WO2011120455A2 - 多天线基站的通道校正方法和基站 - Google Patents

多天线基站的通道校正方法和基站 Download PDF

Info

Publication number
WO2011120455A2
WO2011120455A2 PCT/CN2011/073657 CN2011073657W WO2011120455A2 WO 2011120455 A2 WO2011120455 A2 WO 2011120455A2 CN 2011073657 W CN2011073657 W CN 2011073657W WO 2011120455 A2 WO2011120455 A2 WO 2011120455A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
data
antenna
channel
Prior art date
Application number
PCT/CN2011/073657
Other languages
English (en)
French (fr)
Other versions
WO2011120455A3 (zh
Inventor
张志东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000925.0A priority Critical patent/CN102326337B/zh
Priority to PCT/CN2011/073657 priority patent/WO2011120455A2/zh
Publication of WO2011120455A2 publication Critical patent/WO2011120455A2/zh
Publication of WO2011120455A3 publication Critical patent/WO2011120455A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a channel correction method and a base station for a multi-antenna base station. Background technique
  • Multi-antenna beamforming is a technique for compensating for signal fading and distortion introduced by factors such as spatial loss and multipath effects in wireless propagation, and reducing interference between co-channel users, including
  • BF Multi-Input Multi-Output BF, MIMO-BF for short
  • DOA-BF Direction of Arrival BF
  • the amplitude and phase changes experienced by the signal passing through different transmit channels are consistent, or the amplitude and phase parameters between the receive channel and the transmit channel satisfy a consistent proportional relationship. This corrects the amplitude/phase parameters between the base station and the antenna between the transmit/receive channels as a core issue of the BF technique.
  • the amplitude/phase parameters between the transmit/receive channels of the base station can be corrected in two ways.
  • the first type is a dedicated correction channel built in the base station: a correction signal is injected into each receiving channel by a correction channel to correct the receiving channel; the transmission signal of each transmitting channel is extracted, and the detection channel receives the detection. , thereby achieving correction of the transmission channel.
  • the second method is to provide a special correction device outside the base station, and the correction device injects a reference signal to the receiving channel of the base station, thereby realizing the correction of the receiving channel, extracting the transmission signal of each transmitting channel, and receiving and detecting by the correcting device. , thereby achieving correction of the transmission channel.
  • the embodiments of the present invention provide a channel correction method and a base station for a multi-antenna base station, which are used to reduce the cost of the base station and effectively save the transmission/reception channel correction cost.
  • the embodiment of the present invention provides a channel correction method for a multi-antenna base station, including: the base station sends multiple sets of data to the terminal by using at least two antennas, where the multiple sets of data use different weighting parameters for a set of detection data respectively. Data after weighting;
  • Channel correction is performed on the at least two antennas of the base station using the channel correction parameters.
  • an embodiment of the present invention further provides a base station, including:
  • a sending module configured to send, by using at least two antennas, multiple sets of data to the terminal, where the multiple sets of data are data that are respectively weighted and processed by using a different weighting parameter;
  • a receiving module configured to receive, by the terminal, feedback information sent after each group of data is verified
  • an obtaining module configured to select a set of weighting parameters from the plurality of sets of weighting parameters according to the feedback information, and obtain channel correction parameters between at least two antennas of the base station according to the selected set of weighting parameters;
  • a correction module configured to perform channel correction on the at least two antennas of the base station by using the channel correction parameter.
  • the channel correction method and the base station of the multi-antenna base station according to the embodiment of the present invention after weighting the sounding data, are sent to the terminal, and the transmission channel of the base station is corrected by the verification result fed back by the terminal.
  • the transmission channel between the base station and the antenna is corrected by using the user terminal, which reduces the cost of the base station transmission channel correction compared to the method of the built-in correction channel or the external correction device in the prior art.
  • FIG. 1 is a flowchart of a method for channel correction of a multi-antenna base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a communication connection between an antenna of a base station and an antenna of the terminal;
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a channel correction method and a base station for a multi-antenna base station.
  • an antenna can be understood as an antenna array element, and not necessarily an actual physical antenna.
  • the channel is part of the channel, and the generalized channel may include the transceiver channel inside the base station and the terminal device and the propagation path of the electromagnetic signal in the air. There is a certain correspondence between the antenna and the channel, but it is not necessarily a simple one-correspondence.
  • a multi-antenna base station necessarily has multiple transmit channels and receive channels.
  • FIG. 1 is a flowchart of a method for channel correction of a multi-antenna base station according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 The base station sends multiple sets of data to the terminal by using at least two antennas, where the multiple sets of data are respectively weighted by using a set of probe data by using different weighting parameters.
  • the base station in this embodiment supports multi-antenna transmission multi-antenna reception, and the transmission channel formed between the base station and the base station antenna and the receiving channel formed between the terminal and the terminal antenna are- Corresponding relationship.
  • the probe data may include normal data and interference data.
  • the normal data can be understood as data that can pass the verification on the terminal side
  • the interference data can be understood as data that cannot pass the verification on the terminal side.
  • the sounding data composed of the normal data and the interference data is weighted by the weighting parameter and sent to the terminal side.
  • the weighting parameter used in the weighting process herein may be obtained in advance by the base station, and the obtained manner is a technique generally used by those skilled in the art, and thus will not be described again.
  • the pre-obtained weighting parameter may be multiple groups, and each time the data is sent, the detection data is weighted by any one of a plurality of sets of weighting parameters, and the detection data weighted by the different group weighting parameters may be sent to the terminal side in whole or in part.
  • the verification is performed until the result of the verification of the feedback from the terminal is received.
  • the number of weighting parameters of each group is related to the transmitting channel on the base station side and the receiving channel on the terminal side. Taking the dual receiving channel dual receiving channel as an example, the number of weighting parameters is four, forming a 2*2 weighting matrix. .
  • the terminal side receives the data sent by the base station through its antenna, and performs verification on the received data.
  • the verification here may be, but not limited to, a Cyclic Redundancy Check (CRC).
  • CRC Cyclic Redundancy Check
  • the transmitted data is data subjected to weighting processing of the probe data
  • the data received by the terminal side is data in which weighted normal data and weighted interference data are superimposed.
  • the normal data verification can pass and the interference data cannot be verified. If there are more cases where the normal data verification fails or the interference data is verified, the group weighting parameter is not the set of weighting parameters required by the embodiment of the present invention, and the weighting parameter needs to be reselected.
  • Step 102 The base station receives feedback information sent by the terminal after verifying each group of data.
  • the terminal checks each received data, and the ACK is fed back when the check is passed, and the NACK is fed back if it fails.
  • the terminal may only send an ACK and not send a NACK.
  • the feedback information received by the base station is generally an ACK. If the base station waits for a predetermined period of time and does not receive the ACK feedback information, the terminal side is considered to be the terminal side. The verification of the set of data did not pass.
  • Step 103 The base station selects a set of weighting parameters from the plurality of sets of weighting parameters according to the feedback information of the terminal, and obtains channel correction parameters between the at least two antennas of the base station according to the selected set of weighting parameters.
  • the base station obtains a channel between at least two antennas of the base station according to the selected set of weighting parameters
  • the correction parameter may be specifically: obtaining a channel correction parameter between the at least two antennas of the base station according to the selected one of the weighting parameters and the uplink channel parameter between the base station and the terminal measured by the base station.
  • the base station may measure the uplink channel parameters between the base station and the terminal by: receiving, by the base station, the pilot signal sent by the terminal, and comparing the received pilot signal with the known pilot reference signal, to obtain a relationship between the two
  • the relationship between amplitude and phase is used as the upstream channel parameter between the base station and the terminal.
  • the generation process of the uplink channel parameters is described as follows.
  • the known pilot reference signal can be described as A x , where A represents the amplitude of the pilot reference signal and X represents the phase of the pilot reference signal.
  • the received pilot signal can be described as A' (X+X ), where A represents the amplitude of the received pilot signal and (x+x,) represents the phase of the received pilot signal.
  • the amplitude between the pilot reference signal and the received pilot signal differs by A/A, and the phase is different by x.
  • the channel correction parameter b can be obtained from the weighting parameter W and the upstream channel parameter U.
