WO2012122839A1 - 汽油机风冷缸头及其汽油机 - Google Patents

汽油机风冷缸头及其汽油机 Download PDF

Info

Publication number
WO2012122839A1
WO2012122839A1 PCT/CN2011/083902 CN2011083902W WO2012122839A1 WO 2012122839 A1 WO2012122839 A1 WO 2012122839A1 CN 2011083902 W CN2011083902 W CN 2011083902W WO 2012122839 A1 WO2012122839 A1 WO 2012122839A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
passage
gasoline engine
air
exhaust
Prior art date
Application number
PCT/CN2011/083902
Other languages
English (en)
French (fr)
Inventor
刘兵
谢育明
陈宏波
Original Assignee
隆鑫通用动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆鑫通用动力股份有限公司 filed Critical 隆鑫通用动力股份有限公司
Priority to US13/392,021 priority Critical patent/US20140216369A1/en
Publication of WO2012122839A1 publication Critical patent/WO2012122839A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • F01P1/10Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/04Cylinders; Cylinder heads  having cooling means for air cooling
    • F02F1/06Shape or arrangement of cooling fins; Finned cylinders

Definitions

  • a general-purpose gasoline engine refers to a reciprocating piston type gasoline engine having a wide range of uses in addition to vehicles and aviation.
  • the general power is a small general-purpose gasoline engine within 20 kW, and has strong versatility, and is characterized by small size, small mass, and operation. Simple, cheap.
  • the general gasoline engine is used as one of the power sources to drive general machinery.
  • the general machinery includes agricultural and forestry plant protection machinery, garden machinery, generator sets, construction machinery and so on.
  • a gasoline engine is a kind of power machine that uses gasoline as a fuel.
  • the cylinder head is provided with an intake passage and an exhaust passage, and together with the cylinder constitute a combustion chamber, and thus belongs to a more important part of the gasoline engine.
  • the mixture of gasoline and air burns in the combustion chamber, generating a large amount of heat as driving energy.
  • Heat is inevitably transmitted to the outer surface through the heat transfer through the cylinder block and the cylinder head and removes heat to the outside through other cooling methods, and needs to dissipate heat quickly to maintain the normal operation of the combustion chamber surface; otherwise, it will cause the combustion chamber wall
  • the temperature rises indefinitely which will eventually affect the exhaust emissions, affect the performance of the cylinder head, and even the piston sticking cylinder and pulling cylinder phenomenon.
  • the heat dissipation measures of the cylinder head generally adopt a heat sink on the outer surface, and the heat in the combustion chamber is transmitted to the heat sink through the cylinder head, and the heat is taken away by the air convection to achieve the purpose of heat dissipation.
  • the heat sink has better heat dissipation and is lighter, which can meet the heat dissipation requirements.
  • the heat conduction and convection area of the heat sink are limited, and the heat can not be fully dissipated.
  • the heat accumulation will affect the physical performance of the cylinder head, thereby affecting the running performance of the gasoline engine, and even a safety accident may occur, causing the gasoline engine to be scrapped.
  • the present invention provides a gasoline engine air-cooled cylinder head and a gasoline engine thereof, the cylinder head has better heat dissipation effect, ensures the physical performance of the cylinder head, reduces the cylinder temperature, and enables the gasoline engine to stably operate for a long time, effectively Reducing the hydrocarbons in the exhaust gas does not cause the piston to stick to the cylinder and pull the cylinder due to the temperature rise.
  • the gasoline engine air-cooling cylinder head of the present invention comprises a cylinder head body and an intake passage, an exhaust passage and a spark plug mounting hole disposed on the cylinder head body, wherein a heat sink is disposed on the outer surface of the cylinder head body, and a combustion chamber surface is formed on the inner side of the cylinder head body
  • the cylinder head body is provided with a longitudinally-through air-cooling passage I on the same side of the intake passage and the exhaust passage, and a horizontally-connected air-cooled passage II is disposed between the intake passage and the exhaust passage, and the air-cooled passage I Both the air-cooled passages II avoid the functional holes on the cylinder head body.
  • the intake passage axis and the exhaust passage axis are in a coplanar plane
  • the air-cooling passage I is parallel to the common plane of the intake passage axis and the exhaust passage axis and is arranged in the intake passage axis and the exhaust passage with the spark plug mounting hole.
  • the air-cooled passage II is perpendicular to the coplanar surface of the intake passage axis and the exhaust passage axis.
  • the design of the air-cooling passage can be realized by using the original structure of the cylinder head, and the air-cooling passage I and the air-cooling passage II are perpendicular to each other, which facilitates the passage of the cooling air from all directions, does not affect the installation of each component, and saves the manufacturing cost;
  • the design of the air-cooling passage of the structure is beneficial to improve the ability of the cylinder head to resist the bending moment, and combined with the enhancement of the heat dissipation effect, the cylinder head is lighter and the overall economy of the machine is improved.
  • the heat sink extends into the air cooling passage I and communicates to form a heat dissipation bridge, and the heat dissipation bridge divides the air cooling passage I into parallel longitudinal multi-channel structures.
  • the heat dissipation bridge structure facilitates the strength of the cylinder head after opening the ventilation cold passage I.
  • the heat dissipation bridge increases the heat radiation and the conduction area during heat dissipation, which further facilitates heat dissipation.
  • a spark plug air-cooling passage is provided on the cylinder head body on the side of the spark plug mounting hole. By means of air cooling, the spark plug is cooled better, avoiding the problem that the prior art spark plug has a reduced service life due to high temperature.
  • the fins on the air-cooled cylinder head extend to the outer wall of the exhaust passage.
  • This structure can effectively reduce the exhaust gas temperature, and is beneficial for protecting the exhaust gas treatment components in the exhaust system, further reducing emissions and contributing to environmental protection.
  • the combustion chamber surface is a composite spherical structure, and the spherical surface I, the smooth curved surface and the spherical surface II are sequentially arranged from the bottom to the top, the radius of the spherical surface II is larger than the radius of the spherical surface I; and the spherical surface I and the spherical surface II are smoothly transitioned by the smooth curved surface.
  • the spherical cavity has the smallest surface area ratio and improves the working efficiency of the gasoline engine, the spherical structure is not conducive to the sufficient mixing of the combustion gases, which will reduce the mixing rate and affect the combustion and emissions.
  • the composite spherical structure not only further reduces the surface area ratio, but also Because the curved transition is beneficial to the mixing of combustion gases, it is more conducive to combustion and lower emissions, and increases the power of the gasoline engine.
