WO2012128151A1 - 流動層乾燥装置 - Google Patents

流動層乾燥装置 Download PDF

Info

Publication number
WO2012128151A1
WO2012128151A1 PCT/JP2012/056579 JP2012056579W WO2012128151A1 WO 2012128151 A1 WO2012128151 A1 WO 2012128151A1 JP 2012056579 W JP2012056579 W JP 2012056579W WO 2012128151 A1 WO2012128151 A1 WO 2012128151A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
drying
gas
temperature
coal
Prior art date
Application number
PCT/JP2012/056579
Other languages
English (en)
French (fr)
Inventor
大浦 康二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2012232314A priority Critical patent/AU2012232314B9/en
Publication of WO2012128151A1 publication Critical patent/WO2012128151A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a fluidized bed drying apparatus for drying a material to be dried by fluidizing gas.
  • the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • Conventional coal gasification combined power generation facilities generally have a coal supply device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, a gas purification device, and the like. ing. Therefore, the coal is dried and then pulverized, supplied to the coal gasifier as pulverized coal, and air is taken in. The coal gas is combusted and gasified in this coal gasifier, and the product gas (combustible) Gas) is produced. Then, the product gas is purified and then supplied to the gas turbine equipment to burn and generate high-temperature and high-pressure combustion gas to drive the turbine.
  • the exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed.
  • the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
  • the coal used in such a coal gasification combined power generation facility is not only a high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite, but also a comparison such as sub-bituminous coal and lignite
  • high-grade coal high-grade coal
  • low-grade coal low-grade coal
  • This low-grade coal has a large amount of moisture to be brought in, and the power generation efficiency decreases due to this moisture. For this reason, in the case of low-grade coal, it is necessary to dry the coal with the above-described drying apparatus to remove moisture and then pulverize and supply the coal gasifier.
  • Patent Document 1 As a drying apparatus for drying such coal, there is one described in Patent Document 1 below.
  • the control method and apparatus for a fluidized bed dryer described in Patent Document 1 introduces exhaust gas, which is a heat source, into a fluidized bed dryer as a heat source / fluidized gas to dry the wet raw material, and is introduced into the lower part thereof.
  • the FBD introduction gas amount is set to a constant value for stabilizing the fluidized bed, the processing amount and the dryness are set, and the exhaust gas system
  • the exhaust gas relative humidity at the FBD outlet is set, the exhaust gas temperature of the heat source is measured, and the FBD introduction gas temperature, bypass exhaust gas amount, circulating exhaust gas amount as control variables according to the fluctuations
  • the exhaust gas amount of the heat source is calculated and controlled.
  • the exhaust gas temperature as a heat source for introducing the fluidized gas into the fluidized bed dryer and drying the wet raw material is measured, and the fluidized bed is changed according to the variation. It controls the temperature at which the dryer is introduced, the amount of bypass exhaust gas, the amount of circulating exhaust gas, and the amount of exhaust gas from the heat source.
  • the fluidized bed dryer has a long response time due to the large heat capacity of the wet raw material and the dryer body that are put inside, and the temperature inside the fluidized bed dryer can be adjusted early even if the temperature and amount of exhaust gas are adjusted.
  • This invention solves the subject mentioned above, and aims at providing the fluidized-bed drying apparatus which can improve a drying efficiency.
  • the fluidized bed drying apparatus of the present invention includes a drying container having a hollow shape, a wet raw material charging unit for charging a wet raw material into one end of the drying container, and the other end of the drying container.
  • a dry matter discharge unit that discharges a dry product obtained by heating and drying the wet raw material
  • a fluidized gas supply unit that forms a fluidized bed together with the wet raw material by supplying a fluidizing gas to a lower part of the drying container, and the dry container
  • a gas discharge unit that discharges fluidized gas and generated steam from above the wet raw material input unit on one end side, a heating unit that heats the wet raw material of the fluidized bed, and a dew point that changes the dew point temperature in the drying container
  • a temperature changing device a fluidized bed temperature detection sensor for detecting the temperature of the fluidized bed, and a control device for controlling the dew point temperature changing device based on a detection result of the fluidized bed temperature detection sensor. Do Than is.
  • the wet raw material flows by the fluidizing gas.
  • a fluidized bed is formed, and the wet raw material of the fluidized bed is heated by the heating unit to be dried to become a dry product.
  • the dry product is discharged to the outside from the dry product discharge unit, while the fluidized gas and the wet raw material are discharged. Vapor generated by drying is discharged from the gas discharge portion to the outside.
  • the fluidized bed temperature detection sensor detects the temperature of the fluidized bed, and when the temperature of the fluidized bed fluctuates, the control device controls the dew point temperature changing device to change the dew point temperature in the drying container. Then, the drying degree of the wet raw material in the drying container becomes constant, and it becomes possible to always perform a stable drying process of the wet raw material, and it is possible to improve the drying efficiency.
  • the dew point temperature changing device is a pressure reducing device that changes the pressure in the drying container, and the control device controls the pressure reducing device based on the temperature of the fluidized bed. It is characterized by that.
  • the temperature of the fluidized bed is determined by the dew point temperature that depends on the partial pressure of water vapor in the drying vessel. Therefore, by changing the pressure in the drying vessel based on the temperature of the fluidized bed, The deviation between the temperature and the dew point temperature in the drying container can be maintained at a predetermined value, so that a stable wet raw material drying process can always be performed.
  • control device controls the pressure reducing device to lower the pressure in the drying container when the temperature of the fluidized bed is lowered.
  • the pressure in the drying container is decreased, whereby the deviation between the temperature of the fluidized bed and the dew point temperature in the drying container can be easily maintained at a predetermined value.
  • the fluidized gas supply unit can supply water vapor and non-condensable gas as fluidized gas to the lower part of the drying container, and the dew point temperature changing device is fluidized.
  • the temperature of the fluidized bed is determined by the dew point temperature of the steam depending on the water vapor partial pressure in the drying container, by adjusting the water vapor concentration in the drying container based on the temperature of the fluidized bed, The deviation between the temperature of the fluidized bed and the dew point temperature in the drying container can be maintained at a predetermined value, and a stable wet raw material drying process can always be performed.
  • control device controls the water vapor concentration adjusting device to reduce the water vapor concentration in the drying container when the temperature of the fluidized bed is lowered.
  • the deviation between the temperature of the fluidized bed and the dew point in the drying vessel can be easily maintained at a predetermined value by reducing the water vapor concentration in the drying vessel when the temperature of the fluidized bed is lowered.
  • the fluidized bed drying apparatus of the present invention is characterized in that the control device increases the supply amount of the non-condensable gas when the temperature of the fluidized bed decreases.
  • the control device decreases the supply amount of water vapor while increasing the supply amount of non-condensable gas, thereby fluidizing gas. It is characterized by maintaining a constant amount.
  • the amount of fluidized gas in the drying vessel is maintained at a constant amount by decreasing the amount of water vapor supplied while increasing the amount of non-condensable gas supplied.
  • the pressure acting on the drying container does not become excessive, and safety can be improved.
  • the dew point temperature changing device that changes the dew point temperature in the drying container
  • the fluidized bed temperature detection sensor that detects the temperature of the fluidized bed
  • the detection result of the fluidized bed temperature detection sensor Since the control device for controlling the dew point temperature changing device is provided, the degree of drying of the wet raw material in the drying container is constant, and it becomes possible to always perform a stable drying process of the wet raw material, thereby improving the drying efficiency. be able to.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic view of the fluidized bed drying apparatus of Example 1.
  • FIG. 3 is a graph showing the dew point temperature with respect to the pressure in the container.
  • FIG. 4 is a schematic diagram of a fluidized bed drying apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a graph showing the dew point temperature with respect to the water vapor concentration in the drying container.
  • FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to a first embodiment of the present invention is applied
  • FIG. 2 is a schematic diagram of a fluidized bed drying apparatus of the first embodiment
  • FIG. It is a graph showing dew point temperature with respect to the pressure in a container.
  • the combined coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of Example 1 employs an air combustion method in which coal gas is generated in a gasification furnace using air as an oxidant, and is purified by a gas purification device. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing). In this case, low-grade coal is used as the wet raw material supplied to the gasifier.
  • the coal gasification combined power generation facility 10 includes a coal supply device 11, a fluidized bed drying device 12, a pulverized coal machine (mill) 13, a coal gasification furnace 14, and a char recovery device 15. , A gas refining device 16, a gas turbine facility 17, a steam turbine facility 18, a generator 19, and a heat recovery steam generator (HRSG) 20.
  • the coal feeder 11 includes a raw coal bunker 21, a coal feeder 22, and a crusher 23.
  • the raw coal bunker 21 can store low-grade coal, and can drop a predetermined amount of low-grade coal into the coal feeder 22.
  • the coal feeder 22 can transport the low-grade coal dropped from the raw coal bunker 21 by a conveyor or the like and drop it on the crusher 23.
  • the crusher 23 can crush the dropped low-grade coal into a predetermined size.
  • the fluidized bed drying device 12 supplies drying steam (superheated steam) to the low-grade coal introduced by the coal feeder 11 so as to heat and dry the low-grade coal while flowing. Moisture contained in the graded coal can be removed.
  • the fluidized bed drying device 12 is provided with a cooler 31 for cooling the dried low-grade coal taken out from the lower portion, and the dried and cooled dried coal is stored in the dried coal bunker 32.
  • the fluidized bed drying apparatus 12 is provided with a dry coal cyclone 33 and a dry coal electrostatic precipitator 34 for separating dry coal particles from steam taken out from above, and the dry coal particles separated from the steam are dried coal bunker. 32 is stored.
  • the steam from which the dry coal has been separated by the dry coal electrostatic precipitator 34 is compressed by the steam compressor 35 and then supplied to the fluidized bed drying device 12 as drying steam.
  • the pulverized coal machine 13 is a coal pulverizer, and produces pulverized coal by pulverizing the low-grade coal (dried coal) dried by the fluidized bed dryer 12 into fine particles. That is, in the pulverized coal machine 13, the dry coal stored in the dry coal bunker 32 is dropped by the coal feeder 36, and this dry coal) is converted into low-grade coal having a predetermined particle size or less, that is, pulverized coal. .
  • the pulverized coal after being pulverized by the pulverized coal machine 13 is separated from the conveying gas by the pulverized coal bag filters 37a and 37b and stored in the pulverized coal supply hoppers 38a and 38b.
  • the coal gasification furnace 14 can supply pulverized coal processed by the pulverized coal machine 13 and can be recycled by returning the char (unburned coal) recovered by the char recovery device 15. .
  • the coal gasification furnace 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply the compressed air compressed by the gas turbine equipment 17.
  • the air separation device 42 separates and generates nitrogen and oxygen from air in the atmosphere.
  • a first nitrogen supply line 43 is connected to the coal gasifier 14, and a pulverized coal supply hopper is connected to the first nitrogen supply line 43.
  • Charging lines 44a and 44b from 38a and 38b are connected.
  • the second nitrogen supply line 45 is also connected to the coal gasification furnace 14, and the char return line 46 from the char recovery device 15 is connected to the second nitrogen supply line 45.
  • the oxygen supply line 47 is connected to the compressed air supply line 41.
  • nitrogen is used as a carrier gas for coal and char
  • oxygen is used as an oxidant.
  • the coal gasification furnace 14 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein or water vapor as a gasifying agent, and produces carbon dioxide.
  • a combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent.
  • the coal gasification furnace 14 is provided with a foreign matter removing device 48 that removes foreign matter mixed with pulverized coal.
  • the coal gasification furnace 14 is not limited to the spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace.
  • the coal gasification furnace 14 is provided with a gas generation line 49 for combustible gas toward the char recovery device 15, and can discharge combustible gas containing char.
  • a gas generation line 49 for combustible gas toward the char recovery device 15, and can discharge combustible gas containing char.
  • the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 15.
  • the char collection device 15 has a dust collector 51 and a supply hopper 52.
  • the dust collector 51 is constituted by one or a plurality of bag filters or cyclones, and can separate char contained in the combustible gas generated in the coal gasification furnace 14.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the hopper 52 stores the char separated from the combustible gas by the dust collector 51.
  • a bin may be disposed between the dust collector 51 and the supply hopper 52, and a plurality of supply hoppers 52 may be connected to the bin.
