WO2012127128A1 - Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4 - Google Patents

Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4 Download PDF

Info

Publication number
WO2012127128A1
WO2012127128A1 PCT/FR2012/000052 FR2012000052W WO2012127128A1 WO 2012127128 A1 WO2012127128 A1 WO 2012127128A1 FR 2012000052 W FR2012000052 W FR 2012000052W WO 2012127128 A1 WO2012127128 A1 WO 2012127128A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
succinate
citric acid
phosphorus
optionally
Prior art date
Application number
PCT/FR2012/000052
Other languages
English (en)
Other versions
WO2012127128A8 (fr
Inventor
Laurent Simon
Bertrand Guichard
Valentina DE GRANDI
Delphine Minoux
Jean -Pierre DATH
Original Assignee
IFP Energies Nouvelles
Total Raffinage Marketing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Total Raffinage Marketing filed Critical IFP Energies Nouvelles
Priority to US14/005,936 priority Critical patent/US11351529B2/en
Priority to EP12708569.4A priority patent/EP2686105B1/fr
Priority to RU2013146532/04A priority patent/RU2574389C2/ru
Priority to CA2825958A priority patent/CA2825958C/fr
Priority to DK12708569.4T priority patent/DK2686105T3/en
Priority to BR112013023877-1A priority patent/BR112013023877B1/pt
Priority to CN201280014066.5A priority patent/CN103501902B/zh
Priority to JP2014500436A priority patent/JP5933684B2/ja
Publication of WO2012127128A1 publication Critical patent/WO2012127128A1/fr
Priority to ZA2013/05844A priority patent/ZA201305844B/en
Publication of WO2012127128A8 publication Critical patent/WO2012127128A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/52Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids oxygen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • B01J38/62Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids organic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the invention relates to a catalyst, its method of preparation and its use in the field of hydrotreatments.
  • a hydro-treatment catalyst for hydrocarbon cuts is intended to eliminate the sulfur or nitrogen compounds contained therein in order, for example, to bring a petroleum product to the required specifications (sulfur content, aromatic content, etc.). for a given application (automotive fuel, gasoline or diesel, heating oil, jet fuel). It may also be to pre-treat this load in order to remove impurities before subjecting it to various transformation processes to modify the physico-chemical properties, such as for example reforming processes, hydrocracking vacuum distillate, catalytic cracking, hydroconversion of atmospheric residues or vacuum.
  • the composition and use of the hydro-treatment catalysts are particularly well described in the article by B. S.
  • each RI independently represents a C1 to C18 alkyl group, C2 to C8 alkenyl, C6 to Cl 8, C 3 -C 8 cycloalkyl, C 7 -C 20 alkylaryl or arylalkyl, or the 2 RI groups together form a divalent group C 2 to C 8
  • R 2 represents a C 1 to C 8 alkylene group, C 6 to C 6 arylene 8, C3-C7 cycloalkylene, or a combination thereof
  • C1-C4 dialkyl succinate and particularly dimethyl succinate which is exemplified. These compounds may be introduced in the presence of a solvent (an important list of solvents is mentioned) or a carboxylic acid. Among the thirty or so acids mentioned, acetic acid is present but is not mentioned among the ten preferred acids. It will be noted now that citric acid is preferred.
  • the process for preparing the catalyst as described in patent WO2006 / 077326 comprises stages of maturation and heat treatment of up to several days, for example from 49 days to 115 days, which would greatly limit the production of these catalysts and would therefore require improvements.
  • this solution also comprises a phosphorus precursor.
  • One of the preferred embodiments of the invention then comprises drying at a temperature below 200 ° C, while a second preferred embodiment comprises a final heat treatment at a temperature greater than or equal to 400 ° C.
  • the patent WO2005 / 035691 claims an activation process which schematically allows to reduce the crystalline phase content of COOMO 4 type present on the regenerated catalysts comprising oxides of metals of groups VIII and VTB, comprising contacting the process. regenerated catalyst with an acid and an organic additive.
  • the use of the combination citric acid (CA) and polyethylene glycol (PEG) was carried out on regenerated catalyst in many examples.
  • the present invention relates to a catalyst and its method of preparation, the catalyst being usable for hydrotreatment and allowing an improvement of the catalytic performances (in particular of the catalytic activity) compared to the catalysts of the prior art.
  • the use of the C1-C4 dialkyl succinate couple, and in particular of dimethyl, and citric acid, optionally in the presence of acetic acid on a dried, calcined or regenerated catalyst precursor surprisingly leads to significantly improved catalytic activity.
  • the invention relates to a catalyst comprising an amorphous carrier based on alumina, at least one C1-C4 dialkyl succinate, citric acid, phosphorus and a hydro-dehydrogenating function comprising at least one member of the group.
  • VIII and at least one group VIB element a catalyst whose Raman spectrum comprises the 990 and / or 974 cm-1 bands characteristic of at least one Keggin heteropolyanion, the characteristic bands of said succinate and the characteristic bands of the acid citric.
  • the catalyst also comprises acetic acid.
  • the invention also relates to the sulfurized catalyst. It is obtained by sulphurisation of the catalyst described in the present application.
  • the hydro-dehydrogenating function comprises at least one element of group VIII (preferably cobalt and / or nickel) and at least one element of group VIB (preferably molybdenum and / or tungsten).
  • group VIII preferably cobalt and / or nickel
  • group VIB preferably molybdenum and / or tungsten
  • the hydro-dehydrogenating function comprises molybdenum and cobalt and / or nickel.
  • the catalyst also comprises acetic acid, of which the most intense Raman line characteristic is at 896 cm -1 .
  • the other characteristic bands of acetic acid are: 448, 623, 896 cm -1
  • the most intense band is 896 cm -1 .
  • Raman spectra were obtained with a dispersive Raman-type spectrometer equipped with an argon ion laser (514 nm).
  • the laser beam is focused on the sample using a microscope equipped with a x50 long-distance working lens.
  • the laser power at the sample level is of the order of 1 mW.
  • the Raman signal emitted by the sample is collected by the same objective and is dispersed using a 1800 rpm network and then collected by a CCD detector.
  • the spectral resolution obtained is of the order of 0.5 cm -1 .
  • the recorded spectral zone is between 300 and 1800 cm -1 .
  • the acquisition duration was set at 120 s for each registered Raman spectrum.
  • the dialkyl succinate is advantageously dimethyl succinate, dibutyl succinate and diisopropyl succinate.
  • the dialkyl succinate used is dimethyl succinate
  • the catalyst has in its spectrum the main Raman bands at 990 and / or 974 cm -1 characteristic of the Keggin heteropolyanion (s), and 853 cm -1 characteristic of dimethyl succinate and 785 and 956 cm -1 characteristics of citric acid and optionally at 896 cm -1 characteristic of acetic acid.
  • the catalyst of the invention comprises a support consisting of alumina or silica-alumina.
  • the catalyst according to the invention may also comprise boron and / or fluorine and / or silicon, and preferably boron and / or fluorine.
  • a process for preparing the catalyst according to the invention which comprises at least one step of impregnating a catalyzed precursor dried at a temperature below 180 ° C containing at least one hydro-dehydrogenating function and optionally phosphorus and an amorphous support, with a solution comprising the combination of citric acid (optionally with acetic acid) and C1-C4 dialkyl succinate in the presence or absence of a compound containing phosphorus, followed by a step of maturing said phosphorus-containing impregnated catalyst precursor, then a drying step at a temperature below 200 ° C, without subsequent calcination step (heat treatment under air); the catalyst obtained is preferably subjected to a sulphurization step.
  • the catalyst obtained is preferably subjected to a sulphurization step.
  • the calcination is carried out at least 350 ° C during the preparation of a fresh catalyst (that is to say not yet used).
  • the temperature is below 600 ° C and most often below 550 ° C, for example from 350 to 550 ° C, and preferably from 400-520 ° C, or preferably from 420-520 ° C or 450 -520 ° C, temperatures below 500 ° C are often advantageous.
  • It also describes a process for preparing the catalyst according to the invention as described above, but from a used catalyst (which has been used) and regenerated (combustion of the carbon deposited on the catalyst which has been used) .
  • Regeneration is generally carried out at temperatures between 350 and 550 ° C, and most often between 400 and 520 ° C, or between 420 and 520 ° C, or between 450 and 520 ° C, temperatures below 500 or 480 ° C being often advantageous.
  • the catalytic precursor undergoes a heat treatment above the drying temperature (which is at most 180 ° C) and below the calcination temperature (which is at least 350 ° C).
  • the invention more precisely describes a process for preparing a catalyst comprising the following successive steps:
  • the heat treatment of step ab) comprises at least one drying step at a temperature of at most 180 ° C. It may further comprise a calcination step. It can also be included in a regeneration step.
  • the process according to the invention comprises the following successive stages:
  • the invention also describes a process for preparing a catalyst from a catalytic precursor which is a spent catalyst comprising the following successive steps:
  • the product obtained at the end of step e) undergoes a f) sulphurization step.
  • the invention also relates to the sulfurized catalyst.
  • the process according to the invention is preferably carried out with the following modes taken alone or in combination: the support consists of alumina or silica alumina; the totality of the hydrogenating function is introduced during step a); all the phosphorus is introduced during step a); the dialkyl succinate is dimethyl succinate; step c) is carried out in the presence of water and / or ethanol; step d) is carried out at a temperature between 17 and 60 ° C or 50 ° C; step e) is carried out at a temperature of between 80 and 180 ° C.
  • the drying step b) is carried out at a temperature below 180 ° C without heat treatment or subsequent calcination.
  • the method according to the invention comprises the following successive steps: a) at least one step of dry impregnation of said support with a solution containing all the elements of the hydro-dehydrogenating function, and all the phosphorus,
  • a drying step preferably under nitrogen, at a temperature between 80 and 160 ° C, without subsequent heat treatment step.
  • the catalytic precursor containing the hydro-dehydrogenating function and an amorphous support based on alumina and its method of preparation are described below.
  • Said catalytic precursor obtained at the end of step a) of the process according to the invention can be prepared for the most part by all methods well known to those skilled in the art.
  • Said catalytic precursor contains a hydro-dehydrogenating function.
  • it contains phosphorus and / or boron and / or fluorine as dopant as well as the amorphous support.
  • the amorphous support of said catalytic precursor is based on alumina. It generally contains more than 25% or even more than 35% and preferably more than 50% by weight of alumina. Preferably, it contains only alumina or silica-alumina with optionally the metal (s). metals) and / or the dopant (s) which have been introduced outside the impregnations (introduced for example during the preparation - mixing, peptization ... of the support or its shaping).
  • the support is obtained after shaping (preferably extrusion). It is calcined, usually between 300-600 ° C.
  • the support is made of alumina.
  • the alumina is gamma-alumina and preferably said support consists of gamma-alumina.
  • it is a silica-alumina containing more than 25% or even more than 35% and preferably at least (or more than) 50% by weight of alumina.
  • the silica content in the support is at most 50% by weight, most often less than or equal to 45% by weight, preferably less than or equal to 40% by weight.
  • the support is silica-alumina.
  • Silicon sources are well known to those skilled in the art. By way of example, mention may be made of silicic acid, silica in powder form or in colloidal form (silica sol), tetraethylorthosilicate Si (OEt) 4 .
  • amorphous support is understood to mean a support which does not contain crystalline phases apart from those which could exist in alumina or silica-alumina.
  • the hydro-dehydrogenating function of said catalytic precursor is provided by at least one group VIB element and at least one Group VIII element.
  • the total content of hydro-dehydrogenating elements is advantageously greater than 6% by weight of oxide relative to the total weight of the catalyst.
  • the preferred group VIB elements are molybdenum and tungsten, and in particular molybdenum.
  • the preferred group VIII elements are non-noble elements and in particular cobalt and nickel.
  • the hydro-dehydrogenating function comprises (and preferably consists of) molybdenum, nickel and / or cobalt.
  • the hydrogenating function is chosen from the group formed by the combinations of cobalt-molybdenum, nickel-molybdenum, or nickel-cobalt-molybdenum, or nickel-molybdenum-tungsten elements.
  • the hydro-dehydrogenating function is advantageously provided by the combination of nickel and molybdenum; a combination of nickel and tungsten in the presence of molybdenum may also be advantageous.
  • cobalt-nickel-molybdenum combinations can be advantageously used.
  • molybdenum precursors that can be used are also well known to those skilled in the art.
  • oxides and hydroxides molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid ( H 3 PMO 12 O 40 ) and their salts, and optionally silicomolybdic acid (H4SIM012O40) and salts.
  • Molybdenum sources can also be any heteropolycomposed Keggin type, Keggin lacunary, Keggin substituted, Dawson, Anderson, Strandberg, for example.
  • Molybdenum trioxide and heteropoly compounds (heteropolyanions) of the Strandberg, Keggin, Keggin lacunary or substituted Keggin type are preferably used.
  • the tungsten precursors that can be used are also well known to those skilled in the art.
  • oxides and hydroxides tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and their salts. salts, and optionally silicotungstic acid (H4S1W12O40) and salts.
  • Tungsten sources can also be any heteropolycomposed Keggin type, Keggin lacunary, Keggin substituted, Dawson, for example.
  • Oxides and ammonium salts such as ammonium metatungstate or heteropolyanions of Keggin, Keggin lacunary or Keggin type substituted are preferably used.
  • the amount of precursor (s) of the group VIB element (s) is advantageously between 5 and 40% by weight of the group VEB oxides with respect to the catalytic precursor after heat treatment of step ab) or b ), preferably between 8 and 35% by weight and very preferably between 10 and 30% by weight.
  • the precursors of the group VIII element (s) which may be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example nickel hydroxycarbonate, cobalt carbonate or Cobalt hydroxide is used in a preferred manner.
  • the amount of precursor (s) of the element (s) of group VIII is advantageously between 1 and 10% by weight of group VIII oxides relative to the catalytic precursor after heat treatment of step ab) or b ), preferably between 1.5 and 9% by weight and very preferably between 2 and 8% by weight.
  • the hydro-dehydrogenating function of said catalytic precursor can be introduced into the catalyst at various levels of the preparation and in various ways. Said hydro-dehydrogenating function is always introduced, at least in part and preferably entirely, by impregnation of the shaped support. It can also be introduced in part during the shaping of said amorphous support.
  • the hydro-dehydrogenating function is introduced in part during the shaping of said amorphous support, it can be introduced in part (for example at most 10% by weight of element (s) of group VIB, for example introduced by kneading) only at the time of kneading with an alumina gel chosen as a matrix, the remainder of the hydrogenating element (s) being then introduced later.
  • the proportion of element (s) of the group VIB introduced during this step is less than 5% by weight of the total amount of element (s) of the group VTB introduced on the final catalyst.
  • At least one element (or all) of group VTB is introduced at the same time as at least one element (or all) of group VIII, regardless of the mode of introduction.
  • These methods and quantities for the introduction of the elements are used especially in the case where the hydro-dehydrogenating function is constituted by CoMo.
  • the introduction of said hydro-dehydrogenating function on the amorphous support can be advantageously carried out by one or several impregnations in excess of solution on the shaped and calcined support, or preferably by one or more dry impregnations and, preferably, by dry impregnation of said shaped and calcined support, using solutions containing the precursor salts of metals.
  • the hydro-dehydrogenating function is introduced in full after shaping of said amorphous support, by dry impregnation of said support with an impregnating solution containing the precursor salts of the metals.
  • the introduction of said hydro-dehydrogenating function may also be advantageously carried out by one or more impregnations of the support shaped and calcined by a solution of the precursor (s) of the active phase.
  • an intermediate drying step of the catalyst is generally carried out at a temperature of between 50 and 180 ° C., preferably between 60 and 150 ° C. and very preferably between 75 and 130 ° C.
  • Phosphorus is also introduced into the catalyst.
  • Another catalyst dopant may also be introduced which is preferably selected from boron, fluorine alone or as a mixture.
  • the dopant is an added element, which in itself has no catalytic character but which increases the catalytic activity of the metal (metals).
  • the source of boron may be boric acid, preferably orthoboric acid H3BO3, biborate or ammonium pentaborate, boron oxide, boric esters. Boron may be introduced for example by a solution of boric acid in a water / alcohol mixture or in a water / ethanolamine mixture.
  • the preferred phosphorus source is orthophosphoric acid H 3 PO 4 , but its salts and esters as ammonium phosphates are also suitable. Phosphorus can also be introduced together with the element (s) of the VTB group as heteropolyanions of Keggin, Keggin lacunary, substituted Keggin or Strandberg type.
  • Fluoride sources that can be used are well known to those skilled in the art.
  • the fluoride anions can be introduced in the form of hydrofluoric acid or its salts. These salts are formed with alkali metals, ammonium or an organic compound. In the latter case, the salt is advantageously formed in the reaction mixture by reaction between the organic compound and the hydrofluoric acid.
  • the fluorine may be introduced for example by impregnation with an aqueous solution of hydrofluoric acid, or ammonium fluoride or ammonium bifluoride.
  • the dopant is advantageously introduced into the catalytic precursor in an amount of oxide of said dopant relative to the catalytic precursor after heat treatment of step ab) or b):
  • This quantity represents the amount of phosphorus introduced by impregnation.
  • the regenerated catalyst it represents the amount of phosphorus present on the spent catalyst after regeneration plus that impregnated during step c). The phosphorus present on the regenerated catalyst comes from the impregnation which took place during the preparation of this catalyst in the fresh state.
  • Phosphorus is always present. Phosphorus is generally introduced during the impregnation of the support with at least one of the elements of the hydro-dehydrogenating function (step a) of the process) and / or is introduced during the impregnation with the succinate and the ) acid (s) (step c) of the process). Preferably it is introduced entirely in step a) that is to say on the catalytic precursor.
  • the phosphorus is introduced, in whole or in part, in admixture with the precursor (s) of the hydro-dehydrogenating function, on the shaped amorphous support, preferably extruded alumina or silica-alumina, by dry impregnation of said amorphous support with a solution containing the precursor salts of the metals and the precursor (s) of the dopant (s).