  • the angle between the intake and exhaust valves and the intake and exhaust air passages is smaller than that of other structural combustion chambers. The resistance of the intake and exhaust is reduced, the intake and exhaust are smoother, the gasoline engine power is effectively increased, and the fuel consumption rate and emissions are further reduced.
  • the angle between the intake and exhaust valves and the intake and exhaust air passages is smaller than that of the existing structure combustion chamber surface, which facilitates the organization of intake air, improves the intake efficiency, and facilitates the organization of intake air in the cylinder.
  • Tumble and intake vortex increase the airflow disturbance in the cylinder, accelerate combustion; reduce the resistance of intake and exhaust, make the intake and exhaust more smooth, help to increase the power of the gasoline engine, reduce fuel consumption, reduce exhaust emissions, and protect the environment.
  • an intake valve is disposed on the cylinder head body corresponding to the intake passage, and an exhaust valve is disposed corresponding to the exhaust passage, and the intake valve is inclined from the bottom to the top toward the intake passage side, and the exhaust valve is from bottom to top.
  • the exhaust passage side is inclined. Because the valve is inclined, the nose bridge area in the middle of the inlet and exhaust passages can be wider, which is conducive to cooling, increases the anti-deformation ability, and cooperates with the completely smooth cooling duct II, which greatly improves the cooling effect of the nose bridge area and reduces The deformation of the cylinder head at high temperatures improves reliability.
  • the intake valve and the exhaust valve are respectively provided with rocker arms
  • the rocker arm seat is respectively disposed on the cylinder head body corresponding to the corresponding rocker arm
  • the rocker arm is fixedly provided with a corresponding rocker arm shaft
  • the rocker arm shaft can surround itself
  • the single-degree-of-freedom of the axis rotation is disposed on the corresponding rocker arm seat, and the two rocker arm shafts are disposed radially inwardly with respect to the cylinder head body mounting surface facing the top, and the corresponding rocker arm shafts are opposite to the cylinder head body mounting surface.
  • the inclination angles are respectively the same as the inclination angles of the intake and exhaust valves with respect to the axis of the cylinder head body; the rocker arms form a lever structure with the corresponding rocker arm shaft as a fulcrum.
  • the inclined rocker shaft can be adapted to the inclined valve structure and adapt to the geometry of the composite spherical combustion chamber, which is beneficial to ensure the coordination and sealing of the rocker to move the valve.
  • the amount of swaying or shaking is small, which can effectively reduce the failure rate of the rocker arm and reduce the maintenance cost.
  • the rocker arm seat is an open structure, and both ends of the rocker arm shaft are correspondingly inserted into two sides of the opening of the corresponding rocker arm seat and are coupled to rotate around the axis thereof, and the rocker arm is located in the opening of the corresponding rocker arm seat and fixed It is disposed on the corresponding rocker shaft;
  • the outward side of the rocker seat opening structure is a split bearing housing structure, including a gland and a seat body, and a detachable fixed connection between the gland and the seat body.
  • the split bearing housing structure facilitates the installation of the rocker shaft, reduces the friction area, increases the flexibility of the rocker arm movement, and is simple and compact in structure, saving space.
  • the intake valve axis and the exhaust valve axis are perpendicular to a tangent plane of the intersection of the combustion chamber face and the corresponding intake valve axis and exhaust valve axis, respectively.
  • This structure is adapted to the direction of the intake and exhaust of the combustion chamber, reducing the resistance and increasing the power of the gasoline engine.
  • the combustion chamber surface is located at a portion between the intake valve and the exhaust valve to form a nose bridge region, and the width of the nose bridge portion on the combustion chamber surface is greater than 8 mm.
  • the outer circumference of the outer circumference of the intake valve and the outer circumference of the outer circumference of the exhaust valve are tangent to the bottom edge of the combustion chamber surface; the inner end of the seat of the intake valve and the inner end of the outer circumference of the exhaust valve and the combustion chamber The shape of the face is adapted.
  • the inner end of the seat ring of the intake valve and the inner end of the seat ring of the exhaust valve are adapted to the shape of the combustion chamber surface to reduce interference with intake and exhaust, reduce drag, eliminate dead ends and sudden shape changes, and ensure The full combustion of the mixed gas improves the efficiency of the gasoline engine.
  • the invention also discloses a gasoline engine having the foregoing gasoline engine air-cooled cylinder head, wherein the gasoline engine air-cooling cylinder head is installed on the gasoline engine.
  • the passage wall transmits heat through heat conduction, which increases the conduction and convection area, and fully reduces the temperature of the combustion chamber, so that the cylinder head has better heat dissipation effect and lowers the cylinder temperature. Effectively reduce hydrocarbons in the exhaust gas and increase the power of the gasoline engine.
  • a gasoline engine with a maximum power (3060 rpm) of 7.5 kW can increase the power to 8.1 kW, and the emission can be reduced from 8.0 g/kW.h to 6.0 g/kW.h, which meets and exceeds the EPA3 stage of 8 g/kW.h. It can be seen that the power increase and emission reduction of the gasoline engine of the present invention are more obvious.
  • the gasoline engine of the invention does not produce the piston sticking cylinder and the pulling cylinder phenomenon caused by the temperature rise, and ensures the performance of the gasoline engine while enabling it to operate stably for a long time.
  • the cylinder head of the invention is used for a gasoline engine, and can be used for accelerating the flow of air in the air-cooling passage when the general-purpose power equipment driven by the gasoline engine is used, which is more favorable for heat dissipation; used for ordinary general machinery, exposed to the air, and forced air convection by the outside, Conducive to heat dissipation.
  • FIG. 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a view taken along line BB of FIG. 1
  • FIG. 3 is a front view of the air-cooled passage of the spark plug
  • Figure 6 is a cross-sectional view of the rocker arm shaft and the rocker arm seat.
  • 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a view taken along line A of FIG. 1
  • FIG. 3 is a view taken along line BB of FIG. 2
  • FIG. 4 is a front view of the air-cooled passage of the spark plug
  • FIG. 6 Schematic diagram of the structure
  • Figure 6 is a cross-sectional view of the rocker arm shaft and the rocker arm seat.
  • the gasoline engine air-cooling cylinder head of the embodiment includes a cylinder head body 1 and an intake passage 3, an exhaust passage 2 and a spark plug mounting hole 6 provided in the cylinder head body 1, and the outer surface of the cylinder head body 1 is provided.
  • the cylinder head body 1 is provided on the same side of the intake passage 3 and the exhaust passage 2 with a longitudinally-through air-cooling passage I8, which is located in the intake passage 3.
  • the plane is referred to as a total surface.
