WO2012130172A1 - 一种双作用单级行波热声系统 - Google Patents

一种双作用单级行波热声系统 Download PDF

Info

Publication number
WO2012130172A1
WO2012130172A1 PCT/CN2012/073390 CN2012073390W WO2012130172A1 WO 2012130172 A1 WO2012130172 A1 WO 2012130172A1 CN 2012073390 W CN2012073390 W CN 2012073390W WO 2012130172 A1 WO2012130172 A1 WO 2012130172A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
traveling wave
double
cylinder
thermoacoustic
Prior art date
Application number
PCT/CN2012/073390
Other languages
English (en)
French (fr)
Inventor
罗二仓
戴巍
胡剑英
吴张华
余国瑶
李海冰
Original Assignee
中科力函(深圳)热声技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科力函(深圳)热声技术有限公司 filed Critical 中科力函(深圳)热声技术有限公司
Priority to EP12765656.9A priority Critical patent/EP2728181B1/en
Publication of WO2012130172A1 publication Critical patent/WO2012130172A1/zh
Priority to US14/190,076 priority patent/US20140202175A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/002Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using the energy of vibration of fluid columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to energy power and cryogenic refrigeration technologies, and more particularly to a double-acting single-stage traveling wave thermoacoustic system. Background technique
  • thermoacoustic effect When sound waves propagate through a gas, they cause fluctuations in pressure, displacement, and temperature of the propagating medium gas. When the gas interacts with a fixed boundary, it causes a transition between sonic energy and thermal energy, which is the thermoacoustic effect.
  • thermoacoustic system is an energy conversion system designed by the principle of thermoacoustic effect. It can convert thermal energy into acoustic energy or convert acoustic energy into thermal energy.
  • Thermoacoustic systems include thermoacoustic engines and refrigerators including traveling wave thermoacoustic refrigerators. , pulse tube refrigerator and Stirling refrigerator.
  • the traveling wave thermoacoustic engine and the refrigerating machine are inert gas such as air, helium or nitrogen as the working medium, and have the advantages of high efficiency, safety, and long service life, and thus have received widespread attention.
  • the use of traveling wave thermoacoustic engines for power generation and the use of traveling wave thermoacoustic refrigerators for low temperature refrigeration have been successful.
  • FIG. 1 is a schematic structural view of a conventional traveling wave thermoacoustic system.
  • the traveling wave thermoacoustic system includes three basic units, each of which includes a linear motor la and a thermoacoustic conversion device 2a.
  • the linear motor la includes a cylinder l la, a piston 12a, a piston rod 13a, a motor casing 14a, a stator 15a, a mover 16a, and a leaf spring 17a.
  • the stator 15a is fixedly coupled to the inner wall of the motor casing 14a, the mover 16a is cooperatively engaged with the stator 15a, the piston rod 13a is fixedly coupled to the mover 16a, and the piston rod 13a is fixedly coupled to the leaf spring 17a.
  • the mover 16a passes.
  • the piston rod 13a drives the piston 12a to reciprocate linearly in the cylinder 11a.
  • the thermoacoustic conversion device 2a includes a first heat exchanger 21a, a regenerator 22a, and a second heat exchanger 23a that are sequentially connected.
  • the first heat exchanger 21a is in communication with the cylinder bore of a linear motor la, that is, the compression chamber 18a, and the cylinder chamber of the second heat exchanger 23a and the other linear motor la, that is, the expansion chamber 19a
  • each of the thermoacoustic conversion devices 2a is sequentially connected to each of the linear motors la, so that the traveling wave thermoacoustic system constitutes a loop in which the working fluid flows.
  • the power of the linear motor 1a is turned on, and the mover 16a drives the piston 12a to reciprocate in the cylinder 11a, generating sound wave energy into the first heat exchanger 21a, through the regenerator 22a, in the regenerator, the sound energy is consumed mostly, generating a cooling effect, cooling the very warm heat exchanger, and the remaining sound energy is then discharged from the second heat exchanger 23a, and fed back to the expansion chamber of the other linear motor la 19a is then transmitted to the piston 12a of the second linear motor la.
  • the acoustic wave absorbs thermal energy into the acoustic energy in the regenerator 22a and the second heat exchanger 23a, and the acoustic energy is amplified and then exits from the second heat exchanger 23a, and enters the linear motor la
  • the expansion chamber 19a pushes the piston 12a to move.
  • the sound energy is divided into two parts at the piston 12a, a part enters the compression chamber 18a, is fed back into the other regenerator 22a, and the remainder is converted into output electric power by the linear motor 1a.
  • the inventors have found the following technical defects: In the traveling wave thermoacoustic system, since the temperature of the gaseous working fluid from the second heat exchanger 23a communicating with the regenerator 22a is relatively high, The temperature of the gaseous working fluid fed back to the expansion chamber 19a is high. Therefore, the operation of the cylinder 11a and the piston 12a in a relatively high temperature environment places high demands on the processing of the piston 12a, thereby increasing the traveling wave heat. The manufacturing cost of the sound system, and will reduce the service life of the linear motor la.
  • thermoacoustic system is liable to cause a DC loss between the gas working medium between the compression chamber 18a and the expansion chamber 19a, which can cause energy loss and reduce the conversion efficiency of the thermoacoustic energy, thereby reducing the traveling wave.
  • the performance of the thermoacoustic system is liable to cause a DC loss between the gas working medium between the compression chamber 18a and the expansion chamber 19a, which can cause energy loss and reduce the conversion efficiency of the thermoacoustic energy, thereby reducing the traveling wave.
  • the present invention provides a double-acting single-stage traveling wave thermoacoustic system for solving the defects in the prior art, which can improve the conversion efficiency of thermoacoustic energy, and reduce the production cost and the service life.
  • the present invention provides a double-acting single-stage traveling wave thermoacoustic system having at least three basic units, each of which includes a linear motor and a thermoacoustic conversion device, the linear motor including a cylinder and a piston, the piston A linear reciprocating motion is possible in the cylinder, the thermoacoustic conversion device including a first heat exchanger, a regenerator, a second heat exchanger, a heat buffer tube, and a third unit that are sequentially connected Heat Exchanger;
  • the first heat exchanger and the third heat exchanger of each of the thermoacoustic converters are respectively in communication with the cylinder bores of different linear motors to form a loop structure for the flow of the gaseous working fluid.
  • the double-acting single-stage traveling wave thermoacoustic system provided by the invention has a heat buffer tube and a third heat exchanger, so that the temperature of the gas working fluid in the inner cavity of another linear motor cylinder is fed back to the prior art. Close to room temperature, it can ensure that the piston and cylinder work in the room temperature environment, thereby reducing the manufacturing cost and improving the service life of the double-acting single-stage traveling wave thermoacoustic system.
  • the double-acting single-stage traveling wave thermoacoustic system provided by the present invention preferably installs a DC suppressor in the loop structure, and the DC suppressor can avoid DC loss of the gas working medium in the loop structure, thereby improving the double acting.
  • the conversion efficiency of the high-thermal acoustic energy of the single-stage traveling wave thermoacoustic system improves the working performance.
  • FIG. 2 is a schematic structural view of a double-acting single-stage traveling wave thermoacoustic system according to a first embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a double-acting single-stage traveling wave thermoacoustic system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a double-acting single-stage traveling wave thermoacoustic system according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a fifth embodiment of the present invention. Reference mark:
  • the present invention provides a double-acting single-stage traveling wave thermoacoustic system having at least three basic units, each of which includes a linear motor and a thermoacoustic conversion device, the linear motor including a cylinder and a piston.
  • thermoacoustic conversion device includes a first heat exchanger, a regenerator, a second heat exchanger, a heat buffer tube and a third heat exchanger that are sequentially connected
  • the first heat exchanger and the third heat exchanger of each of the thermoacoustic converters are respectively connected to the cylinder bores of different linear motors to form a loop structure for the flow of the gaseous working fluid.
