EP2162211A2 - Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore - Google Patents

Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore

Info

Publication number
EP2162211A2
EP2162211A2 EP08805644A EP08805644A EP2162211A2 EP 2162211 A2 EP2162211 A2 EP 2162211A2 EP 08805644 A EP08805644 A EP 08805644A EP 08805644 A EP08805644 A EP 08805644A EP 2162211 A2 EP2162211 A2 EP 2162211A2
Authority
EP
European Patent Office
Prior art keywords
catalyst
process according
group
phosphorus
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08805644A
Other languages
German (de)
English (en)
Inventor
Karin Marchand
Mathieu Digne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2162211A2 publication Critical patent/EP2162211A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Definitions

  • the invention relates to the field of hydrotreatments.
  • a hydrotreating catalyst for hydrocarbon cuts is intended to eliminate the sulfur or nitrogen compounds contained therein in order, for example, to bring a petroleum product to the required specifications (sulfur content, aromatic content, etc.) for a given application (motor fuel, gasoline or diesel, heating oil, jet fuel). It may also be to pre-treat this load in order to remove impurities before subjecting it to various transformation processes to modify the physico-chemical properties, such as for example reforming processes, hydrocracking vacuum distillates, hydroconversion of atmospheric residues or vacuum.
  • the composition and use of the hydrotreatment catalysts are particularly well described in the article by B. S Clausen, HT Tops0e, and FE Massoth, from Catalysis Science and Technology, Volume 11 (1996), Springer- Verlag.
  • Anderson heteropolyanions is detected by Raman spectrometry at the surface of the aluminum support, and at high molybdenum contents.
  • sulphurization refractory phases can be formed by sintering on the catalyst surface, such as the CoMoO 4 or Co 3 O 4 phases (B. S Clausen, HT Tops ⁇ e, and FE Massoth, from Catalysis Science and Technology, volume 11 (1996), Springer-Verlag).
  • a solution to avoid the formation of [Al (OH) 6 Mo 6 Ois] 3 may be the use of phosphomolybdic heteropolyanions. These are traditionally obtained by introducing phosphoric acid co-impregnation with the precursors of the active phase. Molybdenum is protected by formation of more stable phosphomolybdic heteropolyanions than the heteropolyanion [Al (OH) 6 Mo 6 O 18 ] 3 -
  • US Patent 4743574 Intevep proposes a solution of previously introducing all the phosphorus into the support.
  • the patent describes a method for preparing a catalyst for hydrodesulfurization and hydrodenitrogenation containing an aluminophosphate or aluminoborate support and allowing the implementation of a reduced cobalt content.
  • a support based on aluminophosphate that is by adding small amounts of phosphorus in P 2 O 5 form (or boron form B 2 Cb) to alumina before the deposition of the metals constituting the active phase on the support, the interactions between said metals and alumina are reduced, which makes it possible to reduce the amount of metal constituting the active phase involved, in particular the amount of cobalt, without loss of catalytic activity.
  • the shaping of such supports is difficult because of the drying properties of phosphorus pentoxide (P 2 O 5 ) and does not allow the improvement of the BET surface of the final catalyst, which leads to a reduction in the dispersion. precursors of the active phase on the surface of the support.
  • An advantage of the invention is to provide a process for preparing a hydrotreatment catalyst for introducing phosphorus in the form of a phosphorus compound by a step of impregnating a dried and / or calcined catalytic precursor. containing at least one member of the group VHI and / or at least one element of the group VIB and an amorphous support, said hydrotreatment catalyst obtained having a better catalytic activity compared to the catalysts of the prior art.
  • Another advantage of the present invention is to provide a process for preparing a hydrotreatment catalyst allowing the introduction of a significant amount of phosphorus in the form of a phosphorus compound by a stage of impregnation of a precursor dried and / or calcined catalyst containing at least one group VIII element and / or at least one group VIB element and an amorphous support, while maintaining the specific surface area, calculated in m 2 per gram of alumina, between the catalytic precursor dried and / or calcined starting and the final catalyst obtained by the process according to the invention. It has now been found in the context of the invention a method of remedying the problems mentioned above and which, unlike the prior art, make it possible to moderate the possible reduction of the BET surface.
  • the present invention describes a process for preparing a hydrotreatment catalyst comprising the following steps:
  • step b) a step of maturation of said impregnated catalytic precursor resulting from step a),
  • the process according to the invention because of its step a), allowing at least one impregnation of a catalytic precursor previously containing at least one element of group VIII and / or VIB and an amorphous support, preferably alumina, with an impregnation solution consisting of at least one phosphorus compound in solution in at least one polar solvent with a dielectric constant of greater than 20, makes it possible to prevent direct contact of the support amorphous, preferably alumina with said phosphorus compound.
  • the process according to the invention thus makes it possible to avoid the phenomenon of dissolution of the amorphous support, preferably alumina, in the presence of the phosphorus compound, thus avoiding a decrease in the BET surface area.
  • the dried and / or calcined catalytic precursor containing at least one element of the YJE group and / or at least one element of group VIB and an amorphous support, used in step a) of the process according to the invention, as well as its mode of preparation are described below.
  • Said catalytic precursor used in step a) of the process according to the invention can be prepared for the most part by all methods well known to those skilled in the art.
  • Said catalytic precursor contains a hydro-dehydrogenating function consisting of at least one element of the VHI group and / or of at least one element of the group VEB and optionally contains phosphorus and / or silicon as dopant and an amorphous support.
  • the amorphous support of said catalytic precursor generally used is chosen from the group formed by alumina and silica-alumina.
  • amorphous support is silica-alumina
  • said amorphous support preferably contains at least 40% by weight of alumina.
  • said amorphous support consists of alumina and very preferably of gamma-alumina.
  • said amorphous support is advantageously shaped in the following manner: a matrix consisting of a wet alumina gel, such as, for example, hydrated aluminum oxyhydroxide is mixed with an acidic aqueous solution such as for example a nitric acid solution, and then kneaded. This is peptisation. After mixing, the paste obtained is passed through a die to form extrudates of diameter preferably between 0.4 and 4 mm. The extrudates then undergo a drying step at a drying temperature of between 80 and 150 ° C. The shaping of said amorphous support is then advantageously followed by a calcination step, operating at a calcination temperature of between 300 and 600 ° C. 0 C.
  • a calcination step operating at a calcination temperature of between 300 and 600 ° C. 0 C.
  • the hydro-dehydrogenating function of said catalytic precursor is ensured by at least one metal of group VIB of the periodic table chosen from molybdenum and tungsten, taken alone or as a mixture and / or by at least one metal of the HIV group of the periodic table. chosen from cobalt and nickel, taken alone or as a mixture.
  • the total content of hydro-dehydrogenating elements of groups VIB and / or VIII is advantageously greater than 2.5% by weight oxide relative to the total weight of the catalyst.
  • the metals of the hydro-dehydrogenating function advantageously consist of the combination of cobalt and molybdenum; if a high hydrodenitrogenation activity is desired, a combination of nickel and molybdenum or tungsten is preferred.
  • the precursors of Group VIB elements that can be used are well known to those skilled in the art.
  • oxides and hydroxides molybdic and tungstic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, ammonium tungstate, acid phosph.omolybd.ic acid, phosphotungstic acid and their salts.
  • molybdenum trioxide or phosphotungstic acid is preferably used.
  • the amounts of the precursors of the group VIB elements are advantageously between 5 and 35% by weight of oxides relative to the total mass of the catalytic precursor, preferably between 15 and 30% by weight and very preferably between 16 and 29%. weight.
  • the precursors of the elements of the group VIII that can be used are advantageously chosen from the oxides, hydroxides, hydroxycarbonates, carbonates and nitrates of the elements of the group VH1.
  • the element of the VDI group used is cobalt
  • cobalt hydroxide and cobalt carbonate are preferably used.
  • nickel hydroxycarbonate is preferably used.
  • the amounts of the precursors of the group VIII elements are advantageously between 1 and 10% by weight of oxides with respect to the total mass of the catalytic precursor, preferably between 1.5 and 9% by weight and very preferably between 2 and 8% weight
  • the hydro-dehydrogenating function of said catalytic precursor can advantageously be introduced into the catalyst at various levels of the preparation and in various ways.
  • Said hydro-dehydrogenating function can advantageously be introduced at least partly during the shaping of said amorphous support or preferably after this shaping.
  • the hydro-dehydrogenating function is introduced at least in part during the shaping of said amorphous support, it can advantageously be introduced in part only at the time of mixing with an oxide gel chosen as a matrix, the rest of the hydrogenating element (s) being then introduced after kneading, and preferably after calcination of the preformed support.
  • Said hydro-dehydrogenating function may also be advantageously introduced in full at the moment of mixing with the oxide gel chosen as a matrix.
  • the Group VIB metal is introduced at the same time or just after the group VIII metal, regardless of the mode of introduction.
  • the introduction of said hydro-dehydrogenating function on the amorphous support can advantageously be carried out by one or several impregnation in excess of solution on the support shaped and calcined, or preferably by one or several dry impregnation and very preferably by dry impregnation of said shaped and calcined support, using solutions containing metal precursor salts.
  • the hydro-dehydrogenating function is introduced completely after shaping of said amorphous material, by dry impregnation of said support with an impregnating solution containing the precursor salts of the metals.
  • the introduction of said hydro-dehydrogenating function can also be advantageously carried out by one or more impregnations of the shaped and calcined support, with a solution of the precursor (s) of the metal oxide of the VHI group when the (or) the precursor (s) of the Group VIB metal oxides was (were) previously introduced (s) at the time of mixing the support.
  • a step of intermediate calcination of the catalyst is generally carried out at a temperature between 250 and 500 0 C.
  • a dopant of the catalyst chosen from phosphorus, boron, fluorine and silicon, taken alone or as a mixture, and preferably said dopant being phosphorus, can also advantageously be introduced.
  • Said dopant may advantageously be introduced alone or as a mixture with the metal or the metals of group VIB and / or the group VU1. It may advantageously be introduced just before or just after peptization of the chosen matrix, such as, for example, and preferably aluminum oxyhydroxide (boehmite) precursor of alumina.
  • Said dopant may also advantageously be introduced in admixture with the Group VIB metal or the Group VIII metal, in whole or in part on the shaped amorphous support, preferably extruded alumina, by dry impregnation of said dopant.
  • amorphous support using a solution containing the metal precursor salts and the dopant precursor.
  • ethyl orthosilicate Si (OEt) 4 silanes, polysilanes, siloxanes, polysiloxanes, halide silicates, such as ammonium fluorosilicate (NEL t ) 2 SiFe or fluorosilicate.
  • NNL t ammonium fluorosilicate
  • sodium Na 2 SiF 6 - Silicomolybdic acid and its salts, silicotungstic acid and its salts can also be advantageously used.
  • the silicon may be added, for example, by impregnation of ethyl silicate in solution in a water / alcohol mixture.
  • the silicon may also be added, for example, by impregnating a polyalkyl siloxane silicon compound suspended in water.
  • the source of boron may be boric acid, preferably orthoboric acid H 3 BO 3 , biborate or ammonium pentaborate, boron oxide, boric esters. Boron may be introduced for example by a boric acid solution in a water / alcohol mixture or in a water / ethanolamine mixture.
  • the preferred phosphorus source is orthophosphoric acid H 3 PO 4 , but its salts and esters as ammonium phosphates are also suitable.
  • Fluoride sources that can be used are well known to those skilled in the art.
  • the fluoride anions can be introduced in the form of hydrofluoric acid or its salts. These salts are formed with alkali metals, ammonium or an organic compound.
  • the salt is advantageously formed in the reaction mixture by reaction between the organic compound and the hydrofluoric acid.
  • hydrolysable compounds that can release fluoride anions in water such as ammonium fluorosilicate (MHU) 2 SiFg or sodium Na 2 SiFo, silicon tetrafluoride SiF 4 .
  • the fluorine may be introduced for example by impregnation with an aqueous solution of hydrofluoric acid, or ammonium fluoride or ammonium bifluoride.
  • the dopant is advantageously introduced into the catalytic precursor in an amount of oxide of said dopant of between 0.1 to 40%, preferably from 0.1 to 30% and even more preferably from 0.1 to 20% when said Dopant is chosen from boron and silicon, (the% being expressed in% by weight of oxides).
  • the dopant may also be advantageously introduced into the catalytic precursor in an amount of oxide of said dopant of between 0 to 20%, preferably from 0.1 to 15% and even more preferably from 0.1 to 10%, when said dopant is phosphorus, (the% being expressed in% by weight of oxides).
  • the dopant may also be advantageously introduced into the catalytic precursor in an amount of oxide of said dopant of between 0 to 20%, preferably from 0.1 to 15% and even more preferably from 0.1 to 10%, when said dopant is fluorine (the% being expressed in% of oxides).
  • the introduction of said hydro-dehydrogenating function and optionally a dopant of the catalyst into or onto the shaped and calcined support is then advantageously followed by a drying step during which the solvent of the metal salts precursors of ( or metal oxides (with) (usually water) is removed at a temperature between 50 and 150 0 C.
  • the step of drying the catalytic precursor thus obtained is then optionally followed by a step of calcination under air, at a temperature of between 200 and 500 ° C., said step of calcination being intended to structure the oxide phase of the catalytic precursor obtained and to increase the stability of said catalytic precursor and thus its lifetime in the unit.
  • said catalytic precursor is obtained by impregnation with a solution of the precursor (s) of the Group VIII metal oxide and / or Group VIB metal oxide precursor (s) on a shaped and calcined support, followed by drying at a drying temperature of between 50 and 150 ° C. C.
  • the catalytic precursor thus obtained is therefore a dried catalyst precursor.