  • the air-cooling passage I 8 is parallel to the coplanar surface of the intake passage 3 axis and the exhaust passage 2 axis and is arranged on the coplanar sides of the intake passage 3 axis and the exhaust passage 2 axis, respectively, with the spark plug mounting hole 6, air-cooled
  • the passage ⁇ 7 is perpendicular to the coplanar surface of the intake passage 3 axis and the exhaust passage 2 axis.
  • the design of the air-cooling passage can be realized by using the original structure of the air-cooled cylinder head, and the air-cooling passage 18 and the air-cooling passage II 7 are perpendicular to each other, which facilitates the passage of the cooling air from all directions without affecting the installation of each component.
  • the design of the air-cooling passage in the embodiment is advantageous for improving the ability of the cylinder head to resist the bending moment, and the heat dissipation effect is enhanced to make the cylinder head lighter and improve the overall economy of the machine.
  • the heat sink 4 extends into the air-cooling passage I 8 and communicates to form a heat dissipation bridge 81.
  • the heat dissipation bridge 81 divides the air-cooling passages 18 into parallel longitudinal multi-channel structures.
  • the structure of the heat dissipation bridge 81 facilitates the strength of the cylinder head after opening the ventilation cold passage I 8 .
  • the heat dissipation bridge 81 increases the heat radiation and the conduction area during heat dissipation, which further facilitates heat dissipation.
  • the cylinder head body 1 is provided with a through-spark plug air-cooling passage 9 on the side of the spark plug mounting hole 6. The direction of the airflow in the spark plug is shown by the arrow in Figure 5.
  • the spark plug By means of air cooling, the spark plug is cooled better, avoiding the problem that the prior art spark plug has a reduced service life due to high temperature.
  • the fins 4 on the cylinder head extend to the outer wall of the exhaust passage 2. This structure can effectively reduce the exhaust gas temperature, and is beneficial for protecting the exhaust gas treatment components in the exhaust system, further reducing emissions and contributing to environmental protection.
  • the combustion chamber surface 5 is a composite spherical structure, and the spherical surface I a, the smooth curved surface b and the spherical surface II c from the bottom to the top, the radius of the spherical surface II c is larger than the radius of the spherical surface I a ; the smoothing between the spherical surface I a and the spherical surface II c Surface b smooth transition.
  • the smooth surface b can be a hyperboloid or a paraboloid or the like. Due to the smallest spherical cavity ratio, the gasoline engine is increased.
  • the cylinder head body 1 is provided with an intake valve 31 corresponding to the intake passage 3, and an exhaust valve 21 is provided corresponding to the exhaust passage 2, and the intake valve 31 is from the bottom to the top to the intake passage 3 side. Tilt, the exhaust valve 21 is inclined from the bottom to the top toward the side of the exhaust passage 2.
  • the angle between the intake and exhaust valves and the intake and exhaust air passages is smaller than that of the existing structure combustion chamber surface, which facilitates the organization of intake air, improves the intake efficiency, and facilitates the organization of intake air in the cylinder.
  • Tumble and intake vortex increase the airflow disturbance in the cylinder, accelerate combustion; reduce the resistance of intake and exhaust, make the intake and exhaust more smooth, help to increase the power of the gasoline engine, reduce fuel consumption, reduce exhaust emissions, and protect the environment.
  • the valve is inclined, the nose bridge area in the middle of the inlet and exhaust passages can be wider, which is beneficial to cooling, increase the deformation resistance, and cooperate with the completely smooth cooling duct 117, which greatly improves the cooling effect of the nose bridge area.
  • the deformation of the cylinder head at high temperatures is reduced, and the reliability is improved.
  • the intake valve 31 and the exhaust valve 21 are respectively provided with rocker arms, as shown in FIG.
  • the rocker arm 11 of the intake valve 31, the rocker arm 13 of the exhaust valve 21; the cylinder head body 1 and the rocker arm (rocker arm) 11 and the rocker arm 13) are correspondingly provided with a rocker arm seat (the rocker arm seat 15 and the rocker arm seat 12 in the figure), and the rocker arm (the rocker arm 11 and the rocker arm 13) are respectively fixedly provided with the rocker arm shaft (the rocker arm shaft 10) And the rocker shaft 14), the rocker shaft (the rocker shaft 10 and the rocker shaft 14) are respectively disposed on the rocker arm (the rocker seat 15 and the rocker seat 12) in a single degree of freedom in a manner of being rotatable about the axis thereof.
  • the two rocker shafts (the rocker shaft 10 and the rocker shaft 14) are disposed radially inwardly with respect to the cylinder head body 1 facing the top, the radial direction is the radial direction of the cylinder head; the rocker shaft (rocker shaft) 10 and the angle of inclination of the rocker shaft 14) with respect to the mounting surface of the cylinder head body 1 are the same as the inclination angles of the intake valve 31 and the exhaust valve 21 with respect to the axis of the cylinder head body 1; the rocker arm (rocker arm 11 and rocker)
  • the arm 13) forms a lever structure with a rocker shaft (rocker shaft 10 and rocker shaft 14) as a fulcrum, and together with the rocker shaft, forms an inclined fixed rocker arm.
  • the inclined rocker shaft can be adapted to the inclined valve structure and adapt to the geometry of the composite spherical combustion chamber, which is beneficial to ensure the coordination and sealing of the rocker to move the valve.
  • the small amount of shaking or shaking can effectively reduce the failure rate of the rocker arm and reduce maintenance costs.
  • the rocker arm seat (the rocker arm seat 15 and the rocker arm seat 12) is an open structure, and the rocker arm shafts (the rocker arm shaft 10 and the rocker arm shaft 14) are respectively inserted into the rocker arm seat (the rocker arm seat 15). And the sides of the opening of the rocker seat 12) The body axis rotates in a way that matches.
  • the single-degree-of-freedom cooperation means that the axial freedom of the rocker shaft is limited, and a structure in which the shoulders respectively abut on the sides of the corresponding rocker seat openings are provided on the rocker shaft, and any of the prior art may be used.
  • the rocker arm (rocker arm 11 and rocker arm 13) is fixedly disposed on the rocker arm shaft (rocker arm shaft 10 and rocker arm shaft 14) in the opening of the rocker arm seat (rocker arm seat 15 and rocker arm seat 12); rocker arm seat 15 (and the rocker seat 12)
  • the outward side of the opening structure is a split type bearing housing structure.
  • the outward side of the opening structure of the rocker arm base 15 includes a gland 151a and a seat body 151.
  • the cover 151a and the base 151 are detachably fixedly connected, and in this embodiment, a screw connection is adopted.
