WO2012129852A1 - 一种确定下行参考信号接收功率的方法和终端 - Google Patents

一种确定下行参考信号接收功率的方法和终端 Download PDF

Info

Publication number
WO2012129852A1
WO2012129852A1 PCT/CN2011/076035 CN2011076035W WO2012129852A1 WO 2012129852 A1 WO2012129852 A1 WO 2012129852A1 CN 2011076035 W CN2011076035 W CN 2011076035W WO 2012129852 A1 WO2012129852 A1 WO 2012129852A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
uplink
reference signal
terminal
downlink
Prior art date
Application number
PCT/CN2011/076035
Other languages
English (en)
French (fr)
Inventor
田丰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012129852A1 publication Critical patent/WO2012129852A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications, and in particular, to determining downlink receive signal received power when downlink communication uses Multiple-Input Multiple-Output (MIMO) technology in a Long Term Evolution (LTE) system.
  • MIMO Multiple-Input Multiple-Output
  • RSRP Reference Signal Received Power
  • MIMO technology is widely used in LTE systems because of its superior performance.
  • the downlink basic antenna configuration is 2x2 (the 4x4 configuration will be considered in the future), that is, the two antenna transmission and the two antenna reception (as shown in FIG. 1)
  • the uplink basic antenna configuration is the 1x2 mode, that is, an antenna.
  • Transmission and two-antenna reception can also be referred to as Single-Input Multiple-Output (SIMO).
  • SIMO Single-Input Multiple-Output
  • the method of transmitting uplink data transmission by single antenna is mainly considering the complexity and cost of the terminal.
  • the reference signal RS Reference Signal, RS for short
  • the reference signal RS Reference Signal, RS for short
  • the user terminal uses an energy reference signal (E-RS) (E-RS) (the E-RS indicates the power used by the reference signal, and the base station transmits the power to the terminal through the system information block 2 SIB2 (SIB2)) and
  • the measured reference signal received power RSRP Reference Signal Received Power
  • PL Path Loss
  • the terminal also reports a Power Headroom Report (PHR) to inform the base station terminal that the power space can be increased for the base station to perform effective and reasonable scheduling. Therefore, accurate measurement of RSRP has four important meanings for communication quality.
  • PHR Power Headroom Report
  • MIMO is used in the downlink (for example, MIMO in 2x2 mode)
  • MIMO in 2x2 mode it is especially important to deal with the RSRP values measured by the two antennas because of the RSRP involving two receiving antennas. How to handle multiple downlink data receiving antennas in other cases?
  • the RSRP issue also needs to be addressed. After using MIMO technology, the measured RSRP of the two channels may be biased due to the difference of the actual channel.
  • the condition of the uplink channel cannot be correctly reflected, especially when the measured values of the two channels are different. When large, the error will be greater. Therefore, a new method for determining the received power of the downlink reference signal is needed.
  • the present invention provides a method and terminal for determining the received power of a downlink reference signal, which improves the degree of conformity between the received downlink reference signal received power and the uplink channel condition, and reduces the error.
  • the present invention provides a method for determining a received power of a downlink reference signal, including: the terminal detecting a reference signal received power on a single antenna for receiving a downlink signal, and determining the use from the single antenna For the uplink antenna that transmits the uplink data, the reference signal received power detected by the uplink antenna is used as the downlink reference signal received power.
  • the above method may also have the following features:
  • the step of determining, by the terminal, the uplink antenna for transmitting uplink data from the single antenna includes: determining, by the terminal, an uplink antenna for transmitting uplink data from the single antenna according to an uplink antenna selection manner.
  • the above method may also have the following features:
  • the step of determining, by the terminal, the uplink antenna for transmitting the uplink data from the single antenna according to the uplink antenna selection manner includes: when the uplink antenna selection mode is the antennaless selection mode, the terminal determines the first antenna as When the uplink antenna selection mode is an open-loop antenna selection mode, the terminal determines a single antenna with the best channel quality among the single antennas as the uplink antenna; and the uplink antenna selection mode is a closed loop. In the antenna selection mode, the terminal determines a single antenna indicated by a mask of a cyclic redundancy check code used in the downlink control information format 0 as the uplink antenna.
  • the above method may also have the following features:
  • the total number of single antennas for receiving downlink signals is 2, 4 or 8.
  • the present invention further provides a terminal for determining a received power of a downlink reference signal, where the terminal includes a single antenna reference signal receiving power detecting module, an antenna selecting module, and a downlink reference signal receiving power determining module;
  • the antenna reference signal receiving power detecting module is configured to detect a reference signal receiving power on each of the single antennas for receiving the downlink signal;
  • the antenna selecting module is configured to determine, from the single antenna, an uplink for transmitting uplink data
  • the downlink reference signal receiving power determining module is configured to learn the uplink antenna from the antenna selecting module, and obtain a reference that is detected by the uplink antenna from the single antenna reference signal receiving power detecting module.
