una intensa señal adicional a 2 ppm que se corresponde con un grupo acetilo nuevo (Figura 1). La integración de la señal del formilo a 8,2 ppm indicó que la perosamina de la cepa parental está N-formilada en aproximadamente un 90%. En cambio, las señales del acetilo a 2,0 ppm y del formilo a 8,2 ppm del espectro del polisacárido de BAB-acet mostraron una formilación de aproximadamente un 40%>, constituyendo el grupo N-acetilo el 60%> restante aproximadamente.
Estos resultados demuestran que la expresión de wbdR en Brucella es compatible con la síntesis de un LPS completo, que se localiza en la superficie bacteriana sin aparentes cambios cuantitativos y presenta una cadena O heteropolimérica de N-formil y N- acetilperosamina.
Ejemplo 3. La presencia de N-acetilperosamina dependiente de wbdR en la cadena O elimina el epítopo A típico del LPS-S de B. abortus.
Anticuerpos monoclonales . Los anticuerpos monoclonales monoclonales frente a los epitopos A, M y C empleados han sido descritos en trabajos previos (Monreal et al, Infec. Immun 2003; 71 :3261-3271 González et al., PlosOne 2008 3:e2760).
ELISA. Se realizó en placas de poliestireno de 96 pocilios de fondo plano (Thermo Scientific). El antígeno utilizado (LPS de BAB-parental, BAB-acet o E. coli 0157Ή7) se adsorbió a la placa a una concentración de 2.5 μg/ml o 5 μg/ml en PBS. La incubación se realizó a 4°C durante una noche. Después de varios lavados con PBS-Tween 20 (PBS-T), se añadieron diluciones sucesivas de los anticuerpos y se incubaron 5 horas a 37°C. A continuación, las placas se lavaron tres veces con PBS-T y, para la detección de los complejos antígeno-anticuerpo, se empleó un conjugado de anti-Ig de ratón (Nordic Immunological Laboratories, Tilburg, Holland) marcado con peroxidasa. El revelado se realizó con ABTS 0,2 mM y/H202 0,13 mM en solución tampón citrato durante 15 a 30 min a temperatura ambiente, en oscuridad y con agitación. La absorbancia se midió a 405 nm. Para determinar si la presencia del grupo acetilo altera los epítopos A y C característicos de B. abortus analizamos mediante ELISA la reactividad de monoclonales específicos anti-A [5 N-formilperosaminas unidas en enlace (a 1-2)], anti-C [(3 o 4 N- formilperosaminas unidas en enlace (a 1-2)] y anti-M [(a l -2)-N-formilperosamina-(a 1-3)- N-formilperosamina-(a 1-2)]. Como se puede apreciar en la Figura 2, la presencia del grupo acetilo reduce la reacción del monoclonal anti-A, pero no la del monoclonal anti-C (la reactividad con el monoclonal anti-M introducido como control negativo fue negativa). Se ha demostrado que el epítopo A requiere de cinco o más N-formilperosaminas consecutivas unidas en enlace (a 1-2), mientras que el epítopo C está asociado a cuatro o menos N- formilperosaminas consecutivas unidas en enlace (a 1-2) (que podrían incluir en mayor o menor medida un enlace (a 1-3), dependiendo del grado de solapamiento). Por lo tanto, la acetilación generada elimina la continuidad de cinco N-formilperosaminas en enlace (α 1 -2), pero respeta cuatro o menos. Por lo tanto, estos resultados no sólo demuestran la desaparición del epítopo A típico de B. abortus, sino que también indican que la N- acetilperosamina no se ha concentrado en una sección de la cadena O, sino que se ha distribuido de forma homogénea, ya que en caso contrario permanecería el epítopo A.
Ejemplo 4. La presencia de N-acetilperosamina dependiente de wbdR en la cadena O del LPS de B. abortus genera nuevos epítopos.