  • rocker arm seat 15 (and the rocker arm seat 12) is also provided with a bearing bush on the inward side of the opening structure.
  • the outward side of the opening structure of the rocker base 12 has the same structure as the outward side of the opening structure of the rocker seat 15.
  • the split bearing housing structure facilitates the installation of the rocker shaft, reduces the friction area, increases the flexibility of the rocker arm movement, and is simple and compact in structure, saving space.
  • the axis of the intake valve 31 and the axis of the exhaust valve 21 are perpendicular to the intersection of the combustion chamber face 5 and its intersection point, that is, the axis of the intake valve 31 and the axis of the exhaust valve 21 respectively intersect the combustion chamber face 5, the intersection point The cut surface of the combustion chamber face 5 at the location. That is, the axes of the intake valve 31 and the exhaust valve 21 intersect at the center of the combustion chamber, which is adapted to the direction of the intake and exhaust of the combustion chamber, reduces the resistance, and increases the power of the gasoline engine.
  • the combustion chamber face 5 is located at a portion between the intake valve 31 and the exhaust valve 21 to form a nose bridge region. As shown in Fig.
  • the width L of the nose bridge region at the combustion chamber face 5 is greater than 8 mm.
  • the outer circumference of the race 31a of the intake valve 31 and the outer circumference of the race 21a of the exhaust valve 21 are tangent to the bottom edge of the combustion chamber face 5.
  • Instantaneous interference between the exhaust gases ensures full combustion and increases the power of the gasoline engine.
  • the inner end of the race of the intake valve and the inner end of the race of the exhaust valve are adapted to the shape of the combustion chamber face 5.
  • the shape of the end surface of the inner end portion of the race 31a of the intake valve 31 and the inner end portion of the race 21a of the exhaust valve 21 is adapted to the shape of the combustion chamber surface, eliminating the step, reducing interference with the intake and exhaust, and reducing Resistance, eliminate dead ends and sudden changes in shape, ensure full combustion of the mixed gas, and improve the efficiency of the gasoline engine.
  • the invention also discloses a gasoline engine having the foregoing gasoline engine air-cooled cylinder head, wherein the gasoline engine air-cooling cylinder head is installed on the gasoline engine.
  • the gasoline engine of the invention is mainly used for general machinery, mainly including a driving water pump, a fan, a generator, etc., and has a good cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