  • the signal received power is received as a downlink reference signal.
  • the foregoing terminal may also have the following features:
  • the antenna selection module is configured to determine an uplink antenna for transmitting uplink data from the single antenna according to an uplink antenna selection manner.
  • the foregoing terminal may also have the following features:
  • the antenna selection module is configured to determine the first antenna as the uplink antenna when the uplink antenna selection mode is no antenna selection mode; and when the uplink antenna selection mode is an open loop antenna selection mode, The single antenna with the best channel quality in the single antenna is determined as the uplink antenna; when the uplink antenna selection mode is the closed loop antenna selection mode, the mask of the cyclic redundancy check code used in the downlink control information format 0 is used. The indicated single antenna is determined to be the uplink antenna.
  • the foregoing terminal may also have the following features:
  • the total number of single antennas for receiving downlink signals in the terminal is 2, 4 or 8.
  • the present invention further provides an uplink signal power control method, including: a terminal detecting a reference signal received power on a single antenna for receiving a downlink signal, and determining, from the single antenna, for transmitting
  • the uplink antenna of the uplink data uses the reference signal received power detected by the uplink antenna as the downlink reference signal received power, and performs uplink signal power control according to the downlink reference signal received power.
  • the above method may also have the following features:
  • the terminal determines an uplink antenna for transmitting uplink data from the single antenna according to an uplink antenna selection manner; when the uplink antenna selection mode is an antennaless selection mode, the terminal An antenna is determined as the uplink antenna; when the uplink antenna selection mode is an open loop antenna selection mode, the terminal determines a single antenna with the best channel quality among the single antennas as the uplink antenna; When the selection mode is the closed loop antenna selection mode, the terminal determines the single antenna indicated by the mask of the cyclic redundancy check code used by the downlink control information format 0 as the uplink antenna.
  • the invention selects the measurement channel of the RSRP according to the uplink antenna, and uses the received power of the reference signal detected by the uplink antenna as the downlink reference signal received power, which can accurately estimate the channel condition of the actual channel, which is beneficial to better performing.
  • the uplink power control and the reporting of the PHR provide more accurate terminal information to the base station, which facilitates better scheduling of the base station and improves system performance.
  • the advantages of the present invention can be exhibited.
  • 1 is a schematic diagram of a 2x2 mode in MIMO technology used in downlink communication
  • FIG. 2 is a structural diagram of a terminal for determining a received power of a downlink reference signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for determining a received power of a downlink reference signal according to an embodiment of the present invention.
  • the following embodiments of the present invention are applicable to the case where MIMO is used in downlink transmission in an LTE system.
  • the MIMO mode is a 2 ⁇ 2 antenna setting mode, and the following embodiments of the present invention are also applicable to other MIMO applications.
  • the antenna setting mode of the single antenna for receiving the downlink signal is a 2 ⁇ 2 antenna setting mode, and the following embodiments of the present invention are also applicable to other MIMO applications.
  • the terminal for determining the received power of the downlink reference signal includes: a single antenna reference signal, a received power detection module 201, an antenna selection module 202, and a downlink reference signal received power determining module 203.
  • the single antenna reference signal receiving power detecting module 201 is configured to detect reference signal receiving power on each single antenna for receiving the downlink signal;
  • the antenna selection module 202 is configured to determine, from the single antenna, an uplink antenna for transmitting uplink data
  • the downlink reference signal received power determining module 203 is configured to learn the uplink antenna from the antenna selection module, and receive the learned power from the single antenna reference signal receiving power detecting module.
  • the reference signal received power detected by the uplink antenna is used as the downlink reference signal received power.
  • the total number of single antennas for receiving downlink signals in the terminal is 2, 4 or 8, and the total number may also be other values greater than 8.
  • the antenna selection module 202 is configured to determine, from the single antenna, an uplink antenna for transmitting uplink data according to an uplink antenna selection manner, and further configured to: when the uplink antenna selection mode is an antennaless selection mode, Determining, by the first antenna, the uplink antenna; determining, when the uplink antenna selection mode is an open-loop antenna selection mode, determining a single antenna with the best channel quality among the single antennas as the uplink antenna; When the antenna selection mode is the closed loop antenna selection mode, the single antenna indicated by the mask of the CRC is determined as the uplink antenna.
  • a method for determining a received power of a downlink reference signal includes:
  • Step 301 The terminal detects a reference signal receiving power on each of the single antennas for receiving the downlink signal.
  • Step 302 Determine an uplink antenna for transmitting uplink data from the single antenna.