  • the base station includes a first antenna and a second antenna, and the terminal includes a third antenna and a fourth antenna as an example.
  • the weighting parameters are:
  • the uplink channel parameters are: U , u u is the third antenna of the terminal and the first antenna of the base station
  • the uplink channel parameter between U and U, u 12 is the uplink channel parameter between the fourth antenna of the terminal and the first antenna of the base station.
  • u 21 is an uplink channel parameter between a third antenna of the terminal and a second antenna of the base station, and u 22 is an uplink channel parameter between the fourth antenna of the terminal and the second antenna of the base station;
  • Step 104 Perform channel correction on at least two antennas of the base station using channel correction parameters.
  • the channel correction parameter is multiplied by the data to be transmitted of each antenna of the base station, and then the data is sent out.
  • the channel correction method for the multi-antenna base station provided by the embodiment of the present invention is performed by adding the detection data After the weight is sent to the terminal, the channel is corrected by the verification result fed back by the terminal.
  • the base station transmission channel is corrected by using the user terminal, which reduces the cost of the base station transmission channel correction compared to the prior art method of installing the correction channel or the external correction device.
  • the terminal described in FIG. 1 may be a terminal with strong channel correlation. Therefore, before step 101, the method may further include:
  • Step 100 The base station obtains channel correlation of the terminal in its coverage cell.
  • the correlation between row vectors (or column vectors) in the channel parameter matrix of the terminal is generally referred to as channel correlation, and the correlation of the channel can be measured by the determinant value of the channel parameter matrix.
  • a terminal with strong channel correlation has a determinant value of 0 for the channel parameter matrix.
  • the channel matrix for a terminal is as follows:
  • the terminal can be considered as a terminal with strong channel correlation.
  • the base station provided in this embodiment has at least two antennas, and supports multiple transmission channels and multiple reception channels, and the transmission channels correspond to the reception channels.
  • the terminal provided in this embodiment first supports dual antenna reception, one antenna or two antenna transmission. Secondly, if it is transmitted for one antenna, the terminal needs to detect correlation information between two sets of downlink channels corresponding to the two receiving antennas, and the correlation information can be fed back to the base station. This requirement is mainly derived from: In the case of dual antenna transmission, the base station can mathematically measure the correlation information between the two sets of downlink channels corresponding to the two receiving antennas, and the single antenna transmission situation.
  • the base station cannot measure the correlation information between the two sets of downlink channels corresponding to the two receiving antennas in a mathematical manner, so the terminal needs to report.
  • the terminal with strong channel correlation needs to support the automatic repeat reQuest (ARQ) or the hybrid automatic repeat request (Hybrid ARQ, referred to as: HARQ).
  • ARQ automatic repeat reQuest
  • Hybrid ARQ Hybrid ARQ
  • a base station and a terminal both have dual transmit antennas and dual receive antennas as an example for description.
  • figure 2 A schematic diagram of a communication connection between an antenna of a base station and an antenna of the terminal, wherein the four groups of channels between the antenna BA1 of the base station and the antenna BA2 of the base station and the antenna TA1 of the terminal and the antenna TA2 of the terminal are respectively represented as 11, 21, 12, 22, wherein each group of channels includes two channels, uplink and downlink.
  • the channel group numbered 11 includes an uplink channel 11 and a downlink channel 11.
  • the base station can obtain the channel correlation of the terminal by using the following two methods: First, the base station sends a reference signal to the terminal, and the terminal can obtain each group of downlink channels according to the comparison between the received signal and the known reference signal. Parameters, calculate channel correlation and report to the base station.
  • the antennas of the base station BA1 and BA2 transmit reference signals to the antennas TA1 and TA2 of the terminal, and the reference signals may be pilot signals or any known data signals;
  • d u is a parameter of the downlink channel 11
  • d 21 of the d 12 downlink channel 12 is a parameter of the downlink channel 21
  • d 22 is a parameter of the downlink channel 22.
  • the terminal transmits the calculated channel correlation to the base station.
  • the terminal transmits a reference signal to the base station, the base station measures the uplink channel parameters, and calculates channel correlation.
  • the antennas TA1 and TA2 of the terminal respectively transmit known reference signals to the antennas BA1 and BA2 of the base station, and the reference signals may be pilot signals or any known data signals.
  • the base station compares the received signal with a known reference signal to obtain a difference in amplitude and phase between the two, thereby obtaining an uplink channel parameter.
  • the calculation of the correlation of the uplink channel is performed according to the parameters of the uplink channel. For the specific calculation method, refer to the calculation method in step 100, which is not described here. Referring to the communication connection diagram shown in FIG. 2, it is assumed that the antennas BA1 and BA2 of the base station and the antennas TA1 and TA2 of the terminal The four uplink channel parameters between are recorded as: U
  • the channel correlation of the terminal may be represented by the correlation of the row vector or the column vector of the channel parameter matrix U or D, and the size may be measured by the determinant value of the channel parameter matrix, and the determinant value of the strongly correlated channel parameter matrix is close to 0.
  • the correlations of the uplink and downlink channels are consistent. Therefore, both the correlation of the uplink channel and the correlation of the downlink channel can be calculated.
  • the method may further include:
  • the base station When the value is equal to or close to 0, the base station considers the channel of the terminal to be strongly correlated.
  • auxiliary terminal may also include: The uplink signal and the downlink signal of the terminal are better, and the change with time is relatively slow.
  • the base station can determine that the uplink signal and the downlink signal of the terminal are better by various methods, and the change with time is relatively slow. For example, measure signal strength, signal to noise ratio, and more.
  • step 101 may specifically include: the base station generates multiple sets of weighting matrices, and weights the detected data to be sent by using any one of the plurality of sets of weighting matrices to obtain a set of data, and multiple sets of weighting matrices. A plurality of sets of data are obtained, and the plurality of sets of data are separately sent to the auxiliary terminal selected in step 100a.
  • the probe data to be sent is composed of the normal data S1 and the interference data S2.
  • the downlink channel symbols sent to the auxiliary terminal by each transmit channel of the base station are weighted.
  • the superposition of normal data and weighted interference data can be understood as:
  • the probe data to be transmitted is weighted, that is, the probe data to be transmitted is linearly transformed.
  • a indicates the modulation amplitude of the base station antenna to the probe data, that is, the amplitude of the probe data transmitted by the antenna is amplified by a times
  • > indicates the modulation phase of the base station antenna to the probe data, that is, the phase change of the probe data transmitted by the antenna is 6>.
  • the probe data to be sent by the base station is the normal data S1 and the interference data s 2 , and the weighted data becomes WnSi+WuS ⁇ w 2 is 1 +w 22 s 2 , that is, the downlink channel symbol sent by the base station on the antenna BA1.
  • the downlink channel symbol transmitted on the antenna BA2 is W Si+w ⁇ s ⁇ All downlink channel symbols WS transmitted by the base station on the antenna BA1 and the antenna BA2 can be expressed in a matrix form as:
  • the equivalent downlink channel parameters are:
  • the terminal with strong channel correlation is selected as the auxiliary terminal.
  • W weighting matrix
  • the construction of the weighting matrix W may be as follows: In the present embodiment, there are four parameters in the weighting matrix W, and each parameter is a complex number. In fact, as long as w 22 is adjusted, G can be made into a half matrix. The amplitude a of w 22 is generally above and below 1, a can take values of 0.7, 0.9, 1.1, 1.3, and the value of phase > is possible in the range of 0 ⁇ 2 ⁇ , which can be taken at intervals of ⁇ / 8 Value. Other parameters can be obtained by setting empirical values and the like. In this way, the base station can obtain multiple sets of weighting matrices W, and use different weighting matrices to weight the transmitted probe data to be sent to the auxiliary terminal respectively until all the weighting matrices obtained are traversed.
  • the WiMax system is used as an example to transmit the weighted probe data in the following manner: 1) Select a Space-Time Coding (STC) area, and use a dedicated pilot mode; 2) Each frame is Each auxiliary terminal sends four hybrid automatic repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) sub-packets (Subburst), and each HARQ Subburst allocates only one time slot (SLOT).
  • STC Space-Time Coding
  • HARQ Hybrid Automatic Repeat reQuest
  • Subburst HARQ subburst
  • WiMax divides the air interface resources into one area, some areas support STC, so it is called STC area, and some areas do not support STC, so it is called non-STC area.
  • STC area some areas support STC
  • non-STC area some areas do not support STC
  • the spatial diversity of multiple transmit and receive antennas is used in space to improve the capacity and information rate of the wireless communication system; the different signals are transmitted in the same antenna in different time slots in time, so that the receiving end can Diversity reception. In this way, diversity and coding gain can be obtained to achieve high rate transmission. Therefore, in the STC area, the same antenna is supported to transmit different signals.
  • the non-STC area is selected, mainly because the probe data transmitted between the multiple antennas of the base station is the same data. If the probe data transmitted between multiple antennas of the base station is different data, the STC area is selected.
