WO2015090034A1 - 一种上下行波束混合指示的方法、基站、终端和系统 - Google Patents

一种上下行波束混合指示的方法、基站、终端和系统 Download PDF

Info

Publication number
WO2015090034A1
WO2015090034A1 PCT/CN2014/081412 CN2014081412W WO2015090034A1 WO 2015090034 A1 WO2015090034 A1 WO 2015090034A1 CN 2014081412 W CN2014081412 W CN 2014081412W WO 2015090034 A1 WO2015090034 A1 WO 2015090034A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
access signal
beam index
uplink access
terminal
Prior art date
Application number
PCT/CN2014/081412
Other languages
English (en)
French (fr)
Inventor
郭森宝
郁光辉
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/105,477 priority Critical patent/US20170026102A1/en
Publication of WO2015090034A1 publication Critical patent/WO2015090034A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present invention relates to a Long Term Evolution Advanced System (LTE-Advanced) in the field of mobile communications, and in particular, to a method, a base station, a terminal, and a system for uplink and downlink beam mixing indication.
  • LTE-Advanced Long Term Evolution Advanced System
  • the average ratio information of the high-frequency path loss value ⁇ and the LTE path loss value can be calculated as: In order to guarantee coverage in high-frequency communication, that is, the receiving side satisfies the minimum signal to interference plus noise ratio (SINR) requirement, it is necessary to increase the transmission and receiver gain:
  • SINR signal to interference plus noise ratio
  • the R is the radius of the cell coverage, which is the wavelength of the corresponding carrier, and is the transmit antenna gain, which is the receive antenna gain.
  • the highest demand for LTE communication is required to reach an area covering 100km. If only the average path loss (empty area) is considered according to the highest coverage, the high-frequency communication can be considered to cover an area up to 1km. If considering the high air absorption of the actual high frequency carrier (oxygen absorption, rain fading, fog The fading and sensitivity to shadow fading can actually support coverage less than lkm. If the high-frequency communication supports the maximum lkm coverage, the same coverage area can obtain different SINR ratios than the LTE system. The former has a signal-to-noise ratio of at least 20 dB lower than the latter, in order to ensure that the high-frequency communication and the LTE system have the same coverage. With an approximate SINR, it is necessary to ensure the antenna gain of high frequency communication. At this time, since the high-frequency communication has a shorter wavelength, it is possible to ensure that more antenna elements are accommodated per unit area, and more antenna elements can provide higher antenna gain, thereby ensuring coverage of high-frequency communication.
  • the above more antenna elements mean that we can use beamforming to ensure high frequency communication coverage.
  • LTE in order to obtain a good beamforming effect, it is necessary to accurately obtain the state information of the channel, thereby obtaining the weight of the beamforming from the state information of the channel.
  • the base station is the transmitting end, the terminal acting as the receiving end needs to feed back the downlink channel state information or weight; for the receiving end, the base station needs to feed back the uplink channel state information or The weight is used to ensure that the base station can transmit the downlink service by using the optimal beam, and the terminal can also use the optimal beam to send the uplink service.
  • the base station Before the base station obtains the weight, the base station cannot cover the terminal with the optimal beam, so that the terminal cannot measure the reference signal sent by the base station for measurement; or the terminal cannot reach the base station even if the base station covers the terminal. The same coverage, the content of the feedback base station is not known, and thus the selection of beam weights and normal communication cannot be performed. Summary of the invention
  • the embodiments of the present invention provide a method, a base station, a terminal, and a system for uplink and downlink beam mixing indication.
  • An embodiment of the present invention provides a method for uplink and downlink beam mixing indication, where the method includes: the base station notifying the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam by using a preset manner and/or a system message configuration manner. Corresponding relationship of the index, the characteristic of the uplink access signal is used to indicate an uplink beam index and/or a downlink beam index for sending the uplink access signal; After receiving the uplink access signal, the base station obtains the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal.
  • the embodiment of the present invention further provides a method for uplink and downlink beam mixing indication, the method includes: the terminal obtaining the characteristics of the uplink access signal and the uplink beam index and/or by using a preset manner and/or receiving a system message configuration manner. After the mapping of the downlink beam index, the uplink access signal is sent, and the characteristics of the uplink access signal are used to indicate that the terminal sends the uplink beam corresponding uplink beam index of the uplink access signal and/or the downlink beam index that needs to be fed back.
  • the embodiment of the present invention further provides a method for uplink and downlink beam mixing indication, the method includes: the base station notifying the characteristics of the uplink access signal of the terminal and the uplink beam index and/or by using a preset manner and/or a system message configuration manner. Corresponding relationship of the downlink beam index, the characteristic of the uplink access signal is used to indicate that the terminal sends an uplink beam index and/or a downlink beam index of the uplink access signal;
  • the base station After receiving the uplink access signal sent by the terminal, the base station obtains the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal.
  • the embodiment of the present invention further provides a base station, where the base station includes: a configuration sending module and a receiving and identifying module;
  • the configuration sending module is configured to notify, by using a preset manner and/or a system message configuration manner, a correspondence between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index; characteristics of the uplink access signal An uplink beam index and/or a downlink beam index for indicating the uplink access signal is sent;
  • the receiving and identifying module is configured to obtain the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal after receiving the uplink access signal.
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a receiving module and a sending module;
  • the receiving module is configured to perform a preset manner and/or receive a system message configuration manner Obtaining a correspondence between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index; the sending module is configured to send an uplink access signal, where the feature of the uplink access signal is used to instruct the terminal to send the uplink
  • the uplink beam of the access signal corresponds to an uplink beam index and/or a downlink beam index that needs to be fed back.
  • the embodiment of the invention further provides a system for uplink and downlink beam mixing indication, the system comprising: the base station and the terminal described above.
  • the embodiment of the present invention also provides a computer storage medium, wherein a computer program is stored, the computer program is used to execute the method of uplink/downlink beam mixing indication on the base station side or the method of uplink and downlink beam mixing indication on the terminal side.
  • the base station notifies the characteristics of the uplink access signal and the uplink beam index and/or downlink of the terminal by using a preset manner and/or a system message configuration manner.
  • the characteristic of the uplink access signal is used to indicate that the terminal sends the uplink beam index and/or the downlink beam index of the uplink access signal; after receiving the uplink access signal sent by the terminal, the base station receives the uplink access signal
  • the uplink beam index and/or the downlink beam index are obtained by identifying characteristics of the uplink access signal.
  • the base station can obtain the optimal downlink beam fed back by the terminal, thereby ensuring reliable transmission of subsequent downlink control information.
  • the base station can detect the uplink access signal with the best uplink access signal quality of the terminal, and then notify the corresponding index to the terminal. After obtaining the uplink beam index, the terminal obtains the most terminal to the base station. Excellent uplink beam.
  • FIG. 1 is a flowchart of a method for implementing an uplink and downlink beam mixing indication according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for implementing an uplink and downlink beam mixing indication according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of using an indication of an uplink and downlink beam index by using a frequency domain location according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of utilizing a time domain and a frequency domain location according to an embodiment of the present invention. Joint indication of uplink and downlink beam Schematic diagram
  • FIG. 6 is a schematic diagram of indicating uplink and downlink beam indexes by using a time domain and frequency domain location joint sequence set according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of indicating an uplink and downlink beam index by using indicator bit information or a beam identification sequence of an uplink access signal according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a system according to an embodiment of the present invention. detailed description
  • the best way to solve the existing problems is to add a discovery process, through which the base station and the terminal can discover each other, thereby using the optimal weights for communication.
  • the discovery process is actually a training process.
  • the sender sends a sequence of multiple beams (discovery signal) in advance, so that the receiver can detect the sequence and obtain the beam sequence number and feedback.
  • the beam index selected by the terminal is an index corresponding to the optimal beam of the base station to the terminal, and the terminal can ensure the reliability and the optimal transmission performance of the data transmitted from the base station to the terminal by feeding back the index.
  • the base station may use the beam index to select the best beam to transmit downlink data to the terminal.
  • the terminal When the terminal needs to send uplink data to the base station, it is also necessary to ensure substantially the same coverage, so that the terminal also needs to use the beam to send uplink data, which ensures uplink coverage and reliability transmission on the one hand, and reduces the average of the terminal on the other hand.
  • the transmission power can save energy for the terminal.
  • the uplink beam training process is also required.
  • the terminal uses different uplink access signal characteristics to identify different uplink beams.
  • the base station can notify the terminal of the optimal uplink beam index by feedback.
  • the terminal can utilize the optimal The uplink beam sends uplink data to the base station.
  • the concept of the beam refers to:
  • the beam can reduce the leakage of the signal power of the base station in the useless direction, ensure the concentrated characteristics of the signal power, improve the coverage of the base station and the terminal, and the uplink beam can reduce the work of the terminal. Consumption.
  • the base station notifies the terminal of the corresponding relationship between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index by using a preset manner and/or a system message configuration manner, where the feature is used to instruct the terminal to send An uplink beam index and/or a downlink beam index of the uplink access signal.
  • the base station After receiving the uplink access signal sent by the terminal, the base station obtains the uplink beam index and/or the downlink beam by identifying characteristics of the uplink access signal. index.
  • the uplink beam index refers to: an index corresponding to an uplink beam used by the terminal when the terminal sends an uplink access signal; and the downlink beam index refers to: an optimal downlink beam that is selected by the terminal according to a specific rule by receiving the downlink signal. Corresponding beam index.
  • rules defining rules for specific rules For example: You can use the definition method with the best signal quality, or the definition method for optimal signal power.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the downlink beam index is used to enable the base station to find a corresponding beam, and the actual feedback may be related information of the index, for example, a time domain location index, a frequency domain location index, a downlink signal sequence index, or the like, and the like.
  • the value of the price is any index that can be associated with or equivalent to the downstream beam index described in the present invention is within the scope of the present invention.
  • An embodiment of the present invention provides a method for uplink and downlink beam mixing indication. As shown in FIG. 1 , the method includes:
  • Step 101 The base station notifies the corresponding relationship between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index by using a preset manner and/or a system message configuration manner, where the characteristics of the uplink access signal are used to indicate sending An uplink beam index and/or a downlink beam index of the uplink access signal;
  • Step 102 After receiving the uplink access signal, the base station obtains the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal.
  • the characteristics of the uplink access signal include at least one of the following: a time domain location of the uplink access signal, a frequency domain location of the uplink access signal, a sequence set used by the uplink access signal, and an uplink access signal.
  • the index indicates the bit information and the beam identification sequence carried after the uplink access signal.
  • the method for the base station to identify the uplink beam index and/or the downlink beam index includes at least one of the following:
  • the index indication bit information carried by the received uplink access signal is used for identification; and the beam identification sequence carried by the received uplink access signal is used for identification.
  • the method further includes:
  • the base station When the base station performs system message configuration, the corresponding relationship between the time domain location and the uplink beam I and/or the downlink beam index is added to the system message.
  • the method further includes:
  • the base station When the base station performs system message configuration, the corresponding relationship between the frequency domain location and the uplink beam I and/or the downlink beam index is added to the system message.
  • the method further includes:
  • the embodiment of the invention further provides another method for uplink and downlink beam mixing indication, the method comprising:
  • the terminal After obtaining the correspondence between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index in a preset manner and/or receiving the system message configuration manner, the terminal sends an uplink access signal, where the uplink access signal is The feature is used to indicate that the uplink beam corresponding to the uplink access signal sent by the terminal corresponds to the uplink beam index and/or the downlink beam index that needs to be fed back.
  • the uplink beam index refers to: an index corresponding to an uplink beam used by the terminal when the terminal sends an uplink access signal;
  • the downlink beam index refers to: a beam index corresponding to an optimal downlink beam that is selected by the terminal according to a specific rule by receiving a downlink signal.
  • the characteristics of the uplink access signal include at least one of the following: a time domain location of the uplink access signal, a frequency domain location of the uplink access signal, a sequence set used by the uplink access signal, and an uplink access signal.
  • the index indicates the bit information and the beam identification sequence carried after the uplink access signal.
  • the method for the terminal to indicate the uplink beam index and/or the downlink beam index includes at least one of the following:
  • the bearer beam identification sequence is used to indicate an uplink beam index and/or a downlink beam index.
  • the method further includes: The terminal adopts a preset manner to obtain a beam indication manner.
  • the method further includes:
  • the terminal obtains a beam indication manner by receiving a configuration of a system message.
  • the method further includes:
  • the terminal After receiving the system message, the terminal obtains a correspondence between the time domain location and an uplink beam index and/or a downlink beam index in the system message.
  • the method further includes:
  • the terminal After receiving the system message, the terminal obtains a correspondence between the frequency domain location and an uplink beam index and/or a downlink beam index in the system message.
  • the method further includes:
  • the terminal After receiving the system message, the terminal obtains a correspondence between the uplink access signal sequence set and the uplink beam index and/or the downlink beam index in the system message.
  • the embodiment of the present invention further provides another method for uplink and downlink beam mixing indication. As shown in FIG. 2, the method includes:
  • Step 201 The base station notifies the mapping between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index by using a preset manner and/or a system message configuration manner, where the characteristics of the uplink access signal are used to indicate Transmitting, by the terminal, an uplink beam index and/or a downlink beam index of the uplink access signal;
  • Step 202 After receiving the uplink access signal sent by the terminal, the base station obtains the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal.
  • the characteristics of the uplink access signal include at least one of the following: a time domain location of the uplink access signal, a frequency domain location of the uplink access signal, and a sequence set used by the uplink access signal,
  • the index carried by the uplink access signal indicates bit information and a beam identification sequence carried after the uplink access signal.
  • the method further includes:
  • the base station sets a beam identification manner consistent with the terminal by using a preset manner or a system message configuration manner.
  • the method further includes:
  • the base station notifies the terminal of the beam indication mode to be adopted by using a preset manner or a system message configuration manner.
  • the base station notifies the beam indication mode by means of system message configuration, including: the system message sent by the base station by using the S type beam carries configuration information of the N types of beam indication modes, where S>0, N>0.
  • the method further includes:
  • the base station and the terminal set a correspondence between the time domain location and an uplink beam index and/or a downlink beam index in a preset manner.
  • the method further includes:
  • the base station and the terminal set a correspondence between the frequency domain location and an uplink beam index and/or a downlink beam index in a preset manner.
  • the method further includes:
  • the base station and the terminal set a correspondence between the uplink access signal sequence set and the uplink beam index and/or the downlink beam index in a preset manner.
  • the method further includes:
  • the terminal When the base station and the terminal do not preset the characteristics of the uplink access signal and the corresponding correspondence of the uplink beam
  • the terminal When the base station does not notify the terminal of the corresponding relationship between the characteristics of the uplink access signal and the uplink beam by means of the system message configuration, the terminal carries the uplink beam index in the characteristics of the uplink access signal corresponding to the downlink beam index.
  • the terminal needs to know the correspondence between the characteristics of the uplink access signal carrying the uplink beam index and the uplink beam, and the relationship between the base stations does not need to be known.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indexes and the M uplink beam indices constitute N*M joint beam indexes.
  • the base station and the terminal preset N*M time domain locations respectively corresponding to N*M joint beam indexes.
  • the base station notifies the terminal of the correspondence between the N*M time domain positions and the N*M joint beam indexes by using the system message.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the uplink access signal of the terminal in one or more time domain locations. If the terminal obtains the correspondence between the N*M time domain locations and the N*M joint beam indexes respectively by using the system message, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by transmitting the uplink access signal in the corresponding time domain position. The base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and an uplink beam index by using the time domain position of the uplink access signal. For example, Figure 3 shows.
  • the time domain location may include a plurality of time unit sets.
  • the time domain location includes the occupied time unit index and/or duration level.
  • the duration level can be represented by the number of time units included.
  • the duration level may also be a time domain repetition level of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information. Basically cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 64 time domain locations respectively corresponding to 64 joint beam indexes, or the base station notifies the terminal 64 time domain locations to correspond to 64 joint beam indexes through system messages, as shown in Table 1.
  • the time domain location includes an occupied time unit index and/or a duration level.
  • the duration level can be expressed in the number of time units included.
  • the duration level may also be a time domain repetition level of the uplink access signal.
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the time domain location 8 ⁇ 15 to send the uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations. After the base station detects that the uplink access signal quality is optimal at the time domain location 14, the base station obtains the base station for the terminal.
  • the downlink beam index 1 and the optimal uplink beam correspond to the uplink beam index 6, and the optimal beam for transmitting downlink data by the base station to the terminal is obtained according to the downlink beam index, and the terminal sends the uplink data to the base station according to the uplink beam index.
  • Optimal beam is Optimal beam.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 64 durations of the uplink access signals to correspond to 64 joint beam indexes respectively, or the base station informs the terminal that the duration levels of the 64 uplink access signals respectively correspond to 64 joint beam indexes, such as Table 2 shows.
  • the duration level can be expressed in terms of the number of time units included.
  • the duration level may also be a time domain repetition level of the uplink access signal.
  • Downlink beam index & uplink beam index 1 Time domain location for transmitting uplink access signals
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the duration level 8 ⁇ 15 to send the uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations, and when the base station detects the signal quality optimal uplink access signal adopts a duration level 14, the base station obtains the downlink beam index 1 of the base station and the optimal
  • the uplink beam corresponds to the uplink beam index 6, and the optimal beam for transmitting downlink data to the terminal by the base station is obtained according to the downlink beam index, and the optimal beam for transmitting the uplink data by the terminal to the base station is obtained according to the uplink beam index.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the base station and the terminal preset N time-domain locations respectively corresponding to N downlink beam indexes, and the base station and the terminal preset M time-domain locations respectively corresponding to the M downlink beam index.
  • the base station informs the terminal that the N time domain locations respectively correspond to the N downlink beam indexes, and the base station and the terminal preset the M time domain locations respectively corresponding to the M downlink beam index.
  • the time domain location corresponding to the downlink beam index is called the downlink beam time domain location
  • the time domain location corresponding to the uplink beam index is called the uplink beam time domain location.
  • the downlink beam time domain location is a set of multiple time units or duration levels
  • the uplink beam time domain location is a subset of the downlink beam time domain locations.
  • the uplink beam time domain location is a set of multiple time units or duration levels
  • the downlink beam time domain location is a subset of the downlink beam time domain locations.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the uplink access signal of the terminal in one or more time domain locations. If the terminal obtains the correspondence by using a system message, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by sending an uplink access signal in the corresponding time domain position. The base station detects the signal sent by the terminal A quality-optimized uplink access signal, and obtaining a corresponding downlink beam index and an uplink beam index by using a time domain position of the uplink access signal. For example, as shown in FIG.
  • time domain location may include a plurality of time unit sets.
  • the time domain location includes the occupied time unit index and/or duration level.
  • the duration level can be expressed in the number of time units included.
  • the duration level may also be a time domain repetition level of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 8 time domain locations corresponding to 8 downlink beam indexes respectively, and the base station and the terminal preset 8 time domain locations respectively corresponding to 8 downlink beam indexes.
  • the base station notifies the terminal that the eight time domain locations respectively correspond to eight downlink beam indexes, and the base station and the terminal preset eight time domain locations respectively corresponding to eight downlink beam indexes.
  • the time domain location corresponding to the downlink beam index is called the downlink beam time domain location