  • Step 303 Use a reference signal received power detected by the uplink antenna as a downlink reference signal received power.
  • the terminal After determining the downlink reference signal received power, the terminal uses the downlink reference signal to receive power to calculate path loss, or calculate other parameter values for uplink power control or power margin reporting.
  • the downlink reference signal received power determined by the above method can be closer to the condition of the uplink channel, and is a better downlink reference signal received power.
  • the total number of single antennas for receiving downlink signals in the terminal is 2, 4 or 8, and the total number may also be other values greater than 8.
  • the terminal determines, from the single antenna, an uplink antenna for transmitting uplink data according to an uplink antenna selection manner.
  • the uplink antenna selection method includes three methods: no antenna selection mode, open loop antenna selection mode, and closed loop antenna selection mode.
  • the uplink antenna selection mode is that the radio network controller is configured to the terminal through dedicated configuration information, and the radio network controller indicates the uplink antenna selection mode in the dedicated configuration information (example) If set to release, it means that there is no antenna selection mode.
  • the terminal can determine the uplink antenna selection mode according to the prior art.
  • the terminal determines the first antenna (ie, antenna 0) as the uplink antenna, and uses the reference signal received power detected by the first antenna as the downlink reference signal received power.
  • the terminal determines the single antenna with the best channel quality in the single antenna as the uplink antenna, and uses the reference signal received power detected by the uplink antenna as the downlink reference. Signal reception power.
  • the terminal determines the single antenna indicated by the mask of the cyclic redundancy check code used in the downlink control information format 0 as the uplink antenna, and the reference signal detected by the antenna is used. The received power is received as the downlink reference signal.
  • the mask of the cyclic redundancy check code corresponding to the second antenna (called antenna 1) is ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>, the terminal can determine its corresponding antenna by distinguishing the identification mask.
  • Embodiments of the present invention are typically applicable to the downlink (2 ⁇ 2) mode as shown in Figure 1, where the base station transmits using 2 antennas and the terminal uses 2 antennas for reception. Embodiments of the present invention are also applicable to other antenna arrangements of MIMO having multiple single antennas for receiving downlink signals.
  • the uplink signal power control method can also be completed by the solution of the present invention.
  • the uplink signal power control method includes: the terminal detects a reference signal received power on each single antenna for receiving the downlink signal, and determines, from the single antenna, used for sending The uplink antenna of the uplink data uses the reference signal received power detected by the uplink antenna as the downlink reference signal received power, and performs uplink signal power control according to the downlink reference signal received power.
  • the method for determining the uplink antenna is the same as the method for determining the received power of the downlink reference signal, and details are not described herein again.
  • the terminal measures the RSRP on a single antenna as RSRP0 and RSRP1 through two receiving antennas. If the terminal calculates the downlink RSRP using the average of the two antennas, the value of the downlink RSRP is the average of RSRP0 and RSRP1 (RSRP0+RSRP1).
  • the downlink RSRP estimated by the above method is different from the ideal RSRP value (RSRP0--RSRP1).
  • the calculated path loss PL is smaller than the ideal value (RSRP0-RSRP1) 12, and the corresponding calculated values of the uplink transmission power and PHR also have errors. And the greater the difference between RSRP0 and RSRP1, the greater the above error.
  • the above errors may cause unreasonable scheduling of the base station and fluctuations in the TPC power adjustment, which may affect traffic and the like. If you choose to choose the maximum RSRP or the smallest RSRP, it may cause more errors.
  • the uplink power control using the RSRP value measured on the uplink antenna can be closer to the actual use of the channel, and the error will be relatively small. It is advantageous to accurately perform uplink power control to provide relatively accurate PHR information to the base station, which provides guarantee for efficient scheduling of the base station.
  • the present invention provides a method and terminal for determining the received power of a downlink reference signal, which improves the degree of conformity between the received downlink reference signal received power and the uplink channel condition, and reduces the error.
  • the invention selects the measurement channel of the RSRP according to the uplink antenna, and uses the reference signal received power detected by the uplink antenna as the downlink reference signal receiving power, which can accurately estimate the channel condition of the actual channel, which is beneficial to better performing.
  • the uplink power control and the reporting of the PHR provide more accurate terminal information to the base station, which facilitates better scheduling of the base station and improves system performance. In particular, when the RSRP measurement values of the two channels are largely different, the advantages of the present invention can be exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种确定下行参考信号接收功率的方法和终端,使确定的下行参考信号接收功率与上行信道状况的符合程度提高,降低误差。所述方法包括:终端检测各个用于接收下行信号的单天线上的参考信号接收功率,从所述单天线中确定出用于发送上行数据的上行天线,将通过所述上行天线检测到的参考信号接收功率作为下行参考信号接收功率。