汽油机风冷缸头及其汽油机 技术领域 本发明涉及动力机械领域, 特别涉及一种汽油机风冷缸头及其汽油机。 背景技术 通用汽油机指除车用、 航空用以外, 具有广泛用途的往复活塞式汽油机, 一般功 率在 20kW以内为小型通用汽油机, 具有较强的通用性, 其特点是体积小和质量小、 使用操作简便, 价格便宜。 通用汽油机作为动力源之一来驱动通用机械, 通用机械包 括农林植保机械、 园林机械、 发电机组、 建筑机械等。 汽油机是用汽油作燃料的一种 动力机械, 由气缸、 曲柄连杆机构、 配气系统、 供油系统、 润滑系统和点火系统等部 分组成。 缸头设置有进气通道和排气通道, 并与气缸共同组成燃烧室, 因而属于汽油 机较为重要的部件。 汽油与空气的混合物在燃烧室内燃烧, 产生大量的热量, 作为驱 动能量。 热量不可避免的要通过缸体和缸盖通过热传导传递至外表面并通过其它冷却 方式带走热量至外界, 并且需要散热较快, 以维持燃烧室面的正常工作; 否则, 会导 致燃烧室壁面温度无限升高, 最终会影响尾气排放, 影响缸盖的使用性能, 甚至会出 现活塞粘缸、 拉缸现象。 现有技术中, 缸头的散热措施普遍采用在外表面设有散热片, 燃烧室内的热量通 过缸头传导至散热片, 利用空气对流带走热量, 达到散热的目的。 散热片散热效果较 好且较为轻便, 能够满足散热要求。 但是, 在汽油机长时间运行时, 散热片热传导以 及对流面积有限, 无法充分散热, 热量积聚后会影响缸头的物理性能, 从而影响汽油 机的运行性能, 甚至会出现安全事故, 造成汽油机报废。 因此, 需要对汽油机风冷缸头进行改进, 使其具有较好的散热效果, 保证缸盖的 物理性能, 降低缸温, 使汽油机能够长时间稳定运行, 有效地降低尾气中的碳氢化合 物, 不会产生由温升导致的活塞粘缸、 拉缸现象。 发明内容 有鉴于此, 本发明提供一种汽油机风冷缸头及其汽油机, 缸头具有较好的散热效 果, 保证缸盖的物理性能, 降低缸温, 使汽油机能够长时间稳定运行, 有效地降低尾 气中的碳氢化合物, 不会产生由温升导致的活塞粘缸、 拉缸现象。 本发明的汽油机风冷缸头, 包括缸头本体和设置于缸头本体的进气通道、 排气通 道及火花塞安装孔, 缸头本体外表面设有散热片, 缸头本体内侧形成燃烧室面, 缸头 本体上位于进气通道和排气通道的同侧设有纵向贯通的风冷通道 I, 位于进气通道和 排气通道之间设有横向贯通的风冷通道 II, 风冷通道 I和风冷通道 II均避开缸头本体 上的功能孔。 进一步, 进气通道轴线和排气通道轴线处于一共面内, 风冷通道 I平行于进气通 道轴线和排气通道轴线的共面且与火花塞安装孔分列于进气通道轴线和排气通道轴线 的共面的两侧, 风冷通道 II垂直于进气通道轴线和排气通道轴线的共面。 利用缸头原 有结构即能实现上述风冷通道的设计, 且风冷通道 I和风冷通道 II互相垂直, 利于从 各个方向接受冷却风的通过, 不影响各部件的安装, 节约制作成本; 同时, 本结构风 冷通道的设计有利于提高缸头抵抗弯矩的能力, 结合散热效果的增强, 使缸头轻量化, 提高机器整体的经济性。 进一步, 散热片延伸至风冷通道 I内并连通形成散热桥, 散热桥将风冷通道 I分 隔成平行的纵向多通道结构。 散热桥结构利于在开通风冷通道 I后保证缸头的强度, 同时, 散热桥增加了散热时的热辐射和传导面积, 进一步利于散热。 进一步, 缸头本体上位于火花塞安装孔侧设有贯通的火花塞风冷通道。 通过风冷 使得火花塞得到较好的冷却, 避免出现现有技术中火花塞由于高温而降低使用寿命的 问题。 进一步, 风冷缸头上的散热片延伸至排气通道外壁。 此结构能够有效降低排气温 度, 利于保护排气系统内的尾气处理部件, 进一步降低排放, 利于环保。 进一步, 燃烧室面为复合球面结构, 由底部到顶部依次为球面 I、 平滑曲面和球 面 II,球面 II的半径大于球面 I的半径; 球面 I和球面 II之间通过平滑曲面平滑过渡。 由于球面燃烧室面容比最小, 提高汽油机工作效率, 但是由于采用球形结构不利于燃 烧气体的充分混合, 则会降低混合率, 影响燃烧和排放; 采用复合球面结构, 不但进 一步减小面容比, 还因为曲面过渡利于燃烧气的混合, 从而更利于燃烧和降低排放, 增加汽油机动力; 同时, 进、 排气门与进、 排气气道之间的夹角比其它结构燃烧室面 的小, 有效的减小进、 排气的阻力, 使进、 排气更顺畅, 有效地提高汽油机功率, 进 一步利于降低燃油消耗率和排放。 适应于复合球面燃烧室, 进、 排气门与进、 排气气 道之间的夹角比现有结构燃烧室面小, 便于组织进气, 提高进气效率, 便于在气缸内 组织进气滚流和进气涡流, 增加缸内气流扰动, 加快燃烧; 减小进、 排气的阻力, 使 进、 排气更顺畅, 利于提高汽油机功率, 降低燃油消耗, 降低尾气排放, 保护环境。 进一步, 缸头本体上与进气通道对应设有进气门, 与排气通道对应设有排气门, 进气门由底部至顶部向进气通道侧倾斜, 排气门由底部至顶部向排气通道侧倾斜。 由 于气门斜置, 可以使进、 排气通道中间的鼻梁区更宽, 利于冷却, 增加抗变形能力, 配合以完全畅通的冷却风道 II, 极大的提高了鼻梁区的冷却效果, 减小了缸头在高温 下的变形, 提高了可靠性。 进一步, 进气门和排气门分别设有摇臂, 缸头本体上分别与相应的摇臂对应设置 有摇臂座, 摇臂固定设置有相应的摇臂轴, 摇臂轴以可绕自身轴线转动的方式单自由 度设置于相应的摇臂座, 两个摇臂轴沿径向向内相对于缸头本体安装面向顶部倾斜设 置, 相应的摇臂轴的相对于缸头本体安装面的倾斜角度分别与进气门和排气门相对于 缸头本体的轴线的倾斜角度对应相同; 摇臂形成以相应的摇臂轴为支点的杠杆结构。 倾斜设置的摇臂轴能够适应于斜置气门结构且适应于复合球面燃烧室的几何形状, 利 于保证摇臂带动气门动作的协调性和密封性, 固定式摇臂在运行过程中, 其各个方向 的窜动或晃动量小, 能有效的降低摇臂的故障率, 降低维护成本; 适应于进、 排气的 位置来合理布置摇臂, 还利于保证气门正时, 保证配气相位, 从而提高性能和降低排 放。 进一步, 摇臂座为开口结构, 摇臂轴两端对应穿入相应的摇臂座的开口两侧并以 可绕自身轴线转动的方式配合, 摇臂位于相应的摇臂座的开口内并固定设置于相应的 摇臂轴; 摇臂座开口结构向外的一侧为分体式轴承座结构, 包括压盖和座体, 压盖和 座体之间可拆卸式固定连接。 采用分体式轴承座结构, 利于摇臂轴的安装, 并减小摩 擦面积, 增加摇臂运动的灵活性, 结构简单紧凑, 节约空间。 进一步, 进气门轴线和排气门轴线分别垂直于燃烧室面与相应的进气门轴线和排 气门轴线相交点的切面。 此结构与燃烧室的进、 排气方向相适应, 减小阻力, 增加汽 油机的动力性。 进一步, 燃烧室面位于进气门和排气门之间的部位形成鼻梁区, 鼻梁区位于燃烧 室面的宽度大于 8mm。 增加进气门和排气门之间的距离, 适当增加鼻梁区厚度, 增加 其抵抗热变形量的能力, 有效改善气门密封性能, 能有效避免气门出现漏气现象; 同 时, 避免进排气之间出现的瞬间干扰, 保证充分燃烧, 提高汽油机动力。 进一步, 进气门的座圈外圆和排气门的座圈外圆与燃烧室面底部边缘相切; 进气 门的座圈内侧端部和排气门的座圈内侧端部与燃烧室面的形状相适应。 进气门的座圈 内侧端部和排气门的座圈内侧端部与燃烧室面的形状相适应, 可减小对进气和排气的 干扰, 降低阻力, 消除死角和形状突变, 保证混合气体的充分燃烧, 提高汽油机效率。 本发明还公开了一种具有前述的汽油机风冷缸头的汽油机, 其中, 汽油机风冷缸 头安装于汽油机。 本发明的有益效果: 本发明的汽油机风冷缸头及其汽油机, 汽油机风冷缸头进、 排气方向以及与进、 排气方向垂直的方向分别有中空的风冷通道, 冷却空气可以从不 同的方向经过燃烧室壁外表面, 同时, 通道壁通过热传导将热量传出, 增加了传导和 对流面积, 使燃烧室温度充分降低, 从而使缸头具有较好的散热效果, 降低缸温, 有 效地降低尾气中的碳氢化合物, 提高汽油机功率。 