Preparación de inmunosueros de conejo y absorciones. Los animales fueron alojados en jaulas adecuadas, con agua y alimento ad libitum. Se emplearon dos conejos hembra New-Zealand White de 2,5 Kg. La inmunización se realizó inyectando por vía intravenosa 1 mi de una suspensión de bacterias BAB-acet inactivadas por fenol, liofilizadas y resuspendidas en suero salino a una concentración de lmg/mL. A los 2 y a los 4 días, se administraron por vía intraperitoneal dos dosis similares a las anteriores. Tres semanas después de la última inmunización, se procedió a la extracción del suero y al sacrificio de los animales. El mantenimiento y el sacrifico de los animales se realizó siguiendo las normativas Española (RD 1201/2005) y Europea (directive 86/609/EEC) vigentes bajo la supervisión del Comité Etico del Servicio de Mantenimiento de Animales de la Institución. Para absorber los anticuerpos frente a B. abortus 2308 (BAB-parental), el inmunosuero de conejo se puso en contacto con una suspensión de estas bacterias inactivadas por fenol a razón de 1 mg bacterias/100 μΐ de suero. La mezcla se incubó a temperatura ambiente durante 4 h con agitación puntual, se centrifugó a 13200 rpm durante 10 min (centrífuga Eppendorf 5415R) y se recuperó el sobrenadante. El mismo procedimiento se repitió con este sobrenadante una vez más, y el sobrenadante final resultante se consideró libre de anticuerpos frente a B. abortus 2308. Para la absorción de los anticuerpos frente a BAB-acet se siguió el mismo procedimiento, pero empleando bacterias de BAB-acet inactivadas con fenol.
Coaglutinación. Se realizó siguiendo la técnica descrita por (Díaz et al, Laboratorio (Granada) 1980;70:509-525). Las bacterias resuspendidas en suero salino se mezclaron con 10 μΕ de una suspensión de estafilococos sensibilizados con suero de conejo inmunizado con BAB-acet y absorbido con células enteras de BAB-parental.
ELISA. Se realizó en placas de poliestireno de 96 pocilios de fondo plano (Thermo Scientific). El antígeno utilizado (LPS de BAB-parental, BAB-acet o E. coli 0157:H7) se adsorbió a la placa a una concentración de 2.5 μg/ml o 5 μg/ml en PBS. La incubación se realizó a 4°C durante una noche. Después de varios lavados con PBS-Tween 20 (PBS-T), se añadieron diluciones sucesivas de los sueros y se incubaron 5 horas a 37°C. A continuación, las placas se lavaron tres veces con PBS-T y, para la detección de los complejos antígeno- anticuerpo, se empleó un conjugado de cabra anti-conejo (Nordic Immunological Laboratories, Tilburg, Holland) marcado con peroxidasa. El revelado se realizó con ABTS 0,2 mM y/H202 0,13 mM en solución tampón citrato durante 15 a 30 min a temperatura ambiente, en oscuridad y con agitación. La absorbancia se midió a 405 nm.
Para analizar si la incorporación de grupos acetilo a la cadena O de Brucella generaba un nuevo o nuevos epítopos, se inmunizaron conejos con células enteras de BAB-acet inactivadas con fenol. Como se puede observar en la Figura 3, paneles A y B, el suero mostró una reactividad menor en un ELISA con el LPS de BAB-parental que con el LPS homólogo portador de perosamina N-formilada y N-acetilada, lo que sugiere la existencia de un epítopo o epítopos nuevo(s) relacionado(s) con el segundo tipo de substituyentes. Para demostrarlo, se absorbió el suero con BAB-parental y repetimos el ensayo. Esta absorción eliminó la reactividad con el LPS de BAB-parental, pero no con el LPS de BAB-acet.
Para ratificar la existencia de anticuerpos específicos de la estructura que contiene N- acetilperosamina, se realizó un nuevo ELISA comparando la reactividad de un suero de conejo inmunizado con s. coli 0157:H7, y de los sueros de conejos inmunizados con BAB- acet absorbidos y sin absorber, frente al LPS de E. coli 0157:H7, cuya cadena O tiene perosamina acetilada.
