WO2012130168A1 - 一种双作用多级行波热声系统 - Google Patents

一种双作用多级行波热声系统 Download PDF

Info

Publication number
WO2012130168A1
WO2012130168A1 PCT/CN2012/073374 CN2012073374W WO2012130168A1 WO 2012130168 A1 WO2012130168 A1 WO 2012130168A1 CN 2012073374 W CN2012073374 W CN 2012073374W WO 2012130168 A1 WO2012130168 A1 WO 2012130168A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
cylinder
piston
traveling wave
double
Prior art date
Application number
PCT/CN2012/073374
Other languages
English (en)
French (fr)
Inventor
罗二仓
胡剑英
戴巍
吴张华
余国瑶
李海冰
Original Assignee
中科力函(深圳)热声技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科力函(深圳)热声技术有限公司 filed Critical 中科力函(深圳)热声技术有限公司
Publication of WO2012130168A1 publication Critical patent/WO2012130168A1/zh
Priority to US14/214,153 priority Critical patent/US9784106B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors

Definitions

  • the present invention relates to energy power and refrigeration cryogenic technology, and more particularly to a double-acting multi-stage traveling wave thermoacoustic system. Background technique
  • thermoacoustic effect When sound waves propagate through a gas, they cause fluctuations in pressure, displacement, and temperature of the propagating medium gas. When the gas interacts with a fixed boundary, it causes a transition between sonic energy and thermal energy, which is the thermoacoustic effect.
  • thermoacoustic system is an energy conversion system designed by the principle of thermoacoustic effect. It can convert thermal energy into acoustic energy or convert acoustic energy into thermal energy.
  • Thermoacoustic systems include thermoacoustic engines and refrigerators including traveling wave thermoacoustic refrigerators. , pulse tube refrigerator and Stirling refrigerator.
  • thermoacoustic engine and the refrigerator use inert gas such as helium or nitrogen as the working medium, and have the advantages of high efficiency, safety, and long service life, and thus have received widespread attention.
  • inert gas such as helium or nitrogen as the working medium
  • FIG. 1 is a schematic structural view of a conventional traveling wave thermoacoustic system.
  • the traveling wave thermoacoustic system includes three basic units, each of which includes a linear motor la and a thermoacoustic conversion device 2a.
  • the linear motor la includes a cylinder l la, a piston 12a, a piston rod 13a, a motor casing 14a, a stator 15a, a mover 16a, and a leaf spring 17a.
  • the stator 15a is fixedly coupled to the inner wall of the motor casing 14a, the mover 16a is cooperatively engaged with the stator 15a, the piston rod 13a is fixedly coupled to the mover 16a, and the piston rod 13a is fixedly coupled to the leaf spring 17a.
  • the mover 16a passes.
  • the piston rod 13a drives the piston 12a to reciprocate linearly in the cylinder 11a.
  • the thermoacoustic conversion device 2a includes a main heat exchanger 21a, a regenerator 22a, and an extraordinary temperature heat exchanger 23a that are sequentially connected.
  • the main heat exchanger 21a is in communication with the cylinder bore of a linear motor la, that is, the compression chamber 18a, and the cylinder chamber of the very warm heat exchanger 23a and the other linear motor la, that is, the expansion chamber 19a Connected, in this way, the thermoacoustic system constitutes a loop of working fluid flow.
  • the traveling wave thermoacoustic system When the traveling wave thermoacoustic system is operated as an engine, the acoustic wave absorbs thermal energy into the acoustic energy in the regenerator 22a and the extraordinary temperature heat exchanger 23a, and the acoustic energy is amplified and then exits from the very warm heat exchanger 23a to enter the linear motor la
  • the expansion chamber 19a pushes the piston 12a to move.
  • the acoustic energy piston 12a is divided into two parts, a part enters the compression chamber 18a, is fed back into the other regenerator 22a, and the remainder is converted into output electric power by the linear motor 1a.
  • the very warm heat exchanger 23a can only perform heat exchange in a small temperature range, and therefore, in the traveling wave thermal sound
  • the heat source for supplying heat to the very warm heat exchanger 23a has only a small temperature portion of heat, which can be utilized by the very warm heat exchanger 23a.
  • the operating temperature of the very warm heat exchanger 23a is in the range of 650 ° C to 700 ° C, and the heat source is only absorbed between the heat source and the very warm heat exchanger 23 a at a temperature between 650 ° C and 700 ° C.
  • the heat source temperature is lower than 650 ° C, the heat can not be absorbed, thus causing waste of thermal energy and reducing the conversion efficiency of thermoacoustic energy.
  • the traveling wave thermoacoustic system when used as a refrigerating machine, the traveling wave thermoacoustic system can supply cooling capacity only at one temperature, and cannot obtain a very low cooling temperature, thereby limiting the cooling performance of the traveling wave thermoacoustic system.
  • the present invention provides a double-acting multi-stage traveling wave thermoacoustic system for solving the defects in the prior art, capable of improving the conversion efficiency of thermoacoustic energy, and improving the performance of the traveling wave thermoacoustic system.
  • the present invention provides a double-acting multi-stage traveling wave thermoacoustic system having at least three basic units, each of which includes a linear motor and a thermoacoustic conversion device, the linear motor including a piston and a cylinder, the cylinder Having a cylinder bore, the piston being capable of making a straight line within the cylinder Reciprocating motion, wherein each of the thermoacoustic conversion devices includes a main heat exchanger and a regenerator that are sequentially connected, the regenerator is a stepped structure, and each step layer of the regenerator is connected in turn a set of very warm heat exchangers, heat buffer tubes and secondary heat exchangers; the main heat exchanger and the secondary heat exchanger of each thermoacoustic converter are respectively connected with the cylinder bores of different linear motors to form a working fluid flow Loop structure.
  • thermoacoustic conversion device in the double-effect multi-stage traveling wave thermoacoustic system comprises a main heat exchanger and a regenerator which are sequentially connected, wherein the regenerator is a stepped structure, and each stage of the regenerator An extremely warm heat exchanger, a heat buffer tube and a secondary heat exchanger are sequentially connected to the step layer.
  • FIG. 1 is a schematic structural view of a conventional traveling wave thermoacoustic system
  • FIG. 2 is a schematic structural view of a double-effect multi-level traveling wave thermoacoustic system according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a double-effect multi-level traveling wave thermoacoustic system according to a second embodiment of the present invention.
  • Fig. 4 is a schematic view showing the structure of a double-effect multi-level traveling wave thermoacoustic system according to a third embodiment of the present invention.
  • Embodiments of the present invention provide a double-acting multi-stage traveling wave thermoacoustic system having at least three basic units, each of which includes a linear motor and a thermoacoustic conversion device, the linear motor including a piston and a cylinder having a cylinder bore, the piston being capable of linear reciprocating motion within the cylinder, wherein each of the thermoacoustic conversion devices includes a main heat exchanger and a regenerator that are sequentially connected, the back The heat exchanger is a stepped structure, and each step layer of the regenerator is sequentially connected with a set of a very warm heat exchanger, a heat buffer tube and a secondary heat exchanger; a main heat exchanger of each thermoacoustic converter device and The secondary heat exchangers are respectively connected with the cylinder inner cavities of different linear motors to form a loop structure of the working fluid flow.
  • the double-acting multi-level traveling wave thermoacoustic system provided by the embodiment of the present invention can be connected to each of the stepped layers of the regenerator. Make full use of thermal energy or provide cooling capacity at different temperature ranges. Therefore, the double-effect multi-stage traveling wave thermoacoustic system can improve the conversion efficiency of the thermoacoustic energy and improve the performance of the double-acting multi-stage traveling wave thermoacoustic system.
  • the design of the cylinder interior of the linear motor can be varied according to the relative position.
  • the cavities are connected in a variety of ways, and can form a variety of loop structures with different paths. E.g:
  • the number of pistons may be one, the shape of the cylinder and the piston are mutually matched stepped structures, and a plurality of cylinder bores are respectively formed at each stepped layer on the step side of the piston.
  • the number of the pistons is one
  • the shape of the cylinder and the piston are mutually matched stepped structures
  • the plurality of cylinder bores are respectively formed at the respective stepped layers on the step side of the piston and on the plane side of the piston. That is, a cylinder bore is formed on the plane side of the piston, and the remaining cylinder bore is formed on the step side of the piston.
  • the step structure of the piston is preferably a two-stage step structure, a three-stage step structure or a four-stage step knot.