  • the double-acting single-stage traveling wave thermoacoustic system has a thermal buffer tube and a third heat exchanger, so that the temperature of the gaseous working fluid fed back into the cylinder of the linear motor cylinder is close to room temperature, thereby ensuring When the piston and the cylinder are operated at room temperature, the conversion efficiency of the thermoacoustic energy can be improved, and the manufacturing cost can be reduced and the service life can be improved.
  • the DC suppressor can avoid the DC loss in the gas working medium in the loop structure, and can improve the conversion efficiency of the thermoacoustic energy of the double-acting single-stage traveling wave thermoacoustic system and improve the working performance.
  • the DC suppressor may be installed on the connecting pipe of the first heat exchanger and the cylinder inner cavity, or may be installed on the connecting pipe of the third heat exchanger and the cylinder inner cavity.
  • the DC suppressor is preferably a jet pump or an elastic bellows.
  • the design of the cylinder inner cavity of the linear motor can be various according to the relative position.
  • the first heat exchanger and the third heat exchanger of the thermoacoustic converter have various connection modes with the cylinder bore of the linear motor, and can form different paths.
  • a variety of loop structures E.g:
  • Each linear motor may include two cylinder bores, and the two cylinder bores are respectively recorded as a compression chamber and an expansion chamber according to different heat exchangers connected thereto, and the compression chamber communicates with the first heat exchanger, the expansion chamber and the first chamber The three heat exchangers are connected.
  • the means for realizing the two cylinder bores may be:
  • the number of pistons of the linear motor is one, and the two cylinder bores are formed on both sides of the piston.
  • the number of pistons of the linear motor is one, and the shape of the cylinder and the piston are mutually matched stepped structures; the two cylinder inner cavities are formed at different step layers on the same side of the piston.
  • the number of pistons of the linear motor is two, and the two pistons are respectively disposed at two ends of the linear motor, and the two gas red inner cavities are respectively located at two ends of the linear motor.
  • Each linear motor may also include a cylinder bore that is coupled to the first heat exchanger and the third heat exchanger of the different thermoacoustic conversion devices, respectively.
  • the means for realizing a cylinder bore may be:
  • the number of pistons of the linear motor is one, and one cylinder bore is formed on one side of the piston. Or there may be more than one cylinder inner cavity, but the actual connection with the heat exchanger is a cylinder internal cavity.
  • the different loop structures formed by the connection between the cylinder bore and the heat exchanger are related to the working phase of the gas working medium, and the loop structure is matched with the appropriate number of basic units to improve the working efficiency.
  • the working surfaces of the pistons in the cylinder bores may be arranged to be parallel and reverse, with the number of corresponding basic units being three or four.
  • the working surfaces of the pistons in the cylinder bores are parallel and in the same direction, and the number of corresponding basic units is four, five or six.
  • FIG. 2 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a first embodiment of the present invention.
  • the double-acting single-stage traveling wave thermoacoustic system includes three basic units, and only the labels of the respective components in the rightmost unit in the figure are indicated in FIG. 2, due to the other two
  • the components of the base unit are identical to the base unit. To simplify the drawing, other identical components are not indicated in FIG.
  • Each of the basic units includes a linear motor 1 and a thermoacoustic conversion device 2.
  • the thermoacoustic conversion device 2 is mounted on the right side of the linear motor 1 (Fig. 2), and the linear motor 1 includes a cylinder 1 1 , a piston 12 , a piston rod 13 , a motor housing 14 , a stator 15 , a mover 16 , and Leaf spring 17.
  • the piston 12 and the cylinder 1 1 have a small gap fit, and the matching clearance may be 0.01-0. lmm, the piston 12 can linearly reciprocate in the cylinder 11, and the stator 15 is fixedly mounted on the inner wall of the motor casing 14, the mover 16 and the piston The rod 13 is fixedly connected, the mover 16 is engaged with the stator 15, the mover 16 and the stator 15 have a proper gap, and the piston rod 13 is slightly overlapped with the neck of the motor casing 14, and the mover 16 can drive the piston 12 at The cylinder 1 1 is linearly reciprocated.
  • the thermoacoustic conversion device 2 includes a first heat exchanger 21, a regenerator 22, a second heat exchanger 23, a heat buffer tube 24, and a third heat exchanger 25 that are sequentially connected.
  • the number of the cylinders 11 and the pistons 12 of each linear motor 1 is one, and the two cylinder internal cavities are formed on both sides of the piston 12.
  • the working surfaces of the pistons 12 in the cylinder bores are parallel and opposite to each other.
  • the working surface of the piston 12 herein refers to a surface that can directly interact with the gaseous working fluid in the cylinder 11 when the piston 12 is in motion.
  • the piston 12 divides the cylinder bore of the cylinder 1 into a compression chamber 18 and an expansion chamber 19.
  • the compression chamber 18 of the cylinder 11 is in communication with the first heat exchanger 21 of the thermoacoustic conversion device 2 in the same basic unit, the expansion chamber 19 of the cylinder 11 and the thermoacoustic conversion device 2 in the other basic unit.
  • the third heat exchanger 25 is in communication to form a loop structure in which the gaseous working fluid flows.
  • the number of the basic units is set to three or four.
  • the three linear motors 1 in this embodiment are connected to the three-phase alternating current by a delta connection, and the current phase difference of the three linear motors 1 is 120 degrees, and therefore, the first heat exchanger 21 with each thermoacoustic conversion device 2
  • the gas medium volume flow in the compression chamber 18 and the expansion chamber 19 in communication with the third heat exchanger 25 is also 120 degrees out of phase.
  • a DC suppressor 3 is mounted on the connecting line of the third heat exchanger 25 and the expansion chamber 19.
  • the DC suppressor 3 may specifically be an elastic bellows, and the elastic bellows has an elastic diaphragm, which is driven by the airflow.
  • the diaphragm only allows the gas working medium to reciprocate within the elastic range of the diaphragm, and does not allow the gas working fluid to flow directly through the diaphragm, causing DC loss. Therefore, the efficiency of the thermoacoustic energy conversion of the double-acting single-stage traveling wave thermoacoustic system can be improved, and the working performance can be improved.
  • a DC suppressor 3 can also be installed on the connecting line of the first heat exchanger 21 and the compression chamber 18.
  • each component can also adopt the following connection manner:
  • the expansion chamber 19 of the cylinder 11 communicates with the first heat exchanger 21 of the thermoacoustic conversion device 2 in the same basic unit, the compression chamber 18 of the cylinder 11 and the thermoacoustic conversion device 2 in the other basic unit
  • the third heat exchanger 25 is in communication to form a loop structure in which the gaseous working fluid flows.
  • thermoacoustic converters provided in this embodiment as thermoacoustic engines, thermoacoustic refrigerators and thermoacoustic heat pumps, respectively, are described below:
  • thermoacoustic conversion device 2 has a high thermoacoustic conversion efficiency when the volume flow phase difference across the thermoacoustic transducer device 2 is in the range of 90 to 150 degrees.
  • thermoacoustic conversion device 2 When the thermoacoustic conversion device 2 is used as a thermoacoustic engine, the first heat exchanger 21 and the third exchange The heat exchanger 25 is in a room temperature state, and at this time, the second heat exchanger 23 is brought to a high temperature state by heating.
  • the acoustic work of the gaseous working fluid enters the thermoacoustic conversion device 2 from the compression chamber 18.
  • the gas working medium in the regenerator 22 and the second heat exchanger 23 absorbs heat, converting heat into sound power, sound
  • the work is amplified by the gas working medium and then enters the expansion chamber 19 of the other linear motor 1 through the heat buffer tube 24 and the third heat exchanger 25.
  • the piston 12 absorbs the sound power of the expansion chamber 19, the sound work is divided into two parts, part of which The sound power is fed back to the compression chamber 18, into another thermoacoustic conversion device 2, and the remainder is converted to output electrical power by the linear motor 1.
  • the current output of the three linear motors 1 in this embodiment has a phase difference of 120 degrees. After appropriate voltage transformation, the three-phase AC power grid can be connected, and the entire power generation process is very simple.
  • thermoacoustic transducing device 2 When the thermoacoustic transducing device 2 is a thermoacoustic refrigerator, the first heat exchanger 21 and the third heat exchanger 25 are at a room temperature state.