Los resultados (Figura 3, panel C) mostraron que el suero frente a BAB-acet absorbido con BAB-parental reacciona con el LPS de E. coli 0157:H7 y que esta reactividad desaparece tras absorber con células de BAB-acet, lo que confirma que BAB-acet presenta un epítopo inmunogénico asociado a la N-acetilperosamina. Además, este resultado demuestra que es posible desarrollar una prueba serológica para identificar los animales vacunados mediante la detección de anticuerpos frente a los epítopos asociados al N-acetilperosamina presentes en las vacunas marcadas (ver Ejemplo 5).
Ejemplo 5. Los epítopos generados por la N-acetilperosamina no estimulan anticuerpos que reaccionen en pruebas diagnósticas de brucelosis.
La coaglutinación y el ELISA se llevaron a cabo como en el ejemplo 4 anterior.
De acuerdo con la presentación del LPS-S, existen dos tipos de pruebas diagnósticas de la brucelosis: las que emplean LPS-S purificado y las que emplean suspensiones de brúcelas en fase lisa. El prototipo de las primeras es el ELISA con LPS-S de B. abortus; el de las segundas el test del Rosa de Bengala. En la reacción intervienen anticuerpos de las clases IgG, IgM e IgA.
Los resultados del Ejemplo 4 con un ELISA con LPS-S de BAB-parental (Figura 3, panel A) y el inmunosuero específico (inmunosuero absorbido) de los epítopos asociados a la N-acetilperosamina demuestran que estos epítopos no generan anticuerpos detectables en las pruebas del primer tipo. Para comprobar que tampoco lo hacen en las de segundo tipo, realizamos la prueba del Rosa de Bengala mezclando 30 μΕ del suero inmunoabsorbido o sin absorber con 15 μΕ del antígeno comercial (Veterinary Laboratories Agency, New Haw Addlestone, UK) y esta mezcla se incubó con agitación orbital durante 8 minutos. Pasado este tiempo se procedió a la lectura de la prueba. El resultado con el suero que contenía sólo los anticuerpos frente al (los) epítopo(s) generados por la N-acetilperosamina fue negativo. Por lo tanto, estos resultados, junto con los del Ejemplo 3, demuestran que la N- acetilperosamina genera un marcador inmunológico específico ausente de las cepas de Brucella normales. Ejemplo 6. Mareaje con N-acetilperosamina de la cadena O de las vacunas clásicas de B. melitensis y B. abortas, así como otras cepas.
La coaglutinación y el ELISA se llevaron a cabo como en el ejemplo 4 anterior.
Considerando que B. melitensis Revi y B. abortus SI 9 son las mejores vacunas para inmunizar ovejas y cabras frente a la brucelosis, se modificó la cadena O de estas cepas. Para ello, se introdujo por conjugación el plásmido pYRI-6 portador de wbdR en la cepa Revi y en la S19 y se examinó la construcción Revl-aceí resultante por coaglutinación con el inmunosuero frente a BAB-acet absorbido con B. abortus 2308. Mientras que Revi o S19 no coaglutinaron, Revl -acet y S I 9- acet lo hicieron, lo que demuestra la presencia en su superficie del epítopo derivado de la N-acetilperosamina. Los mismos resultados se obtuvieron cuando introdujimos el plásmido pYRI-6 en el muíante BABAwadB (que conserva la cadena O, y que es un potencial candidato como vacuna contra la infección por B. abortus 2308). En él, la introducción del plásmido generó epítopo derivado de la N- acetilperosamina necesario para coaglutinar con el inmunosuero frente a BAB-acet absorbido con B. abortus 2308. Estos resultados demuestran que la acetilación de la perosamina mediada por wbdR sirve para marcar antigénicamente las vacunas frente a Brucella.
Figure imgf000052_0001
Figure imgf000053_0001

Claims

REIVINDICACIONES
1. Una bacteria gram-negativa del género Brucella que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizada porque al menos uno de los residuos N- formilperosamina de dicho antígeno O ha sido modificado mediante la sustitución del grupo formilo en posición 4-amino de la perosamina, por:
a) un grupo acilo, distinto del grupo formilo, o por
b) un azúcar, seleccionado del grupo que comprende hexosas y pentosas.