  • the structure but not limited to this number, may be determined according to the number of sets of the very warm heat exchanger, the heat buffer tube and the secondary heat exchanger.
  • the different loop structures formed by the connection between the cylinder bore and the heat exchanger are related to the working phase of the gas working medium, and the loop structure is matched with the appropriate number of basic units to improve the working efficiency.
  • the working surface of the piston in each cylinder cavity can be designed to be parallel and one working surface is opposite to the other working surface, and the cylinder cavity forming the reverse working surface is connected with the main heat exchanger, and the number of basic units is three. One or four.
  • the working surfaces of the pistons in the cylinder bores are parallel and co-directional, and the number of basic units is four to twelve.
  • a DC suppressor can also be installed on the connecting pipe, preferably on the connecting pipe of the main heat exchanger and the cylinder inner cavity, and/or the connecting pipe of the secondary heat exchanger and the cylinder inner cavity.
  • the DC suppressor can avoid the DC loss of the gas working in the loop structure, and can improve the conversion efficiency of the high thermal acoustic energy of the double-acting multi-stage traveling wave thermoacoustic system and improve the working performance.
  • the DC suppressor can be a jet pump or an elastic bellows.
  • FIG. 2 is a schematic structural diagram of a double-effect multi-level traveling wave thermoacoustic system according to a first embodiment of the present invention.
  • the double-acting multi-stage traveling wave thermoacoustic system includes three basic units, and only the labels of the respective components in the rightmost unit in the figure are indicated in FIG. 2, The components of the basic unit are identical to the basic unit. To simplify the drawing, other identical components are not indicated in FIG.
  • Each of the basic units includes a linear motor 1 and a thermoacoustic conversion device 2.
  • a preferred linear motor 1 is constructed to include a cylinder 11, a piston 12, a piston rod 13, a motor housing 14, a stator 15, a mover 16, and a leaf spring 17.
  • the piston 12 and the cylinder 1 1 have a small clearance fit, and the matching clearance may be 0.01-0. lmm, the piston 12 can linearly reciprocate in the cylinder 11, and the stator 15 is fixedly mounted on the inner wall of the motor casing 14, the mover 16 and the piston The rod 13 is fixedly connected, and the mover 16 is coupled with the stator 15 There is a proper gap between the piston rod 16 and the stator 15 and the piston rod 13 has a slight clearance fit with the neck of the motor casing 14. The mover 16 can drive the piston 12 to reciprocate linearly in the cylinder 11.
  • thermoacoustic conversion device 2 includes a main heat exchanger 21, a regenerator 22, a first very warm heat exchanger 231, a second very warm heat exchanger 232, a first heat buffer tube 241, and a first heat exchanger The second heat buffer 242, the first heat exchanger 251 and the second heat exchanger 252.
  • the regenerator 22 is a two-stage step structure, and the first step layer of the regenerator 22 is in communication with the first very warm heat exchanger 231, and the second step layer of the regenerator 22 is connected to the second very warm heat exchanger 232. Connected.
  • the number of the pistons 12 in the cylinder 11 is one, and the working surfaces of the pistons 12 are parallel to each other.
  • the working surface of the piston 12 described herein refers to a surface that can directly interact with the gas working fluid in the cylinder 1 1 when the piston 12 is in motion.
  • the cylinder 11 and the piston 12 are in the shape of a matching two-stage stepped structure, and the inner chamber of the cylinder 11 includes a compression chamber 18, a first expansion chamber 191, and a second expansion chamber 192.
  • the compression chamber 18 is a sealed chamber formed by the plane side of the piston 12 and the cylinder 11, and the compression chamber 18 of the cylinder 11 in one of the basic units communicates with the main heat exchanger 21 of the thermoacoustic converter 2 in the other unit.
  • the first expansion chamber 191 is a sealed cavity formed at the first stepped layer of the cylinder 11 and the step side of the piston 12, and in each basic unit, the first expansion chamber 191 and the second of the thermoacoustic conversion device 2 in the same basic unit
  • the secondary heat exchanger 252 is in communication to form a loop structure in which the gaseous working fluid flows.
  • the second expansion chamber 192 is a sealed chamber formed by the cylinder 11 and the second step side of the piston 12, in each basic unit, the second expansion chamber 192 and the first heat exchanger of the thermoacoustic conversion device 2 in the same basic unit 251 is connected to form a loop structure for the flow of gaseous working fluid.
  • the three linear motors 1 in this embodiment are connected to the three-phase alternating current by a delta connection, and the current phase difference of the three linear motors 1 is 120 degrees. Therefore, with the main heat exchanger 21 of each thermoacoustic conversion device 2, The phase difference between the second heat exchanger 252 and the compression chamber 18 in communication with the first heat exchanger 251 and the gas volume in the first expansion chamber 191 and the second expansion chamber 192 is also 120 degrees.
  • thermoacoustic converters provided in this embodiment as thermoacoustic engines and thermoacoustic refrigerators, respectively.
  • thermoacoustic conversion device 2 has a high thermoacoustic conversion efficiency when the volume flow phase difference across the thermoacoustic transducer device 2 is in the range of 90 to 150 degrees.
  • thermoacoustic conversion device 2 is used as a thermoacoustic engine, the main heat exchanger 21, the first heat exchange
  • the 251 and the second heat exchanger 252 are at a room temperature state, and at this time, the first abnormal temperature heat exchanger 231 and the second extraordinary temperature heat exchanger 232 are brought to a high temperature state by heating.
  • the acoustic work of the gaseous working fluid enters the thermoacoustic conversion device 2 from the compression chamber 18.
  • the first very warm heat exchanger 231 and the second very warm heat exchanger 232 in the regenerator 22, the first very warm heat exchanger 231 and the second In the very warm heat exchanger 232, the heat absorbed by the sound wave is converted into sound power (sonic energy), so the sound power is amplified, and the sound work from the first very warm heat exchanger 231 passes through the first heat buffer tube 241 and the
  • the primary heat exchanger 251 enters the second expansion chamber 192 of the other linear motor 1, and the sound work from the second extraordinary temperature heat exchanger 232 passes through the second heat buffer tube 242 and the second heat exchanger 252 to enter another A first expansion chamber 191 of a linear motor 1.
  • the piston 12 absorbs the sound energy of the first expansion chamber 191 and the second expansion chamber 192, the sound work is divided into two parts, a part of the sound power is fed back to the compression chamber 18, into another thermoacoustic conversion device 2, and the rest is passed through a linear motor. 1 is converted to output electrical work.
  • the current output of the three linear motors 1 in this embodiment has a phase difference of 120 degrees. After appropriate voltage transformation, the three-phase AC power grid can be connected, and the entire power generation process is very simple.
  • thermoacoustic converter 2 When the thermoacoustic converter 2 is a thermoacoustic refrigerator, the main heat exchanger 21, the first heat exchanger 251, and the second heat exchanger 252 are at room temperature.
  • the three-phase power source inputs electric power to the three linear motors 1, and drives the piston 12 to perform reciprocating motion to convert the electric work into sound power.
  • the sound power enters the thermoacoustic conversion device 2 from the compression chamber 18 of the cylinder 11, and most of the sound energy is returned.
  • the heat exchanger 22 is consumed, and at the same time, a cooling effect is generated, the temperature of the first very warm heat exchanger 231 and the second very warm heat exchanger 232 is lowered, and the remaining part of the sound is passed through the first heat buffer tube 241 and the first
  • the secondary heat exchanger 251 enters the second expansion chamber 192 of the other linear motor 1 while the remaining portion of the sound is passed through the second heat buffer tube 242 and the second heat exchanger 252 into the first expansion of the other linear motor 1
  • the cavity 191 is simultaneously fed back to the piston 12.
  • the regenerator 22 is a two-stage step structure
  • the first very warm heat exchanger 231 and the first heat are sequentially connected to the first step layer of the regenerator 22
  • the buffer tube 241 and the first heat exchanger 251 and the second step layer of the regenerator 22 are sequentially connected
  • the cylinder 11 has a compression chamber 18, a first expansion chamber 191 and a second expansion chamber 192, and each of the basic units has two complete feedback loops.
  • the double-action multi-stage traveling wave thermoacoustic system provided by the present invention, It can fully utilize thermal energy or provide cooling capacity in two different temperature segments, and can improve the conversion efficiency of thermoacoustic energy and improve the performance of the double-acting multi-stage traveling wave thermoacoustic system.
