WO2012123248A2 - ANLAGE ZUR ÜBERPRÜFUNG VON GROßVOLUMIGEN GÜTERN, INSBESONDERE VON FRACHTGÜTERN - Google Patents
ANLAGE ZUR ÜBERPRÜFUNG VON GROßVOLUMIGEN GÜTERN, INSBESONDERE VON FRACHTGÜTERN Download PDFInfo
- Publication number
- WO2012123248A2 WO2012123248A2 PCT/EP2012/053331 EP2012053331W WO2012123248A2 WO 2012123248 A2 WO2012123248 A2 WO 2012123248A2 EP 2012053331 W EP2012053331 W EP 2012053331W WO 2012123248 A2 WO2012123248 A2 WO 2012123248A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray source
- goods
- aligned
- detectors
- detector
- Prior art date
Links
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 238000012360 testing method Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 13
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 5
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
Definitions
- the invention relates to a system for testing large-volume goods, in particular freight, with an X-ray source emitting X-rays for irradiating the goods, and having a detector arrangement aligned with the X-ray source.
- X-ray inspection systems which have an X-ray source and a detector arrangement aligned with the X-ray source. While the material to be tested between the X-ray source and the detector assembly is moved relative to these, it is irradiated by X-rays and thereby scanned.
- the test system and the test material either the test object itself, for example a truck, is moved between the x-ray source and the detector arrangement, or the test apparatus has its own travel drive, with which it is moved relative to the test object.
- the detectors In the detector array in corresponding detector lines.
- the detector arrangement contains two detector lines angled at right angles to one another, one of which extends vertically upwards, the other horizontally above the test section.
- the cargo scanning systems mainly use cesium iodide (CsJ) scintillators for the detection of transmitted X-rays.
- CsJ cesium iodide
- baggage inspection systems partly ceramic scintillators are used. This has not been the case with freight scanning systems until now, because of the large test area and the huge number of crystals required, the cost of the detectors would be too high for the manufacturing costs.
- X-rays are used with high energy of, for example, 3.5 to 4 MeV.
- the X-rays are generated with pulsed electron accelerators. Due to the high energies, detectors with a certain depth are needed. The depth is measured in the direction of the x-ray source and thus perpendicular to the direction of movement of the test material.
- Freight inspection systems demand ever better image resolution and penetration. These can be achieved by improvements to the X-ray source and the detectors.
- the invention is therefore an object of the invention to provide a system for the review of large-volume goods, in particular of freight, which provides at elevated relative speed of the sample gapless images in improved quality.
- This object is achieved according to the invention in that the detectors of the detector array are constructed or arranged so that detector lines with two perpendicularly abutting at their longitudinal sides row legs arise, one of which parallel to the direction of movement of the scholarguts, the other perpendicular to the direction X-ray source is aligned.
- the leg aligned parallel to the direction of movement is arranged in the direction of the x-rays in front, that is, closer to the x-ray source.
- the detectors preferably contain gadolinium oxysulfide (GOS) as the scintillating material, which is preferably doped with cerium (Gd 2 O 2 S: Ce).
- GOS gadolinium oxysulfide
- Ce cerium
- CdWO 4 cadmium tungstate
- GOS as a scintillating material has several advantages over CsJ. Since it has a higher density and a higher z e ff, it is particularly suitable for the detection of photons above 100 keV. Furthermore, it is not hygroscopic. However, the material is not transparent to the emitted scintillation photons. This limits the use to higher energies because the scintillation photons of the entire crystal can no longer be collected.
- Cadmium tungstate as an alternative scintillation material also has advantages in terms of absorption and persistence.
- cadmium tungstate crystals are transparent to the scintillation photons. Therefore, there is less restriction in crystal size.
- the luminous efficacy of cadmium tungstate per photon is much lower than the yield of GOS, which is also superior in terms of environmental and health protection. Table 1 below shows properties of various scintillators.
- FIG. 2 shows the structure of a test system.
- an X-ray source is arranged in a housing 1.
- the X-rays are generated by an electron accelerator with an energy between 3.5 and 4 MeV and exit through a diaphragm 2 in the housing 1.
- a vertical detector line 3 which is composed of individual detectors 4, 5.