2. Una bacteria gram-negativa según la reivindicación 1 , donde el grupo acilo se selecciona del grupo comprendido p or : un grup o acetilo , un grup o 3-deoxi-L- glicerotetronilo, un grupo 3 -hidroxipropionilo, un grupo S(+)2-hidroxipropionilo y un grupo R(-)2-hidroxipropionilo; preferentemente el grupo acilo es un grupo acetilo.
3. Una bacteria gram-negativa según la reivindicación 2, donde al menos el 20%, preferentemente al menos el 40% y más preferentemente al menos el 60%> de los residuos N- formilperosamina del antígeno O han sido sustituidos por residuos de N-acilperosamina distintos d e l a N-formilperosamina; preferentemente han sido sustituidos por N- acetilperosaminas.
4. Una bacteria gram-negativa según las reivindicaciones 1-3, que comprende, además, un gen heterólogo que codifica:
a) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
b) una N-glicosiltransferasa capaz de transferir un azúcar, seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O.
5. Una bacteria gram-negativa según la reivindicación 4, donde la N-aciltransferasa es capaz de transferir un grupo acilo seleccionado del grupo comprendido por: un grupo acetilo, un grup o 3-deoxi-L-glicerotetronilo, un grupo 3 -hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, y un grupo R(-)2-hidroxipropionilo; preferentemente la N-aciltransferasa es una N-acetiltransferasa.
6. Una bacteria gram-negativa según la reivindicación 5, donde la N-acetiltransferasa es una N-acetiltransferasa de Escherichia coli 0157:H7, Escherichia hermanii, Vibrio cholerae Hakata, Salmonella grupo N, Stenotrophomonas maltophila, Citrobacter gillenü, Citrobacter youngae, o Caulobacter crescentus.
7. Una bacteria gram-negativa según las reivindicaciones 1 a 6, donde dicha bacteria es una Brucella melitensis Rev-1, Brucella abortus SI 9, o el muíante de Brucella BABAwadB.
8. Un producto que comprende, una molécula que, a su vez, comprende el antígeno O del LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) proviene de una bacteria gram-negativa con un antígeno O comprende un homopolímero de N-formilperosamina; y donde en al menos uno de los residuos N- formilperosamina del antígeno O, el grupo formilo en posición 4-amino de la perosamina ha sido sustituido por:
i) un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; más preferentemente el grupo acilo es un grupo acetilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) proviene de una bacteria gram-negativa con un antígeno O que comprende un heteropolímero formado por residuos seleccionados entre:
i) N-formilperosamina y N-acilperosamina donde esta N-acilperosamina es distinta de la N-formilperosamina, o
ii) N-formilperosamina y N-glicosilperosamina;
preferentemente el heteropolímero está formado por residuos seleccionados entre:
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también
N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente el heteropolímero está formado por residuos N-formilperosamina y N- acetilperosamina.
9. Un producto que consiste en una molécula que comprende el antígeno O del LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque:
a) proviene de una bacteria gram-negativa con un antígeno O que comprende un homopolímero de N-formilp ero s amina; y donde en al menos uno de los residuos N- formilperosamina del antígeno O, el grupo formilo en posición 4-amino de la perosamina ha sido sustituido por:
i) un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; más preferentemente el grupo acilo es un grupo acetilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) proviene de una bacteria gram-negativa con un antígeno O que comprende un heteropolímero formado por residuos seleccionados entre:
i) N-formilperosamina y N-acilperosamina, donde esta N-acilperosamina es distinta de la N-formilperosamina, o
ii) N-formilperosamina y N-glicosilperosamina;
preferentemente el heteropolímero está formado por residuos seleccionados entre:
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también
N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente el heteropolímero está formado por residuos N-formilperosamina y N- acetilperosamina.
10. Un producto según cualquiera de las reivindicaciones 8 o 9, donde la molécula que comprende el antígeno O proviene de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7.
11. Un producto según las reivindicaciones 8 a 10, donde la molécula que comprende el antígeno O proviene de una bacteria modificada genéticamente, a la que se ha introducido un gen heterólogo que codifica: a) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; preferentemente un grupo acilo seleccionado del grupo comprendido por: un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, y un grupo R(-)2-hidroxipropionilo; más preferentemente la N-aciltransferasa es una N-acetiltransferasa; o
b) una N-glicosiltransferasa capaz de transferir un azúcar, seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O.