  • the time domain location corresponding to the uplink beam index is called the uplink beam time domain location. as shown in Table 3.
  • Downlink beam index & uplink beam index 1 Time domain location for transmitting uplink access signals
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the time domain location 8 ⁇ 15 to transmit the uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations. After the base station detects that the uplink access signal quality is optimal at the time domain location 14, the base station obtains the downlink beam index of the base station for the terminal. And the optimal uplink beam corresponding to the uplink beam index 6, and the optimal beam for transmitting the downlink data by the base station to the terminal is obtained according to the downlink beam index, and the optimal beam for transmitting the uplink data by the terminal to the base station is obtained according to the uplink beam index.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indexes and the M uplink beam indices constitute N*M joint beam indexes.
  • the base station and the terminal preset N*M frequency domain locations respectively corresponding to N*M joint beam indexes.
  • the base station informs the terminal of the correspondence between the N*M frequency domain locations and the N*M joint beam indexes by using a system message.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the uplink access signal of the terminal in one or more frequency domain locations. If the terminal obtains the correspondence between the N*M frequency domain locations and the N*M joint beam indexes respectively by using the system message, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by transmitting the uplink access signal in the corresponding frequency domain location. The base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and an uplink beam index by using a frequency domain position of the uplink access signal. For example, Figure 4 shows. Where the frequency domain location includes a transmission The initial frequency domain location of the row access signal and/or the frequency domain bandwidth occupied by the uplink access signal. Sub-example 1
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 64 frequency domain positions corresponding to 64 joint beam indexes respectively, or the base station informs the terminal through 64 system frequency information that the 64 frequency domain positions respectively correspond to 64 joint beam indexes, as shown in Table 4.
  • the frequency domain location includes a starting frequency domain location for transmitting an uplink access signal and/or a frequency domain bandwidth occupied by an uplink access signal.
  • the terminal obtains the optimal downlink beam index by 1 by detecting the downlink signal, and the terminal selects the frequency domain location 8 ⁇ 15 to send the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain locations. After the base station detects that the uplink access signal quality is optimal at the frequency domain location 14, the base station obtains the downlink beam index of the base station for the terminal. And the optimal uplink beam corresponding to the uplink beam index 6, and the optimal beam for transmitting the downlink data by the base station to the terminal is obtained according to the downlink beam index, and the optimal beam for transmitting the uplink data by the terminal to the base station is obtained according to the uplink beam index.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the base station and the terminal preset N frequency domain locations respectively corresponding to N downlink beam indexes, and the base station and the terminal preset M frequency domain locations respectively corresponding to the M uplink beam index.
  • the base station informs the terminal that the N frequency domain locations respectively correspond to the N downlink beam indexes, and the base station and the terminal preset the M frequency domain locations respectively corresponding to the M uplink beam index.
  • the frequency domain location corresponding to the downlink beam index is called the downlink beam frequency domain location
  • the frequency domain location corresponding to the uplink beam index is called the uplink beam frequency domain location.
  • the downlink beam frequency domain location is a set of multiple initial frequency domain locations and/or bandwidth levels
  • the uplink beam frequency domain location is a subset of the uplink beam frequency domain locations.
  • the downlink beam frequency domain location is a set of multiple initial frequency domain locations or bandwidth levels
  • the uplink beam frequency domain location is a subset of the uplink beam frequency domain locations.
  • the base station can obtain the downlink beam index and/or the uplink beam index of the corresponding terminal by detecting the uplink access signal of the terminal in one or more frequency domain locations. If the terminal obtains the correspondence by using a system message, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and/or the uplink beam index by transmitting the uplink access signal in the corresponding frequency domain position. The base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and/or an uplink beam index by using a frequency domain position of the uplink access signal. For example, as shown in Figure 4.
  • the frequency domain location may include a plurality of initial frequency domain locations and/or bandwidth level sets. Sub-example 1
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 8 frequency domain positions corresponding to 8 downlink beam indexes respectively, and the base station and the terminal preset 8 frequency domain positions respectively corresponding to 8 downlink beam indexes.
  • the base station informs the terminal that the eight frequency domain locations correspond to eight downlink beam indexes, and the base station and the terminal preset eight frequency domain locations respectively corresponding to eight downlink beam indexes.
  • the frequency domain location corresponding to the downlink beam index is called the downlink beam frequency domain location
  • the frequency domain location corresponding to the uplink beam index is called the uplink beam frequency domain.
  • the terminal obtains an optimal downlink beam index of 1 by detecting the downlink signal, and the terminal selects the frequency domain.
  • Position 8 ⁇ 15 sends the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain locations. After the base station detects that the uplink access signal quality is optimal at the frequency domain location 14, the base station obtains the downlink beam index of the base station for the terminal. And the optimal uplink beam corresponding to the uplink beam index 6, and the optimal beam for transmitting the downlink data by the base station to the terminal is obtained according to the downlink beam index, and the optimal beam for transmitting the uplink data by the terminal to the base station is obtained according to the uplink beam index.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indices and the M uplink beam indices constitute N*M joint beam indices.
  • the base station and the terminal preset N*M uplink access signal sequence sets respectively corresponding to N*M joint beam indexes.
  • the base station notifies the terminal of the correspondence between the N*M uplink access signal sequence sets and the N*M joint beam indexes by using a system message.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the uplink access signal sequence. If the terminal obtains the correspondence between the N*M uplink access signal sequence sets and the N*M joint beam indexes respectively through the system message, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by transmitting an uplink access signal in the corresponding frequency domain position. The base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and an uplink beam index by using the frequency domain position of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 64 sets of uplink access signal sequences respectively corresponding to 64 joint beam indexes. Or the base station notifies the terminal of the correspondence between the 64 uplink access signal sequence sets and the 64 joint beam indexes by using a system message, as shown in Table 6.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the sequence in the uplink access signal sequence set 8 ⁇ 15 to send the uplink access signal.
  • the base station detects the uplink access signal by using multiple uplink access signal sequences, and when the base station detects that the quality optimal uplink access signal uses the sequence in the uplink access signal sequence set 14, the base station obtains the base station for the The downlink beam index 1 of the terminal and the uplink beam index 6 corresponding to the optimal uplink beam are obtained, and the optimal beam for transmitting downlink data to the terminal by the base station is obtained according to the downlink beam index, and the terminal is sent to the base station according to the uplink beam index.
  • the optimal beam of data Example 6
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indices and the M uplink beam indices constitute N*M joint beam indices.
  • the base station and the terminal preset the time domain location components of the X uplink access signal sequence sets and the Y uplink access signals.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the sequence of the uplink access signal and the time domain position. If the terminal obtains the correspondence between the X*Y sequence time domain location set and the ⁇ * ⁇ joint beam index through the system message, the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by transmitting the uplink access signal in the corresponding time domain position by using the corresponding uplink access signal sequence.
  • the base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and uplink by using the time domain location of the uplink access signal and the uplink access signal sequence set to which the uplink access signal sequence belongs.
  • the time domain location may include a plurality of time unit sets.
  • the time domain location includes the occupied time unit index and/or duration level.
  • the duration level can be expressed in the number of time units included.
  • the duration level may also be the time domain repetition level of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 8 uplink access signal transmission time domain locations and 8 uplink access signal sequences
  • the set constitutes a set of 64 sequence time domain locations, and the 64 sequence time domain location sets respectively correspond to 64 joint beam indices.
  • the base station notifies the terminal of the correspondence between the 64 sequence time domain location sets and the 64 joint beam indexes by using a system message, as shown in Table 7.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the time domain location in the time domain location set 8 ⁇ 15 of the uplink access signal sequence and the sequence of the uplink access signal to send the uplink access signal.
  • the base station detects the uplink access signal by using multiple uplink access signal sequences in multiple time domain locations, and when the base station detects that the quality optimal uplink access signal uses the uplink access signal sequence, the time domain location in the time domain location set 14 And the uplink access signal sequence, the base station obtains the downlink beam index 1 of the base station and the uplink beam index 6 corresponding to the optimal uplink beam, and then according to the next The row beam index obtains an optimal beam for the base station to send downlink data to the terminal, and obtains an optimal beam for the terminal to send uplink data to the base station according to the uplink beam index.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indices and the M uplink beam indices constitute N*M joint beam indices.
  • the base station and the terminal preset the frequency domain location components of the X uplink access signal sequence sets and the Y uplink access signals.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the sequence of the uplink access signal and the frequency domain position. If the terminal obtains the correspondence between the X*Y sequence frequency domain location set and the ⁇ * ⁇ joint beam index by using the system message, the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by transmitting the uplink access signal in the corresponding frequency domain position by using the corresponding uplink access signal sequence.
  • the base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and uplink by using the frequency domain location of the uplink access signal and the uplink access signal sequence set of the uplink access signal sequence.
  • the frequency domain location may include a plurality of initial frequency domain locations and/or bandwidth level sets.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset 8 uplink access signal transmission frequency domain locations and 8 uplink access signal sequences
  • the set constitutes 64 sequence frequency domain location sets, and the 64 sequence frequency domain location sets respectively correspond to 64 joint beam indexes.
  • the base station notifies the terminal of the correspondence between the 64 sequence frequency domain location sets and the 64 joint beam indexes by using a system message, as shown in Table 8.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the frequency domain location in the frequency domain location set 8 ⁇ 15 of the uplink access signal sequence and the sequence of the uplink access signal to send the uplink access signal.
  • the base station detects the uplink access signal by using multiple uplink access signal sequences in multiple frequency domain locations, and the base station detects that the quality optimal uplink access signal uses the frequency domain location in the frequency domain location set 14 of the uplink access signal sequence. And the uplink access signal sequence, the base station obtains the downlink beam index 1 of the base station and the uplink beam index 6 corresponding to the optimal uplink beam, and then according to the next The row beam index obtains an optimal beam for the base station to send downlink data to the terminal, and obtains an optimal beam for the terminal to send uplink data to the base station according to the uplink beam index.
  • the base station uses the N downlink beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indices and the M uplink beam indices constitute N*M joint beam indices.
  • the base station and the terminal preset the time domain location of the X uplink access signals and the frequency domain location of the Y uplink access signals.
  • the base station can obtain the downlink beam index and the uplink beam index of the corresponding terminal by detecting the time domain location and the frequency domain location of the uplink access signal. If the terminal obtains the correspondence between the X*Y time domain and the frequency domain joint position and the ⁇ * ⁇ joint beam index through the system message, the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by sending an uplink access signal in the corresponding frequency domain location and the time domain location.
  • the base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a corresponding downlink beam index and an uplink beam index by using the frequency domain position and the time domain position of the uplink access signal.
  • BFn is shown as a downlink beam index and/or an uplink beam index.
  • the frequency domain location may include a plurality of starting frequency domain locations and/or bandwidth level sets.
  • the time domain location may include a plurality of time unit sets.
  • the time domain location includes the occupied time unit index and/or duration level.
  • the duration level can be expressed in the number of time units included.
  • the duration level may also be the time domain repetition level of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information. Basically cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset eight uplink access signal transmission frequency domain locations and eight uplink access signal time domain locations to form 64 time domain and frequency domain joint locations, and 64 time domain and frequency domain joint locations are respectively 64.
  • the joint beam index corresponds.
  • the base station notifies the terminal of the correspondence between the 64 time domain and frequency domain joint locations and the 64 joint beam indexes through a system message, as shown in Table 9.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the terminal obtains the optimal downlink beam index by 1 by detecting the downlink signal, and the terminal selects the frequency domain location of the uplink access signal and the time domain location of the uplink access signal in the time domain and the frequency domain joint position 8 ⁇ 15 of the uplink access signal. Send an uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations and frequency domain locations, when the base station detects When the quality-optimized uplink access signal adopts the frequency domain location and the time domain location in the time-domain and frequency-domain joint location 14 of the uplink access signal, the base station obtains the downlink beam index 1 and the optimal uplink of the base station for the terminal.
  • the beam corresponds to the uplink beam index 6, and the optimal beam for transmitting the downlink data by the base station to the terminal is obtained according to the downlink beam index, and the optimal beam for transmitting the uplink data by the terminal to the base station is obtained according to the uplink beam index.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the terminal can use the M uplink beams to transmit uplink data to the base station.
  • the N downlink beam indexes and the M uplink beam indices constitute N*M joint beam indexes.
  • the domain and frequency domain joint location set respectively correspond to N*M joint beam indexes.
  • the base station obtains the downlink beam index and the used uplink beam index fed back by the corresponding terminal by detecting the time domain location of the uplink access signal, the frequency domain location, and the uplink access signal sequence set to which the sequence of the uplink access signal belongs.
  • the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal downlink beam index of the base station, the terminal carries the downlink beam index and the uplink beam index by using the sequence in the corresponding uplink access signal sequence set to send the uplink access signal in the corresponding frequency domain location and the time domain location.
  • the base station detects an uplink access signal with the best signal quality sent by the terminal, and obtains a pair of frequency domain locations, time domain locations, and sequences of the uplink access signal.
  • the downlink beam index and the uplink beam index should be. As shown in FIG. 6, where BFn is shown, it indicates a downlink beam index and/or an uplink beam index.
  • the frequency domain location may include a plurality of starting frequency domain locations and/or bandwidth level sets; the time domain location may include a plurality of time unit sets.
  • the time domain location includes the occupied time unit index and/or duration level.
  • the duration level can be expressed in the number of time units included.
  • the duration level may also be a time domain repetition level of the uplink access signal.
  • the base station uses 8 beams to transmit downlink synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the terminal can use 8 beams for uplink data transmission.
  • Eight downlink beam indices and eight uplink beam indices form 64 joint beam indices.
  • the base station and the terminal preset two uplink access signal transmission frequency domain locations, two uplink access signal time domain locations, and 16 uplink access signal sequence sets to form 64 sequences and a time domain and frequency domain joint location set.
  • the 64 sequences and the time domain and frequency domain joint location sets correspond to 64 joint beam indices, respectively.
  • the base station notifies the terminal 64 sequences and the correspondence between the time domain and frequency domain joint location set and the 64 joint beam indexes through system messages, as shown in Table 10.
  • the uplink access signal sequence set includes at least one uplink access signal sequence.
  • the terminal obtains the optimal downlink beam index by detecting the downlink signal, and the terminal selects the uplink access signal sequence and the time domain and frequency domain joint location set 8
  • the frequency domain location of the uplink access signal in ⁇ 15 and the time domain location of the uplink access signal and the sequence in the uplink access signal sequence set transmit the uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations and frequency domain locations, and when the base station detects the quality optimal uplink access signal, the uplink access signal sequence and the frequency domain in the time domain and frequency domain joint location set 14 are used.
  • the base station obtains the downlink beam index 1 of the base station and the uplink beam index 6 corresponding to the optimal uplink beam, and obtains the base station according to the downlink beam index.
  • the terminal sends an optimal beam of downlink data, and obtains an optimal beam that the terminal sends uplink data to the base station according to the uplink beam index.
  • the embodiment of the present invention may further include: the uplink beam index and the downlink beam index are matched by using different uplink access signal characteristics.
  • the uplink beam index corresponds to the time domain location
  • the downlink beam index corresponds to the frequency domain location.
  • the uplink beam index corresponds to the frequency domain location
  • the downlink beam index corresponds to the time domain location.
  • the uplink beam index corresponds to the uplink access signal sequence set
  • the downlink beam index corresponds to the uplink access signal sequence set.
  • the beam index corresponds to the time domain location; or the uplink beam index corresponds to the time domain location, and the downlink beam index corresponds to the uplink access signal sequence set; or the uplink beam index corresponds to the frequency domain location, and the downlink beam index corresponds to the uplink access signal sequence set; or The uplink beam index corresponds to the uplink access signal sequence set, the downlink beam index corresponds to the frequency domain location, and the like.
  • the base station uses N beams to transmit downlink synchronization signals and/or downlink system information. This covers the area that the base station needs to cover.
  • the base station and the terminal preset the uplink access signal sequence set, the time domain location and the frequency domain location, or the base station informs the terminal of the uplink access signal sequence set, the time domain location and the frequency domain location by using the system message.
  • the terminal needs to carry information bits or beam identification sequences of the downlink beam index after the access signal. For example, the terminal transmits information bits carrying the downlink beam index and/or the uplink beam index in the time domain and/or the frequency domain after transmitting the access signal.
  • the terminal after transmitting the access signal, the terminal sends a beam identification sequence carrying a downlink beam index and/or an uplink beam index in the time domain and/or the frequency domain, and different beam identification sequence sets may correspond to different downlink beam indexes and/or Uplink beam index.
  • a beam identification sequence carrying a downlink beam index and/or an uplink beam index in the time domain and/or the frequency domain
  • different beam identification sequence sets may correspond to different downlink beam indexes and/or Uplink beam index.
  • At least one sequence is included in each beam recognition sequence set.
  • the correspondence between the beam identification sequence set and the downlink beam index may be determined in a preset manner, or the base station notifies the terminal by using a system message.
  • the downlink beam can be indicated by the time domain location and/or frequency domain location and/or sequence of the uplink access signal, and the uplink beam index is indicated using additional bit information or a beam identification sequence.
  • the uplink beam may be indicated by a time domain location and/or a frequency domain location
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N time-domain locations respectively corresponding to N downlink beam indexes.
  • the base station informs the terminal of the correspondence between the N time domain locations and the N downlink beam indexes by using a system message.
  • the base station can obtain the downlink beam index fed back by the corresponding terminal by detecting the time domain location of the uplink access signal of the terminal in one or more time domain locations. If the terminal obtains the correspondence between the N time domain locations and the N downlink beam indexes by using the system message, the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal After obtaining the optimal beam index related information of the base station, the terminal indirectly feeds back the downlink beam index by sending the uplink access signal in the corresponding time domain position.
  • the time domain location may include a collection of multiple time units. Time units can be frames, sub-frames, half frames, radio frames, etc. Wait.
  • the terminal sends the uplink access signal, the terminal needs to perform beamforming on the uplink access signal, that is, the uplink access signal is sent by using the uplink beam, and the terminal passes the time domain corresponding to the downlink beam index configured by the base station.
  • the base station does not need to know the relationship between the uplink beam index and the subset, and the base station only feeds back the corresponding time domain location subset index.
  • the random access response may be performed in the corresponding time domain location, and the terminal may determine the optimal uplink beam index fed back by the base station according to the time domain location subset index or the time when the random access response is received by the base station, thereby Obtaining an optimal uplink beam from the terminal to the base station according to the uplink beam index.
  • the base station uses 8 downlink beams to transmit synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset 8 time domain locations respectively corresponding to 8 downlink beam indexes, or the base station informs the terminal of the correspondence between the 8 time domain positions and the 8 downlink beam indexes through system messages, as shown in Table 11.
  • the time domain location may include the time unit of the occupancy and/or duration.
  • the duration can be expressed in terms of the number of time units included.
  • the duration may also be the number of time domain repetitions of the uplink access signal.
  • the terminal obtains the optimal downlink beam index by 6 by detecting the downlink signal, and the terminal selects the time domain location 6 to send the uplink access signal.