  • the dopant can also be introduced as soon as the support is synthesized. It can also be introduced just before or just after peptization of the chosen matrix, such as, for example, and preferably aluminum oxyhydroxide (boehmite) precursor of alumina.
  • phosphorus will have to be introduced onto the shaped support, preferably by impregnation, and advantageously by dry impregnation.
  • the "catalytic precursor" in step a) of the process according to the invention is prepared with an impregnating solution containing at least one precursor of each element of the hydro-dehydrogenating function, in the presence of a phosphorus precursor, the amorphous support consisting of alumina or silica alumina.
  • a drying step b) during which the solvent of the precursor metal salts of (or ) (metal oxide) (solvent which is usually water) is removed at a temperature between 50 and 180 ° C, preferably between 60 and 150 ° C or between 65 and 145 ° C and very preferably between 70 and 140 ° C or between 75 and 130 ° C.
  • the drying step of the "dried catalyst precursor" thus obtained is never followed by a heat treatment step in air at a temperature above 200 ° C.
  • a heat treatment step in air at a temperature above 200 ° C.
  • said "catalytic precursor” is obtained by dry impregnation of a solution comprising (or) precursor (s) of the hydro-dehydrogenating function, and the phosphorus on an amorphous carrier based on calcined alumina shaped, followed by drying at a temperature below 180 ° C.
  • step b the catalytic precursor is dried and then calcined at a temperature of at least 350 ° C.
  • the calcining temperature is less than 600 ° C and most often less than 550 ° C, for example from 350 to 550 ° C, and preferably between 400 and 520 ° C, or preferably between 420 and 520 ° C or between 450 and 520 ° C, temperatures below 500 ° C are often advantageous.
  • step a'b ' the spent catalyst (containing the hydro-dehydrogenating and phosphorus function) is regenerated (called step a'b '). This process will be detailed later.
  • the regenerated catalyst obtained is subjected to the steps described below.
  • step c) of the process according to the invention said dried or calcined or regenerated catalytic precursor is impregnated with an impregnating solution comprising at least one C1-C4 dialkyl succinate (and in particular dimethyl succinate) and citric acid and possibly acetic acid.
  • Said compounds are advantageously introduced into the impregnating solution of step c) of the process according to the invention in a corresponding amount (with respect to the catalytic precursor after heat treatment of step ab) or b):
  • dialkyl succinate for example dimethyl
  • element (s) of the VTB group impregnated with the catalytic precursor of between 0.15 and 2 mol / mol, preferably between 0.3 and 1.8 mol / mole, preferably between 0.5 and 1.5 mole / mole and very preferably between 0.8 and 1.2 mole / mole, and
  • a molar ratio of citric acid per element (s) of the VTB group impregnated with the catalytic precursor of between 0.05 and 5 mole / mole, preferably between 0, 1 or 0.5 to 4 mole / mole, a preferred method of between 1.3 and 3 mol / mol and very preferably between 1.5 and 2.5 mol / mol,
  • acetic acid when the acetic acid is present, at a molar ratio of acetic acid per element (s) of the group VTB impregnated with the catalytic precursor of between 0.1 to 6 mol / mol, preferably between 0.5 to 5 mole / mole, preferably between 1.0 and 4 mole / mole and very preferably between 1.5 and 2.5 mole / mole,
  • the molar ratio of citric acid + acetic acid per element (s) of the VTB group impregnated with the catalytic precursor of between 0.15 and 6 mol / mol.
  • step c) of the process according to the invention the combination of dialkyl succinate and citric acid (with possibly acetic acid) is introduced on the precursor catalytic (dried, calcined, regenerated) by at least one impregnation step and preferably by a single step of impregnating an impregnating solution on said catalytic precursor.
  • Said combination may advantageously be deposited in one or more steps either by slurry impregnation, or by excess impregnation, or by dry impregnation, or by any other means known to those skilled in the art.
  • step c) of the preparation process according to the invention is a single step of dry impregnation.
  • the impregnating solution of step c) comprises at least the combination of C1-C4 dialkyl succinate (in particular dimethyl) and citric acid. Preferably it also contains acetic acid.
  • the impregnating solution used in stage c) of the process according to the invention can be completed by any non-protic solvent known to those skilled in the art including toluene, xylene.
  • the impregnation solution used in stage c) of the process according to the invention can be completed by any polar solvent known to those skilled in the art.
  • Said polar solvent used is advantageously chosen from the group formed by methanol, ethanol, water, phenol and cyclohexanol, taken alone or as a mixture.
  • Said polar solvent used in stage c) of the process according to the invention may also be advantageously chosen from the group formed by propylene carbonate, DMSO (dimethylsulfoxide) or sulfolane, taken alone or as a mixture.
  • a polar protic solvent is used.
  • a list of conventional polar solvents and their dielectric constant can be found in the book "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3rd Edition, 2003, pages 472-474).
  • step c) is carried out in the presence of water and / or ethanol.
  • it contains only dialkyl succinate and citric acid and optionally acetic acid, as well as water and / or ethanol.
  • the dialkyl succinate used is preferably included in the group consisting of dimethyl succinate, diethyl succinate, dipropyl succinate, diisopropyl succinate and dibutyl succinate.
  • the C1-C4 dialkyl succinate used is dimethyl succinate or diethyl succinate.
  • the succinate of C1-C4 dialkyl used is dimethyl succinate.
  • At least one C1-C4 dialkyl succinate is used, preferably one, and preferably dimethyl succinate.
  • the catalytic precursor or the impregnated regenerated catalyst from step c) is subjected to a maturation step. It is advantageously carried out at atmospheric pressure.
  • the temperature is generally between 17 ° C and 60 ° C or 17 ° C and 50 ° C.
  • the ripening time is between ten minutes and forty eight hours and preferably between thirty minutes and five hours, is sufficient. Longer durations are not excluded.
  • a simple way to adjust the maturation time is to characterize the formation of Keggin heteropolyanions by Raman spectroscopy in the impregnated dried catalyst precursor from step c) of the process according to the invention.
  • the duration of the maturation is between thirty minutes and four hours. Even more preferably, the duration of the maturation is between thirty minutes and three hours.
  • step e) of the preparation process according to the invention the catalytic precursor or the catalyst resulting from step d) is subjected to a drying step.
  • the purpose of this step is to obtain a transportable, storable, and manipulable catalyst, in particular for the loading of the hydrotreatment unit. It is advantageous, according to the embodiment of the invention chosen, to remove all or part of the possible solvent that has allowed the introduction of the combination of C1-C4 dialkyl succinate (in particular dimethyl) and citric acid. In all cases, and particularly in the case where the combination of C1-C4 dialkyl succinate (in particular dimethyl) and citric acid is used alone, it is a question of giving the catalyst a dry appearance, in order to avoid that the extrusions do not stick to each other during the transport, storage, handling or loading steps.
  • the drying step e) of the process according to the invention is advantageously carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or under reduced pressure. This step is preferably carried out at atmospheric pressure.
  • This step e) is advantageously carried out at a temperature below 200 ° C, generally between 50 ° C and below 200 ° C, preferably between 60 and 190 ° C and very preferably between 80 and 180 ° vs.
  • a temperature below 200 ° C generally between 50 ° C and below 200 ° C, preferably between 60 and 190 ° C and very preferably between 80 and 180 ° vs.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • the drying is carried out under nitrogen.
  • this step has a duration of between 30 minutes and 4 hours and preferably between 45 minutes and 3 hours.
  • step e) of the process according to the invention a dried catalyst is obtained, which is not subjected to any subsequent calcination step or subsequent heat treatment at a temperature above 200 ° C.
  • the catalyst obtained after step d) or step e) has a Raman spectrum comprising the most intense bands at 990 and 974 cm -1 (Keggin type heteropolyanions), the bands corresponding to the succinate (for dimethyl succinate the most intense band is 853 cm -1 ), and the characteristic bands of citric acid, the most intense at 785 and 956 cm -1 and possibly the bands of acetic acid whose more intense is 896 cm "1
  • a regenerated spent catalyst whose hydrogenating function is provided by at least one member of the VTB group and by at least one element of group VIII.
  • the supports are also the same.
  • this catalyst contains phosphorus, which has preferably been introduced by impregnation during the preparation of this catalyst in the fresh state.
  • Said regenerated catalyst has undergone a heat treatment step called "regeneration" in the presence of oxygen, pure or diluted. This step is intended to remove at least a portion of the coke present on the catalyst by combustion. There is no chemical treatment during this step.
  • the regeneration treatment can be carried out at a temperature between 350 and 550 ° C, and generally between 450 and 520 ° C, or between 420 and 520 ° C, or between 400 and 520 ° C. It is preferably carried out between 420 and 500 ° C, or between 450 and 520 ° C depending on the nature of the carbon to burn. Those skilled in the art optimize the temperature necessary for the burning of the coke (or its precursors) while avoiding or minimizing the sintering of the catalyst.
  • a control of the temperature is necessary so as to allow the combustion of the coke but not to exceed 550 ° C on the catalyst, including locally. Exceeding the temperature of 550 ° C could for example result in damage to its porosity.
  • This control is known to those skilled in the art.
  • the temperature in the bed during this regeneration phase can be controlled by any technique known to those skilled in the art, such as the provision of thermocouples in the mass of the catalyst.
  • the diluent may be selected from nitrogen or any other inert gas.
  • the oxygen content can be fixed throughout the treatment or vary during the regeneration process.
  • the temperature may change during the treatment in several phases, the temperatures may vary from ambient to the final combustion temperature of the coke, still below 550 ° C.
  • the duration of this regeneration step will depend on the amount of catalyst to be treated and the nature and amount of coke present. This duration can vary in practice from 0, 1 hour to a few days. Most often, it is between 1 hour and 20 hours.
  • a maturation stage generally at a temperature between 17 and 60 ° C
  • a drying step preferably under nitrogen, at a temperature below 200 ° C, generally at least 80 ° C, preferably between 80-180 ° C, without subsequent calcination step.
  • step e Prior to its use, it is advantageous to convert the dried catalyst (after step e) into a sulphurized catalyst to form its active species.
  • This activation or sulphurization phase is carried out by methods well known to those skilled in the art, and advantageously under a sulpho-reducing atmosphere in the presence of hydrogen and hydrogen sulphide.
  • step e) of the process according to the invention when said dried catalyst obtained is therefore advantageously subjected to a step f) of sulphurisation, without intermediate calcination step.
  • a sulphurized catalyst is obtained according to the invention.
  • Said dried catalyst is advantageously sulphurized ex situ or in situ.
  • the sulfurizing agents are H 2 S gas or any other sulfur-containing compound used to activate hydrocarbon feeds to sulphurize the catalyst.
  • Said sulfur-containing compounds are advantageously chosen from alkyl disulphides such as, for example, dimethyl disulphide (DMDS), alkyl sulphides, for example dimethyl sulphide, n-butyl mercaptan and tertionyl polysulfide-type polysulfide compounds, for example TPS-37 or TPS-54 marketed by ARKEMA, or any other compound known to those skilled in the art for obtaining a good sulfuration of the catalyst.
  • DMDS dimethyl disulphide
  • alkyl sulphides for example dimethyl sulphide, n-butyl mercaptan and tertionyl polysulfide-type polysulfide compounds, for example TPS-37 or TPS-54 marketed by ARKEMA, or any
  • Another subject of the invention is a process for hydrotreating hydrocarbon feedstocks using the catalyst according to the invention.
  • Such processes are for example the hydrodesulphurization, hydrodenitrogenation, hydrodemetallation, aromatic hydrogenation and hydroconversion processes.
  • the dried catalysts obtained by the process according to the invention and preferably having previously undergone a f) sulphurization step are advantageously used for the hydrotreatment reactions of hydrocarbon feedstocks such as petroleum cuts, coal cuts or the hydrocarbons produced. from natural gas and more particularly for the hydrogenation, hydrodenitrogenation, hydrodearomatization, hydrodesulphurization, hydrodemetallation or hydroconversion of hydrocarbon feedings reactions.
  • the catalysts obtained by the process according to the invention and having preferably previously undergone a f) sulphurization step have an improved activity compared to the catalysts of the prior art.
  • These catalysts can also advantageously be used during the pretreatment of catalytic cracking feeds or the hydrodesulfurization of residues or the deep hydrodesulfurization of gas oils (ULSD Ultra Low Sulfur Diesel).
  • the feedstocks employed in the hydrotreatment processes are, for example, gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes and paraffins, used oils, residues or deasphalted crudes, fillers from thermal or catalytic conversion processes, alone or in mixtures.
  • the feeds which are treated, and in particular those mentioned above, generally contain heteroatoms such as sulfur, oxygen and nitrogen and, for heavy loads, they most often also contain metals.
  • the operating conditions used in the processes implementing the hydrocarbon feed hydrotreatment reactions described above are generally as follows: the temperature is advantageously between 180 and 450 ° C., and preferably between 250 and 440 ° C., the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the hourly volume rate is advantageously between 0.1 and 20 h -1 and preferably between 0.2 and 5 h -1 , and the hydrogen / charge ratio expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge is advantageously between 50 L / L and 2000 L / L.
  • a matrix composed of ultrafine tabular boehmite or alumina gel marketed by Condéa Chemie GmbH was used. This gel was mixed with an aqueous solution containing 66% nitric acid (7% by weight of acid per gram of dry gel), then kneaded for 15 minutes. At the end of this mixing, the paste obtained is passed through a die having cylindrical orifices with a diameter of 1.6 mm. The extrudates are then dried overnight at 120 ° C and then calcined at 600 ° C for 2 hours in moist air containing 50 g of water per kg of dry air. Extruded support is thus obtained solely composed of cubic gamma alumina of low crystallinity.
  • the impregnating solution is prepared by hot dissolving molybdenum oxide (24.34 g) and cobalt hydroxide (5.34 g) in the solution of phosphoric acid (7.47 g) in solution. aqueous. After dry impregnation, the extrudates are allowed to mature at room temperature (20 ° C.) in a saturated atmosphere. water for 12 h, then they are dried overnight at 90 ° C and calcined at 450 ° C for 2 hours. The calcined catalyst A is obtained.
  • the calcined catalyst A is charged in a traversed bed unit and sulphurized by a straight-run diesel with additive of 2% by weight of dimethyl disulfide.
  • An HDS test of a mixture of straight-run diesel fuel and a diesel fuel from the catalytic cracking is then conducted for 300 hours.
  • the spent catalyst is discharged, collected and washed with toluene under reflux and separated into two batches.
  • the first batch is regenerated in a controlled combustion furnace by introducing, for each temperature step increasing amounts of oxygen, e which limits the exotherm associated with the combustion of coke.
  • the final regeneration plateau is 450 ° C.
  • the catalyst thus regenerated is analyzed by XRD.
  • Catalyst C1 is prepared by dry impregnation of a solution of citric acid and dimethyl succinate diluted in ethanol with catalyst B 1.
  • CA citric acid
  • DMSU / Mo 0.50 mol / mol
  • DMSU / Mo 0/44 mol / mol
  • Catalyst C1 was analyzed by Raman spectroscopy. It shows the band including the main Keggin bande band at 990 cm -1 and the characteristic bands of citric acid and dimethyl succinate respectively at 785 cm -1 and 851 cm -1 .
  • Example 3 Preparation of a Regenerated Catalyst According to the Invention C2-Production with Citric Acid and Acetic Acid
  • Catalyst C2 is prepared by dry impregnation of a solution of citric acid of dimethyl succinate and of acetic acid diluted in ethanol with catalyst B2 which has a crystallized COOMO 4 phase.
  • Catalyst C2 was analyzed by Raman spectroscopy. It shows the band including the main band of Keggin HPA at 990 cm -1 and the characteristic bands of citric acid, dimethyl succinate and acetic acid respectively at 785 cm -1 , 851 cm -1 and 896 cm -1 .
  • Example 2bis Preparation of a regenerated catalyst according to the invention Cl bis-realization with citric acid and acetic acid
  • the catalyst is prepared in the same manner as in Example 3 but from the regenerated catalyst B1.
  • Example 3a Preparation of a regenerated catalyst according to the invention C2bis - production with citric acid
  • the catalyst is prepared in the same manner as in Example 2 but from the regenerated catalyst B2.
  • the previously described catalysts are sulfide in situ dynamically in the fixed bed tubular reactor through a pilot unit type Microcat (manufacturer: Vinci), the fluids flowing from top to bottom.
  • the measurements of hydrogenating activity are carried out immediately after sulphurization under pressure and without re-airing with the hydrocarbon feedstock which was used to sulphurize the catalysts.
  • the sulfurization and test load is composed of 5.8% dimethyl disulphide (DMDS), 20% toluene and 74.2% cyclohexane (by weight).
  • the stabilized catalytic activities of equal volumes of catalysts are thus measured in the hydrogenation reaction of toluene.
  • Catalyst volume 4 cm 3 (extruded length between 2 and 4 mm)
  • Table 1 compares the relative hydrogenating activities of catalysts B 1 and B2 (non-compliant), and catalysts C1 and C2 (according to the invention) equal to the ratio of catalyst activity to activity of catalyst B2 (non-compliant ) taken as reference (activity 100%).
  • Catalyst regenerated under uncontrolled conditions B2 (non-compliant) has less activity than regenerated catalyst B1 (non-compliant).
  • Table 1 shows that the Cl (compliant) additive catalyst prepared by adding 15% by weight of citric acid (CA) and 10% of dimethyl succinate (DMSU) to catalyst B1 has an improved activity compared to the starting catalyst of 16%, the addition of acetic acid brings the gain to 20% (catalyst Cl bis).
  • Table 1 shows that the additive catalyst C2 bis (conforming) prepared by adding 15% by weight of citric acid (CA) and 10% of dimethyl succinate (DMSU) to the catalyst B2 has an improved activity compared to the starting catalyst. of 24%, the addition of acetic acid brings the gain to 37% (catalyst C2).
  • CA citric acid
  • DMSU dimethyl succinate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un catalyseur qui comprend un support amorphe à base d'alumine, un succinate de dialkyle C1-C4, de l'acide citrique et éventuellement l'acide acétique, du phosphore et une fonction hydro-deshydrogénante comprenant au moins un élément du groupe VIII et au moins un élément du groupe VTB, catalyseur dont le spectre Raman comprend les bandes les plus intenses caractéristiques des hétéropolyanions de Keggin (974 et/ou 990 cm-1), du succinate de dialkyle C1-C4 et de l'acide citrique (notamment 785 et 956 cm-1). L'invention concerne également le procédé de préparation dudit catalyseur dans lequel un précurseur catalytique à l'état séché, calciné ou régénéré contenant les éléments de la fonction hydro-déshydrogénante, éventuellement du phosphore, est imprégné par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique, et éventuellement au moins un composé de phosphore et éventuellement l'acide acétique, puis est séché. L'invention concerne également l'utilisation de ce catalyseur dans tout procédé d'hydrotraitement.