  • the working surface in the compression chamber 18 is opposite to the working surfaces of the first expansion chamber 191 and the second expansion chamber 192. That is, in each of the linear motors 1, it is preferable that the first expansion chamber 191 and the second expansion chamber 192 are in an expanded state when the compression chamber 18 is in a compressed state.
  • the volume flow phase difference between the ends of the thermoacoustic conversion device 2 may be less than 90 degrees, which may result in The thermoacoustic conversion efficiency of the thermoacoustic altering device 2 is lowered.
  • the number of basic units in this embodiment may also be four, and the loop structure described above also has good conversion efficiency of thermoacoustic energy.
  • FIG. 3 is a schematic structural diagram of a double-effect multi-level traveling wave thermoacoustic system according to a second embodiment of the present invention.
  • the double-acting multi-stage traveling wave thermoacoustic system provided by the present invention has substantially the same structure as the double-acting multi-stage traveling wave thermoacoustic system provided by the first embodiment, and the difference is that, in this embodiment,
  • the double-acting multi-stage traveling wave thermoacoustic system has four basic units, the cylinder 11 and the piston 12 are in the shape of a matching three-stage step structure, and the inner cavity of the cylinder 11 includes a compression chamber 18, a first expansion chamber 191 and a second Expansion chamber 192.
  • the compression chamber 18 is a sealed chamber formed at the first stepped layer of the cylinder 11 and the piston 12, and the compression chamber 18 of the linear motor 1 in one basic unit communicates with the main heat exchanger 21 of the thermoacoustic conversion device 2 in the other basic unit.
  • the first expansion chamber 191 is a sealed cavity formed at the second stepped layer of the cylinder 11 and the piston 12, and in each of the basic units, the first expansion chamber 191 and the second heat exchanger of the thermoacoustic conversion device 2 in the same basic unit 252 is connected to form a loop structure for the flow of gaseous working fluid.
  • the second expansion chamber 192 is a sealed cavity formed at the third stepped layer of the cylinder 11 and the piston 12, and in each basic unit, the second expansion chamber 192 and the thermoacoustic conversion device 2 in the same basic unit
  • the first heat exchanger 251 is connected to form a loop structure in which the gaseous working fluid flows.
  • the double-acting multi-stage traveling wave thermoacoustic system in this embodiment also has substantially the same technical effects as the double-acting multi-stage traveling wave thermoacoustic system in the first embodiment, and details are not described herein again.
  • a first DC suppressor 31 is mounted on each of the connecting lines of the first heat exchanger 251 and the second expansion chamber 192, and the first DC suppressor 31 can be prevented.
  • a second DC suppressor 32 is mounted between the second heat exchanger 252 and the first expansion chamber 191, and the second DC suppressor 32 prevents DC losses in the large loop of the main heat exchanger 21, thereby improving The performance of a double-acting multi-stage traveling wave thermoacoustic system.
  • the DC suppressor is arranged in a preferred arrangement, that is, a DC suppressor can be installed on the connecting line between the main heat exchanger and the cylinder inner cavity; and at least one connecting line between the secondary heat exchanger and the cylinder inner cavity is installed DC suppressor.
  • a DC suppressor can be installed on the connecting line between the main heat exchanger and the cylinder inner cavity; and at least one connecting line between the secondary heat exchanger and the cylinder inner cavity is installed DC suppressor.
  • the working surface of the piston 12 may be the same or opposite, that is, the compression in the linear motor 1
  • the first expansion chamber 191 and the second expansion chamber 192 can be simultaneously compressed or expanded.
  • thermoacoustic conversion device 2 The reason is that if the compression chamber 18 is compressed, the first expansion chamber 191 and the second expansion chamber 192 are also compressed, and the phase difference between the ends of the thermoacoustic conversion device 2 is 90 degrees. If the compression strength 18 is compressed, the first expansion chamber 191 and the second expansion chamber 192 are also compressed, and the volume flow phase difference between the ends of the thermoacoustic conversion device 2 is also 90 degrees, that is, the compression chamber 18 is disposed anyway, first. The volumetric flow phase difference between the expansion chamber 191 and the second expansion chamber 192 at both ends of the thermoacoustic conversion device 2 is 90 degrees, and the double-acting multi-stage traveling wave thermoacoustic system has the same working performance.
  • thermoacoustic conversion device is a thermoacoustic refrigerator
  • the current phase difference of the four linear motors is 90 degrees, so the driving current can no longer directly use the three-phase alternating current, and the current must be adjusted to 90 degrees by the phase adjusting device.
  • the linear motor can be driven again.
  • the thermoacoustic converter 2 is a thermoacoustic engine
  • the phase difference of the output of the four linear motors 1 is 90 degrees, so that it must be phase-adjusted by a certain phase modulation device before it can be connected to the grid.
  • FIG. 4 is a double-acting multi-stage traveling wave thermoacoustic system according to a third embodiment of the present invention. Schematic diagram of the structure.
  • the double-acting multi-stage traveling wave thermoacoustic system has five basic units, and the very warm heat exchanger includes a first very warm heat exchanger 231, a second very warm heat exchanger 232, and a third very warm temperature.
  • the heat exchanger 233, the secondary heat exchanger includes a first heat exchanger 251, a second heat exchanger 252, and a third heat exchanger 253.
  • the regenerator 22 is a three-stage step structure.
  • the first step layer of the regenerator 22 is in communication with the first very warm heat exchanger 231, and the second step layer of the regenerator is connected to the second very warm heat exchanger 232.
  • the third step layer of the regenerator is in communication with the third very warm heat exchanger 233.
  • the shape of the cylinder 11 and the piston 12 is a four-step structure that is matched with each other.
  • the inner cavity of the cylinder 11 includes a compression chamber 18, a first expansion chamber 191, a second expansion chamber 192, and a third expansion chamber 193; the compression chamber 18 is a cylinder. 11 and a sealed chamber formed at the first stepped layer of the piston 12, the compression chamber 18 of each linear motor 1 is in communication with the main heat exchanger 21 of the thermoacoustic conversion device 2 in the other basic unit.
  • the first expansion chamber 191 is a sealed cavity formed at the second stepped layer of the cylinder 11 and the piston 12, and in each of the basic units, the first expansion chamber 191 and the third heat exchanger of the thermoacoustic conversion device 2 in the same basic unit 253 is connected to form a loop structure for the flow of gaseous working fluid.
  • the second expansion chamber 192 is a sealed chamber formed at the third stepped layer of the cylinder 11 and the piston 12, and in each of the basic units, the second expansion chamber 192 and the second heat exchanger of the thermoacoustic conversion device 2 in the same basic unit 252 is connected to form a loop structure for the flow of gaseous working fluid.
  • the third expansion chamber 193 is a sealed cavity formed by the cylinder 11 and the fourth stepped layer of the piston 12, and in each of the basic units, the third expansion chamber 193 and the first heat exchanger 251 of the thermoacoustic conversion device 2 in the same basic unit Connected to form a loop structure for the flow of gaseous working fluid.
  • the volume flow phase at both ends of the thermoacoustic conversion device 2 is 108 degrees, which is advantageous for obtaining high conversion efficiency of thermoacoustic energy.
  • thermoacoustic energy of the thermoacoustic conversion device 2 is lowered.
  • thermoacoustic converter 2 When the thermoacoustic converter 2 is used as a thermoacoustic refrigerator, the current phase difference of the five linear motors 1 is 72 degrees, the main heat exchanger 21 and the first heat exchanger 251, the second heat exchanger 252, and the third Times The volume flow phase between the heat exchangers 253 is 108 degrees, and the thermoacoustic conversion device 2 can provide the cooling capacity at three cooling temperatures.
  • the thermoacoustic conversion device 2 is a thermoacoustic engine
  • the current phase difference of the output of the five linear motors 1 is 72 degrees, and the system can convert heat of three different temperatures into electrical power output.
  • the double-effect multi-level traveling wave thermoacoustic system in this embodiment also has the technical effects of the double-effect multi-level traveling wave thermoacoustic system in the first embodiment described above, and, in addition, in this embodiment, each basic There are three complete feedback loops in the unit, which can better improve the conversion efficiency of the thermoacoustic energy of the double-acting multi-stage traveling wave thermoacoustic system and improve the working performance.
  • first DC suppressor 31 and the second DC suppressor 32 may be mounted in the above three embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