以最大功率 (转速 3060rpm) 7.5kW 的汽油机为例, 功率可提高到 8.1kW, 排放由 8.0g/kW.h降低到 6.0g/kW.h, 满足并超 过 EPA3阶段 8g/kW.h的标准, 由此可见, 本发明的汽油机功率提高和排放降低较为 明显。 本发明的汽油机不会产生由温升导致的活塞粘缸、 拉缸现象, 保证汽油机性能 的同时使其能够长时间稳定运行。 由于设置了风冷通道, 可增加缸头本身的抗弯矩能 力, 加上散热效果好, 则有效保证缸头的抗变形等物理性能, 可以适当减小缸头重量, 利于实现汽油机的轻量化。 本发明的缸头用于汽油机, 用于汽油机驱动的通用动力设备时能够加速风冷通道 内空气的流动, 更有利于散热; 用于普通通用机械, 暴露于空气中, 利用外界强制空 气对流, 利于散热。 附图说明 下面结合附图和实施例对本发明作进一步描述。 图 1为本发明的结构示意图; 图 2为图 1的 A向视图; 图 3为图 2沿 B-B向视图; 图 4为火花塞风冷通道正面视图; 图 5为本发明摇臂安装结构示意图; 图 6为摇臂轴与摇臂座的配合截面图。 具体实施方式 图 1为本发明的结构示意图,图 2为图 1的 A向视图,图 3为图 2沿 B-B向视图, 图 4为火花塞风冷通道正面视图, 图 5为本发明摇臂安装结构示意图, 图 6为摇臂轴 与摇臂座的配合截面图。 如图所示: 本实施例的汽油机风冷缸头, 包括缸头本体 1和 设置于缸头本体 1的进气通道 3、排气通道 2及火花塞安装孔 6,缸头本体 1外表面设 有散热片 4,缸头本体 1内侧形成燃烧室面 5,缸头本体 1上位于进气通道 3和排气通 道 2的同侧设有纵向贯通的风冷通道 I 8,位于进气通道 3和排气通道 2之间设有横向 贯通的风冷通道 II 7, 风冷通道 1 8和风冷通道 II 7均避开缸头本体上的功能孔, 功能 孔是指用于安装部件的孔, 包括火花塞孔、 进气门孔、 排气门孔以及螺栓孔等; 纵向 是指与缸头本体进、 排气方位大致相同的方向; 横向是与缸头本体进、 排气方位大致 垂直的方向。 图 3中箭头所示即为风流过的方向。 本实施例中, 进气通道 3轴线和排气通道 2轴线共面设置, 也就是进气通道 3轴 线和排气通道 2轴线位于同一平面内, 在本发明中, 将该平面称之为共面。 风冷通道 I 8平行于进气通道 3轴线和排气通道 2轴线的共面且与火花塞安装孔 6分列于进气 通道 3轴线和排气通道 2轴线的共面的两侧, 风冷通道 Π 7垂直于进气通道 3轴线和 排气通道 2轴线的共面。 利用风冷缸头原有结构即能实现上述风冷通道的设计, 且风 冷通道 1 8和风冷通道 II 7互相垂直,利于从各个方向接受冷却风的通过, 不影响各部 件的安装, 节约制作成本; 同时, 本实施例中风冷通道的设计有利于提高缸头抵抗弯 矩的能力, 结合散热效果的增强, 使缸头轻量化, 提高机器整体的经济性。 本实施例中, 如图 2和图 3所示, 散热片 4延伸至风冷通道 I 8内并连通形成散 热桥 81, 散热桥 81将风冷通道 1 8分隔成平行的纵向多通道结构。 散热桥 81结构利 于在开通风冷通道 I 8后保证缸头的强度, 同时, 散热桥 81增加了散热时的热辐射和 传导面积, 进一步利于散热。 本实施例中, 缸头本体 1上位于火花塞安装孔 6侧设有贯通的火花塞风冷通道 9。 图 5中箭头所示即为火花塞冷却风流方向。 通过风冷使得火花塞得到较好的冷却, 避 免出现现有技术中火花塞由于高温而降低使用寿命的问题。 本实施例中, 缸头上的散热片 4延伸至排气通道 2外壁。 此结构能够有效降低排 气温度, 利于保护排气系统内的尾气处理部件, 进一步降低排放, 利于环保。 燃烧室面 5为复合球面结构,由底部到顶部依次为球面 I a、平滑曲面 b和球面 II c, 球面 II c的半径大于球面 I a的半径; 球面 I a和球面 II c之间通过平滑曲面 b平滑过 渡。 平滑曲面 b可以为双曲面或抛物面等。 由于球面燃烧室面容比最小, 提高汽油机 工作效率, 但是由于采用球形结构不利于燃烧气体的充分混合, 则会降低混合率, 影 响燃烧和排放; 采用复合球面结构, 不但进一步减小面容比, 还因为曲面过渡利于燃 烧气的混合, 从而更利于燃烧和降低排放, 增加汽油机动力; 同时, 进、 排气门与进、 排气气道之间的夹角比其它结构燃烧室面的相应的夹角小, 有效的减小进、 排气的阻 力, 使进、 排气更顺畅, 有效地提高汽油机功率, 进一步利于降低燃油消耗率和排放。 本实施例中, 缸头本体 1上与进气通道 3对应设有进气门 31, 与排气通道 2对应 设有排气门 21, 进气门 31由底部至顶部向进气通道 3侧倾斜, 排气门 21由底部至顶 部向排气通道 2侧倾斜。 适应于复合球面燃烧室, 进、 排气门与进、 排气气道之间的 夹角比现有结构燃烧室面小, 便于组织进气, 提高进气效率, 便于在气缸内组织进气 滚流和进气涡流, 增加缸内气流扰动, 加快燃烧; 减小进、 排气的阻力, 使进、 排气 更顺畅, 利于提高汽油机功率, 降低燃油消耗, 降低尾气排放, 保护环境。 同时, 由于气门斜置, 可以使进、 排气通道中间的鼻梁区更宽, 利于冷却, 增加 抗变形能力, 配合以完全畅通的冷却风道 117, 极大的提高了鼻梁区的冷却效果, 减小 了缸头在高温下的变形, 提高了可靠性。 进气门 31和排气门 21分别设有摇臂, 如图 5所示: 进气门 31的摇臂 11, 排气 门 21的摇臂 13 ; 缸头本体 1上与摇臂(摇臂 11和摇臂 13 )对应设置有摇臂座(图中 为摇臂座 15和摇臂座 12) , 摇臂 (摇臂 11和摇臂 13 )分别固定设置有摇臂轴 (摇臂 轴 10和摇臂轴 14) , 摇臂轴(摇臂轴 10和摇臂轴 14) 以可绕自身轴线转动的方式单 自由度对应设置于摇臂座 (摇臂座 15和摇臂座 12) , 两个摇臂轴 (摇臂轴 10和摇臂 轴 14) 沿径向向内相对于缸头本体 1安装面向顶部倾斜设置, 径向是指缸头的径向; 摇臂轴 (摇臂轴 10和摇臂轴 14)相对于缸头本体 1安装面的倾斜角度与进气门 31和 排气门 21相对于缸头本体 1的轴线的倾斜角度对应相同; 摇臂 (摇臂 11和摇臂 13 ) 形成以摇臂轴 (摇臂轴 10和摇臂轴 14) 为支点的杠杆结构, 与摇臂轴一起形成斜置 固定式摇臂。 倾斜设置的摇臂轴能够适应于斜置气门结构且适应于复合球面燃烧室的几何形 状, 利于保证摇臂带动气门动作的协调性和密封性, 固定式摇臂在运行过程中, 其各 个方向的窜动或晃动量小, 能有效的降低摇臂的故障率, 降低维护成本。 适应于进、 排气的位置来合理布置摇臂, 还利于保证气门正时, 保证配气相位, 从而提高性能和降低排放。 本实施例中, 摇臂座 (摇臂座 15和摇臂座 12) 为开口结构, 摇臂轴 (摇臂轴 10 和摇臂轴 14) 两端对应穿入摇臂座 (摇臂座 15和摇臂座 12) 的开口两侧并以可绕自 身轴线转动的方式配合。 单自由度配合指的是摇臂轴轴向自由度被限制, 可采取在摇 臂轴上设置分别靠在相应的摇臂座开口两侧的周肩的结构, 还可以是现有技术中任何 能够限制轴向移动且圆周方向可滑动的方式。 