Description

L'invention concerne un catalyseur, sa méthode de préparation et son utilisation dans le domaine des hydrotraitements.
Habituellement, un catalyseur d'hydro traitement de coupes hydrocarbonées a pour but d'éliminer les composés soufrés ou azotés contenus dans celles-ci afin de mettre par exemple un produit pétrolier aux spécifications requises (teneur en soufre, teneur en aromatiques etc..) pour une application donnée (carburant automobile, essence ou gazole, fioul domestique, carburéacteur). Il peut également s'agir de pré-traiter cette charge afin d'en éliminer les impuretés avant de lui faire subir différents procédés de transformation pour en modifier les propriétés physico-chimiques, tels que par exemple les procédés de reformage, d'hydrocraquage de distillais sous vide, de craquage catalytique, d'hydroconversion de résidus atmosphériques ou sous-vide. La composition et l'utilisation des catalyseurs d'hydro traitement sont particulièrement bien décrits dans l'article de B. S Clausen, H. T. Tops0e, et F.E. Massoth, issu de l'ouvrage Catalysis Science and Technology, volume 1 1 (1996), Springer- Verlag. Après sulfuration, plusieurs espèces de surface sont présentes sur le support, qui ne présentent pas toutes de bonnes performances pour les réactions souhaitées. Ces espèces sont particulièrement bien décrites dans la publication réalisée par Tops0e et al. parue dans le numéro 26 de Catalysis Review Science and Engineering de 1984, pages 395-420.
Le durcissement des normes de pollution automobile dans la communauté européenne (Journal Officiel de l'Union européenne, L76, 22 mars 2003, Directive 2003/70/CE, pages L76/10- L76/19) a contraint les raffineurs à réduire très fortement la teneur en soufre dans les carburants diesel et les essences (au maximum 10 parties par million poids (ppm) de soufre au 1er janvier 2009, contre 50 ppm au 1er janvier 2005). Par ailleurs, les raffineurs se trouvent contraints d'utiliser des charges de plus en plus réfractaires au procédés d'hydrotraitement d'une part parce que les bruts sont de plus en plus lourds et contiennent par conséquent de plus en plus d'impuretés, d'autre part du fait de l'augmentation des procédés de conversion dans les raffineries. En effet, ceux-ci génèrent des coupes plus difficiles à hydrotraiter que les coupes directement issues de la distillation atmosphérique. A titre d'exemple, on peut mentionner la coupe gazole issue du craquage catalytique, aussi nommée LCO (Light Cycle Oil) en référence à sa teneur élevée en composées aromatiques. Ces coupes sont co-traitées avec la coupe gazole issue de la distillation atmosphérique ; elles nécessitent des catalyseurs possédant des fonctions hydrodésulfurantes et hydrogénantes fortement améliorées par rapport aux catalyseurs traditionnels de façon à diminuer la teneur en aromatiques pour obtenir une densité et un indice de cétane en accord avec les spécifications. En outre, les procédés de conversion comme le craquage catalytique ou l'hydrocraquage utilisent des catalyseurs possédant une fonction acide, ce qui les rend particulièrement sensibles à la présence d'impuretés azotées, et particulièrement les composés azotées basiques. Il est donc nécessaire d'utiliser des catalyseurs de pré-traitement de ces charges de façon à enlever ces composés. Ces catalyseurs d'hydrotraitement requièrent également une fonction hydrogénante améliorée dans la mesure où la première étape d'hydrodéazotation est reconnue comme étant une étape d'hydrogénation du cycle aromatique adjacent à la liaison C-N.
Il apparaît donc intéressant de trouver des moyens de préparation des catalyseurs d'hydrotraitement , de manière à obtenir de nouveaux catalyseurs à performances améliorées.
L'ajout d'un composé organique sur les catalyseurs d'hydrotraitement pour améliorer leur activité est maintenant bien connue de l'homme du métier. De nombreux brevets protègent l'utilisation de différentes gammes de composés organiques, tels que les mono,-di-ou polyalcools éventuellement éthérifiés (W096/41848, WO01/76741, US4012340, US3954673, EP601722). Des catalyseurs modifiés avec des monoesters en C2-C14 sont décrits dans les demandes de brevet EP466568 et EPI 046424, cependant ces modifications ne permettent pas toujours d'accroître suffisamment les performances du catalyseur pour faire face aux spécifications concernant les teneurs en soufre des carburants qui ne cessent de devenir de plus en plus contraignantes pour les raffmeurs.
Pour remédier à cela le brevet WO2006/077326 de la société Total propose l'utilisation d'un catalyseur comprenant des métaux des groupes VIB et Vffl, un oxyde réfractaire comme support, et un composé organique comportant au moins 2 fonctions ester carboxylique de formule R1-0-CO-R2-CO-0-R1 ou R1-CO-0-R2-0-CO-R1 dans laquelle chaque RI représente indépendamment un groupe alkyle en Cl à Cl 8, alcényle C2 à Cl 8, aryle C6 à Cl 8, cycloalkyle en C3 à C8, alkylaryle ou arylalkyle en C7 à C20, ou les 2 groupes RI forment conjointement un groupe divalent en C2 à Cl 8, et R2 représente un groupe alkylène en Cl à Cl 8, arylène en C6 à Cl 8, cycloalkylène en C3 à C7, ou une combinaison de ceux-ci, la chaîne carbonée des groupes hydrocarbonés représentés par RI et R2 pouvant contenir ou porter un ou plusieurs hétéroatomes choisis parmi N,S et O, et chacun des groupes RI et R2 pouvant porter un ou plusieurs substituants de formule -C(=0)0-R1 ou -0-C(=0)-Rl où RI a la signification indiquée ci-dessus. Un mode préféré utilise le succinate de dialkyle C1-C4, et en particulier le succinate de diméthyle qui est exemplifié. Ces composés peuvent être introduits en présence d'un solvant (une liste importante de solvants est citée) ou d'un acide carboxylique. Parmi la trentaine d'acide nommément citée, l'acide acétique est présent mais n'est pas cité parmi la dizaine d'acides préférés. On notera dès maintenant que l'acide citrique est préféré. Le procédé de préparation du catalyseur tel que décrit dans le brevet W02006/077326 comprend des étapes de maturation et traitement thermique pouvant aller jusqu'à plusieurs jours, par exemple de 49 jours à 115 jours, ce qui limiterait très fortement la production de ces catalyseurs et nécessiterait par conséquent d'apporter des améliorations.
D'autres brevets dans l'art antérieur décrivent un gain d'activité lié à l'utilisation combinée d'un acide organique ou d'un alcool sur un catalyseur d'hydrotraitement. Ainsi, la demande de brevet publiée sous le n° JP1995-136523 de KK Japan Energy propose une solution consistant à :
- préparer selon un premier mode préféré de l'invention une solution contenant un support de catalyseur, un ou plusieurs métaux du groupe VI du tableau périodique des éléments, et du groupe VIII, un acide organique. Selon un second mode préféré de l'invention, cette solution comprend également un précurseur de phosphore.
- un traitement thermique réalisé entre 200 et 400°C
- une imprégnation du catalyseur obtenu précédemment par un acide organique ou un alcool dans un ratio de 0, 1 à 2 par mole de métaux.
Un des modes préférés de l'invention comprend ensuite un séchage à une température inférieure à 200°C, tandis qu'un second mode préféré comprend un traitement thermique final à une température supérieure ou égale à 400°C.
On a constaté que ces catalyseurs ne présentent pas une activité suffisante pour satisfaire les nouvelles normes environnementales face aux charges de plus en plus pauvres en hydrogène dont disposent les raffineurs.
De même, le brevet WO2005/035691 revendique un procédé d'activation qui permet schématiquement de diminuer la teneur en phase cristallisée de type C0M0O4 présente sur les catalyseurs régénérés comprenant des oxydes des métaux des groupes VIII et VTB, procédé comprenant la mise en contact du catalyseur régénéré avec un acide et un additif organique . A cette fin, l'emploi de la combinaison acide citrique (CA) et polyéthylène glycol (PEG) a été réalisé sur catalyseur régénéré dans de nombreux exemples.
La présente invention concerne un catalyseur et son procédé de préparation, le catalyseur étant utilisable pour l'hydrotraitement et permettant une amélioration des performances catalytiques (notamment de l'activité catalytique) par rapport aux catalyseurs de l'art antérieur. En effet, il a été mis en évidence que l'utilisation du couple succinate de dialkyle C1-C4 ,et en particulier de diméthyle, et acide citrique , en présence éventuellement d'acide acétique sur un précurseur catalytique séché, calciné ou régénéré conduit de façon surprenante à une activité catalytique nettement améliorée.
Plus précisément, l'invention concerne un catalyseur comprenant un support amorphe à base d'alumine, au moins un succinate de dialkyle C1-C4, de l'acide citrique, du phosphore et une fonction hydro-deshydrogénante comprenant au moins un élément du groupe VIII et au moins un élément du groupe VIB, catalyseur dont le spectre Raman comprend les bandes à 990 et/ou 974 cm-1 caractéristiques d'au moins un hétéropolyanion de Keggin, les bandes caractéristiques dudit succinate et les bandes caractéristiques de l'acide citrique. Dans un mode préféré, le catalyseur comprend également l'acide acétique .
L'invention concerne également le catalyseur sulfuré. Il est obtenu par sulfuration du catalyseur décrit dans la présente demande.
La fonction hydro-déshydrogénante comprend au moins un élément du groupe VIII (de préférence cobalt et/ nickel) et au moins un élément du groupe VIB (de préférence molybdène et/ou tungstène) . De préférence, la fonction hydro-déshydrogénante comprend du molybdène et du cobalt et/ou du nickel.
Le catalyseur obtenu possède un spectre Raman caractéristique regroupant :
1) des bandes caractéristiques du ou des hétéropolyanions de type Keggin ΡΧΥπ0 οχ" et/ou PY12O40 x" où Y est un métal du groupe VIB et X un métal du groupe VIII.
D'après Griboval, Blanchard, Payen, Fournier, Dubois dans Catalysis Today 45 (1998) 277 fig. 3 e), les bandes principales de la structure PCoMoniW sont sur catalyseur séché à 232, 366, 943, 974 cm"1 et d'après M. T. Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, ces bandes ne sont pas caractéristiques de la nature de l'atome X ou Y, mais bien de la structure de l'hétéropolyanion. La bande la plus intense caractéristique de ce type d' hétéropolyanion de Keggin lacunaire se situe à 974 cm"1.
D'après Griboval, Blanchard, Gengembre, Payen, Fournier, Dubois, Bernard, Journal of Catalysis 188 (1999) 102, fig. 1 a), les bandes principales de PMonC o*" sont à l'état massique de l' hétéropolyanion, par exemple avec du cobalt en contre ion à 251, 603, 902, 970, 990 cm" \ La bande la plus intense caractéristique de cet hétéropolyanion de Keggin se situe à 990 cm" \ M. T. Pope "Heteropoly and Isopoly oxometalates", Springer Verlag, p 8, nous enseigne également que ces bandes ne sont pas caractéristiques de la nature de l'atome X ou Y, mais bien de la structure de Γ hétéropolyanion de Keggin, complet, lacunaire ou substitué.
2) des bandes caractéristiques du (des) succinate(s) de dialkyle utilisé(s). Le spectre Raman du succinate de diméthyle constitue une empreinte univoque de cette molécule. Dans la zone spectrale 300-1800 cm'1, ce spectre se caractérise par la série de bandes suivantes (seules les bandes les plus intenses sont reportées, en cm"1) : 391, 853 (bande la plus intense), 924, 964, 1739 cm'1. La bande la plus intense caractéristique du succinate de diméthyle est à 853cm'1 .Le spectre du succinate de diéthyle comporte dans la zone spectrale considérée les bandes principales suivantes : 861 (bande la plus intense), 1101, 11 17 cm"1. De même pour le succinate de dibutyle : 843, 1123, 1303, 1439, 1463 cm"1 et pour le succinate de diisopropyle : 833, 876, 1149, 1 185, 1469 (bande la plus intense), 1733 cm"1.
3) des bandes caractéristiques de l'acide citrique dont les principales sont : 785, 947, 956, 908 cm'1. Les bandes les plus intenses caractéristiques de l'acide citrique sont à 785 et 956 cm'1.
Dans un mode préféré, le catalyseur comprend également l'acide acétique dont la raie Raman la plus intense caractéristique est à 896 cm'1. Les autres bandes caractéristiques de l'acide acétique sont : 448, 623, 896 cm"1. La bande la plus intense est à 896 cm"1.
La position exacte des bandes, leurs formes et leur intensités relatives peuvent varier dans une certaine mesure en fonction des conditions d'enregistrement du spectre, tout en restant caractéristiques de cette molécule. Les spectres Raman des composés organiques sont par ailleurs bien documentés soit dans les bases de données de spectre Raman (voir par exemple, Spectral Database for Organic Compounds, http://riodb01.ibase.aist.go.jp/sdbs/cgi- bin/direct_frame_top.cgi) soit par les fournisseurs du produit (voir par exemple, www.sigmaaldrich.com).
Les spectres Raman ont été obtenus avec un spectromètre de type Raman dispersif équipé d'un laser argon ionisé (514 nm). Le faisceau laser est focalisé sur l'échantillon à l'aide d'un microscope équipé d'un objectif x50 longue distance de travail. La puissance du laser au niveau de l'échantillon est de l'ordre de 1 mW. Le signal Raman émis par l'échantillon est collecté par le même objectif et est dispersé à l'aide d'un réseau 1800 tr/mn puis collecté par un détecteur CCD. La résolution spectrale obtenue est de l'ordre de 0,5 cm"1. La zone spectrale enregistrée est comprise entre 300 et 1800 cm"1. La durée d'acquisition a été fixée à 120 s pour chaque spectre Raman enregistré. Le succinate de dialkyle est avantageusement le succinate de diméthyle, le succinate de dibutyle, le succinate de diisopropyle.
De préférence, le succinate de dialkyle utilisé est le succinate de diméthyle, et le catalyseur possède dans son spectre les bandes Raman principales à 990 et/ou 974 cm"1 caractéristique(s) du (des) hétéropolyanion(s) de Keggin, et 853 cm'1 caractéristique du succinate de diméthyle et 785 et 956 cm"1 caractéristiques de l'acide citrique et éventuellement à 896 cm'1 caractéristique de l'acide acétique.
De préférence le catalyseur de l'invention comprend un support constitué d'alumine ou de silice-alumine.
Le catalyseur selon l'invention peut comprendre également du bore et/ou du fluor et/ou du silicium, et de préférence du bore et/ou du fluor .
Il est également ici décrit un procédé de préparation du catalyseur selon l'invention, qui comporte au moins une étape d'imprégnation d'un précurseur catalytique séché à une température inférieure à 180°C contenant au moins une fonction hydro-déshydrogénant et éventuellement du phosphore ainsi qu'un support amorphe, par une solution comprenant la combinaison acide citrique (avec éventuellement de l'acide acétique) et succinate de dialkyle C1-C4 en présence ou non d'un composé contenant du phosphore, suivie d'une étape de maturation dudit précurseur catalytique imprégné contenant du phosphore, puis une étape de séchage à une température inférieure à 200°C, sans étape de calcination (traitement thermique sous air) ultérieure ; le catalyseur obtenu est de préférence soumis à une étape de sulfuration.