  • step 102 may be specifically: the auxiliary terminal checks the received downlink channel symbols, and returns a verification result to the base station.
  • the auxiliary terminal may perform ARQ or HARQ check on the received downlink channel symbols.
  • the downlink channel symbols received by the terminal should actually be separate normal data si and interference data s2 that are not superimposed, respectively, for normal data and interference data, respectively. For verification, normal data can be verified, and interference data cannot be verified.
  • the secondary terminal If the check is passed, the secondary terminal returns a positive acknowledgement (ACKnowlegdement, simply: ACK) to the base station.
  • ACKnowlegdement simply: ACK
  • the secondary terminal If the check is not passed, the secondary terminal returns a negative acknowledgement (NACK) to the base station, and the base station is required to use a new set of weighting matrix to weight the probe data.
  • NACK negative acknowledgement
  • the auxiliary terminal may not return a NACK to the base station, and then the base station does not receive the ACK fed back by the auxiliary terminal within a predetermined time, and the default check fails.
  • the auxiliary terminal only needs to feed back a check result to the base station; if the base station transmits the same data on multiple antennas, the auxiliary terminal needs Each of the probe data is separately verified, and a plurality of check results are fed back to the base station.
  • step 103 may be specifically: The base station selects an appropriate weighting matrix W from the plurality of sets of weighting matrices according to the feedback result sent by the auxiliary terminal.
  • the weighting matrix W used in step 101 can be used to make the equivalent downlink channel parameter 0 7 a half-edge matrix. Choose such a weighting matrix ⁇ . If the NACK returned by the auxiliary terminal received by the base station or the ACK is not received within the predetermined time, it means that the weighting matrix W in step 101 cannot make the equivalent downlink channel parameter 0 7 into a half matrix, and the correction fails, and the continuation needs to be continued. The generated weighting matrix W is traversed to weight the probe data until the traversal completes all of the weighting matrices.
  • the base station selects the STC area and sends two sets of different probe data on the multiple antennas
  • the feedback information sent for one set of probe data is ACK, and the other group of probe data is sent.
  • the feedback information is NACK, and it can also be said that the weighting matrix used in step 101 can make the equivalent downlink channel parameter 0 7 a half-edge matrix, and then such a weighting matrix is selected. Otherwise, the calibration fails, and a set of weighting matrices needs to be selected from the weighting matrix generated by the base station. W weights the probe data until the traversal completes all weighting matrices.
  • step 104 may be specifically: The base station calculates base station channel correction parameters according to the selected weighting matrix W and the uplink channel parameters of the auxiliary terminal.
  • the relationship between the downlink channel parameter D and the uplink channel parameter U can be expressed as:
  • B is the difference between the receiving and receiving channels of the base station side, including the difference bl between the receiving channel and the transmitting channel of the antenna BA1 and the difference b2 between the receiving channel and the transmitting channel of the antenna BA2.
  • T represents the difference in the transmission and reception channels of the terminal side, including the difference between the reception channel and the transmission channel of the antenna TA1 and the antenna bl 0
  • the difference between the receiving channel and the transmitting channel of TA2 is t2.
  • B and T are diagonal matrices.
  • the following relationship can be obtained: If the downlink channel 12 and the downlink channel 22 between the antennas BA1 and BA2 of the base station and the antenna TA2 of the terminal are taken as an example, the following relationship can be obtained:
  • the ratio b of bb 2 reflects the difference between the antennas BA1 and BA2 of the base station. Therefore, the base station channel correction parameter b is:
  • the base station channel correction parameter b can be obtained from the weight matrix W and u u and u 21 in the uplink channel parameters.
  • the WiMAX 4 sends and receives the base station as an example.
  • the WiMAX terminal usually supports single-issue and dual-receiving.
  • the base station can detect the uplink channel parameters Un and u 21 by measuring the uplink sounding signal, the uplink data area signal or the uplink control area signal of the terminal. .
  • the correction of the base station channel can be realized, so that the base station dual antenna achieves the same amplitude and phase change during the subsequent data transmission and reception, or satisfies a certain proportional relationship.
  • the embodiment of the present invention provides a channel correction method for a multi-antenna base station, which performs weighting on the channel and sends the probe data to the terminal, and uses the terminal to detect the weighted channel feature to obtain a verification result, according to the obtained verification.
  • the result is a correction of the channel. Since the channel correction of the base station is realized by directly utilizing the common user terminal, the channel correction cost of the base station is reduced as compared with the built-in correction channel or the external correction device.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station is a main body for performing the foregoing method embodiment.
  • the base station includes: a sending module 301, a receiving module 302, an obtaining module 303, and a correcting module 304.
  • the sending module 301 is configured to send, by using at least two antennas, multiple sets of data to the terminal, where the multiple sets of data are data that are respectively weighted by using a different weighting parameter; and the receiving module 302 is configured to receive the terminal.
  • the feedback information sent after each group of data is verified; the obtaining module 303 is configured to select a set of weighting parameters from the plurality of sets of weighting parameters according to the feedback information, and obtain a multi-antenna between the base stations according to the selected set of weighting parameters Channel correction parameter; correction module 304, configured to perform channel correction on at least two antennas of the base station using channel correction parameters.
  • the terminal is a terminal with strong channel correlation
  • the base station may further include: a correlation obtaining module, configured to obtain channel correlation of all terminals in the coverage cell.
  • the probe data to be sent includes normal data and interference data, and then sent.
  • the module 301 may include: a weighting unit, configured to perform weighting processing on the normal data and the interference data by using one of the known plurality of weighting parameters; and a sending unit, configured to send the weighted normal data and the interference data to the terminal .
  • the feedback information received by the receiving module 302 includes: if the terminal passes the verification of the normal data in the probe data, the feedback information received by the base station for the normal data is a positive acknowledgement ACK, if the terminal interferes with the interference data in the probe data. If the verification fails, the feedback information received by the base station for the interference data is a negative acknowledgement NACK, or the terminal does not receive the feedback of the interference data for the predetermined time.
  • the obtaining module 303 may include: a selecting unit, configured to: if the feedback information received by the receiving module 302 for normal data is a positive acknowledgment ACK, the feedback information for the interference data is a negative acknowledgment NACK or at a predetermined If the information for the interference data feedback is not received within the time, the weighting parameters used when the normal data and the interference data are transmitted are selected.
  • the base station may further include: a measurement module, configured to receive pilot information sent by the terminal, compare the received pilot information with a known pilot reference signal, and obtain an amplitude and a phase between the two. The relationship acts as an upstream channel parameter between the base station and the terminal.
  • a measurement module configured to receive pilot information sent by the terminal, compare the received pilot information with a known pilot reference signal, and obtain an amplitude and a phase between the two. The relationship acts as an upstream channel parameter between the base station and the terminal.
  • the base station includes a first antenna and a second antenna
  • the terminal includes a third antenna and a fourth antenna.
  • the obtaining module 303 may further include: a calculating unit, configured to calculate a channel calibration parameter according to the following method: w W
  • the weighting parameters are: ,
  • the uplink channel parameters are: U
  • the channel correction parameters are:
  • u 1 is the uplink channel parameter between the third antenna of the terminal and the first antenna of the base station
  • u 12 is the uplink channel parameter between the fourth antenna of the terminal and the first antenna of the base station
  • u 21 is an uplink channel parameter between the third antenna of the terminal and the second antenna of the base station
  • u 22 is an uplink channel parameter between the fourth antenna of the terminal and the second antenna of the base station.
  • An embodiment of the present invention provides a base station, which performs weighting on the probe data and sends the data to the terminal.
  • the channel is corrected by the verification result fed back by the terminal.
  • the channel of the base station antenna is corrected by using the user terminal, which reduces the cost of channel correction of the base station antenna compared to the method of the built-in correction channel or the external correction device in the prior art.
  • the device embodiments described above are merely illustrative, wherein the functions of some or all of the modules, some or all of the devices may be performed by one processor, and the modules or units described as separate components may be or They may not be physically separate, and the components displayed as modules or units may or may not be physical units, that is, may be located in one place, or may be distributed to at least two network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种多天线基站的通道校正方法和基站。该方法包括:基站通过至少两个天线向终端发送多组数据,多组数据为将一组探测数据使用不同的加权参数分别进行加权处理后的数据;接收终端针对每组数据校验后发送的反馈信息;根据反馈信息从多组加权参数中选择一组加权参数,并获得基站的至少两个天线之间的通道校正参数;使用通道校正参数对基站的至少两个天线之间的通道进行校正。基站包括:发送模块、接收模块、获得模块和校正模块。