  • the three-phase power supply inputs electric power to the three linear motors 1, and the driving piston 12 performs reciprocating motion to convert electric power into sound power, and the sound power enters the thermoacoustic conversion device 2 from the compression chamber 18 of the cylinder 1 1 , and most of the sound energy is
  • the regenerator 22 is consumed, and at the same time, a cooling effect is generated, the temperature of the second heat exchanger 23 is lowered, and the remaining sound power is passed through the heat buffer tube 24 from the third heat exchanger 25 to the other linear motor 1.
  • the expansion chamber 19 is fed back to the piston 12.
  • thermoacoustic conversion device 2 is a thermoacoustic heat pump
  • the compression chamber 18 and the expansion chamber 19 in Fig. 2 will exchange positions with each other (in an actual system, the compression chamber 18 and the expansion can be made only by changing the phase between the currents.
  • the roles of the chambers 19 are interchanged, and the first heat exchanger 21 and the third heat exchanger 25 are at room temperature.
  • the three-phase power supply inputs electric power to the three linear motors 1, and the driving piston 12 performs a reciprocating motion to convert the electric work into sound power, and the acoustic power enters the compression chamber 18 of the cylinder 11 into the thermoacoustic conversion device 2 of the other basic unit, first passing The third heat exchanger 25 and the heat buffer tube 24, and then most of the sonic energy is consumed in the regenerator 22, while heat is pumped from the first heat exchanger 21 to the second heat exchanger 23, The temperature of the second heat exchanger 23 rises to produce a heating effect, and the remaining sound power passes through the first heat exchanger 21 and enters the expansion chamber 19 of the linear motor 1, and is fed back to the piston 12.
  • thermoacoustic change device 2 of the present embodiment since the thermoacoustic change device 2 of the present embodiment is equipped with the heat buffer tube 24 and the third exchange
  • the heat exchanger 25 cools down the gas working medium through the heat buffer tube 24 and the third heat exchanger 25, so that the gas working medium entering the expansion chamber 19 is close to room temperature, so the piston 12 can work at room temperature.
  • the processing difficulty of the piston 12 is reduced, the processing cost is reduced, and the service life of the linear motor 1 is improved.
  • the DC suppressor 3 is installed on the loop structure, the DC channel is cut off, the energy loss caused by the DC in the loop structure is suppressed, and the conversion efficiency of the thermoacoustic energy of the thermoacoustic conversion device 2 is improved. , thereby improving the performance of the double-acting single-stage traveling wave thermoacoustic system.
  • the working surface in the compression chamber 18 is opposite to the working surface of the expansion chamber 19. That is to say, in each linear motor, it must be ensured that the expansion chamber 19 is in an expanded state when the compression chamber 18 is in a compressed state. If the compression chamber 18 is in a compressed state and the expansion chamber 19 is also in a compressed state, the volume flow phase difference between the two ends of the thermoacoustic conversion device 2 is 60 degrees, which in turn causes the thermoacoustic conversion efficiency of the thermoacoustic change device 2 to be Greatly reduced.
  • the number of basic units in this embodiment may also be four, and the loop structure described above also has good conversion efficiency of thermoacoustic energy.
  • FIG. 3 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a second embodiment of the present invention.
  • the double-acting single-stage traveling wave thermoacoustic system provided by the present invention has substantially the same structure as the double-acting single-stage traveling wave thermoacoustic system provided by the first embodiment, and the difference is that, in this embodiment,
  • the double-acting single-stage traveling wave thermoacoustic system has four basic units, each of which has two cylinders 11 and a piston 12, and two pistons 12 are respectively disposed at two ends of the linear motor 1, and two cylinders 1 1 The cylinder bores are respectively located at both ends of the linear motor.
  • the working surfaces of the pistons 12 are parallel, respectively located at the two ends of the linear motor 1
  • the compression chamber 18 and the expansion chamber 19 are located at both ends of the linear motor 1
  • the first heat exchanger 21 is directly connected to the compression chamber 18, and the third exchange
  • the heaters 25 are in communication with the expansion chambers 19 of the other basic unit, respectively, which saves the overall installation space.
  • DC is installed on the connection line of the third heat exchanger 25 and the expansion chamber 19.
  • Suppressor 3 is installed on the connection line of the third heat exchanger 25 and the expansion chamber 19.
  • the double-acting single-stage traveling wave thermoacoustic system in this embodiment also has substantially the same technical effects as the double-acting single-stage traveling wave thermoacoustic system in the first embodiment, and details are not described herein again.
  • the working surface of the piston 12 may be the same or opposite, that is, when the compression chamber 18 is compressed in the linear motor 1, the expansion chamber 19 can be simultaneously compressed. Or being inflated.
  • thermoacoustic conversion device 2 The reason is that if the compression chamber 18 is compressed, the expansion chamber 19 is also compressed, and the phase difference between the ends of the thermoacoustic conversion device 2 is 90 degrees. If the compression chamber 18 is compressed, the expansion chamber 19 is also compressed, and the volume flow phase difference between the ends of the thermoacoustic conversion device 2 is also 90 degrees, that is, the compression chamber 18 and the expansion chamber 19 are disposed anyway, and the thermoacoustic conversion device 2 is The volume flow phase difference at both ends is 90 degrees, and the double-acting single-stage traveling wave thermoacoustic system has the same performance.
  • thermoacoustic conversion device When the thermoacoustic conversion device is a thermoacoustic refrigerator, the current phase difference of the four linear motors is 90 degrees, so the driving current can no longer directly use the three-phase alternating current, and the current must be adjusted to 90 degrees by the phase adjusting device. The linear motor can be driven again.
  • the thermoacoustic converter 2 is a thermoacoustic engine
  • the phase difference of the output of the four linear motors 1 is 90 degrees, so that it must be phase-modulated by a certain phase modulation device before it can be connected to the grid.
  • the thermoacoustic conversion device 2 is a thermoacoustic heat pump, the compression chamber 18 and the expansion chamber 19 in Fig. 2 will exchange positions with each other, and the current must be adjusted to 90 degrees by the phase adjustment device before the linear motor can be driven.
  • the number of basic units in this embodiment may also be three. With the above loop structure, it also has good conversion efficiency of thermoacoustic energy.
  • FIG. 4 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a third embodiment of the present invention.
  • the double-acting single-stage traveling wave thermoacoustic system provided by the present invention is basically the same as the double-acting single-stage traveling wave thermoacoustic system provided by the first embodiment, and the difference is that, in this embodiment, the double The single-stage traveling wave thermoacoustic system has five basic units, and the cylinder 11 and the piston 12 are shaped to match each other with a stepped structure; the expansion chamber 19 is a sealed cavity formed by the piston 12 and the first stepped layer of the cylinder 11 , and the compression chamber 18 is a sealed chamber formed at the second stepped layer of the piston 12 and the cylinder 11.
  • the compression chamber 18 is in communication with the first heat exchanger 21, and the expansion chamber 19 is in communication with the third heat exchanger 25.
  • the regenerator 22 has an annular structure
  • the heat buffer tube 24 is installed inside the regenerator 22
  • the first heat exchanger 21 has an annular structure and is connected to the regenerator 22- end
  • the second heat exchanger 23 is connected to the other end of the regenerator 22 and the heat buffer tube 24, and the third heat exchanger 25 is embedded inside the annular structure of the first heat exchanger 21.
  • the volume flow phase at both ends of the thermoacoustic conversion device 2 is 108 degrees, which is advantageous for obtaining high conversion efficiency of thermoacoustic energy.
  • the DC suppressor 3 can adopt a jet pump structure, and the jet pump utilizes the asymmetry of the flow passage to generate a differential pressure opposite to the direct current, thereby suppressing the DC loss of the gaseous working fluid.
  • the working surfaces of the piston 12 have the same direction, that is, the compression chamber 18 and the expansion chamber 19 must be simultaneously compressed or simultaneously expanded. When one is compressed and the other is expanded, the conversion efficiency of the thermoacoustic energy of the thermoacoustic conversion device 2 is lowered.