Description

一种确定下行参考信号接收功率的方法和终端
技术领域
本发明涉及通信领域, 尤其涉及在长期演进 LTE ( Long Term Evolution, 简称 LTE)系 统中 下行通信使用 多入多 出 MIMO (Multiple-Input Multiple-Output, 简称 MIMO)技术时, 确定下行参考信号接收功率参考信号 接收功率 RSRP ( Reference Signal Received Power, 简称 RSRP ) 的方法和终 端。 背景技术
与传统单入单出 SISO ( Single-Input Single-Output,简称 SISO )系统相比, MIMO技术引入带来四大优点: 阵列增益、 空间分集增益、 空间复用增益和 干扰减少。 MIMO技术因为其优越的性能,在 LTE系统中得到广泛使用。 LTE 系统中使用 MIMO技术时下行基本天线配置为 2x2方式(未来也会考虑 4x4 方式的配置) 即两天线发送和两天线接收(如图 1所示) , 上行基本天线配 置为 1x2 方式即一天线发送和两天线接收也可称为单入多出 SIMO ( Single-Input Multiple-Output, 简称 SIMO )。 上行数据传输釆用单天线发送 的方式, 主要是考虑到终端的实现复杂度和成本的因素。
在 LTE系统中下行的参考信号 RS ( Reference Signal, 简称 RS )主要用 于对下行信道进行估计。 用户终端通过能量参考信号 E— RS ( Energy reference signal, 简称 E— RS ) ( E— RS表示参考信号使用的功率, 基站通过系统信息块 2 SIB2 ( System information block2, 简称 SIB2 )发送给终端)和测量到的参 考信号接收功率 RSRP ( Reference Signal Received Power )来计算路径损耗 ( Path Loss , 简称 PL )并用在上行各种信道的功率控制中。 进行准确的功率 控制, 一方面可以节省终端的能耗, 另一方面有利于基站根据目标信噪比对 终端功率进行合理的调整。另夕卜,由于终端还会上报功率余裕报告 PHR( Power Headroom Report )来告知基站终端还可以提高的功率空间供基站进行有效合 理的调度。 所以准确的测量 RSRP对于通信质量有 4艮重要的意义。 当下行使用 MIMO (例如 2x2方式的 MIMO ) 时, 由于涉及两根接收天 线的 RSRP, 如何处理这两根天线测得的 RSRP值, 就显得尤为重要, 其它情 况下如何处理多个下行数据接收天线的 RSRP的问题也需要解决。使用 MIMO 技术后,下行两个通道测得的 RSRP可能会因为实际信道的差别而存在偏差, 如果使用两通道平均值则不能正确反映上行信道的状况, 特别是当两通道测 得的值相差较大时, 误差会越大。 所以需要新的确定下行参考信号接收功率 的方法。
发明内容
本发明提供了一种确定下行参考信号接收功率的方法和终端, 使确定的 下行参考信号接收功率与上行信道状况的符合程度提高, 降低误差。
为解决上述技术问题, 本发明提供了一种确定下行参考信号接收功率的 方法, 包括: 终端检测各个用于接收下行信号的单天线上的参考信号接收功 率, 从所述单天线中确定出用于发送上行数据的上行天线, 将通过所述上行 天线检测到的参考信号接收功率作为下行参考信号接收功率。
优选地, 上述方法还可以具有以下特点:
所述终端从所述单天线中确定出用于发送上行数据的上行天线的步骤包 括: 所述终端根据上行天线选择方式从所述单天线中确定出用于发送上行数 据的上行天线。
优选地, 上述方法还可以具有以下特点:
所述终端根据上行天线选择方式从所述单天线中确定出用于发送上行数 据的上行天线的步骤包括: 所述上行天线选择方式为无天线选择方式时, 所 述终端将第一天线确定为所述上行天线; 所述上行天线选择方式为开环天线 选择方式时, 所述终端将所述单天线中信道质量最好的单天线确定为所述上 行天线; 所述上行天线选择方式为闭环天线选择方式时, 所述终端将下行控 制信息格式 0使用的循环冗余校验码的掩码所指示的单天线确定为所述上行 天线。
优选地, 上述方法还可以具有以下特点: 所述用于接收下行信号的单天线的总数为 2、 4或 8个。