  • the base station detects the uplink access signal in multiple time domain locations. After the base station detects the uplink access signal at the time domain location 6, the base station obtains the downlink beam index fed back by the terminal, and according to the The fed back downlink beam index base station obtains an optimal beam for transmitting downlink data to the terminal. The base station may use the optimal beam to transmit data to the terminal at a later time.
  • the terminal can transmit the uplink access signal by using four uplink beams, where the time domain position 6 includes: a set of time units ⁇ 8n, 8n+2, 8n+4, 8n+6 ⁇ , where ⁇ >-1, n is an integer. .
  • the terminal transmits the uplink access signal by using the uplink beam corresponding to the uplink beam index 0 on the time unit 8n, and the terminal transmits the uplink access signal by using the uplink beam corresponding to the uplink beam index 1 on the time unit 8n+2, and the terminal is in the time unit 8n+
  • the uplink access signal is transmitted by using the uplink beam corresponding to the uplink beam index 2
  • the terminal transmits the uplink access signal by using the uplink beam corresponding to the uplink beam index 3 on the time unit 8n+6.
  • the base station detects the uplink access signal of the signal quality, and directly or indirectly feeds back the time unit related information of the uplink access signal in the downlink access response, and the terminal obtains the time unit related information fed back by the base station to obtain the terminal-to-base station correspondence.
  • Optimal upstream beam Optimal upstream beam.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N frequency domain locations respectively corresponding to N downlink beam indexes.
  • the base station informs the terminal of the correspondence between the N frequency domain locations and the N downlink beam indexes by using a system message.
  • the base station can obtain the downlink beam index fed back by the corresponding terminal by detecting the frequency domain location of the uplink access signal of the terminal in one or more frequency domain locations. If the terminal obtains the correspondence between the N frequency domain locations and the N downlink beam indexes by using the system message, the terminal needs to first receive the system message to obtain the corresponding relationship.
  • the terminal After obtaining the optimal beam index related information of the base station, the terminal sends the information in the corresponding frequency domain position.
  • the row access signal is used to indirectly feed back the downlink beam index.
  • the frequency domain location may include a plurality of frequency domain start locations and/or a set of bandwidths.
  • the terminal needs to perform beamforming on the uplink access signal to ensure coverage, that is, the uplink access signal is sent by using an uplink beam, and the terminal adopts a frequency corresponding to the downlink beam index configured by the terminal at the base station.
  • the base station does not need to know the relationship between the uplink beam index and the subset, and the base station only feeds back the corresponding frequency domain location.
  • the subset index or the random access response may be performed in the corresponding frequency domain location, and the terminal may determine the optimal uplink of the base station feedback according to the base station feedback corresponding frequency domain location subset index or the time when the random access response is received.
  • the beam is indexed to obtain an optimal uplink beam from the terminal to the base station according to the uplink beam index.
  • the base station uses 8 downlink beams to transmit synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset 8 frequency domain locations respectively corresponding to 8 downlink beam indexes, or the base station informs the terminal of the correspondence between the 8 frequency domain positions and the 8 downlink beam indexes through system messages, as shown in Table 12.
  • the frequency domain location may include the time unit of the occupancy and/or duration.
  • the duration can be expressed in terms of the number of time units included.
  • the duration may also be the frequency domain repetition number of the uplink access signal.
  • Downlink beam index Transmit the frequency domain location of the uplink access signal
  • Frequency domain location 7 Frequency domain location 7 Suppose the terminal obtains the optimal downlink beam index by detecting the downlink signal. At this time, the terminal selects the frequency domain location 6 to send the uplink access signal.
  • the base station detects the uplink access signal in multiple frequency domain locations. After the base station detects the uplink access signal at the frequency domain location 6, the base station obtains the downlink beam index fed back by the terminal, and further according to the The feedback downlink beam index obtains an optimal beam that the base station sends downlink data to the terminal. The base station may use the optimal beam to transmit data to the terminal at a later time.
  • the terminal can transmit the uplink access signal by using four uplink beams, where the frequency domain location 6 includes: a frequency domain start position and/or a bandwidth set unit index ⁇ 8n, 8n+2, 8n+4, 8n+6 ⁇ , Where 11>-1, n is an integer.
  • the terminal sends an uplink access signal by using an uplink beam corresponding to the uplink beam index 0 in the frequency domain start position and/or the frequency domain start position and/or bandwidth corresponding to the bandwidth set unit index 8n; the terminal is in the frequency domain start position and / or the frequency domain start position and/or bandwidth corresponding to the bandwidth set unit index 8n+2, using the uplink beam corresponding to the uplink beam index 1 to transmit the uplink access signal; the terminal in the frequency domain start position and/or the bandwidth set unit index 8n+4 corresponding to the frequency domain start position and/or bandwidth, using the uplink beam corresponding to the uplink beam index 2 to transmit the uplink access signal; the frequency of the terminal in the frequency domain start position and/or the bandwidth set unit index 8n+6
  • the uplink access signal corresponding to the uplink beam index 3 is transmitted on the start position and/or the bandwidth of the domain.
  • the base station detects the uplink access signal with the best signal quality, and directly or indirectly feeds back the frequency domain start position and/or the bandwidth unit index related information of the uplink access signal in the downlink access response, and the terminal obtains the base station feedback.
  • the frequency domain start position and/or the bandwidth unit index related information to further obtain the optimal uplink beam corresponding to the terminal to the base station.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N uplink access signal sequences
  • the column sets correspond to N downlink beam indices, respectively.
  • the base station notifies the terminal of the correspondence between the N sets of uplink access signal sequences and the N downlink beam indexes by using a system message.
  • the base station detects the uplink access signal sequence set in which the uplink access signal sequence of the terminal is located, and obtains a downlink beam index fed back by the corresponding terminal.
  • the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal beam index related information of the base station, the terminal indirectly feeds back the downlink beam index by using the sequence in the corresponding uplink access signal sequence set to send the uplink access signal.
  • the terminal sends the uplink access signal, the terminal needs to perform beamforming on the uplink access signal, that is, the uplink access signal is sent by using the uplink beam, and the terminal passes the uplink corresponding to the downlink beam index configured by the terminal.
  • the base station In the set of access signal sequences, selecting an uplink access signal sequence in a subset to identify an uplink beam of the uplink access signal, the base station does not need to know the relationship between the uplink beam index and the subset sequence, and the base station only accesses
  • the direct or indirect feedback corresponding to the subset sequence index in the response may be performed, and the terminal may determine the optimal uplink beam index fed back by the base station according to the subset sequence index corresponding to the feedback of the base station, thereby obtaining the terminal to the base station according to the uplink beam index.
  • Optimal upstream beam Optimal upstream beam.
  • the base station uses 8 downlink beams to transmit synchronization signals and/or downlink system information, which can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset eight sets of uplink access signal sequences respectively corresponding to eight downlink beam indexes, or the base station notifies the terminal of the correspondence between the eight uplink access signal sequence sets and the eight downlink beam indexes through the system message. As shown in Table 13.
  • Uplink access signal sequence set 7 Assume that the terminal obtains the optimal downlink beam index by detecting the downlink signal. At this time, the terminal selects the uplink access signal sequence in the uplink access signal sequence set 6 to send the uplink access signal.
  • the base station detects the uplink access signal, and when the base station detects that the uplink access signal sequence with the best signal quality is from the uplink access signal sequence set 6, the base station obtains the downlink beam index 6 fed back by the terminal, and then according to the The feedback downlink beam index obtains an optimal beam that the base station sends downlink data to the terminal.
  • the base station may use the optimal beam by transmitting data to the terminal at a later time.
  • the terminal can transmit uplink access signals by using four uplink beams, and the uplink access signal sequence set 6 includes: uplink access signal sequence subsets 0 ⁇ 3.
  • the terminal transmits the uplink access signal 0 using the sequence in the uplink access signal sequence subset 0 and the uplink beam 0.
  • the terminal transmits the uplink access signal 1 using the sequence in the uplink access signal sequence subset 1 and the uplink beam 1.
  • the terminal transmits the uplink access signal 2 using the sequence in the uplink access signal sequence subset 2 and the uplink beam 2.
  • the terminal transmits the uplink access signal 3 using the sequence in the subset of uplink access signal sequences 3 and the uplink beam 3.
  • the base station detects the uplink access signal with the best signal quality, and directly or indirectly feeds back the sequence sub-set index related information of the uplink access signal in the downlink access response, and the terminal obtains the sequence sub-set index related information fed back by the base station. To further obtain an optimal uplink beam corresponding to the terminal to the base station.
  • Example 14 It is assumed that the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N sets of uplink access signal sequences respectively corresponding to N downlink beam indexes.
  • the base station notifies the terminal of the correspondence between the N sets of uplink access signal sequences and the N downlink beam indexes by using a system message.
  • the base station detects the uplink access signal sequence set in which the uplink access signal sequence of the terminal is located, and obtains a downlink beam index fed back by the corresponding terminal.
  • the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal beam index related information of the base station, the terminal indirectly feeds back the downlink beam index by using the sequence in the corresponding uplink access signal sequence set to send the uplink access signal.
  • the terminal sends the uplink access signal, the terminal needs to perform beamforming on the uplink access signal, that is, the uplink access signal is sent by using the uplink beam, and the terminal passes the time domain location configured or preset in the base station.
  • the uplink access signal sequence is transmitted by using the uplink access signal sequence corresponding to the downlink beam, and the terminal uses different time domain and/or frequency domain positions to identify different uplink beams.
  • the base station does not need the correspondence between the time domain location and/or the frequency domain location and the uplink beam.
  • the base station may directly or indirectly feedback the corresponding time domain location and/or the frequency domain location index related information in the access response, and the terminal may determine, according to the time domain location and/or the frequency domain location related information fed back by the base station, The optimal uplink beam index fed back by the base station, so that the optimal uplink beam from the terminal to the base station is obtained according to the uplink beam index.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N times uplink access signals, and the time domain positions respectively correspond to N downlink beam indexes.
  • the base station notifies the terminal of the correspondence between the time domain locations of the N uplink access signals and the N downlink beam indexes by using a system message.
  • the base station detects the time domain location of the uplink access signal sequence of the terminal, and obtains a downlink beam index fed back by the corresponding terminal.
  • the terminal obtains N uplink access signals through system messages, the time domain location and N respectively For the correspondence between the downlink beam indexes, the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal beam index related information of the base station, the terminal indirectly feeds back the downlink beam index by sending an uplink access signal in the time domain position of the corresponding uplink access signal.
  • the terminal sends the uplink access signal
  • the terminal needs to perform beamforming on the uplink access signal, that is, the uplink access signal is sent by using the uplink beam, and the terminal uses the uplink access signal configured by the base station or preset.
  • the sequence in the sequence set transmits an uplink access signal at a base station configured or preset frequency domain location, and the terminal identifies different uplink beams by using different frequency domain locations and/or uplink access signal sequences.
  • the base station does not need to know the correspondence between the frequency domain location and/or the uplink access signal sequence and the uplink beam.
  • the base station may directly or indirectly feedback the corresponding frequency domain location and/or the uplink access signal sequence index related information in the access response, and the terminal may feedback the corresponding frequency domain location and/or the uplink access signal sequence related information according to the base station feedback.
  • the optimal uplink beam index fed back by the base station can be determined, so that the optimal uplink beam from the terminal to the base station is obtained according to the uplink beam index.
  • the base station transmits the downlink synchronization signal and/or the downlink system information by using the N downlink beams, and can substantially cover the area that the base station needs to cover.
  • the base station and the terminal preset N frequency access domain signals to correspond to N downlink beam indexes.
  • the base station notifies the terminal of the correspondence between the frequency domain locations of the N uplink access signals and the N downlink beam indexes by using a system message.
  • the base station detects the frequency domain location where the uplink access signal sequence of the terminal is located, and obtains a downlink beam index fed back by the corresponding terminal.
  • the terminal needs to first receive the system message to obtain the corresponding relationship. After obtaining the optimal beam index related information of the base station, the terminal indirectly feeds back the downlink beam index by sending an uplink access signal in a frequency domain position of the corresponding uplink access signal.
  • the uplink access signal is sent by the terminal, in order to ensure that the uplink access signal needs to be beam-formed, the uplink access signal is sent by using the uplink beam, and the terminal is configured by using the base station.
  • the sequence in the preset uplink access signal sequence set sends an uplink access signal at a base station configured or preset time domain location, and the terminal uses different time domain locations and/or uplink access signal sequences to identify different ones.
  • Uplink beam The base station does not need to know the correspondence between the time domain location and/or the uplink access signal sequence and the uplink beam.
  • the base station only directly or indirectly feeds back the corresponding time domain location and/or the uplink access signal sequence index related information in the access response, and the terminal only responds to the corresponding time domain location and/or uplink access signal sequence according to the base station feedback.
  • the relevant information can determine the optimal uplink beam index fed back by the base station, and obtain the optimal uplink beam from the terminal to the base station according to the uplink beam index.
  • the base station may configure the terminal to use different transmission powers for different beams in order to enable the terminal to use the lower power beam to achieve the signal quality requirement.
  • the feedback beam index of the present invention includes: feeding back an index of an optimal uplink beam, feeding back an index of an optimal downlink beam, feeding back indexes of multiple optimal uplink beams, and feeding back indexes of multiple optimal downlink beams.
  • the embodiment of the present invention further provides a base station.
  • the base station 80 includes: a configuration sending module 801 and a receiving and identifying module 802.
  • the configuration sending module 801 may be implemented by a transmitter of the base station, and configured to notify, by using a preset manner and/or a system message configuration manner, a correspondence between the characteristics of the uplink access signal and the uplink beam index and/or the downlink beam index.
  • the characteristic of the uplink access signal is used to indicate an uplink beam index and/or a downlink beam index for sending the uplink access signal;
  • the receiving and identifying module 802 can be implemented by a receiver of the base station, and configured to obtain the uplink beam index and/or the downlink beam index by identifying characteristics of the uplink access signal after receiving the uplink access signal.
  • the characteristics of the uplink access signal include at least one of the following: a time domain location of the uplink access signal, a frequency domain location of the uplink access signal, and a sequence set used by the uplink access signal,
  • the index carried by the uplink access signal indicates bit information and a beam identification sequence carried after the uplink access signal.
  • the receiving and identifying module 802 identifies the uplink beam index and/or the downlink beam index, and includes at least one of the following:
  • the receiving and identifying module 802 identifies the time domain location of the received uplink access signal; the receiving and identifying module 802 identifies the frequency domain location of the received uplink access signal; and the receiving and identifying module 802 receives the received uplink access signal.
  • the sequence set used is identified;
  • the receiving and identifying module 802 identifies by using the index indication bit information carried by the received uplink access signal;
  • the receiving and identifying module 802 identifies the beam identification sequence carried by the received uplink access signal.
  • the receiving and identifying module 802 identifies the uplink beam index and/or the downlink beam index by using the time domain location
  • the configuration sending module 801 is further configured to add a correspondence between the time domain location and an uplink beam index and/or a downlink beam index in the system message when the system message is configured.
  • the receiving and identifying module 802 identifies the uplink beam index and/or the downlink beam index by using the frequency domain location
  • the configuration sending module 801 is further configured to add a correspondence between the frequency domain location and an uplink beam index and/or a downlink beam index in the system message when the system message is configured.
  • the receiving and identifying module 802 identifies the uplink beam index and/or the downlink beam index by using the uplink access signal sequence
  • the configuration sending module 801 is further configured to: when the system message is configured, add a correspondence between the uplink access signal sequence set and an uplink beam index and/or a downlink beam index in the system message.
  • the embodiment of the present invention further provides a terminal. As shown in FIG. 9, the terminal 90 includes: a receiving module 901 and a sending module 902.
  • the receiving module 901 may be implemented by a receiver of the terminal, configured to obtain a correspondence between an uplink uplink signal characteristic and an uplink beam index and/or a downlink beam index by using a preset manner and/or receiving a system message configuration manner;
  • the sending module 902 may be implemented by a transmitter of the terminal, configured to send an uplink access signal, where the characteristics of the uplink access signal are used to indicate that the uplink beam corresponding to the uplink access signal of the terminal sends an uplink beam index and/or The downlink beam index that needs feedback.
  • the receiving module 901 is further configured to obtain a beam indication manner by using a preset manner or by receiving a configuration of a system message.
  • the characteristics of the uplink access signal include at least one of the following: a time domain location of the uplink access signal, a frequency domain location of the uplink access signal, a sequence set used by the uplink access signal, and an uplink access signal.
  • the index indicates the bit information and the beam identification sequence carried after the uplink access signal.
  • the sending module 902 indicates the uplink beam index and/or the downlink beam index, and includes at least one of the following:
  • the bearer beam identification sequence is used to indicate an uplink beam index and/or a downlink beam index.
  • the sending module 902 uses a time domain location for transmitting an uplink access signal to indicate When the uplink beam index and/or the downlink beam index are used,
  • the receiving module is further configured to: after receiving the system message, obtain a correspondence between the time domain location and an uplink beam index and/or a downlink beam index in the system message.
  • the sending module 902 uses the frequency domain location of the uplink access signal to indicate the uplink beam index and/or the downlink beam index
  • the receiving module is further configured to: after receiving the system message, obtain a correspondence between the frequency domain location and an uplink beam index and/or a downlink beam index in the system message.
  • the sending module 902 uses an uplink access signal sequence to indicate an uplink beam index and/or a downlink beam index
  • the receiving module is further configured to: after receiving the system message, obtain, in the system message, a correspondence between an uplink access signal sequence set and an uplink beam index and/or a downlink beam index.
  • the embodiment of the present invention further provides a system for uplink and downlink beam mixing indication.
  • the system includes: the base station 80 and the terminal 90 described above.
  • the configuration sending module 801 in the base station 80 is further configured to set a beam identification manner consistent with the terminal by using a preset manner or a system message configuration manner.
  • the configuration sending module 801 in the base station 80 is further configured to notify the terminal of the beam indication mode to be adopted by using a preset manner or a system message configuration manner.
  • the base station 80 and the terminal 90 do not have the corresponding relationship between the characteristics of the uplink access signal and the uplink beam, and the base station 80 does not notify the terminal of the characteristics of the uplink access signal and the uplink beam by means of system message configuration. Relationship,
  • the transmitting module 902 of the terminal 90 is further configured to carry an uplink beam index in the characteristics of the uplink access signal corresponding to the downlink beam index.
  • Some combination schemes may be generated in some combination between the schemes of the above various embodiments, and the combination schemes of the various schemes in the present invention are all within the protection scope of the present invention.
  • the present invention there are many methods for detecting the optimal sequence by the terminal, which are implementation methods of the detection, for example, using a sequence correlation method, and selecting the sequence index with the highest correlation value for feedback. Different criteria may select different sequence indices, and there is no limiting relationship to the inventive idea of the present invention. Regardless of the detection method used, only one optimal or several optimal values are required, and the index values can be matched, which are all within the scope of the protection idea of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects.
  • the invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation The steps of a function specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • the embodiment of the present invention further provides a computer storage medium, where a computer program is stored, where the computer program is used to perform an uplink/downlink beam mixing indication method on the base station side or an uplink/downlink beam mixing on the terminal side in the embodiment of the present invention.
  • the method of indication is used to perform an uplink/downlink beam mixing indication method on the base station side or an uplink/downlink beam mixing on the terminal side in the embodiment of the present invention. The method of indication.
  • the base station can obtain an optimal downlink beam that is fed back by the terminal, thereby ensuring reliable transmission of subsequent downlink control information.
  • the base station can detect the uplink access signal with the best uplink access signal quality of the terminal, and then notify the corresponding index to the terminal. After obtaining the uplink beam index, the terminal obtains the most terminal to the base station. Excellent uplink beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本发明公开了一种上下行波束混合指示的方法,包括:基站通过预设的方式和/或系统消息配置的方式通知上行接入信号的特性与上行波束索引和/或下行波束索引的对应关系,所述上行接入信号的特性用于指示发送所述上行接入信号的上行波束索引和/或下行波束索引;基站收到所述上行接入信号后,通过识别上行接入信号的特性获得所述上行波束索引和/或下行波束索引。本发明还同时公开了实现所述方法的基站、终端和系统。