12. Un producto según las reivindicaciones 8 a 11, donde al menos el 20%, preferentemente al menos el 40% y más preferentemente, al menos el 60% de los residuos del antígeno O, son una N-acilperosamina distinta de N-formilperosamina; de forma preferida la N-acilperosamina es una N-acetilperosamina.
13. Un procedimiento para la obtención de un producto según las reivindicaciones 8 a 12 que comprende:
a) cultivar, en condiciones adecuadas, una bacteria gram-negativa modificada genéticamente mediante la introducción de un gen heterólogo que codifica
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
donde la bacteria gram-negativa es preferentemente una Brucella según las reivindicaciones 1 a 7; y
b) aislar y/o purificar dicho producto.
14. Un procedimiento para la obtención de anticuerpos, que comprende:
a) inmunizar un animal con:
i) una bacteria gram-negativa según las reivindicaciones 1 a 7, o
ii) un producto según las reivindicaciones 8 a 12; y
b) aislar y/o purificar dichos anticuerpos.
15. Un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, caracterizado porque
a) al menos uno de los residuos N-formilperosamina de dicho antígeno O, ha sido modificado mediante la sustitución de al menos un grupo formilo, en posición 4-amino de la perosamina, por:
i) un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, más preferentemente el grupo acilo es un grupo acetilo; o por
ii) un azúcar, seleccionado del grupo que comprende hexosas y pentosas; o b) dicho antígeno O comprende un heteropolímero formado por residuos seleccionados entre:
i) N-formilperosamina y N-acilperosamina, donde esta N-acilperosamina es distinta de la N-formilperosamina, o
ii) N-formilperosamina y N-glicosilperosamina;
preferentemente el heteropolímero está formado por residuos seleccionados entre:
N-formilperosamina y N-acetilperosamina,
N-formilperosamina y 3-deoxi-L-glicerotetronilperosamina,
N-formilperosamina y 3-hidroxipropionilperosamina,
N-formilperosamina y S(+)2-hidroxipropionilperosamina, o también
N-formilperosamina y R(-)2-hidroxipropionilperosamina;
más preferentemente el heteropolímero está formado por residuos N-formilperosamina y N- acetilperosamina.
16. Anticuerpo según la reivindicación 15, donde el antígeno O proviene de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7.
17. Un anticuerpo obtenible por un procedimiento según la reivindicación 14.
18. Una bacteria gram-negativa según las reivindicaciones 1 a 7, o un producto según las reivindicaciones 8 a 12, para uso en medicina.
19. Uso de una bacteria gram-negativa según las reivindicaciones 1 a 7, o un producto según las reivindicaciones 8 a 12, en la fabricación de un medicamento o de una vacuna.
20. Una bacteria gram-negativa según las reivindicaciones 1 a 7, o un producto según las reivindicaciones 8 a 12, para uso, según la reivindicación 19, en la prevención de la brucelosis.
21. Uso, según la reivindicación 19, de una bacteria gram-negativa según las reivindicaciones 1 a 7, o un producto según las reivindicaciones 8 a 12, en la fabricación de un medicamento o de una vacuna para la prevención de la brucelosis.
22. Un medicamento para el tratamiento de la brucelosis, o una vacuna para la prevención de la aparición de dicha enfermedad que comprende una bacteria gram-negativa según las reivindicaciones 1 a 7, o un producto según las reivindicaciones 8 a 12.
23. Una bacteria gram-negativa según las reivindicaciones 1 a 7, un producto según las reivindicaciones 8 a 12 o un anticuerpo según las reivindicaciones 15 a 17, para uso en el diagnóstico de brucelosis; preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella.
24. Uso de una bacteria gram-negativa según las reivindicaciones 1 a 7, un producto según las reivindicaciones 8 a 12 o un anticuerpo según las reivindicaciones 15 a 17, en la fabricación de una composición, reactivo o kit, para diagnóstico de la brucelosis; preferentemente para la diferenciación de animales infectados por Brucella de animales vacunados frente a Brucella.