Il est également décrit un procédé de préparation du catalyseur selon l'invention tel que décrit ci-dessus mais à partir d'un précurseur catalytique calciné, ledit précurseur catalytique ayant été préparé de la même façon que précédemment mais calciné après l'étape de séchage à une température inférieure à 180°C. De la même façon que précédemment, le catalyseur obtenu est de préférence soumis à une étape de sulfuration.
La calcination (traitement thermique sous atmosphère oxydante) est réalisée à au moins 350°C lors de la préparation d'un catalyseur frais (c'est-à-dire non encore utilisé). La température est inférieure à 600°C et le plus souvent inférieure à 550°C , par exemple de 350 à 550°C , et de préférence de 400-520°C, ou de façon préférée de 420-520°C ou de 450-520°C, des températures inférieures à 500°C sont souvent avantageuses. Il est également décrit un procédé de préparation du catalyseur selon l'invention tel que décrit ci-dessus, mais à partir d'un catalyseur usé (qui a été utilisé) et régénéré (combustion du carbone déposé sur le catalyseur qui a été utilisé). La régénération est réalisée en général à des températures comprises entre 350 et 550°C, et le plus souvent entre 400 et 520°C , ou entre 420 et 520°C , ou encore entre 450 et 520°C, des températures inférieures à 500 ou 480°C étant souvent avantageuses.
D'autres modes de réalisation peuvent être envisagés, qui restent dans l'invention, par exemple après l'étape de séchage, le précurseur catalytique subit un traitement thermique au-dessus de la température de séchage (qui est d'au plus 180°C) et en-dessous de la température de calcination (qui est d'au moins 350°C).
Ces procédés de préparation simples et rapides, avec des étapes unitaires ne dépassant pas quelques heures, permettent ainsi une meilleure productivité à l'échelle industrielle que les procédés présentés dans l'art antérieur.
Ainsi, l'invention décrit plus précisément un procédé de préparation d'un catalyseur comprenant les étapes successives suivantes :
ab) préparation d'un précurseur catalytique contenant les éléments de la fonction hydro- déshydrogénante, éventuellement du phosphore, ledit précurseur ayant subi au moins un traitement thermique
c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique et au moins un composé de phosphore, si le phosphore n'a pas été introduit par imprégnation en totalité à l'étape a) et éventuellement l'acide acétique,
d) une étape de maturation,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure.
Le traitement thermique de l'étape ab) comporte au moins une étape de séchage à une température d'au plus 180°C. Il peut en outre comporter une étape de calcination. Il peut également être inclus dans une étape de régénération.
Dans un mode de préparation avec un catalyseur séché et éventuellement calciné, le procédé selon l'invention comporte les étapes successives suivantes:
a) au moins une étape d'imprégnation d'un support amorphe à base d'alumine par au moins une solution contenant les éléments de la fonction hydro-déshydrogénante, et éventuellement du phosphore; on appellera le produit obtenu "précurseur catalytique" b) séchage à une température inférieure à 180°C éventuellement suivi d'une calcination à une température d'au moins 350°C, et de préférence comprise entre 420 et 520°C; on appellera le produit "précurseur catalytique séché ou calciné"
c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique , au moins un composé de phosphore, si le phosphore n'a pas été introduit en totalité à l'étape a) et éventuellement l'acide acétique, d) une étape de maturation,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure.
L'invention décrit également un procédé de préparation d'un catalyseur ,à partir d'un précurseur catalytique qui est un catalyseur usé comprenant les étapes successives suivantes :
a'b') régénération du catalyseur usé comprenant une fonction hydro-déshydrogénante et éventuellement du phosphore,
c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique et éventuellement (et de préférence) au moins un composé de phosphore si le phosphore n'a pas été introduit en totalité dans le catalyseur de l'étape a'b') , et éventuellement l'acide acétique
d) une étape de maturation,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure.
De préférence, le produit obtenu à l'issue de l'étape e) subit une étape f) de sulfuration. L'invention concerne également le catalyseur sulfuré.
Ainsi que cela sera décrit ultérieurement, le procédé selon l'invention est réalisé de préférence avec les modes suivants pris seuls ou en combinaison : le support est constitué d'alumine ou de silice alumine ; la totalité de la fonction hydrogénante est introduite lors de l'étape a) ; la totalité du phosphore est introduite lors de l'étape a); le succinate de dialkyle est le succinate de diméthyle ; l'étape c) est réalisée en présence d'eau et/ou d'éthanol; l'étape d) est réalisée à une température entre 17 et 60°C ou 50°C ; l'étape e) est réalisée à une température comprise entre 80 et l 80°C.
Dans un mode de réalisation, l'étape b) de séchage est réalisée à une température inférieure à 180°C sans traitement thermique ou calcination ultérieure.
Par exemple, le procédé selon l'invention comprend les étapes successives suivantes : a) au moins une étape d'imprégnation à sec dudit support par une solution contenant la totalité des éléments de la fonction hydro-déshydrogénante, et la totalité du phosphore,
b) séchage à une température comprise entre 75 et 130°C sans traitement thermique ultérieur, c) au moins une étape d'imprégnation à sec par une solution d'imprégnation comprenant le succinate de diméthyle et l'acide citrique, et éventuellement l'acide acétique,
d) une étape de maturation à 17-60°C,
e) une étape de séchage , de préférence sous azote, à une température comprise entre 80 et 160°C, sans étape de traitement thermique ultérieur .
Le précurseur catalytique contenant la fonction hydro-déshydrogénante et un support amorphe à base d'alumine ainsi que son mode de préparation sont décrits ci dessous.
Ledit précurseur catalytique obtenu à l'issue de l'étape a) du procédé selon l'invention peut être préparé pour une grande part par toutes les méthodes bien connues de l'homme du métier.
Ledit précurseur catalytique contient une fonction hydro-déshydrogénante. Avantageusement, il contient du phosphore et/ou du bore et/ou du fluor en tant que dopant ainsi que le support amorphe.
Le support amorphe dudit précurseur catalytique est à base d'alumine. Il contient généralement plus de 25 %, voire plus de 35 % et de préférence plus de 50 % poids d'alumine .De façon préférée, il contient uniquement de l'alumine ou de la silice-alumine avec éventuellement le(s) métal (métaux) et/ou le(s) dopant(s) qui ont été introduits en-dehors des imprégnations (introduits par ex lors de la préparation -malaxage, peptisation... du support ou de sa mise en forme).
Le support est obtenu après mise en forme (extrusion de préférence) . Il est soumis à une calcination, en général entre 300-600°C.
De préférence, le support est constitué d'alumine . De préférence, l'alumine est l'alumine gamma et de préférence ledit support est constitué d'alumine gamma.
Dans un autre cas préféré, c'est une silice-alumine contenant plus de 25 %, voire plus de 35 % et de préférence au moins (ou plus de) 50% poids d'alumine. La teneur en silice dans le support est d'au plus 50 % poids, le plus souvent inférieure ou égale à 45 % poids, de préférence inférieure ou égale à 40 % poids. De préférence le support est constitué de silice-alumine. Les sources de silicium sont bien connues de l'homme du métier. On peut citer à titre d'exemple l'acide silicique, la silice sous forme de poudre ou sous forme colloïdale (sol de silice), le tétraéthylorthosilicate Si(OEt)4.
On comprend par "support amorphe" un support qui ne contient pas de phases cristallines en- dehors de celles qui pourraient exister dans l'alumine ou la silice-alumine.
La fonction hydro-deshydrogénante dudit précurseur catalytique est assurée par au moins un élément du groupe VIB et par au moins un élément du groupe VIII.
La teneur totale en éléments hydro-déshydrogénants est avantageusement supérieure à 6 % poids d'oxyde par rapport au poids total du catalyseur. Les éléments du groupe VIB préférés sont le molybdène et le tungstène, et en particulier le molybdène. Les éléments du groupe VÏÏI préférés sont des éléments non nobles et en particulier le cobalt et le nickel. Avantageusement, la fonction hydro-déshydrogénante comprend (et de préférence est constituée de) du molybdène, du nickel et/ou du cobalt.
Avantageusement, la fonction hydrogénante est choisie dans le groupe formé par les combinaisons des éléments cobalt-molybdène, nickel-molybdène, ou nickel-cobalt-molybdène, ou nickel-molybdène-tungstène.
Dans le cas où une activité importante en hydrodésuliuration, ou en hydrodéazotation et en hydrogénation des aromatiques est souhaitée, la fonction hydro-deshydrogénante est avantageusement assurée par l'association de nickel et de molybdène ; une association de nickel et de tungstène en présence de molybdène peut également être avantageuse. Dans le cas des charges de type distillais sous vide ou plus lourdes, des combinaisons de type cobalt- nickel-molybdène peuvent être avantageusement utilisées.
Les précurseurs de molybdène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de molybdène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide phosphomolybdique (H3PM012O40) et leurs sels, et éventuellement l'acide silicomolybdique (H4SIM012O40) et les sels. Les sources de molybdène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, Anderson, Strandberg, par exemple. On utilise de préférence le trioxyde de molybdène et les hétéropolycomposés (hétéropolyanions) de type Strandberg, Keggin, Keggin lacunaire ou Keggin substitué. Les précurseurs de tungstène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de tungstène, on peut utiliser les oxydes et hydroxydes, les acides tungstiques et leurs sels en particulier les sels d'ammonium tels que le tungstate d'ammonium, le métatungstate d'ammonium, l'acide phosphotungstique et leurs sels, et éventuellement l'acide silicotungstique (H4S1W12O40) et les sels. Les sources de tungstène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, par exemple. On utilise de préférence les oxydes et les sels d'ammonium tel que le métatungstate d'ammonium ou les hétéropolyanions de type Keggin, Keggin lacunaire ou Keggin susbtitué.
La quantité de précurseur(s) d' (des) élément(s) du groupe VIB est avantageusement comprise entre 5 et 40 % poids d'oxydes du groupe VEB par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b) , de préférence entre 8 et 35 % poids et de manière très préférée entre 10 et 30 % poids.
Les précurseurs d' (des) élément(s) du groupe VIII qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates , par exemple l'hydroxycarbonate de nickel, le carbonate de cobalt ou l'hydroxyde de cobalt sont utilisés de manière préférée.
La quantité de précurseur(s) d' (des) élément(s) du groupe VIII est avantageusement comprise entre 1 et 10 % poids d'oxydes du groupe VIII par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b) , de préférence entre 1,5 et 9 %poids et de manière très préférée, entre 2 et 8 % poids.
La fonction hydro-deshydrogénante dudit précurseur catalytique peut être introduite dans le catalyseur à divers niveaux de la préparation et de diverses manières. Ladite fonction hydro- deshydrogénante est toujours introduite, au moins en partie et de préférence en totalité, par imprégnation du support mis en forme. Elle peut aussi être introduite en partie lors de la mise en forme dudit support amorphe.
Dans le cas où la fonction hydro-deshydrogénante est introduite en partie lors de la mise en forme dudit support amorphe, elle peut être introduite en partie (par exemple au plus 10 % poids d'élément(s) du groupe VIB, par exemple introduit par malaxage) seulement au moment du malaxage avec un gel d'alumine choisi comme matrice, le reste de l'(des ) élément(s) hydrogénant(s) étant alors introduit ultérieurement. De manière préférée, lorsque la fonction hydro-deshydrogénante est introduite pour partie au moment du malaxage, la proportion d'élément(s) du groupe VIB introduite au cours de cette étape est inférieure à 5 % poids de la quantité totale d'élément(s) du groupe VTB introduite sur le catalyseur final. De manière préférée, au moins un élément (ou tous) du groupe VTB est introduit en même temps qu'au moins un élément (ou tous) du groupe VIII, quel que soit le mode d'introduction. Ces méthodes et quantités pour l'introduction des éléments sont employées notamment dans le cas où la fonction hydro-déshydrogénante est constituée par CoMo.
Dans le cas où la fonction hydro-déshydrogénante est introduite au moins en partie et de préférence en totalité, après la mise en forme dudit support amorphe, l'introduction de ladite fonction hydro-deshydrogénante sur le support amorphe peut être avantageusement effectuée par une ou plusieurs imprégnations en excès de solution sur le support mis en forme et calciné, ou de préférence par une ou plusieurs imprégnations à sec et, de manière préférée, par une imprégnation à sec dudit support mis en forme et calciné, à l'aide de solutions contenant les sels précurseurs des métaux. De manière très préférée, la fonction hydro-déshydrogénante est introduite en totalité après la mise en forme dudit support amorphe, par une imprégnation à sec dudit support à l'aide d'une solution d'imprégnation contenant les sels précurseurs des métaux. L'introduction de ladite fonction hydro-deshydrogénante peut également être avantageusement effectuée par une ou plusieurs imprégnations du support mis en forme et calciné, par une solution du (ou des) précurseurs) de la phase active. Dans le cas où les éléments sont introduits en plusieurs imprégnations des sels précurseurs correspondants, une étape de séchage intermédiaire du catalyseur est en général effectuée, à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C et de manière très préférée entre 75 et 130°C.
Du phosphore est également introduit dans le catalyseur. Un autre dopant du catalyseur peut également être introduit qui est de préférence choisi parmi le bore, le fluor pris seul ou en mélange. Le dopant est un élément ajouté, qui en lui-même ne présente aucun caractère catalytique mais qui accroît l'activité catalytique du (des) métal (métaux).
La source de bore peut être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool ou encore dans un mélange eau/ éthanolamine.