  • thermoacoustic converter 2 When the thermoacoustic converter 2 is used as a thermoacoustic refrigerator, the current phase difference of the five linear motors 1 is 72 degrees, so the driving current cannot directly use the three-phase alternating current, and the current must be phase-adjusted to the phase modulation device to phase the current. When the adjustment is 72 degrees, the linear motor 1 can be driven again.
  • the thermoacoustic converter 2 When the thermoacoustic converter 2 is used as a thermoacoustic engine, the phase difference of the output of the five linear motors 1 is 72 degrees, so the phase must be phase-modulated to phase the current before it can be connected to the grid.
  • the thermoacoustic conversion device 2 is a thermoacoustic heat pump, the compression chamber 18 and the expansion chamber 19 in Fig. 2 will exchange positions with each other, and the current must be adjusted to 72 degrees by the phase adjustment device before the linear motor can be driven.
  • the number of basic units in this embodiment may also be four, and the loop structure described above also has good conversion efficiency of thermoacoustic energy.
  • the double-acting single-stage traveling wave thermoacoustic system in this embodiment also has the technical effects of the double-acting single-stage traveling wave thermoacoustic system in the first embodiment, and will not be described herein.
  • FIG. 5 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a fourth embodiment of the present invention.
  • the double-acting single-stage traveling wave thermoacoustic system of the present invention is basically the same as the double-acting single-stage traveling wave thermoacoustic system provided by the first embodiment, and the difference is that, in this embodiment, the double acting The basic unit of the single-stage traveling wave thermoacoustic system is six, each linear motor 1 has only one piston 12, and the cylinder 11 has a cylinder inner cavity.
  • the double-acting single-stage traveling wave thermoacoustic system provided by the present invention combines the compression chamber 18 and the expansion chamber 19 of the first, second and third embodiments of the present invention into a compression expansion chamber 189.
  • the compression expansion chambers 189 are in communication with the first heat exchanger 21 and the third heat exchanger 25, respectively.
  • the structure of the linear motor 1 of this structure is simpler and easier to manufacture.
  • the volume flow phase difference between the two ends of the thermoacoustic conversion device 2 is 120 degrees, which is advantageous for the thermoacoustic conversion device 2 to obtain a higher conversion efficiency of the thermoacoustic energy.
  • a DC suppressor 3 is mounted in the loop structure to suppress the generation of DC.
  • thermoacoustic converter 2 When the thermoacoustic converter 2 is used as a thermoacoustic refrigerator, the current phase difference of the six linear motors 1 is 60 degrees, so the driving current cannot directly use the three-phase alternating current, and the current must be adjusted by the phase adjusting device to phase the current. The linear motor 1 can be driven again when it is adjusted to 60 degrees.
  • the phase difference of the output of the six linear motors 1 is 60 degrees, so the phase must be adjusted by the phase adjusting device to be connected to the grid.
  • the number of basic units in this embodiment may also be four, five or more, and the loop structure described above also has good conversion efficiency of thermoacoustic energy.
  • the double-acting single-stage traveling wave thermoacoustic system in this embodiment also has the technical effects of the double-acting single-stage traveling wave thermoacoustic system in the first embodiment, and details are not described herein.
  • the DC suppressor 3 in the above four embodiments of the present invention may specifically be an elastic bellows, and the elastic bellows has an elastic diaphragm. Under the push of the airflow, the diaphragm only allows the gas working fluid. Reciprocating within the elastic range of the diaphragm does not allow gaseous working fluid to flow directly through the diaphragm, causing DC losses.