  • a char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
  • the gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 15.
  • the gas purifier 16 purifies the combustible gas to produce fuel gas and supplies it to the gas turbine equipment 17.
  • the sulfur is finally removed by removing it with the amine absorbing solution. Is recovered as gypsum and used effectively.
  • the gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63.
  • the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasification furnace 14, and a booster 68 is provided in the middle.
  • the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purifier 16 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 19 can be driven.
  • the steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam by exchanging heat between the air and the high temperature exhaust gas. Therefore, the exhaust heat recovery boiler 20 is provided with the steam supply line 71 between the steam turbine equipment 18 and the turbine 69 of the steam turbine equipment 18, the steam recovery line 72 is provided, and the steam recovery line 72 is provided with the condenser 73. Yes. Therefore, in the steam turbine facility 18, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
  • the exhaust gas from which heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas is discharged from the chimney 75 to the atmosphere.
  • raw coal low-grade coal
  • the machine 22 drops the crusher 23 where it is crushed to a predetermined size.
  • the crushed low-grade coal is heated and dried by the fluidized bed drying device 12, cooled by the cooler 31, and stored in the dry coal bunker 32.
  • the steam taken out from the upper part of the fluidized bed drying device 12 is separated into dry coal particles by the dry coal cyclone 33 and the dry coal electrostatic precipitator 34 and compressed by the steam compressor 35 before being supplied to the fluidized bed drying device 12. Returned as drying steam.
  • the dry coal particles separated from the steam are stored in the dry coal bunker 32.
  • the dry coal stored in the dry coal bunker 32 is fed into the pulverized coal machine 13 by the coal feeder 36, where it is pulverized into fine particles to produce pulverized coal, and through the pulverized coal bag filters 37a and 37b. And stored in the pulverized coal supply hoppers 38a and 38b.
  • the pulverized coal stored in the pulverized coal supply hoppers 38 a and 38 b is supplied to the coal gasification furnace 14 through the first nitrogen supply line 43 by nitrogen supplied from the air separation device 42.
  • the char recovered by the char recovery device 15 described later is supplied to the coal gasifier 14 through the second nitrogen supply line 45 by nitrogen supplied from the air separation device 42.
  • the compressed air extracted from the gas turbine equipment 17 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42.
  • the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified to generate combustible gas (coal gas) mainly composed of carbon dioxide. Can be generated.
  • the combustible gas is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
  • the combustible gas is first supplied to the dust collector 51, whereby the char contained in the gas is separated from the combustible gas.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the fine char separated from the combustible gas is deposited on the hopper 52, returned to the coal gasifier 14 through the char return line 46, and recycled.
  • the combustible gas from which the char has been separated by the char recovery device 15 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce fuel gas.
  • the gas turbine facility 17 when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 16. Combustion gas is generated by mixing with fuel gas and combusting, and the turbine 63 is driven by this combustion gas, so that the generator 19 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the turbine 63 in the gas turbine equipment 17 generates steam by exchanging heat with air in the exhaust heat recovery boiler 20, and supplies the generated steam to the steam turbine equipment 18. .
  • the generator 69 can be driven through the rotating shaft 64 to generate electric power by driving the turbine 69 with the steam supplied from the exhaust heat recovery boiler 20.
  • the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal charging port (wet raw material charging unit) 102, a dry coal discharging port (dry matter discharging unit) 103, and a fluidizing gas supply port. (Fluidized gas supply unit) 104, gas discharge port (gas discharge unit) 105, and heat transfer tube (heating unit) 106.
  • the drying container 101 has a hollow box shape, and is formed with a raw coal charging port 102 for charging raw coal on one end side, and on the other end side, dried charcoal for discharging a dried product obtained by heating and drying raw coal.
  • a discharge port 103 is formed.
  • the drying container 101 is provided with a dispersion plate 107 having a plurality of openings at a predetermined distance from the bottom plate at the bottom, and fluidization that supplies fluidized gas (superheated steam) into the drying container 101 on the bottom plate.
  • a gas supply port 104 is formed. In this case, a plurality of fluidizing gas supply ports 104 are provided in the longitudinal direction of the drying container 101, but one may be used.
  • the drying container 101 has a gas discharge port 105 for discharging the fluidized gas and the generated steam at the upper part on the dry coal discharge port 103 side.
  • the drying container 101 is supplied with raw coal from the raw coal inlet 102 and supplied with fluidizing gas from the fluidizing gas supply port 104 through the dispersion plate 107, so that a predetermined thickness is provided above the dispersion plate 107.
  • a fluidized bed S is formed, and a free board portion F is formed above the fluidized bed S.
  • a heat transfer pipe 106 that circulates in the fluidized bed S from the outside through the drying container 101 is disposed, and the raw coal can be heated and dried by the superheated steam flowing in the heat transfer pipe 106.
  • the drying container 101 is provided with a fluidizing gas supply line 111 for each fluidizing gas supply port 104, and a flow rate adjusting valve 112 is attached to the fluidizing gas supply line 111. Further, the drying container 101 is provided with a gas discharge line 113 for the gas discharge port 105, and a flow rate adjusting valve 114 and a fan 115 are attached to the gas discharge line 113. Further, in the drying container 101, the heat transfer pipe 106 is disposed in the fluidized bed S, and a flow rate adjustment valve 116 is attached to the superheated steam supply side of the heat transfer pipe 106.
  • the drying container 101 is provided with a first temperature sensor (fluidized bed temperature detection sensor) 121 for detecting the temperature of the fluidized bed S and a second temperature sensor 122 for detecting the temperature of the free board portion F. Yes. Further, the drying container 101 is provided with a pressure sensor 123 that detects the pressure of the drying container 101.
  • a first temperature sensor fluidized bed temperature detection sensor
  • the control device 125 includes a temperature T1 of the fluidized bed S detected by the first temperature sensor 121, a temperature T2 of the free board portion F detected by the second temperature sensor 122, and a pressure P of the drying container 101 detected by the pressure sensor 123. Is entered. Further, the control device 125 adjusts the fluidizing gas supply amount supplied from the fluidizing gas supply ports 104 into the drying container 101 through the fluidizing gas supply line 111 by adjusting the opening degree of the flow rate adjusting valve 112. can do. In addition, the control device 125 is discharged from the drying container 101 to the gas discharge line 113 through the gas discharge port 105 by adjusting the opening degree of the flow rate adjusting valve 114 or adjusting the rotation speed of the fan 115.
  • the amount of steam (fluidized gas amount + generated steam amount) can be adjusted. Furthermore, the control device 125 can adjust the heating amount of the fluidized bed S by adjusting the amount of superheated steam flowing through the heat transfer pipe 106 by adjusting the opening degree of the flow rate adjusting valve 116.
  • the dew point temperature in the drying container 101 is changed by adjusting the pressure in the drying container 101 according to the temperature variation in the fluidized bed S.
  • a pressure reducing device is used as a dew point temperature changing device for changing the dew point temperature in the drying container 101, and specifically, a flow rate adjusting valve 114 provided in the gas discharge line 113 is applied.
  • the flow rate adjusting valve 112 by setting the flow rate adjusting valve 112 to a predetermined opening, a predetermined amount of fluidizing gas is supplied through the fluidizing gas supply line 111, while the fan 115 is rotated at a predetermined number of revolutions, and the flow rate adjusting valve 114 is By setting to a predetermined opening, when a predetermined amount of steam in the drying container 101 is discharged, the pressure (total pressure) in the drying container 101 is maintained at a predetermined pressure.
  • the opening degree of the flow rate adjustment valve 114 In this operation state, if the opening degree of the flow rate adjustment valve 114 is increased, the amount of steam discharged from the inside of the drying container 101 increases, so that the pressure in the drying container 101 can be reduced. On the other hand, when the opening degree of the flow rate adjustment valve 114 is reduced in the above-described operation state, the amount of steam discharged from the inside of the drying container 101 decreases, so that the pressure in the drying container 101 can be increased.
  • the pressure in the drying container 101 is adjusted by adjusting the opening degree of the flow rate adjustment valve 114. However, the opening degree of the flow rate adjustment valve 114 is made constant or eliminated, and the rotation speed of the fan 115 is adjusted. By adjusting the pressure, the pressure in the drying container 101 may be adjusted.
  • the dew point temperature in the drying container 101 can be increased or decreased.
  • the temperature of the fluidized bed S is determined by the dew point temperature of the water vapor that depends on the water vapor partial pressure in the drying vessel 101
  • the pressure in the drying vessel 101 is changed based on the temperature of the fluidized bed S. By doing so, it becomes possible to maintain the deviation between the temperature of the fluidized bed S and the dew point temperature in the drying container at a predetermined value, and it is possible to always give a certain degree of heating to the raw coal of the fluidized bed S. It becomes.
  • control device 125 adjusts the pressure in the drying container 101 by adjusting the opening of the flow rate adjustment valve 114 based on the detection result of the first temperature detection sensor 121, and adjusts the pressure in the drying container 101. Change the dew point temperature. That is, when the temperature of the fluidized bed S decreases, the control device 125 increases the opening degree of the flow rate adjustment valve 114 and decreases the pressure in the drying container 101.
  • the raw coal is supplied from the raw coal inlet 102 to the drying container 101 and the fluidized gas is supplied from the fluidized gas supply port 104 through the dispersion plate 107.
  • a fluidized bed S having a predetermined thickness is formed above the dispersion plate 107.
  • the raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer tube 106 while moving from the raw coal inlet 102 to the dry coal outlet 103.
  • the raw coal is in a preheated state immediately after being fed from the raw coal inlet 102, and the water hardly evaporates.
  • the water evaporation starts and gradually increases. Then, the amount of evaporation becomes maximum, and decreases as the dry coal discharge port 103 is approached.
  • the dry coal from which the raw coal has been dried is discharged to the outside through the dry coal discharge port 103, and the steam generated when the raw coal is heated and dried in the fluidized bed S rises together with the fluidized gas and is discharged into the gas.
  • the gas is discharged from the outlet 105 to the outside.
  • the control device 125 supplies a predetermined amount of fluidizing gas through the fluidizing gas supply line 111 by setting the flow rate adjustment valve 112 to a predetermined opening degree.
  • the control device 125 rotates the fan 115 at a predetermined rotational speed and sets the flow rate adjustment valve 114 to a predetermined opening, thereby discharging a predetermined amount of steam in the drying container 101.
  • the temperature T1 of the fluidized bed S in the drying vessel 101 is maintained at 110 ° C., and the pressure (total pressure) is maintained at 100 kPa.
  • the pressure P in the drying container 101 and the temperature T1 of the fluidized bed S are set such that a deviation Ta between the temperature T1 of the fluidized bed S in the drying container 101 and the dew point temperature in the drying container 101 is set.
  • the temperature T1 of the fluidized bed S decreases.
  • the control device 125 detects that the temperature T1 of the fluidized bed S has decreased from 110 ° C. to 105 ° C.
  • the control device 125 increases the opening of the flow regulating valve 114. Then, since the amount of steam discharged from the drying container 101 increases, the pressure in the drying container 101 is reduced, and the dew point temperature in the drying container 101 decreases.
  • the relationship among the temperature T1, the dew point temperature, and the pressure P of the fluidized bed S is preferably mapped in advance according to the form of the fluidized bed drying device 12.
  • control device 125 decreases the opening of the flow rate adjustment valve 114, and reverses the drying. A predetermined deviation between the temperature T1 in the container 101 and the dew point temperature is secured.
  • the drying container 101 having a hollow box shape, the raw coal charging port 102 for charging the raw coal to one end of the drying container 101, and the drying container 101 A dry coal discharge port 103 for discharging dry coal obtained by heating and drying the raw coal from the other end side, and a fluidized gas supply port for forming a fluidized bed S together with the raw coal by supplying a fluidizing gas to the lower part of the drying vessel 101.
  • a gas discharge port 105 for discharging fluidized gas and generated steam from above the raw coal input port 102 on one end side of the drying vessel 101, and a heat transfer tube 106 for heating the raw coal of the fluidized bed S are provided and controlled.
  • the device 125 changes the pressure P in the drying container 101 by adjusting the opening degree of the flow rate adjustment valve 114 of the gas discharge line 113 based on the temperature T1 of the fluidized bed S detected by the first temperature sensor 121. Change dew point temperature It is.