Description

一种上下行波束混合指示的方法、 基站、 终端和系统 技术领域
本发明涉及移动通信领域中的长期演进高级系统( Long term evolution advanced system, LTE- Advanced ), 尤其涉及一种上下行波束混合指示的方 法、 基站、 终端和系统。 背景技术
在高频通信时, 由于采用了更高的载波频率进行传输, 那么平均的路 损会比传统的 LTE系统大很多, 例如: 我们采用 28GHz的载频进行传输, 利用公式:
Figure imgf000002_0001
可计算得出高频路损值^与 LTE路损值 的平均比例信息为:
Figure imgf000002_0002
Figure imgf000002_0003
在高频通信中为了保证覆盖, 即: 接收侧满足最小信号与干扰加噪声 比(SINR ) 的要求, 需要提高发送和接收机增益 :
r λ \2
Ρ = PtGtGr —— = RGtG ILf
AnR J f 。 上述公式中, 所述 R为小区覆盖的半径, 为对应载波的波长, 为发 送天线增益, 为接收天线增益。
LTE通信需求最高要求达到覆盖 100km的区域, 如果按照最高覆盖, 仅仅考虑平均路损(空旷区域), 那么高频通信最高可以考虑覆盖达到 1km 的区域。 如果考虑实际高频载波的高空气吸收度(氧气吸收, 雨衰落, 雾 衰落) 以及对于阴影衰落敏感等特点, 实际可以支持的覆盖要小于 lkm。 如果高频通信支持最大 lkm覆盖, 与 LTE系统相比, 相同的覆盖区域 可以获得的 SINR比不同, 前者的信噪比比后者至少下降 20dB, 为了保证 高频通信与 LTE系统在相同覆盖范围内具有近似的 SINR,需要保证高频通 信的天线增益。 这时, 由于高频通信具有更短的波长, 从而可以保证单位 面积上容纳更多的天线元素, 更多的天线元素可以提供更高的天线增益, 从而保证高频通信的覆盖性能。
上述更多的天线元素意味着我们可以采用波束赋型的方法来保证高频 通信的覆盖。 由 LTE先前的设计思想可知, 要想得到好的波束赋型效果, 需要准确的获得信道的状态信息, 从而从信道的状态信息中获得波束赋型 的权值。 如果要获得较好的波束赋型权值, 对于作为发送端的基站来说, 作为接收端的终端需要反馈下行的信道状态信息或者权值; 对于接收端来 说, 基站需要反馈上行的信道状态信息或者权值, 从而保证基站可以采用 最优的波束发送下行业务, 终端也可以采用最优的波束发送上行业务。 这 时就会存在如下问题: 基站在获得权值前, 无法利用最优的波束覆盖到终 端, 从而终端就无法测量基站发送的参考信号进行测量; 或者即使基站覆 盖到终端, 但是终端无法达到基站的同样的覆盖, 反馈的内容基站无法获 知, 从而也不能进行波束权值的选择和正常通信。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种上下行波束混合 指示的方法、 基站、 终端和系统。
本发明实施例提供了一种上下行波束混合指示的方法, 该方法包括: 基站通过预设的方式和 /或系统消息配置的方式通知上行接入信号的特 性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接入信号的特 性用于指示发送所述上行接入信号的上行波束索引和 /或下行波束索引; 基站收到所述上行接入信号后, 通过识别上行接入信号的特性获得所 述上行波束索引和 /或下行波束索引。
本发明实施例还提供了一种上下行波束混合指示的方法, 该方法包括: 终端通过预设的方式和 /或接收系统消息配置的方式获得上行接入信号 的特性与上行波束索引和 /或下行波束索引的对应关系后, 发送上行接入信 号, 所述上行接入信号的特性用于指示终端发送所述上行接入信号的上行 波束对应上行波束索引和 /或需要反馈的下行波束索引。
本发明实施例还提供了一种上下行波束混合指示的方法, 该方法包括: 基站通过预设的方式和 /或系统消息配置的方式通知终端上行接入信号 的特性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接入信号 的特性用于指示终端发送所述上行接入信号的上行波束索引和 /或下行波束 索引;
基站收到终端发送的上行接入信号后, 通过识别所述上行接入信号的 特性获得所述上行波束索引和 /或下行波束索引。
本发明实施例还提供了一种基站, 所述基站包括: 配置发送模块和接 收识别模块; 其中,
所述配置发送模块, 配置为通过预设的方式和 /或系统消息配置的方式 通知上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系; 所述上行接入信号的特性用于指示发送所述上行接入信号的上行波束索引 和 /或下行波束索引;
所述接收识别模块, 配置为收到所述上行接入信号后, 通过识别上行 接入信号的特性获得所述上行波束索引和 /或下行波束索引。
本发明实施例还提供了一种终端, 所述终端包括: 接收模块和发送模 块; 其中,
所述接收模块, 配置为通过预设的方式和 /或接收系统消息配置的方式 获得上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系; 所述发送模块, 配置为发送上行接入信号, 所述上行接入信号的特性 用于指示终端发送所述上行接入信号的上行波束对应上行波束索引和 /或需 要反馈的下行波束索引。
本发明实施例还提供了一种上下行波束混合指示的系统, 该系统包括: 上文所述的基站和终端。
本发明实施例也提供了一种计算机存储介质, 其中存储有计算机程序, 该计算机程序用于执行上述基站侧的上下行波束混合指示的方法或上述终 端侧的上下行波束混合指示的方法。
本发明实施例提供的上下行波束混合指示的方法、 基站、 终端和系统, 基站通过预设的方式和 /或系统消息配置的方式通知终端上行接入信号的特 性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接入信号的特 性用于指示终端发送所述上行接入信号的上行波束索引和 /或下行波束索 引; 基站收到终端发送的所述上行接入信号后, 通过识别上行接入信号的 特性获得所述上行波束索引和 /或下行波束索引。 通过这种方式, 基站可以 获得所述终端反馈的最优下行波束, 从而保证了后续下行控制信息的可靠 传输。 另外, 如果引入上行波束传输, 基站可以通过检测终端上行接入信 号质量最优的上行接入信号, 然后通知对应的索引给所述终端, 终端获得 上行波束索引后即获得了终端到基站的最优上行波束。 附图说明
图 1为本发明实施例所述上下行波束混合指示的方法实现流程图; 图 2为本发明另一实施例所述上下行波束混合指示的方法实现流程图; 图 3为本发明实施例所述利用时域位置指示上下行波束索引的示意图; 图 4为本发明实施例所述利用频域位置指示上下行波束索引的示意图; 图 5 为本发明实施例所述利用时域和频域位置联合指示上下行波束索 引的示意图;
图 6为本发明实施例所述利用时域、 频域位置联合序列集合指示上下 行波束索引的示意图;
图 7本发明实施例所述利用上行接入信号的指示比特信息或者波束识 别序列指示上下行波束索引的示意图;
图 8为本发明实施例所述基站的结构示意图;
图 9为本发明实施例所述终端的结构示意图;
图 10为本发明实施例所述系统的结构示意图。 具体实施方式
可见, 解决现有存在的所述问题的最优方法就是加入一种发现过程, 通过这个发现过程来使得基站和终端得以发现对方, 从而利用最优的权值 进行通信。
简单的说发现过程其实就是训练的过程, 发送端通过预先发送多个波 束序列 (发现信号), 来使得接收端可以检测到这种序列, 获得波束序号并 反馈的过程。 终端选择的波束索引是基站到达终端最优波束对应的索引, 终端通过反馈所述索引可以保证基站到终端传输数据的可靠性和最优传输 性能。 当终端反馈完所述波束索引后, 基站可以利用所述波束索引选择最 优的波束给所述终端传输下行数据。
当终端需要发送上行数据给基站, 同样需要保证基本相同的覆盖, 这 样终端也需要采用波束的方式发送上行数据, 一方面保证了上行链路的覆 盖和可靠性传输, 一方面可以减少终端的平均发送功率, 对于终端可以起 到节能的目的。
因为终端不知道到基站最优的上行波束, 所以同样需要进行上行波束 的训练过程, 终端采用不同的上行接入信号特性来标识不同的上行波束, 基站可以通过反馈通知终端最优上行波束索引, 从而终端可以利用最优的 上行波束给基站发送上行数据。
在实际系统应用中波束的概念指的是: 波束可以减少基站的信号功率 在无用方向上的泄露, 保证了信号功率的集中特性, 提高了基站和终端的 覆盖范围, 上行波束可以降低终端的功耗。
本发明实施例中: 基站通过预设的方式和 /或系统消息配置的方式通知 终端上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系, 所述特性用于指示终端发送所述上行接入信号的上行波束索引和 /或下行波 束索引; 基站收到终端发送的上行接入信号后, 通过识别所述上行接入信 号的特性获得所述上行波束索引和 /或下行波束索引。
其中, 所述上行波束索引是指: 终端发送上行接入信号时终端采用的 上行波束对应的索引; 所述下行波束索引是指: 终端通过接收下行信号按 照特定的规则选择得到的最优下行波束对应的波束索引。
特定规则的规则定义方法较多, 例如: 可以采用信号质量最优的定义 方法, 或者信号功率最优的定义方法等等。
上行接入信号序列集合中至少包括一个上行接入信号序列。
所述下行波束索引用于使基站可以查找到对应的波束, 实际反馈的可 以是所述索引的相关信息, 例如: 时域位置索引、 频域位置索引, 下行信 号序列索引等或与这些索引等价的值。 但凡能表达与本发明中所述下行波 束索引相关或者等价的索引均在本发明的保护范围之内。
本发明实施例提供了一种上下行波束混合指示的方法, 如图 1 所示, 该方法包括:
步骤 101 : 基站通过预设的方式和 /或系统消息配置的方式通知上行接 入信号的特性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接 入信号的特性用于指示发送所述上行接入信号的上行波束索引和 /或下行波 束索引; 步骤 102: 基站收到所述上行接入信号后, 通过识别上行接入信号的特 性获得所述上行波束索引和 /或下行波束索引。
其中, 所述上行接入信号的特性至少包括以下之一: 上行接入信号的 时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识 别序列。
其中, 所述基站识别所述上行波束索引和 /或下行波束索引的方法, 包 括以下至少之一:
通过接收到的上行接入信号的时域位置进行识别;
通过接收到的上行接入信号的频域位置进行识别;
通过接收到的上行接入信号所采用的序列集合进行识别;
通过接收到的上行接入信号后携带的索引指示比特信息进行识别; 通过接收到的上行接入信号后携带的波束识别序列进行识别。
优选的, 所述基站通过时域位置来识别上行波束索引和 /或下行波束索 引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述时域位置 与上行波束索弓 I和 /或下行波束索引的对应关系。
优选的, 所述基站通过频域位置来识别上行波束索引和 /或下行波束索 引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述频域位置 与上行波束索弓 I和 /或下行波束索引的对应关系。
优选的, 所述基站通过上行接入信号序列来识别上行波束索引和 /或下 行波束索引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述上行接入 信号序列集合与上行波束索引和 /或下行波束索引的对应关系。 本发明实施例还提供了另一种上下行波束混合指示的方法, 该方法包 括:
终端通过预设的方式和 /或接收系统消息配置的方式获得上行接入信号 的特性与上行波束索引和 /或下行波束索引的对应关系后, 发送上行接入信 号, 所述上行接入信号的特性用于指示终端发送所述上行接入信号的上行 波束对应上行波束索引和 /或需要反馈的下行波束索引。
其中, 所述上行波束索引是指: 终端发送上行接入信号时终端采用的 上行波束对应的索引;
所述下行波束索引是指: 终端通过接收下行信号按照特定的规则选择 得到的最优下行波束对应的波束索引。
其中, 所述上行接入信号的特性至少包括以下之一: 上行接入信号的 时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识 别序列。
其中, 所述终端指示所述上行波束索引和 /或下行波束索引的方法, 包 括以下至少之一:
在预设的时域位置发送所述上行接入信号;
在预设的频域位置发送所述上行接入信号;
按照预设的序列集合, 在序列集合中选择对应的序列发送所述上行接 入信号;
在发送所述上行接入信号时, 携带上行波束索引和 /或下行波束索引的 指示比特信息;
在发送所述上行接入信号时, 携带波束识别序列用于指示上行波束索 引和 /或下行波束索引。
优选的, 该方法还包括: 所述终端采用预设的方式来获得波束指示方式。
优选的, 该方法还包括:
所述终端通过接收系统消息的配置来获得波束指示方式。
优选的, 所述终端利用发送上行接入信号的时域位置来指示上行波束 索引和 /或下行波束索引时, 该方法还包括:
所述终端在收到所述系统消息后, 在所述系统消息中获得所述时域位 置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述终端利用发送上行接入信号的频域位置来指示上行波束 索引和 /或下行波束索引时, 该方法还包括:
所述终端在收到所述系统消息后, 在所述系统消息中获得所述频域位 置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述终端利用上行接入信号序列来指示上行波束索引和 /或下 行波束索引时, 该方法还包括:
所述终端在收到所述系统消息后, 在所述系统消息中获得上行接入信 号序列集合与上行波束索引和 /或下行波束索引的对应关系。
本发明实施例还提供了另一种上下行波束混合指示的方法, 如图 2所 示, 该方法包括:
步骤 201 : 基站通过预设的方式和 /或系统消息配置的方式通知终端上 行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系, 所述上 行接入信号的特性用于指示终端发送所述上行接入信号的上行波束索引和 / 或下行波束索引;
步骤 202: 基站收到终端发送的上行接入信号后, 通过识别所述上行接 入信号的特性获得所述上行波束索引和 /或下行波束索引。
其中, 所述上行接入信号的特性至少包括以下之一: 上行接入信号的 时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识 别序列。
优选的, 该方法还包括:
所述基站通过预设的方式或系统消息配置的方式设置与终端采用一致 的波束识别方式。
优选的, 该方法还包括:
所述基站通过预设的方式或系统消息配置的方式通知终端需采用的波 束指示方式。
其中, 所述基站通过系统消息配置的方式通知波束指示方式, 包括: 所述基站利用 S种波束发送的系统消息携带 N种波束指示方式的配置 信息, 其中 S>0,N>0。
优选的, 所述上行接入信号的特性为上行接入信号的时域位置时, 该 方法还包括:
所述基站与终端通过预设的方式设置所述时域位置与上行波束索引和 / 或下行波束索引的对应关系。
优选的, 所述上行接入信号的特性为上行接入信号的频域位置时, 该 方法还包括:
所述基站与终端通过预设的方式设置所述频域位置与上行波束索引和 / 或下行波束索引的对应关系。
优选的, 所述上行接入信号的特性为上行接入信号所采用的序列集合 中的序列时, 该方法还包括:
所述基站与终端通过预设的方式设置所述上行接入信号序列集合与上 行波束索引和 /或下行波束索引的对应关系。
优选的, 该方法还包括:
当所述基站和终端没有预设上行接入信号的特性与上行波束的对应关 系, 且基站没有通过系统消息配置的方式通知终端上行接入信号的特性与 上行波束的对应关系时, 所述终端在下行波束索引对应的上行接入信号的 特性中携带上行波束索引。
这里, 需要说明的是, 终端需要知道所述携带上行波束索引的上行接 入信号的特性与上行波束的对应关系, 这种关系基站不需要获知。
下面结合附图及具体实施例对本发明作进一步详细说明。
实施例 1 :