25. Uso de un marcador para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, en donde dicho marcador se selecciona entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7;
b) un anticuerpo específico frente al antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7; c) una molécula de DNA o RNA que codifica:
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antigeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a:
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo; y más preferentemente el grupo acilo es un grupo acetilo; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de los anteriores.
26. Un método de diagnóstico in vitro para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, que comprende detectar la presencia en una muestra del animal de un marcador seleccionado entre:
a) un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria gram- negativa del género Brucella según las reivindicaciones 1 a 7;
b) un anticuerpo específico frente a un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de ellos, proveniente de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7;
c) una molécula de DNA o RNA que codifica
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grapo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo; o
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O;
d) un anticuerpo específico frente a
i) una N-aciltransferasa capaz de transferir un grupo acilo, distinto del grupo formilo, a la posición 4-amino de las perosaminas del antígeno O; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2- hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo; o frente a
ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
e) una combinación de varios de los marcadores anteriores;
donde la presencia de al menos uno de dichos marcadores es indicativa de que dicho animal ha sido vacunado frente a la brucelosis.
27. Método según la reivindicación 26, caracterizado porque es un inmunoensayo, preferentemente seleccionado entre un ELISA, un ensayo de aglutinación en placa y un ensayo de aglutinación en tubo.
28. Método según las reivindicaciones 26 o 27 que comprende las siguientes etapas: a) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno
O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7; y
b) detectar la presencia en la muestra de anticuerpos específicos frente a un antígeno
O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7.
29. Método según la reivindicación 28 que comprende, además, una etapa intermedia entre a) y b) en la que la muestra se pone en contacto con un ligando específico para absorber los anticuerpos detectados en a).
30. Un método de diagnóstico in vivo para diferenciar animales infectados por
Brucella de animales vacunados frente a la Brucella, que comprende:
a) inocular intracutáneamente al sujeto, preferentemente un animal, con:
i) una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi- L-glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo; o ii) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y
b) observar el desarrollo de una reacción cutánea de hipersensibilidad retardada, preferentemente detectable por la formación de induraciones o pápulas.
31. Un kit de diagnóstico, para diferenciar animales infectados por Brucella de animales vacunados frente a la Brucella, que comprende al menos un componente seleccionado entre:
a) una sonda o ligando para anticuerpos específicos frente al antígeno O de un LPS o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, donde dicho antígeno O proviene de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7;
b) un anticuerpo según las reivindicaciones 15 a 17;
c) una N-aciltransferasa capaz de transferir, a la posición 4-amino de las perosaminas del antígeno O, un grupo acilo, distinto del grupo formilo; donde el grupo acilo se selecciona preferentemente del grupo que comprende un grupo acetilo, un grupo 3-deoxi-L- glicerotetronilo, un grupo 3-hidroxipropionilo, un grupo S(+)2-hidroxipropionilo, un grupo R(-)2-hidroxipropionilo, y más preferentemente el grupo acilo es un grupo acetilo;
d) una N-glicosiltransferasa capaz de transferir un azúcar seleccionado del grupo que comprende hexosas y pentosas, a la posición 4-amino de las perosaminas del antígeno O; y e) un polinucleótido para amplificar un gen que codifica una N-aciltransferasa según c) o una N-glicosiltransferasa según d); preferentemente un polinucleótido para amplificar el gen wbdR de E. coli 0157:H7; más preferentemente la secuencia del polinucleótido es SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, y SEQ.ID.NO. 12.
32. Kit según la reivindicación 31 , en donde la sonda o ligando a) para los anticuerpos específicos está seleccionado del grupo formado por:
a) una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7; y b) un producto según las reivindicaciones 8 a 12.
33. Un kit según cualquiera de las reivindicaciones 31 a 32 que comprende además al menos un reactivo seleccionado entre:
a) una molécula que comprende un antígeno O de un LPS, o de un NH, o de un precursor biosintético de los mismos, o de un fragmento de cualquiera de los anteriores, proveniente de una bacteria gram-negativa del género Brucella, distinta de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7; y
b) una bacteria gram-negativa del género Brucella, distinta de una bacteria gram- negativa del género Brucella según las reivindicaciones 1 a 7.