摇臂 (摇臂 11和摇臂 13 ) 位于摇臂座 (摇臂座 15和摇臂座 12) 的开口内固定设置于摇臂轴(摇臂轴 10和摇臂轴 14) ; 摇 臂座 15 (和摇臂座 12)开口结构向外的一侧为分体式轴承座结构, 如图 6所示, 摇臂 座 15的开口结构向外的一侧包括压盖 151a和座体 151, 压盖 151a和座体 151之间可 拆卸式固定连接, 本实施例中采用螺钉连接。 还可设置用于减小摩擦的轴瓦 101, 摇 臂座 15 (和摇臂座 12) 开口结构向内的一侧也相应设置轴瓦。 摇臂座 12的开口结构 向外的一侧与摇臂座 15的开口结构向外的一侧结构相同。采用分体式轴承座结构,利 于摇臂轴的安装, 并减小摩擦面积, 增加摇臂运动的灵活性, 结构简单紧凑, 节约空 间。 本实施例中, 进气门 31轴线和排气门 21轴线分别垂直于燃烧室面 5与其相交点 的切面, 即进气门 31轴线和排气门 21轴线分别与燃烧室面 5相交, 交点处的燃烧室 面 5的切面。 也就是进气门 31和排气门 21的轴线相交于燃烧室的中心, 与燃烧室的 进、 排气方向相适应, 减小阻力, 增加汽油机的动力性。 本实施例中, 燃烧室面 5位于进气门 31和排气门 21之间的部位形成鼻梁区, 如 图 1所示, 鼻梁区位于燃烧室面 5的宽度 L大于 8mm。 进气门 31的座圈 31a外圆和 排气门 21的座圈 21a外圆与燃烧室面 5底部边缘相切。增加进气门 31和排气门 21之 间的距离, 适当增加鼻梁区厚度, 增加其抵抗热变形量的能力, 有效改善气门密封性 能, 能有效避免气门出现漏气现象; 同时, 避免进、 排气之间出现的瞬间干扰, 保证 充分燃烧, 提高汽油机动力。 进气门的座圈内侧端部和排气门的座圈内侧端部与燃烧 室面 5的形状相适应。 进气门 31的座圈 31a内侧端部和排气门 21的座圈 21a内侧端 部的端面形状与燃烧室面形状相适应, 消除台阶, 可减小对进气和排气的干扰, 降低 阻力, 消除死角和形状突变, 保证混合气体的充分燃烧, 提高汽油机效率。 本发明还公开了一种具有前述的汽油机风冷缸头的汽油机, 其中, 汽油机风冷缸 头安装于汽油机。 本发明的汽油机主要用于通用机械, 主要包括驱动水泵、 风机、 发电机等, 具有 较好的冷却效果。 最后说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较 佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明 的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的宗旨和范围, 其均应 涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1. 一种汽油机风冷缸头, 包括缸头本体 (1) 和设置于所述缸头本体 (1) 的进气 通道 (3)、 排气通道 (2) 及火花塞安装孔 (6), 所述缸头本体 (1) 外表面设 有散热片 (4), 所述缸头本体(1) 内侧形成燃烧室面 (5), 其特征在于: 所述 缸头本体(1)上位于所述进气通道(3)和所述排气通道(2) 的同侧设有纵向 贯通的风冷通道 I (8), 位于所述进气通道 (3) 和所述排气通道 (2) 之间设 有横向贯通的风冷通道 Π (7), 所述风冷通道 I (8) 和所述风冷通道 II (7) 均避开所述缸头本体 (1) 上的功能孔。
2. 根据权利要求 1所述的汽油机风冷缸头, 其特征在于: 所述进气通道(3)轴线 和所述排气通道 (2) 轴线处于一个共面内, 所述风冷通道 I (8) 平行于所述 进气通道 (3) 轴线和所述排气通道 (2) 轴线的所述共面, 且与所述火花塞安 装孔(6)分列于所述进气通道(3)轴线和所述排气通道(2)轴线的所述共面 两侧, 所述风冷通道 II (7)垂直于所述进气通道(3)轴线和所述排气通道(2) 轴线的所述共面。
3. 根据权利要求 2所述的汽油机风冷缸头, 其特征在于: 所述散热片(4)延伸至 所述风冷通道 I (8) 内并连通形成散热桥, 所述散热桥将所述风冷通道 I (8) 分隔成平行的纵向多通道结构。
4. 根据权利要求 3所述的汽油机风冷缸头, 其特征在于: 所述缸头本体(1)上位 于所述火花塞安装孔 (6) 侧设有贯通的火花塞风冷通道 (9)。
5. 根据权利要求 4所述的汽油机风冷缸头, 其特征在于: 所述缸头本体(1)上的 所述散热片 (4) 延伸至所述排气通道 (2) 外壁。
6. 根据权利要求 1至 5中任一项权利要求所述的汽油机风冷缸头, 其特征在于: 所述燃烧室面(5)为复合球面结构, 由底部到顶部依次为球面 I (a)、 平滑曲 面 (b) 和球面 II (c), 所述球面 II (c) 的半径大于所述球面 I (a) 的半径; 所述球面 I (a) 和所述球面 II (c) 之间通过所述平滑曲面 (b) 平滑过渡。
7. 根据权利要求 6所述的汽油机风冷缸头, 其特征在于: 所述缸头本体(1)上与 所述进气通道(3)对应设有进气门 (31), 与所述排气通道(2)对应设有排气 门 (21), 所述进气门 (31) 由底部至顶部向所述进气通道 (3) 侧倾斜, 所述 排气门 (21) 由底部至顶部向所述排气通道 (2) 侧倾斜。
8. 根据权利要求 7所述的汽油机风冷缸头, 其特征在于: 所述进气门 (31) 和所 述排气门 (21) 分别设有摇臂 (11、 13), 所述缸头本体 (1) 上分别与相应的 所述摇臂 (11、 13) 对应设置有摇臂座 (15、 12) , 所述摇臂 (11、 13) 固定 设置有相应的摇臂轴 (10、 14) , 所述摇臂轴 (10、 14) 以可绕自身轴线转动 的方式单自由度设置于相应的所述摇臂座 (15、 12) , 两个所述摇臂轴 (10、 14)沿径向向内相对于所述缸头本体(1)安装面向顶部倾斜设置, 相应的所述 摇臂轴(10、 14) 的相对于所述缸头本体(1)安装面的倾斜角度分别与所述进 气门 (31)和所述排气门 (21)相对于所述缸头本体(1) 的轴线的倾斜角度对 应相同; 所述摇臂 (11、 13) 形成以相应的所述摇臂轴 (10、 14) 为支点的杠 杆结构。
9. 根据权利要求 8所述的汽油机风冷缸头, 其特征在于: 所述摇臂座 (15、 12) 为开口结构, 所述摇臂轴 (10、 14)两端对应穿入相应的所述摇臂座(15、 12) 的开口两侧并以可绕自身轴线转动的方式配合, 所述摇臂 (11、 13) 位于相应 的所述摇臂座(15、 12) 的开口内并固定设置于相应的所述摇臂轴 (10、 14) ; 所述摇臂座( 15、 12)开口结构向外的一侧为分体式轴承座结构,包括压盖( 151a) 和座体 (151), 所述压盖 (151a) 和所述座体 (151) 之间可拆卸式固定连接。
10. 根据权利要求 9所述的汽油机风冷缸头, 其特征在于: 所述进气门 (31) 轴线 和所述排气门( 21 )轴线分别垂直于所述燃烧室面( 5 )与相应的所述进气门( 31 ) 轴线和所述排气门 (21) 轴线相交点的切面。
11. 根据权利要求 10所述的汽油机风冷缸头, 其特征在于: 所述燃烧室面 (5) 位 于所述进气门 (31) 和所述排气门 (21) 之间的部位形成鼻梁区, 所述鼻梁区 位于所述燃烧室面 (5) 的宽度大于 8mm。