  • the DC suppressor 3 can also select an injection pump, which utilizes the asymmetry of the flow passage to generate a pressure difference opposite to the direct current, thereby suppressing the DC loss of the gaseous working medium.
  • FIG. 6 is a schematic structural diagram of a double-acting single-stage traveling wave thermoacoustic system according to a fifth embodiment of the present invention.
  • thermoacoustic converters 2 are thermoacoustic engines
  • the right thermoacoustic converter 2 is a thermoacoustic refrigerator
  • the left thermoacoustic transducer 2 is a thermoacoustic heat pump.
  • the linear motor 1 in this system is mainly used to control the operating frequency of the system and adjust the volume flow phase relationship.
  • thermoacoustic engine converts the absorbed high-temperature heat into mechanical energy in the form of sound waves, and the sound waves drive the thermoacoustic refrigerator and the heat pump to operate;
  • thermoacoustic refrigerator can be used as a fresh source for daily food, and the heat pump can provide daily hot water for daily use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

一种双作用单级行波热声系统 技术领域 本发明涉及能源动力以及低温制冷技术, 尤其是涉及一种双作用单级 行波热声系统。 背景技术
声波在气体中传播时, 会使传播介质气体产生压力、位移和温度的波动。 当该气体与固定边界相作用时, 会引发声波能量与热能之间的转换, 这就是 热声效应。
热声系统就是利用热声效应原理设计的一种能量转换系统, 可以将热能 转化为声波能量, 或者将声波能量转换成热能, 热声系统包括热声发动机和 制冷机包括行波热声制冷机、 脉冲管制冷机和斯特林制冷机。
在上述热声系统中, 行波热声发动机和制冷机, 是以空气、 氦气或氮 气等惰性气体作为工作介质, 具有高效、 安全、 使用寿命长的优点, 因此 获得了人们的广泛关注。 目前采用行波热声发动机发电, 以及采用行波热 声制冷机实现低温制冷已经取得成功。
参考图 1 , 图 1为现有的行波热声系统的结构示意图。
如图 1所示, 该行波热声系统包括三个基本单元, 每个基本单元包括 直线电机 la和热声转换装置 2a。
直线电机 la包括气缸 l la、 活塞 12a、 活塞杆 13a、 电机外壳 14a、 静 子 15a、 动子 16a和板簧 17a。
静子 15a与电机外壳 14a的内壁固定连接, 动子 16a与静子 15a间隙 配合, 活塞杆 13a与动子 16a固定连接, 活塞杆 13a与板簧 17a固定连接, 直线电机 la工作时, 动子 16a通过活塞杆 13a带动活塞 12a在气缸 11a 内作直线往复运动。
热声转换装置 2a包括依次连通的第一换热器 21a、 回热器 22a和第二 换热器 23a。第一换热器 21a与一个直线电机 la的气缸内腔,即压缩腔 18a 连通, 第二换热器 23a与另一个直线电机 la的气缸内腔, 即膨胀腔 19a 连通, 各热声转换装置 2a与各直线电机 la顺序相连, 这样, 该行波热声 系统就组成了一个工质流动的环路。
该行波热声系统作为制冷机工作时, 接通直线电机 1 a的电源, 动子 16a带动活塞 12a在气缸 1 1a内往复运动, 产生声波能量进入第一换热器 21a, 通过回热器 22a, 在回热器内声波能量被消耗掉大部分, 产生制冷效 应, 使非常温换热器降温, 剩余声波能量再从第二换热器 23a出来, 反馈 给另一个直线电机 la的膨胀腔 19a, 再传递给第二个直线电机 la的活塞 12a。
该行波热声系统作为发动机工作时, 声波在回热器 22a和第二换热器 23a内吸收热能转换为声波能量, 声波能量被放大再从第二换热器 23a出 来, 进入直线电机 la的膨胀腔 19a, 推动活塞 12a运动, 声波能量在活塞 12a处被分成两部分,一部分进入压缩腔 18a,反馈进入另一个回热器 22a, 剩余部分通过直线电机 1 a转换为输出电功。
在进行本发明的研究过程中, 发明人发现如下技术缺陷: 在该行波热 声系统中, 由于与回热器 22a连通的第二换热器 23a出来的气体工质的温 度相对较高, 反馈到膨胀腔 19a的气体工质的温度较高, 因此, 气缸 1 1a 和活塞 12a工作在温度较高的环境下, 对活塞 12a的加工制造提出了很高 的要求, 因而会增加行波热声系统的生产制造成本, 并且会减少直线电机 la的使用寿命。
另外, 该热声系统的采用环路结构, 容易造成气体工质在压缩腔 18a 和膨胀腔 19a之间产生直流损失, 能够造成能量损失, 降低热声能量的转 换效率, 因而会降低该行波热声系统的工作性能。 发明内容
本发明提供一种双作用单级行波热声系统, 用以解决现有技术中的缺 陷, 能够提高热声能量的转换效率, 并且降低生产成本, 提高使用寿命。
本发明提供了一种双作用单级行波热声系统, 具有至少三个基本单 元, 每个所述基本单元包括直线电机和热声转换装置, 所述直线电机包括 气缸和活塞, 所述活塞能够在所述气缸内作直线往复运动, 所述热声转换 装置包括依次连通的第一换热器、 回热器、 第二换热器、 热緩冲管和第三 换热器;
每个所述热声转换装置的第一换热器和第三换热器, 分别与不同直线 电机的气缸内腔连通, 形成气体工质流动的环路结构。
本发明提供的双作用单级行波热声系统, 与现有技术相比, 具有热緩 冲管和第三换热器, 使得反馈至另一个直线电机气缸内腔内的气体工质的 温度接近于室温因而可以保证活塞和气缸工作在室温环境下, 从而减少双 作用单级行波热声系统的生产制造成本, 提高使用寿命。
并且, 本发明提供的双作用单级行波热声系统优选是在环路结构中安 装直流抑制器, 通过该直流抑制器可以避免环路结构中气体工质产生直流 损失, 能够提高该双作用单级行波热声系统的高热声能量的转换效率, 提 高工作性能。 附图说明 图 1为现有的行波热声系统的结构示意图;
图 2为本发明第一实施例提供的双作用单级行波热声系统的结构示意 图。
图 3为本发明第二实施例提供的双作用单级行波热声系统的结构示意 图;
图 4为本发明第三实施例提供的双作用单级行波热声系统的结构示意 图;
图 5为本发明第四实施例提供的双作用单级行波热声系统的结构示意 图;
图 6为本发明第五实施例提供的双作用单级行波热声系统的结构示意 图。 附图标记:
1 -直线电机; 11 -气缸; 12 -活塞;
13 -活塞杆; 14 -电机外壳; 15 -静子;
16 -动子; 17 -板簧; 18 -压缩腔;
19 -膨胀腔; 2 -热声转换装置; 21 -第一换热器
22 -回热器; 23 -第二换热器; 24 -热緩冲管; 25 -第三换热器; 189 -压缩膨胀腔; 3-直流抑制器。 具体实施方式 本发明提供了一种双作用单级行波热声系统, 具有至少三个基本单 元, 每个所述基本单元包括直线电机和热声转换装置, 所述直线电机包括 气缸和活塞, 所述活塞能够在所述气缸内作直线往复运动, 所述热声转换 装置包括依次连通的第一换热器、 回热器、 第二换热器、 热緩冲管和第三 换热器; 每个所述热声转换装置的第一换热器和第三换热器, 分别与不同 直线电机的气缸内腔连通, 形成气体工质流动的环路结构。
该双作用单级行波热声系统, 由于热声转换装置具有热緩冲管和第三 换热器, 使得反馈至直线电机气缸内腔内的气体工质的温度接近于室温, 因而可以保证活塞和气缸工作在室温环境下, 能够提高热声能量的转换效 率, 并且能够降低生产制造成本, 提高使用寿命。
在上述技术方案的基础上, 优选在环路结构的连接管路上安装有至少 一个直流抑制器。 通过该直流抑制器可以避免环路结构中气体工质产生直 流损失, 能够提高该双作用单级行波热声系统的热声能量的转换效率, 提 高工作性能。 直流抑制器可安装在第一换热器与气缸内腔的连接管路上, 或也可以安装在第三换热器与气缸内腔的连接管路上。 直流抑制器优选采 用喷射泵或弹性膜盒。
直线电机气缸内腔的设计形式按照相对位置的不同可以有多种, 热声 转换装置中第一换热器和第三换热器与直线电机气缸内腔的连接方式多 样, 能够形成路径不同的多种环路结构。 例如:
每个直线电机可以包括两个气缸内腔, 两个气缸内腔按照其所连接的 换热器不同而分别记为压缩腔和膨胀腔, 压缩腔与第一换热器连通, 膨胀 腔与第三换热器连通。
实现两个气缸内腔的手段可以为: 直线电机的活塞数量为一个, 两个 气缸内腔形成在活塞的两侧。 或者, 直线电机的活塞数量为一个, 气缸和 活塞的形状为相互匹配的阶梯结构; 两个气缸内腔形成在活塞同侧的不同 阶梯层处。 再或者, 直线电机的活塞数量为两个, 两个活塞分别设置在直 线电机的两端, 两个气紅内腔分别位于直线电机的两端。 每个直线电机也可以包括一个气缸内腔, 分别连接至不同热声转换装 置的第一换热器和第三换热器。