Description

多天线基站的通道校正方法和基站
技术领域
本发明实施例涉及通信技术, 尤其涉及一种多天线基站的通道校正方法和 基站。 背景技术
随着无线通信技术和设备的不断发展, 多天线技术也得到了越来越多的 应用。 多天线的波束赋形 ( Beamforming, 简称为: BF )是一种补偿无线传 播过程中由空间损耗、 多径效应等因素引入的信号衰落与失真, 同时降低同 信道用户间的干扰的技术, 包括多入多出 BF ( Multi-Input Multi-Output BF, 简称为: MIMO-BF )和来波方向 BF( Direction of Arrival BF,简称为 DOA-BF ) 两种类型。
实现自适应 BF, 需要信号经过不同发射通道时, 经历的幅度和相位变 化一致, 或者接收通道与发射通道之间的幅度和相位参数满足一致的比例关 系。 这就使得基站与天线之间的发射 /接收通道之间的幅度 /相位参数校正成 为 BF技术的一个核心问题。
现有技术中, 可以通过两种方式对基站的发射 /接收通道之间的幅度 /相 位参数进行校正。 第一种是在基站中内置专用的校正通道: 由校正通道向各 接收通道注入特性已知的参考信号, 从而实现接收通道的校正; 将各发射通 道的发送信号提取出来, 由校正通道接收检测, 从而实现发射通道的校正。 第二种是在基站之外配备专用的校正装置, 由该校正装置向基站的接收通道 注入参考信号, 从而实现接收通道的校正, 将各发射通道的发送信号提取出 来, 由该校正装置接收检测, 从而实现发射通道的校正。
但是无论内置专用的校正通道还是外置的校正设备, 都会使得对基站的 发射 /接收通道校正的成本较高。 发明内容
本发明实施例提供一种多天线基站的通道校正方法和基站, 用以降低基站 成本, 有效实现节约发射 /接收通道校正成本的目的。
一方面, 本发明实施例提供一种多天线基站的通道校正方法, 包括: 基站通过至少两个天线向终端发送多组数据, 所述多组数据为将一组探测 数据使用不同的加权参数分别进行加权处理后的数据;
接收所述终端针对每组数据校验后发送的反馈信息;
根据所述反馈信息从所述多组加权参数中选择一组加权参数, 并根据所述 选择的一组加权参数获得所述基站的至少两个天线之间的通道校正参数;
使用所述通道校正参数对基站的所述至少两个天线进行通道校正。
另一方面, 本发明实施例还提供了一种基站, 包括:
发送模块, 用于通过至少两个天线向终端发送多组数据, 所述多组数据为 将一组探测数据使用不同的加权参数分别加权处理后的数据;
接收模块, 用于接收终端针对每组数据校验后发送的反馈信息;
获得模块, 用于根据所述反馈信息从所述多组加权参数中选择一组加权参 数, 并根据所述选择的一组加权参数获得所述基站的至少两个天线之间的通道 校正参数;
校正模块, 用于使用所述通道校正参数对所述基站的所述至少两个天线进 行通道校正。
本发明实施例的多天线基站的通道校正的方法和基站, 通过对探测数据 进行加权后发送给终端, 通过终端反馈的校验结果来对基站的发射通道进行 校正。 本实施例通过利用用户终端来实现对基站与天线之间的发射通道进行 校正, 相比现有技术中内置校正通道或外置校正设备的方法, 其降低了基站 发射通道校正的成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出 创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一个实施例提供的多天线基站的通道校正的方法流程图; 图 2为基站的天线与终端的天线之间的通信连接示意图;
图 3为本发明实施例提供的基站结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种多天线基站的通道校正方法和基站, 本领域普通 技术人员可以理解, 在本实施例中, 天线可以理解为天线阵元, 而不一定是实 际的物理天线。 通道是信道的一部分, 广义的信道可以包括基站和终端设备内 部的收发通道和电磁信号在空中的传播途径。 天线与通道之间存在一定的对应 关系, 但不一定是简单的——对应关系。 多天线基站必然存在多个发送通道和 接收通道。
图 1 为本发明一个实施例提供的多天线基站的通道校正的方法流程图, 如 图 1所示, 该方法包括:
步骤 101 : 基站通过至少两个天线向终端发送多组数据, 该多组数据为将一 组探测数据使用不同的加权参数分别进行加权处理后的数据。
需要说明的是, 本实施例中的基站支持多天线发送多天线接收, 且基站与 基站天线之间形成的发射通道以及终端与终端天线之间形成的接收通道为—— 对应的关系。 探测数据可以包括正常数据和干扰数据。 正常数据可以理解为在 终端侧可以通过校验的数据, 干扰数据可以理解为在终端侧不能通过校验的数 据。 对正常数据和干扰数据组成的探测数据使用加权参数进行加权处理后发送 给终端侧。 这里的加权处理所采用的加权参数可以是基站预先获得的, 获得的 方式为本领域技术人员普遍使用的技术, 故此不做赘述。 预先获得的加权参数 可以为多组, 每次发送的数据时采用多组加权参数中的任意一组对探测数据进 行加权, 不同组加权参数加权处理后的探测数据可以全部或部分发送给终端侧 进行校验, 直至收到终端反馈的校验通过结果。 每组加权参数的个数与基站侧 的发射通道和终端侧的接收通道有关, 以双发射通道双接收通道为例, 一组加 权参数的个数为 4个, 组成一个 2*2的加权矩阵。
终端侧通过其天线接收基站发送的数据, 并对接收到的数据进行校验, 这 里的校验可以但不限于是循环冗余校验(Cyclic redundancy check, 简称为: CRC ) 。 由于发送的数据是对探测数据经过加权处理的数据, 所以终端侧接收 到的数据是加权的正常数据和加权的干扰数据叠加在一起的数据。 理想的情况 下, 当选择的一组加权参数刚好使得正常数据与干扰数据相分离, 才能使得正 常数据验证通过而干扰数据无法验证通过。 如果存在较多正常数据验证不通过 或干扰数据验证通过的情况, 则说明该组加权参数不是本发明实施例所需要的 那一组加权参数, 需要重新选择加权参数。
步骤 102: 基站接收终端针对每组数据校验后发送的反馈信息。
需要说明的是, 终端对接收到的每组数据进行校验,校验通过则反馈 ACK, 不通过则反馈 NACK:。 可选地, 终端也可以只发 ACK, 不发 NACK, 在此种情 况下, 基站收到的反馈信息中一般为 ACK, 如果基站等候一段预定的时间收不 到 ACK反馈信息, 则认为终端侧对于该组数据的校验没有通过。
步骤 103:基站根据终端的反馈信息,从多组加权参数中选择一组加权参数, 并根据选择的一组加权参数获得该基站的至少两个天线之间的通道校正参数。
上述基站根据选择的一组加权参数获得该基站的至少两个天线之间的通道 校正参数具体可以为: 根据所述选择的一组加权参数和基站测量到的所述基站 与所述终端之间的上行信道参数获得所述基站的至少两个天线之间的通道校正 参数。 其中, 基站可以通过如下方式测量基站与终端之间的上行信道参数: 基 站接收终端发送的导频信号, 将接收到的导频信号与已知的导频参考信号进行 比较, 得到两者之间幅度及相位的关系, 并将其作为基站与终端之间的上行信 道参数。 这里对于上行信道参数的产生过程进行如下描述, 已知的导频参考信 号可以描述为 A x , 其中, A表示导频参考信号的幅度, X表示导频参考信号 的相位。接收到的导频信号可以描述为 A' (X+X〕, 其中, A,表示接收到的导频信 号的幅度, (x+x,)表示接收到的导频信号的相位。 那么已知的导频参考信号与接 收到的导频信号之间的幅度相差了 A/A,, 相位相差了 x,。 通过数学的方式, 可 以得到这样一个表达式, A' . e^^' U.A . e'x , 表达式中的 U即为上行信道参数。
通道校正参数 b可以根据加权参数 W和上行信道参数 U获得。 以基站包括 第一天线和第二天线, 终端包括第三天线和第四天线为例进行说明。 加权参数为:
Figure imgf000006_0001
上行信道参数为: U , uu为终端的第三天线与基站的第一天线
U, U 之间的上行信道参数, u12为终端的第四天线与基站的第一天线之间的上行信道 参数。 u21为终端的第三天线与基站的第二天线之间的上行信道参数, u22为终端 的第四天线与基站的第二天线之间的上行信道参数; 通道校正参数为: b=- ^。