  • the above impregnating solution also contains at least one dopant chosen from phosphorus and silicon, taken alone or mixed.
  • said catalytic precursor is obtained by impregnation of a solution of the precursor (s) of the metal oxide of the group HIV and / or the precursor (s) of the metal oxides of group VTB on a shaped and calcined support, followed by drying at a drying temperature of between 50 and 150 0 C and calcination in air, at a temperature between 200 and 500 0 C.
  • the catalytic precursor thus obtained is therefore a calcined catalytic precursor.
  • the above impregnating solution also contains at least one dopant chosen from phosphorus and silicon. , taken alone or in a mixture.
  • step a) of the process according to the invention The dried and / or calcined catalytic precursor thus obtained is then used in step a) of the process according to the invention.
  • the dried and / or calcined catalytic precursor contains at least one element of the VDI group and / or at least one element of group VIB and an amorphous support.
  • said dried and / or calcined catalytic precursor contains at least one element of group VTIT 1 chosen from cobalt and nickel, taken alone or in mixture and / or at least one element of group VIB chosen from molybdenum and tungsten, taken alone or as a mixture, at least one dopant selected from the group formed by phosphorus and silicon, taken alone or as a mixture and an amorphous support selected from alumina and silica alumina.
  • said dried and / or calcined catalytic precursor contains at least one element of group VTJI, said element of group VIJI being cobalt and at least a group VIB element, said group VIB element being molybdenum, phosphorus as a dopant and an amorphous alumina support.
  • said dried and / or calcined catalytic precursor contains at least one element of the VHJ group, said member of the VTJI group being nickel and at least one least one group VIB element, said group VIB element being molybdenum, phosphorus as a dopant and an amorphous alumina support.
  • said dried and / or calcined catalytic precursor contains at least one element of the group VTJI, said element of the group VUI being nickel and at least one least one group VIB element, said group VIB element being tungsten, phosphorus as a dopant and an amorphous alumina support.
  • step a) of the process according to the invention said dried and / or calcined catalytic precursor is impregnated with an impregnation solution consisting of at least one phosphorus compound in solution in at least one polar solvent of higher dielectric constant at 20.
  • the phosphorus compound of the impregnating solution of step a) of the process according to the invention is advantageously chosen from the group formed by orthophosphoric acid H 3 PO 4, metaphosphoric acid and phosphorus pentoxide or phosphoric anhydride P 2 O 5 or P 4 O] 0 , taken alone or as a mixture, and preferably, said phosphorus compound is orthophosphoric acid H 3 PO 4 .
  • the phosphorus compound of the impregnating solution of step a) of the process according to the invention may also be advantageously chosen from the group formed by dibutyl phosphate, triisobutyl phosphate, phosphate esters and phosphate ethers, taken alone. or in mixture.
  • the phosphorus compound of the impregnating solution of step a) of the process according to the invention may also be advantageously chosen from the group formed by ammonium phosphate NH 4 H 2 PO 41 diammonium phosphate (NILi) 2 HPO 4 , and ammonium polyphosphate (NKO 4 P 2 O 7 , taken alone or in admixture.
  • Said phosphorus compound is advantageously introduced into the impregnation solution of step a) of the process according to the invention in an amount corresponding to a molar ratio of phosphorus P per metal (metals) of group VIB of said catalytic precursor of between 0.001 to 3 mole / mole, preferably between 0.005 to 2 mole / mole, preferably between 0.005 and 1 mole / mole and very preferably between 0.01 and 1 mole / mole.
  • the phosphorus compound is introduced onto the dried and / or calcined catalytic precursor by at least one impregnation step and preferably by a single step of impregnating a solution. impregnating said dried and / or calcined catalytic precursor described above.
  • Said phosphorus compound may advantageously be deposited either by slurry impregnation, or by excess impregnation, or by dry impregnation, or by any other means known to those skilled in the art.
  • step a) of the preparation process according to the invention is only a dry impregnation step.
  • the impregnation solution of step a) consists of at least one phosphorus compound, and preferably of a single phosphorus compound in solution in at least one polar solvent of dielectric constant greater than 20.
  • each of the solvent constituents of the polar solvent mixture advantageously has a dielectric constant greater than 20, and preferably greater than 24.
  • said impregnation solution consists of at least one phosphorus compound and preferably of a single phosphorus compound in solution in a single polar solvent a dielectric constant greater than 20.
  • said impregnation solution consists of at least one phosphorus compound and preferably of a single phosphorus compound in solution in a single polar solvent with a dielectric constant greater than 24.
  • said impregnation solution consists of at least one phosphorus compound and preferably of a single phosphorus compound in solution in a mixture of two polar solvents, each of two polar solvents having a dielectric constant greater than 20.
  • said impregnation solution consists of at least one phosphorus compound and preferably of a single phosphorus compound in solution in a mixture of two polar solvents, each of the two polar solvents having a dielectric constant greater than
  • said impregnation solution consists solely of at least one phosphorus compound and preferably only a single phosphorus compound in solution in at least one a polar solvent, free of metals, with a dielectric constant greater than 20.
  • said impregnation solution consists solely of at least one phosphorus compound and preferably only a single phosphorus compound in solution in a single polar solvent, free of metals, with a dielectric constant greater than 20.
  • said impregnating solution consists solely of at least one phosphorus compound and preferably only a single phosphorus compound in solution in a mixture of two polar solvents, free of metals, each of the two polar solvents having a dielectric constant greater than 20.
  • said impregnating solution consists solely of at least one phosphorus compound and preferably only of a single phosphorus compound in solution in at least one polar solvent, free of metals, with a dielectric constant greater than 24.
  • said impregnation solution consists solely of at least one phosphorus compound and preferably only a single phosphorus compound in solution in a single polar solvent, free of metals, with a dielectric constant greater than 24.
  • said impregnating solution consists solely of at least one phosphorus compound and preferably only a single phosphorus compound in solution in a mixture of two polar solvents, free of metals, each of the two polar solvents having a dielectric constant greater than 24.
  • Said polar solvent used in step a) of the process according to the invention is advantageously chosen from the group of polar protic solvents chosen from methanol, ethanol, water, phenol, cyclohexanol and 1,2-dichloroethane. ethanediol, taken alone or as a mixture.
  • Said polar solvent used in step a) of the process according to the invention may also be advantageously chosen from the group formed by propylene carbonate, DMSO (dimethylsulfoxide) or sulfolane, taken alone or as a mixture.
  • a polar protic solvent is used.
  • step a) of the preparation process according to the invention it is possible to carry out several successive impregnation steps using an impregnating solution consisting of at least one phosphorus compound, and preferably of a single phosphorus compound in solution in a suitable polar solvent defined above.
  • step b) of the preparation process according to the invention the impregnated catalytic precursor from the impregnation step a) is subjected to a maturation stage that is particularly important for the invention.
  • Stage b) of maturation of said impregnated catalytic precursor resulting from stage a) is advantageously carried out at atmospheric pressure and at a temperature between room temperature and 60 ° C. and during a maturation period of between 12 hours and 340 hours. and preferably between 24 hours and 170 hours.
  • the duration of the maturation is advantageously a function of the temperature at which this step is performed.
  • One way to verify that the ripening time is sufficient is to characterize the distribution of the phosphorus in the impregnated catalytic precursor from step a) of the process according to the invention, by techniques, such as a Castaing microprobe giving a distribution profile of the various elements, a transmission electron microscopy coupled to a X analysis of the catalyst components, or even by establishing a distribution map of the elements present in the catalyst by electron microprobe.
  • the phosphorus will be distributed in crust with respect to said catalytic precursor when it contains phosphorus.
  • step c) of the preparation process according to the invention the catalytic precursor from step b) is subjected to a drying step, without a subsequent calcination step of said catalyst precursor from step b).
  • the purpose of this step is advantageously to remove all or part of the solvent that allowed the introduction of said phosphorus compound.
  • the c) drying step of the process according to the invention is advantageously carried out by any technique known to those skilled in the art.
  • the drying step c) of the process according to the invention is advantageously carried out in an oven at atmospheric pressure or under reduced pressure and at a temperature of between 50 and 200 ° C., preferably between 60 and 190 ° C., and very preferred, between 60 and 150 0 C, for a drying time of between 30 minutes and 4 hours and preferably between 1 hour and 3 hours. Drying can advantageously be carried out in crossed bed using air or any other hot gas.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • step c) of the process according to the invention a dried catalyst is obtained which is not subjected to any subsequent calcination step.
  • step c) of the process according to the invention said dried catalyst obtained is advantageously subjected to a step d) of sulphurization, without intermediate calcination step.
  • Said dried catalyst obtained at the end of stage c) of the process according to the invention is advantageously sulphurized ex situ or in situ.
  • the sulfurizing agents are advantageously the H 2 S gas or any other sulfur-containing compound used to activate hydrocarbon feeds to sulphurize the catalyst.
  • Said sulfur-containing compounds are advantageously chosen from alkyldisulphides such as, for example, dimethyl disulphide, alkyl sulphides, such as, for example, dimethyl sulphide, n-butyl mercaptan or polysulfide compounds of the tertiononyl polysulfide type such as, for example, TPS-37 or TPS. -54 marketed by Arkema, or any other compound known to those skilled in the art to obtain a good sulfuration of the catalyst.
  • the dried catalysts obtained by the process according to the invention and having previously undergone a step d) of sulfurization are advantageously used for the hydrorefining and hydroconversion reactions of hydrocarbon feedstocks such as petroleum fractions, coal cuts or hydrocarbons produced from natural gas and more particularly for the hydrogenation, hydrodenitrogenation, hydrodeoxygenation, hydrodearomatization, hydrodesulfurization, hydrodemetallation and hydroconversion reactions of hydrocarbon feedstocks containing aromatic compounds and or olefinic and / or naphthenic and / or paraffinic, said fillers optionally containing metals and / or nitrogen and / or oxygen and / or sulfur.
  • the catalysts obtained by the process according to the invention and having optionally previously undergone a step d) of sulfurization have an improved activity compared to the catalysts of the prior art.
  • amorphous dried catalysts obtained by the process according to the invention and having previously undergone a step d) of sulfurization may also be advantageously used for the hydrocracking reactions.
  • the feedstocks employed in the processes employing the hydrorefining and hydroconversion reactions of hydrocarbon feedstocks described above are advantageously gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes and paraffins, used oils, residues or deasphalted crudes, fillers derived from thermal or catalytic conversion processes, alone or in mixtures. They advantageously contain heteroatoms such as sulfur, oxygen and nitrogen and / or at least one metal.
  • the operating conditions used in the processes implementing the hydrorefining and hydroconversion reactions of hydrocarbon feedstocks described above are generally the following: the temperature is advantageously between 180 and 450 0 C, and preferably between 250 and 440 0 C, the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the speed
  • the hourly volume volume is advantageously between 0.1 and 20 h -1 and preferably between 0.2 and 5 h -1
  • the hydrogen / charge ratio expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure. per volume of liquid charge is advantageously between 501/1 to 2000 1/1.
  • the dried catalysts obtained by the process according to the invention and having optionally previously undergone a step d) of sulfurization may also advantageously be used during the pretreatment of the catalytic cracking feedstock and in the first step of a hydrocracking or a mild hydroconversion. They are then generally used upstream of an acidic, zeolitic or non-zeolitic catalyst used in the second stage of the treatment.
  • a matrix composed of ultrafine tabular boehmite or alumina gel sold under the name SB3 by Condisputeda Chemie GmbH was used. This gel was mixed with an aqueous solution containing 66% nitric acid (7% by weight of acid per gram of dry gel), then kneaded for 15 minutes. At the end of this mixing, the paste obtained is passed through a die having cylindrical orifices with a diameter of 1.6 mm. The extrudates are then dried overnight at 120 ° C. and then calcined at 540 ° C. for 2 hours in moist air containing 40 g of water per kg of dry air.
  • Cylindrical extrudates 1.2 mm in diameter with a specific surface area of 300 m 2 / g, a pore volume of 0.70 cm 2 / g and a monomodal pore size distribution centered on 93 ⁇ are thus obtained.
  • the analysis of the matrix by X-ray diffraction reveals that it is composed only of cubic gamma alumina of low crystallinity.
  • the final contents of metal oxides and the specific surface area of the catalysts Cl' and Cl are then the following:
  • the calcined catalyst C2 is prepared in the same manner as the calcined catalyst C1, from shaped alumina (70.7 g), molybdenum trioxide (24.23 g), cobalt hydroxide (5, 21 g) and a smaller amount of phosphoric acid (3.25 g).
  • the final contents of metal oxides and the specific surface area of the C2 'and C2 catalysts are then as follows:
  • the calcined catalyst C3 was prepared in the same way as Cl and C2 catalysts calcined but using a different impregnating solution based heteropolyanion type Co 2 Mo 10 O 38 H 4 6 ".
  • the preparation of such solutions The impregnation method is described in patent application EP 393 802 (A1), as in Examples 1 and 2, the catalyst C 3 'corresponds to the dried catalyst obtained after the drying step
  • the final contents of metal oxides and the specific surface area of the catalysts C3 'and C3 are then as follows:
  • this catalyst which does not contain phosphorus in its impregnation solution, has a surface area that is even higher than that of C2 and even more so than that of Cl.