La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme phosphates d'ammonium conviennent également. Le phosphore peut également être introduit en même temps que le(s) élément(s) du groupe VTB sous la forme d'hétéropolyanions de Keggin, Keggin lacunaire, Keggin substitué ou de type Strandberg. Les sources de fluor qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, les anions fluorures peuvent être introduits sous forme d'acide fluorhydrique ou de ses sels. Ces sels sont formés avec des métaux alcalins, l'ammonium ou un composé organique. Dans ce dernier cas, le sel est avantageusement formé dans le mélange réactionnel par réaction entre le composé organique et l'acide fluorhydrique. Le fluor peut être introduit par exemple par imprégnation d'une solution aqueuse d'acide fluorhydrique, ou de fluorure d'ammonium ou encore de bifluorure d'ammonium.
Le dopant est avantageusement introduit dans le précurseur catalytique dans une quantité d'oxyde dudit dopant par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b) :
- comprise entre 0 et 40 % poids, de préférence de entre 0 et 30 % poids et de manière encore plus préférée entre 0 et 20 % poids, de préférence entre 0 et 15 % poids et de manière encore plus préférée entre 0 et 10 % poids lorsque ledit dopant est le bore ; lorsque le bore est présent, de préférence la quantité minimum est de 0, 1% ou 0,5% poids.
- comprise entre 0, 1 (ou 0.5%) à 20 % poids, de préférence entre 0, 1 (ou 0.5%) et 15 % poids et de manière encore plus préférée entre 0, 1 (ou 0.5%) et 10 % poids, lorsque ledit dopant est le phosphore. Cette quantité représente la quantité de phosphore introduite par imprégnation. Ainsi pour la préparation du catalyseur frais, elle représente la quantité qui est imprégnée lors de l'étape a) et lors de l'étape c) si celle-ci-ci n'a pas été imprégnée ou n'a pas été imprégnée en totalité à l'étape a). En ce qui concerne le catalyseur régénéré , elle représente la quantité de phosphore présente sur le catalyseur usé après régénération plus celle imprégnée lors de l'étape c). Le phosphore présent sur le catalyseur régénéré provient de l'imprégnation qui a eu lieu lors de la préparation de ce catalyseur à l'état frais.
- comprise entre 0 et 20 % poids, de préférence entre 0 et 15 % poids et de manière encore plus préférée entre 0 et 10 % poids, lorsque ledit dopant est le fluor ; lorsque le fluor est présent, de préférence la quantité minimum est de 0, 1% ou 0,5% poids.
Le phosphore est toujours présent. Le phosphore est généralement introduit lors de l'imprégnation du support avec l'un au moins des éléments de la fonction hydro- déshydrogénante (étape a) du procédé) et/ou est introduit lors de l'imprégnation avec le succinate et le(s)acide(s) (étape c) du procédé). De préférence il est introduit en totalité dans l'étape a) c'est-à-dire sur le précurseur catalytique. Avantageusement, le phosphore est introduit, en totalité ou en partie, en mélange avec le(s) précurseurs) de la fonction hydro-déshydrogénante, sur le support amorphe mis en forme, de préférence des extrudés l'alumine ou de silice-alumine, par une imprégnation à sec dudit support amorphe à l'aide d'une solution contenant les sels précurseurs des métaux et le(s) précurseur(s) du (des) dopant(s).
De façon préférée, il en est de même pour les autres dopants. Le dopant peut également être introduit dès la synthèse du support. Il peut également être introduit juste avant ou juste après la peptisation de la matrice choisie, telle que par exemple et de préférence l'oxyhydroxyde d'aluminium (boehmite) précurseur de l'alumine. Par contre , du phosphore devra être introduit sur le support mis en forme, de préférence par imprégnation, et avantageusement par imprégnation à sec.
De manière encore plus préférée, le "précurseur catalytique" dans l'étape a) du procédé selon l'invention est préparé avec une solution d'imprégnation contenant au moins un précurseur de chaque élément de la fonction hydro-déshydrogénante, en présence d'un précurseur de phosphore, le support amorphe étant constitué d'alumine ou de silice alumine.
L'introduction de ladite fonction hydro-deshydrogénante et éventuellement d'un dopant dans ou sur le support calciné mis en forme est ensuite avantageusement suivie d'une étape b) de séchage au cours de laquelle le solvant des sels métalliques précurseurs du (ou des) oxydes de métal(aux) (solvant qui est généralement de l'eau) est éliminé, à une température comprise entre 50 et 180°C, de manière préférée entre 60 et 150°C ou encore entre 65 et 145°C et de manière très préférée entre 70 et 140°C ou encore entre 75 et 130°C.
Dans un procédé selon l'invention, l'étape de séchage du "précurseur catalytique séché" ainsi obtenu n'est jamais suivie d'une étape de traitement thermique sous air à une température supérieure à 200°C. Avantageusement, on opère dans ces gammes de températures à une température d'au plus 150°C.
Ainsi, généralement dans l'étape a) du procédé selon l'invention, ledit "précurseur catalytique" est obtenu par imprégnation à sec d'une solution comprenant un (ou des) précurseur(s) de la fonction hydro-déshydrogénante, et du phosphore sur un support amorphe à base d'alumine calciné mis en forme, suivie d'un séchage à une température inférieure à 180°C.
Il est ainsi obtenu est un "précurseur catalytique séché" à l'issue de l'étape b). Dans un autre procédé de préparation, après l'étape a) , le précurseur catalytique est séché puis calciné à une température d'au moins 350°C. La température de calcination est inférieure à 600°C et le plus souvent inférieure à 550°C, par exemple de 350 à 550°C, et de préférence entre 400 et 520°C, ou de façon préférée entre 420 et 520°C ou entre 450 et 520°C, des températures inférieures à 500°C sont souvent avantageuses.
Dans un autre procédé de préparation, le catalyseur usé (contenant la fonction hydro- déshydrogénante et du phosphore) est régénéré (étape appelée a'b'). Ce procédé sera détaillé plus loin. Le catalyseur régénéré obtenu est soumis aux étapes ci-après décrites.
Conformément à l'étape c) du procédé selon l'invention, ledit précurseur catalytique séché ou calciné ou régénéré est imprégné par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4 (et en particulier du succinate de diméthyle) et de l'acide citrique et éventuellement de l'acide acétique.
Lesdits composés sont avantageusement introduits dans la solution d'imprégnation de l'étape c) du procédé selon l'invention dans une quantité correspondant (par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b):
- à un rapport molaire de succinate de dialkyle (par ex diméthyle) par élément(s) du groupe VTB imprégné du précurseur catalytique compris entre 0, 15 à 2 mole/mole, de préférence compris entre 0,3 à 1,8 mole/mole, de manière préférée compris entre 0,5 et 1,5 mole/mole et de manière très préférée, compris entre 0,8 et 1,2 mole/mole, et
- à un rapport molaire d'acide citrique par élément(s) du groupe VTB imprégné du précurseur catalytique compris entre 0,05 à 5 mole/mole, de préférence compris entre 0, 1 ou 0,5 à 4 mole/mole, de manière préférée compris entre 1,3 et 3 mole/mole et de manière très préférée, compris entre 1,5 et 2,5 mole/mole,
- et , lorsque l'acide acétique est présent, à un rapport molaire d'acide acétique par élément(s) du groupe VTB imprégné du précurseur catalytique compris entre 0, 1 à 6 mole/mole, de préférence compris entre 0,5 à 5 mole/mole, de manière préférée compris entre 1,0 et 4 mole/mole et de manière très préférée, compris entre 1,5 et 2,5 mole/mole,
- le rapport molaire d'acide citrique + acide acétique par élément(s) du groupe VTB imprégné du précurseur catalytique compris entre 0, 15 à 6 mole/mole.
Conformément à l'étape c) du procédé selon l'invention, la combinaison succinate de dialkyle et acide citrique (avec éventuellement l'acide acétique) est introduite sur le précurseur catalytique (séché, calciné , régénéré) par au moins une étape d'imprégnation et de préférence par une seule étape d'imprégnation d'une solution d'imprégnation sur ledit précurseur catalytique .
Ladite combinaison peut avantageusement être déposée en une ou plusieurs étapes soit par imprégnation en slurry, soit par imprégnation en excès, soit par imprégnation à sec, soit par tout autre moyen connus de l'homme du métier.
Selon un mode de réalisation préféré de l'étape c) du procédé de préparation selon l'invention, l'étape c) est une seule étape d'imprégnation à sec.
Conformément à l'étape c) du procédé selon l'invention, la solution d'imprégnation de l'étape c) comprend au moins la combinaison du succinate de dialkyle C1-C4 (en particulier du diméthyle) et de l'acide citrique. De préférence elle contient aussi de l'acide acétique.
La solution d'imprégnation utilisée à l'étape c) du procédé selon l'invention peut être complétée par tout solvant non protique connu de l'homme du métier comprenant notamment le toluène, le xylène.
La solution d'imprégnation utilisée à l'étape c) du procédé selon l'invention peut être complétée par tout solvant polaire connu de l'homme du métier. Ledit solvant polaire utilisé est avantageusement choisi dans le groupe formé par le méthanol, l'éthanol, l'eau, le phénol, le cyclohexanol, pris seuls ou en mélange. Ledit solvant polaire utilisé dans l'étape c) du procédé selon l'invention peut également être avantageusement choisi dans le groupe formé par le carbonate de propylène, le DMSO (diméthylsulfoxyde) ou le sulfolane, pris seul ou en mélange. De manière préférée, on utilise un solvant protique polaire. Une liste des solvants polaires usuels ainsi que leur constante diélectrique peut être trouvée dans le livre "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474).
De préférence, l'étape c) est réalisée en présence d'eau et/ou d'éthanol. De préférence, elle contient uniquement du succinate de dialkyle et de l'acide citrique et éventuellement l'acide acétique, ainsi que de l'eau et/ou de l'éthanol.
Le succinate de dialkyle utilisé est de préférence compris dans le groupe composé du succinate de diméthyle, du succinate de diéthyle, du succinate de dipropyle , du succinate de diisopropyle et du succinate de dibutyle. De manière préférée, le succinate de dialkyle C1-C4 utilisé est le succinate de diméthyle ou le succinate de diéthyle. De manière très préférée, le succinate de dialkyle C1-C4 utilisé est le succinate de diméthyle. Au moins un succinate de dialkyle C1-C4 est utilisé, de préférence un seul, et de préférence le succinate de diméthyle.
Conformément à l'étape d^ du procédé de préparation selon l'invention, le précurseur catalytique ou le catalyseur régénéré imprégné issu de l'étape c) est soumis à d'une étape de maturation. Elle est avantageusement réalisée à pression atmosphérique. La température est généralement comprise entre 17°C et 60°C ou 17°C et 50°C . Généralement la durée de maturation est comprise entre dix minutes et quarante huit heures et de préférence comprise entre trente minutes et cinq heures, est suffisante. Des durées plus longues ne sont pas exclues. Un moyen simple d'ajuster la durée de maturation est de caractériser la formation des hétéropolyanions de Keggin par spectroscopie Raman dans le précurseur catalytique séché imprégné issu de l'étape c) du procédé selon l'invention. De manière très préférée, pour augmenter la productivité sans modifier la quantité d'hétéropolyanions reformés, la durée de la maturation est comprise entre trente minutes et quatre heures. De manière encore plus préférée, la durée de la maturation est comprise entre trente minutes et trois heures.
Conformément à l'étape e) du procédé de préparation selon l'invention, le précurseur catalytique ou le catalyseur issu de l'étape d) est soumis à une étape de séchage .
Le but de cette étape est d'obtenir un catalyseur transportable, stockable, et manipulable, en particulier pour le chargement de l'unité d'hydrotraitement. Il s'agit avantageusement, selon le mode de réalisation de l'invention choisi, d'enlever tout ou partie de l'éventuel solvant ayant permis l'introduction de la combinaison du succinate de dialkyle C1-C4 (en particulier de diméthyle) et de l'acide citrique. Dans tous les cas, et en particulier dans le cas où la combinaison succinate de dialkyle C1-C4 (en particulier de diméthyle) et acide citrique est utilisée seule, il s'agit de donner un aspect sec au catalyseur, afin d'éviter que les extrudés ne se collent les uns aux autres durant les étapes de transport, de stockage, de manipulation ou de chargement.
L'étape e) de séchage du procédé selon l'invention est avantageusement effectuée par toute technique connue de l'homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée cette étape est réalisée à pression atmosphérique.
Cette étape e) est avantageusement effectuée à une température inférieure à 200°C, généralement comprise entre 50°C et inférieure à 200 °C, de préférence comprise entre 60 et 190°C et de manière très préférée, comprise entre 80 et 180°C. Avantageusement, on opère dans ces gammes de températures et sans traitement thermique ultérieur à une température supérieure à 200°C.
Elle est avantageusement effectuée en four tunnel , en lit fluidisé, en lit fluidisé vibré, en lit fluidisé à échangeurs, en lit traversé ou toute technologie permettant le séchage et/ou calcination de préférence en lit fluidisé .De manière préférée, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée le séchage est réalisé sous azote.
De préférence, cette étape a une durée comprise entre 30 minutes et 4 heures et de préférence entre 45 minutes et 3 heures.
A l'issue de l'étape e) du procédé selon l'invention, on obtient un catalyseur séché, qui n'est soumis à aucune étape de calcination ultérieure ou de traitement thermique ultérieur à une température supérieure à 200°C.
Le catalyseur obtenu à l'issue de l'étape d) ou de l'étape e) présente un spectre Raman comprenant les bandes les plus intenses à 990 et 974 cm"1 (hétéropolyanions de type Keggin), les bandes correspondant au succinate (pour le succinate de diméthyle la bande la plus intense est à 853 cm"1), et les bandes caractéristiques de l'acide citrique, dont les plus intenses à 785 et 956 cm"1 et éventuellement les bandes de l'acide acétique dont la plus intense est 896 cm"1
Comme décrit ci-dessus, dans un autre mode, le précurseur catalytique sur lequel le succinate et l'acide (ou les acides) sont imprégnés sur un catalyseur usé régénéré dont la fonction hydrogénante est assurée par au moins un élément du groupe VTB et par au moins un élément du groupe VIII. Leurs teneurs et caractéristiques correspondent à celle citées précédemment. Les supports sont également les mêmes. Avantageusement, ce catalyseur contient du phosphore , qui a été de préférence introduit par imprégnation lors de la préparation de ce catalyseur à l'état frais.
Ledit catalyseur régénéré a subi une étape de traitement thermique appelée "régénération" en présence d'oxygène, pur ou dilué. Cette étape à pour but d'éliminer au moins une partie du coke présent sur le catalyseur par combustion. Il n'y a pas de traitement chimique lors de cette étape.
Le traitement de régénération peut être effectué à un température comprise entre 350 et 550°C, et généralement entre 450 et 520°C, ou entre 420 et 520°C , ou entre 400 et 520°C. Elle est réalisée de préférence entre 420 et 500°C, ou entre 450 et 520°C selon la nature du carbone à brûler. L'homme du métier optimise la température nécessaire au brûlage du coke (ou de ses précurseurs) tout en évitant ou minimisant le frittage du catalyseur.