w12un 步骤 104: 使用通道校正参数对基站的至少两个天线进行通道校正。
其中, 将通道校正参数与基站各天线的待发送数据进行点乘后再将数据发 送出去即可。
本发明实施例提供的多天线基站的通道校正方法, 通过对探测数据进行加 权后发送给终端, 通过终端反馈的校验结果来对通道进行校正。 本实施例通过 利用用户终端来实现对基站发射通道进行校正, 相比现有技术中内置校正通道 或外置校正设备的方法, 其降低了基站发射通道校正的成本。
图 1 中所述的终端可以为信道强相关的终端, 因此, 在步骤 101之前, 该 方法还可以包括:
步骤 100: 基站获得其覆盖小区内终端的信道相关性。
其中, 终端的信道参数矩阵中行向量(或者列向量)之间的相关性通常简 称为信道的相关性, 信道的相关性的大小可以使用信道参数矩阵的行列式值来 衡量。 信道强相关的终端, 其信道参数矩阵的行列式值为 0。 例如, 某一终端的 信道矩阵如下所示:
如果 [du d12 ][
Figure imgf000007_0001
则可以认为此终端为信道强相关的终端。
本实施例中提供的基站有至少两个天线, 支持多发射通道多接收通道, 发 射通道与接收通道——对应。 本实施例中提供的终端, 首先支持双天线接收, 一天线或者双天线发射。 其次, 如果为一天线发射, 需要该终端可以检测出两 个接收天线分别对应的两组下行信道之间的相关性信息, 且该相关性信息可以 反馈给基站。 这种需求主要源自于: 如果是双天线发射的情况下, 基站可以通 过数学计算的方式测出两个接收天线分别对应的两组下行信道之间的相关性信 息, 而单天线发射的情况下, 基站无法通过数学计算的方式测出两个接收天线 分别对应的两组下行信道之间的相关性信息, 所以需要终端进行上报。 再次, 该信道强相关的终端需要支持下行自动重传请求(Automatic Repeat reQuest, 简 称为: ARQ )或者混合自动重传请求(Hybrid ARQ, 简称为: HARQ ) 。
本实施例以基站和终端均具有双发射天线和双接收天线为例进行说明。图 2 为基站的天线与终端的天线之间的通信连接示意图, 其中, 将基站的天线 BA1 和基站的天线 BA2与终端的天线 TA1和终端的天线 TA2之间的 4组信道分别 表示为 11、 21、 12、 22, 其中每组信道包含上行和下行两条信道, 例如编号为 11的信道组包含上行信道 11和下行信道 11。
具体的, 基站至少可以通过如下两种方式获得终端的信道相关性: 第一, 基站向终端发送参考信号, 终端根据接收到的信号与已知的参考信 号之间的对比可以获得各组下行信道参数, 计算信道相关性并上报给基站。
1 )基站的天线 BA1和 BA2向终端的天线 TA1和 TA2发送参考信号, 参 考信号可以是导频信号, 也可以是任意已知的数据信号;
2 )将终端收到的信号与已知的参考信号相比较, 得到两者之间幅度和相位 的差异, 从而获得下行信道参数。 根据下行信道参数计算下行信道的相关性, 具体计算方法可以参考步骤 100中的计算方法, 此处不做赞述。 结合图 2所示 的通信连接示意图, 假设基站的天线 BA1和 BA2与终端的天线 TA1和 TA2之 间的 4条下行信道参数记为: D
^2i d22
其中, du为下行信道 11 的参数, d12下行信道 12的 d21为下行信道 21的参数, d22为下行信道 22的参数。
3 )终端将计算得到的信道相关性发送给基站。
第二, 终端向基站发送参考信号, 基站测量上行信道参数, 并计算信道相 关性。
1 )终端的天线 TA1和 TA2向基站的天线 BA1和 BA2分别发送已知的参考 信号, 参考信号可以是导频信号, 也可以是任意已知的数据信号。
2 )基站将接收到的信号与已知的参考信号相比较, 得到两者之间的幅度和 相位的差异, 从而获得上行信道参数。 根据上行信道参数计算上行信道的相关 性, 具体计算方法可以参考步骤 100 中的计算方法, 此处不做赘述。 结合图 2 所示的通信连接示意图,假设基站的天线 BA1和 BA2与终端的天线 TA1和 TA2 之间的 4条上行信道参数记为: U
Figure imgf000009_0001
其中, uu上行信道 1 1 的参数, u12上行信道 12的参数, u21上行信道 21 的参数, u22上行信道 22 的参数。 对于双收单发终端, 上行信道参数中的
U12=U22=0。
终端的信道相关性可以由信道参数矩阵 U或者 D的行向量或者列向量的相 关性来表示, 大小可以用信道参数矩阵的行列式值来衡量, 强相关的信道参数 矩阵的行列式值接近于 0。在这里,假设上、 下行信道的相关性是一致的。 因此, 计算上行信道的相关性与计算下行信道的相关性均可。
步骤 100之后, 该方法还可以进一步包括:
步骤 100a: 基站根据获得的所有终端的信道相关性选择信道强相关的终端 作为辅助终端。 假设基站通过上述第二种方式获得了某个终端的 4条下行信道 参数为 D,则该终端的下行信道的相关性 RD为: RD=du d21+ d12 /22或 du d12+ d21 d22
当 的值等于或者接近于 0时, 基站认为此终端的信道强相关。
对于辅助终端的其他要求还可以包括: 终端的上行信号和下行信号比较好, 随时间的变化比较慢。 其中, 基站可以通过多种方法确定终端的上行信号和下 行信号比较好, 随时间的变化比较慢。 例如, 测量信号强度、 信噪比等等。
基于上述实施例的描述, 步骤 101具体可以包括: 基站产生多组加权矩阵, 用多组加权矩阵中的任意一组各个参数分别对待发送的探测数据进行加权后得 到一组数据, 多组加权矩阵得到多组数据, 将此多组数据分别发送给步骤 100a 中选定的辅助终端。
待发送的探测数据由正常数据 S1和干扰数据 S2组成, 使用多组加权矩阵 中的任意一组对待发送的探测数据进行加权后, 基站的每个发射通道发送给辅 助终端的下行信道符号为加权的正常数据与加权的干扰数据的叠加。 具体可以 理解为: 基站在发送数据时, 对待发送的探测数据进行加权, 也即对待发送的探测 数据进行线性变换。 加权的目的通常是为了改善接收效果, 在本实施例中, 加 权的目的为了获取校正参数。 其中, 加权参数ν = « ·θ。 a表示基站天线对探测 数据的调制幅度, 即对天线发送的探测数据的幅度放大 a倍, >表示基站天线对 探测数据的调制相位, 即对天线发送的探测数据的相位改变 6>。
例如, 基站待发送的探测数据为正常数据 Sl和干扰数据 s2, 加权之后的数 据就变为了 WnSi+WuS^ w2is1+w22s2, 即基站在天线 BA1上发送的下行信道符 号为 WnSi+Wi , 在天线 BA2上发送的下行信道符号为 W Si+w^s^ 基站在天 线 BA1和天线 BA2上发送的所有下行信道符号 WS可以使用矩阵形式表达为:
Figure imgf000010_0001
而终端接收到的符号 Y可以使用矩阵形式表达为:
Figure imgf000010_0002
这里, 如果将加权矩阵也看做下行信道的一部分的话, 那么, 等效的下行 信道参数为:
§ 21 " d,,w. + d2,w2. dnwr + d2,w
GT = = DTW =
_§ 12 § 22 _ _d12 wi + d "22 w vv 21 d12w1: . + d22w
即:
Y=GTS
之所以选择信道强相关的终端作为辅助终端, 是因为: 如果信道具有强相 关性, 则必然存在合适的一组加权矩阵 W, 使得等效的下行信道参数 GT成为半 边矩阵, 即该矩阵的行向量或者列向量中, 至少存在一个 0值。 表述为矩阵形 式:
a 0
G 1 =
β 0 这种情况下, Y=GTS= , 也即实现了在辅助终端只接收到正常数据 sl
Figure imgf000011_0001
而不是正常数据 Sl和干扰数据 s2的叠加。
加权矩阵 W的构造可以为如下方式: 在本实施例中, 加权矩阵 W中有 4 个参数, 每个参数都是复数, 实际上只要调节 w22, 就能够使 G成为半边矩阵。 w22的幅度 a—般在 1上下, a可以取 0.7、 0. 9、 1.1、 1.3等值, 相位 >的取值在 0〜2 π范围都有可能, 可按每 π /8间隔取不同的值。 其他参数可以通过按经验值 设定等方式获得。 这样, 基站可以获得多组加权矩阵 W, 并使用不同的加权矩 阵 W对待发送的探测数据进行加权后分别发送给辅助终端, 直至遍历获得的全 部加权矩阵。