一种双作用多级行波热声系统
技术领域 本发明涉及能源动力以及制冷低温技术, 尤其是涉及一种双作用多级 行波热声系统。 背景技术
声波在气体中传播时, 会使传播介质气体产生压力、位移和温度的波动。 当该气体与固定边界相作用时, 会引发声波能量与热能之间的转换, 这就是 热声效应。
热声系统就是利用热声效应原理设计的一种能量转换系统, 可以将热能 转化为声波能量, 或者将声波能量转换成热能, 热声系统包括热声发动机和 制冷机包括行波热声制冷机、 脉冲管制冷机和斯特林制冷机。
在上述热声系统中, 行波热声发动机和制冷机以氦气或氮气等惰性气 体作为工作介质, 具有高效、 安全、 使用寿命长的优点, 因此获得了人们 的广泛关注。 目前采用行波热声发动机发电, 以及采用行波热声制冷机实 现低温制冷已经取得成功。
参考图 1 , 图 1为现有的行波热声系统的结构示意图。
如图 1所示, 该行波热声系统包括三个基本单元, 每个基本单元包括 直线电机 la和热声转换装置 2a。
直线电机 la包括气缸 l la、 活塞 12a、 活塞杆 13a、 电机外壳 14a、 静 子 15a、 动子 16a和板簧 17a。
静子 15a与电机外壳 14a的内壁固定连接, 动子 16a与静子 15a间隙 配合, 活塞杆 13a与动子 16a固定连接, 活塞杆 13a与板簧 17a固定连接, 直线电机 la工作时, 动子 16a通过活塞杆 13a带动活塞 12a在气缸 11a 内作直线往复运动。
热声转换装置 2a包括依次连通的主换热器 21a、 回热器 22a和非常温 换热器 23a。 主换热器 21a与一个直线电机 la的气缸内腔, 即压缩腔 18a 连通, 非常温换热器 23a与另一个直线电机 la的气缸内腔, 即膨胀腔 19a 连通, 这样, 该热声系统就组成了一个工质流动的环路。
该行波热声系统作为制冷机工作时, 接通直线电机 1 a的电源, 动子
16a带动活塞 12a在气缸 1 1a内往复运动, 压缩腔 18a内的气体工质体积 改变, 产生声波能量进入主换热器 21a, 通过回热器 22a, 在回热器内声 波能量被消耗掉大部分, 产生制冷效应, 使非常温换热器降温, 剩余声波 能量再从非常温换热器 23a出来,反馈给另一个直线电机 la的膨胀腔 19a, 再传递给第二台直线电机 la的活塞 12a。
该行波热声系统作为发动机工作时, 声波在回热器 22a和非常温换热 器 23a内吸收热能转换为声波能量,声波能量被放大再从非常温换热器 23a 出来, 进入直线电机 la的膨胀腔 19a, 推动活塞 12a运动, 声波能量活塞 12a处被分成两部分,一部分进入压缩腔 18a,反馈进入另一个回热器 22a, 剩余部分通过直线电机 1 a转换为输出电功。
在进行本发明的研究过程中, 发明人发现如下技术缺陷: 在实际应用 过程中,非常温换热器 23a只能在一个很小的温度范围内实施换热, 因此, 在该行波热声系统作为发动机工作时, 给非常温换热器 23a供热的热源只 有一个很小的温度段的热量, 能够被非常温换热器 23a利用。 例如, 非常 温换热器 23a的工作温度是 650°C到 700°C的区间, 热源与非常温换热器 23a换热时只有温度在 650°C到 700°C之间的热量被吸收, 当热源温度低于 650°C时, 热量不能被吸收,因而会造成热能的浪费, 降低了热声能量的转 化效率。
另外, 该行波热声系统作为制冷机使用时, 该行波热声系统只能在一 个温度下提供制冷量, 不能获得很低的制冷温度, 因而限制了行波热声系 统的制冷性能。 发明内容 本发明提供一种双作用多级行波热声系统, 用以解决现有技术中的缺 陷, 能够提高热声能量的转换效率, 提高行波热声系统的工作性能。
本发明提供了一种双作用多级行波热声系统, 具有至少三个基本单 元, 每个所述基本单元包括直线电机和热声转换装置, 所述直线电机包括 活塞和气缸, 所述气缸具有气缸内腔, 所述活塞能够在所述气缸内作直线 往复运动, 其中, 每个所述热声转换装置包括依次连通的主换热器和回热 器, 所述回热器为阶梯结构, 所述回热器的每级阶梯层处均依次连接有一 套非常温换热器、 热緩冲管和次换热器; 每个热声转换装置的主换热器和 次换热器, 分别与不同直线电机的气缸内腔连通, 形成工质流动的环路结 构。
本发明提供的双作用多级行波热声系统中的热声转换装置, 包括依次 连通的主换热器和回热器, 所述回热器为阶梯结构, 所述回热器的每级阶 梯层处分别依次连接有非常温换热器、 热緩冲管和次换热器。
由于回热器的每级阶梯层处分别依次连接有非常温换热器、 热緩冲管 和次换热器, 因此, 本发明提供的双作用多级行波热声系统, 能够在不同 的温度段充分利用热能或者提供制冷量, 提高了热声能量的转换效率, 提 高双作用多级行波热声系统的工作性能。 附图说明 图 1为现有的行波热声系统的结构示意图;
图 2为本发明第一实施例提供的双作用多级行波热声系统的结构示意 图;
图 3为本发明第二实施例提供的双作用多级行波热声系统的结构示意 图;
图 4为本发明第三实施例提供的双作用多级行波热声系统的结构示 意图。 附图标记:
1 -直线电机; 11 -气缸; 12 -活塞;
13 -活塞杆; 14 -电机外壳; 15 -静子;
16 -动子; 17 -板簧; 18 -压缩腔;
191 -第一膨胀腔; 192 -第二膨胀腔; 193 -第三膨胀腔; 2 -热声转换装置; 21 -主换热器; 22 -回热器;
231 -第一非常温换热器
232 -第二非常温换热器 233 -第三非常温换
241 -第一热緩冲管; 242-第二热緩冲管; 243-第三热緩冲管; 251 -第一次换热器; 252-第二次换热器; 253-第三次换热器;
3 1-第一直流抑制器;
32-第二直流抑制器。 具体实施方式 本发明实施例提供了一种双作用多级行波热声系统, 具有至少三个基 本单元, 每个所述基本单元包括直线电机和热声转换装置, 所述直线电机 包括活塞和气缸, 所述气缸具有气缸内腔, 所述活塞能够在所述气缸内作 直线往复运动, 其中, 每个所述热声转换装置包括依次连通的主换热器和 回热器, 所述回热器为阶梯结构, 所述回热器的每级阶梯层处均依次连接 有一套非常温换热器、 热緩冲管和次换热器; 每个热声转换装置的主换热 器和次换热器, 分别与不同直线电机的气缸内腔连通, 形成工质流动的环 路结构。