- a further horizontal detector line 6, which is supported on the housing 1 by a further vertical detector line 7, extends.
- a sufficiently large space through which a bulky good such as a truck 10 or a standard freight container for checking in the direction of arrow 9 can be moved. As shown in FIGS.
- each detector row 3, 6, 7 consists of two line legs which abut each other at right angles on their longitudinal sides and which are each formed by detectors 4, 5 arranged side by side or one above the other.
- One of the legs is in each case aligned parallel to the direction of movement 9 of the test material (in the example of the leg formed by the detectors 5).
- the other, in the example of the detectors 4 formed leg is perpendicular to the X-ray source 2 aligned.
- the measured in the direction of movement 9 length I of aligned in the direction of movement 9 Detectors 5 is about 10 mm, their perpendicular measured depth t is about 5 mm.
- the correspondingly measured length I of the detectors 4 arranged perpendicularly to this is approximately 5 mm.
- Their depth t is about 20 mm to 30 mm.
- the leg 5 aligned parallel to the direction of movement 9 of the test object is arranged in the direction of the x-rays at the front, ie closer to the x-ray source 1, as shown in FIGS. 2 and 3. Then, higher energy scattered photons are also detected in the other detectors 4 by the Compton effect in the forward direction.
- the other variant shown in FIG. 4, in which the leg 5 aligned parallel to the direction of movement 9 of the test object is arranged in the direction of the X-rays at the rear, ie farther away from the X-ray source 1, has advantages in terms of resolution of fine structures, since less Crosstalk between the channels may occur.
- the detector lines with angled legs can be produced, for example, such that an additional thin GOS scintillator rod is glued onto a standard detector, for example made of GOS, which increases the detector width in the direction of movement 9.
- Table 2 shows parameters obtained after a standard test for various detector cells.
- Table 2 Parameters obtained for the different detection lines using the penetration test tool and a test tool according to ANS! Standard 42.46.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Bei einer Anlage zur Prüfung von großvolumigen Gütern, insbesondere von Frachtgütern, mit einer Röntgenquelle (1), die Röntgenstrahlen zum Durchstrahlen der Güter abgibt, und mit einer auf die Röntgenquelle ausgerichteten Detektoranordnung, sind die Detektoren (4, 5) der Detektoranordnung so aufgebaut oder angeordnet, dass Detektorzeilen (3, 6, 7) mit zwei rechtwinklig an ihren Längsseiten aneinander stoßenden Zeilenschenkeln entstehen, von denen ein Schenkel parallel zur Bewegungsrichtung (9) des Prüfguts, der andere senkrecht dazu in Richtung zur Röntgenquelle (1) ausgerichtet ist.
Description
B E S C H R E I B U N G
Anlage zur Überprüfung von großvolumigen Gütern, insbesondere von Frachtgütern
Die Erfindung betrifft eine Anlage zur Prüfung von großvolumigen Gütern, insbesondere von Frachtgütern, mit einer Röntgenquelle, die Röntgenstrahlen zum Durchstrahlen der Güter abgibt, und mit einer auf die Röntgenquelle ausgerichteten Detektoranordnung.
Zur Kontrolle von großvolumigen Frachtgütern wie LKW- oder Containerladungen werden bekannterweise Röntgenprüfanlagen eingesetzt, die eine Röntgenquelle und eine auf die Röntgenquelle ausgerichtete Detektoranordnung aufweisen. Während das zu überprüfende Gut zwischen der Röntgenquelle und der Detektoranordnung relativ zu diesen bewegt wird, wird es von Röntgenstrahlen durchstrahlt und dabei abgescannt. Für die Relativbewegung zwischen der Prüfanlage und dem Prüfgut wird entweder das Prüfgut selbst, beispielsweise ein LKW, zwischen der Röntgenquelle und der Detektoranordnung hindurch bewegt, oder die Prüfaniage hat einen eigenen Fahrantrieb, mit dem sie relativ zu dem Prüfgut bewegt wird.