  • the catalyst C4 (respectively the catalyst C4 1 ) is obtained by impregnation according to step a) of the process according to the invention of the calcined catalyst CoMoP Cl (respectively dry catalyst Cl ') so that the amount of phosphorus introduced during of this impregnation step is 0.05 (mol of P) / (mol of Mo present on calcined catalytic precursors C1 and dried Cl ').
  • the phosphorus precursor used is phosphoric acid dissolved in a polar solvent consisting of a 50/50 volume water / ethanol mixture, each of the constituents of said mixture having a dielectric constant greater than 20 (the dielectric constant of water is 78.4 and the dielectric constant of ethanol is 24.5).
  • the extrudates are dried at 120 ° C. for 2 hours under a pressure of 100 mbar.
  • the final contents of metal oxides, the specific surface area of the C4 and C4 'catalysts and the total phosphorus molar ratio on Ptotal / Mo metals deposited in the calcined catalysts C4 and dried C4' are then as follows:
  • this catalyst contains more phosphorus but its BET surface is only slightly modified by the addition of phosphorus by impregnating a solution on the catalysts Cl and Cl 'according to step a) of the process according to the invention. 'invention.
  • Catalyst C5 (respectively catalyst C5 1 ) is obtained by impregnation according to step a) of the process according to the invention of calcined catalyst CoMoP C2 (respectively dried catalyst C2 ') so that the amount of phosphorus introduced during of this impregnation step is 0.44 (mol of P) / (mol of Mo present on calcined catalytic precursors C2 and dried C2 ').
  • the molar ratio of total phosphorus to Ptotal / Mo metals deposited in calcined catalysts C4 and C5 and dried C4 'and C5' are thus identical, that is to say equal to 0.613 (mol of P) / (mol of Mo) .
  • the phosphorus precursor used is phosphoric acid dissolved in a polar solvent consisting of a 50/50 volume water / ethanol mixture, each of the constituents of said mixture having a dielectric constant greater than 20 (the dielectric constant of water is 78.4 and the dielectric constant of ethanol is 24.5).
  • a polar solvent consisting of a 50/50 volume water / ethanol mixture, each of the constituents of said mixture having a dielectric constant greater than 20 (the dielectric constant of water is 78.4 and the dielectric constant of ethanol is 24.5).
  • the extrudates are dried at 120 ° C. for 2 hours under a pressure of 100 mbar.
  • the final contents of metal oxides, the specific surface of the Catalysts C5 and C5 'and the total phosphorus molar ratio on Ptotal / Mo metals deposited in calcined catalysts C4 and dried C4' are then as follows:
  • these catalysts have the same final formulation as the catalyst C4 and C4 'except that it has a greater amount of phosphorus introduced by step a) of the process according to the invention. Its specific surface area is higher than that of catalyst C4, in particular when this surface is expressed per gram of alumina present in the catalyst.
  • the catalyst C6 (respectively the catalyst C6 ') is obtained by an impregnation according to step a) of the process according to the invention of the catalyst CoMo C3 (respectively catalyst C3') so that the amount of phosphorus introduced during this impregnation step of 0.613 (mol of P) / (mol of Mo present on calcined catalyst precursors C3 and dried C3 ').
  • the total phosphorus molar ratio on Ptotal / Mo metals in the C6 calcined and C6 'dried catalysts are identical to that of the calcined catalysts C4 and C5 and dried C4' and CS ', that is to say equal to 0.613 ( mol of P) / (mol of Mo initially present on the catalytic precursor).
  • the phosphorus precursor used is phosphoric acid dissolved in a polar solvent consisting of a 50/50 volume water / ethanol mixture, each of the constituents of said mixture having a dielectric constant greater than 20 (the dielectric constant of water is 78.4 and the dielectric constant of ethanol is 24.5).
  • S BET Specific surface area
  • these catalysts C6 and C have a molar ratio P tota i / Mo identical to that of catalysts C4, C4 ', C5 and C5' except that they have a greater amount of phosphorus introduced according to step a) of the process according to the invention. Its specific surface area is higher than that of catalysts C5 and C5 'and even more so catalysts C4 and C4'.
  • Catalysts C6 and C6 ' are calcined in dry air at 450 ° C. for two hours.
  • the catalysts obtained after calcination are respectively C9 and C9 '.
  • the final contents of metal oxides and the specific surface area of catalysts C9 'and C9 are then as follows:
  • Example 7 Comparative Test of Catalysts Cl. C3, Cl '. C2 ', C3'. C4. C4. C5. CS '. C6 and C6 ', C9 and C9' in hydrogenation of toluene in cyclohexane under pressure and in the presence of hydrogen sulfide.
  • the previously described catalysts are sulfide in situ dynamically in the fixed bed fixed bed reactor through a pilot unit Catatest type (manufacturer: Geomechanical company), the fluids flowing from top to bottom.
  • the measurements of hydrogenating activity are carried out immediately after sulphurization under pressure and without re-airing with the hydrocarbon feedstock which was used to sulphurize the catalysts.
  • the sulfurization and test load is composed of 5.8% dimethyl disulphide (DMDS), 20% toluene and 74.2% cyclohexane (by weight).
  • DMDS dimethyl disulphide
  • the stabilized catalytic activities of equal volumes of catalysts are thus measured in the hydrogenation reaction of toluene.
  • the activity measurement conditions are as follows:
  • T unconverted toluene
  • MCC6 methylcyclohexane
  • EtCC5 ethylcyclopentane
  • DMCC5 dimethylcyclopentanes
  • AHYD In (IO ( V (100-XHYD))
  • Table 1 compares the relative hydrogenating activities of said catalysts, equal to the ratio of the activity of the catalyst under consideration to the activity of the catalyst C3 which is not in accordance with the invention and taken as a reference (activity 100%).
  • Table 1 shows the significant activity gain obtained on the catalysts prepared according to the process according to the invention with respect to calcined reference catalysts, which do not comply with the invention, for which the entire phosphorus has been deposited on the catalyst in the impregnating solution.
  • the gains are all the more important that the proportion of phosphorus introduced according to the invention relative to the total phosphorus is high.
  • Table 1 also shows that there is no reduction in the specific surface area, calculated in m 2 per gram of alumina, between the starting catalyst precursor and the final catalyst obtained by the process according to the invention. This one remains constant.
  • Table 2 compares the relative hydrogenating activities of the dried catalysts, equal to the ratio of the activity of the catalyst under consideration to the activity of the catalyst C3 'not in accordance with the invention and taken as a reference (activity 100%). .
  • Table 2 shows the significant activity gain obtained on the dried catalysts prepared according to the process according to the invention with respect to dried reference catalysts, not according to the invention, for which the entire phosphorus has been deposited on the catalyst in the impregnating solution. It should be noted that the gain in terms of activity is greater when the invention is applied to dried catalysts than to calcined catalysts.
  • the dried catalyst C7 'and its calcined version C7 are prepared in the same manner as their Cl' and Cl counterparts, except that the cobalt hydroxide is replaced by nickel hydroxycarbonate.
  • the amounts of precursors used were as follows: 68.2 g of formed alumina, 24.0 g of molybdenum trioxide, 11.19 g of nickel hydroxycarbonate and 7.47 g of phosphoric acid.
  • the catalyst C8 (respectively C8 ') is obtained by impregnation of the calcined NiMoP catalyst C7 (respectively dried catalyst C7') so that the amount of phosphorus introduced during this impregnation step according to step a) of method according to the invention is 0.05 mol P / mol of Mo present on the catalyst.
  • the phosphorus precursor used is phosphoric acid and the solvent chosen from "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley. VCH, 3rd edition, 2003, pages 472-474 is the DMSO, with a dielectric constant of 46. After a maturation of 48 h, the extrudates are dried at 120 ° C. for 2 hours under a pressure of 100 mbar. The final contents of metal oxides and the specific surface area of the catalysts C8 and C8 'are then as follows:
  • the test is conducted in an isothermal pilot reactor fixed bed traversed, flowing fluids from bottom to top. After sulfurization in situ at 350 ° C. in the unit under pressure using the test gas oil, to which 2% by weight of dimethyl disulphide is added, the hydrodesulfurization test was carried out under the following operating conditions:
  • Table 3 shows the significant activity gain obtained on the catalysts. CoMo is also extrapolable to the NiMo catalysts in HDS of diesel fuel.
  • the catalytic performances of the catalysts C7 'and C8' tested are given in Table 4, the dried catalyst C7 'being the reference catalyst.
  • Table 3 also shows that there is no reduction in the specific surface area, calculated in m 2 per gram of alumina, between the starting calcined catalyst precursor C7 and the final catalyst obtained C8 by the process according to the invention. On the contrary, it remains constant.
  • Table 4 shows the significant activity gain obtained on the CoMo catalysts is also extrapolable to NiMo catalysts in diesel HDS.
  • the test is conducted in an isothermal pilot reactor fixed bed traversed, flowing fluids from bottom to top. After sulfurization in situ at 350 ° C. in the unit under pressure using a straight-run gas oil, to which 2% by weight of dimethyl disulphide is added, the hydrotreatment test was carried out under the following operating conditions:
  • Table 6 shows the significant activity gain obtained on the catalyst prepared according to the invention relative to the reference catalyst.
  • the calcined catalyst C9 is prepared in the same manner as the calcined catalyst C3, using the same impregnation solution, but diluted by a factor of 1.35.
  • the final contents of metal oxides and the specific surface area of the calcined catalyst C9 are then as follows:
  • the catalyst ClO is obtained by impregnating the calcined catalyst C9 so that the amount of phosphorus introduced during this impregnation step is 0.015 (mol of P) / (mol of Mo) present on the catalyst.
  • the phosphorus precursor used is phosphoric acid, and the solvent chosen from Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3rd edition, 2003, pages 472-474 is methanol, a constant dielectric equal to 33. After a maturation of 96 h, the extrudates are dried at 120 ° C. for 2 hours under a pressure of 100 mbar The final metal oxide contents and the specific surface area of the C10 catalyst are then as follows:
  • Example 14 Comparative test in selective hydrodesulfurization of a FCC type gasoline type charge.
  • Catalysts C9 (non-compliant) and ClO (compliant) previously described were tested in the selective desulfurization reaction of a FCC type gasoline type charge.
  • the test is carried out in a Grignard type reactor (in batch) at 200 ° C. under a pressure of 3.5 MPa in hydrogen which is kept constant.
  • the model charge consists of 1000 ppm of 3-methylthiophene and 10% by weight of dimethyl 2,3-butene-2 in n-heptane.
  • the volume of solution is 210 cm 3 cold, the mass of catalyst tested being 4 grams (before sulfuration).
  • the catalyst Before testing, the catalyst is previously sulphurized in a sulfurization bench, under a mixture of H 2 SfR 2 (41 / h, 15% by volume of H 2 S) at 400 ° C. for two hours (ramp of 5 ° C./min) , then reduced under pure H 2 at 200 0 C for two hours. The catalyst is then transferred to the Grignard reactor in the absence of air.
  • the rate constant (normalized per g catalyst) is calculated by assuming a sequence 1 for the desulfurization reaction (1-HDS), e t a 0 order for the hydrogenation reaction (k ⁇ oo) -
  • the selectivity of a catalyst by the ratio of its rate constants, k ⁇ Ds / kHD0-
  • the relative rate constants of the C9 and ClO catalysts and their selectivity are reported in Table 6 below. TABLE 6 Relative Rate Constants and Selectivity of Catalysts C9 (Non-Conforming) and ClO
  • the ClO catalyst according to the invention is both more active in desulphurization and more selective than the calcined catalyst C9 (non-compliant).
  • the dried catalyst CI1 'not according to the invention is prepared by impregnating the dried catalyst C2 1 with a control solution containing no phosphorus compound.
  • the solvent selected from Solvents and Solvent Effects in Organic Chemistry, C.Richardhardt, Wiley-VCH, 3rd Edition, 2003, pp. 472-474 is 1,2-ethanediol, having a dielectric constant of 38.
  • Catalyst C1 is a control catalyst prepared in the same manner from the calcined catalyst C2.
  • Catalyst C12 ' is prepared according to the invention by impregnation with a solution containing 0.275 moles of phosphorus per mole of molybdenum present on the calcined catalyst C2.
  • the phosphorus compound chosen is phosphoric acid.
  • the solvent selected from Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3rd edition, 2003, pages 472-474 is also 1,2-ethanediol, with a dielectric constant of 38.
  • the final contents in metal oxides and the specific surface area of the catalyst Cl 2 are then as follows:
  • Catalyst Cl 3 ' is prepared by impregnating a solution containing 0.275 moles of phosphorus per mole of molybdenum present on the catalyst C2'.
  • the phosphorus compound chosen is phosphoric acid.
  • the solvent selected from Solvents and Solvent Effects in Organic Chemistry, C.Richardhardt, Wiley-VCH, 3rd edition, 2003, pages 472-474 is diethylene glycol diethyl ether with a dielectric constant of 5.7. very weakly polar and is therefore not in accordance with the invention
  • the final contents of metal oxides recalculated taking into account the loss on ignition of the dried catalyst are:
  • Catalysts C2, C2 '(non-compliant), CI1, CH' (non-compliant), Cl 2, Cl 2 '(compliant), Cl 3' (non-compliant) previously described were also compared in a hydrodesulfurization test. a diesel whose main characteristics are described in Example 10 of this document.
  • Table 7 shows that the significant activity gain obtained on the CoMoP catalysts is well linked to the presence of the phosphorus compound introduced according to step a) of impregnating the process according to the invention.
  • the catalytic performances of the catalysts CH ', C12' and C13 'tested are given in Table 8, catalyst C7' being the reference catalyst.
  • Table 5 shows that, although the starting catalysts contain phosphorus which has never been calcined, a significant increase in activity is achieved by adding phosphorus in a polar solvent of higher dielectric constant than As 1,2-ethanediol in an impregnation step according to step a) of the process according to the invention.
  • the gain observed for the catalyst CH ', not in accordance with the invention, impregnated with a solution containing no phosphorus compound is less. Furthermore, no increase in activity is obtained by adding phosphoric acid dissolved in a very weakly polar solvent such as diethylene glycol diethyl ether.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de préparation d'un catalyseur d'hydrotraitement comprenant les étapes suivantes : a) au moins une étape d'imprégnation d'un précurseur catalytique calciné et/ou séché contenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB et un support amorphe, par une solution d'imprégnation constituée d'au moins un composé phosphore en solution dans au moins un solvant polaire de constante diélectrique supérieure à 20; b) une étape de maturation dudit précurseur catalytique imprégné issu de l'étape a); c) une étape de séchage, sans étape de calcination ultérieure, dudit précurseur catalytique issu de l'étape b).