Durant cette étape un contrôle de la température est nécessaire de manière à permettre la combustion du coke mais à ne pas dépasser 550°C sur le catalyseur, y compris localement. Le dépassement de la température de 550°C pourrait par exemple avoir comme conséquence d'endommager sa porosité. Ce contrôle est connu de l'homme du métier. La température au sein du lit durant cette phase de régénération peut être contrôlée par toute technique connue de l'Homme du métier, comme par exemple la disposition de thermocouples dans la masse du catalyseur.
Lorsque cette étape est effectuée avec un mélange comprenant de l'oxygène, le diluant peut être choisi parmi l'azote ou tout autre gaz inerte. La teneur en oxygène peut être fixe tout au long du traitement ou varier au cours du processus de régénération. Par exemple, la température pourra évoluer au cours du traitement selon plusieurs phases, les températures pourront varier de l'ambiante à la température finale de combustion du coke, toujours inférieure à 550°C. La durée de cette étape de régénération dépendra de la quantité de catalyseur à traiter et de la nature et de la quantité du coke présent. Cette durée peut varier en pratique de 0, 1 heure à quelques jours. Le plus souvent, elle est comprise entre 1 heure et 20 heures.
Le procédé de préparation du catalyseur selon ce dernier mode comporte ensuite les étapes suivantes qui sont identiques aux autres modes de réalisation :
c) au moins une étape d'imprégnation à sec par une solution d'imprégnation comprenant le succinate de dialkyle C1-C4 (de préférence diméthyle) et l'acide citrique, et éventuellement l'acide acétique,
d) une étape de maturation , généralement à une température entre 17 et 60°C,
e) une étape de séchage, de préférence sous azote, à une température inférieure à 200°C, généralement d'au moins 80 °C, de préférence comprise entre 80-180°C, sans étape de calcination ultérieure.
Avant son utilisation, il est avantageux de transformer le catalyseur séché (après l'étape e) en un catalyseur sulfuré afin de former son espèce active. Cette phase d'activation ou de sulfuration s'effectue par les méthodes bien connues de l'homme de l'art, et avantageusement sous une atmosphère sulfo-réductrice en présence d'hydrogène et d'hydrogène sulfuré. A l'issue de l'étape e) du procédé selon l'invention (quel que soit l'état séché, calciné, régénéré... du précurseur catalytique), ledit catalyseur séché obtenu est donc avantageusement soumis à une étape f) de sulfuration, sans étape de calcination intermédiaire. Il est obtenu un catalyseur sulfuré, selon l'invention.
Ledit catalyseur séché est avantageusement sulfuré de manière ex situ ou in situ. Les agents sulfurants sont le gaz H2S ou tout autre composé contenant du soufre utilisé pour l'activation des charges hydrocarbures en vue de sulfurer le catalyseur. Lesdits composés contenant du soufre sont avantageusement choisis parmi les alkyldisulfures tels que par exemple le disulfure de diméthyle (DMDS), les alkylsulfures, tel que par exemple le sulfure de diméthyle, le n- butylmercaptan, les composés polysulfures de type tertiononylpolysulfure tels que par exemple le TPS-37 ou le TPS-54 commercialisés par la société ARKEMA, ou tout autre composé connue de l'homme du métier permettant d'obtenir une bonne sulfuration du catalyseur. De manière préféré le catalyseur est sulfuré in situ en présence d'un agent sulfurant et d'une charge hydrocarbonée. De manière très préférée le catalyseur est sulfurée in situ en présence d'une charge hydrocarbonée additivée de dissulfure de diméthyle.
Enfin, un autre objet de l'invention est un procédé d'hydro traitement de charges hydrocarbonées utilisant le catalyseur selon l'invention. De tels procédés sont par exemple les procédés d'hydrodésulfuration, d'hydrodéazotation, d'hydrodémétallation, d'hydrogénation des aromatiques et d 'hydroconversion .
Les catalyseurs séchés obtenus par le procédé selon l'invention et ayant de préférence préalablement subi une étape f) de sulfuration sont avantageusement utilisés pour les réactions d'hydrotraitement de charges hydrocarbonées telles que les coupes pétrolières, les coupes issues du charbon ou les hydrocarbures produits à partir du gaz naturel et plus particulièrement pour les réactions d'hydrogénation, d'hydrodéazotation, d'hydrodésaromatisation, d'hydrodésulfuration, d'hydrodémétallation ou d'hydroconversion de charges hydrocarbonées.
Dans ces utilisations, les catalyseurs obtenus par le procédé selon l'invention et ayant de préférence préalablement subi une étape f) de sulfuration présentent une activité améliorée par rapport aux catalyseurs de l'art antérieur. Ces catalyseurs peuvent aussi avantageusement être utilisés lors du pré-traitement des charges de craquage catalytique ou l'hydrodésulfuration des résidus ou l'hydrodésulfuration poussée des gazoles (ULSD Ultra Low Sulfur Diesel).
Les charges employées dans les procédés d'hydrotraitement sont par exemple des essences, des gas-oils, des gas-oils sous vide, des résidus atmosphériques, des résidus sous vide, des distillais atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques, prises seules ou en mélanges. Les charges qui sont traitées, et en particulier celles citées ci-dessus, contiennent généralement des hétéroatomes tels que le soufre, l'oxygène et l'azote et, pour les charges lourdes, elles contiennent le plus souvent également des métaux.
Les conditions opératoires utilisées dans les procédés mettant en œuvre les réactions d'hydrotraitement de charges hydrocarbonées décrites ci-dessus sont généralement les suivantes : le température est avantageusement comprise entre 180 et 450 °C, et de préférence entre 250 et 440 °C, la pression est avantageusement comprise entre 0,5 et 30 MPa, et de préférence entre 1 et 18 MPa, la vitesse volumique horaire est avantageusement comprise entre 0, 1 et 20 h"1 et de préférence entre 0,2 et 5 h"1, et le rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide est avantageusement compris entre 50 L/L à 2000 L/L.
Les exemples qui suivent démontrent le gain d'activité important sur les catalyseurs préparés selon le procédé selon l'invention par rapport aux catalyseurs de l'art antérieur et précisent l'invention sans toutefois en limiter la portée.
Exemple 1 : préparation des catalyseur régénérés comparatifs B 1 et B2
Une matrice composée de boehmite tabulaire ultrafine ou gel d'alumine, commercialisée par la société Condéa Chemie GmbH a été utilisée. Ce gel a été mélangé à une solution aqueuse contenant de l'acide nitrique à 66 % (7 % en poids d'acide par gramme de gel sec), puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1,6 mm. Les extrudés sont ensuite séchés pendant une nuit à 120 °C, puis calcinés à 600 °C pendant 2 heures sous air humide contenant 50 g d'eau par kg d'air sec. On obtient ainsi des extrudés de support uniquement composé d'alumine gamma cubique de faible cristallinité.
Sur le support d'alumine décrit précédemment et qui se présente sous la forme extrudée on ajoute du cobalt, du molybdène et du phosphore. La solution d'imprégnation est préparée par dissolution à chaud de l'oxyde de molybdène (24,34 g) et d'hydroxyde de cobalt (5,34 g) dans la solution d'acide phosphorique (7,47 g) en solution aqueuse. Après imprégnation à sec, les extrudés sont laissés à maturer à température ambiante (20°C) en atmosphère saturée en eau pendant 12 h, puis ils sont séchés une nuit à 90°C et calcinés à 450°C pendant 2 heures. On obtient le catalyseur calciné A. La composition finale du catalyseur A exprimée sous forme d'oxydes est alors la suivante : M0O3 = 22,5 ± 0,2 (% en poids), CoO = 4, 1 ± 0, 1 (% en poids) et P205 = 4,0 ± 0, 1 (% en poids).
Le catalyseur calciné A est chargé dans une unité lit traversé et sulfuré par un gazole de distillation directe additivé de 2% poids de disulfure de diméthyle. Un test d'HDS d'un mélange de gazole de distillation directe et d'un gazole en provenance du craquage catalytique est alors conduit pendant 300 h. Après test, le catalyseur usé est déchargé, recueilli et lavé au toluène à reflux puis séparé en deux lots. Le premier lot est régénéré en four de combustion contrôlée en introduisant pour chaque palier de température des quantités croissantes d'oxygène, e qui permet de limiter l'exothermie lié à la combustion du coke. Le palier final de régénération est de 450°C. Le catalyseur ainsi régénéré est analysé par DRX. On note l'absence de raie à 26° caractéristique de la présence de C0M0O4 cristallisé. Ce catalyseur sera par la suite noté Bl . Le second lot de catalyseur usé lavé est régénéré en four à moufle à 450°C sans contrôle de l'exothermie de la combustion du coke. L'analyse DRX réalisée après régénération montre la présence d'une raie fine à 26°, caractéristique de la présence de C0M0O4 cristallisé. En outre, ce catalyseur qui sera désormais noté B2 possède une couleur bleu vif très prononcée.
Exemple 2 : préparation d'un catalyseur régénéré selon l'invention Cl- réalisation avec l'acide citrique
Le catalyseur Cl est préparé par imprégnation à sec d'une solution d'acide citrique et de diméthyle succinate dilués dans l'éthanol au catalyseur B 1. Les teneurs visées en acide citrique (CA) et en diméthyle succinate (DMSU) sont respectivement de 15 % poids et 10 % poids (soit AC/Mo=0,50 mol/mol et DMSU/Mo=0/44 mol/mol). Après une durée de maturation de 24 heures en vase clos à température ambiante, le catalyseur est sëché sous flux d'azote (1 NL/ g/ g) durant 1 heure.
Le catalyseur Cl a été analysé par spectroscopie Raman. Il présente la bande notamment la bande principale de ΓΗΡΑ de Keggin à 990 cm"1 et les bandes caractéristiques de l'acide citrique et du diméthyle succinate respectivement à 785 cm"1 et 851 cm"1. Exemple 3 : préparation d'un catalyseur régénéré selon l'invention C2- réalisation avec l'acide citrique et l'acide acétique
Le catalyseur C2 est préparé par imprégnation à sec d'une solution d'acide citrique de diméthyle succinate et d'acide acétique dilués dans l'éthanol au catalyseur B2 qui présente une phase C0M0O4 cristallisé. Les teneurs visées en acide citrique (CA), en diméthyle succinate (DMSU) et en acide acétique (AA) sont respectivement de 15 % poids, 10 % poids et 20 % poids (soit AC/Mo=0,50 mol/mol, DMSU/Mo=0,44 mol/mol et AA/Mo=2,13 mol/mol). Après une durée de maturation de 24 heures en vase clos à température ambiante, le catalyseur est séché sous flux d'azote (1 NL/ g/ g) durant 1 heure.
Le catalyseur C2 a été analysé par spectroscopie Raman. Il présente la bande notamment la bande principale de l'HPA de Keggin à 990 cm"1 et les bandes caractéristiques de l'acide citrique, du diméthyle succinate et de l'acide acétique respectivement à 785 cm"1, 851 cm"1 et 896 cm"1.
Exemple 2bis : préparation d'un catalyseur régénéré selon l'invention Cl bis- réalisation avec l'acide citrique et l'acide acétique
Le catalyseur est préparé de la même façon que dans l'exemple 3 mais à partir du catalyseur régénéré Bl.
Exemple 3 bis : préparation d'un catalyseur régénéré selon l'invention C2bis- réalisation avec l'acide citrique
Le catalyseur est préparé de la même façon que dans l'exemple 2 mais à partir du catalyseur régénéré B2.
Exemple 4 : Test comparatif des catalyseurs Bl. B2. Cl . C2 . Cl bis et C2bis en hydrogénation du toluène dans le cyclohexane sous pression et en présence d'hydrogène sulfuré.
Les catalyseurs précédemment décrits, sont sulfurés in situ en dynamique dans le réacteur tubulaire à lit fixe traversé d'une unité pilote de type Microcat (constructeur : société Vinci), les fluides circulant de haut en bas. Les mesures d'activité hydrogénante sont effectuées immédiatement après la sulfuration sous pression et sans remise à l'air avec la charge d'hydrocarbures qui a servi à sulfurer les catalyseurs. La charge de sulfuration et de test est composée de 5,8 % de diméthyldisulfure (DMDS), 20 % de toluène et 74,2 % de cyclohexane (en poids).
La sulfuration est effectuée dès température ambiante jusqu'à 350°C, avec une rampe de température de 2°C/min, une WH = 4η"1 et H2/HC = 450 Nl/1 . Le test catalytique est effectué à 350°C à WH = 2η"1 et H2/HC équivalent à celui de la sulfuration, avec prélèvement minimum de 4 recettes qui sont analysées par chromatographie en phase gazeuse.
On mesure ainsi les activités catalytiques stabilisées de volumes égaux de catalyseurs dans la réaction d'hydrogénation du toluène.
Les conditions détaillées de mesure d'activité sont les suivantes :
- Pression totale : 6,0 MPa
- Pression de toluène : 0,37 MPa
- Pression de cyclohexane : 1,42 MPa
- Pression de méthane 0,22 MPa
- Pression d'hydrogène : 3,68 MPa
- Pression d'H2S : 0,22 MPa
- Volume de catalyseur : 4 cm3 (extrudés de longueur comprise entre 2 et 4 mm)
- Vitesse spatiale horaire : 2 h"1
- Température de sulfuration et de test : 350 °C
Des prélèvements de l'effluent liquide sont analysés par chromatographie en phase gazeuse. La détermination des concentrations molaires en toluène non converti (T) et des concentrations ses produits d'hydrogénation (le méthylcyclohexane (MCC6), l'éthylcyclopentane (EtCC5) et les diméthylcyclopentanes (DMCC5)) permettent de calculer un taux d'hydrogénation de toluène XHYD défini par :
Figure imgf000025_0001
La réaction d'hydrogénation du toluène étant d'ordre 1 dans les conditions de test mises en œuvre et le réacteur se comportant comme un réacteur piston idéal, on calcule l'activité hydrogénante AJJYTJ des catalyseurs en appliquant la formule :
Figure imgf000026_0001
Le Tableau 1 compare les activités hydrogénantes relatives des catalyseurs B 1 et B2 (non conformes), et des catalyseurs Cl et C2 (selon l'invention) égales au rapport de l'activité du catalyseur sur l'activité du catalyseur B2 (non conforme) pris comme référence (activité 100 %).
Tableau 1 : Activités relatives par rapport au catalyseur calciné B2 (non conforme)
Figure imgf000026_0002
Le catalyseur régénéré dans des conditions non contrôlées B2 (non conforme) a une activité moindre que le catalyseur régénéré Bl (non conforme). Le Tableau 1 montre que le catalyseur additivé Cl (conforme) préparé par ajout de 15 % poids d'acide citrique (CA) et de 10 % de Diméthyle succinate (DMSU) au catalyseur Bl a une activité améliorée par rapport au catalyseur de départ de 16 % , l'ajout d'acide acétique amène le gain à 20% (catalyseur Cl bis).
Le Tableau 1 montre que le catalyseur additivé C2 bis (conforme) préparé par ajout de 15 % poids d'acide citrique (CA) et de 10 % de Diméthyle succinate (DMSU) au catalyseur B2 a une activité améliorée par rapport au catalyseur de départ de 24 % , l'ajout d'acide acétique amène le gain à 37% (catalyseur C2).
Ces résultats catalytiques montrent l'effet particulier et surprenant de la combinaison acide citrique (AC) et succinate de diméthyle (DMSU) sur catalyseur régénéré (conforme à l'invention) et en particulier sur un catalyseur régénéré qui présenterait des phases cristallines cas de B2). Cet effet est encore amélioré par l'ajout d'acide acétique.