Um das Prüfgut in einem Scanvorgang zeilenweise zu überprüfen, ist es bekannt, in der Detektoranordnung die Detektoren in entsprechenden Detektorzeilen anzuordnen. Wie in der DE 101 22 279 A beschrieben, enthält die Detektoranordnung zwei rechtwinkitg zueinander abgewinkelte Detektorzeilen, von denen sich eine senkrecht nach oben, die andere waagrecht oberhalb der Prüfstrecke erstreckt.
Die Fracht-Scansysteme verwenden hauptsächlich Cäsiumjodid (CsJ)- Szintillatoren für die Detektion der transmittierten Röntgenstrahlen. Bei Gepäckprüfanlagen werden teilweise Keramik - Szintillatoren eingesetzt. Dies ist bei Fracht-Scansysteme bisher nicht der Fall, da wegen der großen Prüffläche und der riesigen Anzahl der benötigten Kristalle der Kostenanteil der Detektoren an den Herstellkosten zu groß würde. Zum Durchdringen der Lastkraftwagen und Container werden Röntgenstrahlen mit hoher Energie von beispielsweise 3,5 bis 4 MeV verwendet. Die Röntgenstrahlen werden mit gepulsten Elektronenbeschleunigern erzeugt. Wegen der hohen Energien werden Detektoren mit einer bestimmten Tiefe benötigt. Die Tiefe wird dabei in Richtung zur Röntgenquelle und damit senkrecht zu der Bewegungsrichtung des Prüfguts gemessen.
Bei höheren Relativgeschwindigkeiten des Prüfguts ist es schwierig, gute Bilder ohne Streifen zu erzeugen, da dazu die Relativgeschwindigkeit auf die von den Detektormaßen abhängige Pulsfrequenz abgestimmt werden muss.
Bei Frachtprüfsystemen werden eine immer bessere Bildauflösung und eine höhere Durchdringung verlangt. Diese können durch Verbesserungen an der Röntgenquelle und an den Detektoren erreicht werden.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Anlage zur Überprüfung von großvolumigen Gütern, insbesondere von Frachtgütern, bereitzustellen, die bei erhöhter Relativgeschwindigkeit des Prüfguts lückenlose Bilder in verbesserter Qualität liefert.
Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass die Detektoren der Detektoranordnung so aufgebaut oder angeordnet sind, dass Detektorzeilen mit zwei rechtwinklig an ihren Längsseiten aneinander stoßenden Zeilenschenkeln entstehen, von denen ein Schenkel parallel zur Bewegungsrichtung des Prüfguts, der andere senkrecht dazu in Richtung zur Röntgenquelle ausgerichtet ist.
Bevorzugt ist der parallel zu der Bewegungsrichtung ausgerichtete Schenkel in Richtung der Röntgenstrahlen vorne, also näher zur Röntgenquelle, angeordnet.
Bevorzugt enthalten die Detektoren als Szintiilationsmaterial Gadolinium- Oxysulfid (GOS), das bevorzugt mit Cer dotiert ist (Gd2O2S:Ce). Alternativ wird als Szintiilationsmaterial Cadmiumwolframat (CdWO4) verwendet.
GOS als Szintiilationsmaterial hat gegenüber CsJ mehrere Vorteile. Da es eine höhere Dichte und ein höheres Zeff hat, ist es besonders zur Detektion von Photonen oberhalb 100 keV geeignet. Weiterhin ist es nicht hygroskopisch. Allerdings ist das Material nicht transparent für die emittierten Szintillations-Photonen. Das begrenzt die Verwendung in Richtung auf höhere Energien, da die Szintillations-Photonen des gesamten Kristalls nicht mehr eingesammelt werden können.
Cadmiumwolframat als alternatives Szintiilationsmaterial hat ebenfalls Vorteile in Bezug auf Absorption und Nachleuchten. Zusätzlich sind Cadmiumwolframat-Kristalle transparent für die Szintillations-Photonen. Daher gibt es weniger Beschränkung in der Kristaligröße. Allerdings ist die Lichtausbeute von Cadmiumwolframat pro Photon viel geringer als die Ausbeute von GOS, das auch im Hinblick auf Umweit- und Gesundheitsschutz überlegen ist.
In der nachfolgenden Tabelle 1 sind Eigenschaften verschiedener Szintillatoren aufgeführt.
Table 1 : Properties of different Scintillators max. wavelength of the maximum distribution of scintillation photons)
In Figur 2 ist der Aufbau einer Prüfanlage dargestellt.