Description

PROCÉDÉ DE PRÉPARATION DE CATALYSEUR D'HYDROTRAITEMENT PAR IMPREGNATION D'UN COMPOSÉ PHOSPHORE
L'invention concerne le domaine des hydrotraitements.
Elle a principalement pour objet un procédé de préparation d'un catalyseur utilisable dans des procédés d'hydrotraitement, notamment dans les procédés d'hydrodésulfuration, d'hydrodésazotation, d'hydrodémétallation, d'hydrogénation et d'hydroconversion de coupes pétrolières.
Habituellement, un catalyseur d'hydrotraitement de coupes hydrocarbonées a pour but d'éliminer les composés soufrés ou azotés contenus dans celles-ci afin de mettre par exemple un produit pétrolier aux spécifications requises (teneur en soufre, teneur en aromatiques etc..) pour une application donnée (carburant automobile, essence ou gazole, fioul domestique, carburéacteur). Il peut également s'agir de pré-traiter cette charge afin d'en éliminer les impuretés avant de lui faire subir différents procédés de transformation pour en modifier les propriétés physico-chimiques, tels que par exemple les procédés de reformage, d'hydrocraquage de distillats sous vide, d'hydroconversion de résidus atmosphériques ou sous-vide. La composition et l'utilisation des catalyseurs d'hydrotraitement sont particulièrement bien décrits dans l'article de B. S Clausen, H. T. Tops0e, et F.E. Massoth, issu de l'ouvrage Catalysis Science and Technology, volume 11 (1996), Springer- Verlag. Après sulfuration, plusieurs espèces de surface sont présentes sur le support, qui ne présentent pas toutes de bonnes performances pour les réactions souhaitées. Ces espèces sont particulièrement bien décrites dans la publication réalisée par Tops0e et al. parue dans le numéro 26 de Catalysis Review Science and Engineering de 1984, pages 395-420.
Le durcissement des normes de pollution automobile dans la communauté européenne (Journal Officiel de l'Union européenne, L76, 22 mars 2003, Directive 2003/70/CE, pages L76/10- L76/19) va contraindre les raffïneurs à réduire très fortement la teneur en soufre dans les carburants diesel et les essences (au maximum 10 parties par million poids (ppm) de soufre au 1er janvier 2009, contre 50 ppm au 1er janvier 2005). Ces contraintes vont se traduire par un besoin de nouvelles unités de raffinage ou bien par une forte augmentation de l'activité à iso-volume des catalyseurs d'hydrotraitement.
Pour améliorer l'activité des catalyseurs, il est donc nécessaire d'optimiser chaque étape de leur préparation pour avoir un maximum d'espèces de surface présentant une bonne activité en hydrotraitement. En particulier, il faut contrôler les interactions entre le support et les précurseurs de la phase active qui aboutissent à des espèces réfractaires à la sulfuration (par exemple, CoAl2O4 ou NiAl2O4), inutiles à l'acte catalytique et ayant des effets indésirables sur l'activité catalytique. Ces interactions entre le support aluminique et les sels précurseurs en solution sont bien connues de l'homme de l'art : les ions Al3+ extraits de la matrice aluminique peuvent former des hétéropolyanions d'Anderson de formule [Al(OH)6Mo6Oi g]3" mis en évidence par Carrier et al. (Journal of the American Chemical Society 1997, 119 (42), 10137-10146). La formation d'hétéropolyanions d'Anderson est détectée en spectrométrie Raman au niveau de la surface du support aluminique. Par ailleurs, pour de fortes teneurs en molybdène, des phases réfractaires à la sulfuration peuvent se former par frittage à la surface du catalyseur comme les phases CoMoO4 ou Co3O4 (B. S Clausen, H. T. Topsβe, et F.E. Massoth, issu de l'ouvrage Catalysis Science and Technology, volume 11 (1996), Springer-Verlag).
Afin d'augmenter l'activité des catalyseurs d'hydrotraitement, il apparaît donc important de mieux contrôler les différentes étapes de préparation des catalyseurs d'hydrotraitement, en particulier les interactions entre le support et les précurseurs de la phase active. Ainsi, par rapport aux catalyseurs élaborés classiquement en utilisant de l'heptamolybdate d'ammonium et du nitrate de cobalt ou de nickel, une solution pour éviter la formation de [Al(OH)6Mo6Ois]3 peut être l'utilisation d'hétéropolyanions phosphomolybdiques. Ceux-ci sont traditionnellement obtenus par introduction du d'acide phosphorique en co-imprégnation avec les précurseurs de la phase active. Le molybdène est protégé par formation d'hétéropolyanions phosphomolybdiques plus stables que l'hétéropolyanion [Al(OH)6Mo6O18]3-
En outre, il est connu de l'homme de l'art que les catalyseurs dopés au phosphore présentent une meilleure activité catalytique. Des hétéropolyanions de type Keggin PMOi2O40 3", PCoMo11O40 7" ainsi que l'hétéropolyanion P25θ23 δ" sont désormais ainsi couramment utilisés de nos jours pour la préparation des catalyseurs. Il a ainsi été montré dans Journal of the American Chemical Society 2004, 126 (44), 14548-14556) que l'utilisation de l'hétéropolaynion P2Mo5O23 6" était particulièrement avantageuse. Cet hétéropolyanion est obtenu pour des ratio molaire P/Mo en solution d'imprégnation supérieurs ou égaux à 0,4.
Néanmoins, l'introduction d'acide phosphorique dans les solutions d'imprégnation, ainsi que les faibles pH des solutions hétéropolyanioniques, entraîne un phénomène plus important de dissolution partielle du support. Ceci se traduit par une dégradation les paramètres texturaux, notamment la baisse de la surface spécifique BET sur le catalyseur final (voir Applied Catalysis 56 (1989) 197-206 en particulier page 202). Or, une telle baisse nuit à la dispersion des précurseurs de phase active à la surface du support, pouvant conduire à la formation par frittage de phase réfractaires CoMoO4 (respectivement NiMoO4) et Co3O4 (respectivement NiO) lors d'une éventuelle calcination. Un phénomène similaire s'observe avec les hétéropolyanions phosphotungstiques.
Il apparaît donc intéressant de trouver des moyens de préparation des catalyseurs d'hydrotraitement en général, et en particulier les catalyseurs CoMoP ou NiMoP, autres que ceux existants.
Le brevet US 4743574 Intevep propose une solution consistant à introduire préalablement tout le phosphore dans le support. Le brevet décrit une méthode de préparation d'un catalyseur pour l'hydrodésulfuration et l'hydrodéazotation contenant un support aluminophosphate ou aluminoborate et permettant la mise en oeuvre d'une teneur réduite en Cobalt. En utilisant un support à base d'aluminophosphate (ou d'aluminoborate), c'est à dire en ajoutant de faibles quantités de phosphore sous forme P2O5 (ou de bore sous forme B2Cb ) à de l'alumine avant le dépôt des métaux constituant la phase active sur le support, les interactions entre lesdits métaux et l'alumine sont diminuées, ce qui permet de diminuer la quantité de métal constituant la phase active engagée, en particulier la quantité de Cobalt, sans perte d'activité catalytique. Néanmoins, la mise en forme de tels supports est délicate du fait des propriétés asséchantes de l'anhydride phosphorique (P2O5) et ne permet pas l'amélioration de la surface BET du catalyseur final, ce qui entraîne une diminution de la dispersion des précurseurs de la phase active à la surface du support.
Un avantage de l'invention est de fournir un procédé de préparation d'un catalyseur d'hydrotraitement permettant l'introduction de phosphore sous la forme d'un composé phosphore par une étape d'imprégnation d'un précurseur catalytique séché et/ou calciné contenant au moins un élément du groupe VHI et/ou au moins un élément du groupe VIB et un support amorphe, ledit catalyseur d'hydrotraitement obtenu présentant une meilleure activité catalytique par rapport aux catalyseurs de l'art antérieur.
Un autre avantage de la présente invention est de fournir un procédé de préparation d'un catalyseur d'hydrotraitement permettant l'introduction d'une quantité non négligeable phosphore sous la forme d'un composé phosphore par une étape d'imprégnation d'un précurseur catalytique séché et/ou calciné contenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB et un support amorphe, tout en maintenant la surface spécifique, calculée en m2 par gramme d'alumine, entre le précurseur catalytique séché et/ou calciné de départ et le catalyseur final obtenu par le procédé selon l'invention. II a maintenant été trouvé dans le cadre de l'invention un procédé remédiant aux problèmes précédemment cités et qui contrairement à l'art antérieur, permettent de modérer l'éventuelle diminution de la surface BET. La présente invention décrit un procédé de préparation d'un catalyseur d'hydrotraitement comprenant les étapes suivantes :
a) au moins une étape d'imprégnation d'un précurseur catalytique séché et/ou calciné contenant au moins un élément du groupe VIH et/ou au moins un élément du groupe VIB et un support amorphe, par une solution d'imprégnation constituée d'au moins un composé phosphore en solution dans au moins un solvant polaire de constante diélectrique supérieure à 20,
b) une étape de maturation dudit précurseur catalytique imprégné issu de l'étape a),
c) une étape de séchage, sans étape de calcination ultérieure, dudit précurseur catalytique issu de l'étape b).
Sans être lié par une quelconque théorie, il est probable que le procédé selon l'invention, du fait de son étape a), permettant au moins une imprégnation d'un précurseur catalytique contenant préalablement au moins un élément du groupe VIII et/ou VIB et un support amorphe, de préférence Palumine, par une solution d'imprégnation constituée d'au moins un composé phosphore en solution • dans au moins un solvant polaire de constante diélectrique supérieure à 20, permet d'éviter la mise en contact direct du support amorphe, de préférence Palumine avec ledit composé phosphore. Le procédé selon l'invention permet donc d'éviter le phénomène de dissolution du support amorphe, de préférence l'alumine, en présence du composé phosphore, évitant ainsi une diminution de la surface BET.
Le précurseur catalytique séché et/ou calciné contenant au moins un élément du groupe YJE et/ou au moins un élément du groupe VIB et un support amorphe, utilisé dans l'étape a) du procédé selon l'invention, ainsi que son mode de préparation sont décrits ci dessous.
Ledit précurseur catalytique utilisé dans l'étape a) du procédé selon l'invention peut être préparé pour une grande part par toutes les méthodes bien connues de l'homme du métier.
Ledit précurseur catalytique contient une fonction hydro-deshydrogénante constituée d'au moins un élément du groupe VHI et/ou d'au moins un élément du groupe VEB et contient éventuellement du phosphore et/ou du silicium en tant que dopant et un support amorphe. Le support amorphe dudit précurseur catalytique généralement utilisé est choisi dans le groupe formé par l'alumine et la silice alumine.
Dans le cas où le support amorphe est la silice- alumine, ledit support amorphe contient de préférence au moins 40 % en poids d'alumine.
De préférence, ledit support amorphe est constituée d'alumine et de manière très préférée, d'alumine gamma.
Dans le cas où le support amorphe est de l'alumine, ledit support amorphe est avantageusement mis en forme de la manière suivante : une matrice constituée d'un gel humide d'alumine, tel que par exemple l'oxyhydroxyde d'aluminium hydraté est mélangé à une solution aqueuse acide telle que par exemple une solution d'acide nitrique, puis malaxé. Il s'agit de la peptisation. A l'issue du malaxage, la pâte obtenue est passée à travers une filière pour former des extradés de diamètre compris de préférence entre 0,4 et 4 mm. Les extradés subissent ensuite une étape de séchage à une température de séchage comprise entre 80 et 1500C. La mise en forme dudit support amorphe est ensuite avantageusement suivie d'une étape de calcination, opérant à une température de calcination comprise entre 300 et 600 0C.
La fonction hydro-deshydrogénante dudit précurseur catalytique est assurée par au moins un métal du groupe VIB de la classification périodique choisi parmi le molybdène et le tungstène, pris seul ou en mélange et/ou par au moins un métal du groupe VIH de la classification périodique choisi parmi le cobalt et le nickel, pris seul ou en mélange.
La teneur totale en éléments hydro-déshydrogénants des groupes VIB et/ou VIII est avantageusement supérieure à 2,5 % poids oxyde par rapport au poids total du catalyseur.
Dans le cas où une activité importante en hydrodésulfuration est souhaitée, les métaux de la fonction hydro-deshydrogénante consistent avantageusement en l'association de cobalt et de molybdène ; si une forte activité en hydrodésazotation est recherchée, une association de nickel et de molybdène ou de tungstène est préférée.
Les précurseurs des éléments du groupe VIB qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, parmi les sources de molybdène et de tungstène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et tungstiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, le tungstate d'ammonium, l'acide phosph.omolybd.ique, l'acide phosphotungstique et leurs sels. On utilise de préférence le trioxyde de molybdène ou l'acide phosphotungstique.)
Les quantités des précurseurs des éléments du groupe VIB sont avantageusement compris entre 5 et 35% poids d'oxydes par rapport à la masse totale du précurseur catalytique, de préférence entre 15 et 30% poids et de manière très préférée, entre 16 et 29% poids.
Les précurseurs des éléments du groupe VHI qui peuvent être utilisées sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates des éléments du groupe VHl. Dans le cas où l'élément du groupe VDI utilisé est le cobalt, l'hydroxyde de cobalt, et le carbonate de cobalt sont utilisés de manière préférée. Dans le cas où l'élément du groupe VlH utilisé est le nickel, rhydroxycarbonate de nickel est utilisé de manière préférée.
Les quantités des précurseurs des éléments du groupe VIII sont avantageusement compris entre 1 et 10% poids d'oxydes par rapport à la masse totale du précurseur catalytique, de préférence entre 1,5 et 9% poids et de manière très préférée, entre 2 et 8% poids.
La fonction hydro-deshydrogénante dudit précurseur catalytique peut avantageusement être introduite dans le catalyseur à divers niveaux de la préparation et de diverses manières.
Ladite fonction hydro-deshydrogénante peut avantageusement être introduite au moins en partie lors de la mise en forme dudit support amorphe ou de préférence après cette mise en forme.
Dans le cas où la fonction hydro-deshydrogénante est introduite au moins en partie lors de la mise en forme dudit support amorphe, elle peut avantageusement être introduite en partie seulement au moment du malaxage avec un gel d'oxyde choisi comme matrice, le reste de l'(des ) élément(s) hydrogénant(s) étant alors introduit après le malaxage, et de préférence après calcination du support préformé. Ladite fonction hydro-deshydrogénante peut également être avantageusement introduite en totalité au moment du malaxage avec le gel d'oxyde choisi comme matrice.
De manière préférée, le métal du groupe VIB est introduit en même temps ou juste après le métal du groupe VÏÏI, quel que soit le mode d'introduction.
Dans le cas où la fonction hydro-deshydrogénante est introduite au moins en partie et de préférence en totalité, après la mise en forme dudit support amorphe, l'introduction de ladite fonction hydro- deshydrogénante sur le support amorphe peut être avantageusement effectuée par une ou plusieurs imprégnation en excès de solution sur le support mis en forme et calciné, ou de préférence par une ou plusieurs imprégnation à sec et de manière très préféré par une imprégnation à sec dudit support mis en forme et calciné, à l'aide de solutions contenant les sels précurseurs des métaux. De manière préférée, la fonction hydro-déshydrogénante est introduite en totalité après la mise en forme dudit amorphe, par une imprégnation à sec dudit support à l'aide d'une solution d'imprégnation contenant les sels précurseurs des métaux. L'introduction de ladite fonction hydro-deshydrogénante peut également être avantageusement effectuée par une ou plusieurs imprégnations du support mis en forme et calciné, par une solution du (ou des) précurseur(s) de l'oxyde du métal du groupe VHI lorsque le (ou les) précurseur(s) des oxydes du métal du groupe VIB a (ont) été préalablement introduit(s) au moment du malaxage du support. Dans le cas où les éléments sont introduits en plusieurs imprégnations des sels précurseurs correspondants, une étape de calcination intermédiaire du catalyseur est en général effectuée, à une température comprise entre 250 et 500 0C.