实现一个气缸内腔的手段可以为: 直线电机的活塞数量为一个, 一个 气缸内腔形成在活塞的一侧。 或者气缸内腔可以有多个, 但实际与换热器 相连的为一个汽缸内腔。
气缸内腔与换热器的连接方式所形成的不同环路结构与气体工质的 工作相位相关,环路结构配合适当的基本单元的数量,可以提高工作效率。
例如, 可设置各气缸内腔中活塞的工作表面平行且反向, 对应基本单 元的数量为三个或四个。或者,各气缸内腔中活塞的工作表面平行且同向, 对应基本单元的数量为四个、 五个或六个。
气缸内腔的数量和位置、 环路结构以及基本单元的数量等各种设计因 素的结合可以获得不同的具体实施方式。 为了使本领域的人员更好地理本 发明的技术方案, 下面结合附图和具体实施方式对本发明作进一步的详细 说明。
参照图 2, 图 2为本发明第一实施例提供的双作用单级行波热声系统 的结构示意图。
在本发明的第一实施例中, 双作用单级行波热声系统包括三个基本单 元, 图 2中只标示出了图中最右端的基本单元中的各个部件的标号, 由于 其他两个基本单元的部件与该基本单元完全相同, 为了简化附图, 在图 2 中没有标示出其他相同的部件。
每个基本单元包括直线电机 1和热声转换装置 2。 每个基本单元中, 热声转换装置 2安装在直线电机 1右侧 (如图 2 ) , 直线电机 1包括气缸 1 1、 活塞 12、 活塞杆 13、 电机外壳 14、 静子 15、 动子 16和板簧 17。
活塞 12与气缸 1 1之间微小间隙配合, 配合间隙可以为 0.01-0. lmm, 活塞 12能够在气缸 11内作直线往复运动, 静子 15固定安装在电机外壳 14的内壁, 动子 16与活塞杆 13固定连接, 动子 16与静子 15配合, 动子 16与静子 15之间具有适当的间隙, 活塞杆 13与电机外壳 14的缩颈处为 微小间隙配合, 动子 16可以带动活塞 12在气缸 1 1内作直线往复运动。
热声转换装置 2包括依次连通的第一换热器 21、 回热器 22、 第二换 热器 23、 热緩冲管 24和第三换热器 25。 在本实施例中, 每个直线电机 1的气缸 11和活塞 12的数量为一个, 两个气缸内腔形成在活塞 12的两侧。 优选是各气缸内腔中活塞 12的工作 表面相互平行且反向, 这里所述的活塞 12的工作表面是指活塞 12在运动 时, 能够与气缸 11 内的气体工质直接发生作用的表面。 活塞 12将气缸 1 1 的气缸内腔分隔成压缩腔 18和膨胀腔 19。
在每个基本单元中, 气缸 1 1的压缩腔 18与同一基本单元中热声转换 装置 2的第一换热器 21连通, 气缸 11的膨胀腔 19与另一个基本单元中 热声转换装置 2的第三换热器 25连通, 形成气体工质流动的环路结构。
当各气缸内腔中活塞 12的工作表面相互平行且反向时, 优选设置基 本单元的数量为三个或四个。 本实施例中的三个直线电机 1采用三角形接 法接入三相交流电, 三个直线电机 1的电流相位差是 120度, 因此, 与每 个热声转换装置 2的第一换热器 21和第三换热器 25相连通的压缩腔 18 和膨胀腔 19内的气体工质体积流相位差也是 120度。
在第三换热器 25与膨胀腔 19的连接管路上安装有一个直流抑制器 3 , 直流抑制器 3具体可以为弹性膜盒, 弹性膜盒中具有一个弹性的膜片, 在 气流的推动下, 膜片只允许气体工质在膜片的弹性范围内往复运动, 不允 许气体工质直接流过膜片, 造成直流损失。 因而可以提高该双作用单级行 波热声系统的热声能量转换的效率, 提高工作性能。
由于本实施例提供的双作用单级行波热声系统为串联的环路结构, 因 而, 也可以在第一换热器 21与压缩腔 18的连接管路上安装一个直流抑制 器 3。
当然, 在本实施例中各个部件也可以采用如下的连接方式:
在每个基本单元中, 气缸 1 1的膨胀腔 19与同一基本单元中热声转换 装置 2的第一换热器 21连通, 气缸 11的压缩腔 18与另一个基本单元中 热声转换装置 2的第三换热器 25连通, 形成气体工质流动的环路结构。
下面分别说明本实施例提供的热声转换装置分别作为热声发动机、 热 声制冷机和热声热泵的工作过程:
首先需要说明的是, 当热声转换装置 2两端的体积流相位差在 90度 至 150度的范围内时, 热声转换装置 2的热声转换效率较高。
当热声转换装置 2作为热声发动机使用时, 第一换热器 21和第三换 热器 25处于室温状态, 此时, 通过加热的方式使第二换热器 23处于高温 状态。
当第二换热器 23的温度达到临界值后, 气体工质的声功由压缩腔 18 进入热声转换装置 2。 首先进入第一换热器 21 , 然后进入回热器 22和第 二换热器 23 , 回热器 22和第二换热器 23内的气体工质吸收热量, 将热量 转化为声功, 声功被放大气体工质再通过热緩冲管 24和第三换热器 25进 入另一个直线电机 1的膨胀腔 19, 活塞 12吸收膨胀腔 19的声功后, 将声 功分成两部分, 一部分声功反馈给压缩腔 18 , 进入另一个热声转换装置 2 中, 其余部分通过直线电机 1转化为输出电功。
本实施例中的三个直线电机 1输出的电流相位差为 120度, 通过适当 的变压后即可以接入三相交流电网, 整个发电过程非常简便。
当热声转换装置 2为热声制冷机时, 第一换热器 21和第三换热器 25 处于室温状态。 三相电源向三个直线电机 1输入电功, 驱动活塞 12做往 复运动将电功转换为声功, 声功自气缸 1 1的压缩腔 18进入热声转换装置 2, 绝大部分声波能量在回热器 22内被消耗掉, 同时产生制冷效应, 使第 二换热器 23的温度降低, 剩余的声功穿过热緩冲管 24从第三换热器 25 出来进入另一个直线电机 1的膨胀腔 19, 反馈给活塞 12。
使用三相交流电作为输入电源, 直接可以使活塞 12之间获得理想的 相位差, 非常便于实际应用。
当热声转换装置 2为热声热泵时, 图 2中的压缩腔 18和膨胀腔 19将 相互交换位置(在实际的系统中, 只需改变电流之间的相位就可以使压缩 腔 18和膨胀腔 19的作用相互调换) , 第一换热器 21和第三换热器 25处 于室温状态。 三相电源向三个直线电机 1输入电功, 驱动活塞 12做往复 运动将电功转换为声功, 声功自气缸 11的压缩腔 18进入另一个基本单元 的热声转换装置 2, 先经过第三换热器 25和热緩冲管 24, 然后绝大部分 声波能量在回热器 22内被消耗掉, 同时将热量从第一换热器 21泵送到第 二换热器 23 , 使第二换热器 23的温度升高, 产生制热效应, 剩余的声功 经过第一换热器 21 出来进入直线电机 1的膨胀腔 19, 反馈给活塞 12。
使用三相交流电作为输入电源, 直接可以使活塞 12之间获得理想的 相位差, 非常便于实际应用。 通过上述表述可以看出, 在本实施例中, 虽然第二换热器 23不是工 作在常温状态,但是由于本实施例中的热声装换装置 2安装有热緩冲管 24 和第三换热器 25 ,通过热緩冲管 24和第三换热器 25对气体工质的降温冷 却作用, 使得进入到膨胀腔 19内气体工质接近于室温, 因此, 活塞 12可 以工作在室温环境下, 进而降低了活塞 12加工难度, 减少了加工成本, 同时提高了直线电机 1的使用寿命。
同时, 本实施例中, 在环路结构上安装有直流抑制器 3 , 截断了直流 通道, 抑制环路结构中直流而带来的能量损失, 提高了热声转换装置 2热 声能量的转换效率, 进而提高双作用单级行波热声系统的工作性能。
需要说明的是, 为了配合气体工质相位关系以达到最高工作效率, 当 基本单元的数量均为三个时, 优选要保证活塞 12的一个工作表面与其他 的工作表面反向。 在本实施例中, 压缩腔 18内的工作表面与膨胀腔 19的 工作表面反向。 也就是说每个直线电机中, 必须保证压缩腔 18处于被压 缩状态时, 膨胀腔 19处于膨胀状态。 如果压缩腔 18处于被压缩状态时, 膨胀腔 19也处于被压缩状态, 那么热声转换装置 2两端的体积流相位差 为 60度, 进而会导致热声装换装置 2的热声转换效率会大大降低。
另外, 本实施例中的基本单元的数量也可以为四个, 采用上述的环路 结构, 同样具有很好的热声能量的转换效率。
参考图 3 , 图 3为本发明第二实施例提供的双作用单级行波热声系统 的结构示意图。
在第二实施例中, 本发明提供的双作用单级行波热声系统与第一实施 例提供的双作用单级行波热声系统结构基本相同, 区别点在于, 在本实施 例中, 双作用单级行波热声系统具有四个基本单元, 每个直线电机 1的具 有两个气缸 11和活塞 12 , 两个活塞 12分别设置在直线电机 1的两端, 两 个气缸 1 1的气缸内腔分别位于所述直线电机的两端。
具体地, 活塞 12的工作表面平行, 分别位于直线电机 1的两端, 压缩腔 18和膨胀腔 19位于直线电机 1的两端, 第一换热器 21直接与压 缩腔 18连通, 第三换热器 25分别与另外一个基本单元的膨胀腔 19连通, 节省了整体的安装空间。
本实施例中, 在第三换热器 25与膨胀腔 19的连接线路上安装有直流 抑制器 3。
显然, 本实施例中的双作用单级行波热声系统也具有上述第一种实施 例中的双作用单级行波热声系统基本相同的技术效果, 在此不再赘述。
需要说明的是, 当基本单元的数量为四个时, 活塞 12的工作表面的 方向可以相同也可以相反, 也就是说, 直线电机 1中压缩腔 18被压缩时, 膨胀腔 19可以同时被压缩或被膨胀。
理由是, 如果压缩腔 18被压缩时, 膨胀腔 19也被压缩, 热声转换装 置 2两端的相位差是 90度。 如果压缩腔 18被压缩时, 膨胀腔 19也被压 缩, 热声转换装置 2两端的体积流相位差也是 90度, 也就是说无论如何 布置压缩腔 18和膨胀腔 19, 热声转换装置 2两端的体积流相位差都是 90 度, 双作用单级行波热声系统的工作性能相同。