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行数 据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波束 索引。基站和终端预设了 N*M个时域位置分别对应 N*M个联合波束索引。 或者, 基站通过系统消息通知终端 N*M个时域位置分别与 N*M个联合波 束索引的对应关系。 基站通过在一个或者多个时域位置检测终端的上行接 入信号, 即可获得对应终端的下行波束索引和上行波束索引。 如果, 终端 通过系统消息获得 N*M个时域位置分别与 N*M个联合波束索引的对应关 系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获 得基站的最优下行波束索引后, 通过在对应时域位置发送上行接入信号来 携带下行波束索引和上行波束索引。 基站检测终端发送的信号质量最优的 上行接入信号, 并且通过所述上行接入信号的时域位置获得对应的下行波 束索引和上行波束索引。 例如图 3 所示。 其中, 时域位置可以包括多个时 间单元集合。 时域位置包括占用的时间单元索引和 /或持续时间等级。 其中, 持续时间等级可以以包含的时间单元个数来体现。 其中, 持续时间等级也 可以为上行接入信号的时域重复等级。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 64个时域位置分别对应 64个联合波束索引, 或者基站通 过系统消息通知终端 64个时域位置分别对应 64个联合波束索引, 如表 1 所示。 其中时域位置包括占用的时间单元索引和 /或持续时间等级。 其中持 续时间等级可以以包含的时间单元个数来体现。 其中持续时间等级也可以 为上行接入信号的时域重复等级。
1
Figure imgf000013_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择时域 位置 8~15发送上行接入信号。
基站在多个时域位置检测所述上行接入信号, 当基站在时域位置 14处 检测到所述上行接入信号质量最优后, 基站就获得了基站对于所述终端的 下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下行波束 索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波束索引 获得了终端给所述基站发送上行数据的最优波束。
子实施例 2:
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 64个上行接入信号的持续时间等级分别对应 64个联合波 束索引, 或者基站通过系统消息通知终端 64个上行接入信号的持续时间等 级分别对应 64个联合波束索引, 如表 2所示。 其中持续时间等级可以以包 含的时间单元个数来体现。 其中, 持续时间等级也可以为上行接入信号的 时域重复等级。
表 2
下行波束索引 &上行波束索引一 发送上行接入信号的时域位置 一联合波束索引
0&0—— 0 持续时间等级 0
0&1—— 1 持续时间等级 1
0&7—— 7 持续时间等级 7
1&0—— 8 持续时间等级 8
1&1—— 9 持续时间等级 9
1&7—— 15 持续时间等级 15
7 & 6—— 62 持续时间等级 62
Figure imgf000015_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择持续 时间等级 8~15发送上行接入信号。
基站在多个时域位置检测所述上行接入信号, 当基站检测到信号质量 最优上行接入信号采用持续时间等级 14, 基站就获得了基站对于所述终端 的下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下行波 束索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波束索 引获得了终端给所述基站发送上行数据的最优波束。
实施例 2:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。基站和终端预设了 N个时域位置分别对应 N个下行波束索引, 基站和终端预设了 M个时域位置分别对应 M下行波束索引。或者,基站通 过系统消息通知终端 N个时域位置分别对应 N个下行波束索引, 基站和终 端预设了 M个时域位置分别对应 M下行波束索引。其中, 下行波束索引对 应的时域位置称为下行波束时域位置, 上行波束索引对应的时域位置称为 上行波束时域位置。 其中, 下行波束时域位置为多个时间单元或者持续时 间等级的集合, 上行波束时域位置为下行波束时域位置的子集。 或者, 上 行波束时域位置为多个时间单元或者持续时间等级的集合, 下行波束时域 位置为下行波束时域位置的子集。
基站通过在一个或者多个时域位置检测终端的上行接入信号即可获得 对应终端的下行波束索引和上行波束索引。 如果终端通过系统消息获得所 述对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优下行波束索引后, 通过在对应时域位置上发送上行 接入信号来携带下行波束索引和上行波束索引。 基站检测终端发送的信号 质量最优的上行接入信号, 并且通过所述上行接入信号的时域位置获得对 应的下行波束索引和上行波束索引。 例如图 3 所示, 其中时域位置可以包 括多个时间单元集合。 时域位置包括占用的时间单元索引和 /或持续时间等 级。 其中持续时间等级可以以包含的时间单元个数来体现。 其中持续时间 等级也可以为上行接入信号的时域重复等级。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 8个时域位置分别对应 8个下行波束索引, 基站和终端预 设了 8个时域位置分别对应 8个下行波束索引。 或者, 基站通过系统消息 通知终端 8个时域位置分别对应 8个下行波束索引, 基站和终端预设了 8 个时域位置分别对应 8个下行波束索引。 其中, 下行波束索引对应的时域 位置称为下行波束时域位置, 上行波束索引对应的时域位置称为上行波束 时域位置。 如表 3所示。
表 3
下行波束索引 &上行波束索引一 发送上行接入信号的时域位置 一联合波束索引
0&0—— 0 时 i或位置 0
0&1—— 1 时 i或位置 1
0&7—— 7 时 i或位置 7
1&0—— 8 时 i或位置 8
1&1—— 9 时 i或位置 9 1&7—— 15 时域位置 15
7 & 6—— 62 时 i或位置 62
7 & 7—— 63 时 i或位置 63 终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择时域 位置 8~15发送上行接入信号。
基站在多个时域位置检测所述上行接入信号, 当基站在时域位置 14处 检测到所述上行接入信号质量最优后, 基站就获得了基站对于所述终端的 下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下行波束 索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波束索引 获得了终端给所述基站发送上行数据的最优波束。
实施例 3:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 N*M个频域位置分别对应 N*M个联合波束索 引。 或者, 基站通过系统消息通知终端 N*M个频域位置分别与 N*M个联 合波束索引的对应关系。 基站通过在一个或者多个频域位置检测终端的上 行接入信号即可获得对应终端的下行波束索引和上行波束索引。 如果, 终 端通过系统消息获得 N*M个频域位置分别与 N*M个联合波束索引的对应 关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在 获得基站的最优下行波束索引后, 通过在对应频域位置发送上行接入信号 来携带下行波束索引和上行波束索引。 基站检测终端发送的信号质量最优 的上行接入信号, 并且通过所述上行接入信号的频域位置获得对应的下行 波束索引和上行波束索引。 例如图 4 所示。 其中所述频域位置包括发送上 行接入信号的起始频域位置和 /或上行接入信号占用的频域带宽。 子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 64个频域位置分别对应 64个联合波束索引, 或者基站通 过系统消息通知终端 64个频域位置分别对应 64个联合波束索引, 如表 4 所示。 其中所述频域位置包括发送上行接入信号的起始频域位置和 /或上行 接入信号占用的频域带宽。
表 4
Figure imgf000018_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择频域 位置 8~15发送上行接入信号。 基站在多个频域位置检测所述上行接入信号, 当基站在频域位置 14处 检测到所述上行接入信号质量最优后, 基站就获得了基站对于所述终端的 下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下行波束 索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波束索引 获得了终端给所述基站发送上行数据的最优波束。
实施例 4:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。基站和终端预设了 N个频域位置分别对应 N个下行波束索引, 基站和终端预设了 M个频域位置分别对应 M上行波束索引。或者,基站通 过系统消息通知终端 N个频域位置分别对应 N个下行波束索引, 基站和终 端预设了 M个频域位置分别对应 M上行波束索引。其中, 下行波束索引对 应的频域位置称为下行波束频域位置, 上行波束索引对应的频域位置称为 上行波束频域位置。 其中, 下行波束频域位置为多个起始频域位置和 /或带 宽等级的集合, 上行波束频域位置为上行波束频域位置的子集。 或者, 下 行波束频域位置为多个起始频域位置或者带宽等级的集合, 上行波束频域 位置为上行波束频域位置的子集。
基站通过在一个或者多个频域位置检测终端的上行接入信号即可获得 对应终端的下行波束索引和 /或上行波束索引。 如果终端通过系统消息获得 所述对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优下行波束索引后, 通过在对应频域位置上发送上行 接入信号来携带下行波束索引和 /或上行波束索引。 基站检测终端发送的信 号质量最优的上行接入信号, 并且通过所述上行接入信号的频域位置获得 对应的下行波束索引和 /或上行波束索引。 例如图 4所示。 其中频域位置可 以包括多个起始频域位置和 /或带宽等级集合。 子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 8个频域位置分别对应 8个下行波束索引, 基站和终端预 设了 8个频域位置分别对应 8下行波束索引。 或者, 基站通过系统消息通 知终端 8个频域位置分别对应 8个下行波束索引, 基站和终端预设了 8个 频域位置分别对应 8 下行波束索引。 其中, 下行波束索引对应的频域位置 称为下行波束频域位置, 上行波束索引对应的频域位置称为上行波束频域
Figure imgf000020_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择频域 位置 8~15发送上行接入信号。
基站在多个频域位置检测所述上行接入信号, 当基站在频域位置 14处 检测到所述上行接入信号质量最优后, 基站就获得了基站对于所述终端的 下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下行波束 索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波束索引 获得了终端给所述基站发送上行数据的最优波束。
实施例 5:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 N*M个上行接入信号序列集合分别对应 N*M 个联合波束索引。 或者, 基站通过系统消息通知终端 N*M个上行接入信号 序列集合分别与 N*M个联合波束索引的对应关系。基站通过检测上行接入 信号序列即可获得对应终端的下行波束索引和上行波束索引。 如果终端通 过系统消息获得 N*M个上行接入信号序列集合分别与 N*M个联合波束索 引的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优下行波束索引后, 通过在对应频域位置发送上行接 入信号来携带下行波束索引和上行波束索引。 基站检测终端发送的信号质 量最优的上行接入信号, 并且通过所述上行接入信号的频域位置获得对应 的下行波束索引和上行波束索引。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 64个上行接入信号序列集合分别对应 64个联合波束索引, 或者基站通过系统消息通知终端 64个上行接入信号序列集合和 64个联合 波束索引的对应关系, 如表 6 所示。 所述上行接入信号序列集合中至少包 括一个上行接入信号序列。
Figure imgf000022_0001
Figure imgf000022_0002
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择上行 接入信号序列集合 8~15中的序列发送上行接入信号。
基站在利用多个上行接入信号序列检测所述上行接入信号, 当基站检 测到质量最优上行接入信号采用上行接入信号序列集合 14中的序列时, 基 站就获得了基站对于所述终端的下行波束索引 1 以及最优上行波束对应上 行波束索引 6,进而根据下行波束索引获得了基站给所述终端发送下行数据 的最优波束, 根据上行波束索引获得了终端给所述基站发送上行数据的最 优波束。 实施例 6:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 X个上行接入信号序列集合和 Y个上行接入信 号的时域位置组成 X*Y=N*M个序列时域位置集合分别对应 N*M个联合波 束索引。 或者, 基站通过系统消息通知终端 X个上行接入信号序列集合和 Y个上行接入信号的时域位置组成 X*Y=N*M个序列时域位置集合和 N*M 个联合波束索引的对应关系。 基站通过检测上行接入信号的序列以及时域 位置即可获得对应终端的下行波束索引和上行波束索引。 如果终端通过系 统消息获得 X*Y个序列时域位置集合与 Ν*Μ个联合波束索引的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基 站的最优下行波束索引后, 通过在对应时域位置采用对应的上行接入信号 序列发送上行接入信号来携带下行波束索引和上行波束索引。 基站检测终 端发送的信号质量最优的上行接入信号, 并且通过所述上行接入信号的时 域位置和上行接入信号序列属于哪一个上行接入信号序列集合获得对应的 下行波束索引和上行波束索引。 其中, 时域位置可以包括多个时间单元集 合。 时域位置包括占用的时间单元索引和 /或持续时间等级。 其中持续时间 等级可以以包含的时间单元个数来体现。 其中持续时间等级也可以为上行 接入信号的时域重复等级。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 8个上行接入信号发送时域位置和 8个上行接入信号序列 集合组成 64个序列时域位置集合, 64个序列时域位置集合分别与 64个联 合波束索引对应。 或者基站通过系统消息通知终端 64个序列时域位置集合 和 64个联合波束索引的对应关系, 如表 7所示。 所述上行接入信号序列集 合中至少包括一个上行接入信号序列。
7
Figure imgf000024_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择上行 接入信号序列时域位置集合 8~15中的时域位置和上行接入信号的序列发送 上行接入信号。
基站在多个时域位置利用多个上行接入信号序列检测所述上行接入信 号, 当基站检测到质量最优上行接入信号采用上行接入信号序列时域位置 集合 14中的时域位置和上行接入信号序列时, 基站就获得了基站对于所述 终端的下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下 行波束索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波 束索引获得了终端给所述基站发送上行数据的最优波束。