Un dopant du catalyseur choisi parmi le phosphore, le bore, le fluor et le silicium, pris seul ou en mélange, et de préférence ledit dopant étant le phosphore, peut également être avantageusement introduit. Ledit dopant peut être avantageusement introduit seul ou en mélange avec le métal ou les métaux du groupe VIB et/ou du groupe VU!. Il peut avantageusement être introduit juste avant ou juste après la peptisation de la matrice choisie, telle que par exemple et de préférence l'oxyhydroxyde d'aluminium (boehmite) précurseur de l'alumine. Ledit dopant peut également être avantageusement introduit en mélange avec le métal du groupe VIB ou le métal du groupe VIII, en totalité ou en partie sur le support amorphe mis en forme, de préférence l'alumine sous forme extradée, par une imprégnation à sec dudit support amorphe à l'aide d'une solution contenant les sels précurseurs des métaux et le précurseur du dopant.
De nombreuses sources de silicium peuvent être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(OEt)4, les silanes, les polysilanes, les siloxanes, les polysiloxanes, les silicates d'halogénures comme le fluorosilicate d'ammonium (NELt)2SiFe ou le fluorosilicate de sodium Na2SiF6- L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être également ajouté par exemple par imprégnation d'un composé du silicium de type polyalkyl siloxane en suspension dans l'eau.
La source de bore peut être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool ou encore dans un mélange eau/ethanolamine. La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme phosphates d'ammonium conviennent également.
Les sources de fluor qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, les anions fluorures peuvent être introduits sous forme d'acide fluorhydrique ou de ses sels. Ces sels sont formés avec des métaux alcalins, rammonium ou un composé organique. Dans ce dernier cas, le sel est avantageusement formé dans le mélange réactionnel par réaction entre le composé organique et l'acide fluorhydrique. Il est également possible d'utiliser des composés hydrolysables pouvant libérer des anions fluorures dans l'eau, comme le fluorosilicate d'ammonium (MHU)2SiFg ou de sodium Na2SiFo, le tétrafluorure de silicium SiF4. Le fluor peut être introduit par exemple par imprégnation d'une solution aqueuse d'acide fluorhydrique, ou de fluorure d'ammonium ou encore de bifluorure d'ammonium.
Le dopant est avantageusement introduit dans le précurseur catalytique dans une quantité d'oxyde dudit dopant comprise entre 0,1 à 40 %, de préférence de 0,1 à 30 % et de manière encore plus préférée de 0,1 à 20 % lorsque ledit dopant est choisi parmi le bore et le silicium, (les % étant exprimés en % poids d'oxydes).
Le dopant peut également être avantageusement introduit dans le précurseur catalytique dans une quantité d'oxyde dudit dopant comprise entre 0 à 20%, de préférence de 0,1 à 15% et de manière encore plus préférée de 0,1 à 10%, lorsque ledit dopant est le phosphore, (les % étant exprimés en % poids d'oxydes).
Le dopant peut également être avantageusement introduit dans le précurseur catalytique dans une quantité d'oxyde dudit dopant comprise entre 0 à 20%, de préférence de 0,1 à 15% et de manière encore plus préférée de 0,1 à 10%, lorsque ledit dopant est le fluor (les % étant exprimés en % d'oxydes).
L'introduction de ladite fonction hydro-deshydrogénante et éventuellement d'un dopant du catalyseur dans ou sur le support mis en forme et calciné est ensuite avantageusement suivie d'une étape de séchage au cours de laquelle le solvant des sels métalliques, précurseurs du (ou des) oxydes de métal(aux) (généralement de l'eau) est éliminé, à une température comprise entre 50 et 150 0C.
L'étape de séchage du précurseur catalytique ainsi obtenu est ensuite éventuellement suivie d'une étape de calcination sous air, à une température comprise entre 200 et 5000C, ladite étape de calcination étant destinée à structurer la phase oxyde du précurseur catalytique obtenu et d'augmenter la stabilité dudit précurseur catalytique et ainsi sa durée de vie dans l'unité.
Notons enfin que cette liste n'est pas limitative, puisqu'un grand nombre de variantes peuvent être mises en œuvre.
Selon un mode de réalisation préféré du procédé de préparation du précurseur catalytique utilisé dans l'étape a) du procédé selon l'invention, ledit précurseur catalytique est obtenu par imprégnation d'une solution du (ou des) précurseur(s) de l'oxyde du métal du groupe VHI et/ou du (ou des) précurseur(s) des oxydes du métal du groupe VIB sur un support mis en forme et calciné, suivie d'un séchage à une température de séchage comprise entre 50 et 150 0C. Le précurseur catalytique ainsi obtenu est donc un précurseur catalytique séché.
Selon un mode de réalisation très préféré du procédé de préparation du précurseur catalytique utilisé dans l'étape a) du procédé selon l'invention, la solution d'imprégnation ci-dessus contient également au moins un dopant choisi parmi le phosphore et le silicium, pris seul ou en mélange.
Selon un autre mode de réalisation préféré du procédé de préparation du précurseur catalytique utilisé dans l'étape a) du procédé selon l'invention, ledit précurseur catalytique est obtenu par imprégnation d'une solution du (ou des) précurseur(s) de l'oxyde du métal du groupe VIH et/ou du (ou des) précurseur(s) des oxydes du métal du groupe VTB sur un support mis en forme et calciné, suivie d'un séchage à une température de séchage comprise entre 50 et 1500C et d'une calcination sous air, à une température comprise entre 200 et 5000C. Le précurseur catalytique ainsi obtenu est donc un précurseur catalytique calciné.
Selon un autre mode de réalisation très préféré du procédé de préparation du précurseur catalytique utilisé dans l'étape a) du procédé selon l'invention, la solution d'imprégnation ci-dessus contient également au moins un dopant choisi parmi le phosphore et le silicium, pris seul ou en mélange.
Le précurseur catalytique séché et/ou calciné ainsi obtenu est ensuite utilisé dans l'étape a) du procédé selon l'invention.
Conformément à l'étape a) du procédé selon l'invention, le précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VDI et/ou au moins un élément du groupe VIB et un support amorphe. Selon un mode de réalisation préféré de l'étape a) du procédé de préparation selon l'invention, ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VTIT1 choisi parmi le cobalt et le nickel, pris seul ou en mélange et/ou au moins un élément du groupe VIB choisi parmi le molybdène et le tungstène, pris seul ou en mélange, au moins un dopant choisi dans le groupe formé par le phosphore et le silicium, pris seul ou en mélange et un support amorphe choisi parmi l'alumine et la silice alumine.
Selon un mode de réalisation très préféré de l'étape a) du procédé de préparation selon l'invention, ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VTJI, ledit élément du groupe VIJI étant le cobalt et au moins un élément du groupe VIB, ledit élément du groupe VIB étant le molybdène, du phosphore en tant que dopant et un support alumine amorphe.
Selon un autre mode de réalisation très préféré de l'étape a) du procédé de préparation selon l'invention, ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VHJ, ledit élément du groupe VTJI étant le nickel et au moins un élément du groupe VIB, ledit élément du groupe VIB étant le molybdène, du phosphore en tant que dopant et un support alumine amorphe.
Selon un autre mode de réalisation très préféré de l'étape a) du procédé de préparation selon l'invention, ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VTJI, ledit élément du groupe VUI étant le nickel et au moins un élément du groupe VIB, ledit élément du groupe VIB étant le tungstène, du phosphore en tant que dopant et un support alumine amorphe.
Conformément à l'étape a) du procédé selon l'invention, ledit précurseur catalytique séché et/ou calciné est imprégné par une solution d'imprégnation constituée d'au moins un composé phosphore en solution dans au moins un solvant polaire de constante diélectrique supérieure à 20.
Le composé phosphore de la solution d'imprégnation de l'étape a) du procédé selon l'invention est avantageusement choisi dans le groupe formé l'acide orthophosphorique H3PO4, l'acide métaphosphorique et le pentoxyde de phosphore ou anhydride phosphorique P2O5 ou P4O]0, pris seuls ou en mélange, et de préférence, ledit composé phosphore est l'acide orthophosphorique H3PO4.
Le composé phosphore de la solution d'imprégnation de l'étape a) du procédé selon l'invention peut également être avantageusement choisi dans le groupe formé par le dibutylphosphate, le triisobutyl phosphate, les esters de phosphate et les éthers de phosphate, pris seul ou en mélange. Le composé phosphore de la solution d'imprégnation de l'étape a) du procédé selon l'invention peut également être avantageusement choisi dans le groupe formé par le phosphate d'ammonium NH4H2PO41 le phosphate de diammonium (NILi)2HPO4, et le polyphosphate d'ammonium (NKO4P2O7, pris seul ou en mélange.
Ledit composé phosphore est avantageusement introduit dans la solution d'imprégnation de l'étape a) du procédé selon l'invention dans une quantité correspondant à un rapport molaire de phosphore P par métal (métaux) du groupe VIB dudit précurseur catalytique compris entre 0,001 à 3 mole/mole, de préférence compris entre 0,005 à 2 mole/mole, de manière préférée compris entre 0,005 et 1 mole/mole et de manière très préférée, compris entre 0,01 et 1 mole/mole.
Conformément à l'étape a) du procédé selon l'invention, le composé phosphore est introduit sur le précurseur catalytique séché et/ou calciné par au moins une étape d'imprégnation et de préférence par une seule étape d'imprégnation d'une solution d'imprégnation sur ledit précurseur catalytique séché et/ou calciné décrit plus haut.
Ledit composé phosphore peut avantageusement être déposé soit par imprégnation en slurry, soit par imprégnation en excès, soit par imprégnation à sec, soit par tous autres moyens connus de l'homme du métier.
Selon un mode de réalisation préféré de l'étape a) du procédé de préparation selon l'invention, l'étape a) est seule une étape d'imprégnation à sec.
Conformément à l'étape a) du procédé selon l'invention, la solution d'imprégnation de l'étape a) est constituée d'au moins un composé phosphore, et de préférence d'un seul composé phosphore en solution dans au moins un solvant polaire de constante diélectrique supérieure à 20.
Dans le cas où ladite solution d'imprégnation de l'étape a) du procédé selon l'invention est constituée d'au moins un composé phosphore en solution dans plus d'un solvant polaire, c'est-à-dire dans un mélange de solvants polaire, chacun des solvants constituants le mélange de solvants polaires présente avantageusement, une constante diélectrique supérieure à 20, et de préférence supérieure à 24.
Selon un premier mode de réalisation préféré de l'étape a) du procédé selon l'invention, ladite solution d'imprégnation est constituée d'au moins un composé phosphore et de préférence d'un seul composé phosphore en solution dans un seul solvant polaire de constante diélectrique supérieure à 20. De manière très préférée, ladite solution d'imprégnation est constituée d'au moins un composé phosphore et de préférence d'un seul composé phosphore en solution dans un seul solvant polaire de constante diélectrique supérieure à 24.
Selon un deuxième mode de réalisation préféré de l'étape a) du procédé selon l'invention, ladite solution d'imprégnation est constituée d'au moins un composé phosphore et de préférence d'un seul composé phosphore en solution dans un mélange de deux solvants polaires, chacun des deux solvants polaires présentant une constante diélectrique supérieure à 20.
De manière très préférée, ladite solution d'imprégnation est constituée d'au moins un composé phosphore et de préférence d'un seul composé phosphore en solution dans un mélange de deux solvants polaires, chacun des deux solvants polaires présentant une constante diélectrique supérieure à
24.
Selon un troisième mode de réalisation préféré de l'étape a) du procédé selon l'invention, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans au moins un solvant polaire, dépourvu de métaux, de constante diélectrique supérieure à 20.
De manière préférée, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans un seul solvant polaire, dépourvu de métaux, de constante diélectrique supérieure à 20.
De manière très préférée, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans un mélange de deux solvants polaires, dépourvu de métaux, chacun des deux solvants polaires présentant une constante diélectrique supérieure à 20.
Selon un troisième mode de réalisation encore plus préféré de l'étape a) du procédé selon l'invention, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans au moins un solvant polaire, dépourvu de métaux, de constante diélectrique supérieure à 24. De manière préférée, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans un seul solvant polaire, dépourvu de métaux, de constante diélectrique supérieure à 24.
De manière très préférée, ladite solution d'imprégnation est constituée uniquement d'au moins un composé phosphore et de préférence uniquement d'un seul composé phosphore en solution dans un mélange de deux solvants polaires, dépourvu de métaux, chacun des deux solvants polaires présentant une constante diélectrique supérieure à 24.
Ledit solvant polaire utilisé dans l'étape a) du procédé selon l'invention est avantageusement choisi dans le groupe des solvants protiques polaires choisis parmi le méthanol, l'éthanol, l'eau, le phénol, le cyclohexanol et le 1,2-éthanediol, pris seul ou en mélange.
Ledit solvant polaire utilisé dans l'étape a) du procédé selon l'invention peut également être avantageusement choisi dans le groupe formé par le carbonate de propylène, le DMSO (diméthylsulfoxyde) ou le sulfolane, pris seul ou en mélange.
De manière préférée, on utilise un solvant protique polaire.
Une liste des solvants polaires usuels ainsi que leur constante diélectrique peut être trouvée dans le livre "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474)
Selon un mode de réalisation préféré de l'étape a) du procédé de préparation selon l'invention, il est possible de réaliser plusieurs étapes d'imprégnation successives utilisant une solution d'imprégnation constituée d'au moins un composé phosphore, et de préférence d'un seul composé phosphore en solution dans un solvant polaire adéquat défini ci dessus.
Conformément à l'étape b) du procédé de préparation selon l'invention, le précurseur catalytique imprégné issu de l'étape a) d'imprégnation est soumis à d'une étape de maturation particulièrement importante pour l'invention. L'étape b) de maturation dudit précurseur catalytique imprégné issu de l'étape a) est avantageusement réalisée à pression atmosphérique et à une température comprise entre la température ambiante et 6O0C et pendant une durée de maturation comprise entre 12 heures et 340 heures et de préférence comprise entre 24 heures et 170 heures. La durée de la maturation est avantageusement fonction de la température à laquelle cette étape est réalisée. Un moyen de vérifier que la durée de maturation est suffisante est de caractériser la répartition du phosphore dans le précurseur catalytique imprégné issu de l'étape a) du procédé selon l'invention, par des techniques, telles qu'une microsonde de Castaing donnant un profil de répartition des divers éléments, une microscopie électronique par transmission couplée à une analyse X des composants du catalyseur, ou bien encore par l'établissement d'une cartographie de répartition des éléments présents dans le catalyseur par microsonde électronique. En particulier, pour une maturation trop courte, le phosphore sera réparti en croûte par rapport audit précurseur catalytique quand celui ci contient du phosphore.
Conformément à l'étape c) du procédé de préparation selon l'invention, le précurseur catalytique issu de l'étape b) est soumis à une étape de séchage, sans étape de calcination ultérieure dudit précurseur catalytique issu de l'étape b).
Le but de cette étape est avantageusement d'enlever tout ou partie du solvant ayant permis l'introduction dudit composé phosphore. L'étape c) de séchage du procédé selon l'invention est avantageusement effectuée par toute technique connue de l'homme du métier. L'étape c) de séchage du procédé selon l'invention est avantageusement effectuée dans une étuve à pression atmosphérique ou à pression réduite et à une température comprise entre 50 et 2000C, de préférence comprise entre 60 et 190 0C et de manière très préférée, comprise entre 60 et 150 0C, pendant une durée de séchage comprise entre 30 minutes et 4 heures et de préférence entre 1 heure et 3 heures. Le séchage peut avantageusement être effectué en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit fixe, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote.