34. Un polinucleótido que comprende una secuencia seleccionada entre: SEQ.ID.NO. 1, SEQ.ID.NO. 2, SEQ.ID.NO. 3, SEQ.ID.NO. 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, o SEQ.ID.NO. 12.
35. Un polinucleótido que consiste en una secuencia seleccionada entre: SEQ.ID.NO. 1 , SEQ.ID .NO. 2, SEQ .ID .NO. 3 , SEQ .ID.NO . 4, SEQ.ID.NO. 5, SEQ.ID.NO. 6, SEQ.ID.NO. 9, SEQ.ID.NO. 10, SEQ.ID.NO. 11, y SEQ.ID.NO. 12.
36. Un polinucleótido según cualquiera de las reivindicaciones 34 o 35 para uso en el diagnóstico de la brucelosis.
37. Uso de un polinucleótido según cualquiera de las reivindicaciones 34 o 35 para la fabricación de una composición, un reactivo o un kit para el diagnóstico de la brucelosis.
38. Método de prevención y/o tratamiento de la brucelosis en un sujeto, preferentemente un animal, que comprende la administración a dicho sujeto, preferentemente un animal, de una cantidad terapéuticamente efectiva de una bacteria gram-negativa del género Brucella según las reivindicaciones 1 a 7.
PCT/ES2012/070177 2011-03-25 2012-03-20 Método diva de diferenciación de animales vacunados frente a la brucelosis WO2012131128A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201130451 2011-03-25
ES201130451A ES2389066B1 (es) 2011-03-25 2011-03-25 Método diva de diferenciación de animales vacunados frente a la brucelosis.

Publications (1)

Publication Number Publication Date
WO2012131128A1 true WO2012131128A1 (es) 2012-10-04

Family

ID=46929527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070177 WO2012131128A1 (es) 2011-03-25 2012-03-20 Método diva de diferenciación de animales vacunados frente a la brucelosis

Country Status (2)

Country Link
ES (1) ES2389066B1 (es)
WO (1) WO2012131128A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005390A1 (en) * 2014-07-10 2016-01-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Modified bacteria for improved vaccines against brucellosis
WO2017108515A1 (en) * 2015-12-21 2017-06-29 Universidad De Navarra Modified gram negative bacterial strains and uses thereof
CN111057671A (zh) * 2019-12-04 2020-04-24 扬州大学 一种鸡白痢沙门菌单基因无痕敲除减毒株及其制备方法和应用
WO2020188602A1 (en) * 2019-03-21 2020-09-24 National Institute Of Animal Biotechnology Immunodominant protein based method for differentiating brucellosis-infected animals from vaccinated animals
CN112546210A (zh) * 2020-12-15 2021-03-26 南京农业大学 一种沙门菌灭活疫苗的制备方法及应用
CN117187146A (zh) * 2023-11-07 2023-12-08 中国兽医药品监察所 一株无耐药性的粗糙型布鲁氏菌病保护菌株及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016728A1 (en) * 1992-02-25 1993-09-02 The Texas A & M University System Improved vaccin against brucella abortus
WO2011033129A1 (en) * 2009-09-21 2011-03-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Modified gram-negative bacteria for use as vaccines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016728A1 (en) * 1992-02-25 1993-09-02 The Texas A & M University System Improved vaccin against brucella abortus
WO2011033129A1 (en) * 2009-09-21 2011-03-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Modified gram-negative bacteria for use as vaccines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GONZALEZ, D. ET AL.: "Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export.", PLOSONE, vol. 3, no. 7, 2008, pages E2760 - E2760, XP002573331 *
LAUTARO PINOCHET V. ET AL.: "Preparacion y evaluacion de un antigeno para descartar respuesta postvacunal a Brucella abortus cepa 19.", AVANCES IN CIENCIAS VETERINARIAS, vol. 4, 1989, pages 43 - 48 *