当热声转换装置为热声制冷机时, 四个直线电机的电流相位差是 90 度, 因此驱动电流不能再直接使用三相交流电, 电流必须通过调相装置将 相位差调整为 90度时, 才能再驱动直线电机。 当热声转换装置 2为热声 发动机机时, 四个直线电机 1输出的电流相位差是 90度, 因此必须经过 一定的调相装置调相后,才能接入电网。 当热声转换装置 2为热声热泵时, 图 2中的压缩腔 18和膨胀腔 19将相互交换位置, 电流必须通过调相装置 将相位差调整为 90度时, 才能再驱动直线电机工作。
另外, 本实施例中的基本单元的数量也可以为三个, 采用上述的环路 结构, 同样具有很好的热声能量的转换效率。
参考图 4, 图 4为本发明第三实施例提供的双作用单级行波热声系统 的结构示意图。
在第三实施例中, 本发明提供的双作用单级行波热声系统与第一实施 例提供的双作用单级行波热声系统基本相同, 区别点在于,在本实施例中, 双作用单级行波热声系统具有五个基本单元, 气缸 11和活塞 12的形状为 相互匹配阶梯结构; 膨胀腔 19为活塞 12与气缸 1 1的第一阶梯层处形成 的密封腔, 压缩腔 18为活塞 12与气缸 1 1的第二阶梯层处形成的密封腔, 压缩腔 18与第一换热器 21连通, 膨胀腔 19与第三换热器 25连通。
另外, 在本实施例中, 回热器 22为环状结构, 热緩冲管 24安装在回 热器 22的内侧, 第一换热器 21为环状结构, 连接在回热器的 22—端, 第二换热器 23连接在回热器 22和热緩冲管 24另一端, 第三换热器 25嵌 设在第一换热器 21环状结构的内侧。 可以节省安装空间。 本实施例的环 在本实施例中, 热声转换装置 2两端的体积流相位为 108度, 有利于 其获得较高的热声能量的转换效率。
直流抑制器 3可以采用喷射泵结构, 喷射泵利用流道的非对称性, 产 生与直流相反的压差, 从而抑制气体工质产生直流损失。
需要说明的是, 当基本单元的数量为五个或者大于五个时, 优选活塞 12的工作表面的方向相同, 也就是说, 压缩腔 18和膨胀腔 19必须同时被 压缩或同时被膨胀, 如果一个被压缩另一个被膨胀, 就会降低热声转换装 置 2的热声能量的转换效率。
当热声转换装置 2作为热声制冷机时, 五个直线电机 1的电流相位差 是 72度, 因此驱动电流不能直接使用三相交流电, 电流必须进调相装置 调相, 将电流的相位差调整为 72度时, 才能再驱动直线电机 1。 当热声转 换装置 2作为热声发动机机时, 五个直线电机 1输出的电流相位差是 72 度, 因此必须经过调相装置将电流调相后, 才能接入电网。 当热声转换装 置 2为热声热泵时, 图 2中的压缩腔 18和膨胀腔 19将相互交换位置, 电 流必须通过调相装置将相位差调整为 72度时, 才能再驱动直线电机工作。
另外, 本实施例中的基本单元的数量也可以为四个, 采用上述的环路 结构, 同样具有很好的热声能量的转换效率。
同样, 本实施例中的双作用单级行波热声系统也具有上述第一种实施 例中的双作用单级行波热声系统的技术效果, 在此不再赘述。
参考图 5 , 图 5为本发明第四实施例提供的双作用单级行波热声系统 的结构示意图。
在第四实施例中, 本发明的双作用单级行波热声系统与第一实施例提 供的双作用单级行波热声系统基本相同, 区别点在于, 在本实施例中, 双 作用单级行波热声系统的基本单元为六个, 每个直线电机 1只具有一个活 塞 12, 气缸 11内具有一个气缸内腔。 本发明提供的双作用单级行波热声 系统, 将本发明第一、 第二和第三实施例中的压缩腔 18和膨胀腔 19合为 一个压缩膨胀腔 189。 压缩膨胀腔 189分别依次与第一换热器 21和第三换热器 25连通, 可 以看出, 这种结构的直线电机 1的结构更加简单, 便于加工制造。 在该实 施例中, 热声转换装置 2两端的体积流相位差为 120度, 有利于热声转换 装置 2获得较高的热声能量的转换效率。 同样, 在环路结构中安装有直流 抑制器 3抑制直流的产生。
当热声转换装置 2作为热声制冷机时, 六个直线电机 1的电流相位差 是 60度, 因此驱动电流不能直接使用三相交流电, 电流必须经过调相装 置调整相位, 将电流的相位差调整为 60度时才能再驱动直线电机 1。 当热 声转换装置 2作为热声发动机机时, 六个直线电机 1输出的电流相位差是 60度, 因此必须经过调相装置调整相位, 才能接入电网。
另外,本实施例中的基本单元的数量也可以为四个、五个或者更多个, 采用上述的环路结构, 同样具有很好的热声能量的转换效率。
显然, 本实施例中的双作用单级行波热声系统也具有上述第一种实施 例中的双作用单级行波热声系统的技术效果, 在此不再赘述。
需要说明的是,在本发明上述四个实施例中的直流抑制器 3具体可以选用弹 性膜盒, 弹性膜盒中具有一个弹性的膜片, 在气流的推动下, 膜片只允许气体工 质在膜片的弹性范围内往复运动,不允许气体工质直接流过膜片,造成直流损失。 另外直流抑制器 3也可以选用喷射泵, 喷射泵利用流道的非对称性,产生与直流 相反的压差, 从而抑制气体工质产生直流损失。
参考图 6 , 图 6为本发明第五实施例提供的双作用单级行波热声系统 的结构示意图。
如图 6所示, 图中上方和下方的热声转换装置 2为热声发动机, 右侧 的热声转换装置 2为热声制冷机, 左侧的热声转换装置 2为热声热泵。 在 该系统中的直线电机 1主要用于控制系统的工作频率和调节体积流相位关 系。
在本实施例中, 热声发动机将吸收的高温热量转化为声波形式的机械 能, 声波再驱动热声制冷机和热泵工作;
热声制冷机冷机可以作为日常食品的保鲜冷源, 热泵可以为日常提供 生活热水。
如果转换出的机械能有剩余时, 也可以通过电机将其转换为电能输 出, 这在电能缺乏的场合可以作为热、 电、 冷联供的技术方案。 最后应说 明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管 参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当 理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方 案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种双作用单级行波热声系统, 具有至少三个基本单元, 每个所 述基本单元包括直线电机和热声转换装置, 所述直线电机包括气缸和活 塞, 所述活塞能够在所述气缸内作直线往复运动, 其特征在于: 所述热声 转换装置包括依次连通的第一换热器、 回热器、 第二换热器、 热緩冲管和 第三换热器;
每个所述热声转换装置的第一换热器和第三换热器, 分别与不同直线 电机的气缸内腔连通, 形成气体工质流动的环路结构。
2、 根据权利要求 1所述的双作用单级行波热声系统, 其特征在于: 在所述环路结构的连接管路上安装有至少一个直流抑制器。
3、 根据权利要求 1所述的双作用单级行波热声系统, 其特征在于: 每个所述直线电机包括两个气缸内腔, 所述两个气缸内腔为压缩腔和膨胀 腔, 所述压缩腔与所述第一换热器连通, 所述膨胀腔与所述第三换热器连 通。
4、 根据权利要求 1所述的双作用单级行波热声系统, 其特征在于: 每个所述直线电机包括两个气缸内腔, 所述两个气缸内腔为压缩腔和膨胀 腔, 所述压缩腔与所述第三换热器连通, 所述膨胀腔与所述第一换热器连 通。
5、 根据权利要求 3所述的双作用单级行波热声系统, 其特征在于: 所述直线电机的活塞数量为一个, 所述两个气缸内腔形成在所述活塞的两 侧。
6、 根据权利要求 3所述的双作用单级行波热声系统, 其特征在于: 所述直线电机的活塞数量为一个, 所述气缸和活塞的形状为相互匹配的阶 梯结构; 所述两个气缸内腔形成在所述活塞同侧的不同阶梯层处。
7、 根据权利要求 3所述的双作用单级行波热声系统, 其特征在于: 所述直线电机的活塞数量为两个, 所述两个活塞分别设置在所述直线电机 的两端, 所述两个气紅内腔分别位于所述直线电机的两端。
8、 根据权利要求 1所述的双作用单级行波热声系统, 其特征在于: 每个所述直线电机包括一个气缸内腔, 分别连接至不同热声转换装置的第 一换热器和第三换热器。
9、 根据权利要求 8所述的双作用单级行波热声系统, 其特征在于: 所述直线电机的活塞数量为一个, 所述一个气缸内腔形成在活塞的一侧。
10、 根据权利要求 1或 5或 7所述的双作用单级行波热声系统, 其特 征在于: 各气缸内腔中活塞的工作表面平行且反向, 所述基本单元的数量 为三个或四个。
11、 根据权利要求 1或 6或 9所述的双作用单级行波热声系统, 其特 征在于: 各气缸内腔中活塞的工作表面平行且同向, 所述基本单元的数量 为四至十二个。
12、 根据权利要求 1-9中任一项权利要求所述的双作用单级行波热声 系统, 其特征在于: 所述回热器为环状结构, 所述热緩冲管安装在所述回 热器环状结构的内侧, 所述第一换热器为环状结构, 连接在所述回热器的 一端, 所述第二换热器连接在所述回热器和热緩冲管另一端, 所述第三换 热器嵌设在所述第一换热器环状结构的内侧。
13、 根据权利要求 2所述的双作用单级行波热声系统, 其特征在于: 所述直流抑制器安装在所述第一换热器与所述气缸内腔的连接管路上, 或 安装在所述第三换热器与所述气缸内腔的连接管路上。
14、 根据权利要求 2或 13所述的双作用单级行波热声系统, 其特征 在于: 所述直流抑制器为喷射泵或弹性膜盒。
PCT/CN2012/073390 2011-04-01 2012-03-31 一种双作用单级行波热声系统 WO2012130172A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12765656.9A EP2728181B1 (en) 2011-04-01 2012-03-31 Double-action single-stage traveling wave thermoacoustic system
US14/190,076 US20140202175A1 (en) 2011-04-01 2014-02-25 Single-stage double-acting traveling-wave thermoacoustic system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110082230.3 2011-04-01