A l'issue de l'étape c) du procédé selon l'invention, on obtient un catalyseur séché, qui n'est soumis à aucune étape de calcination ultérieure.
Avant son utilisation, il est avantageux de transformer un catalyseur dans lequel les métaux se trouvent sous une forme oxyde, en un catalyseur sulfure afin de former son espèce active. Cette phase d'activation ou de sulfuration s'effectue avantageusement sous une atmosphère sulfo-réductrice en présence d'hydrogène et d'hydrogène sulfuré par les méthodes bien connues de l'homme de l'art.
A l'issue de l'étape c) du procédé selon l'invention, ledit catalyseur séché obtenu est avantageusement soumis à une étape d) de sulfuration, sans étape de calcination intermédiaire.
Ledit catalyseur séché obtenu à l'issue de l'étape c) du procédé selon l'invention est avantageusement sulfuré de manière ex situ ou in situ. Les agents sulfurants sont avantageusement le gaz H2S ou tout autre composé contenant du soufre utilisé pour l'activation des charges hydrocarbures en vue de sulfurer le catalyseur. Lesdits composé contenant du soufre sont avantageusement choisis parmi les alkyldisulfures tel que par exemple le diméthyldisulfure, les alkylsulfures, tel que par exemple le diméthylsulfure, le n-butylmercaptan, les composés polysulfures de type tertiononylpolysulfure tels que par exemple le TPS-37 ou le TPS-54 commercialisés par la société ARKEMA, ou tout autre composé connus de l'homme du métier permettant d'obtenir une bonne sulfuration du catalyseur.
Les catalyseurs séchés obtenus par le procédé selon l'invention et ayant préalablement subi une étape d) de sulfuration sont avantageusement utilisés pour les réactions d'hydroraffinage et d'hydroconversion de charges hydrocarbonées telles que les coupes pétrolières, les coupes issues du charbon ou les hydrocarbures produits à partir du gaz naturel et plus particulièrement pour les réactions d'hydrogénation, d'hydrodéazotation, d'hydrodéoxygénation, d'hydrodésaromatisation, d'hydrodésulfuration, d'hydrodémétallation, et d'hydroconversion de charges hydrocarbonées contenant des composés aromatiques et/ou oléfîniques et/ou naphténiques et/ou paraffiniques, lesdites charges contenant éventuellement des métaux et/ou de l'azote et/ou de l'oxygène et/ou du soufre. Dans ces utilisations, les catalyseurs obtenus par le procédé selon l'invention et ayant éventuellement préalablement subi une étape d) de sulfuration présentent une activité améliorée par rapport aux catalyseurs de l'art antérieur.
Les catalyseurs séchés amorphes obtenus par le procédé selon l'invention et ayant préalablement subi une étape d) de sulfuration peuvent également être avantageusement utilisés pour les réactions d'hydrocraquage.
Plus particulièrement, les charges employées dans les procédés mettant en œuvre les réactions d'hydroraffînage et d'hydroconversion de charges hydrocarbonées décrites ci-dessus sont avantageusement des essences, des gas-oils, des gas-oils sous vide, des résidus atmosphériques, des résidus sous vide, des distillats atmosphériques, des distillats sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversions thermiques ou catalytiques, prises seules ou en mélanges. Elles contiennent avantageusement des hétéroatomes tels que le soufre, l'oxygène et l'azote et/ou au moins un métal.
Les conditions opératoires utilisés dans les procédés mettant en œuvre les réactions d'hydroraffinage et d'hydroconversion de charges hydrocarbonées décrites ci-dessus sont généralement les suivantes : le température est avantageusement comprise entre 180 et 450 0C, et de préférence entre 250 et 440 0C, la pression est avantageusement comprise entre 0,5 et 30 MPa, et de préférence entre 1 et 18 MPa, la vitesse volumique horaire est avantageusement comprise entre 0,1 et 20 h"1 et de préférence entre 0,2 et 5 h"1, et le rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide est avantageusement compris entre 501/1 à 2000 1/1.
Les catalyseurs séchés obtenus par le procédé selon l'invention et ayant éventuellement préalablement subi une étape d) de sulfuration peuvent aussi avantageusement être utilisés lors du prétraitement des charges de craquage catalytique et en première étape d'un hydrocraquage ou d'une hydroconversion douce. Ils sont alors généralement employés en amont d'un catalyseur acide, zéolithique ou non zéolithique utilisé dans la deuxième étape du traitement.
Les exemples qui suivent démontrent le gain d'activité important sur les catalyseurs préparés selon le procédé selon l'invention par rapport aux catalyseurs de l'art antérieur et précisent l'invention sans toutefois en limiter la portée.
EXEMPLES
Pour tous les exemples de préparation de catalyseurs de la présente invention, une alumine a été utilisée comme support.
Exemple 1 : Préparation d'un catalyseur séché Cl' et d'un catalyseur calciné Cl de type CoMoP (non- conforme à l'invention)
On a utilisé une matrice composée de boehmite tabulaire ultrafine ou gel d'alumine, commercialisée sous le nom SB3 par la société Condéa Chemie GmbH. Ce gel a été mélangé à une solution aqueuse contenant de l'acide nitrique à 66 % (7 % en poids d'acide par gramme de gel sec), puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1,6 mm. Les extradés sont ensuite séchés pendant une nuit à 120 0C, puis calcinés à 540 0C pendant 2 heures sous air humide contenant 40 g d'eau par kg d'air sec. On obtient ainsi des extradés cylindriques de 1,2 mm de diamètre, ayant une surface spécifique de 300 m2/g, un volume poreux de 0,70 cm^/g et une distribution en taille de pore monomodale centrée sur 93 Â. L'analyse de la matrice par la diffraction des rayons X révèle que celle-ci est composée uniquement d'alumine gamma cubique de faible cristallinité. Sur le support d'alumine décrit précédemment et qui se présente sous la forme « extradé » (67,9 g), on a ajouté du cobalt, du molybdène et du phosphore. La solution d'imprégnation est préparée par dissolution à chaud de l'oxyde de molybdène (24,34 g) et d'hydroxyde de cobalt (5,34 g) dans la solution d'acide phosphorique (7,47 g) en solution aqueuse (V = 57,0 cm3). Après imprégnation à sec, les extradés sont laissés à maturer en atmosphère saturée en eau pendant 12 h, puis ils sont séchés une nuit à 12O0C. Le catalyseur séché ainsi obtenu est le catalyseur Cl'. Enfin la calcination du catalyseur Cl' à 4500C pendant 2 heures sous air sec conduit au catalyseur calciné Cl. Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs Cl' et Cl (déterminée selon la méthode BET bien connue de l'homme du métier) sont alors les suivantes :
- MoO3 : 23,4 (% en poids)
- CoO : 4,1 (% en poids)
- P2O5 : 4,6 (% en poids)
Surface spécifique ($BET) : ISO (m2/g de catalyseur), soit 273 mVg d'alumine dans le catalyseur Cl
- Ptotal/Mo 0,563 mol/mol
Exemple 2 : Préparation d'un catalyseur séché C2' et d'un catalyseur calciné C2 de type CoMoP (non conforme à l'invention)
Le catalyseur calciné C2 est préparé de la même manière que le catalyseur calciné Cl, à partir d'alumine mise en forme (70,7 g), de trioxyde de molybdène (24,23 g), d'hydroxyde de cobalt (5,21 g) ainsi que d'une quantité moindre d'acide phosphorique (3,25 g).
De même que dans l'exemple 1, le catalyseur C2' correspond au catalyseur séché obtenu après l'étape de séchage. Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs C2' et C2 sont alors les suivantes :
- MoO3 : 23,3 (% en poids)
- CoO : 4,0 (% en poids)
- P2O5 : 2,0 (% en poids) Surface spécifique (SBET) : 203 (m2/g de catalyseur), soit 287 nα2/g d'alumine présente dans le catalyseur C2.
- Ptotal/Mo 0,174 mol/mol
Notons qu'une teneur en phosphore plus faible dans la solution d'imprégnation permet d'obtenir un catalyseur calciné C2 de surface spécifique BET plus élevée que celle du catalyseur calciné Cl. Cette tendance est plus marquée lorsque cette surface spécifique BET est exprimée par g d'alumine présente dans le catalyseur.
Exemple 3 : Préparation d'un catalyseur séché C3' et d'un catalyseur calciné C3 de type CoMo (non conforme à l'invention)
Le catalyseur calciné C3 est préparé de la même manière que les catalyseurs calcinés Cl et C2 mais en utilisant une solution d'imprégnation différente, à base d'hétéropolyanions de type Co2Mo10O38H4 6". La préparation de telles solutions d'imprégnation est décrite dans la demande de brevet EPl 393 802 (Al). De même que dans les exemples 1 et 2, le catalyseur C3' correspond au catalyseur séché obtenu après l'étape de séchage. Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs C3' et C3 sont alors les suivantes :
- MoO3 : 23,0 (% en poids)
- CoO : 5,3 (% en poids)
Surface spécifique (SBET) : 214 (m2/g de catalyseur), soit 298 mVg d'alumine présente dans le catalyseur C3
- Ptotal/Mo 0 mol/mol
Notons que ce catalyseur qui ne contient pas de phosphore dans sa solution d'imprégnation a une surface spécifique encore plus élevée que celle de C2 et a fortiori que celle de Cl .
Exemple 4 : Préparation d'un catalyseur C4 et d'un catalyseur C4' par imprégnation du catalyseur calciné Cl et respectivement du catalyseur séché Cl' (conforme à l'invention)
Le catalyseur C4 (respectivement le catalyseur C41) est obtenu par une imprégnation selon l'étape a) du procédé selon l'invention du catalyseur CoMoP calciné Cl (respectivement du catalyseur séché Cl') de telle sorte que la quantité de phosphore introduit lors de cette étape d'imprégnation est de 0,05 (mol de P)/(mol de Mo présent sur les précurseurs catalytiques calciné Cl et séché Cl'). Le précurseur de phosphore utilisé est l'acide phosphorique dissous dans un solvant polaire constitué d'un mélange eau/éthanol 50/50 volume, chacun des constituants dudit mélange ayant une constante diélectrique supérieure à 20 (la constante diélectrique de l'eau est de 78,4 et la constante diélectrique de l'éthanol est de 24,5). Après une étape de maturation de 48 h, les extradés sont séchés à 120 0C pendant 2 h sous une pression de 100 mbar. Les teneurs finales en oxydes de métaux, la surface spécifique des catalyseurs C4 et C4' et le rapport molaire phosphore total sur métaux Ptotal/Mo déposés dans les catalyseurs calcinés C4 et séché C4' sont alors les suivants :
- MoO3 : 23,3 (% en poids)
- CoO : 4,1 (% en poids)
- P2O5 : 5,1 (% en poids)
- Surface spécifique (S N : 179 (m /g de catalyseur), soit 273 mVg d'alumine présente dans le catalyseur C4
- Ptotai/Mo 0,613 mol/mol
Notons que ce catalyseur contient davantage de phosphore mais que sa surface BET n'est que peu modifiée par l'ajout de phosphore par l'imprégnation d'une solution sur les catalyseurs Cl et Cl ' selon l'étape a) du procédé selon l'invention.
Exemple 5 : Préparation d'un catalyseur C5 et d'un catalyseur C5' par imprégnation du catalyseur calciné C2 et respectivement du catalyseur séché C2' (conforme à l'invention)
Le catalyseur C5 (respectivement le catalyseur C51) est obtenu par une imprégnation selon l'étape a) du procédé selon l'invention du catalyseur CoMoP calciné C2 (respectivement du catalyseur séché C2') de telle sorte que la quantité de phosphore introduit lors de cette étape d'imprégnation soit de 0,44 (mol de P)/(mol de Mo présent sur les précurseurs catalytiques calciné C2 et séché C2'). Le rapport molaire phosphore total sur métaux Ptotal/Mo déposés dans les catalyseurs calcinés C4 et C5 et séchés C4' et C5' sont ainsi identiques, c'est-à-dire égal à 0,613 (mol de P)/(mol de Mo). Le précurseur de phosphore utilisé est l'acide phosphorique dissous dans un solvant polaire constitué d'un mélange eau/éthanol 50/50 volume, chacun des constituants dudit mélange ayant une constante diélectrique supérieure à 20 (la constante diélectrique de l'eau est de 78,4 et la constante diélectrique de l'éthanol est de 24,5). Après une maturation de 48 h, les extradés sont séchés à 120 0C pendant 2h sous une pression de 100 mbar. Les teneurs finales en oxydes de métaux, la surface spécifique des catalyseurs C5 et C5' et le rapport molaire phosphore total sur métaux Ptotal/Mo déposés dans les catalyseurs calcinés C4 et séché C4' sont alors les suivantes :
- MoO3 : 22,6 (% en poids)
- CoO : 3,9 (% en poids)
- P2O5 : 5,0 (% en poids)
- Surface spécifique (S ) : 193 (mVg de catalyseur), soit 287 m2/g d'alumine présente dans le catalyseur C5
- Ptotal/Mo 0,614
Notons que ces catalyseurs ont la même formulation finale que les catalyseur C4 et C4' à ceci près qu'il possède une plus grande quantité de phosphore introduite par l'étape a) du procédé selon l'invention. Sa surface spécifique est plus élevée que celle du catalyseur C4 en particulier lorsque cette surface est exprimée par gramme d'alumine présente dans le catalyseur.
Exemple 6 : Préparation d'un catalyseur C6 et d'un catalyseur C6' par imprégnation du catalyseur C3 et respectivement du catalyseur C3' (conforme à l'invention)
Le catalyseur C6 (respectivement le catalyseur C6') est obtenu par une imprégnation selon l'étape a) du procédé selon l'invention du catalyseur CoMo C3 (respectivement du catalyseur C3') de telle sorte que la quantité de phosphore introduit lors de cette étape d'imprégnation soit de 0,613 (mol de P)/(mol de Mo présent sur les précurseurs catalytiques calciné C3 et séché C3'). Ainsi , le rapport molaire phosphore total sur métaux Ptotal/Mo dans les catalyseurs calcinés C6 et séchés C6' sont identiques à celui des catalyseurs calcinés C4 et C5 et séchés C4' et CS', c'est-à-dire égal à 0,613 (mol de P)/(mol de Mo initialement présent sur le précurseur catalytique). Le précurseur de phosphore utilisé est l'acide phosphorique dissous dans un solvant polaire constitué d'un mélange eau/éthanol 50/50 volume, chacun des constituants dudit mélange ayant une constante diélectrique supérieure à 20 (la constante diélectrique de l'eau est de 78,4 et la constante diélectrique de l'éthanol est de 24,5). Après une maturation de 48 h, les extradés sont séchés à 120 °C pendant 2h sous une pression de 100 mbar. Les teneurs finales en oxydes de métaux renormalisées et la surface spécifique des catalyseurs C6 et C6' sont alors les suivantes : - MoO3 : 21,9 (% en poids)
- CoO : 5,0 (% en poids)
- P2O5 : 4,8 (% en poids)
Surface spécifique (SBET) : 200 (m /g de catalyseur), soit 298 rtf/g d'alumine présente dans le catalyseur C6
- Ptotal/Mo 0,613
Notons que ces catalyseurs C6 et Ç& ont un rapport molaire Ptotai/Mo identique à celui des catalyseurs C4, C4', C5 et C5' à ceci près qu'ils possèdent une plus grande quantité de phosphore introduite selon l'étape a) du procédé selon l'invention. Sa surface spécifique est plus élevée que celle des catalyseurs C5 et C5' et a fortiori des catalyseurs C4 et C4'.
Exemple (non conforme à l'invention)
Les catalyseurs C6 et C6' sont calcinés sous air sec à 4500C pendant deux heures. Les catalyseurs obtenus après calcination sont respectivement C9 et C9'. Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs C9' et C9 (déterminée selon la méthode BET bien connue de l'homme du métier) sont alors les suivantes :
- MoO3 : 21,4 (% en poids)
- CoO : 4,9 (% en poids)
- P2O5 : 4,8 (% en poids)
Surface spécifique (SBEIΛ : 185 (m /g de catalyseur), soit 276 mVg d'alumine dans le catalyseur C9
- Ptotal/Mo 0,613 mol/mol
On constate que l'étape de calcination supplémentaire ajoutée pour passer de C6 et C6' à C9 et C9' ne permet pas de conserver la haute surface des catalyseurs C6 et C61 conformes à l'invention puisque la surface des catalyseurs C9 et C9' est proche de celle de Cl et Cl'.
Exemple 7 : Test comparatif des catalyseurs Cl. C2. C3, Cl'. C2', C3'. C4. C4'. C5. CS'. C6 et C6', C9 et C9' en hydrogénation du toluène dans le cyclohexane sous pression et en présence d'hydrogène sulfuré. Les catalyseurs précédemment décrits, sont sulfurés in situ en dynamique dans le réacteur tabulaire à lit fixe traversé d'une unité pilote de type Catatest (constructeur : société Géomécanique), les fluides circulant de haut en bas. Les mesures d'activité hydrogénante sont effectuées immédiatement après la sulfuration sous pression et sans remise à l'air avec la charge d'hydrocarbures qui a servi à sulfurer les catalyseurs.
La charge de sulfuration et de test est composée de 5,8 % de diméthyldisulfure (DMDS), 20 % de toluène et 74,2 % de cyclohexane (en poids). On mesure ainsi les activités catalytiques stabilisées de volumes égaux de catalyseurs dans la réaction d'hydrogénation du toluène.