为解决上述技术问题, 本发明还提供了一种确定下行参考信号接收功率 的终端, 所述终端包括单天线参考信号接收功率检测模块、 天线选择模块和 下行参考信号接收功率确定模块; 所述单天线参考信号接收功率检测模块, 设置为检测各个用于接收下行信号的单天线上的参考信号接收功率; 所述天 线选择模块, 设置为从所述单天线中确定出用于发送上行数据的上行天线; 所述下行参考信号接收功率确定模块, 设置为从所述天线选择模块获知所述 上行天线, 并将从所述单天线参考信号接收功率检测模块获知的通过所述上 行天线检测到的参考信号接收功率作为下行参考信号接收功率。
优选地, 上述终端还可以具有以下特点:
所述天线选择模块, 是设置为根据上行天线选择方式从所述单天线中确 定出用于发送上行数据的上行天线。
优选地, 上述终端还可以具有以下特点:
所述天线选择模块, 是设置为在所述上行天线选择方式为无天线选择方 式时, 将第一天线确定为所述上行天线; 在所述上行天线选择方式为开环天 线选择方式时,将所述单天线中信道质量最好的单天线确定为所述上行天线; 在所述上行天线选择方式为闭环天线选择方式时, 将下行控制信息格式 0使 用的循环冗余校验码的掩码所指示的单天线确定为所述上行天线。
优选地, 上述终端还可以具有以下特点:
所述终端中用于接收下行信号的单天线的总数为 2、 4或 8个。
为解决上述技术问题, 本发明还提供了一种上行信号功率控制方法, 包 括: 终端检测各个用于接收下行信号的单天线上的参考信号接收功率, 从所 述单天线中确定出用于发送上行数据的上行天线, 将通过所述上行天线检测 到的参考信号接收功率作为下行参考信号接收功率, 根据所述下行参考信号 接收功率进行上行信号功率控制。
优选地, 上述方法还可以具有以下特点:
所述终端根据上行天线选择方式从所述单天线中确定出用于发送上行数 据的上行天线; 所述上行天线选择方式为无天线选择方式时, 所述终端将第 一天线确定为所述上行天线;所述上行天线选择方式为开环天线选择方式时, 所述终端将所述单天线中信道质量最好的单天线确定为所述上行天线; 所述 上行天线选择方式为闭环天线选择方式时, 所述终端将下行控制信息格式 0 使用的循环冗余校验码的掩码所指示的单天线确定为所述上行天线。
本发明根据上行天线来选择 RSRP的测量通道, 将通过所述上行天线检 测到的参考信号接收功率作为下行参考信号接收功率, 可以较准确的估计实 际上行信道的信道状况,有利于更好的进行上行功率控制,以及 PHR的上报, 提供给基站更为准确的终端信息, 便于基站更好的调度, 提高系统性能。 特 别是当两通道的 RSRP测量值差别较大时, 越能体现本发明的优势。
附图概述
图 1是下行通信中使用 MIMO技术中 2x2方式的示意图;
图 2是本发明实施例中确定下行参考信号接收功率的终端的结构图; 图 3是本发明实施例中确定下行参考信号接收功率的方法流程图。
本发明的较佳实施方式
本发明的下述实施例适用于 LTE系统中在下行传输中使用 MIMO的情 况, 一般情况 MIMO的方式为 2X2的天线设置方式, 本发明的下述实施例也 适用于 MIMO的其它具有多个用于接收下行信号的单天线的天线设置方式。
如图 2所示, 确定下行参考信号接收功率的终端包括: 单天线参考信号 接收功率检测模块 201、 天线选择模块 202和下行参考信号接收功率确定模 块 203。
所述单天线参考信号接收功率检测模块 201 , 设置为检测各个用于接收 下行信号的单天线上的参考信号接收功率;
所述天线选择模块 202, 设置为从所述单天线中确定出用于发送上行数 据的上行天线;
所述下行参考信号接收功率确定模块 203 , 设置为从所述天线选择模块 获知所述上行天线, 并将从所述单天线参考信号接收功率检测模块获知的通 过所述上行天线检测到的参考信号接收功率作为下行参考信号接收功率。 所述终端中用于接收下行信号的单天线的总数为 2、 4或 8个, 此总数还 可以是大于 8的其它数值。
具体的, 所述天线选择模块 202设置为根据上行天线选择方式从所述单 天线中确定出用于发送上行数据的上行天线; 还设置为在所述上行天线选择 方式为无天线选择方式时, 将第一天线确定为所述上行天线; 在所述上行天 线选择方式为开环天线选择方式时, 将所述单天线中信道质量最好的单天线 确定为所述上行天线; 在所述上行天线选择方式为闭环天线选择方式时, 将 筒称 CRC ) 的掩码所指示的单天线确定为所述上行天线。
如图 3所示, 确定下行参考信号接收功率的方法, 包括:
步骤 301、 终端检测各个用于接收下行信号的单天线上的参考信号接收 功率;
步骤 302、 从所述单天线中确定出用于发送上行数据的上行天线; 步骤 303、 将通过所述上行天线检测到的参考信号接收功率作为下行参 考信号接收功率。