MONREAL D-. ET AL.: "Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model.", INFECTION AND IMMUNITY, vol. 71, 2003, pages 3261 - 3271, XP002966662, DOI: doi:10.1128/IAI.71.6.3261-3271.2003 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005390A1 (en) * 2014-07-10 2016-01-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Modified bacteria for improved vaccines against brucellosis
CN106574235A (zh) * 2014-07-10 2017-04-19 国家医疗保健研究所 用于针对布鲁氏菌病的改进疫苗的改性细菌
CN106574235B (zh) * 2014-07-10 2021-03-16 国家医疗保健研究所 用于针对布鲁氏菌病的改进疫苗的改性细菌
CN112980761A (zh) * 2014-07-10 2021-06-18 国家医疗保健研究所 用于针对布鲁氏菌病的改进疫苗的改性细菌
WO2017108515A1 (en) * 2015-12-21 2017-06-29 Universidad De Navarra Modified gram negative bacterial strains and uses thereof
WO2020188602A1 (en) * 2019-03-21 2020-09-24 National Institute Of Animal Biotechnology Immunodominant protein based method for differentiating brucellosis-infected animals from vaccinated animals
CN111057671A (zh) * 2019-12-04 2020-04-24 扬州大学 一种鸡白痢沙门菌单基因无痕敲除减毒株及其制备方法和应用
CN112546210A (zh) * 2020-12-15 2021-03-26 南京农业大学 一种沙门菌灭活疫苗的制备方法及应用
CN117187146A (zh) * 2023-11-07 2023-12-08 中国兽医药品监察所 一株无耐药性的粗糙型布鲁氏菌病保护菌株及其应用
CN117187146B (zh) * 2023-11-07 2024-01-26 中国兽医药品监察所 一株无耐药性的粗糙型布鲁氏菌病保护菌株及其应用

Also Published As

Publication number Publication date
ES2389066B1 (es) 2013-10-30
ES2389066A1 (es) 2012-10-23

Similar Documents

Publication Publication Date Title
Ryndak et al. Mycobacterium tuberculosis primary infection and dissemination: a critical role for alveolar epithelial cells
ES2294821T5 (es) LPS con toxicidad reducida a partir de bacterias gram negativas modificadas genéticamente
Kong et al. Phosphate groups of lipid A are essential for Salmonella enterica serovar Typhimurium virulence and affect innate and adaptive immunity
ES2391525T3 (es) Glucanos y glucopéptidos de Campylobacter
US8703436B2 (en) Identification of Porphyromonas gingivalis virulence polynucleotides for diagnosis, treatment, and monitoring of periodontal diseases
WO2012131128A1 (es) Método diva de diferenciación de animales vacunados frente a la brucelosis
ES2342890T3 (es) Pili de tipo iv de la haemophilus influenzae.
Fu et al. Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins
Kong et al. Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar Typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen
Venkatesan et al. Construction, characterization, and animal testing of WRSd1, a Shigella dysenteriae 1 vaccine
AU763683B2 (en) Bacteria attenuated by a non-reverting mutation in each of the aroC, ompF and ompC genes, useful as vaccines
US9597386B2 (en) Outer membrane proteins of Histophilus somni and methods thereof
KR20170137867A (ko) 보르데텔라 퍼투시스 면역원성 백신 조성물
Cai et al. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice
JP2004337175A (ja) 無毒性微生物及びその使用:サルモネラ
Fu et al. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice
Siadat et al. Brucellosis vaccines: an overview
HU219327B (en) Process for the production of conjugated vaccine for group b streptococcus
ES2358804T3 (es) Polipéptidos de campylobacter jejuni ubicados en superficie.
WO2011067446A1 (es) Procedimiento de identificación de animales vacunados frente a brucella
US8647640B2 (en) Vaccine compositions and methods of use to protect against infectious disease
ES2586979B1 (es) Vacunas vivas atenuadas de staphylococcus aureus
WO2017108515A1 (en) Modified gram negative bacterial strains and uses thereof
ES2547474A1 (es) Dispositivo y procedimiento de inspección de elementos en cajas de fusibles
ES2295464T3 (es) Proteinas con dominios de repeticion de bacterias de tipo ig presentes en especies de leptospira.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764137

Country of ref document: EP

Kind code of ref document: A1