In einem Gehäuse 1 ist eine Röntgenquelle angeordnet. Die Röntgenstrahlen werden von einem Elektronenbeschleuniger mit einer Energie zwischen 3,5 und 4 MeV erzeugt und treten durch eine Blende 2 im Gehäuse 1 aus. Mit Abstand von dem Gehäuse 1 befindet sich eine senkrechte Detektorzeile 3, die aus einzelnen Detektoren 4, 5 aufgebaut ist. Am oberen Ende der senkrechten Detektorzeile 3 verläuft eine weitere waagrechte Detektorzeile 6, die mit einer weiteren senkrechten Detektorzeile 7 auf dem Gehäuse 1 abgestützt ist. Zwischen dem Gehäuse 1 und den Detektorzeilen 3, 6, 7 ist ein ausreichend großer Freiraum, durch den ein großvolumiges Gut wie ein LKW 10 oder ein Standard-Frachtcontainer für die Überprüfung in Richtung des Pfeils 9 bewegt werden kann. Wie in den Figur 3 und 4 dargestellt, besteht jede Detektorzeile 3, 6, 7 aus zwei rechtwinklig an ihren Längsseiten aneinanderstoßenden Zeilenschenkeln, die jeweils von nebeneinander oder übereinander angeordneten Detektoren 4, 5 gebildet werden. Einer der Schenkel ist jeweils parallel zur Bewegungsrichtung 9 des Prüfguts (im Beispiel der von den Detektoren 5 gebildete Schenkel) ausgerichtet. Der andere, im Beispiel von den Detektoren 4 gebildete Schenkel, ist dazu senkrecht in Richtung zur Röntgenquelle 2 ausgerichtet. Die in Bewegungsrichtung 9 gemessene Länge I der in Bewegungsrichtung 9 ausgerichteten
Detektoren 5 beträgt ca. 10 mm, ihre dazu senkrecht gemessene Tiefe t beträgt ca. 5 mm. Die entsprechend gemessene Länge I der dazu senkrecht angeordneten Detektoren 4 beträgt ca. 5 mm. Deren Tiefe t beträgt ca. 20 mm bis 30 mm.
Bevorzugt ist der parallel zu der Bewegungsrichtung 9 des Prüfguts ausgerichtete Schenkel 5 in Richtung der Röntgenstrahlen vorne, also näher zur Röntgenquelle 1 , angeordnet, wie in den Figuren 2 und 3 dargestellt ist. Dann werden auch durch den Compton - Effekt in Vorwärtsrichtung gestreute Photonen mit höherer Energie in den anderen Detektoren 4 detektiert.
Die andere, in Figur 4 dargestellte Variante, bei der der parallel zu der Bewegungsrichtung 9 des Prüfguts ausgerichtete Schenkel 5 in Richtung der Röntgenstrahlen hinten, also weiter von der Röntgenquelle 1 weg, angeordnet ist, hat Vorteile im Hinblick auf Auflösung feiner Strukturen, da weniger Übersprechen zwischen den Kanälen auftreten kann. Die Detektorzeilen mit abgewinkelten Schenkeln lassen sich beispielsweise so herstellen, dass auf einen standardmäßig angeordneten Detektor, beispielsweise aus GOS, ein zusätzlicher dünner GOS- Szintillatorstab geklebt wird, der die Detektorbreite in Bewegungsrichtung 9 vergrößert.
Die nachfolgende Tabelle 2 zeigt Parameter, die nach einem Standardtest für verschiedene Detektorzeiien erhalten wurden.
Table 2: Parameters obtained for the different detection lines using the penetration test tool and a test tool according to ANS! Standard 42.46.
Claims
1.
Anlage zur Prüfung von großvolumigen Gütern, insbesondere von Frachtgütern, mit einer Röntgenquelle (1), die Röntgenstrahlen zum Durchstrahlen der Güter abgibt, und mit einer auf die Röntgenquelle ausgerichteten Detektoranordnung,
dadurch gekennzeichnet, dass die Detektoren (4, 5) der Detektoranordnung so aufgebaut oder angeordnet sind, dass Detektorzeilen (3, 6, 7) mit zwei rechtwinklig an ihren Längsseiten aneinander stoßenden Zeilenschenkeln entstehen, von denen ein Schenkel parallel zur Bewegungsnchtung (9) des Prüfguts, der andere senkrecht dazu in Richtung zur Röntgenquelle (1) ausgerichtet ist.