  • the control device 125 adjusts the opening degree of the flow rate adjustment valve 114 and adjusts the pressure P in the drying container 101 to change the dew point temperature. Then, the degree of drying of the raw coal in the drying container 101 becomes constant, and it becomes possible to always perform a stable raw coal drying process, and it is possible to improve the drying efficiency.
  • control device 125 changes the dew point temperature by adjusting the pressure P in the drying container 101 by adjusting the opening degree of the flow rate adjustment valve 114 based on the temperature T1 of the fluidized bed S. Specifically, the control device 125 decreases the pressure P in the drying container 101 by increasing the opening degree of the flow rate adjustment valve 114 when the temperature T1 of the fluidized bed S decreases.
  • the temperature of the fluidized bed S is determined by the dew point temperature that depends on the water vapor partial pressure in the drying vessel 101, the pressure P in the drying vessel 101 is changed based on the temperature T1 of the fluidized bed S.
  • the deviation between the temperature T1 of the fluidized bed S and the dew point temperature in the drying vessel 101 can be maintained at a predetermined value, and a stable raw coal drying process can always be performed.
  • FIG. 4 is a schematic diagram of a fluidized bed drying apparatus according to Example 2 of the present invention
  • FIG. 5 is a graph showing the dew point temperature with respect to the water vapor concentration in the drying container.
  • symbol is attached
  • the fluidized bed drying apparatus 12 includes a drying container 101, a raw coal inlet 102, a dry coal outlet 103, a fluidized gas supply port 104, and a gas outlet 105. And a heat transfer tube 106.
  • the drying container 101 is provided with a fluidizing gas supply line 111 for each fluidizing gas supply port 104.
  • a water vapor supply line 131 is provided and a flow rate adjustment valve 132 is attached, a non-condensable gas supply line 133 is provided and a flow rate adjustment valve 134 is attached, and the two lines 131 and 133 are merged.
  • the fluidizing gas supply line 111 is formed.
  • the water vapor supply line 131 and the non-condensable gas supply line 133 are positioned upstream of the flow rate adjusting valves 132 and 134, and flow meters 135 and 136 for measuring the water vapor supply amount and the non-condensable gas supply amount are provided.
  • the non-condensable gas is, for example, combustion exhaust gas, argon gas, nitrogen gas, or the like.
  • the drying container 101 is provided with a gas discharge line 113 with respect to the gas discharge port 105, and a flow meter 137 is attached. Further, a flow rate adjusting valve 116 is mounted on the superheated steam supply side of the heat transfer tube 106. In addition, the drying container 101 is provided with a first temperature sensor 121 that detects the temperature of the fluidized bed S and a second temperature sensor 122 that detects the temperature of the free board portion F.
  • the controller 125 receives the temperature T1 of the fluidized bed S detected by the first temperature sensor 121 and the temperature T2 of the free board part F detected by the second temperature sensor 122. In addition, the control device 125 adjusts the opening degree of the flow rate adjustment valve 132 so that the superheated steam supplied from the fluidized gas supply ports 104 into the drying container 101 through the steam supply line 131 and the fluidized gas supply line 111. The supply amount can be adjusted. Further, the control device 125 adjusts the opening degree of the flow rate adjustment valve 134 so that the control device 125 is supplied into the drying container 101 from each fluidized gas supply port 104 through the non-condensable gas supply line 133 and the fluidized gas supply line 111. The amount of non-condensable gas supplied can be adjusted.
  • the dew point temperature in the drying container 101 is changed by adjusting the water vapor concentration in the drying container 101 in accordance with the temperature variation in the fluidized bed S.
  • a water vapor concentration adjusting device is used as a dew point temperature changing device for changing the dew point temperature in the drying container 101.
  • a flow rate adjusting valve 134 provided in the non-condensable gas supply line 133 is applied. ing. That is, a predetermined amount of superheated steam is supplied through the fluidized gas supply line 111 while the flow rate adjustment valve 132 provided in the steam supply line 131 is set to a predetermined opening degree, while the non-condensable gas supply line 133 is provided. By closing the flow rate adjusting valve 134, the water vapor concentration in the drying container 101 is maintained at 100%.
  • the water vapor concentration is adjusted by supplying the non-condensable gas into the drying container 101 by adjusting the opening degree of the flow rate adjusting valve 134. It is preferable to reduce the amount of superheated steam by reducing the opening of the flow rate adjusting valve 132. That is, it is preferable that the amount of fluidized gas supplied into the drying vessel 101 be kept constant by making the increase amount of the non-condensable gas the same as the decrease amount of the superheated steam. Further, when the raw coal in the drying vessel 101 is insufficiently fluidized, when the supply amount of the non-condensable gas from the non-condensable gas supply line 133 is increased, the amount of superheated steam from the steam supply line 131 is increased. Without reducing the amount of heat, or the amount of decrease in superheated steam may be less than the amount of increase in non-condensable gas to increase the total amount of fluidized gas.
  • the dew point temperature in the drying container 101 can be increased or decreased.
  • the temperature of the fluidized bed S is determined by the dew point temperature of the water vapor that depends on the partial pressure of water vapor in the drying vessel 101
  • the water vapor concentration in the drying vessel 101 is determined based on the temperature of the fluidized bed S.
  • the control device 125 adjusts the water vapor concentration in the drying container 101 by adjusting the opening degree of the flow rate adjustment valves 132 and 134 based on the detection result of the first temperature detection sensor 121, and this drying container The dew point temperature in 101 is changed. That is, when the temperature of the fluidized bed S decreases, the control device 125 increases the opening degree of the flow rate adjustment valve 134 and supplies the noncondensable gas into the drying container 101 to decrease the water vapor concentration.
  • the raw coal is supplied from the raw coal inlet 102 to the drying container 101 and the fluidized gas is supplied from the fluidized gas supply port 104 through the dispersion plate 107.
  • a fluidized bed S having a predetermined thickness is formed above the dispersion plate 107.
  • the raw coal moves through the fluidized bed S to the dry coal discharge port 103 side by the fluidizing gas, and is heated and dried by receiving heat from the heat transfer tube 106 at this time.
  • the raw coal is heated and dried by the heat from the heat transfer tube 106 while moving from the raw coal inlet 102 to the dry coal outlet 103.
  • the raw coal is in a preheated state immediately after being fed from the raw coal inlet 102, and the water hardly evaporates.
  • the water evaporation starts and gradually increases. Then, the amount of evaporation becomes maximum, and decreases as the dry coal discharge port 103 is approached.
  • the dry coal from which the raw coal has been dried is discharged to the outside through the dry coal discharge port 103, and the steam generated when the raw coal is heated and dried in the fluidized bed S rises together with the fluidized gas and is discharged into the gas.
  • the gas is discharged from the outlet 105 to the outside.
  • the control device 125 sets the flow rate adjustment valve 132 to a predetermined opening, thereby allowing a predetermined amount of superheated steam (from the steam supply line 131 to flow through the fluidizing gas supply line 111).
  • a predetermined amount of steam is pushed out from the gas discharge line 113 and discharged.
  • the temperature T1 of the fluidized bed S in the drying vessel 101 is maintained at 110 ° C., and the pressure (total pressure) is maintained at 100 kPa.
  • the water vapor concentration C in the drying container 101 and the temperature of the fluidized bed S are set such that a deviation Tc between the dew point temperature in the drying container 101 and the temperature T1 of the fluidized bed S in the drying container 101 is set.
  • the temperature T1 of the fluidized bed S decreases.
  • the control device 125 detects that the temperature T1 of the fluidized bed S has decreased from 110 ° C. to 105 ° C.
  • the control device 125 increases the opening degree of the flow rate adjustment valve 134 and increases the opening degree of the flow rate adjustment valve 132. Make it smaller.
  • the amount of non-condensable gas into the drying container 101 increases, the amount of superheated steam decreases, the water vapor concentration in the drying container 101 decreases, and the dew point temperature in the drying container 101 decreases.
  • the opening degree of 134 is adjusted.
  • the relationship between the temperature T1, the dew point temperature, and the water vapor concentration C of the fluidized bed S is preferably mapped in advance according to the form of the fluidized bed drying device 12.
  • the amount of steam generated in the drying container 101 is calculated based on the measurement results of the flow meters 135, 136, and 137, and the water vapor concentration in the drying container 101, that is, the gas discharge line 113 is obtained.
  • the feedback control may be performed based on the water vapor concentration.
  • the control device 125 increases the opening of the flow rate adjustment valve 132, while adjusting the flow rate.
  • the opening degree of the valve 134 is decreased, and a predetermined deviation between the temperature T1 and the dew point temperature in the drying container 101 is ensured.
  • the water vapor supply line 131 is provided at the lower portion of the drying container 101 and the flow rate adjustment valve 132 is mounted, and the non-condensable gas supply line 133 is provided and the flow rate is adjusted.
  • the valve 134 is mounted, and the control device 125 adjusts the opening degree of the flow rate adjusting valves 132 and 134 based on the temperature of the fluidized bed S detected by the first temperature sensor 121, so that the water vapor concentration C in the drying container 101 is adjusted. To change the dew point temperature.
  • the control device 125 adjusts the opening degree of the flow rate adjusting valves 132 and 134, adjusts the water vapor concentration C in the drying container 101, and changes the dew point temperature. Then, the degree of drying of the raw coal in the drying container 101 becomes constant, and it becomes possible to always perform a stable raw coal drying process, and it is possible to improve the drying efficiency.
  • the controller 125 changes the dew point temperature by adjusting the water vapor concentration C in the drying container 101 by adjusting the opening degree of the flow rate adjusting valves 132 and 134 based on the temperature T1 of the fluidized bed S. Yes. Specifically, the control device 125 decreases the water vapor concentration C in the drying container 101 by increasing the opening degree of the flow rate adjustment valve 134 when the temperature T1 of the fluidized bed S decreases.
  • the temperature of the fluidized bed S is determined by the dew point temperature of the water vapor that depends on the partial pressure of water vapor in the drying vessel 101, the water vapor concentration in the drying vessel 101 is adjusted based on the temperature of the fluidized bed S. By doing so, it becomes possible to maintain the deviation between the temperature T1 of the fluidized bed S and the dew point temperature in the drying vessel 101 at a predetermined value, and a stable raw coal drying process can always be performed.
  • the control device 125 increases the supply amount of the non-condensable gas by increasing the opening of the flow rate adjustment valve 134. Yes. Accordingly, the amount of fluidized gas in the drying container 101 is increased, fluidization of raw coal can be promoted, and drying efficiency can be improved.
  • the control device 125 decreases the opening amount of the flow rate adjustment valve 132 to reduce the supply amount of superheated steam.
  • the fluidizing gas amount is kept constant by increasing the opening of the regulating valve 134 and increasing the supply amount of the non-condensable gas. Therefore, the amount of fluidized gas in the drying container 101 is maintained at a constant amount, the pressure acting on the drying container 101 is not excessive, and safety can be improved.
  • FIG. 6 is a schematic side view of a fluidized bed drying apparatus according to Example 3 of the present invention.
  • symbol is attached
  • Example 3 is an example in which Example 1 and Example 2 are combined.
  • the drying container 101 is provided with a fluidizing gas supply line 111 with respect to the fluidizing gas supply port 104.
  • the fluidized gas supply line 111 is connected to the water vapor supply line 131 and the flow rate adjustment valve 132 is attached, and the non-condensable gas supply line 133 is connected and the flow rate adjustment valve 134 is attached.
  • the drying container 101 is provided with a gas discharge line 113 for the gas discharge port 105, and a flow rate adjusting valve 114 and a fan 115 are mounted.
  • control apparatus 125 adjusts the pressure in the drying container 101 by adjusting the opening degree of the flow control valve 114 based on the detection result of the 1st temperature detection sensor 121, and the dew point temperature in this drying container 101 To change. That is, when the temperature of the fluidized bed S decreases, the control device 125 increases the opening degree of the flow rate adjustment valve 114 and decreases the pressure in the drying container 101. Further, the control device 125 adjusts the water vapor concentration in the drying container 101 by adjusting the opening degree of the flow rate adjusting valves 132 and 134 based on the detection result of the first temperature detection sensor 121, and the inside of the drying container 101 is adjusted. Change the dew point temperature.
  • control device 125 increases the opening degree of the flow rate adjustment valve 134 to supply non-condensable gas, while reducing the opening degree of the flow rate adjustment valve 132 and drying the flow rate adjustment valve 132.
  • the water vapor concentration in the container 101 is reduced.
  • control device 125 may change the dew point temperature by adjusting the pressure in the drying container 101 based on the temperature of the fluidized bed S, or adjust the water vapor concentration in the drying container 101 to adjust the dew point temperature. May be changed or performed simultaneously.
  • low-grade coal was used as a wet raw material, but even high-grade coal can be applied, and is not limited to coal, but can be used as a renewable biological organic resource.
  • high-grade coal it is also possible to use thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) made from these raw materials. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