Claims

REVENDICATIONS
1 - Catalyseur comprenant un support amorphe à base d1 alumine, au moins un succinate de dialkyle C1-C4, de l'acide citrique, du phosphore et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIB et au moins un élément du groupe VIII catalyseur dont le spectre Raman comprend les bandes à 990 et/ou 974 cm'1 caractéristiques d'au moins un hétéropolyanion de Keggin, les bandes caractéristiques dudit succinate et les bandes principales caractéristiques de l'acide citrique.
2- Catalyseur selon la revendication 1 dans lequel le succinate de dialkyle est le succinate de diméthyle et dans lequel le catalyseur possède dans son spectre les bandes Raman principales à 990 et/ou 974 cm"1 caractéristiques des hétéropolyanions de Keggin, et 853 cm"1 caractéristique du succinate de diméthyle et 785 et 956 cm"1 caractéristiques de l'acide citrique.
3 - Catalyseur selon l'une des revendications précédentes comprenant également de l'acide acétique dont le spectre Raman comprend la raie à 896 cm"1 caractéristique de l'acide acétique.
4- Catalyseur selon l'une des revendications 1 ou 3 dans lequel le succinate de dialkyle est le succinate de diéthyle, le succinate de dibutyle ou le succinate de diisopropyle.
5 - Catalyseur selon l'une des revendications précédentes dans lequel le support contient plus de 25% pds d'alumine.
6- Catalyseur selon l'une des revendications précédentes comprenant un support constitué d'alumine ou constitué de silice-alumine.
7- Catalyseur selon l'une des revendications précédentes comprenant également du bore et/ou du fluor.
8- Catalyseur selon l'une des revendications précédentes, dans lequel la fonction hydro- déshydrogénante comprend du molybdène, du nickel et/ou du cobalt.
9- Catalyseur selon l'une des revendications précédentes et sulfuré.
10- Procédé de préparation d'un catalyseur selon Tune des revendications précédentes, ledit procédé comprenant les étapes successives suivantes :
ab) préparation d'un précurseur catalytique contenant les éléments de la fonction hydro- déshydrogénante, éventuellement du phosphore, ledit précurseur ayant subi un traitement thermique c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique et au moins un composé de phosphore, si le phosphore n'a pas été introduit par imprégnation en totalité à l'étape ab) et éventuellement l'acide acétique,
d) une étape de maturation,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure.
1 1 - Procédé de préparation d'un catalyseur selon l'une des revendications précédentes, ledit procédé comprenant les étapes successives suivantes :
a) au moins une étape d'imprégnation d'un support amorphe à base d'alumine par au moins une solution contenant les éléments de la fonction hydro-déshydrogénante, et éventuellement du phosphore
b) séchage à une température inférieure à 180°C éventuellement suivi d'une calcination à une température d'au moins 350°C, et de préférence comprise entre 420 et 520°C;
c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique et au moins un composé de phosphore, si le phosphore n'a pas été introduit en totalité à l'étape a) et éventuellement l'acide acétique, d) une étape de maturation ,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure.
12- Procédé de préparation d'un catalyseur selon l'une des revendications précédentes, ledit procédé comprenant les étapes successives suivantes :
a'b') régénération du catalyseur usé comprenant une fonction hydro-déshydrogénante et éventuellement du phosphore,
c) au moins une étape d'imprégnation par une solution d'imprégnation comprenant au moins un succinate de dialkyle C1-C4, l'acide citrique et éventuellement au moins un composé de phosphore si le phosphore n'a pas été introduit en totalité dans le catalyseur de l'étape a'b'), et éventuellement l'acide acétique, d) une étape de maturation,
e) une étape de séchage à une température inférieure à 200°C, sans étape de calcination ultérieure. 13 - Procédé selon la revendication 1 1 dans lequel la totalité de la fonction hydro- déshydrogénante est introduite lors de l'étape a).
14- Procédé selon l'une des revendications 10 à 13 dans lequel l'étape c) est réalisée en présence d'eau et/ou d'éthanol.
15- Procédé selon l'une des revendications 10 à 14 dans lequel le succinate de dialkyle et l'acide citrique sont introduits dans la solution d'imprégnation de l'étape c) dans une quantité correspondant à un rapport molaire de succinate de dialkyle par élément(s) du groupe VIB imprégné du précurseur catalytique compris entre 0, 15 et 2 mole/mole, et à un rapport molaire d'acide citrique par élément(s) du groupe VTB imprégné du précurseur catalytique compris entre 0,05 et 5 mole/mole.
16- Procédé selon la revendication 15 dans lequel la solution d'imprégnation contient également de l'acide acétique , le rapport molaire d'acide acétique par élément(s) du GVIB imprégné du précurseur catalytique est compris entre 0, 1 à 6 mole/mole, et le rapport molaire d'acide citrique + acide acétique par élément(s) du GVIB imprégné du précurseur catalytique est compris entre 0, 15 à 6 mole/mole.
17- Procédé selon l'une des revendications 10 à 16 dans lequel l'étape d) est réalisée à une température de 17 à 50°C.
18- Procédé selon l'une des revendications 10 à 17 dans lequel l'étape e) est réalisée à une température de 80 à 180°C, sans calcination ultérieure .
19- Procédé selon l'une des revendications 10 à 18 dans lequel la quantité de phosphore introduite par imprégnation est comprise entre 0, 1 à 20 % poids (exprimée en pds oxyde par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b)), la quantité d' (des) élément(s) du groupe VTB est comprise entre 5 et 40 % poids ( exprimée en pds oxyde par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b)) , la quantité d' (des) élément(s) du groupe VIII est comprise entre 1 et 10 % poids (exprimée en pds oxyde par rapport au précurseur catalytique après traitement thermique de l'étape ab) ou b)) .
20- Procédé selon l'une des revendications 10 à 19 dans lequel le produit obtenu à l'issue de l'étape e) subit une étape de sulfuration.
21 - Procédé d'hydrotraitement de charges hydrocarbonées en présence d'un catalyseur selon l'une des revendications 1 à 9 ou préparé par le procédé selon l'une des revendications 10 à 20. 22- Procédé selon la revendication 21 dans lequel l'hydrotraitement est une hydrodésulfuration, une hydrodéazotation, une hydrodémétallation, une hydrogénation des aromatiques ou une hydroconversion.
23 - Procédé selon la revendication 22 dans lequel l'hydrotraitement est une hydrodésulfuration poussée de gazoles.
PCT/FR2012/000052 2011-03-18 2012-02-10 Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4 WO2012127128A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/005,936 US11351529B2 (en) 2011-03-18 2012-02-10 Catalyst for use in hydrotreatment, comprising metals from groups VIII and VIB, and preparation with citric acid and C1-C4 dialkyl succinate
EP12708569.4A EP2686105B1 (fr) 2011-03-18 2012-02-10 Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
RU2013146532/04A RU2574389C2 (ru) 2011-03-18 2012-02-10 Катализатор, подходящий для гидрообработки, содержащий металлы групп viii и vib, фосфор, и его получение с использованием лимонной кислоты и с1-с4-диалкилсукцината
CA2825958A CA2825958C (fr) 2011-03-18 2012-02-10 Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
DK12708569.4T DK2686105T3 (en) 2011-03-18 2012-02-10 CATALYSTS WHICH CAN BE USED FOR HYDROGEN TREATMENT, INCLUDING GROUP VIII AND VIB METALS, AND MANUFACTURING THEREOF WITH CITRIC ACID AND C1-C4 DIALKYL SUCHININ
BR112013023877-1A BR112013023877B1 (pt) 2011-03-18 2012-02-10 Catalisador, processos de preparo do mesmo e de hidrotratamento de cargas hidrocarbonadas
CN201280014066.5A CN103501902B (zh) 2011-03-18 2012-02-10 包含来自viii和vib族的金属的用于加氢处理的催化剂,和使用柠檬酸和琥珀酸c1‑c4二烷基酯的制备方法
JP2014500436A JP5933684B2 (ja) 2011-03-18 2012-02-10 第viii族および第vib族からの金属を含む、水素化処理における使用のための触媒、並びに、クエン酸およびコハク酸c1−c4ジアルキルによる調製
ZA2013/05844A ZA201305844B (en) 2011-03-18 2013-08-02 Catalyst which can be used in hydrotreatment and which inludes group vii metals and group vib metals,and preparation thereof using citric acid c1-c4 dialkyl succinate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11/00.840 2011-03-18
FR11/00.840 2011-03-18
FR1100840A FR2972648B1 (fr) 2011-03-18 2011-03-18 Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4