终端确定出下行参考信号接收功率后, 使用此下行参考信号接收功率计 算路径损耗, 或者计算其它用于上行功率控制或功率余裕报告的参数值。 通 过上述方法确定的下行参考信号接收功率能够更接近于上行信道的状况, 是 较优的下行参考信号接收功率。
所述终端中用于接收下行信号的单天线的总数为 2、 4或 8个, 此总数还 可以是大于 8的其它数值。
具体的, 终端根据上行天线选择方式从所述单天线中确定出用于发送上 行数据的上行天线。
上行天线选择方式包括无天线选择方式、 开环天线选择方式、 闭环天线 选择方式三种方式。 上行天线选择方式是无线网络控制器通过专用配置信息 配置给终端的,无线网络控制器在专用配置信息中指示上行天线选择方式(例 如设置为 release时表示指示无天线选择方式) 。 终端可根据已有技术确定出 上行天线选择方式。
上行天线选择方式为无天线选择方式时, 终端将第一天线(即天线 0 ) 确定为所述上行天线, 将通过第一天线检测到的参考信号接收功率作为所述 下行参考信号接收功率。
上行天线选择方式为开环天线选择方式时, 终端将所述单天线中信道质 量最好的单天线确定为所述上行天线, 将通过此上行天线检测到的参考信号 接收功率作为所述下行参考信号接收功率。
上行天线选择方式为闭环天线选择方式时, 终端将下行控制信息格式 0 使用的循环冗余校验码的掩码所指示的单天线确定为所述上行天线, 将通过 此天线检测到的参考信号接收功率作为所述下行参考信号接收功率。
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>, 第二天线 (称为天线 1 )对应的循环冗余 校验码的掩码为 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>, 终端可以通过区分 识别掩码确定其对应的天线。
本发明的实施例典型适用于如图 1所示的下行 ΜΙΜΟ(2χ2)方式, 其中基 站使用 2天线发射, 终端使用 2天线接收。 本发明的实施例也适用于 MIMO 的其它具有多个用于接收下行信号的单天线的天线设置方式。
还可以通过本发明的方案完成上行信号功率控制, 此上行信号功率控制 方法包括:终端检测各个用于接收下行信号的单天线上的参考信号接收功率, 从所述单天线中确定出用于发送上行数据的上行天线, 将通过所述上行天线 检测到的参考信号接收功率作为下行参考信号接收功率, 根据所述下行参考 信号接收功率进行上行信号功率控制。
具体确定上行天线的方式与上述确定下行参考信号接收功率的方法中相 同, 此处不再赘述。 如图 1所示的下行 MIMO(2x2)方式, 终端通过两个接收天线分别测得单 天线上的 RSRP记为 RSRP0和 RSRP1。如果终端使用两天线的平均值计算下 行 RSRP,则下行 RSRP的值为 RSRP0和 RSRP1的平均值即( RSRP0+ RSRP1 ) 使用上述方法估算出的下行 RSRP与较为理想的 RSRP值相差了 (RSRP0- -RSRP1 ) 12, 从而导致通过此下行 RSRP计算路径损耗 PL时, 计算出的路径 损耗 PL 比理想值小 ( RSRP0-RSRP1 ) 12, 相应的计算出的上行发送功率和 PHR的值也有误差。 并且 RSRP0和 RSRP1差别越大, 上述误差越大。 上述 误差会引起基站调度的不合理以及 TPC功率调整的波动, 可能会影响到流量 等。 如果使用选择最大 RSRP或最小的 RSRP时, 可能会引起更大的误差。
而使用本发明的实施例的方法, 使用上行天线上测得的 RSRP值进行上 行功率控制, 可以更接近实际上行使用信道的状况, 误差会相对较小。 有利 于准确的进行上行功率控制向基站提供相对准确的 PHR信息,为基站进行高 效的调度提供保证。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 本发明提供了一种确定下行参考信号接收功率的方法和终端, 使确定的 下行参考信号接收功率与上行信道状况的符合程度提高, 降低误差。 本发明 根据上行天线来选择 RSRP的测量通道, 将通过所述上行天线检测到的参考 信号接收功率作为下行参考信号接收功率, 可以较准确的估计实际上行信道 的信道状况, 有利于更好的进行上行功率控制, 以及 PHR的上报, 提供给基 站更为准确的终端信息, 便于基站更好的调度, 提高系统性能。 特别是当两 通道的 RSRP测量值差别较大时, 越能体现本发明的优势。