实施例 7:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 X个上行接入信号序列集合和 Y个上行接入信 号的频域位置组成 X*Y=N*M个序列频域位置集合分别对应 N*M个联合波 束索引。 或者, 基站通过系统消息通知终端 X个上行接入信号序列集合和 Y个上行接入信号的频域位置组成 X*Y=N*M个序列频域位置集合和 N*M 个联合波束索引的对应关系。 基站通过检测上行接入信号的序列以及频域 位置即可获得对应终端的下行波束索引和上行波束索引。 如果终端通过系 统消息获得 X*Y个序列频域位置集合与 Ν*Μ个联合波束索引的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基 站的最优下行波束索引后, 通过在对应频域位置采用对应的上行接入信号 序列发送上行接入信号来携带下行波束索引和上行波束索引。 基站检测终 端发送的信号质量最优的上行接入信号, 并且通过所述上行接入信号的频 域位置和上行接入信号序列属于哪一个上行接入信号序列集合获得对应的 下行波束索引和上行波束索引。 其中频域位置可以包括多个起始频域位置 和 /或带宽等级集合。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 8个上行接入信号发送频域位置和 8个上行接入信号序列 集合组成 64个序列频域位置集合, 64个序列频域位置集合分别与 64个联 合波束索引对应。 或者基站通过系统消息通知终端 64个序列频域位置集合 和 64个联合波束索引的对应关系, 如表 8所示。 所述上行接入信号序列集 合中至少包括一个上行接入信号序列。
8
Figure imgf000026_0001
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择上行 接入信号序列频域位置集合 8~15中的频域位置和上行接入信号的序列发送 上行接入信号。
基站在多个频域位置利用多个上行接入信号序列检测所述上行接入信 号, 当基站检测到质量最优上行接入信号采用上行接入信号序列频域位置 集合 14中的频域位置和上行接入信号序列时, 基站就获得了基站对于所述 终端的下行波束索引 1以及最优上行波束对应上行波束索引 6,进而根据下 行波束索引获得了基站给所述终端发送下行数据的最优波束, 根据上行波 束索引获得了终端给所述基站发送上行数据的最优波束。
实施例 8:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 X个上行接入信号时域位置和 Y个上行接入信 号的频域位置组成 X*Y=N*M个时域和频域联合位置分别对应 N*M个联合 波束索引。 或者, 基站通过系统消息通知终端 X个上行接入信号时域位置 和 Y个上行接入信号的频域位置组成 X*Y=N*M个时域和频域联合位置和 N*M个联合波束索引的对应关系。 基站通过检测上行接入信号的时域位置 以及频域位置即可获得对应终端的下行波束索引和上行波束索引。 如果, 终端通过系统消息获得 X*Y个时域和频域联合位置与 Ν*Μ个联合波束索 引的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优下行波束索引后, 通过在对应频域位置和时域位置 发送上行接入信号来携带下行波束索引和上行波束索引。 基站检测终端发 送的信号质量最优的上行接入信号, 并且通过所述上行接入信号的频域位 置和时域位置获得对应的下行波束索引和上行波束索引。 如图 5 所示, 所 示 BFn表示下行波束索引和 /或上行波束索引。 其中频域位置可以包括多个 起始频域位置和 /或带宽等级集合。 其中时域位置可以包括多个时间单元集 合。 时域位置包括占用的时间单元索引和 /或持续时间等级。 其中持续时间 等级可以以包含的时间单元个数来体现。 其中持续时间等级也可以为上行 接入信号的时域重复等级。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 8个上行接入信号发送频域位置和 8个上行接入信号的时 域位置组成 64 个时域和频域联合位置, 64个时域和频域联合位置分别与 64个联合波束索引对应。或者基站通过系统消息通知终端 64个时域和频域 联合位置和 64个联合波束索引的对应关系, 如表 9所示。 所述上行接入信 号序列集合中至少包括一个上行接入信号序列。
Figure imgf000028_0001
Figure imgf000028_0002
终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择上行 接入信号时域和频域联合位置 8~15中上行接入信号的频域位置和上行接入 信号的时域位置发送上行接入信号。
基站在多个时域位置和频域位置检测所述上行接入信号, 当基站检测 到质量最优上行接入信号采用上行接入信号时域和频域联合位置 14中的频 域位置和时域位置时, 基站就获得了基站对于所述终端的下行波束索引 1 以及最优上行波束对应上行波束索引 6,进而根据下行波束索引获得了基站 给所述终端发送下行数据的最优波束, 根据上行波束索引获得了终端给所 述基站发送上行数据的最优波束。
实施例 9:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 M个上行波束来发送上行 数据给基站。 N个下行波束索引和 M个上行波束索引构成 N*M个联合波 束索引。 基站和终端预设了 X个上行接入信号时域位置、 Y个上行接入信 号的频域位置以及 Z个上行接入信号序列集合, 组成 X*Y*Z=N*M个序列 以及时域和频域联合位置集合分别对应 N*M个联合波束索引。 或者, 基站 通过系统消息通知终端 X个上行接入信号时域位置、 Y个上行接入信号的 频域位置以及 Z个上行接入信号序列集合, 组成 X*Y*Z=N*M个序列以及 时域和频域联合位置集合和 N*M个联合波束索引的对应关系。基站通过检 测上行接入信号的时域位置、 频域位置以及上行接入信号的序列属于哪一 个上行接入信号序列集合即可获得对应终端反馈的下行波束索引和使用的 上行波束索引。 如果终端通过系统消息获得 X个上行接入信号时域位置、 Y 个上行接入信号的频域位置以及 Z 个上行接入信号序列集合, 组成 χ*γ*Ζ=Ν*Μ个序列以及时域和频域联合位置集合与 N*M个联合波束索引 的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优下行波束索引后, 通过在对应频域位置、 时域位置 上利用对应的上行接入信号序列集合中的序列发送上行接入信号来携带下 行波束索引和上行波束索引。 基站检测终端发送的信号质量最优的上行接 入信号, 并且通过所述上行接入信号的频域位置、 时域位置和序列获得对 应的下行波束索引和上行波束索引。 如图 6所示, 其中, 所示 BFn表示下 行波束索引和 /或上行波束索引。 所述频域位置可以包括多个起始频域位置 和 /或带宽等级集合; 时域位置可以包括多个时间单元集合。 时域位置包括 占用的时间单元索引和 /或持续时间等级。 其中持续时间等级可以以包含的 时间单元个数来体现。 其中持续时间等级也可以为上行接入信号的时域重 复等级。
子实施例 1 :
假设基站利用了 8个波束发送了下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 终端可以利用 8个波束进行上行数据的 传输。 8个下行波束索引和 8个上行波束索引构成 64个联合波束索引。 基 站和终端预设了 2个上行接入信号发送频域位置、 2个上行接入信号的时域 位置以及 16个上行接入信号序列集合组成 64个序列以及时域和频域联合 位置集合, 64个序列以及时域和频域联合位置集合分别与 64个联合波束索 引对应。 或者基站通过系统消息通知终端 64个序列以及时域和频域联合位 置集合和 64个联合波束索引的对应关系, 如表 10所示。 所述上行接入信 号序列集合中至少包括一个上行接入信号序列。
Figure imgf000030_0001
下行波束索引 &上行波束 序列以及时域和频域联合位置集合
索引一一联合波束索引
0&0—— 0 序列以及时域和频域联合位置集合 0
0&1—— 1 序列以及时域和频域联合位置集合 1
0&7—— 7 序列以及时域和频域联合位置集合 7
1&0—— 8 序列以及时域和频域联合位置集合 8
1&1—— 9 序列以及时域和频域联合位置集合 9 1&7—— 15 序列以及时域和频域联合位置集合 15
7 & 6—— 62 序列以及时域和频域联合位置集合 62
7 & 7—— 63 序列以及时域和频域联合位置集合 63 终端通过检测下行信号, 获得最优的下行波束索引为 1, 终端选择上行 接入信号序列以及时域和频域联合位置集合 8~15中上行接入信号的频域位 置和上行接入信号的时域位置以及上行接入信号序列集合中的序列发送上 行接入信号。
基站在多个时域位置和频域位置检测所述上行接入信号, 当基站检测 到质量最优上行接入信号采用上行接入信号序列以及时域和频域联合位置 集合 14中的频域位置、 时域位置以及上行接入信号序列序列时, 基站就获 得了基站对于所述终端的下行波束索引 1 以及最优上行波束对应上行波束 索引 6,进而根据下行波束索引获得了基站给所述终端发送下行数据的最优 波束, 根据上行波束索引获得了终端给所述基站发送上行数据的最优波束。
本发明实施例还可以包括, 上行波束索引和下行波束索引采用不同的 上行接入信号特性进行对应。 例如: 上行波束索引对应时域位置, 下行波 束索引对应频域位置; 或者, 上行波束索引对应频域位置, 下行波束索引 对应时域位置; 或者, 上行波束索引对应上行接入信号序列集合, 下行波 束索引对应时域位置; 或者, 上行波束索引对应时域位置, 下行波束索引 对应上行接入信号序列集合; 或者, 上行波束索引对应频域位置, 下行波 束索引对应上行接入信号序列集合; 或者, 上行波束索引对应上行接入信 号序列集合, 下行波束索引对应频域位置等等。
实施例 10:
假设基站利用 N个波束发送下行同步信号和 /或下行系统信息, 可以基 本覆盖基站需要覆盖的区域。 基站和终端预设了上行接入信号序列集合, 时域位置以及频域位置, 或者, 基站通过系统消息通知终端上行接入信号 序列集合, 时域位置以及频域位置。 另外, 终端在接入信号后需要携带下 行波束索引的信息比特或者波束识别序列。 例如, 终端在发送完接入信号 后在时域和 /或频域发送携带下行波束索引和 /或上行波束索引的信息比特。 或者, 终端在发送完接入信号后在时域和 /或频域发送携带下行波束索引和 / 或上行波束索引的波束识别序列, 不同的波束识别序列集合可以对应不同 的下行波束索引和 /或上行波束索引。 如图 7所示。 每个波束识别序列集合 中至少包括一个序列。 其中波束识别序列集合和下行波束索引的对应关系 可以通过预设的方式确定, 或者基站通过系统消息通知给终端。 可以利用 上行接入信号的时域位置和 /或频域位置和 /或序列来指示下行波束, 利用附 加比特信息或者波束识别序列指示上行波束索引。 或者, 可以利用上行接 入信号的时域位置和 /或频域位置和 /或序列来指示上行波束, 利用附加比特 信息或者波束识别序列指示下行波束索引。
实施例 11 :
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个时域位置分别对 应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N个时域位置分 别与 N个下行波束索引的对应关系。 基站通过在一个或者多个时域位置检 测终端的上行接入信号所处的时域位置即可获得对应终端反馈的下行波束 索引。 如果终端通过系统消息获得 N个时域位置分别与 N个下行波束索引 的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过在对应时域位置发送上 行接入信号来间接反馈下行波束索引。 例如图 3 所示。 其中时域位置可以 包括多个时间单元的集合。 时间单元可以为 帧, 子帧, 半帧, 无线帧等 等。 终端在发送上行接入信号时为了保证覆盖需要对所述上行接入信号进 行波束赋型, 即采用上行波束发送所述上行接入信号, 终端通过在基站配 置的对应于下行波束索引的时域位置中选择一个子集的时间单元或者持续 时间来标识所述上行接入信号的上行波束, 基站不需要知道上行波束索引 和所述子集的关系, 基站仅仅反馈对应的时域位置子集索引或者在对应的 时域位置进行随机接入响应即可, 终端根据基站反馈对应的时域位置子集 索引或者接收到随机接入响应的时刻即可判断出基站反馈的最优上行波束 索引, 从而根据所述上行波束索引获得终端到基站的最优上行波束。
子实施例 1 :
假设基站利用了 8个下行波束发送了同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 8个时域位置分别对 应 8个下行波束索引, 或者基站通过系统消息通知终端 8个时域位置分别 和 8个下行波束索引之间的对应关系, 如表 11所示。 其中时域位置可以包 括占用的时间单元索弓 I和 /或持续时间。 其中持续时间可以以包含的时间单 元个数来体现。 其中持续时间也可以为上行接入信号的时域重复次数。
Figure imgf000033_0001
下行波束索引 发送上行接入信号的时域位置
0 时 i或位置 0
1 时 i或位置 1
2 时 i或位置 2
3 时 i或位置 3
4 时 i或位置 4
5 时 i或位置 5
6 时 i或位置 6
7 时 i或位置 7 假设终端通过检测下行信号, 获得最优的下行波束索引为 6, 这时终端 选择时域位置 6发送上行接入信号。
基站在多个时域位置检测所述上行接入信号, 当基站在时域位置 6处 检测到所述上行接入信号后, 基站就获得了所述终端反馈的下行波束索引, 进而根据所述反馈的下行波束索引基站获得了给所述终端发送下行数据的 最优波束。 基站在之后的时间给所述终端传输数据可以采用所述最优波束。
假设终端可以利用 4个上行波束发送上行接入信号, 所述时域位置 6 包括: 时间单元集合 {8n, 8n+2, 8n+4, 8n+6}, 其中 η>-1, n为整数。 终 端在时间单元 8n上利用上行波束索引 0对应的上行波束发送上行接入信 号, 终端在时间单元 8n+2上利用上行波束索引 1对应的上行波束发送上行 接入信号, 终端在时间单元 8n+4上利用上行波束索引 2对应的上行波束发 送上行接入信号, 终端在时间单元 8n+6上利用上行波束索引 3对应的上行 波束发送上行接入信号。
基站检测信号质量的上行接入信号, 并且在下行接入响应中直接或者 间接的反馈上行接入信号所在的时间单元相关信息, 终端获得基站反馈的 时间单元相关信息就可以获得终端到基站的对应的最优上行波束。
实施例 12:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个频域位置分别对 应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N个频域位置分 别与 N个下行波束索引的对应关系。 基站通过在一个或者多个频域位置检 测终端的上行接入信号所处的频域位置即可获得对应终端反馈的下行波束 索引。 如果终端通过系统消息获得 N个频域位置分别与 N个下行波束索引 的对应关系, 那么终端需要首先接收所述系统消息, 获得所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过在对应频域位置发送上 行接入信号来间接反馈下行波束索引。 例如图 4 所示, 其中频域位置可以 包括多个频域起始位置和 /或带宽的集合。 终端在发送上行接入信号时, 为 了保证覆盖需要对所述上行接入信号进行波束赋型, 即采用上行波束发送 所述上行接入信号, 终端通过在基站配置的对应于下行波束索引的频域位 置中选择一个子集的频域位置和 /或带宽来标识所述上行接入信号的上行波 束, 基站不需要知道上行波束索引和所述子集的关系, 基站仅仅反馈对应 的频域位置子集索引或者在对应的频域位置进行随机接入响应即可, 终端 根据基站反馈对应的频域位置子集索引或者接收到随机接入响应的时刻, 即可判断出基站反馈的最优上行波束索引, 从而根据所述上行波束索引获 得终端到基站的最优上行波束。
子实施例 1 :
假设基站利用了 8个下行波束发送了同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 8个频域位置分别对 应 8个下行波束索引, 或者基站通过系统消息通知终端 8个频域位置分别 和 8个下行波束索引之间的对应关系, 如表 12所示。 其中频域位置可以包 括占用的时间单元索弓 I和 /或持续时间。 其中持续时间可以以包含的时间单 元个数来体现。 其中持续时间也可以为上行接入信号的频域重复次数。
Figure imgf000035_0001
下行波束索引 发送上行接入信号的频域位置
0 频 i或位置 0
1 频域位置 1
2 频域位置 2
3 频域位置 3
4 频 i或位置 4
5 频域位置 5 6 频 i或位置 6
7 频域位置 7 假设终端通过检测下行信号, 获得最优的下行波束索引为 6, 这时终端 选择频域位置 6发送上行接入信号。
基站在多个频域位置检测所述上行接入信号, 当基站在频域位置 6处 检测到所述上行接入信号后, 基站就获得了所述终端反馈的下行波束索引, 进而根据所述反馈的下行波束索引获得了基站给所述终端发送下行数据的 最优波束。 基站在之后的时间给所述终端传输数据可以采用所述最优波束。