具体的, 以 WiMax 系统为例, 使用如下方式发送加权后的探测数据: 1 ) 选择非空时编码(Space-Time Coding, 简称为: STC ) 区, 采用专用导频模式; 2 )每帧为每个辅助终端发送 4个混合自动重传请求(Hybrid Automatic Repeat reQuest, 简称为: HARQ )子数据包( Subburst ) , 每个 HARQ Subburst只分配 一个时隙 (SLOT ) 。
其中, WiMax把空口资源分为一个一个的区,有的区支持 STC,故称为 STC 区, 有的区不支持 STC, 故称为非 STC区。 在新一代移动通信系统中, 空间上 采用多发多收天线的空间分集来提高无线通信系统的容量和信息率; 在时间上 把不同信号在不同时隙内使用同一个天线发射, 使接收端可以分集接收。 用这 样的方法可以获得分集和编码增益, 从而实现高速率的传输。 因此, 在 STC区, 支持同一个天线发射不同信号。 这里选择非 STC区, 主要是假设基站多天线之 间发射的探测数据是相同的数据。 如果基站多天线之间发射的探测数据是不同 的数据, 则选择 STC区。
在上述实施例的基础上, 步骤 102具体可以为: 辅助终端对接收到的下行 信道符号进行校验, 并向基站返回校验结果。
其中, 辅助终端可以对接收到的下行信道符号进行 ARQ或者 HARQ校验。 正如本实施例所强调的, 如果加权矩阵 W的选择正确, 终端接收到的下行信道 符号实际上应该是分开的、 不叠加在一起的正常数据 si和干扰数据 s2, 对正常 数据和干扰数据分别进行校验, 正常数据是可以通过校验的, 而干扰数据是无 法通过校验的。
如果通过校验, 则辅助终端向基站返回肯定确认( ACKnowlegdement, 简 称为: ACK ) 。
如果不通过校验, 则辅助终端向基站返回否定确认 ( Negative ACKnowlegdement, 简称为: NACK ) , 要求基站采用新的一组加权矩阵对探测 数据进行加权。 当然, 辅助终端还可以不向基站返回 NACK, 那么基站在预定 时间内接收不到辅助终端反馈的 ACK, 则默认校验不通过。
一种情况下, 如果基站在多天线上发送的是相同的探测数据, 则辅助终端 只需要反馈一个校验结果给基站即可; 如果基站在多天线上发送不是相同的数 据, 则辅助终端需要分别对各探测数据进行校验, 并反馈多个校验结果给基站。
基于上述实施例的描述, 步骤 103 具体可以为: 基站根据辅助终端发送的 反馈结果从多组加权矩阵中选择合适的加权矩阵 W。
如果基站在多天线上发送的是相同的探测数据, 并且基站接收到辅助终端 返回的 ACK,则说明使用步骤 101中使用的加权矩阵 W可以使得等效的下行信 道参数 07成为半边矩阵, 则选择这样的加权矩阵\ 。 如果基站接收到的辅助终 端返回的 NACK或者在预定时间内未接到 ACK,则说明使用步骤 101中的加权 矩阵 W无法使得等效的下行信道参数 07成为半边矩阵, 则校正失败, 需要继 续遍历生成的加权矩阵 W对探测数据进行加权,直至遍历完成全部的加权矩阵。
如果基站选择 STC区, 在多天线上发送两组不同的探测数据, 则如果基站 接收到辅助终端发送的反馈结果为:针对一组探测数据发送的反馈信息为 ACK, 针对另一组探测数据发送的反馈信息为 NACK, 则同样可以说明步骤 101 中使 用的加权矩阵可以使得等效的下行信道参数 07成为半边矩阵, 则选择这样的加 权矩阵。 否则校正失败, 需要重新从基站生成的加权矩阵中选择一组加权矩阵 W对探测数据进行加权, 直至遍历完成全部的加权矩阵。
基于上述实施例的描述, 步骤 104具体可以为: 基站根据选择的加权矩阵 W以及辅助终端的上行信道参数计算基站通道校正参数。
由于基站侧和终端侧的接收通道与发射通道特性都会有差异, 所以, 下行 信道参数 D与上行信道参数 U两者之间的关系可以表述为:
Figure imgf000013_0001
其中, B表示基站侧收发通道差异, 包括天线 BA1的接收通道和发射通道 之间的差异 bl和天线 BA2的接收通道和发射通道之间的差异 b2。 T表示终端 侧收发通道差异, 包括天线 TA1的接收通道和发射通道之间的差异 tl和天线 bl 0
TA2的接收通道和发射通道之间的差异 t2。 B、 T均为对角矩阵,
0 b2 tl 0
T=
0 tl 如果以基站的天线 BA1和 BA2与终端的天线 TA1之间的下行信道 11和下 行信道 21为例, 可以得到如下关系:
Figure imgf000013_0002
如果以基站的天线 BA1和 BA2与终端的天线 TA2之间的下行信道 12和下 行信道 22为例, 可以得到如下关系:
b b2的比值 b体现了基站的天线 BA1与 BA2之间的差异, 于是, 基站通 道校正参数 b即为:
d21u ^22^12 如果等效的下行信道参数 07成为半边矩阵,即 GT当中的 duw12+d12w22为 0, d12W12+d22W22也同样为 0, 由此: 因此, 根据加权矩阵 W和上行信道参数中的 uu和 u21即可获得基站通道校 正参数 b。
具体的, 以 WiMAX 4发 4收基站为例, WiMAX终端通常支持单发双收, 基站可以通过测量终端的上行 Sounding信号、 上行数据区信号或者上行控制区 信号检测出上行信道参数 Un和 u21
根据上述步骤中获得的基站通道校正参数即可实现对基站通道的校正, 使 得基站双天线在后续收发数据的过程中实现幅度和相位变化一致, 或者满足一 定的比例关系。
本发明实施例提供了一种多天线基站的通道校正方法, 通过对信道上发送 的探测数据进行加权后发送给终端, 用终端检测加权后的信道特征从而获得校 验结果, 根据获得的校验结果实现通道的校正。 由于直接利用了普通用户终端 实现了基站的通道校正, 与内置校正通道或外置校正设备相比, 降低了基站的 通道校正成本。
图 3 为本发明实施例提供的基站结构示意图, 该基站为执行上述方法实施 例的主体, 如图 3所示, 该基站包括: 发送模块 301、 接收模块 302、 获得模块 303和校正模块 304。 其中, 发送模块 301 , 用于通过至少两个天线向终端发送 多组数据, 该多组数据为将一组探测数据使用不同的加权参数分别加权处理后 的数据; 接收模块 302, 用于接收终端针对每组数据校验后发送的反馈信息; 获 得模块 303 , 用于根据反馈信息从所述多组加权参数中选择一组加权参数, 并根 据选择的一组加权参数获得基站的多天线之间的通道校正参数; 校正模块 304, 用于使用通道校正参数对基站的至少两个天线进行通道校正。
一种实施方式下, 终端为信道强相关的终端, 该基站还可以包括: 相关性 获得模块, 用于获得其覆盖小区内全部终端的信道相关性。
另一种实施方式下, 待发送的探测数据包括正常数据和干扰数据, 则发送 模块 301 可以包括: 加权单元, 用于使用已知的多组加权参数中的一组对正常 数据和干扰数据进行加权处理; 发送单元, 用于将加权处理后的正常数据和干 扰数据发送给终端。
其中, 接收模块 302接收到的反馈信息包括: 如果终端对探测数据中的正 常数据的校验通过, 则基站接收的针对正常数据的反馈信息为肯定确认 ACK, 如果终端对探测数据中的干扰数据的校验未通过, 则基站接收的针对干扰数据 的反馈信息为否认确认 NACK, 或者, 在预定时间内接收不到终端针对干扰数 据反馈的信息。
在上述实施方式的基础上, 获得模块 303 可以包括: 选择单元, 用于如果 接收模块 302接收到的针对正常数据的反馈信息为肯定确认 ACK, 针对干扰数 据的反馈信息为否认确认 NACK或在预定时间内接收不到针对干扰数据反馈的 信息, 则选择正常数据与干扰数据发送时使用的加权参数。
一种实施方式下, 基站还可以包括: 测量模块, 用于接收终端发送的导频 信息, 将接收到的导频信息与已知的导频参考信号进行比较, 得到两者之间幅 度及相位的关系作为基站与终端之间的上行信道参数。
进一步的, 基站包括第一天线和第二天线, 终端包括第三天线和第四天线, 获得模块 303还可以包括: 计算单元, 用于根据如下方法计算通道校正参数: w W
vv 11 vv 12
加权参数为: , 上行信道参数为: U
w vv 21 w vv 22 u, u 则通道校正参数为:
w12u„ 其中, u„为终端的第三天线与基站的第一天线之间的上行信道参数, u12为 终端的第四天线与基站的第一天线之间的上行信道参数。 u21为终端的第三天线 与基站的第二天线之间的上行信道参数, u22为终端的第四天线与基站的第二天 线之间的上行信道参数。