由于回热器的每级阶梯层处分别依次连接有一套非常温换热器、 热緩 冲管和次换热器, 因此, 本发明实施例提供的双作用多级行波热声系统, 能够在不同的温度段充分利用热能或者提供制冷量。 所以该双作用多级行 波热声系统能够提高热声能量的转换效率, 提高双作用多级行波热声系统 的工作性能。
直线电机气缸内腔的设计形式按照相对位置的不同可以有多种, 热声 转换装置中回热器的设计, 以及非常温换热器、 热緩冲管和次换热器与直 线电机气缸内腔的连接方式多样, 能够形成路径不同的多种环路结构。 例 如:
活塞的数量可以为一个, 气缸和活塞的形状为相互匹配的阶梯结构, 活塞阶梯侧的各阶梯层处分别形成多个气缸内腔。
或者,活塞的数量为一个,气缸和活塞的形状为相互匹配的阶梯结构, 活塞阶梯侧的各阶梯层处以及活塞的平面侧分别形成多个气缸内腔。 即在 活塞平面侧形成一个气缸内腔, 活塞阶梯侧形成其余的气缸内腔。
活塞的阶梯结构优选为二级阶梯结构、 三级阶梯结构或四级阶梯结 构, 但并不限于此数量, 可根据非常温换热器、 热緩冲管和次换热器的套 数而定。
气缸内腔与换热器的连接方式所形成的不同环路结构与气体工质的 工作相位相关,环路结构配合适当的基本单元的数量,可以提高工作效率。
例如, 可设计各气缸内腔中活塞的工作表面平行且有一个工作表面与 其他的工作表面反向, 形成反向工作表面的汽缸内腔与主换热器相连通, 基本单元的数量为三个或四个。
或者, 各气缸内腔中活塞的工作表面平行且同向, 基本单元的数量为 四个至十二个。
在上述技术方案的基础上还可以在连接管路上安装直流抑制器, 优选 是在主换热器与气缸内腔的连接管路上,和 /或次换热器与气缸内腔的连接 管路上安装有直流抑制器。 通过该直流抑制器可以避免环路结构中气体工 质产生直流损失, 能够提高该双作用多级行波热声系统的高热声能量的转 换效率, 提高工作性能。 直流抑制器可以选用喷射泵或弹性膜盒。
气缸内腔的数量和位置、 环路结构以及基本单元的数量等各种设计因 素的结合可以获得不同的具体实施方式。 为了使本领域的人员更好地理解 本发明的技术方案, 下面结合附图和具体实施方式对本发明作进一步的详 细说明。
参照图 2, 图 2为本发明第一实施例提供的双作用多级行波热声系统 的结构示意图。
在本发明的第一实施例中, 双作用多级行波热声系统包行三个基本单 元, 图 2中只标示出了图中最右端的基本单元中的各个部件的标号, 由于 其他两个基本单元的部件与该基本单元完全相同, 为了简化附图, 在图 2 中没有标示出其他相同的部件。
每个基本单元包括直线电机 1和热声转换装置 2。 每个基本单元中, 一种优选直线电机 1的结构是包括气缸 11、 活塞 12、 活塞杆 13、 电机外 壳 14、 静子 15、 动子 16和板簧 17。
活塞 12与气缸 1 1之间 小间隙配合, 配合间隙可以为 0.01-0. lmm, 活塞 12能够在气缸 11内作直线往复运动, 静子 15固定安装在电机外壳 14的内壁, 动子 16与活塞杆 13固定连接, 动子 16与静子 15配合, 动子 16与静子 15之间具有适当的间隙, 活塞杆 13与电机外壳 14的缩颈处为 微小间隙配合, 动子 16可以带动活塞 12在气缸 1 1内作直线往复运动。
在本实施例中, 热声转换装置 2包括主换热器 21、 回热器 22、 第一 非常温换热器 231、 第二非常温换热器 232、 第一热緩冲管 241、 第二热緩 冲緩 242、 第一次换热器 251和第二次换热器 252。
回热器 22为二级阶梯结构, 回热器 22的第一阶梯层处与第一非常温 换热器 231连通, 回热器 22的第二阶梯层处与第二非常温换热器 232连 通。
气缸 11中活塞 12的数量为一个, 活塞 12的工作表面相互平行, 这 里所述的活塞 12的工作表面是指活塞 12在运动时, 能够与气缸 1 1内的 气体工质直接发生作用的表面。 气缸 11和活塞 12的形状为相互匹配的二 级阶梯结构, 气缸 11的内腔包括压缩腔 18、 第一膨胀腔 191和第二膨胀 腔 192。
压缩腔 18为活塞 12的平面侧与所述气缸 11形成的密封腔, 一个基 本单元中的气缸 11的压缩腔 18与另一个基本单元中热声转换装置 2的主 换热器 21连通。
第一膨胀腔 191为气缸 11和活塞 12的阶梯侧的第一阶梯层处形成的 密封腔, 在每个基本单元中, 第一膨胀腔 191与同一基本单元中热声转换 装置 2的第二次换热器 252连通, 形成气体工质流动的环路结构。
第二膨胀腔 192为气缸 11和活塞 12的第二阶梯侧形成的密封腔, 在 每个基本单元中, 第二膨胀腔 192与同一基本单元中热声转换装置 2的第 一次换热器 251连通, 形成气体工质流动的环路结构。
本实施例中的三个直线电机 1采用三角形接法接入三相交流电, 三个 直线电机 1的电流相位差是 120度, 因此, 与每个热声转换装置 2的主换 热器 21、 第二次换热器 252和与第一次换热器 251相连通的压缩腔 18和 第一膨胀腔 191、第二膨胀腔 192内的气体工质体积流相位差也是 120度。
下面分别说明本实施例提供的热声转换装置分别作为热声发动机和 热声制冷机的工作过程:
首先需要说明的是, 当热声转换装置 2两端的体积流相位差在 90度 到 150度的范围内时, 热声转换装置 2的热声转换效率较高。 当热声转换装置 2作为热声发动机使用时, 主换热器 21、 第一次换热
251和第二次换热器 252处于室温状态, 此时, 通过加热的方式使第一非 常温换热器 231和第二非常温换热器 232处于高温状态。
当第一非常温换热器 231和第二非常温换热器 232的温度达到临界值 后, 气体工质的声功由压缩腔 18进入热声转换装置 2。 首先进入主换热器 21 ,然后进入回热器 22、第一非常温换热器 231和第二非常温换热器 232, 在回热器 22、 第一非常温换热器 231和第二非常温换热器 232内, 声波吸 收的热量转换为声功 (声波能量) , 因此声功被放大, 从第一非常温换热 器 231出来的声功通过第一热緩冲管 241和第一次换热器 251进入另一个 直线电机 1的第二膨胀腔 192, 从第二非常温换热器 232出来的声功通过 第二热緩冲管 242和第二次换热器 252进入另一个直线电机 1的第一膨胀 腔 191。 活塞 12吸收第一膨胀腔 191和第二膨胀腔 192的声功后, 将声功 分成两部分, 一部分声功反馈给压缩腔 18 , 进入另一个热声转换装置 2 中, 其余部分通过直线电机 1转化为输出电功。