 流動層乾燥装置において、中空形状をなす乾燥容器(10)と、乾燥容器(101)の一端側に原炭を投入する原炭投入口(102)と、乾燥容器(101)の他端側から原炭が加熱乾燥した乾燥炭を排出する乾燥炭排出口(103)と、乾燥容器(101)の下部に流動化ガスを供給することで原炭と共に流動層(S)を形成する流動化ガス供給口(104)と、乾燥容器(101)の一端側における原炭投入口(102)より上方から流動化ガス及び発生蒸気を排出するガス排出口(105)と、流動層(S)の原炭を加熱する伝熱管(106)とを設け、制御装置(125)は、第1温度センサ(121)が検出した流動層(S)の温度に基づいてガス排出ライン(113)の流量調整弁(114)の開度を調整することで、乾燥容器(101)内の圧力を変更して露点温度を変更することで、乾燥効率の向上を可能とする。

Description

流動層乾燥装置
 本発明は、流動化ガスにより被乾燥物を流動させながら乾燥させる流動層乾燥装置に関するものである。
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、乾燥装置、石炭ガス化炉、ガス精製装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置などを有している。従って、石炭が乾燥されてから粉砕され、石炭ガス化炉に対して、微粉炭として供給されると共に、空気が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスがガス精製されてからガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。
 ところで、このような石炭ガス化複合発電設備にて使用する石炭は、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)だけでなく、亜瀝青炭や褐炭のように比較的低い発熱量を有する低品位の石炭(低品位炭)がある。この低品位炭は、持ち込まれる水分量が多く、この水分により発電効率が低下してしまう。そのため、低品位炭の場合には、上述した乾燥装置により石炭を乾燥して水分を除去してから粉砕して石炭ガス化炉に供給する必要がある。
 このような石炭を乾燥する乾燥装置としては、下記特許文献1に記載されたものがある。この特許文献1に記載された流動層乾燥機の制御方法及び装置は、熱源である排ガスを熱源兼流動化気体として流動層乾燥機に導入して湿潤原料を乾燥させ、その下部に導入されるガスの一部をバイパスさせて排ガス出口の近傍に導入するものであって、流動層の安定化のためにFBD導入ガス量を一定値に設定すると共に処理量及び乾燥度を設定し、排ガス系統及び循環系統の結露防止のためにFBD出口排ガス相対湿度を設定し、更に、熱源の排ガス温度を測定し、その変動に応じて各制御量としてのFBD導入ガス温度、バイパス排ガス量、循環排ガス量、熱源の排ガス量を演算して制御するものである。
特開平10-253251号公報
 上述した特許文献1の流動層乾燥機の制御方法及び装置では、流動化気体として流動層乾燥機に導入して湿潤原料を乾燥させる熱源としての排ガス温度を測定し、その変動に応じて流動層乾燥機導入ガス温度、バイパス排ガス量、循環排ガス量、熱源の排ガス量を制御している。ところが、流動層乾燥機は、内部に投入される湿潤原料や乾燥機本体の熱容量が大きいことから応答時間が長くなり、排ガスの温度や量を調整しても、流動層乾燥機内の温度を早期に変更することはできず、常に安定した運転を続行して目標とする処理量及び乾燥度を維持することが困難となる。
 本発明は、上述した課題を解決するものであり、乾燥効率の向上を可能とする流動層乾燥装置を提供することを目的とする。
 上記の目的を達成するための本発明の流動層乾燥装置は、中空形状をなす乾燥容器と、該乾燥容器の一端側に湿潤原料を投入する湿潤原料投入部と、前記乾燥容器の他端側から湿潤原料が加熱乾燥した乾燥物を排出する乾燥物排出部と、前記乾燥容器の下部に流動化ガスを供給することで湿潤原料と共に流動層を形成する流動化ガス供給部と、前記乾燥容器の一端側における前記湿潤原料投入部より上方から流動化ガス及び発生蒸気を排出するガス排出部と、前記流動層の湿潤原料を加熱する加熱部と、前記乾燥容器内の露点温度を変更する露点温度変更装置と、前記流動層の温度を検出する流動層温度検出センサと、該流動層温度検出センサの検出結果に基づいて前記露点温度変更装置を制御する制御装置と、を備えることを特徴とするものである。
 従って、湿潤原料投入部から湿潤原料が乾燥容器内に投入されると共に、流動化ガス供給部から流動化ガスが乾燥容器の下部に供給されると、湿潤原料が流動化ガスにより流動することで流動層が形成され、この流動層の湿潤原料が加熱部により加熱されることで乾燥して乾燥物となり、この乾燥物が乾燥物排出部から外部に排出される一方、流動化ガスと湿潤原料が乾燥することで発生した蒸気がガス排出部から外部に排出される。このとき、流動層温度検出センサは流動層の温度を検出しており、制御装置は、流動層の温度が変動すると、露点温度変更装置を制御して乾燥容器内の露点温度を変更する。すると、乾燥容器内における湿潤原料の乾燥度合が一定となり、常に安定した湿潤原料の乾燥処理を行うことが可能となり、乾燥効率の向上を可能とすることができる。
 本発明の流動層乾燥装置では、前記露点温度変更装置は、前記乾燥容器内の圧力を変更する減圧装置であって、前記制御装置は、前記流動層の温度に基づいて前記減圧装置を制御することを特徴としている。
 従って、流動層の温度は、乾燥容器内における水蒸気分圧に依存する露点温度により決定されるものであるから、流動層の温度に基づいて乾燥容器内の圧力を変更することで、流動層の温度と乾燥容器内の露点温度との偏差を所定値に維持することが可能となり、常に安定した湿潤原料の乾燥処理を行うことができる。
 本発明の流動層乾燥装置では、前記制御装置は、前記流動層の温度が低下したときに前記減圧装置を制御して前記乾燥容器内の圧力を低下させることを特徴としている。
 従って、流動層の温度が低下したら乾燥容器内の圧力を低下させることで、容易に流動層の温度と乾燥容器内の露点温度との偏差を所定値に維持することができる。
 本発明の流動層乾燥装置では、前記流動化ガス供給部は、前記乾燥容器の下部に流動化ガスとしての水蒸気及び非凝縮性ガスを供給可能であり、前記露点温度変更装置は、前記流動化ガス供給部を制御して前記乾燥容器内の水蒸気濃度を調整する装置であって、前記制御装置は、前記流動層の温度に基づいて前記水蒸気濃度調整装置を制御することを特徴としている。
 従って、流動層の温度は、乾燥容器内における水蒸気分圧に依存する水蒸気の露点温度により決定されるものであるから、流動層の温度に基づいて乾燥容器内の水蒸気濃度を調整することで、流動層の温度と乾燥容器内の露点温度との偏差を所定値に維持することが可能となり、常に安定した湿潤原料の乾燥処理を行うことができる。
 本発明の流動層乾燥装置では、前記制御装置は、前記流動層の温度が低下したときに、前記水蒸気濃度調整装置を制御して前記乾燥容器内の水蒸気濃度を低下させることを特徴としている。
 従って、流動層の温度が低下したときに乾燥容器内の水蒸気濃度を低下させることで、容易に流動層の温度と乾燥容器内の露点温度との偏差を所定値に維持することができる。
 本発明の流動層乾燥装置では、前記制御装置は、前記流動層の温度が低下したときに、非凝縮性ガスの供給量を増加させることを特徴としている。
 従って、流動層の温度が低下したときに非凝縮性ガスの供給量を増加させることで、乾燥容器内の流動化ガス量が増加することとなり、湿潤原料の流動化を促進することが可能となり、乾燥効率の向上を可能とすることができる。
 本発明の流動層乾燥装置では、前記制御装置は、前記流動層の温度が低下したときに、水蒸気の供給量を減少させる一方、非凝縮性ガスの供給量を増加させることで、流動化ガス量を一定に維持することを特徴としている。
 従って、流動層の温度が低下したときに水蒸気の供給量を減少させる一方、非凝縮性ガスの供給量を増加させることで、乾燥容器内の流動化ガス量が一定量に維持されることとなり、乾燥容器に作用する圧力が過大となることはなく、安全性を向上することができる。
 本発明の流動層乾燥装置によれば、乾燥容器内の露点温度を変更する露点温度変更装置と、流動層の温度を検出する流動層温度検出センサと、流動層温度検出センサの検出結果に基づいて露点温度変更装置を制御する制御装置を設けるので、乾燥容器内における湿潤原料の乾燥度合が一定となり、常に安定した湿潤原料の乾燥処理を行うことが可能となり、乾燥効率の向上を可能とすることができる。
図1は、本発明の実施例1に係る流動層乾燥装置が適用された石炭ガス化複合発電設備の概略構成図である。 図2は、実施例1の流動層乾燥装置の概略図である。 図3は、容器内圧力に対する露点温度を表すグラフである。 図4は、本発明の実施例2に係る流動層乾燥装置の概略図である。 図5は、乾燥容器内の水蒸気濃度に対する露点温度を表すグラフである。 図6は、本発明の実施例3に係る流動層乾燥装置の概略側面図である。
 以下に添付図面を参照して、本発明に係る流動層乾燥装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本発明の実施例1に係る流動層乾燥装置が適用された石炭ガス化複合発電設備の概略構成図、図2は、実施例1の流動層乾燥装置の概略図、図3は、容器内圧力に対する露点温度を表すグラフである。
 実施例1の石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。この場合、ガス化炉に供給する湿潤原料として低品位炭を使用している。
 実施例1において、図1に示すように、石炭ガス化複合発電設備10は、給炭装置11、流動層乾燥装置12、微粉炭機(ミル)13、石炭ガス化炉14、チャー回収装置15、ガス精製装置16、ガスタービン設備17、蒸気タービン設備18、発電機19、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)20を有している。
 給炭装置11は、原炭バンカ21と、石炭供給機22と、クラッシャ23とを有している。原炭バンカ21は、低品位炭を貯留可能であって、所定量の低品位炭を石炭供給機22に投下することができる。石炭供給機22は、原炭バンカ21から投下された低品位炭をコンベアなどにより搬送し、クラッシャ23に投下することができる。このクラッシャ23は、投下された低品位炭を所定の大きさに破砕することができる。
 流動層乾燥装置12は、給炭装置11により投入された低品位炭に対して乾燥用蒸気(過熱蒸気)を供給することで、この低品位炭を流動させながら加熱乾燥するものであり、低品位炭が含有する水分を除去することができる。そして、この流動層乾燥装置12は、下部から取り出された乾燥済の低品位炭を冷却する冷却器31が設けられ、乾燥冷却済の乾燥炭が乾燥炭バンカ32に貯留される。また、流動層乾燥装置12は、上部から取り出された蒸気から乾燥炭の粒子を分離する乾燥炭サイクロン33と乾燥炭電気集塵機34が設けられ、蒸気から分離された乾燥炭の粒子が乾燥炭バンカ32に貯留される。なお、乾燥炭電気集塵機34で乾燥炭が分離された蒸気は、蒸気圧縮機35で圧縮されてから流動層乾燥装置12に乾燥用蒸気として供給される。