CN201110082230 2011-04-01
CN201110101971.1 2011-04-22
CN201110101971.1A CN102734098B (zh) 2011-04-01 2011-04-22 一种双作用单级行波热声系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/190,076 Continuation US20140202175A1 (en) 2011-04-01 2014-02-25 Single-stage double-acting traveling-wave thermoacoustic system

Publications (1)

Publication Number Publication Date
WO2012130172A1 true WO2012130172A1 (zh) 2012-10-04

Family

ID=46929487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073390 WO2012130172A1 (zh) 2011-04-01 2012-03-31 一种双作用单级行波热声系统

Country Status (4)

Country Link
US (1) US20140202175A1 (zh)
EP (1) EP2728181B1 (zh)
CN (1) CN102734098B (zh)
WO (1) WO2012130172A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411359B (zh) * 2013-08-16 2015-11-04 中国科学院理化技术研究所 一种可调式双作用行波热声系统
CN103759464B (zh) * 2014-02-20 2016-05-18 中国科学院理化技术研究所 一种直线压缩机驱动的环路型行波热声制冷系统
CN103835903B (zh) * 2014-03-14 2016-06-15 中国科学院理化技术研究所 一种行波热声冷热电联供系统
US20210204072A1 (en) * 2018-08-31 2021-07-01 Kyocera Corporation Thermoacoustic device
CN112576405B (zh) * 2019-09-29 2022-07-12 中国科学院理化技术研究所 热声热机系统
CN113864143B (zh) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 热声系统
CN113864144B (zh) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 热声系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766464A (zh) * 2004-10-26 2006-05-03 中国科学院理化技术研究所 一种电驱动的行波热声制冷机系统
CN1766314A (zh) * 2004-10-26 2006-05-03 中国科学院理化技术研究所 行波热声驱动的发电系统
CN1818512A (zh) * 2006-03-14 2006-08-16 中国科学院理化技术研究所 一种消除双向进气脉管制冷机直流的装置
JP2007237020A (ja) * 2006-03-06 2007-09-20 Denso Corp 熱音響装置
CN101294554A (zh) * 2007-04-25 2008-10-29 中国科学院理化技术研究所 利用变温热源的热声发动机系统
CN101440791A (zh) * 2008-12-29 2009-05-27 浙江大学 多级热声压缩系统
CN101726131A (zh) * 2009-12-23 2010-06-09 深圳市中科力函热声技术工程研究中心有限公司 低温热声制冷机
CN101865554A (zh) * 2009-04-15 2010-10-20 中国科学院理化技术研究所 多用途脉管系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902159B2 (ja) * 1991-06-26 1999-06-07 アイシン精機株式会社 パルス管式冷凍機
US6032464A (en) * 1999-01-20 2000-03-07 Regents Of The University Of California Traveling-wave device with mass flux suppression
US6732515B1 (en) * 2002-03-13 2004-05-11 Georgia Tech Research Corporation Traveling-wave thermoacoustic engines with internal combustion
DE102009048324A1 (de) * 2009-10-05 2011-04-21 Institut für Luft- und Kältetechnik gGmbH Compound-Pulse-Tube-Kühler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766464A (zh) * 2004-10-26 2006-05-03 中国科学院理化技术研究所 一种电驱动的行波热声制冷机系统
CN1766314A (zh) * 2004-10-26 2006-05-03 中国科学院理化技术研究所 行波热声驱动的发电系统
JP2007237020A (ja) * 2006-03-06 2007-09-20 Denso Corp 熱音響装置
CN1818512A (zh) * 2006-03-14 2006-08-16 中国科学院理化技术研究所 一种消除双向进气脉管制冷机直流的装置
CN101294554A (zh) * 2007-04-25 2008-10-29 中国科学院理化技术研究所 利用变温热源的热声发动机系统
CN101440791A (zh) * 2008-12-29 2009-05-27 浙江大学 多级热声压缩系统
CN101865554A (zh) * 2009-04-15 2010-10-20 中国科学院理化技术研究所 多用途脉管系统
CN101726131A (zh) * 2009-12-23 2010-06-09 深圳市中科力函热声技术工程研究中心有限公司 低温热声制冷机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728181A4 *

Also Published As

Publication number Publication date
US20140202175A1 (en) 2014-07-24
EP2728181A1 (en) 2014-05-07
EP2728181A4 (en) 2015-03-25
CN102734098A (zh) 2012-10-17
EP2728181B1 (en) 2017-08-30
CN102734098B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2012130168A1 (zh) 一种双作用多级行波热声系统
WO2012130172A1 (zh) 一种双作用单级行波热声系统
WO2012130169A1 (zh) 一种双作用热驱动行波热声制冷系统
Wang et al. Stirling cycle engines for recovering low and moderate temperature heat: A review
CN103114941B (zh) 一种同时利用高低温热源的自由活塞斯特林发动机系统
CN103089480B (zh) 自由活塞斯特林热机
WO2018028367A1 (zh) 多级热声发电机组及具有该机组的多级回热式制冷系统
CN103353184B (zh) 一种直线型双作用制冷系统
CN108167147A (zh) 一种串级冷热电联产装置
CN110701822B (zh) 一种热能驱动的热声与电卡耦合制冷系统
CN112303953A (zh) 一种余热驱动制冷机
JP2009236456A (ja) パルス管型蓄熱機関
CN109974324B (zh) 一种可用作发电、制冷或热泵的热声环路系统
CN104653330A (zh) 一种冷源脉管发动机和基于冷源脉管发动机的发电装置
CN110701823B (zh) 热声与热释电耦合驱动的电卡制冷系统
CN103670975A (zh) 一种同时利用冷源和热源的热声发电系统
CN103758715B (zh) 热声热机系统
CN218895542U (zh) 阶梯活塞分流型热驱动热声制冷机/热泵系统
CN218915458U (zh) 双效液体自由活塞热声斯特林制冷/热泵系统
CN218062486U (zh) 自由活塞热声斯特林发电机
CN212657910U (zh) 一种余热驱动制冷机
CN114688758B (zh) 一种利用低品位热能的热声制冷系统
CN116771501A (zh) 发电装置及系统
CN116558141A (zh) 新型热驱动斯特林机制冷系统
CN107560227B (zh) 一种热驱动斯特林热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012765656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012765656

Country of ref document: EP