假设终端可以利用 4个上行波束发送上行接入信号, 所述频域位置 6 包括: 频域起始位置和 /或带宽集合单元索引 {8n, 8n+2, 8n+4, 8n+6}, 其 中11>-1, n为整数。 终端在频域起始位置和 /或带宽集合单元索引 8n对应的 频域起始位置和 /或带宽上利用上行波束索引 0对应的上行波束发送上行接 入信号;终端在频域起始位置和 /或带宽集合单元索引 8n+2对应的频域起始 位置和 /或带宽上利用上行波束索引 1对应的上行波束发送上行接入信号; 终端在频域起始位置和 /或带宽集合单元索引 8n+4对应的频域起始位置和 / 或带宽上利用上行波束索引 2对应的上行波束发送上行接入信号; 终端在 频域起始位置和 /或带宽集合单元索引 8n+6对应的频域起始位置和 /或带宽 上利用上行波束索引 3对应的上行波束发送上行接入信号。
基站检测信号质量最优的上行接入信号, 并且在下行接入响应中直接 或间接的反馈所述上行接入信号的频域起始位置和 /或带宽单元索引相关信 息, 终端通过获得基站反馈的频域起始位置和 /或带宽单元索引相关信息来 进一步获得终端到基站对应的最优上行波束。
实施例 13:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个上行接入信号序 列集合分别对应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N 个上行接入信号序列集合分别与 N个下行波束索引的对应关系。 基站检测 终端的上行接入信号序列所在的上行接入信号序列集合即可获得对应终端 反馈的下行波束索引。 如果终端通过系统消息获得 N个上行接入信号序列 集合分别与 N个下行波束索引的对应关系, 那么终端需要首先接收所述系 统消息, 获得所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过利用对应上行接入信号序列集合中的序列发送上行接入信号来间接反 馈下行波束索引。 终端在发送上行接入信号时, 为了保证覆盖需要对所述 上行接入信号进行波束赋型, 即采用上行波束发送所述上行接入信号, 终 端通过在基站配置的对应于下行波束索引的上行接入信号序列集合中, 选 择一个子集中的上行接入信号序列来标识所述上行接入信号的上行波束, 基站不需要知道上行波束索引和所述子集序列的关系, 基站仅仅在接入响 应中直接或间接的反馈对应的子集序列索引即可, 终端根据基站反馈对应 的子集序列索引即可判断出基站反馈的最优上行波束索引, 从而根据所述 上行波束索引获得终端到基站的最优上行波束。
子实施例 1 :
假设基站利用了 8个下行波束发送了同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 8个上行接入信号序 列集合分别对应 8个下行波束索引, 或者基站通过系统消息通知终端 8个 上行接入信号序列集合分别和 8个下行波束索引之间的对应关系, 如表 13 所示。
Figure imgf000037_0001
下行波束索引 上行接入信号序列集合
0 上行接入信号序列集合 0
1 上行接入信号序列集合 1 2 上行接入信号序列集合 2
3 上行接入信号序列集合 3
4 上行接入信号序列集合 4
5 上行接入信号序列集合 5
6 上行接入信号序列集合 6
7 上行接入信号序列集合 7 假设终端通过检测下行信号, 获得最优的下行波束索引为 6, 这时终端 选择上行接入信号序列集合 6中的上行接入信号序列发送上行接入信号。
基站检测所述上行接入信号, 当基站检测到信号质量最优的上行接入 信号序列来自于上行接入信号序列集合 6,基站就获得了所述终端反馈的下 行波束索引 6,进而根据所述反馈的下行波束索引获得了基站给所述终端发 送下行数据的最优波束。 基站在之后的时间给所述终端传输数据可以采用 所述最优波束。
假设终端可以利用 4个上行波束发送上行接入信号, 所述上行接入信 号序列集合 6包括: 上行接入信号序列子集合 0~3。终端在利用上行接入信 号序列子集合 0中的序列和上行波束 0发送上行接入信号 0。终端在利用上 行接入信号序列子集合 1中的序列和上行波束 1发送上行接入信号 1。终端 在利用上行接入信号序列子集合 2中的序列和上行波束 2发送上行接入信 号 2。终端在利用上行接入信号序列子集合 3中的序列和上行波束 3发送上 行接入信号 3。
基站检测信号质量最优的上行接入信号, 并且在下行接入响应中直接 或间接的反馈所述上行接入信号的序列子集合索引相关信息, 终端通过获 得基站反馈的序列子集合索引相关信息来进一步获得终端到基站对应的最 优上行波束。
实施例 14: 假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个上行接入信号序 列集合分别对应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N 个上行接入信号序列集合分别与 N个下行波束索引的对应关系。 基站检测 终端的上行接入信号序列所在的上行接入信号序列集合即可获得对应终端 反馈的下行波束索引。 如果终端通过系统消息获得 N个上行接入信号序列 集合分别与 N个下行波束索引的对应关系, 那么终端需要首先接收所述系 统消息, 获得所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过利用对应上行接入信号序列集合中的序列发送上行接入信号来间接反 馈下行波束索引。 终端在发送上行接入信号时为了保证覆盖需要对所述上 行接入信号进行波束赋型, 即采用上行波束发送所述上行接入信号, 终端 通过在基站配置的或者预设的时域位置和 /或频域位置上利用下行波束对应 的上行接入信号序列发送上行接入信号, 终端利用时域和 /或频域位置的不 同来标识不同的上行波束。 基站不需要时域位置和 /或频域位置与上行波束 的对应关系。 基站仅仅在接入响应中直接或间接的反馈对应的时域位置和 / 或频域位置索引相关信息即可, 终端根据基站反馈对应的时域位置和 /或频 域位置相关信息即可判断出基站反馈的最优上行波束索引, 从而根据所述 上行波束索引获得终端到基站的最优上行波束。
实施例 15:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个上行接入信号时 域位置分别对应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N 个上行接入信号时域位置分别与 N个下行波束索引的对应关系。 基站检测 终端的上行接入信号序列所在的时域位置即可获得对应终端反馈的下行波 束索引。 如果终端通过系统消息获得 N个上行接入信号时域位置分别与 N 个下行波束索引的对应关系, 那么终端需要首先接收所述系统消息, 获得 所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过在对应 上行接入信号时域位置发送上行接入信号来间接反馈下行波束索引。 终端 在发送上行接入信号时为了保证覆盖需要对所述上行接入信号进行波束赋 型, 即采用上行波束发送所述上行接入信号, 终端通过利用基站配置的或 者预设的上行接入信号序列集合中的序列在基站配置的或者预设的频域位 置上发送上行接入信号, 终端利用频域位置和 /或上行接入信号序列的不同 来标识不同的上行波束。 基站不需要知道频域位置和 /或上行接入信号序列 与上行波束的对应关系。 基站仅仅在接入响应中直接或间接的反馈对应的 频域位置和 /或上行接入信号序列索引相关信息即可, 终端根据基站反馈对 应的频域位置和 /或上行接入信号序列相关信息即可判断出基站反馈的最优 上行波束索引, 从而根据所述上行波束索引获得终端到基站的最优上行波 束。
实施例 16:
假设基站利用 N个下行波束发送下行同步信号和 /或下行系统信息, 可 以基本覆盖基站需要覆盖的区域。 基站和终端预设了 N个上行接入信号频 域位置分别对应 N个下行波束索引。 或者, 基站通过系统消息通知终端 N 个上行接入信号频域位置分别与 N个下行波束索引的对应关系。 基站检测 终端的上行接入信号序列所在的频域位置即可获得对应终端反馈的下行波 束索引。 如果终端通过系统消息获得 N个上行接入信号频域位置分别与 N 个下行波束索引的对应关系, 那么终端需要首先接收所述系统消息, 获得 所述对应关系。 终端在获得基站的最优波束索引相关信息后, 通过在对应 上行接入信号频域位置发送上行接入信号来间接反馈下行波束索引。 终端 在发送上行接入信号时, 为了保证覆盖需要对所述上行接入信号进行波束 赋型, 即采用上行波束发送所述上行接入信号, 终端通过利用基站配置的 或者预设的上行接入信号序列集合中的序列在基站配置的或者预设的时域 位置上发送上行接入信号, 终端利用时域位置和 /或上行接入信号序列的不 同来标识不同的上行波束。 基站不需要知道时域位置和 /或上行接入信号序 列与上行波束的对应关系。 基站仅仅在接入响应中直接或间接的反馈对应 的时域位置和 /或上行接入信号序列索引相关信息即可, 终端才艮据基站反馈 对应的时域位置和 /或上行接入信号序列相关信息即可判断出基站反馈的最 优上行波束索引, 从而根据所述上行波束索引获得终端到基站的最优上行 波束。
考虑到终端的不同上行波束可能发送功率不同, 为了使得终端利用较 低的功率波束达到信号质量要求的目的, 基站可以配置终端对于不同波束 采用不同的发送功率。
本发明中所述的反馈波束索引, 包括反馈一个最优上行波束的索引, 反馈一个最优下行波束的索引, 反馈多个最优上行波束的索引, 反馈多个 最优下行波束的索引。
本发明实施例还提供了一种基站, 如图 8所示, 所述基站 80包括: 配 置发送模块 801和接收识别模块 802; 其中,
所述配置发送模块 801 可以由基站的发射器实现, 配置为通过预设的 方式和 /或系统消息配置的方式通知上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系; 所述上行接入信号的特性用于指示发送所述 上行接入信号的上行波束索引和 /或下行波束索引;
所述接收识别模块 802 可以由基站的接收器实现, 配置为收到所述上 行接入信号后, 通过识别上行接入信号的特性获得所述上行波束索引和 /或 下行波束索引。
其中, 所述上行接入信号的特性至少包括以下之一: 上行接入信号的 时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识 别序列。
其中, 所述接收识别模块 802识别所述上行波束索引和 /或下行波束索 引, 包括以下至少之一:
接收识别模块 802通过接收到的上行接入信号的时域位置进行识别; 接收识别模块 802通过接收到的上行接入信号的频域位置进行识别; 接收识别模块 802通过接收到的上行接入信号所采用的序列集合进行 识别;
接收识别模块 802通过接收到的上行接入信号后携带的索引指示比特 信息进行识别;
接收识别模块 802通过接收到的上行接入信号后携带的波束识别序列 进行识别。
优选的, 所述接收识别模块 802通过时域位置来识别上行波束索引和 / 或下行波束索引时,
所述配置发送模块 801,还配置为进行系统消息配置时, 在所述系统消 息中添加所述时域位置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述接收识别模块 802通过频域位置来识别上行波束索引和 / 或下行波束索引时,
所述配置发送模块 801,还配置为进行系统消息配置时, 在所述系统消 息中添加所述频域位置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述接收识别模块 802通过上行接入信号序列来识别上行波 束索引和 /或下行波束索引时,
所述配置发送模块 801,还配置为进行系统消息配置时, 在所述系统消 息中添加所述上行接入信号序列集合与上行波束索引和 /或下行波束索引的 对应关系。 本发明实施例还提供了一种终端, 如图 9所示, 所述终端 90包括: 接 收模块 901和发送模块 902; 其中,
所述接收模块 901 可以由终端的接收器实现, 配置为通过预设的方式 和 /或接收系统消息配置的方式获得上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系;
所述发送模块 902可以由终端的发射器实现, 配置为发送上行接入信 号, 所述上行接入信号的特性用于指示终端发送所述上行接入信号的上行 波束对应上行波束索引和 /或需要反馈的下行波束索引。
优选的, 所述接收模块 901,还配置为采用预设的方式或通过接收系统 消息的配置来获得波束指示方式。
其中, 所述上行接入信号的特性至少包括以下之一: 上行接入信号的 时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识 别序列。
其中, 所述发送模块 902指示所述上行波束索引和 /或下行波束索引, 包括以下至少之一:
在预设的时域位置发送所述上行接入信号;
在预设的频域位置发送所述上行接入信号;
按照预设的序列集合, 在序列集合中选择对应的序列发送所述上行接 入信号;
在发送所述上行接入信号时, 携带上行波束索引和 /或下行波束索引的 指示比特信息;
在发送所述上行接入信号时, 携带波束识别序列用于指示上行波束索 引和 /或下行波束索引。
优选的, 所述发送模块 902利用发送上行接入信号的时域位置来指示 上行波束索引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得所述时域位置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述发送模块 902利用发送上行接入信号的频域位置来指示 上行波束索引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得所述频域位置与上行波束索引和 /或下行波束索引的对应关系。
优选的, 所述发送模块 902利用上行接入信号序列来指示上行波束索 引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得上行接入信号序列集合与上行波束索引和 /或下行波束索引的对应关 系。
本发明实施例还提供了一种上下行波束混合指示的系统,如图 10所示, 该系统包括: 上文所述的基站 80和终端 90。
优选的, 所述基站 80中的配置发送模块 801, 还配置为通过预设的方 式或系统消息配置的方式设置与所述终端采用一致的波束识别方式。
优选的, 所述基站 80中的配置发送模块 801, 还配置为通过预设的方 式、 或系统消息配置的方式通知终端需采用的波束指示方式。
优选的, 当所述基站 80和终端 90没有预设上行接入信号的特性与上 行波束的对应关系, 且基站 80没有通过系统消息配置的方式通知终端上行 接入信号的特性与上行波束的对应关系时,
所述终端 90中的发送模块 902, 还配置为在下行波束索引对应的上行 接入信号的特性中携带上行波束索引。
以上各个实施例的方案之间可以以某种组合方式产生一些组合方案, 采用本发明中各个方案的组合方案均在本发明的保护范围之内。 本发明中所述终端检测最优序列的方法有艮多, 均为检测的实现方法, 例如采用序列相关的方法, 选择相关值最高的序列索引进行反馈。 不同的 准则可能选择出的序列索引不同, 对于本发明的发明思想并不存在限制关 系。 无论采用何种检测方法, 只要求得一个最优或者几个最优值, 并且可 以对应出索引值, 均在本发明的保护思想范围之内。 本领域内的技术人员 应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可采用硬件实施例、 软件实施例、 或结合软件和硬件方面的实施例 的形式。 而且, 本发明可采用在一个或多个其中包含有计算机可用程序代 码的计算机可用存储介质 (包括但不限于磁盘存储器和光学存储器等)上 实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得 通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的步骤。
相应的, 本发明实施例还提供一种计算机存储介质, 其中存储有计算 机程序, 该计算机程序用于执行本发明实施例中基站侧的上下行波束混合 指示的方法或终端侧的上下行波束混合指示的方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
综合以上实施例, 基站可以获得所述终端反馈的最优下行波束, 从而 保证了后续下行控制信息的可靠传输。 另外, 如果引入上行波束传输, 基 站可以通过检测终端上行接入信号质量最优的上行接入信号, 然后通知对 应的索引给所述终端, 终端获得上行波束索引后即获得了终端到基站的最 优上行波束。