 微粉炭機13は、石炭粉砕機であって、流動層乾燥装置12により乾燥された低品位炭(乾燥炭)を細かい粒子状に粉砕して微粉炭を製造するものである。即ち、微粉炭機13は、乾燥炭バンカ32に貯留された乾燥炭が石炭供給機36により投下され、この乾燥炭)を所定粒径以下の低品位炭、つまり、微粉炭とするものである。そして、微粉炭機13で粉砕後の微粉炭は、微粉炭バグフィルタ37a,37bにより搬送用ガスから分離され、微粉炭供給ホッパ38a,38bに貯留される。
 石炭ガス化炉14は、微粉炭機13で処理された微粉炭が供給可能であると共に、チャー回収装置15で回収されたチャー(石炭の未燃分)が戻されてリサイクル可能となっている。
 即ち、石炭ガス化炉14は、ガスタービン設備17(圧縮機61)から圧縮空気供給ライン41が接続されており、このガスタービン設備17で圧縮された圧縮空気が供給可能となっている。空気分離装置42は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン43が石炭ガス化炉14に接続され、この第1窒素供給ライン43に微粉炭供給ホッパ38a,38bからの給炭ライン44a,44bが接続されている。また、第2窒素供給ライン45も石炭ガス化炉14に接続され、この第2窒素供給ライン45にチャー回収装置15からのチャー戻しライン46が接続されている。更に、酸素供給ライン47は、圧縮空気供給ライン41に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。
 石炭ガス化炉14は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化炉14は、微粉炭の混入した異物を除去する異物除去装置48が設けられている。この場合、石炭ガス化炉14は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉14は、チャー回収装置15に向けて可燃性ガスのガス生成ライン49が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン49にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置15に供給するとよい。
 チャー回収装置15は、集塵装置51と供給ホッパ52とを有している。この場合、集塵装置51は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉14で生成された可燃性ガスに含有するチャーを分離することができる。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。ホッパ52は、集塵装置51で可燃性ガスから分離されたチャーを貯留するものである。なお、集塵装置51と供給ホッパ52との間にビンを配置し、このビンに複数の供給ホッパ52を接続するように構成してもよい。そして、供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。
 ガス精製装置16は、チャー回収装置15によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置16は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備17に供給する。なお、このガス精製装置16では、チャーが分離された可燃性ガス中にはまだ硫黄分(HS)が含まれているため、アミン吸収液によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。
 ガスタービン設備17は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置16から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備17は、圧縮機61から石炭ガス化炉14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気とガス精製装置16から供給された燃料ガスとを混合して燃焼し、タービン63にて、発生した燃焼ガスにより回転軸64を回転することで発電機19を駆動することができる。
 蒸気タービン設備18は、ガスタービン設備17における回転軸64に連結されるタービン69を有しており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン設備17(タービン63)からの排ガスライン70に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ20は、蒸気タービン設備18のタービン69との間に蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69が駆動し、回転軸64を回転することで発電機19を駆動することができる。
 そして、排熱回収ボイラ20で熱が回収された排ガスは、ガス浄化装置74により有害物質を除去され、浄化された排ガスは、煙突75から大気へ放出される。
 ここで、実施例1の石炭ガス化複合発電設備10の作動について説明する。
 実施例1の石炭ガス化複合発電設備10において、給炭装置11にて、原炭(低品位炭)が原炭バンカ21に貯留されており、この原炭バンカ21の低品位炭が石炭供給機22によりクラッシャ23に投下され、ここで所定の大きさに破砕される。そして、破砕された低品位炭は、流動層乾燥装置12により加熱乾燥された後、冷却器31により冷却され、乾燥炭バンカ32に貯留される。また、流動層乾燥装置12の上部から取り出された蒸気は、乾燥炭サイクロン33及び乾燥炭電気集塵機34により乾燥炭の粒子が分離され、蒸気圧縮機35で圧縮されてから流動層乾燥装置12に乾燥用蒸気として戻される。一方、蒸気から分離された乾燥炭の粒子は、乾燥炭バンカ32に貯留される。
 乾燥炭バンカ32に貯留される乾燥炭は、石炭供給機36により微粉炭機13に投入され、ここで、細かい粒子状に粉砕されて微粉炭が製造され、微粉炭バグフィルタ37a,37bを介して微粉炭供給ホッパ38a,38bに貯留される。この微粉炭供給ホッパ38a,38bに貯留される微粉炭は、空気分離装置42から供給される窒素により第1窒素供給ライン43を通して石炭ガス化炉14に供給される。また、後述するチャー回収装置15で回収されたチャーが、空気分離装置42から供給される窒素により第2窒素供給ライン45を通して石炭ガス化炉14に供給される。更に、後述するガスタービン設備17から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離装置42から供給される酸素と共に圧縮空気供給ライン41を通して石炭ガス化炉14に供給される。
 石炭ガス化炉14では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化炉14からガス生成ライン49を通して排出され、チャー回収装置15に送られる。
 このチャー回収装置15にて、可燃性ガスは、まず、集塵装置51に供給されることで、ここで可燃性ガスからこのガスに含有するチャーが分離される。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。一方、可燃性ガスから分離した微粒チャーは、ホッパ52に堆積され、チャー戻しライン46を通して石炭ガス化炉14に戻されてリサイクルされる。
 チャー回収装置15によりチャーが分離された可燃性ガスは、ガス精製装置16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備17では、圧縮機61が圧縮空気を生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製装置16から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン63を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。
 そして、ガスタービン設備17におけるタービン63から排出された排気ガスは、排熱回収ボイラ20にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備18に供給する。蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。
 その後、ガス浄化装置74では、排熱回収ボイラ20から排出された排気ガスの有害物質が除去され、浄化された排ガスが煙突75から大気へ放出される。
 以下、上述した石炭ガス化複合発電設備10における流動層乾燥装置12について詳細に説明する。
 流動層乾燥装置12は、図2に示すように、乾燥容器101と、原炭投入口(湿潤原料投入部)102と、乾燥炭排出口(乾燥物排出部)103と、流動化ガス供給口(流動化ガス供給部)104と、ガス排出口(ガス排出部)105と、伝熱管(加熱部)106とを有している。
 乾燥容器101は、中空箱型形状をなしており、一端側に原炭を投入する原炭投入口102が形成される一方、他端側に原炭を加熱乾燥した乾燥物を排出する乾燥炭排出口103が形成されている。また、乾燥容器101は、下部に底板から所定距離をあけて複数の開口を有する分散板107が設けられており、この底板に乾燥容器101内に流動化ガス(過熱水蒸気)を供給する流動化ガス供給口104が形成されている。この場合、流動化ガス供給口104を乾燥容器101の長手方向に複数設けたが、1つであってもよい。更に、乾燥容器101は、乾燥炭排出口103側の上部に流動化ガス及び発生蒸気を排出するガス排出口105が形成されている。
 この乾燥容器101は、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成されると共に、この流動層Sの上方にフリーボード部Fが形成される。そして、外部から乾燥容器101を貫通して流動層S内を循環する伝熱管106が配置されており、この伝熱管106内を流れる過熱蒸気により原炭を加熱して乾燥することができる。
 この乾燥容器101は、各流動化ガス供給口104に対して流動化ガス供給ライン111が設けられており、この流動化ガス供給ライン111に流量調整弁112が装着されている。また、乾燥容器101は、ガス排出口105に対してガス排出ライン113が設けられており、このガス排出ライン113に流量調整弁114及びファン115が装着されている。更に、乾燥容器101は、流動層S内に伝熱管106が配置されているが、この伝熱管106における過熱蒸気の供給側に流量調整弁116が装着されている。
 また、乾燥容器101は、流動層Sの温度を検出する第1温度センサ(流動層温度検出センサ)121が設けられると共に、フリーボード部Fの温度を検出する第2温度センサ122が設けられている。更に、乾燥容器101は、乾燥容器101の圧力を検出する圧力センサ123が設けられている。