本实施例中的三个直线电机 1输出的电流相位差为 120度, 通过适当 的变压后即可以接入三相交流电网, 整个发电过程非常简便。
当热声转换装置 2为热声制冷机时, 主换热器 21、 第一次换热器 251 和第二次换热器 252处于室温状态。三相电源向三个直线电机 1输入电功, 驱动活塞 12做往复运动将电功转换为声功, 声功自气缸 11的压缩腔 18 进入热声转换装置 2, 绝大部分声波能量在回热器 22内被消耗掉, 同时产 生制冷效应, 使第一非常温换热器 231和第二非常温换热器 232的温度降 低, 剩余一部分声功通过第一热緩冲管 241和第一次换热器 251进入另一 个直线电机 1的第二膨胀腔 192, 同时剩余的一部分声功通过第二热緩冲 管 242和第二次换热器 252进入另一个直线电机 1的第一膨胀腔 191 , 同 时反馈给活塞 12。
使用三相交流电作为输入电源, 直接可以使活塞 12之间获得理想的 相位差, 非常便于实际应用。
通过上述表述可以看出, 在本实施例中, 由于回热器 22为二级阶梯 结构, 回热器 22的第一级阶梯层处依次连接有第一非常温换热器 231、 第 一热緩冲管 241和第一次换热器 251 ,回热器 22的第二阶梯层处依次连接 有第二非常温换热器 232、 第二热緩冲管 242和第二次换热器 252。 并且, 气缸 11具有压缩腔 18、 第一膨胀腔 191和第二膨胀腔 192, 每个基本单 元内具有两个完整的反馈回路, 因此, 本发明提供的双作用多级行波热声 系统, 能够在两个不同的温度段充分利用热能或者提供制冷量, 并且可以 提高热声能量的转换效率, 提高双作用多级行波热声系统的工作性能。
需要说明的是, 当基本单元的数量均为三个时, 优选方式是, 保证活 塞 12的一个工作表面与其他的工作表面反向。 在本实施例中, 压缩腔 18 内的工作表面与第一膨胀腔 191和第二膨胀腔 192的工作表面反向。 也就 是说, 每台直线电机 1中, 优选的方式是, 保证压缩腔 18处于被压缩状 态时, 第一膨胀腔 191和第二膨胀腔 192处于膨胀状态。 如果压缩腔 18 处于被压缩状态时,第一膨胀腔 191和 /或第二膨胀腔 192也处于被压缩状 态, 那么热声转换装置 2两端的体积流相位差为会小于 90度, 进而会导 致热声装换装置 2的热声转换效率降低。
另外, 本实施例中的基本单元的数量也可以为四个, 采用上述的环路 结构, 同样具有很好的热声能量的转换效率。
参考图 3 , 图 3为本发明第二实施例提供的双作用多级行波热声系统 的结构示意图。
在第二实施例中, 本发明提供的双作用多级行波热声系统与第一实施 例提供的双作用多级行波热声系统结构基本相同, 区别点在于, 在本实施 例中, 双作用多级行波热声系统具有四个基本单元, 气缸 11和活塞 12的 形状为相互匹配的三级阶梯结构, 气缸 1 1的内腔包括压缩腔 18、 第一膨 胀腔 191和第二膨胀腔 192。
压缩腔 18为气缸 11和活塞 12的第一阶梯层处形成的密封腔, 一个 基本单元中直线电机 1的压缩腔 18与另一个基本单元中热声转换装置 2 的主换热器 21连通。
第一膨胀腔 191为气缸 11和活塞 12的第二阶梯层处形成的密封腔, 每个基本单元中, 第一膨胀腔 191与同一基本单元中热声转换装置 2的第 二次换热器 252连通, 形成气体工质流动的环路结构。
第二膨胀腔 192为气缸 11和活塞 12的第三阶梯层处形成的密封腔, 在每个基本单元中, 第二膨胀腔 192与同一基本单元中热声转换装置 2的 第一次换热器 251连通, 形成气体工质流动的环路结构。
显然, 本实施例中的双作用多级行波热声系统也具有上述第一种实施 例中的双作用多级行波热声系统基本相同的技术效果, 在此不再赘述。
另外, 在本实施例中, 在每个第一次换热器 251与第二膨胀腔 192的 连接管路上各安装有一个第一直流抑制器 31 , 该第一直流抑制器 31可以 防止第一非常温换热器 231、 第一热緩冲管 241和第一次换热器 251与第 二非常温换热器 232、 第二热緩冲管 242和第二次换热器 252之间的小环 路内产生直流损失。 其中一个第二次换热器 252与第一膨胀腔 191之间安 装有一个第二直流抑制器 32, 第二直流抑制器 32可以防止主换热器 21 的大环路产生直流损失, 进而提高双作用多级行波热声系统的工作性能。
上述直流抑制器的布设方式为优选布局, 即可以在主换热器与气缸内 腔的连接管路上安装有一个直流抑制器; 并且至少一个次换热器与气缸内 腔的连接管路上安装有直流抑制器。 该布局方式也可适用于本发明其他实 施例的技术方案。
需要说明的是, 为了配合气体工质相位关系以达到最高工作效率, 当 基本单元的数量为四个时, 活塞 12的工作表面的方向可以相同也可以相 反, 也就是说, 直线电机 1中压缩腔 18被压缩时, 第一膨胀腔 191和第 二膨胀腔 192可以同时被压缩或被膨胀。
理由是, 如果压缩腔 18被压缩时, 第一膨胀腔 191和第二膨胀腔 192 也被压缩, 热声转换装置 2两端的相位差是 90度。 如果压缩强 18被压缩 时, 第一膨胀腔 191和第二膨胀腔 192也被压缩, 热声转换装置 2两端的 体积流相位差也是 90度, 也就是说无论如何布置压缩腔 18、 第一膨胀腔 191和第二膨胀腔 192, 热声转换装置 2两端的体积流相位差都是 90度, 双作用多级行波热声系统的工作性能相同。
当热声转换装置为热声制冷机时, 四个直线电机的电流相位差是 90 度, 因此驱动电流不能再直接使用三相交流电, 电流必须通过调相装置将 相位差调整为 90度时, 才能再驱动直线电机。 当热声转换装置 2为热声 发动机机时, 四个直线电机 1输出的电流相位差是 90度, 因此必须经过 一定的调相装置调相后, 才能接入电网。
参考图 4, 图 4为本发明第三实施例提供的双作用多级行波热声系统 的结构示意图。
在第三实施例中, 双作用多级行波热声系统具有五个基本单元, 非常 温换热器包括第一非常温换热器 231、 第二非常温换热器 232和第三非常 温换热器 233 , 次换热器包括第一次换热器 251、 第二次换热器 252和第 三次换热器 253。