Claims

权 利 要 求 书
1、 一种确定下行参考信号接收功率的方法, 包括:
终端检测各个用于接收下行信号的单天线上的参考信号接收功率, 从所 述单天线中确定出用于发送上行数据的上行天线, 将通过所述上行天线检测 到的参考信号接收功率作为下行参考信号接收功率。
2、 如权利要求 1 所述的方法, 其中, 所述终端从所述单天线中确定出 用于发送上行数据的上行天线的步骤包括:
所述终端根据上行天线选择方式从所述单天线中确定出用于发送上行数 据的上行天线。
3、 如权利要求 2所述的方法, 其中, 所述终端根据上行天线选择方式 从所述单天线中确定出用于发送上行数据的上行天线的步骤包括:
所述上行天线选择方式为无天线选择方式时, 所述终端将第一天线确定 为所述上行天线;
所述上行天线选择方式为开环天线选择方式时, 所述终端将所述单天线 中信道质量最好的单天线确定为所述上行天线;
所述上行天线选择方式为闭环天线选择方式时, 所述终端将下行控制信 息格式 0 使用的循环冗余校验码的掩码所指示的单天线确定为所述上行天 线。
4、 如权利要求 1所述的方法, 其中,
所述用于接收下行信号的单天线的总数为 2、 4或 8个。
5、 一种确定下行参考信号接收功率的终端,
包括单天线参考信号接收功率检测模块、 天线选择模块和下行参考信号 接收功率确定模块; 其中,
所述单天线参考信号接收功率检测模块设置为: 检测各个用于接收下行 信号的单天线上的参考信号接收功率;
所述天线选择模块设置为: 从所述单天线中确定出用于发送上行数据的 上行天线; 所述下行参考信号接收功率确定模块设置为: 从所述天线选择模块获知 所述上行天线, 并将从所述单天线参考信号接收功率检测模块获知的通过所 述上行天线检测到的参考信号接收功率作为下行参考信号接收功率。
6、 如权利要求 5所述的终端, 其中,
所述天线选择模块是设置为: 根据上行天线选择方式从所述单天线中确 定出用于发送上行数据的上行天线。
7、 如权利要求 6所述的终端, 其中,
所述天线选择模块是设置为: 在所述上行天线选择方式为无天线选择方 式时, 将第一天线确定为所述上行天线; 在所述上行天线选择方式为开环天 线选择方式时,将所述单天线中信道质量最好的单天线确定为所述上行天线; 在所述上行天线选择方式为闭环天线选择方式时, 将下行控制信息格式 0使 用的循环冗余校验码的掩码所指示的单天线确定为所述上行天线。
8、 如权利要求 5所述的终端, 其中,
所述终端中用于接收下行信号的单天线的总数为 2、 4或 8个。
9、 一种上行信号功率控制方法, 包括:
终端检测各个用于接收下行信号的单天线上的参考信号接收功率, 从所 述单天线中确定出用于发送上行数据的上行天线, 将通过所述上行天线检测 到的参考信号接收功率作为下行参考信号接收功率, 根据所述下行参考信号 接收功率进行上行信号功率控制。
10、 如权利要求 9所述的方法, 其中,
所述终端从所述单天线中确定出用于发送上行数据的上行天线的步骤包 括:
所述终端根据上行天线选择方式从所述单天线中确定出用于发送上行数 据的上行天线;
所述上行天线选择方式为无天线选择方式时, 所述终端将第一天线确定 为所述上行天线;
所述上行天线选择方式为开环天线选择方式时, 所述终端将所述单天线 中信道质量最好的单天线确定为所述上行天线;
所述上行天线选择方式为闭环天线选择方式时, 所述终端将下行控制信 息格式 0 使用的循环冗余校验码的掩码所指示的单天线确定为所述上行天 线。
PCT/CN2011/076035 2011-03-25 2011-06-21 一种确定下行参考信号接收功率的方法和终端 WO2012129852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110073558.9A CN102694626B (zh) 2011-03-25 2011-03-25 一种确定下行参考信号接收功率的方法和终端
CN201110073558.9 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012129852A1 true WO2012129852A1 (zh) 2012-10-04

Family

ID=46859921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076035 WO2012129852A1 (zh) 2011-03-25 2011-06-21 一种确定下行参考信号接收功率的方法和终端

Country Status (2)