 制御装置125は、第1温度センサ121が検出した流動層Sの温度T1と、第2温度センサ122が検出したフリーボード部Fの温度T2と、圧力センサ123が検出した乾燥容器101の圧力Pが入力される。また、制御装置125は、流量調整弁112の開度を調整することで、流動化ガス供給ライン111を通して各流動化ガス供給口104から乾燥容器101内に供給される流動化ガス供給量を調整することができる。また、制御装置125は、流量調整弁114の開度を調整したり、ファン115の回転数を調整したりすることで、乾燥容器101内からガス排出口105を通してガス排出ライン113に排出される蒸気量(流動化ガス量+発生蒸気量)を調整することができる。更に、制御装置125は、流量調整弁116の開度を調整することで、伝熱管106を流れる過熱蒸気量を調整して流動層Sの加熱量を調整することができる。
 そして、本実施例では、流動層Sにおける温度の変動に応じて、乾燥容器101内の圧力を調整することで、この乾燥容器101内の露点温度を変更している。この場合、乾燥容器101内の露点温度を変更する露点温度変更装置として減圧装置を用いており、具体的には、ガス排出ライン113に設けられた流量調整弁114を適用している。即ち、流量調整弁112を所定開度に設定することで、流動化ガス供給ライン111を通して所定量の流動化ガスを供給する一方、ファン115を所定回転数で回転すると共に、流量調整弁114を所定開度に設定することで、乾燥容器101内における所定量の蒸気を排出しているとき、乾燥容器101内の圧力(全圧)は、所定圧力に維持される。
 この運転状態で、流量調整弁114の開度を大きくすると、乾燥容器101内から排出される蒸気量が増加することから、乾燥容器101内の圧力を減圧することができる。一方、前述した運転状態で、流量調整弁114の開度を小さくすると、乾燥容器101内から排出される蒸気量が減少することから、乾燥容器101内の圧力を増圧することができる。なお、ここでは、流量調整弁114の開度を調整することで、乾燥容器101内の圧力を調整するようにしたが、流量調整弁114の開度を一定またはなくし、ファン115の回転数を調整することで、乾燥容器101内の圧力を調整するようにしてもよい。
 そして、乾燥容器101内における圧力を増減すると、この乾燥容器101内の露点温度を上下することができる。この場合、流動層Sの温度は、乾燥容器101内における水蒸気分圧に依存する水蒸気の露点温度により決定されるものであるから、流動層Sの温度に基づいて乾燥容器101内の圧力を変更することで、流動層Sの温度と乾燥容器内の露点温度との偏差を所定値に維持することが可能となり、流動層Sの原炭に対して常に一定の加熱度合を付与することが可能となる。
 具体的に、制御装置125は、第1温度検出センサ121の検出結果に基づいて流量調整弁114の開度を調整することで、乾燥容器101内の圧力を調整し、この乾燥容器101内の露点温度を変更する。即ち、制御装置125は、流動層Sの温度が低下したときに、流量調整弁114の開度を大きくし、乾燥容器101内の圧力を低下させる。
 ここで、実施例1の流動層乾燥装置12の作動について説明する。
 流動層乾燥装置12において、乾燥容器101に対して、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥炭排出口103側に移動し、このとき、伝熱管106から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口102から乾燥炭排出口103まで移動する間に、伝熱管106からの熱により加熱乾燥される。具体的に、原炭は、原炭投入口102から投入された直後は予熱状態にあり、水分はほとんど蒸発せず、予熱領域を超えて乾燥領域に入ると、水分蒸発が始まり、徐々に増加してその蒸発量が最大となり、乾燥炭排出口103に近づくにつれて減少する。
 そして、原炭が乾燥された乾燥炭は、乾燥炭排出口103から外部に排出され、流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇してガス排出口105から外部に排出される。
 このとき、図2及び図3に示すように、制御装置125は、流量調整弁112を所定開度に設定することで、流動化ガス供給ライン111を通して所定量の流動化ガスを供給する。一方、制御装置125は、ファン115を所定回転数で回転すると共に、流量調整弁114を所定開度に設定することで、乾燥容器101内における所定量の蒸気を排出する。このような流動層乾燥装置12の運転状態で、乾燥容器101内における流動層Sの温度T1は、110℃、圧力(全圧)は、100kPaに維持される。この場合、乾燥容器101内における流動層Sの温度T1に対して、乾燥容器101内における露点温度との偏差Taが設定されるように、乾燥容器101内の圧力Pと流動層Sの温度T1との交点Aが決められることで、原炭における十分な加熱乾燥量が確保される。
 この流動層乾燥装置12の運転状態で、原炭の供給量が増加したり、原炭の含水量が増加したりすると、流動層Sの温度T1が低下してしまう。このとき、制御装置125は、例えば、流動層Sの温度T1が110℃から105℃に低下したことを検出すると、流量調整弁114の開度を大きくする。すると、乾燥容器101内から排出される蒸気量が増加することから、乾燥容器101内の圧力が減圧され、この乾燥容器101内の露点温度が低下する。この場合、流動層Sの温度T1が低下しても、乾燥容器101内における流動層Sの温度T1に対して、上述した運転状態における偏差Taと同様の乾燥容器101内における露点温度との偏差Tbが設定されるように、乾燥容器101内の圧力Pと流動層Sの温度T1との交点Bが決められることで、原炭における十分な加熱乾燥量が確保される。
 つまり、制御装置125は、偏差Ta=Tbとなるような乾燥容器101内の圧力Pを設定し、このような乾燥容器101内の圧力Pとなるように流量制御弁114の開度を調整する。この流動層Sの温度T1と露点温度と圧力Pとの関係は、流動層乾燥装置12の形態に応じて予めマップ化しておくことが望ましい。
 そして、流動層Sにおける原炭の加熱乾燥が進み、流動層Sの温度T1が上昇してきたら、制御装置125は、前述とは逆に、流量調整弁114の開度を小さくしていき、乾燥容器101内における温度T1と露点温度との所定偏差を確保する。
 このように実施例1の流動層乾燥装置にあっては、中空箱型形状をなす乾燥容器101と、乾燥容器101の一端側に原炭を投入する原炭投入口102と、乾燥容器101の他端側から原炭が加熱乾燥した乾燥炭を排出する乾燥炭排出口103と、乾燥容器101の下部に流動化ガスを供給することで原炭と共に流動層Sを形成する流動化ガス供給口104と、乾燥容器101の一端側における原炭投入口102より上方から流動化ガス及び発生蒸気を排出するガス排出口105と、流動層Sの原炭を加熱する伝熱管106とを設け、制御装置125は、第1温度センサ121が検出した流動層Sの温度T1に基づいてガス排出ライン113の流量調整弁114の開度を調整することで、乾燥容器101内の圧力Pを変更して露点温度を変更している。
 従って、原炭投入口102から原炭が乾燥容器101内に投入されると共に、流動化ガス供給口104から流動化ガスが乾燥容器101の下部から分散板107を通して供給されると、原炭が流動化ガスにより流動することで流動層Sが形成され、この流動層Sの原炭が流動化ガスにより移動するとき、伝熱管106により加熱されることで乾燥して乾燥炭となり、この乾燥炭が乾燥炭排出口103から外部に排出される一方、流動化ガスと原炭が乾燥することで発生した蒸気がガス排出口105から外部に排出される。このとき、制御装置125は、流動層Sの温度T1が変動すると、流量調整弁114の開度を調整し、乾燥容器101内の圧力Pを調整して露点温度を変更する。すると、乾燥容器101内における原炭の乾燥度合が一定となり、常に安定した原炭の乾燥処理を行うことが可能となり、乾燥効率の向上を可能とすることができる。
 この場合、制御装置125は、流動層Sの温度T1に基づいて流量調整弁114の開度を調整して乾燥容器101内の圧力Pを調整することで、露点温度を変更している。具体的に、制御装置125は、流動層Sの温度T1が低下したときに流量調整弁114の開度を大きくして乾燥容器101内の圧力Pを低下させている。
 従って、流動層Sの温度は、乾燥容器101内における水蒸気分圧に依存する露点温度により決定されるものであるから、流動層Sの温度T1に基づいて乾燥容器101内の圧力Pを変更することで、流動層Sの温度T1と乾燥容器101内の露点温度との偏差を所定値に維持することが可能となり、常に安定した原炭の乾燥処理を行うことができる。
 図4は、本発明の実施例2に係る流動層乾燥装置の概略図、図5は、乾燥容器内の水蒸気濃度に対する露点温度を表すグラフである。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例2において、図4に示すように、流動層乾燥装置12は、乾燥容器101と、原炭投入口102と、乾燥炭排出口103と、流動化ガス供給口104と、ガス排出口105と、伝熱管106とを有している。
 この乾燥容器101は、各流動化ガス供給口104に対して流動化ガス供給ライン111が設けられている。そして、水蒸気供給ライン131が設けられて流量調整弁132が装着されると共に、非凝縮性ガス供給ライン133が設けられて流量調整弁134が装着されており、この2つのライン131,133が合流することで、流動化ガス供給ライン111を形成している。また、水蒸気供給ライン131と非凝縮性ガス供給ライン133は、各流量調整弁132,134より上流側に位置して、水蒸気供給量と非凝縮性ガス供給量を計測する流量計135,136が装着されている。なお、ここで、非凝縮性ガスとは、例えば、燃焼排ガス、アルゴンガス、窒素ガスなどである。
 また、乾燥容器101は、ガス排出口105に対してガス排出ライン113が設けられ、流量計137が装着されている。また、伝熱管106における過熱蒸気の供給側に流量調整弁116が装着されている。また、乾燥容器101は、流動層Sの温度を検出する第1温度センサ121が設けられると共に、フリーボード部Fの温度を検出する第2温度センサ122が設けられている。
 制御装置125は、第1温度センサ121が検出した流動層Sの温度T1と、第2温度センサ122が検出したフリーボード部Fの温度T2が入力される。また、制御装置125は、流量調整弁132の開度を調整することで、水蒸気供給ライン131及び流動化ガス供給ライン111を通して各流動化ガス供給口104から乾燥容器101内に供給される過熱水蒸気の供給量を調整することができる。また、制御装置125は、流量調整弁134の開度を調整することで、非凝縮性ガス供給ライン133及び流動化ガス供給ライン111を通して各流動化ガス供給口104から乾燥容器101内に供給される非凝縮性ガスの供給量を調整することができる。
 そして、本実施例では、流動層Sにおける温度の変動に応じて、乾燥容器101内の水蒸気濃度を調整することで、この乾燥容器101内の露点温度を変更している。この場合、乾燥容器101内の露点温度を変更する露点温度変更装置として水蒸気濃度調整装置を用いており、具体的には、非凝縮性ガス供給ライン133に設けられた流量調整弁134を適用している。即ち、水蒸気供給ライン131に設けられた流量調整弁132を所定開度に設定することで、流動化ガス供給ライン111を通して所定量の過熱水蒸気を供給する一方、非凝縮性ガス供給ライン133に設けられた流量調整弁134を閉止することで、乾燥容器101内における水蒸気濃度を100%に維持している。