2.
Anlage nach Anspruch 1 , dadurch gekennzeichnet, dass der parallel zu der Bewegungsrichtung (9) ausgerichtete Schenkel (5) in Richtung der Röntgenstrahlen vorne, also näher zur Röntgenquelle, angeordnet ist.
3.
Anlage nach Anspruch 1 , dadurch gekennzeichnet, dass der parallel zu der Bewegungsrichtung (9) ausgerichtete Schenke! (5) in Richtung der Röntgenstrahlen hinten, also weiter von der zur Röntgenqueüe weg, angeordnet ist.
4.
Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Detektoren als Szintillationsmaterial Gadolinium-Oxysulfid (GOS), das bevorzugt mit Cer dotiert ist (Gd2O2S:Ce) enthalten.
5.
Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Detektoren als Szintillationsmaterial Cadmiumwolframat (CdWO4) enthalten.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12706567.0A EP2686711A2 (de) | 2011-03-14 | 2012-02-28 | ANLAGE ZUR ÜBERPRÜFUNG VON GROßVOLUMIGEN GÜTERN, INSBESONDERE VON FRACHTGÜTERN |
US14/027,534 US9158028B2 (en) | 2011-03-14 | 2013-09-16 | Facility for inspecting large-volume goods, in particular freight goods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011013942A DE102011013942A1 (de) | 2011-03-14 | 2011-03-14 | Anlage zur Überprüfung von großvolumigen Gütern, insbesondere von Frachtgütern |
DE102011013942.7 | 2011-03-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/027,534 Continuation US9158028B2 (en) | 2011-03-14 | 2013-09-16 | Facility for inspecting large-volume goods, in particular freight goods |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012123248A2 true WO2012123248A2 (de) | 2012-09-20 |
WO2012123248A3 WO2012123248A3 (de) | 2012-12-06 |
Family
ID=45774212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/053331 WO2012123248A2 (de) | 2011-03-14 | 2012-02-28 | ANLAGE ZUR ÜBERPRÜFUNG VON GROßVOLUMIGEN GÜTERN, INSBESONDERE VON FRACHTGÜTERN |
Country Status (4)
Country | Link |
---|---|
US (1) | US9158028B2 (de) |
EP (1) | EP2686711A2 (de) |
DE (1) | DE102011013942A1 (de) |
WO (1) | WO2012123248A2 (de) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10122279A1 (de) | 2001-05-08 | 2002-12-12 | Heimann Systems Gmbh & Co | Röntgenanlage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3764315D1 (de) * | 1986-05-28 | 1990-09-20 | Heimann Gmbh | Roentgenscanner. |
AU8759898A (en) * | 1997-08-06 | 1999-03-01 | Eg&G Astrophysics | Side-by-side detector array for dual energy x-ray imaging system |
US7072440B2 (en) * | 2001-10-19 | 2006-07-04 | Control Screening, Llc | Tomographic scanning X-ray inspection system using transmitted and Compton scattered radiation |
US8275091B2 (en) * | 2002-07-23 | 2012-09-25 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US7831012B2 (en) * | 2006-02-09 | 2010-11-09 | L-3 Communications Security and Detection Systems Inc. | Radiation scanning systems and methods |
US20080298546A1 (en) * | 2007-05-31 | 2008-12-04 | General Electric Company | Cargo container inspection method |
GB0803640D0 (en) * | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Scanning systems |
-
2011
- 2011-03-14 DE DE102011013942A patent/DE102011013942A1/de not_active Ceased
-
2012
- 2012-02-28 EP EP12706567.0A patent/EP2686711A2/de not_active Withdrawn
- 2012-02-28 WO PCT/EP2012/053331 patent/WO2012123248A2/de active Application Filing
-
2013
- 2013-09-16 US US14/027,534 patent/US9158028B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10122279A1 (de) | 2001-05-08 | 2002-12-12 | Heimann Systems Gmbh & Co | Röntgenanlage |