Country Link
CN (1) CN102694626B (zh)
WO (1) WO2012129852A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426106B2 (ja) 2012-12-17 2018-11-21 エルジー エレクトロニクス インコーポレイティド 下りリンク信号受信方法及びユーザ機器、並びに下りリンク信号送信方法及び基地局
CN104427601B (zh) * 2013-08-29 2018-02-23 中国移动通信集团公司 一种调整双通道室分系统中的通道功率方法和装置
CN106817156A (zh) * 2015-11-27 2017-06-09 中兴通讯股份有限公司 天线选择信息的指示方法及装置
CN110557178A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种天线配置的指示方法、基站、终端及计算机存储介质
CN110830202B (zh) * 2018-08-10 2022-02-25 华为技术有限公司 通信方法、装置和通信系统
CN114095104B (zh) * 2021-10-14 2022-10-14 荣耀终端有限公司 一种通信方法、电子设备、芯片系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926785A (zh) * 2004-02-26 2007-03-07 松下电器产业株式会社 移动站装置以及移动站装置中的发送天线选择方法
CN1926782A (zh) * 2004-04-09 2007-03-07 Ut斯达康通讯有限公司 分布式天线系统中下行链路功率控制方法和装置
CN1929331A (zh) * 2005-09-09 2007-03-14 富士通株式会社 无线通信系统、发送器以及接收器
CN101262265A (zh) * 2007-03-09 2008-09-10 中兴通讯股份有限公司 一种时分双工无线通信系统的延时分集发射与接收的方法
US20100167672A1 (en) * 2008-12-31 2010-07-01 Lg Electronics Inc. Mobile terminal having multiple antennas and antenna information display method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571173B (zh) * 2010-12-30 2014-08-13 联芯科技有限公司 开环模式下终端选择传输天线的方法、装置和移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926785A (zh) * 2004-02-26 2007-03-07 松下电器产业株式会社 移动站装置以及移动站装置中的发送天线选择方法
CN1926782A (zh) * 2004-04-09 2007-03-07 Ut斯达康通讯有限公司 分布式天线系统中下行链路功率控制方法和装置
CN1929331A (zh) * 2005-09-09 2007-03-14 富士通株式会社 无线通信系统、发送器以及接收器
CN101262265A (zh) * 2007-03-09 2008-09-10 中兴通讯股份有限公司 一种时分双工无线通信系统的延时分集发射与接收的方法
US20100167672A1 (en) * 2008-12-31 2010-07-01 Lg Electronics Inc. Mobile terminal having multiple antennas and antenna information display method thereof

Also Published As

Publication number Publication date
CN102694626B (zh) 2014-12-10
CN102694626A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
EP3068058B1 (en) Beam training method and device in communication system
US10651904B2 (en) Method and apparatus for receiving a scaled precoded data signal
Bejarano et al. Resilient multi-user beamforming WLANs: Mobility, interference, and imperfect CSI
JP5686820B2 (ja) 基地局でアンテナを選択する方法およびデバイス
US9407341B2 (en) Methods and devices for uplink diversity transmission
WO2012129852A1 (zh) 一种确定下行参考信号接收功率的方法和终端
JP4663734B2 (ja) ワイヤレス・ローカル・エリア・ネットワーク中の同数でない送信機および受信機のチェーンを具備する装置のためにインプリシット・フィードバックが可能なシステムおよび方法
WO2015090034A1 (zh) 一种上下行波束混合指示的方法、基站、终端和系统
US20080267056A1 (en) Method and apparatus for performing multi-antenna transmission
KR20130084705A (ko) 멀티플렌 역방향 링크 데이터 스트림들을 지원하기 위한 시스템 및 방법
WO2011003291A1 (zh) 一种移动终端的天线选择方法及系统
CN103312395A (zh) 一种无线通信系统中天线选择方法和无线通信设备
CN112042147A (zh) 具有多个假设的信道状态信息(csi)反馈
WO2011160372A1 (zh) 一种基于tdd多点协作传输的天线校正方法及系统
US20170005708A1 (en) Sta assisted dynamic sounding in multiuser beamforming
WO2011120455A2 (zh) 多天线基站的通道校正方法和基站
US20120275495A1 (en) Controlling Uplink Multi-Antenna Transmissions in a Telecommunication System
US20190260433A1 (en) Multi-input multi-output pilot signals
WO2024002003A1 (zh) 信道反馈模型确定方法、终端及网络侧设备
CN116648889A (zh) 使用相干传输的无线通信
EP4331123A1 (en) Determination of uplink mimo transmission state for a ue
WO2013174311A1 (zh) 上行闭环发送分集配置信息的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862551

Country of ref document: EP

Kind code of ref document: A1