Les conditions de mesure d'activité sont les suivantes :
- Pression totale : 6,0 MPa
- Pression de toluène : 0,38 MPa
- Pression de cyclohexane : 1,55 MPa
- Pression d'hydrogène : 3,64 MPa
- Pression d'H^S : 0,22 MPa
Volume de catalyseur : 40 cm3
Débit de charge : 80 cm /h
Vitesse spatiale horaire : 2 h"l
Débit d'hydrogène : 36 1/h
Température de sulfuration et de test : 350 0C
Des prélèvements de l'effluent liquide sont analysés par chromatographie en phase gazeuse. La détermination des concentrations molaires en toluène non-converti (T) et des concentrations ses produits d'hydrogénation (le méthylcyclohexane (MCC6), l'éthylcyclopentane (EtCC5) et les diméthylcyclopentanes (DMCC5)) permettent de calculer un taux d'hydrogénation de toluène XJIYD défini par :
( MCCCd + EtCC5 + DMCC5)
XHYD (°/°) = 1°O * (T+MCC6 + EtCC5 + DMCC5) La réaction d'hydrogénation du toluène étant d'ordre 1 dans les conditions de test mises en œuvre et le réacteur se comportant comme un réacteur piston idéal, on calcule l'activité hydrogénante A-HYD des catalyseurs en appliquant la formule :
AHYD = In(IO(V(IOO-XHYD))
Le Tableau 1 compare les activités hydrogénantes relatives desdits catalyseurs, égales au rapport de l'activité du catalyseur considéré sur l'activité du catalyseur C3 non conforme à l'invention et pris comme référence (activité 100 %).
Tableau 1 : Activités relatives en hydrogénation des catalyseurs calcinés
Le Tableau 1 montre le gain d'activité important obtenu sur les catalyseurs préparés selon le procédé selon l'invention par rapport au catalyseurs calcinés de référence, non conformes à l'invention, pour lesquels l'intégralité du phosphore a été déposé sur le catalyseur dans la solution d'imprégnation. Les gains sont d'autant plus importants que la proportion de phosphore introduit selon l'invention par rapport au phosphore total est élevée.
Le Tableau 1 montre également qu'il n'y a pas de diminution de la surface spécifique, calculée en m2 par gramme d'alumine, entre le précurseur catalytique de départ et le catalyseur final obtenu par le procédé selon l'invention. Celle ci reste constante.
On constate qu'une calcination ultérieure du catalyseur C6 pour obtenir un catalyseur C9 non conforme à l'invention conduit à la perte du bénéfice lié à l'invention, c'est à dire une perte de surface, une mauvaise dispersion ainsi qu'une perte d'activité.
De la même manière, le Tableau 2 compare les activités hydrogénantes relatives des catalyseurs séchés, égales au rapport de l'activité du catalyseur considéré sur l'activité du catalyseur C3' non conforme à l'invention et pris comme référence (activité 100 %).
De façon surprenante, bien que les catalyseurs contiennent initialement du phosphore et qu'ils n'aient jamais subi de calcination, le Tableau 2 montre le gain d'activité important obtenu sur les catalyseurs séchés préparés selon le procédé selon l'invention par rapport au catalyseurs séchés de référence, non conforme à l'invention, pour lesquels l'intégralité du phosphore a été déposé sur le catalyseur dans la solution d'imprégnation. Notons que le gain en terme d'activité est plus important quand l'invention s'applique à des catalyseurs séchés qu'à des catalyseurs calcinés.
On constate qu'une calcination ultérieure du catalyseur C6' (non conforme à linvention) conduit à la perte du bénéfice lié à l'invention (perte de surface, mauvaise dispersion, perte d'activité pour C9')
Tableau 2 : Activités relatives en hydrogénation des catalyseurs séchés
Exemple 8 : Préparation d'un catalyseur calciné C7 et d'un catalyseur séché C7' de type NiMoP (non- conforme à l'invention).
Le catalyseur séché C7' et sa version calcinée C7 sont préparés de la même manière que leurs homologues Cl' et Cl, à ceci près que l'hydroxyde de cobalt est remplacé par de l'hydroxycarbonate de nickel. Les quantités de précurseurs utilisés sont les suivantes : 68,2 g d'alumine mise en forme, 24, 02 g de trioxyde de molybdène, 11,19 g d'hydroxycarbonate de nickel et 7,47 g d'acide phosphorique.
Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs C7 et C7' sont alors les suivantes :
MOO3 : 23,1 (% en poids) NiO : 4,1 (% en poids)
P5 4,6 (% en poids)
Surface spécifique (S \ 191 (m /g de catalyseur), soit 282 mVg d'alumine présente dans le catalyseur C7.
Exemple 9 : Préparation d'un catalyseur C8 et d'un catalyseur C8' de type NiMoP par imprégnation du catalyseur calciné C7 et respectivement du catalyseur séché C7' (conforme à l'invention)
Le catalyseur C8 (respectivement C8') est obtenu par une imprégnation du catalyseur NiMoP calciné C7 (respectivement du catalyseur séché C7') de telle sorte que la quantité de phosphore introduit lors de cette étape d'imprégnation conforme à l'étape a) du procédé selon l'invention soit de 0,05 mol de P/mol de Mo présent sur le catalyseur. Le précurseur de phosphore utilisé est l'acide phosphorique et le solvant choisi d'après "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley- VCH, 3eme édition, 2003, pages 472-474 est le DMSO, de constante diélectrique égale à 46. Après une maturation de 48 h, les extradés sont séchés à 120 0C pendant 2h sous une pression de 100 mbar. Les teneurs finales en oxydes de métaux et la surface spécifique des catalyseurs C8 et C8' sont alors les suivantes :
- MoO3 : 23,0 (% en poids)
- CoO : 4,1 (% en poids)
- P2O5 : 5,1 (% en poids)
Surface spécifique (SβET) : 190 (m 2 //g de catalyseur), soit 282 m2/g d'alumine présente dans le catalyseur C8.
Exemple 10 : Test comparatif en hydrodésulfuration d'un gazole des catalyseurs C7. C8 et C7', C8'
Les catalyseurs C7, C7', C8 et, C8' précédemment décrits ont également été comparés en test d'hydrodésulfuration d'un gazole dont les principales caractéristiques sont données ci-après :
Densité à 15 0C : 038522
Soufre : 1,44 % en poids
Distillation Simulée :
• PI : 155 0C
• 10 % : 247 0C
• 50 % 315 0C
• 90 % : 392 0C
• PF : 444 0C
Le test est mené dans un réacteur pilote isotherme à lit fixe traversé, les fluides circulant de bas en haut. Après sulfuration in situ à 350 0C dans l'unité sous pression au moyen du gazole du test auquel est additionné 2 % en poids de diméthyldisulfure, le test d'hydrodésulfuration a été conduit dans les conditions opératoires suivantes :
- Pression totale : 7 MPa
Volume de catalyseur : 30 cm^ - Température : 340 0C
- Débit d'hydrogène : 24 1/h
Débit de charge : 60 cmP/h
Les performances catalytiques des catalyseurs testés sont données dans le Tableau 3. Elles sont exprimées en activité relative, en posant que celle du catalyseur calciné C7 est égale à 100 et en considérant qu'elles sont d'ordre 1,5. La relation liant l'activité et la conversion en hydrodésulfuration (notée %HDS) est la suivante :
AHDS =IOO/( [(1 OO _ o/oHDS)] 0'5 ) - 1
Tableau 3 : Activité relative à iso-volume des catalyseurs C7 non conforme et C8 conforme en hydrodésulfuration de gazole
Le Tableau 3 montre le gain d'activité important obtenu sur les catalyseurs CoMo est également extrapolable aux catalyseurs NiMo en HDS de gazole. Les performances catalytiques des catalyseurs C7' et C8' testés sont données dans le Tableau 4, le catalyseur séché C7' étant le catalyseur de référence.
Par ailleurs, le Tableau 3 montre également qu'il n'y a pas de diminution de la surface spécifique, calculée en m2 par gramme d'alumine, entre le précurseur catalytique calciné de départ C7 et le catalyseur final obtenu C8 par le procédé selon l'invention. Au contraire, celle ci reste constante.
Tableau 4 : Activité relative à iso-volume des catalyseurs C7 ' non conforme et C8 ' conforme en hydrodésulfuration de gazole
Le Tableau 4 montre le gain d'activité important obtenu sur les catalyseurs CoMo est également extrapolable aux catalyseurs NiMo en HDS de gazole.
Exemple 11 : Test en hydrotraitement d'un distillât sous vide
Les catalyseurs Cl et C8 précédemment décrits ont également été comparés en test d'hydrotraitement d'un distillât sous vide dont les principales caractéristiques sont données ci-après :
Densité à 20 0C : 0,9365
Soufre : 2,92 % en poids
Azote total : 1400 ppm poids
Distillation Simulée :
• PI : 361 0C
• 10 % : 430 0C
• 50 % : 492 oC
• 90 % : 567 0C
• PF : 598 0C
Le test est mené dans un réacteur pilote isotherme à lit fixe traversé, les fluides circulant de bas en haut. Après sulfuration in situ à 350 0C dans l'unité sous pression au moyen d'un gazole de distillation directe auquel est additionné 2 % en poids de diméthyldisulfure, le test d'hydrotraitement a été conduit dans les conditions opératoires suivantes :
Pression totale : 12 MPa
Volume de catalyseur : 40 cm^
- Température : 380 0C
- Débit d'hydrogène : 40 1/h
- Débit de charge : 40 cm^/h Les performances catalytiques des catalyseurs testés sont données dans le Tableau 5 suivant. Elles sont exprimées en activité relative, en prenant celle du catalyseur C7 est égale à 100 et en considérant qu'elles sont d'ordre 1,5. La relation liant l'activité et la conversion en hydrodésulfuration (notée %HDS) est la suivante :
AHDS - AHDS -IOO/( [(100 _ o/oHDS)]°>5 ) - 1
La même relation est applicable pour l'hydrodésazotation (% HDN et Ajrrjjxj).
Par ailleurs, on évalue également la conversion brute en fraction ayant un point d'ébullition inférieur à 380 0C obtenue avec chaque catalyseur. Elle est exprimée à partir des résultats de distillation simulée (méthode ASTM D86) par la relation :
Conversion = (% 38O+ charge -%380" effluent)/%380+charge
Tableau 5 : Activité des catalyseurs Cl non conforme et C8 conforme en hydrotraitement de distillât sous vide
Le Tableau 6 montre le gain d'activité important obtenu sur le catalyseur préparé selon l'invention par rapport au catalyseur de référence.
Exemple 12 : Préparation d'un catalyseur calciné C9 de type CoMo (non-conforme à l'invention)
Le catalyseur calciné C9 est préparé de la même manière que le catalyseur calciné C3, en utilisant la même solution d'imprégnation, mais diluée d'un facteur 1,35. Les teneurs finales en oxydes de métaux et la surface spécifique du catalyseur calciné C9 sont alors les suivantes :
- MOO3 : 17,0 % en poids
- CoO : 3,9 % en poids Surface spécifique (SBET) : 231 m2/g Exemple 13 : Préparation d'un catalyseur ClO de type CoMo par imprégnation du catalyseur calciné C9 (conforme à l'invention)
Le catalyseur ClO est obtenu par une imprégnation du catalyseur calciné C9 de telle sorte que la quantité de phosphore introduit lors de cette étape d'imprégnation soit de 0,015 (mol de P)/(mol de Mo) présent sur le catalyseur. Le précurseur de phosphore utilisé est l'acide phosphorique, et le solvant choisi d'après "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474 est le méthanol, de constante diélectrique égale à 33. Après une maturation de 96 h, les extradés sont séchés à 120 0C pendant 2h sous une pression de 100 mbar. Les teneurs finales en oxydes de métaux et la surface spécifique du catalyseur ClO sont alors les suivantes
- MoO3 : 16,8 (% en poids)
- CoO : 3,9 (% en poids)
- P2O5 : 1,0 (% en poids) Surface spécifique (SBET) : 228 (m2/g)
Exemple 14 : Essai comparatif en hydrodésulfuration sélective d'une charge modèle type essence de FCC.
Les catalyseurs C9 (non conforme) et ClO (conforme) précédemment décrits ont été testé dans la réaction de désulfuration sélective d'une charge modèle type essence de FCC. Le test est effectué en réacteur de type Grignard (en batch) à 200 0C sous une pression de 3,5 MPa en hydrogène maintenue constante. La charge modèle est constituée par 1000 ppm de méthyl-3 thiophène et 10 % en poids de diméthyl 2,3-butène-2 dans du n-heptane. Le volume de solution est de 210 cm3 à froid, la masse de catalyseur testée étant de 4 grammes (avant sulfuration). Avant test, le catalyseur est préalablement sulfuré en banc de sulfuration, sous mélange H2SfR2 (41/h, 15 % en vol d'H2S) à 400 0C durant deux heures (rampe de 5 °C/min), puis réduit sous H2 pur à 200 0C durant deux heures. Le catalyseur est ensuite transféré dans le réacteur Grignard à l'abri de l'air.
La constante de vitesse (normalisée par g de catalyseur) est calculée en considérant un ordre 1 pour la réaction de désulfuration (1-HDS), et un ordre 0 pour la réaction d'hydrogénation (kπoo)- On définit la sélectivité d'un catalyseur par le rapport de ses constantes de vitesse, kκDs/kHD0- Les constantes de vitesses relatives des catalyseurs C9 et ClO ainsi que leur sélectivité sont reportées dans le Tableau 6 ci-dessous. Tableau 6 : Constantes de vitesses relatives et sélectivité des catalyseurs C9 (non conforme) et ClO
(conforme)
Le catalyseur ClO conforme à l'invention s'avère à la fois plus actif en désulfuration et plus sélectif que le catalyseur calciné C9 (non conforme).
Exemple 15 : Préparation du catalyseur calciné CI l et du catalyseur séché CIl' non conformes à l'invention
Le catalyseur séché CIl' non conforme à l'invention est préparé par imprégnation du catalyseur séché C21 par une solution témoin ne contenant pas de composé phosphore. Le solvant choisi d'après "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474 est le 1,2 éthanediol, de constante diélectrique égale à 38.
Le catalyser CI l est un catalyseur témoin préparé de la même manière à partir du catalyseur calciné C2.
Exemple 15 : Préparation du catalyseur C12 et du catalyseur C12' par imprégnation respectivement des catalyseurs calciné C2 et séché C2' (conformes à l'invention)
Le catalyseur C12' est préparé de manière conforme à l'invention par imprégnation d'une solution contenant 0,275 mole de phosphore par mole de molybdène présente sur le catalyseur calciné C2. Le composé phosphore choisi est l'acide phosphorique. Le solvant choisi d'après "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474 est également le 1,2 éthanediol, de constante diélectrique égale à 38. Les teneurs finales en oxydes de métaux et la surface spécifique du catalyseur Cl 2 sont alors les suivantes :
MoO3 : 22,6 (% en poids)
CoO : 3,9 (% en poids)
P2O5 : 5,0 (% en poids) Surface spécifique (SBET) : 197 (m2/g de catalyseur), soit 288 m2/g d'alumine contenue dans C12.
Exemple 16 : Préparation, du catalyseur C13' non conforme à l'invention
Le catalyseur Cl 3' est préparé par imprégnation d'une solution contenant 0,275 mole de phosphore par mole de molybdène présente sur le catalyseur C2'. Le composé phosphore choisi est l'acide phosphorique. Le solvant choisi d'après "Solvents and Solvent Effects in Organic Chemistry, C. Reichardt, Wiley-VCH, 3eme édition, 2003, pages 472-474 est le diéthylène glycol diéthyéther, de constante diélectrique égale à 5,7. Ce solvant est très faiblement polaire et n'est donc pas conforme à l'invention. Les teneurs finales en oxydes de métaux recalculées en tenant compte de la perte au feu du catalyseur séché sont :
MoO3 : 22,5 (% en poids)
CoO : 3,8 (% en poids)
P2O5 : 5,1 (% en poids)
Exemple 17 : Test comparatif en hydrodésulfuration d'un gazole des catalyseurs C2 (respectivement C2'") (non conformes), CI l (respectivement Cl D (non conformes), Cl 2 (respectivement C 12') (conformes), et C13' (non conforme)
Les catalyseurs C2, C2' (non conformes), CIl, CH' (non conformes), Cl 2, Cl 2' (conformes), Cl 3' (non conforme) précédemment décrits ont également été comparés en test d'hydrodésulfuration d'un gazole dont les principales caractéristiques sont décrites dans l'exemple 10 de ce document.
Tableau 7 : Activité relative à iso-volume des catalyseurs en hydrodésulfuration de gazole
Le Tableau 7 montre que le gain d'activité important obtenu sur les catalyseurs CoMoP est bien lié à la présence du composé phosphore introduit selon l'étape a) d'imprégnation du procédé selon l'invention. Les performances catalytiqu.es des catalyseurs CH ', C12' et C13' testés sont données dans le Tableau 8, le catalyseur C7' étant le catalyseur de référence.
Tableau 8 : Activité relative à iso-volume des catalyseurs CIl ', Cl 2 ' et Cl 3 ' en hydrodésulfuration de gazole
De façon surprenant, le Tableau 5 montre que, bien que les catalyseurs de départ contiennent du phosphore qui n'a jamais subit de calcination, un gain d'activité important est bien obtenu par ajout de phosphore dans un solvant polaire de constante diélectrique supérieure à 20 comme le 1,2 éthanediol dans une étape d'imprégnation conforme à l'étape a) du procédé selon l'invention.
Le gain observé pour le catalyseur CH', non conforme à l'invention, imprégné avec une solution ne contenant pas de composé phosphore est moindre. Par ailleurs, aucun gain d'activité n'est obtenu par ajout d'acide phosphorique dissous dans un solvant très faiblement polaire comme le diéthylène glycol diéthyléther.