回热器 22为三级阶梯结构 , 回热器 22的第一阶梯层处与第一非常温 换热器 231连通, 回热器的第二阶梯层处与第二非常温换热器 232连通, 回热器的第三阶梯层处与第三非常温换热器 233连通。
气缸 11和活塞 12的形状为相互匹配的四级阶梯结构, 气缸 1 1的内 腔包括压缩腔 18、 第一膨胀腔 191、 第二膨胀腔 192和第三膨胀腔 193 ; 压缩腔 18为气缸 11和活塞 12的第一阶梯层处形成的密封腔, 每个直线 电机 1的压缩腔 18与另一个基本单元中热声转换装置 2的主换热器 21连 通。
第一膨胀腔 191为气缸 11和活塞 12的第二阶梯层处形成的密封腔, 每个基本单元中, 第一膨胀腔 191与同一基本单元中热声转换装置 2的第 三次换热器 253连通, 形成气体工质流动的环路结构。
第二膨胀腔 192为气缸 11和活塞 12的第三阶梯层处形成的密封腔, 每个基本单元中, 第二膨胀腔 192与同一基本单元中热声转换装置 2的第 二次换热器 252连通, 形成气体工质流动的环路结构。
第三膨胀腔 193为气缸 11和活塞 12的第四阶梯层形成的密封腔, 每 个基本单元中, 第三膨胀腔 193与同一基本单元中热声转换装置 2的第一 次换热器 251连通, 形成气体工质流动的环路结构。
在本实施例中, 热声转换装置 2两端的体积流相位为 108度, 有利于 其获得较高的热声能量的转换效率。
需要说明的是, 当基本单元的数量大于或等于 5时, 也就是说, 优选 的方式是,保证活塞 12的工作表面方向相同,压缩腔 18、第一膨胀腔 191、 第二膨胀腔 192和第三膨胀腔 193同时被压缩或同时被膨胀, 如果一个被 压缩另一个被膨胀, 就会降低热声转换装置 2的热声能量的转换效率。
当热声转换装置 2作为热声制冷机时, 五个直线电机 1的电流相位差 是 72度, 主换热器 21和第一次换热器 251、 第二次换热器 252、 第三次 换热器 253之间的体积流相位为 108度, 热声转换装置 2可以在三个制冷 温度上提供制冷量。 当热声转换装置 2为热声发动机机时, 五个直线电机 1输出的电流相位差是 72度,系统可以将三种不同温度的热量转换为电功 输出。
显然, 本实施例中的双作用多级行波热声系统也具有上述第一种实施 例中的双作用多级行波热声系统的技术效果, 另外, 由于本实施例中, 每 个基本单元内具有三个个完整的反馈回路, 可以更好的提高双作用多级行 波热声系统的热声能量的转换效率, 提高工作性能。
需要说明的是, 在本发明上述三个实施例中均可以安装第一直流抑制 器 31和第二直流抑制器 32。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种双作用多级行波热声系统, 具有至少三个基本单元, 每个所 述基本单元包括直线电机和热声转换装置, 所述直线电机包括活塞和气 缸,所述气缸具有气缸内腔,所述活塞能够在所述气缸内作直线往复运动, 其特征在于, 每个所述热声转换装置包括依次连通的主换热器和回热器, 所述回热器为阶梯结构, 所述回热器的每级阶梯层处均依次连接有一套非 常温换热器、 热緩冲管和次换热器;
每个热声转换装置的主换热器和次换热器, 分别与不同直线电机的气 缸内腔连通, 形成工质流动的环路结构。
2、 根据权利要求 1所述的双作用多级行波热声系统, 其特征在于: 所述活塞的数量为一个, 所述气缸和活塞的形状为相互匹配的阶梯结构, 所述活塞阶梯侧的各阶梯层处分别形成多个所述气缸内腔。
3、 根据权利要求 2所述的双作用多级行波热声系统, 其特征在于: 所述活塞的数量为一个, 所述气缸和活塞的形状为相互匹配的阶梯结构, 所述活塞阶梯侧的各阶梯层处以及所述活塞的背面侧分别形成多个所述 气缸内腔。
4、 根据权利要求 2或 3所述的双作用多级行波热声系统, 其特征在 于: 所述阶梯结构为二级阶梯结构、 三级阶梯结构或四级阶梯结构。
5、 根据权利要求 1或 2所述的双作用多级行波热声系统, 其特征在 于: 各所述气缸内腔中活塞的工作表面平行且有一个工作表面与其他的工 作表面反向, 形成反向工作表面的汽缸内腔与所述主换热器相连通, 所述 基本单元的数量为三个或四个。
6、 根据权利要求 1或 3所述的双作用多级行波热声系统, 其特征在 于: 各所述气缸内腔中活塞的工作表面平行且同向, 所述基本单元的数量 为四至十二个。
7、根据权利要求 1-3任一所述的双作用多级行波热声系统,其特征在 于, 所述主换热器与所述气缸内腔的连接管路上, 和 /或所述次换热器与所 述气缸内腔的连接管路上安装有直流抑制器。
8、 根据权利要求 7所述的双作用多级行波热声系统, 其特征在于, 所述主换热器与所述气缸内腔的连接管路上安装有一个所述直流抑制器; 至少一个所述次换热器与所述气缸内腔的连接管路上安装有直流抑制器。
9、 根据权利要求 8所述双作用多级行波热声系统, 其特征在于, 所 述直流抑制器为喷射泵或弹性膜盒。
PCT/CN2012/073374 2011-04-01 2012-03-31 一种双作用多级行波热声系统 WO2012130168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/214,153 US9784106B2 (en) 2011-04-01 2014-03-14 Multi-stage double-acting traveling-wave thermoacoustic system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110082262.3 2011-04-01
CN201110082262 2011-04-01
CN201110101963.7 2011-04-22
CN201110101963.7A CN102734097B (zh) 2011-04-01 2011-04-22 一种双作用多级行波热声系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/214,153 Continuation US9784106B2 (en) 2011-04-01 2014-03-14 Multi-stage double-acting traveling-wave thermoacoustic system