本发明实施例提供了一种基站, 通过对探测数据进行加权后发送给终端, 通过终端反馈的校验结果来对通道进行校正。 本实施例通过利用用户终端来实 现对基站天线的通道进行校正, 相比现有技术中内置校正通道或外置校正设备 的方法, 其降低了基站天线的通道校正的成本。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的装置实施例仅仅是示意性的, 其中所述装置中的部分或全部 模块、 部分或全部单元的功能可以通过一个处理器来完成, 作为分离部件说明 的模块或单元可以是或者也可以不是物理上分开的, 作为模块或单元显示的部 件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到 至少两个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实 现本实施例方案的目的。 本领域普通技术人员在不付出创造性的劳动的情况下, 即可以理解并实施。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种多天线基站的通道校正方法, 其特征在于, 包括:
基站通过至少两个天线向终端发送多组数据, 所述多组数据为将一组探测 数据使用不同的加权参数分别进行加权处理后的数据;
接收所述终端针对每组数据校验后发送的反馈信息;
根据所述反馈信息从所述多组加权参数中选择一组加权参数, 并根据所述 选择的一组加权参数获得所述基站的至少两个天线之间的通道校正参数;
使用所述通道校正参数对基站的所述至少两个天线进行通道校正。
2、根据权利要求 1所述的方法, 其特征在于, 基站通过至少两个天线向终 端发送多组数据包括:
3、根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述选择的一 组加权参数获得所述基站的至少两个天线之间的通道校正参数包括:
根据所述选择的一组加权参数和基站测量到的所述基站与所述终端之间的 上行信道参数获得所述基站的至少两个天线之间的通道校正参数。
4、根据权利要求 1至 3任意一项所述的方法, 其特征在于, 所述终端为信 道强相关的终端, 所述基站通过所述至少两个天线向终端发送多组数据之前, 所述方法还包括:
所述基站获得其覆盖小区内全部终端的信道相关性。
5、根据权利要求 1至 4任意一项所述的方法, 其特征在于, 所述探测数据 包括正常数据和干扰数据, 所述基站通过至少两个天线向终端发送多组数据中 的任意一组数据包括:
基站使用多组加权参数中的任意一组对所述正常数据和干扰数据进行加权 处理;
并将加权处理后的正常数据和干扰数据发送给终端。
6、根据权利要求 5所述的方法, 其特征在于, 接收所述终端对所述每组数 据校验后发送的反馈信息包括:
如果所述终端对所述数据中的正常数据的校验通过, 则所述基站接收的针 对正常数据的反馈信息为肯定确认 ACK;如果所述终端对所述数据中的干扰数 据的校验未通过, 则所述基站接收的针对所述干扰数据的反馈信息为否认确认 NACK, 或者, 所述基站在预定时间内接收不到所述终端针对所述干扰数据反 馈的信息。
7、根据权利要求 6所述的方法, 其特征在于, 所述根据所述反馈信息从所 述多个加权参数中选择相应的加权参数包括:
如果所述基站接收的针对正常数据的反馈信息为肯定确认 ACK,针对干扰 数据的反馈信息为否认确认 NACK或在预定时间内接收不到针对所述干扰数据 反馈的信息, 则选择发送所述正常数据与所述干扰数据时使用的加权参数。
8、 根据权利要求 3所述的方法, 其特征在于, 所述方法进一步包括: 所述 基站测量所述基站与所述终端之间的上行信道参数, 具体包括:
基站接收终端发送的导频信号, 将所述接收到的导频信号与已知的导频参 考信号进行比较, 得到两者之间幅度及相位的关系作为所述基站与所述终端之 间的上行信道参数。
9、根据权利要求 3或 8所述的方法, 其特征在于, 所述基站包括第一天线 和第二天线, 所述终端包括第三天线和第四天线, 所述加权参数为:
W = 所述根据所述选择的
Figure imgf000018_0001
加权参数和基站测量到的所述基站与所述终端之间的上行信道参数获得的所述 基站的第一天线和第二天线之间的通道校正参数为 - ^;
w12un 其中, u„为终端的第三天线与基站的第一天线之间的上行信道参数, u12 为终端的第四天线与基站的第一天线之间的上行信道参数。 u21为终端的第三天 线与基站的第二天线之间的上行信道参数, u22为终端的第四天线与基站的第二 天线之间的上行信道参数。
10、 一种基站, 其特征在于, 包括:
发送模块, 用于通过至少两个天线向终端发送多组数据, 所述多组数据为 将一组探测数据使用不同的加权参数分别加权处理后的数据;
接收模块, 用于接收终端针对每组数据校验后发送的反馈信息;
获得模块, 用于根据所述反馈信息从所述多组加权参数中选择一组加权参 数, 并根据所述选择的一组加权参数获得所述基站的至少两个天线之间的通道 校正参数;
校正模块, 用于使用所述通道校正参数对所述基站的所述至少两个天线进 行通道校正。
11、 根据权利要求 10所述的基站, 其特征在于, 所述终端为信道强相关的 终端, 所述基站还包括:
相关性获得模块, 用于获得其覆盖小区内全部终端的信道相关性。
12、 根据权利要求 10所述的基站, 其特征在于, 所述探测数据包括正常数 据和干扰数据, 所述发送模块包括:
加权单元, 用于使用多组加权参数中的任意一组对所述正常数据和干扰数 据进行加权处理;
发送单元, 用于将加权处理后的正常数据和干扰数据发送给终端。
13、 根据权利要求 12所述的基站, 其特征在于, 所述接收模块接收到的反 馈信息包括:
如果所述终端对所述数据中的正常数据的校验通过, 则所述基站接收的针 对正常数据的反馈信息为肯定确认 ACK,如果所述终端对所述数据中的干扰数 据的校验未通过, 则所述基站接收的针对所述干扰数据的反馈信息为否认确认 NACK, 或者, 在预定时间内接收不到所述终端针对所述干扰数据反馈的信息。
14、 根据权利要求 13所述的基站, 其特征在于, 所述获得模块包括: 选择单元, 用于如果所述接收模块接收的针对正常数据的反馈信息为肯定 确认 ACK, 针对所述干扰数据的反馈信息为否认确认 NACK或在预定时间内 接收不到针对所述干扰数据反馈的信息, 则选择所述正常数据与所述干扰数据 发送时使用的加权参数。
15、 根据权利要求 10所述的基站, 其特征在于, 所述基站还包括: 测量模块, 用于接收终端发送的导频信号, 将所述接收到的导频信号与已 知的导频参考信号进行比较, 得到两者之间幅度及相位的关系作为所述基站与 所述终端之间的上行信道参数。
16、 根据权利要求 10或 14所述的基站, 其特征在于, 所述基站包括第一 天线和第二天线, 所述终端包括第三天线和第四天线, 所述获得模块包括: 计算单元, 用于根据如下方法计算通道校正参数:
w, w
所述加权参数为: W = 12
,所述上行信道参数为: u =
W W
ντ 21 ντ 22 U , U„ 则所述通道校正参数为:
W12U11
其中, Ul i为终端的第三天线与基站的第一天线之间的上行信道参数, u12为终端的第四天线与基站的第一天线之间的上行信道参数。 u21为终端的 第三天线与基站的第二天线之间的上行信道参数, u22为终端的第四天线与 基站的第二天线之间的上行信道参数。
PCT/CN2011/073657 2011-05-04 2011-05-04 多天线基站的通道校正方法和基站 WO2011120455A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000925.0A CN102326337B (zh) 2011-05-04 2011-05-04 多天线基站的通道校正方法和基站
PCT/CN2011/073657 WO2011120455A2 (zh) 2011-05-04 2011-05-04 多天线基站的通道校正方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073657 WO2011120455A2 (zh) 2011-05-04 2011-05-04 多天线基站的通道校正方法和基站