Claims

REVENDICATIONS
1. Procédé de préparation d'un catalyseur d'hydrotraitement comprenant les étapes suivantes : a) au moins une étape d'imprégnation d'un précurseur catalytique séché et/ou calciné contenant au moins un élément du groupe VDI et/ou au moins un élément du groupe VIB et un support amorphe, par une solution d'imprégnation constituée d'au moins un composé phosphore en solution dans au moins un solvant polaire de constante diélectrique supérieure à 20, b) une étape de maturation dudit précurseur catalytique imprégné issu de l'étape a), ladite étape b) de maturation étant réalisée à pression atmosphérique, à une température comprise entre la température ambiante et 60°C et pendant une durée de maturation comprise entre 12 heures et 340 heures. c) une étape de séchage, sans étape de calcination ultérieure, dudit précurseur catalytique issu de l'étape b).
2. Procédé de préparation selon la revendication 1 dans lequel ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VDI, ledit élément du groupe VIII étant le cobalt et au moins un élément du groupe Vffi, ledit élément du groupe VTB étant le molybdène, du phosphore en tant que dopant et un support alumine amorphe.
3. Procédé de préparation selon la revendication 1 dans lequel ledit précurseur catalytique séché et/ou calciné contient au moins un élément du groupe VDI, ledit élément du groupe VDI étant le nickel et au moins un élément du groupe VD3, ledit élément du groupe VEB étant le molybdène, du phosphore en tant que dopant et un support alumine amorphe.
4. Procédé de préparation selon l'une des revendications 1 à 3 dans lequel le composé phosphore de la solution d'imprégnation de l'étape a) est choisi dans le groupe formé par l'acide orthophosphorique H3PO4, l'acide métaphosphorique et le pentoxyde de phosphore ou anhydride phosphorique P2O5 ou P4O10, pris seuls ou en mélange.
5. Procédé de préparation selon la revendication 4 dans lequel le composé phosphore de la solution d'imprégnation de l'étape a) est l'acide orthophosphorique H3PO4.
6. Procédé de préparation selon l'une des revendications 1 à 5 dans lequel ledit composé phosphore est introduit dans la solution d'imprégnation dans une quantité correspondant à un rapport molaire de phosphore P par métal (métaux) du groupe VIB dudit précurseur catalytique compris entre 0,001 à 3 mole/mole.
7. Procédé de préparation selon la revendication 6 dans lequel ledit composé phosphore est introduit dans la solution d'imprégnation dans une quantité correspondant à un rapport molaire de phosphore P par métal (métaux) du groupe VIB dudit précurseur catalytique compris entre de 0,01 à 1 mole/mole.
8. Procédé de préparation selon l'une des revendications 1 à 7 dans lequel l'étape a) est une seule étape d'imprégnation à sec.
9. Procédé de préparation selon l'une des revendications 1 à 8 dans lequel la solution d'imprégnation de l'étape a) est constituée d'un seul composé phosphore en solution dans un seul solvant polaire de constante diélectrique supérieure à 24.
10. Procédé de préparation selon l'une des revendications 1 à 9 dans lequel la solution d'imprégnation de l'étape a) est constituée d'un seul composé phosphore en solution dans un mélange de deux solvants polaires, chacun des deux solvants polaires présentant une constante diélectrique supérieure à 24.
11. Procédé de préparation selon l'une des revendications 1 à 10 dans lequel ledit solvant polaire est choisi dans le groupe des solvants protiques polaires choisis parmi le méthanol, l'éthanol, l'eau, le phénol, le cyclohexanol et le 1,2-éthanediol, pris seul ou en mélange.
12. Procédé de préparation selon l'une des revendications 1 à 11 dans lequel ledit solvant polaire est choisi dans le groupe formé par le carbonate de propylène, le DMSO (diméthylsulfoxyde) ou le sulfolane, pris seul ou en mélange.
13. Procédé de préparation selon l'une des revendications 1 à 12 dans lequel l'étape c) de séchage est réalisée dans une étuve à pression atmosphérique ou à pression réduite et à une température comprise entre 50 et 2000C.
14. Utilisation du catalyseur obtenu par le procédé selon l'une des revendications 1 à 13 pour les réactions d'hydroraffmage et d'hydroconversion de charges hydrocarbonées.
15. Utilisation dudit catalyseur selon la revendication 14 pour les réactions d'hydrogénation, d'hydrodéazotation, d'hydrodéoxygénation, d'hydrodésaromatisation, d'hydrodésulfuration, d'hydrodémétallisation, et d'hydroconversion de charges hydrocarbonées contenant des composés aromatiques et/ou oléfiniques et/ou naphténiques et/ou paraffiniques.
EP08805644A 2007-06-25 2008-06-03 Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore Withdrawn EP2162211A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704553A FR2917647B1 (fr) 2007-06-25 2007-06-25 Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore
PCT/FR2008/000756 WO2009007522A2 (fr) 2007-06-25 2008-06-03 Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore

Publications (1)

Publication Number Publication Date
EP2162211A2 true EP2162211A2 (fr) 2010-03-17

Family

ID=38988036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805644A Withdrawn EP2162211A2 (fr) 2007-06-25 2008-06-03 Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore

Country Status (8)

Country Link
US (1) US20100243530A1 (fr)
EP (1) EP2162211A2 (fr)
JP (1) JP5362712B2 (fr)
KR (1) KR20100041782A (fr)
CN (1) CN101687183B (fr)
FR (1) FR2917647B1 (fr)
RU (1) RU2451551C2 (fr)
WO (1) WO2009007522A2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9364816B2 (en) * 2009-09-10 2016-06-14 Albemarle Europe Sprl Concentrated solutions comprising group VI metal, group VII metal, and phosphorus
US9174202B2 (en) * 2009-12-16 2015-11-03 Total Raffinage Marketing Catalyst that can be used in hydrotreatment, comprising metals of groups VIII and VIB, and preparation with acetic acid and dialkyl succinate C1-C4
FR2972648B1 (fr) * 2011-03-18 2013-04-26 Ifp Energies Now Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
FR2984763B1 (fr) * 2011-12-22 2013-12-20 IFP Energies Nouvelles Procede de preparation d'un catalyseur utilisable en hydroconversion comprenant au moins une zeolithe nu-86
FR2998488B1 (fr) * 2012-11-29 2015-02-06 Ifp Energies Now Catalyseur d hydrotraitement a partir d alumine gel et methode de preparation d un tel catalyseur
FR2999453B1 (fr) * 2012-12-18 2015-02-06 IFP Energies Nouvelles Catalyseur d'hydrotraitement de residus comprenant du vanadium et son utilisation dans un procede d'hydroconversion de residus
FR2999454B1 (fr) * 2012-12-18 2015-02-06 IFP Energies Nouvelles Catalyseur d'hydrotraitement de residus a teneur controlee en silicium et son utilisation dans un procede d'hydroconversion de residus
KR102297213B1 (ko) * 2013-05-31 2021-09-02 쉘 인터내셔날 리써취 마트샤피지 비.브이. 헤테로시클릭 극성 화합물을 함유한 수소화가공 촉매 조성물, 이러한 촉매의 제조 방법 및 이러한 촉매의 사용 방법
FR3014707B1 (fr) 2013-12-13 2017-03-31 Ifp Energies Now Procede de preparation d'un catalyseur, catalyseur et son utilisation dans un procede d'hydroconversion et/ou d'hydrotraitement
CN105080583A (zh) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 原料适应性强的稠环芳烃饱和催化剂
CN105733646B (zh) * 2014-12-08 2017-11-03 中国石油化工股份有限公司 一种高级脂肪酸酯加氢制烃的方法
PT3037400T (pt) 2014-12-23 2018-10-23 Evonik Degussa Gmbh Hidrogenação livre de cromo de misturas de hidroformilação
FR3049475B1 (fr) * 2016-03-30 2018-04-06 IFP Energies Nouvelles Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
CN105921160B (zh) * 2016-05-03 2018-10-12 四川凯沃斯能源科技有限公司 用于生物油加氢脱氧的催化剂的制备方法
CN105885911B (zh) * 2016-05-03 2018-07-24 四川凯沃斯能源科技有限公司 生物油加氢脱氧的方法
CN105854872B (zh) * 2016-05-03 2018-12-21 四川凯沃斯能源科技有限公司 用于生物油加氢脱氧的催化剂及其制备方法
RU2693379C1 (ru) * 2018-12-20 2019-07-02 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Способ приготовления катализатора защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья
CN112742391B (zh) * 2019-10-31 2023-06-09 中国石油化工股份有限公司 一种天然气加氢脱硫催化剂及其制备和应用
CN110813336B (zh) * 2019-11-29 2022-05-27 浙江工业大学 一种掺磷炭负载的过渡金属催化剂及其制备方法和应用
CN113649017B (zh) * 2021-08-17 2022-10-21 大连理工大学 一种用于植物油加氢脱氧耐水核壳型催化剂的制备方法及应用
CN113731305B (zh) * 2021-09-16 2023-03-21 洛阳市三诺化工有限公司 一种制备tibp磷酸三异丁酯用的连体搅拌釜
WO2023170700A1 (fr) 2022-03-11 2023-09-14 Hindustan Petroleum Corporation Limited Catalyseur d'hydrotraitement de naphta et son procédé de préparation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756834A (nl) * 1969-10-08 1971-03-30 Shell Int Research Werkwijze voor het bereiden van aluminiumoxyde bevattende katalysatordragers
FR2091872B1 (fr) * 1970-03-09 1973-04-06 Shell Berre Raffinage
NL7018899A (fr) * 1970-03-09 1972-06-30
JPH04166231A (ja) * 1990-10-29 1992-06-12 Sumitomo Metal Mining Co Ltd 水素化処理用触媒の製造方法
US5399259A (en) * 1992-04-20 1995-03-21 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
RU2052285C1 (ru) * 1993-03-23 1996-01-20 Институт катализа им.Г.К.Борескова РАН Катализатор для гидрообработки углеводородного сырья нефтяного и углехимического происхождения и способ его получения
US5403806A (en) * 1993-10-22 1995-04-04 Union Oil Company Of California Phosphorous-containing hydroprocessing catalyst and method of preparation
UA10147A (uk) * 1994-04-13 1996-09-30 Анатолій Борисович Вишницкий Спосіб приготування фосформісного алюміній-кобальт-молібденового або алюміній-нікель-молібденового каталізатору гідроочищення вуглеводневої сировини
CN1147360C (zh) * 1999-01-15 2004-04-28 阿克佐诺贝尔公司 新型混合金属催化剂、利用共沉淀的其制备及其用途
JP4156859B2 (ja) * 2001-06-20 2008-09-24 コスモ石油株式会社 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
US6855653B2 (en) * 2003-04-10 2005-02-15 Indian Oil Corporation Limited Process for preparing hydro-desulfurization catalyst
US7323100B2 (en) * 2004-07-16 2008-01-29 Conocophillips Company Combination of amorphous materials for hydrocracking catalysts
FR2880823B1 (fr) * 2005-01-20 2008-02-22 Total France Sa Catalyseur d'hydrotraitement, son procede de preparation et et son utilisation
JP2006306974A (ja) * 2005-04-27 2006-11-09 Petroleum Energy Center 炭化水素油の水素化処理触媒及びその製造方法並びに炭化水素油の水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009007522A3 *

Also Published As

Publication number Publication date
FR2917647A1 (fr) 2008-12-26
RU2010102058A (ru) 2011-07-27
WO2009007522A3 (fr) 2009-03-26
JP2010531224A (ja) 2010-09-24
FR2917647B1 (fr) 2011-05-06
WO2009007522A2 (fr) 2009-01-15
CN101687183A (zh) 2010-03-31
US20100243530A1 (en) 2010-09-30
JP5362712B2 (ja) 2013-12-11
KR20100041782A (ko) 2010-04-22
CN101687183B (zh) 2012-11-14
RU2451551C2 (ru) 2012-05-27

Similar Documents

Publication Publication Date Title
WO2009007522A2 (fr) Procede de preparation de catalyseur d'hydrotraitement par impregnation d'un compose phosphore
EP3288678B1 (fr) Catalyseur a base de gamma-valerolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP1380343B1 (fr) Catalyseur d'hydrotraitement contenant un composé organique azoté et son utilisation
EP3490707B1 (fr) Catalyseur à base d'un composé organique et son utilisation dans un procédé d'hydrotraitement et/ou d'hydrocraquage
EP3288679B1 (fr) Catalyseur a base d'acide y-cetovalerique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP2512662B1 (fr) Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide acetique et du succinate de dialkyle c1-c4
EP0848992B1 (fr) Catalyseur contenant du bore et du silicium et son utilisation en hydrotraitement de charges hydrocarbonées
EP2686105A1 (fr) Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide citrique et du succinate de dialkyle c1-c4
EP2598612B1 (fr) Procede d'hydrotraitement d'une coupe hydrocarbonee de point d'ebullition superieur a 250 °c en presence d'un catalyseur sulfure prepare au moyen d'un oligosaccharide cyclique
EP2878370A1 (fr) Procédé d'hydrotraitement de gazole mettant en oeuvre un enchainement de catalyseurs
WO2021121982A1 (fr) Procede de preparation d'un catalyseur d'hydrotraitement et/ou d'hydrocraquage par impregnation en milieu fondu, catalyseur obtenu en son utilisation
EP3490708B1 (fr) Catalyseur a base de 2-acétylbutyrolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procédé d'hydrotraitement et/ou d'hydrocraquage
EP4171806B1 (fr) Catalyseur trimetallique a base de nickel, molybdene et tungstene et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP3079815B1 (fr) Procede de preparation d'un catalyseur utile dans un procede d'hydroconversion et/ou d'hydrotraitement
WO2018059871A1 (fr) Procede d'hydrotraitement utilisant un catalyseur a base d'un metal du groupe viiib et un metal du groupe vib prepare en milieu fluide supercritique
WO2021121981A1 (fr) Procede de preparation d'un catalyseur d'hydrotraitement et/ou d'hydrocraquage par comalaxage en milieu fondu, catalyseur obtenu en son utilisation
FR3121366A1 (fr) Procédé de sulfuration d’un catalyseur d'hydrotraitement et/ou d’hydrocraquage par synthèse hydrothermale.
EP4291621A1 (fr) Procede d'hydrotraitement mettant en ouvre un enchainement de catalyseurs avec un catalyseur a base de nickel, molybdene et tungstene
FR2953739A1 (fr) Catalyseur utilisable en hydrotraitement comprenant du cobalt et du molybdene, son procede de preparation avec de l'acide acetique et du succinate de dialkyle c1-c4

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

17Q First examination report despatched

Effective date: 20120529

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105