 この運転状態で、流量調整弁134を所定開度だけ開放すると、乾燥容器101内に非凝縮性ガスが供給されることから、乾燥容器101内の水蒸気濃度を低下させることができる。なお、乾燥容器101内では、原炭の乾燥により蒸気が発生することから、この発生蒸気量を考慮して乾燥容器101内への非凝縮性ガス量を調整することが望ましい。つまり、流動層Sにおける温度の変動に応じて、乾燥容器101から排出される水蒸気濃度を調整することで、この乾燥容器101内の露点温度を変更するとよい。
 また、ここでは、流量調整弁134の開度を調整することで、乾燥容器101内に非凝縮性ガスを供給して水蒸気濃度を調整するようにしたが、このとき、水蒸気供給ライン131に設けられた流量調整弁132の開度を小さくして過熱水蒸気量を減少させるとよい。即ち、非凝縮性ガスの増加量と過熱水蒸気の減少量とを同じとすることで、乾燥容器101内への流動化ガスの供給量を一定に維持するとよい。また、乾燥容器101内での原炭の流動化が不十分である場合、非凝縮性ガス供給ライン133からの非凝縮性ガスの供給量を増加させるとき、水蒸気供給ライン131からの過熱水蒸気量を減少させずに、または、過熱水蒸気の減少量を非凝縮性ガスの増加量より少なくし、全体の流動化ガス量を増加させるようにしてもよい。
 そして、乾燥容器101内における水蒸気濃度を増減すると、この乾燥容器101内の露点温度を上下することができる。この場合、流動層Sの温度は、乾燥容器101内における水蒸気分圧に依存する水蒸気の露点温度により決定されるものであるから、流動層Sの温度に基づいて乾燥容器101内の水蒸気濃度を変更することで、流動層Sの温度と乾燥容器101内の露点温度との偏差を所定値に維持することが可能となり、流動層Sの原炭に対して常に一定の加熱度合を付与することが可能となる。
 具体的に、制御装置125は、第1温度検出センサ121の検出結果に基づいて流量調整弁132,134の開度を調整することで、乾燥容器101内の水蒸気濃度を調整し、この乾燥容器101内の露点温度を変更する。即ち、制御装置125は、流動層Sの温度が低下したときに、流量調整弁134の開度を大きくし、乾燥容器101内に非凝縮性ガスを供給して水蒸気濃度を低下させる。
 ここで、実施例2の流動層乾燥装置12の作動について説明する。
 流動層乾燥装置12において、乾燥容器101に対して、原炭投入口102から原炭が供給されると共に、流動化ガス供給口104から分散板107を通して流動化ガスが供給されることで、この分散板107の上方に所定厚さの流動層Sが形成される。原炭は、流動化ガスにより流動層Sを乾燥炭排出口103側に移動し、このとき、伝熱管106から熱を受けることで加熱されて乾燥される。この場合、原炭は、原炭投入口102から乾燥炭排出口103まで移動する間に、伝熱管106からの熱により加熱乾燥される。具体的に、原炭は、原炭投入口102から投入された直後は予熱状態にあり、水分はほとんど蒸発せず、予熱領域を超えて乾燥領域に入ると、水分蒸発が始まり、徐々に増加してその蒸発量が最大となり、乾燥炭排出口103に近づくにつれて減少する。
 そして、原炭が乾燥された乾燥炭は、乾燥炭排出口103から外部に排出され、流動層Sで原炭が加熱乾燥されることで発生した蒸気は、流動化ガスと共に上昇してガス排出口105から外部に排出される。
 このとき、図4及び図5に示すように、制御装置125は、流量調整弁132を所定開度に設定することで、水蒸気供給ライン131から流動化ガス供給ライン111を通して所定量の過熱水蒸気(流動化ガス)を供給すると、ガス排出ライン113から所定量の蒸気が押し出されて排出される。このような流動層乾燥装置12の運転状態で、乾燥容器101内における流動層Sの温度T1は、110℃、圧力(全圧)は、100kPaに維持される。この場合、乾燥容器101内における流動層Sの温度T1に対して、乾燥容器101内における露点温度との偏差Tcが設定されるように、乾燥容器101内の水蒸気濃度Cと流動層Sの温度T1との交点Cが決められることで、原炭における十分な加熱乾燥量が確保される。
 この流動層乾燥装置12の運転状態で、原炭の供給量が増加したり、原炭の含水量が増加したりすると、流動層Sの温度T1が低下してしまう。このとき、制御装置125は、例えば、流動層Sの温度T1が110℃から105℃に低下したことを検出すると、流量調整弁134の開度を大きくすると共に、流量調整弁132の開度を小さくする。すると、乾燥容器101内への非凝縮ガス量が増加する一方、過熱水蒸気量が減少することから、乾燥容器101内の水蒸気濃度が低下し、この乾燥容器101内の露点温度が低下する。この場合、流動層Sの温度T1が低下しても、乾燥容器101内における流動層Sの温度T1に対して、上述した運転状態における偏差Tcと同様の乾燥容器101内における露点温度との偏差Tdが設定されるように、乾燥容器101内(出口)の水蒸気濃度Cと流動層Sの温度T1との交点Dが決められることで、原炭における十分な加熱乾燥量が確保される。
 つまり、制御装置125は、偏差Tc=Tdとなるような乾燥容器101内(出口)の水蒸気濃度Cを設定し、このような乾燥容器101内の水蒸気濃度Cとなるように流量制御弁132,134の開度を調整する。この流動層Sの温度T1と露点温度と水蒸気濃度Cとの関係は、流動層乾燥装置12の形態に応じて予めマップ化しておくことが望ましい。また、各流量計135,136,137の計測結果に基づいて乾燥容器101内での発生蒸気量を算出し、乾燥容器101内、つまり、ガス排出ライン113における水蒸気濃度を求め、制御装置125は、この水蒸気濃度に基づいてフィードバック制御を行ってもよい。
 そして、流動層Sにおける原炭の加熱乾燥が進み、流動層Sの温度T1が上昇してきたら、制御装置125は、前述とは逆に、流量調整弁132の開度を大きくする一方、流量調整弁134の開度を小さくしていき、乾燥容器101内における温度T1と露点温度との所定偏差を確保する。
 このように実施例2の流動層乾燥装置にあっては、乾燥容器101の下部に水蒸気供給ライン131を設けて流量調整弁132を装着すると共に、非凝縮性ガス供給ライン133を設けて流量調整弁134を装着し、制御装置125は、第1温度センサ121が検出した流動層Sの温度に基づいて流量調整弁132,134の開度を調整することで、乾燥容器101内の水蒸気濃度Cを変更して露点温度を変更している。
 従って、制御装置125は、流動層Sの温度T1が変動すると、流量調整弁132,134の開度を調整し、乾燥容器101内の水蒸気濃度Cを調整して露点温度を変更する。すると、乾燥容器101内における原炭の乾燥度合が一定となり、常に安定した原炭の乾燥処理を行うことが可能となり、乾燥効率の向上を可能とすることができる。
 この場合、制御装置125は、流動層Sの温度T1に基づいて流量調整弁132,134の開度を調整して乾燥容器101内の水蒸気濃度Cを調整することで、露点温度を変更している。具体的に、制御装置125は、流動層Sの温度T1が低下したときに流量調整弁134の開度を大きくして乾燥容器101内の水蒸気濃度Cを低下させている。
 従って、流動層Sの温度は、乾燥容器101内における水蒸気分圧に依存する水蒸気の露点温度により決定されるものであるから、流動層Sの温度に基づいて乾燥容器101内の水蒸気濃度を調整することで、流動層Sの温度T1と乾燥容器101内の露点温度との偏差を所定値に維持することが可能となり、常に安定した原炭の乾燥処理を行うことができる。
 また、実施例2の流動層乾燥装置では、制御装置125は、流動層Sの温度が低下したときに、流量調整弁134の開度を大きくして非凝縮性ガスの供給量を増加させている。従って、乾燥容器101内の流動化ガス量が増加することとなり、原炭の流動化を促進することが可能となり、乾燥効率の向上を可能とすることができる。
 また、実施例2の流動層乾燥装置では、制御装置125は、流動層Sの温度が低下したときに、流量調整弁132の開度を小さくして過熱水蒸気の供給量を減少させる一方、流量調整弁134の開度を大きくして非凝縮性ガスの供給量を増加させることで、流動化ガス量を一定に維持している。従って、乾燥容器101内の流動化ガス量が一定量に維持されることとなり、乾燥容器101に作用する圧力が過大となることはなく、安全性を向上することができる。
 図6は、本発明の実施例3に係る流動層乾燥装置の概略側面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例3は、実施例1と実施例2を組み合わせた実施例であり、図6に示すように、乾燥容器101は、流動化ガス供給口104に対して流動化ガス供給ライン111が設けられ、この流動化ガス供給ライン111に水蒸気供給ライン131が接続されて流量調整弁132が装着されると共に、非凝縮性ガス供給ライン133が接続されて流量調整弁134が装着されている。また、乾燥容器101は、ガス排出口105に対してガス排出ライン113が設けられて流量調整弁114及びファン115が装着されている。
 そして、制御装置125は、第1温度検出センサ121の検出結果に基づいて流量調整弁114の開度を調整することで、乾燥容器101内の圧力を調整し、この乾燥容器101内の露点温度を変更する。即ち、制御装置125は、流動層Sの温度が低下したときに、流量調整弁114の開度を大きくし、乾燥容器101内の圧力を低下させる。また、制御装置125は、第1温度検出センサ121の検出結果に基づいて流量調整弁132,134の開度を調整することで、乾燥容器101内の水蒸気濃度を調整し、この乾燥容器101内の露点温度を変更する。即ち、制御装置125は、流動層Sの温度が低下したときに、流量調整弁134の開度を大きくして非凝縮性ガスを供給する一方、流量調整弁132の開度を小さくし、乾燥容器101内における水蒸気濃度を低下させる。
 この場合、制御装置125は、流動層Sの温度に基づいて、乾燥容器101内の圧力を調整して露点温度を変更してもよいし、乾燥容器101内の水蒸気濃度を調整して露点温度を変更してもよく、同時に行ってもよい。
 なお、上述した各実施例では、湿潤原料として低品位炭を使用したが、高品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。
 11 給炭装置
 12 流動層乾燥装置
 13 微粉炭機
 14 石炭ガス化炉
 15 チャー回収装置
 16 ガス精製装置
 17 ガスタービン設備
 18 蒸気タービン設備
 19 発電機
 20 排熱回収ボイラ
 101 乾燥容器
 102 原炭投入口(湿潤原料投入部)
 103 乾燥炭排出口(乾燥物排出部)
 104 流動化ガス供給口(流動化ガス供給部)
 105 ガス排出口(ガス排出部)
 106 伝熱管(加熱部)
 111 流動化ガス供給ライン
 112 流量調整弁
 113 ガス排出ライン
 114 流量調整弁(露点温度変更装置、減圧装置)
 115 ファン
 121 第1温度センサ(流動層温度検出センサ)
 122 第2温度センサ
 123 圧力センサ
 125 制御装置
 131 水蒸気供給ライン
 132 流量調整弁(露点温度変更装置、水蒸気濃度調整装置)
 133 非凝縮性ガス供給ライン
 134 流量調整弁(露点温度変更装置、水蒸気濃度調整装置)