Publications (2)

Publication Number Publication Date
WO2011120455A2 true WO2011120455A2 (zh) 2011-10-06
WO2011120455A3 WO2011120455A3 (zh) 2012-04-05

Family

ID=44712668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073657 WO2011120455A2 (zh) 2011-05-04 2011-05-04 多天线基站的通道校正方法和基站

Country Status (2)

Country Link
CN (1) CN102326337B (zh)
WO (1) WO2011120455A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399812A1 (en) * 2019-03-22 2021-12-23 Huawei Technologies Co., Ltd. Channel Correction Method And Apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891708A (zh) * 2012-09-17 2013-01-23 华为技术有限公司 收发通道响应的校正方法、装置、系统及bbu
WO2015096102A1 (zh) * 2013-12-26 2015-07-02 华为技术有限公司 一种基站间互易性校正的方法及装置
WO2016029434A1 (en) * 2014-08-29 2016-03-03 Nec Corporation Method and apparatus for antenna calibration in tdd systems
CN109964412B (zh) * 2016-11-15 2020-09-29 华为技术有限公司 一种多通道校正方法及装置、幅度校正方法、相位校正方法、收发系统和基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388668A (zh) * 2001-05-25 2003-01-01 华为技术有限公司 智能天线通道阵列校正方法及装置
CN1700801A (zh) * 2005-07-08 2005-11-23 中兴通讯股份有限公司 一种移动通信智能天线系统中的下行链路波束赋形方法
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032164A (ja) * 2001-07-18 2003-01-31 Hitachi Kokusai Electric Inc 通信機
KR100895992B1 (ko) * 2005-09-16 2009-05-07 삼성전자주식회사 다중 안테나를 사용하는 무선통신시스템에서 안테나 개수를확장하기 위한 장치 및 방법
US20090005120A1 (en) * 2007-06-28 2009-01-01 Elektrobit Wireless Communications Oy Transmission method for common channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388668A (zh) * 2001-05-25 2003-01-01 华为技术有限公司 智能天线通道阵列校正方法及装置
CN1700801A (zh) * 2005-07-08 2005-11-23 中兴通讯股份有限公司 一种移动通信智能天线系统中的下行链路波束赋形方法
CN1859031A (zh) * 2006-02-10 2006-11-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399812A1 (en) * 2019-03-22 2021-12-23 Huawei Technologies Co., Ltd. Channel Correction Method And Apparatus
US11736207B2 (en) * 2019-03-22 2023-08-22 Huawei Technologies Co., Ltd. Channel correction method and apparatus

Also Published As

Publication number Publication date
WO2011120455A3 (zh) 2012-04-05
CN102326337B (zh) 2013-10-09
CN102326337A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
US10291305B2 (en) Beam training method and device in communication system
KR102309726B1 (ko) 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
JP5546679B2 (ja) アンテナ補正情報の報告、アンテナ補正因子の確認方法および設備
US10020853B2 (en) Method and system for processing downlink pilot signal
US10021583B2 (en) Beam splitting systems and methods
CN105637775B (zh) 一种基站间互易性校正的方法及装置
US9402192B2 (en) Method for calibrating antenna reciprocity in a base station of wireless network and a device thereof
CN103259581B (zh) 一种进行天线校准的方法、系统和设备
US8295384B2 (en) Estimating spatial expansion matrix in a MIMO wireless communication system
CN109314584B (zh) 用于测试射频(rf)数据包信号收发器的正常隐式波束成形操作的方法
US9520922B2 (en) Downlink channel quality information acquisition method and device
CN107231209B (zh) 无线网络中用于干扰协调传输和接收的方法和装置
WO2014180274A1 (en) System and method for wi-fi downlink-uplink protocol design for uplink interference alignment
US8280426B2 (en) Adaptive power balancing and phase adjustment for MIMO-beamformed communication systems
WO2011120455A2 (zh) 多天线基站的通道校正方法和基站
US9991972B1 (en) Remote radio head calibration
KR20080007458A (ko) 간섭 억제를 실현하는 빔 성형 방법
US8681644B2 (en) System and method for spatial multiplexing for coordinated multi-point transmission
CN114946212A (zh) 无线网络的高效波束管理
WO2010139208A1 (zh) 数据传输方法及装置
CN106803782B (zh) 一种大规模天线系统的通道降秩方法及装置
US20140066081A1 (en) Coordinated multipoint reception processing method and apparatus, and base station
US9237459B1 (en) System and method for measuring characteristics of neighbor cells using a synthesized composite antenna pattern
CN103828285B (zh) 在预编码的mimo系统中用于链路适配的方法和装置
WO2021022937A1 (zh) 一种天线校正方法、基站及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000925.0

Country of ref document: CN

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762029

Country of ref document: EP

Kind code of ref document: A2