Publications (1)

Publication Number Publication Date
WO2012130168A1 true WO2012130168A1 (zh) 2012-10-04

Family

ID=46929485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073374 WO2012130168A1 (zh) 2011-04-01 2012-03-31 一种双作用多级行波热声系统

Country Status (3)

Country Link
US (1) US9784106B2 (zh)
CN (1) CN102734097B (zh)
WO (1) WO2012130168A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043790A1 (en) * 2012-09-19 2014-03-27 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct
CN103758715A (zh) * 2014-01-13 2014-04-30 中科力函(深圳)热声技术有限公司 热声热机系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411359B (zh) * 2013-08-16 2015-11-04 中国科学院理化技术研究所 一种可调式双作用行波热声系统
CN103808064B (zh) * 2014-02-14 2016-09-14 中国科学院理化技术研究所 一种环形声学共振型热驱动热声制冷系统
NL2013939B1 (en) * 2014-12-08 2016-10-11 Stichting Energieonderzoek Centrum Nederland Thermo-acoustic heat pump.
CN106401789B (zh) * 2016-10-27 2018-02-16 中国科学院理化技术研究所 一种多级并联型的行波热声发动机系统
CN106401790B (zh) * 2016-10-27 2017-12-12 中国科学院理化技术研究所 一种多路旁通型的行波热声发动机系统
CN106884735B (zh) * 2017-02-09 2019-01-08 中国科学院理化技术研究所 一种冷电联供系统
CN109556318B (zh) * 2017-09-25 2020-07-28 同济大学 一种热声制冷机
CN109682112B (zh) * 2018-12-12 2021-06-25 中国科学院理化技术研究所 一种热声环路直流抑制方法和系统
CN112289473B (zh) * 2019-07-24 2023-04-21 中国科学院理化技术研究所 一种热声发电系统
CN113864144B (zh) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 热声系统
CN113864143B (zh) * 2020-06-30 2023-06-27 中国科学院理化技术研究所 热声系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366991C (zh) * 2003-03-26 2008-02-06 学校法人同志社 冷却装置
US20080110180A1 (en) * 2005-01-07 2008-05-15 The Doshisha Thermoacoustic Device
CN100545449C (zh) * 2007-04-25 2009-09-30 中国科学院理化技术研究所 利用变温热源的热声发动机系统
CN101706169A (zh) * 2009-11-16 2010-05-12 浙江大学 一种热声驱动的热耦合型两级脉管制冷系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902159B2 (ja) * 1991-06-26 1999-06-07 アイシン精機株式会社 パルス管式冷凍機
US6604364B1 (en) * 2002-11-22 2003-08-12 Praxair Technology, Inc. Thermoacoustic cogeneration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366991C (zh) * 2003-03-26 2008-02-06 学校法人同志社 冷却装置
US20080110180A1 (en) * 2005-01-07 2008-05-15 The Doshisha Thermoacoustic Device
CN100545449C (zh) * 2007-04-25 2009-09-30 中国科学院理化技术研究所 利用变温热源的热声发动机系统
CN101706169A (zh) * 2009-11-16 2010-05-12 浙江大学 一种热声驱动的热耦合型两级脉管制冷系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043790A1 (en) * 2012-09-19 2014-03-27 Etalim Inc. Thermoacoustic transducer apparatus including a transmission duct
CN103758715A (zh) * 2014-01-13 2014-04-30 中科力函(深圳)热声技术有限公司 热声热机系统
CN103758715B (zh) * 2014-01-13 2016-06-01 中科力函(深圳)热声技术有限公司 热声热机系统

Also Published As

Publication number Publication date
US9784106B2 (en) 2017-10-10
CN102734097A (zh) 2012-10-17
CN102734097B (zh) 2014-05-14
US20140196452A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
WO2012130168A1 (zh) 一种双作用多级行波热声系统
WO2012130169A1 (zh) 一种双作用热驱动行波热声制冷系统
CN103353184B (zh) 一种直线型双作用制冷系统
US9777951B2 (en) Thermoacoustic engine
WO2018028367A1 (zh) 多级热声发电机组及具有该机组的多级回热式制冷系统
WO2012130172A1 (zh) 一种双作用单级行波热声系统
Wang et al. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat
CN110701822B (zh) 一种热能驱动的热声与电卡耦合制冷系统
CN108167147A (zh) 一种串级冷热电联产装置
CN104006564A (zh) 一种脉管制冷机
CN111256387B (zh) 基于热声效应和热释电效应的冷热电联供系统
CN110701823B (zh) 热声与热释电耦合驱动的电卡制冷系统
CN112303953A (zh) 一种余热驱动制冷机
CN109974324B (zh) 一种可用作发电、制冷或热泵的热声环路系统
JP2011002153A (ja) 熱音響機関
CN103670975A (zh) 一种同时利用冷源和热源的热声发电系统
CN218895542U (zh) 阶梯活塞分流型热驱动热声制冷机/热泵系统
CN218915458U (zh) 双效液体自由活塞热声斯特林制冷/热泵系统
CN114688758B (zh) 一种利用低品位热能的热声制冷系统
CN212657910U (zh) 一种余热驱动制冷机
CN114688759B (zh) 一种气液热声转换系统
CN218065412U (zh) 基于高温热源驱动的自由活塞斯特林制冷/热泵系统
CN118111135A (zh) 双效液体自由活塞热声斯特林制冷/热泵系统
CN118089272A (zh) 阶梯活塞分流型热驱动热声制冷机/热泵系统
CN107560227B (zh) 一种热驱动斯特林热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762755

Country of ref document: EP

Kind code of ref document: A1