Claims (7)

  1.  中空形状をなす乾燥容器と、
     該乾燥容器の一端側に湿潤原料を投入する湿潤原料投入部と、
     前記乾燥容器の他端側から湿潤原料が加熱乾燥した乾燥物を排出する乾燥物排出部と、
     前記乾燥容器の下部に流動化ガスを供給することで湿潤原料と共に流動層を形成する流動化ガス供給部と、
     前記乾燥容器の一端側における前記湿潤原料投入部より上方から流動化ガス及び発生蒸気を排出するガス排出部と、
     前記流動層の湿潤原料を加熱する加熱部と、
     前記乾燥容器内の露点温度を変更する露点温度変更装置と、
     前記流動層の温度を検出する流動層温度検出センサと、
     該流動層温度検出センサの検出結果に基づいて前記露点温度変更装置を制御する制御装置と、
     を備えることを特徴とする流動層乾燥装置。
  2.  前記露点温度変更装置は、前記乾燥容器内の圧力を変更する減圧装置であって、前記制御装置は、前記流動層の温度に基づいて前記減圧装置を制御することを特徴とする請求項1に記載の流動層乾燥装置。
  3.  前記制御装置は、前記流動層の温度が低下したときに前記減圧装置を制御して前記乾燥容器内の圧力を低下させることを特徴とする請求項2に記載の流動層乾燥装置。
  4.  前記流動化ガス供給部は、前記乾燥容器の下部に流動化ガスとしての水蒸気及び非凝縮性ガスを供給可能であり、前記露点温度変更装置は、前記流動化ガス供給部を制御して前記乾燥容器内の水蒸気濃度を調整する装置であって、前記制御装置は、前記流動層の温度に基づいて前記水蒸気濃度調整装置を制御することを特徴とする請求項1に記載の流動層乾燥装置。
  5.  前記制御装置は、前記流動層の温度が低下したときに、前記水蒸気濃度調整装置を制御して前記乾燥容器内の水蒸気濃度を低下させることを特徴とする請求項4に記載の流動層乾燥装置。
  6.  前記制御装置は、前記流動層の温度が低下したときに、非凝縮性ガスの供給量を増加させることを特徴とする請求項5に記載の流動層乾燥装置。
  7.  前記制御装置は、前記流動層の温度が低下したときに、水蒸気の供給量を減少させる一方、非凝縮性ガスの供給量を増加させることで、流動化ガス量を一定に維持することを特徴とする請求項5に記載の流動層乾燥装置。
PCT/JP2012/056579 2011-03-22 2012-03-14 流動層乾燥装置 WO2012128151A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012232314A AU2012232314B9 (en) 2011-03-22 2012-03-14 Fluidized bed drying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-062246 2011-03-22
JP2011062246A JP5848014B2 (ja) 2011-03-22 2011-03-22 流動層乾燥装置

Publications (1)

Publication Number Publication Date
WO2012128151A1 true WO2012128151A1 (ja) 2012-09-27

Family

ID=46879303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056579 WO2012128151A1 (ja) 2011-03-22 2012-03-14 流動層乾燥装置

Country Status (3)

Country Link
JP (1) JP5848014B2 (ja)
AU (1) AU2012232314B9 (ja)
WO (1) WO2012128151A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322921A (zh) * 2016-11-16 2017-01-11 长沙开元仪器股份有限公司 一种真空干燥设备
CN115157481A (zh) * 2022-06-20 2022-10-11 沈阳华控科技发展有限公司 一种pvc干燥装置的热量控制方法
CN116753678A (zh) * 2023-08-22 2023-09-15 诸城华源生物质科技有限公司 一种废锯末资源回收利用干燥机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT514275B1 (de) * 2013-05-07 2015-05-15 Andritz Tech & Asset Man Gmbh Verfahren zur Erzeugung von Salzen mit reduziertem Kristallwassergehalt
CN104215036A (zh) * 2013-05-30 2014-12-17 新日铁住金工程技术株式会社 流动层干燥机和湿润原料的干燥方法
KR101497573B1 (ko) * 2014-06-17 2015-03-02 주식회사 한국테크놀로지 석탄 건조 장치에서의 이송 석탄 자연발화 방지 장치
JP6613746B2 (ja) * 2015-09-14 2019-12-04 株式会社Ihi 乾燥システム
JP2019074247A (ja) * 2017-10-16 2019-05-16 株式会社Ihi 乾燥システムおよび乾燥方法
JP6981614B2 (ja) * 2017-11-15 2021-12-15 株式会社大川原製作所 乾燥・濃縮システム
JP6981613B2 (ja) * 2017-11-15 2021-12-15 株式会社大川原製作所 乾燥・濃縮システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197791A (ja) * 1989-01-27 1990-08-06 Mitsubishi Kasei Vinyl Co 粉粒体の乾燥方法
JP2000126687A (ja) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd 流動層乾燥・分級装置
WO2006044264A2 (en) * 2004-10-12 2006-04-27 Great River Energy Apparatus for heat treatment of particulate materials
JP2008128524A (ja) * 2006-11-17 2008-06-05 Nippon Steel Corp 流動乾燥方法および流動層乾燥装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1767628C3 (de) * 1968-05-30 1985-03-14 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Durchführung endothermer Prozesse
GB2030689B (en) * 1978-08-04 1983-05-05 Energy Equip Method and means for controlling the operation of fluidised bed combustion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197791A (ja) * 1989-01-27 1990-08-06 Mitsubishi Kasei Vinyl Co 粉粒体の乾燥方法
JP2000126687A (ja) * 1998-10-27 2000-05-09 Kawasaki Heavy Ind Ltd 流動層乾燥・分級装置
WO2006044264A2 (en) * 2004-10-12 2006-04-27 Great River Energy Apparatus for heat treatment of particulate materials
JP2008128524A (ja) * 2006-11-17 2008-06-05 Nippon Steel Corp 流動乾燥方法および流動層乾燥装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322921A (zh) * 2016-11-16 2017-01-11 长沙开元仪器股份有限公司 一种真空干燥设备
CN115157481A (zh) * 2022-06-20 2022-10-11 沈阳华控科技发展有限公司 一种pvc干燥装置的热量控制方法
CN115157481B (zh) * 2022-06-20 2023-07-25 沈阳华控科技发展有限公司 一种pvc干燥装置的热量控制方法
CN116753678A (zh) * 2023-08-22 2023-09-15 诸城华源生物质科技有限公司 一种废锯末资源回收利用干燥机
CN116753678B (zh) * 2023-08-22 2023-10-27 诸城华源生物质科技有限公司 一种废锯末资源回收利用干燥机

Also Published As

Publication number Publication date
JP5848014B2 (ja) 2016-01-27
AU2012232314B9 (en) 2015-06-11
AU2012232314B2 (en) 2015-05-28
JP2012197976A (ja) 2012-10-18
AU2012232314A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5848014B2 (ja) 流動層乾燥装置
JP2013108700A (ja) 流動層乾燥装置
JP2013108699A (ja) 流動層乾燥装置
JP5675671B2 (ja) 流動層乾燥装置
WO2012141217A1 (ja) 流動層乾燥装置
JP5748559B2 (ja) 流動層乾燥装置
JP5959879B2 (ja) 乾燥システム
WO2012133549A1 (ja) 湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システム
JP5713801B2 (ja) 流動層乾燥装置
AU2013201106B2 (en) Fluid bed drying apparatus, gasification combined power generating facility, and drying method
AU2013201075B2 (en) Fluid bed drying apparatus, gasification combined power generating facility, and drying method
JP5916430B2 (ja) 流動層乾燥装置、ガス化複合発電設備および粉体燃料の供給方法
JP5777402B2 (ja) 流動層乾燥装置
JP5922338B2 (ja) 流動層乾燥設備及び流動層乾燥設備を用いたガス化複合発電システム
JP2014159935A (ja) 燃料加工設備
JP2012241990A (ja) 流動層乾燥装置
AU2013201118A1 (en) Fluidized bed drying apparatus, integrated gasification combined cycle system, drainage treating method, and lifetime determining method of activated carbon adsorption layer
JP2012241120A (ja) ガス化システム
JP2012233634A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
WO2012161131A1 (ja) 流動層乾燥装置
JP2012241993A (ja) 流動層乾燥装置
WO2012161130A1 (ja) 流動層乾燥装置
JP2013167418A (ja) 熱処理物の冷却装置
WO2012133122A1 (ja) 流動層乾燥装置
JP2013170799A (ja) 流動層乾燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012232314

Country of ref document: AU

Date of ref document: 20120314

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12761248

Country of ref document: EP

Kind code of ref document: A1