Claims

权利要求书
1、 一种上下行波束混合指示的方法, 该方法包括:
基站通过预设的方式和 /或系统消息配置的方式通知上行接入信号的特 性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接入信号的特 性用于指示发送所述上行接入信号的上行波束索引和 /或下行波束索引; 基站收到所述上行接入信号后, 通过识别上行接入信号的特性获得所 述上行波束索引和 /或下行波束索引。
2、 根据权利要求 1所述的方法, 其中, 所述上行接入信号的特性至少 包括以下之一: 上行接入信号的时域位置、 上行接入信号的频域位置、 上 行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信息、 上行接入信号后携带的波束识别序列。
3、 根据权利要求 2所述的方法, 其中, 所述基站识别所述上行波束索 引和 /或下行波束索引的方法, 包括以下至少之一:
通过接收到的上行接入信号的时域位置进行识别;
通过接收到的上行接入信号的频域位置进行识别;
通过接收到的上行接入信号所采用的序列集合进行识别;
通过接收到的上行接入信号后携带的索引指示比特信息进行识别; 通过接收到的上行接入信号后携带的波束识别序列进行识别。
4、 根据权利要求 3所述的方法, 其中, 所述基站通过时域位置来识别 上行波束索引和 /或下行波束索引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述时域位置 与上行波束索弓 I和 /或下行波束索引的对应关系。
5、 根据权利要求 3所述的方法, 其中, 所述基站通过频域位置来识别 上行波束索引和 /或下行波束索引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述频域位置 与上行波束索弓 I和 /或下行波束索引的对应关系。
6、 根据权利要求 3所述的方法, 其中, 所述基站通过上行接入信号序 列来识别上行波束索引和 /或下行波束索引时, 该方法还包括:
所述基站进行系统消息配置时, 在所述系统消息中添加所述上行接入 信号序列集合与上行波束索引和 /或下行波束索引的对应关系。
7、 一种上下行波束混合指示的方法, 该方法包括:
终端通过预设的方式和 /或接收系统消息配置的方式获得上行接入信号 的特性与上行波束索引和 /或下行波束索引的对应关系后, 发送上行接入信 号, 所述上行接入信号的特性用于指示终端发送所述上行接入信号的上行 波束对应上行波束索引和 /或需要反馈的下行波束索引。
8、 根据权利要求 7所述的方法, 其中,
所述上行波束索引是指: 终端发送上行接入信号时终端采用的上行波 束对应的索引;
所述下行波束索引是指: 终端通过接收下行信号按照特定的规则选择 得到的最优下行波束对应的波束索引。
9、 根据权利要求 7或 8所述的方法, 其中, 所述上行接入信号的特性 至少包括以下之一: 上行接入信号的时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信 息、 上行接入信号后携带的波束识别序列。
10、 根据权利要求 9所述的方法, 其中, 所述终端指示所述上行波束 索引和 /或下行波束索引的方法, 包括以下至少之一:
在预设的时域位置发送所述上行接入信号;
在预设的频域位置发送所述上行接入信号;
按照预设的序列集合, 在序列集合中选择对应的序列发送所述上行接 入信号; 在发送所述上行接入信号时, 携带上行波束索引和 /或下行波束索引的 指示比特信息;
在发送所述上行接入信号时, 携带波束识别序列用于指示上行波束索 引和 /或下行波束索引。
11、 根据权利要求 7或 8所述的方法, 其中, 该方法还包括: 所述终端采用预设的方式来获得波束指示方式。
12、 根据权利要求 7或 8所述的方法, 其中, 该方法还包括: 所述终端通过接收系统消息的配置来获得波束指示方式。
13、 根据权利要求 10所述的方法, 其中, 所述终端利用发送上行接入 信号的时域位置来指示上行波束索引和 /或下行波束索引时,该方法还包括: 所述终端在收到所述系统消息后, 在所述系统消息中获得所述时域位 置与上行波束索引和 /或下行波束索引的对应关系。
14、 根据权利要求 10所述的方法, 其中, 所述终端利用发送上行接入 信号的频域位置来指示上行波束索引和 /或下行波束索引时,该方法还包括: 所述终端在收到所述系统消息后, 在所述系统消息中获得所述频域位 置与上行波束索引和 /或下行波束索引的对应关系。
15、 根据权利要求 10所述的方法, 其中, 所述终端利用上行接入信号 序列来指示上行波束索引和 /或下行波束索引时, 该方法还包括:
所述终端在收到所述系统消息后, 在所述系统消息中获得上行接入信 号序列集合与上行波束索引和 /或下行波束索引的对应关系。
16、 一种上下行波束混合指示的方法, 该方法包括:
基站通过预设的方式和 /或系统消息配置的方式通知终端上行接入信号 的特性与上行波束索引和 /或下行波束索引的对应关系, 所述上行接入信号 的特性用于指示终端发送所述上行接入信号的上行波束索引和 /或下行波束 索引; 基站收到终端发送的上行接入信号后, 通过识别所述上行接入信号的 特性获得所述上行波束索引和 /或下行波束索引。
17、 根据权利要求 16所述的方法, 其中, 所述上行接入信号的特性至 少包括以下之一: 上行接入信号的时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信 息、 上行接入信号后携带的波束识别序列。
18、 才艮据权利要求 16所述的方法, 其中, 该方法还包括:
所述基站通过预设的方式或系统消息配置的方式设置与终端采用一致 的波束识别方式。
19、 才艮据权利要求 16所述的方法, 其中, 该方法还包括:
所述基站通过预设的方式或系统消息配置的方式通知终端需采用的波 束指示方式。
20、 根据权利要求 19所述的方法, 其中, 所述基站通过系统消息配置 的方式通知波束指示方式, 包括:
所述基站利用 S种波束发送的系统消息携带 N种波束指示方式的配置 信息, 其中 S>0,N>0。
21、 根据权利要求 17所述的方法, 其中, 所述上行接入信号的特性为 上行接入信号的时域位置时, 该方法还包括:
所述基站与终端通过预设的方式设置所述时域位置与上行波束索引和 / 或下行波束索引的对应关系。
22、 根据权利要求 17所述的方法, 其中, 所述上行接入信号的特性为 上行接入信号的频域位置时, 该方法还包括:
所述基站与终端通过预设的方式设置所述频域位置与上行波束索引和 / 或下行波束索引的对应关系。
23、 根据权利要求 17所述的方法, 其中, 所述上行接入信号的特性为 上行接入信号所采用的序列集合中的序列时, 该方法还包括: 所述基站与终端通过预设的方式设置所述上行接入信号序列集合与上 行波束索引和 /或下行波束索引的对应关系。
24、 才艮据权利要求 16所述的方法, 其中, 该方法还包括:
当所述基站和终端没有预设上行接入信号的特性与上行波束的对应关 系, 且基站没有通过系统消息配置的方式通知终端上行接入信号的特性与 上行波束的对应关系时, 所述终端在下行波束索引对应的上行接入信号的 特性中携带上行波束索引。
25、 一种基站, 所述基站包括: 配置发送模块和接收识别模块; 其中, 所述配置发送模块, 配置为通过预设的方式和 /或系统消息配置的方式 通知上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系; 所述上行接入信号的特性用于指示发送所述上行接入信号的上行波束索引 和 /或下行波束索引;
所述接收识别模块, 配置为收到所述上行接入信号后, 通过识别上行 接入信号的特性获得所述上行波束索引和 /或下行波束索引。
26、 根据权利要求 25所述的基站, 其中, 所述上行接入信号的特性至 少包括以下之一: 上行接入信号的时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信 息、 上行接入信号后携带的波束识别序列。
27、 根据权利要求 26所述的基站, 其中, 所述接收识别模块识别所述 上行波束索引和 /或下行波束索引, 包括以下至少之一:
接收识别模块通过接收到的上行接入信号的时域位置进行识别; 接收识别模块通过接收到的上行接入信号的频域位置进行识别; 接收识别模块通过接收到的上行接入信号所采用的序列集合进行识 别; 接收识别模块通过接收到的上行接入信号后携带的索引指示比特信息 进行识别;
接收识别模块通过接收到的上行接入信号后携带的波束识别序列进行 识别。
28、 根据权利要求 27所述的基站, 其中, 所述接收识别模块通过时域 位置来识别上行波束索引和 /或下行波束索引时,
所述配置发送模块, 还配置为进行系统消息配置时, 在所述系统消息 中添加所述时域位置与上行波束索引和 /或下行波束索引的对应关系。
29、 根据权利要求 27所述的基站, 其中, 所述接收识别模块通过频域 位置来识别上行波束索引和 /或下行波束索引时,
所述配置发送模块, 还配置为进行系统消息配置时, 在所述系统消息 中添加所述频域位置与上行波束索引和 /或下行波束索引的对应关系。
30、 根据权利要求 27所述的基站, 其中, 所述接收识别模块通过上行 接入信号序列来识别上行波束索引和 /或下行波束索引时,
所述配置发送模块, 还配置为进行系统消息配置时, 在所述系统消息 中添加所述上行接入信号序列集合与上行波束索引和 /或下行波束索引的对 应关系。
31、 一种终端, 所述终端包括: 接收模块和发送模块; 其中, 所述接收模块, 配置为通过预设的方式和 /或接收系统消息配置的方式 获得上行接入信号的特性与上行波束索引和 /或下行波束索引的对应关系; 所述发送模块, 配置为发送上行接入信号, 所述上行接入信号的特性 用于指示终端发送所述上行接入信号的上行波束对应上行波束索引和 /或需 要反馈的下行波束索引。
32、 根据权利要求 31所述的终端, 其中, 所述接收模块, 还配置为采 用预设的方式或通过接收系统消息的配置来获得波束指示方式。
33、 根据权利要求 31所述的终端, 其中, 所述上行接入信号的特性至 少包括以下之一: 上行接入信号的时域位置、 上行接入信号的频域位置、 上行接入信号所采用的序列集合、 上行接入信号后携带的索引指示比特信 息、 上行接入信号后携带的波束识别序列。
34、 根据权利要求 33所述的终端, 其中, 所述发送模块指示所述上行 波束索引和 /或下行波束索引, 包括以下至少之一:
在预设的时域位置发送所述上行接入信号;
在预设的频域位置发送所述上行接入信号;
按照预设的序列集合, 在序列集合中选择对应的序列发送所述上行接 入信号;
在发送所述上行接入信号时, 携带上行波束索引和 /或下行波束索引的 指示比特信息;
在发送所述上行接入信号时, 携带波束识别序列用于指示上行波束索 引和 /或下行波束索引。
35、 根据权利要求 34所述的终端, 其中, 所述发送模块利用发送上行 接入信号的时域位置来指示上行波束索引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得所述时域位置与上行波束索引和 /或下行波束索引的对应关系。
36、 根据权利要求 34所述的终端, 其中, 所述发送模块利用发送上行 接入信号的频域位置来指示上行波束索引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得所述频域位置与上行波束索引和 /或下行波束索引的对应关系。
37、 根据权利要求 34所述的终端, 其中, 所述发送模块利用上行接入 信号序列来指示上行波束索引和 /或下行波束索引时,
所述接收模块, 还配置为在收到所述系统消息后, 在所述系统消息中 获得上行接入信号序列集合与上行波束索引和 /或下行波束索引的对应关 系。
38、 一种上下行波束混合指示的系统, 该系统包括: 权利要求 25-30 中任一项所述的基站和权利要求 31-37中任一项所述的终端。
39、根据权利要求 38所述的系统,其中, 所述基站中的配置发送模块, 还配置为通过预设的方式或系统消息配置的方式设置与所述终端采用一致 的波束识别方式。
40、根据权利要求 38所述的系统,其中, 所述基站中的配置发送模块, 还配置为通过预设的方式、 或系统消息配置的方式通知终端需采用的波束 指示方式。
41、 根据权利要求 38所述的系统, 其中, 当所述基站和终端没有预设 上行接入信号的特性与上行波束的对应关系, 且基站没有通过系统消息配 置的方式通知终端上行接入信号的特性与上行波束的对应关系时,
所述终端中的发送模块, 还配置为在下行波束索引对应的上行接入信 号的特性中携带上行波束索 )。
42、 一种计算机存储介质, 其中存储有计算机程序, 该计算机程序用 于执行权利要求 1至 6任一项所述的上下行波束混合指示的方法或权利要 求 7至 15任一项所述的上下行波束混合指示的方法。
PCT/CN2014/081412 2013-12-20 2014-07-01 一种上下行波束混合指示的方法、基站、终端和系统 WO2015090034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/105,477 US20170026102A1 (en) 2013-12-20 2014-07-01 Method for mixedly indicating uplink and downlink beams, base station, terminal and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310714911.6A CN104734761A (zh) 2013-12-20 2013-12-20 一种上下行波束混合指示的方法、基站、终端和系统
CN201310714911.6 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015090034A1 true WO2015090034A1 (zh) 2015-06-25

Family

ID=53402050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081412 WO2015090034A1 (zh) 2013-12-20 2014-07-01 一种上下行波束混合指示的方法、基站、终端和系统

Country Status (3)

Country Link
US (1) US20170026102A1 (zh)
CN (1) CN104734761A (zh)
WO (1) WO2015090034A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127066A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 一种上行测量信号的指示方法及装置
RU2735612C1 (ru) * 2017-02-06 2020-11-05 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ осуществления связи, терминальное устройство и сетевое устройство

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398646B1 (ko) * 2014-12-02 2022-05-17 삼성전자주식회사 하이브리드 다중-입력 다중-출력 방식을 지원하는 통신 시스템에서 빔 운용 장치 및 방법
CN105744591A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 网络接入的处理、网络接入方法及装置
EP3329606B1 (en) 2015-07-31 2021-11-10 Apple Inc. Receive beam indication for 5g systems
US11916620B2 (en) * 2016-06-17 2024-02-27 Nokia Technologies Oy Enhanced uplink beam selection for massive MIMO system
CN107888239B (zh) * 2016-09-30 2020-05-15 电信科学技术研究院 一种波束扫描方法及相关设备
EP3520242A4 (en) * 2016-09-30 2020-05-06 Nokia Technologies Oy DETERMINE THE MATCHING BETWEEN THE REFINING BEAM INDEX (BI) AND THE LOGICAL REFINING BEAM INDEX (BI) BY AN ACCESS NODE
US11082176B2 (en) * 2016-11-04 2021-08-03 Futurewei Technologies, Inc. System and method for transmitting a sub-space selection
CN108134624B (zh) * 2016-12-01 2020-06-30 维沃移动通信有限公司 一种参考信号发送、接收方法、发送端及接收端
CN108243430B (zh) * 2016-12-23 2020-09-11 维沃移动通信有限公司 一种波束管理信息的配置、处理方法、终端及基站
CN108260134B (zh) * 2016-12-28 2023-12-29 华为技术有限公司 一种下行波束调整的方法及装置
CN110073605B (zh) * 2017-01-05 2020-06-02 Oppo广东移动通信有限公司 无线通信方法和装置
CN109644412B (zh) * 2017-01-05 2021-05-04 Oppo广东移动通信有限公司 无线通信方法和装置
CN108289329B (zh) * 2017-01-09 2023-08-29 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108366029A (zh) * 2017-01-26 2018-08-03 中兴通讯股份有限公司 一种信息指示方法、装置及系统
CN106851816B (zh) * 2017-02-03 2020-08-14 宇龙计算机通信科技(深圳)有限公司 同步方法、装置及系统
KR102543491B1 (ko) * 2017-02-06 2023-06-14 삼성전자 주식회사 무선 통신 시스템에서 빔 탐색 및 운용 방법 및 장치
US11224073B2 (en) 2017-03-23 2022-01-11 Convida Wireless, Llc Beam training and initial access
CN108633026B (zh) * 2017-03-24 2021-06-25 北京紫光展锐通信技术有限公司 一种波束恢复方法及装置
WO2018170909A1 (zh) * 2017-03-24 2018-09-27 富士通株式会社 信息配置装置、监测装置、方法及通信系统
CN109089315B (zh) * 2017-06-14 2021-04-02 维沃移动通信有限公司 一种基于多波束的数据传输方法和装置
CN109150271B (zh) * 2017-06-15 2022-07-19 大唐移动通信设备有限公司 一种最优波束确定方法、用户终端和网络侧设备
CN109152081B (zh) * 2017-06-16 2021-05-25 维沃移动通信有限公司 基于多波束的随机接入方法、网络侧设备及用户终端
CN109150273B (zh) * 2017-06-28 2022-06-10 捷开通讯(深圳)有限公司 波束管理方法及装置
CN109618410B (zh) * 2017-08-10 2020-03-20 华为技术有限公司 通信方法和设备
CN108988921B (zh) * 2017-08-11 2019-08-02 电信科学技术研究院有限公司 一种波束信息的指示、确定方法及装置、通信系统
CN110167152B (zh) * 2018-02-12 2022-04-12 大唐移动通信设备有限公司 一种数据传输方法和设备
CN110300451B (zh) * 2018-03-21 2021-09-10 中国移动通信有限公司研究院 波束指示方法、波束选择方法、装置、基站及终端
KR102204783B1 (ko) * 2020-07-09 2021-01-18 전남대학교산학협력단 딥러닝 기반의 빔포밍 통신 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808962A (zh) * 2005-01-11 2006-07-26 三星电子株式会社 在无线通信系统中发送快速反馈信息的装置和方法
CN103107872A (zh) * 2011-11-09 2013-05-15 上海贝尔股份有限公司 增强下行确认/否定确认信号传输的方法及其装置
CN103119859A (zh) * 2010-09-26 2013-05-22 Lg电子株式会社 在支持多个天线的无线通信系统中的有效反馈的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424280B1 (ko) * 2008-01-23 2014-07-31 엘지전자 주식회사 다중 입출력 시스템에서, 신호를 송신하는 방법
JP5278035B2 (ja) * 2009-02-25 2013-09-04 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
KR101800221B1 (ko) * 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808962A (zh) * 2005-01-11 2006-07-26 三星电子株式会社 在无线通信系统中发送快速反馈信息的装置和方法
CN103119859A (zh) * 2010-09-26 2013-05-22 Lg电子株式会社 在支持多个天线的无线通信系统中的有效反馈的方法和设备
CN103107872A (zh) * 2011-11-09 2013-05-15 上海贝尔股份有限公司 增强下行确认/否定确认信号传输的方法及其装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127066A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108668370A (zh) * 2017-01-05 2018-10-16 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108964863A (zh) * 2017-01-05 2018-12-07 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108668370B (zh) * 2017-01-05 2019-08-06 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108964863B (zh) * 2017-01-05 2019-08-27 华为技术有限公司 一种上行测量信号的指示方法及装置
US10893429B2 (en) 2017-01-05 2021-01-12 Huawei Technologies Co., Ltd. Uplink measurement signal indication method and apparatus
RU2735612C1 (ru) * 2017-02-06 2020-11-05 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ осуществления связи, терминальное устройство и сетевое устройство
US11259275B2 (en) 2017-02-06 2022-02-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, terminal device, and network device

Also Published As

Publication number Publication date
CN104734761A (zh) 2015-06-24
US20170026102A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2015090034A1 (zh) 一种上下行波束混合指示的方法、基站、终端和系统
US11582734B2 (en) Method and apparatus for beam management for multi-stream transmission
US11705950B2 (en) Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
US11503600B2 (en) Apparatus and method for transmitting and receiving beam information in wireless communication system
EP3545626B1 (en) Variable coherence adaptive antenna array
WO2015090061A1 (zh) 一种实现下行波束索引处理的方法、装置和系统
EP2949091B1 (en) Sectorization feedback and multi-sector transmission in wireless networks
WO2019095723A1 (zh) 信息发送、接收方法及装置、存储介质、处理器
US9906284B2 (en) Beam identification method, related device and system in MIMO beamforming communication system
KR102016685B1 (ko) 무선통신 시스템에서 상향링크 제어 방법 및 장치
WO2016041358A1 (zh) 一种上行同步方法、装置和系统
US10291305B2 (en) Beam training method and device in communication system
CN117998381A (zh) 用于通信波束恢复的系统和方法
WO2015090058A1 (zh) 一种指示和接收上行波束索引的方法、系统及装置
US11510080B2 (en) Method and apparatus for triggering multi-beam reporting
WO2015090041A1 (zh) 一种信息处理方法、装置和系统
KR20210082237A (ko) 안테나 패널 결정 방법, 사용자 단말 및 컴퓨터 판독가능한 저장 매체
CN111373676B (zh) 用于提高无线通信系统中的资源效率的方法和装置
CN109479296A (zh) 信息传输方法、接入网设备和终端设备
CN110121913A (zh) 波束选择方法、装置及系统
CN111901017B (zh) 一种信号传输的装置、系统及方法
CN111385812B (zh) 一种波束管理方法及装置
CN112655158A (zh) 从通信设备进行波束报告
US20220377678A1 (en) Method and apparatus for beam measurement and reporting
US20220200680A1 (en) Method and apparatus for beam management after channel setup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15105477

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14872972

Country of ref document: EP

Kind code of ref document: A1