Also Published As
Publication number | Publication date |
---|---|
US20140016746A1 (en) | 2014-01-16 |
US9158028B2 (en) | 2015-10-13 |
EP2686711A2 (de) | 2014-01-22 |
WO2012123248A3 (de) | 2012-12-06 |
DE102011013942A1 (de) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006023309B4 (de) | Verfahren und Vorrichtung zur Erkennung von Materialen mittels Schnellneutronen und eines kontinuierlichen spektralen Röntgenstrahles | |
DE69222435T2 (de) | Identifizieren von material mittels roentgenstrahlen | |
DE112012004856B4 (de) | Kontrollsystem und Verfahren zur schnellen, platzsparenden Röntgentomografiekontrolle | |
EP1672359B1 (de) | Verfahren zum Messen des Impulsübertragungsspektrums von elastisch gestreuten Röntgenquanten | |
DE102007020545A1 (de) | Detektormatrix und Vorrichtung zu deren Verwendung | |
DE112004002474T5 (de) | Verfahren und System zur Detektion von Substanzen wie speziellen nuclearen Materialien | |
DE112008001662T5 (de) | Verfahren und System zur Detektion von Schmuggelgut unter Verwendung von Photoneutronen und Röntgenstrahlen | |
DE112006001584T5 (de) | Energie unterscheidendes Streuabbildungssystem | |
DE102012204350B4 (de) | Verfahren zur Energie-Kalibrierung quantenzählender Röntgendetektoren in einem Dual-Source Computertomographen | |
DE1296829B (de) | Verfahren und Vorrichtungen zur Bestimmung des Gehaltes einer Probe an schweren Elementen durch Messung ihrer optisch angeregten K alfa- oder K beta-Roentgenfluoreszenzlinien | |
DE1774021A1 (de) | Vorrichtung zur Bestimmung der Feuchtigkeit in einem Material,insbesondere fuer Bodenuntersuchungen mit Hilfe von Neutronen | |
DE102005024892B3 (de) | Gantry zur Aufnahme einer Röntgenquelle und Verfahren zur Überprüfung eines Prüfteils mittels Röntgenstrahlung | |
EP1672358A1 (de) | Anordnung zum Messen des Impulsübertragungsspektrums von elastisch gestreuten Röntgenquanten sowie Verfahren zur Bestimmung dieses Impulsübertragungsspektrums | |
DE19622758A1 (de) | Verfahren zur Detektion eines Körpers innerhalb eines Untersuchungsbereichs und Anordnung zur Durchführung des Verfahrens | |
DE3035929C2 (de) | Vorrichtung zur Ermittlung der Volumenanteile eines Mehrkomponentengemisches durch Transmission mehrerer Gammalinien | |
EP2686711A2 (de) | ANLAGE ZUR ÜBERPRÜFUNG VON GROßVOLUMIGEN GÜTERN, INSBESONDERE VON FRACHTGÜTERN | |
EP3218744B1 (de) | Ortungsgerät für radioaktive strahlenquellen | |
DE19847555A1 (de) | Verfahren und Vorrichtung zur Füllstandsmessung mit Hintergrund-Gammastrahlung | |
EP3052966B1 (de) | Röntgendetektor | |
DE102013212983A1 (de) | Einrichtung zur Bestimmung der Dosisdeposition von Teilchenstrahlung zur Tumorbehandlung in Gewebe | |
EP3561459B1 (de) | Anordnung und verfahren zur füllstands- bzw. dichtemessung eines mediums mittels myonen | |
DE102013112573A1 (de) | Szintillationsdetektor mit intrinsischer Unterdrückung entweichender Sekundärteilchen | |
DE102007051135A1 (de) | Vorrichtung zur Online-Bestimmung des Gehalts einer Substanz und Verfahren unter Verwendung einer solchen Vorrichtung | |
DE10224227A1 (de) | Röntgendetektor und Verfahren zum Nachweis von Röntgenstrahlung | |
DE102007045798A1 (de) | Anordnung zur Aufnahme von Röntgenstrahlen- und/oder Gammastrahlen-Streuungsbildern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12706567 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012706567 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012706567 Country of ref document: EP |