Publications (2)

Publication Number Publication Date
WO2012127128A1 true WO2012127128A1 (fr) 2012-09-27
WO2012127128A8 WO2012127128A8 (fr) 2013-09-12

Family

ID=45819232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000052 WO2012127128A1 (fr) 2011-03-18 2012-02-10 Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4

Country Status (10)

Country Link
US (1) US11351529B2 (fr)
EP (1) EP2686105B1 (fr)
JP (1) JP5933684B2 (fr)
CN (1) CN103501902B (fr)
BR (1) BR112013023877B1 (fr)
CA (1) CA2825958C (fr)
DK (1) DK2686105T3 (fr)
FR (1) FR2972648B1 (fr)
WO (1) WO2012127128A1 (fr)
ZA (1) ZA201305844B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514169A (ja) * 2009-12-16 2013-04-25 イエフペ エネルジ ヌヴェル 第viii族および第vib族金属を含み、酢酸およびc1−c4ジアルキルスクシナートを有する、水素化処理において使用可能な触媒および調製
JP2015105377A (ja) * 2013-11-28 2015-06-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 触媒の連結を用いる、ディーゼルの水素化処理方法
WO2016173760A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE D'ACIDE y-CETOVALERIQUE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE
RU2663667C2 (ru) * 2012-11-29 2018-08-08 Ифп Энержи Нувелль Катализатор гидроочистки, содержащий подложку, полученную из алюмогеля, и способ получения такого катализатора

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013720B1 (fr) * 2013-11-28 2015-11-13 IFP Energies Nouvelles Procede d'hydrotraitement de distillat sous vide mettant en oeuvre un enchainement de catalyseurs
FR3017876B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
FR3017875B1 (fr) 2014-02-24 2016-03-11 Total Marketing Services Composition d'additifs et carburant de performance comprenant une telle composition
LU92430B1 (en) * 2014-04-16 2015-10-19 Catalyst Recovery Europ Sa Process for rejuvenating hydrotreating catalyst
LU92429B1 (fr) * 2014-04-16 2015-10-19 Catalyst Recovery Europ Sa Process for rejuvenating hydrotreating catalysts
FR3022255B1 (fr) * 2014-06-13 2016-07-29 Ifp Energies Now Procede d'hydrotraitement de coupes distillats utilisant un catalyseur a base d'une alumine mesoporeuse amorphe ayant une connectivite elevee
FR3022254B1 (fr) * 2014-06-13 2016-07-29 Ifp Energies Now Procede d'hydrotraitement de coupes gazoles utilisant un catalyseur a base d'une alumine mesoporeuse amorphe ayant une connectivite elevee
CA3002842C (fr) * 2015-11-06 2020-09-22 Uop Llc Lavage d'effluent de reacteur pour extraire des composes aromatiques
FR3049475B1 (fr) * 2016-03-30 2018-04-06 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3073753B1 (fr) * 2017-11-22 2022-03-11 Ifp Energies Now Catalyseur a base d'un compose furanique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR3076746B1 (fr) * 2018-01-15 2022-07-01 Ifp Energies Now Procede de preparation d'un catalyseur particulier d'hydrogenation selective par malaxage et impregnation
CN111097538A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 加氢处理催化剂的制备方法及加氢处理催化剂
CN111097537A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法及加氢精制催化剂
FR3089826B1 (fr) 2018-12-18 2021-05-07 Ifp Energies Now Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage.
FR3117380B1 (fr) 2020-12-15 2023-03-03 Ifp Energies Now Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage
FR3138051A1 (fr) 2022-07-22 2024-01-26 IFP Energies Nouvelles Procédé de régénération d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage.
FR3138053A1 (fr) 2022-07-22 2024-01-26 IFP Energies Nouvelles Procédé de régénération comprenant une étape de régénération, une étape de réjuvénation et une étape de calcination d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage.
FR3138052A1 (fr) 2022-07-22 2024-01-26 IFP Energies Nouvelles Procédé de régénération comprenant au moins deux étapes d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage.
FR3138055A1 (fr) 2022-07-22 2024-01-26 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage.
FR3138054A1 (fr) 2022-07-22 2024-01-26 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954673A (en) 1971-02-01 1976-05-04 Chiyoda Kako Kensetsu Kabushiki Kaisha Process for preparing catalysts for hydrodesulfurization
US4012340A (en) 1971-02-01 1977-03-15 Chiyoda Kako Kensetsu Kabushiki Kaisha Process for preparing catalysts for hydrodesulfurization
EP0466568A1 (fr) 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de prétraitement d'un catalyseur par un mélange d'un agent soufre et d'un agent réducteur organique
EP0601722A1 (fr) 1992-11-18 1994-06-15 Sumitomo Metal Mining Company Limited Catalyseurs d'hydrotraitement d'hydrocarbures et procédés pour leur préparation
JPH07136523A (ja) 1993-11-12 1995-05-30 Japan Energy Corp 水素化処理用触媒の製造方法
WO1996041848A1 (fr) 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
EP1046424A1 (fr) 1999-04-20 2000-10-25 Atofina Procédé de sulfuration de catalyseurs d'hydrotraitement
WO2001076741A1 (fr) 2000-04-11 2001-10-18 Akzo Nobel N.V. Procede de sulfuration d'un catalyseur contenant un additif
WO2005035691A1 (fr) 2003-10-03 2005-04-21 Albemarle Netherlands B.V. Procede d'activation d'un catalyseur d'hydrotraitement
WO2006077326A1 (fr) 2005-01-20 2006-07-27 Total France Catalyseur d’hydrotraitement, son procede de preparation et son utilisation
WO2007070394A2 (fr) * 2005-12-14 2007-06-21 Advanced Refining Technologies Llc Procede de fabrication de catalyseur d’hydrotraitement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749778B1 (fr) * 1996-06-13 1998-08-14 Elf Antar France Procede de preparation de catalyseurs d'hydrotraitement
JP4156859B2 (ja) * 2001-06-20 2008-09-24 コスモ石油株式会社 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
CA2509847C (fr) * 2002-12-18 2009-09-01 Cosmo Oil Co., Ltd. Catalyseur d'hydrotraitement pour carburant diesel, procede de production de ce catalyseur et procede d'hydrotraitement de carburant diesel
JP5228221B2 (ja) * 2007-04-27 2013-07-03 コスモ石油株式会社 炭化水素油の水素化処理触媒の製造方法
FR2917647B1 (fr) * 2007-06-25 2011-05-06 Inst Francais Du Petrole Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore
BR112012014687B1 (pt) * 2009-12-16 2018-05-08 Ifp Energies Now catalisador utilizável em hidrotratamento, compreendendo metais dos grupos viii e vib e preparo com o ácido acético e succinato de dialquila c1-c4

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954673A (en) 1971-02-01 1976-05-04 Chiyoda Kako Kensetsu Kabushiki Kaisha Process for preparing catalysts for hydrodesulfurization
US4012340A (en) 1971-02-01 1977-03-15 Chiyoda Kako Kensetsu Kabushiki Kaisha Process for preparing catalysts for hydrodesulfurization
EP0466568A1 (fr) 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de prétraitement d'un catalyseur par un mélange d'un agent soufre et d'un agent réducteur organique
EP0601722A1 (fr) 1992-11-18 1994-06-15 Sumitomo Metal Mining Company Limited Catalyseurs d'hydrotraitement d'hydrocarbures et procédés pour leur préparation
JPH07136523A (ja) 1993-11-12 1995-05-30 Japan Energy Corp 水素化処理用触媒の製造方法
WO1996041848A1 (fr) 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
EP1046424A1 (fr) 1999-04-20 2000-10-25 Atofina Procédé de sulfuration de catalyseurs d'hydrotraitement
WO2001076741A1 (fr) 2000-04-11 2001-10-18 Akzo Nobel N.V. Procede de sulfuration d'un catalyseur contenant un additif
WO2005035691A1 (fr) 2003-10-03 2005-04-21 Albemarle Netherlands B.V. Procede d'activation d'un catalyseur d'hydrotraitement
WO2006077326A1 (fr) 2005-01-20 2006-07-27 Total France Catalyseur d’hydrotraitement, son procede de preparation et son utilisation
WO2007070394A2 (fr) * 2005-12-14 2007-06-21 Advanced Refining Technologies Llc Procede de fabrication de catalyseur d’hydrotraitement

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
B. S CLAUSEN; H. T. TOPSOE; F.E. MASSOTH: "Catalysis Science and Technology", vol. 11, 1996, SPRINGER-VERLAG
C. REICHARDT: "Solvents and Solvent Effects in Organic Chemistry", 2003, WILEY-VCH, pages: 472 - 474
GRIBOVAL; BLANCHARD; GENGEMBRE; PAYEN; FOURNIER; DUBOIS; BERNARD, JOURNAL OF CATALYSIS, vol. 188, 1999, pages 102
GRIBOVAL; BLANCHARD; PAYEN; FOURNIER; DUBOIS, CATALYSIS TODAY, vol. 45, 1998, pages 277
JOURNAL OFFICIEL DE L'UNION EUROPÉENNE, vol. L76, 22 March 2003 (2003-03-22), pages L76,10 - L76,19
M. T. POPE: "Heteropoly and Isopoly oxometalates", SPRINGER VERLAG, pages: 8
TOPSOE ET AL., CATALYSIS REVIEW SCIENCE AND ENGINEERING, 1984, pages 395 - 420

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514169A (ja) * 2009-12-16 2013-04-25 イエフペ エネルジ ヌヴェル 第viii族および第vib族金属を含み、酢酸およびc1−c4ジアルキルスクシナートを有する、水素化処理において使用可能な触媒および調製
RU2663667C2 (ru) * 2012-11-29 2018-08-08 Ифп Энержи Нувелль Катализатор гидроочистки, содержащий подложку, полученную из алюмогеля, и способ получения такого катализатора
JP2015105377A (ja) * 2013-11-28 2015-06-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 触媒の連結を用いる、ディーゼルの水素化処理方法
WO2016173760A1 (fr) * 2015-04-30 2016-11-03 IFP Energies Nouvelles CATALYSEUR A BASE D'ACIDE y-CETOVALERIQUE ET SON UTILISATION DANS UN PROCEDE D'HYDROTRAITEMENT ET/OU D'HYDROCRAQUAGE
FR3035600A1 (fr) * 2015-04-30 2016-11-04 Ifp Energies Now Catalyseur a base d'acide y-cetovalerique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
RU2698326C2 (ru) * 2015-04-30 2019-08-26 Ифп Энержи Нувелль КАТАЛИЗАТОР НА ОСНОВЕ γ-КЕТОВАЛЕРИАНОЙ КИСЛОТЫ И ЕГО ПРИМЕНЕНИЕ В ПРОЦЕССЕ ГИДРООЧИСТКИ И/ИЛИ ГИДРОКРЕКИНГА
US10464054B2 (en) 2015-04-30 2019-11-05 IFP Energies Nouvelles Catalyst based on γ-ketovaleric acid and use thereof in a hydrotreatment and/or hydrocracking process

Also Published As

Publication number Publication date
ZA201305844B (en) 2014-04-30
BR112013023877A2 (pt) 2016-12-13
DK2686105T3 (en) 2017-03-27
CN103501902A (zh) 2014-01-08
EP2686105B1 (fr) 2016-12-14
WO2012127128A8 (fr) 2013-09-12
JP5933684B2 (ja) 2016-06-15
EP2686105A1 (fr) 2014-01-22
JP2014514142A (ja) 2014-06-19
CA2825958A1 (fr) 2012-09-27
FR2972648A1 (fr) 2012-09-21
CA2825958C (fr) 2019-04-02
US11351529B2 (en) 2022-06-07
FR2972648B1 (fr) 2013-04-26
BR112013023877B1 (pt) 2019-07-02
CN103501902B (zh) 2017-10-27
RU2013146532A (ru) 2015-04-27
US20140076780A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
EP2686105B1 (fr) Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
EP2512662B1 (fr) Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide acetique et du succinate de dialkyle c1-c4
EP3288678B1 (fr) Catalyseur a base de gamma-valerolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP3490707B1 (fr) Catalyseur à base d'un composé organique et son utilisation dans un procédé d'hydrotraitement et/ou d'hydrocraquage
EP2794104B1 (fr) Procede de preparation d'un catalyseur utilisable en hydrotraitement et hydroconversion
EP3288679B1 (fr) Catalyseur a base d'acide y-cetovalerique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP1380343B1 (fr) Catalyseur d'hydrotraitement contenant un composé organique azoté et son utilisation
EP2162211A2 (fr) Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore
EP2878370B1 (fr) Procédé d'hydrotraitement de gazole mettant en oeuvre un enchainement de catalyseurs
EP2794099A1 (fr) Catalyseur utilisable en hydroconversion comprenant au moins une zéolithe et des metaux des groupes viii et vib et preparation du catalyseur
WO2021121982A1 (fr) Procede de preparation d'un catalyseur d'hydrotraitement et/ou d'hydrocraquage par impregnation en milieu fondu, catalyseur obtenu en son utilisation
FR2953740A1 (fr) Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib sauf le couple cobalt-molybdene, et preparation avec de l'acide acetique et du succinate de dialkyle c1-c4
EP3490708B1 (fr) Catalyseur a base de 2-acétylbutyrolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procédé d'hydrotraitement et/ou d'hydrocraquage
EP4171806B1 (fr) Catalyseur trimetallique a base de nickel, molybdene et tungstene et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR2953739A1 (fr) Catalyseur utilisable en hydrotraitement comprenant du cobalt et du molybdene, son procede de preparation avec de l'acide acetique et du succinate de dialkyle c1-c4
WO2021121981A1 (fr) Procede de preparation d'un catalyseur d'hydrotraitement et/ou d'hydrocraquage par comalaxage en milieu fondu, catalyseur obtenu en son utilisation
RU2574389C2 (ru) Катализатор, подходящий для гидрообработки, содержащий металлы групп viii и vib, фосфор, и его получение с использованием лимонной кислоты и с1-с4-диалкилсукцината

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708569

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012708569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012708569

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2825958

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014500436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013146532

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005936

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023877

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023877

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130918