12. 根据权利要求 11所述的汽油机风冷缸头, 其特征在于: 所述进气门 (31) 的座 圈 (31a)外圆和所述排气门 (21) 的座圈 (21a)外圆与所述燃烧室面 (5)底 部边缘相切; 所述进气门 (31) 的座圈 (31a) 内侧端部和所述排气门 (21) 的 座圈 (21a) 内侧端部与所述燃烧室面 (5) 的形状相适应。
13. 一种具有权利要求 1至 12中任一项权利要求所述的汽油机风冷缸头的汽油机, 其特征在于: 所述汽油机风冷缸头安装于所述汽油机。
PCT/CN2011/083902 2011-03-14 2011-12-13 汽油机风冷缸头及其汽油机 WO2012122839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/392,021 US20140216369A1 (en) 2011-03-14 2011-12-13 Air-cooling cylinder head of gasoline engine and gasoline engine having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110060775A CN102312750A (zh) 2011-03-14 2011-03-14 汽油机风冷缸头及其汽油机
CN201110060775.4 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012122839A1 true WO2012122839A1 (zh) 2012-09-20

Family

ID=45426244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083902 WO2012122839A1 (zh) 2011-03-14 2011-12-13 汽油机风冷缸头及其汽油机

Country Status (3)

Country Link
US (1) US20140216369A1 (zh)
CN (1) CN102312750A (zh)
WO (1) WO2012122839A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD753186S1 (en) 2014-05-06 2016-04-05 Champion Engine Technology, LLC Internal combustion engine cylinder head
DE102015013784A1 (de) * 2015-10-20 2017-04-20 Andreas Stihl Ag & Co. Kg Handgeführtes Arbeitsgerät
CN111237077B (zh) * 2019-09-11 2024-04-16 浙江康思特动力机械有限公司 一种设置有多个冷却风道的汽缸盖

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601063A (zh) * 2003-09-26 2005-03-30 本田技研工业株式会社 气缸盖的冷却风通路构造
US7341027B2 (en) * 2006-01-20 2008-03-11 Makita Numazu Corporation Portable 4-cycle engine and portable machine equipped with the 4-cycle engine
US7694655B2 (en) * 2004-07-22 2010-04-13 Yanmar Co., Ltd. Engine
CN202039959U (zh) * 2011-03-14 2011-11-16 隆鑫通用动力股份有限公司 快速散热缸头及其汽油机
CN102312749A (zh) * 2011-03-14 2012-01-11 隆鑫通用动力股份有限公司 汽油机风冷火花塞缸头及其汽油机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW358848B (en) * 1997-06-25 1999-05-21 Mitsubishi Heavy Ind Ltd Structure of overhead-valve internal combustion engine and manufacturing method for the same
KR100569164B1 (ko) * 2002-09-24 2006-04-07 혼다 기켄 고교 가부시키가이샤 공냉식 내연기관
TR200603162T1 (tr) * 2003-12-24 2006-11-21 Honda Motor Co., Ltd. İçten yanmalı motorda değişken supap kaldırma düzeneği.
CN2856451Y (zh) * 2005-12-22 2007-01-10 吕云明 一种风冷顶杆式摩托车气缸头
CN201144736Y (zh) * 2008-01-22 2008-11-05 重庆润通动力有限公司 风冷式通用发动机汽缸头
CN201284696Y (zh) * 2008-10-22 2009-08-05 重庆宗申发动机制造有限公司 一种摩托车发动机缸头
CN101936236A (zh) * 2010-09-02 2011-01-05 江门市大长江集团有限公司 一种带火花塞冷却通道的发动机气缸头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601063A (zh) * 2003-09-26 2005-03-30 本田技研工业株式会社 气缸盖的冷却风通路构造
US7694655B2 (en) * 2004-07-22 2010-04-13 Yanmar Co., Ltd. Engine
US7341027B2 (en) * 2006-01-20 2008-03-11 Makita Numazu Corporation Portable 4-cycle engine and portable machine equipped with the 4-cycle engine
CN202039959U (zh) * 2011-03-14 2011-11-16 隆鑫通用动力股份有限公司 快速散热缸头及其汽油机
CN102312749A (zh) * 2011-03-14 2012-01-11 隆鑫通用动力股份有限公司 汽油机风冷火花塞缸头及其汽油机

Also Published As

Publication number Publication date
US20140216369A1 (en) 2014-08-07
CN102312750A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
CN201071740Y (zh) 一种小型混流涡轮增压器的水冷涡轮箱结构
CN113685264A (zh) 一种重型天然气发动机燃烧系统
WO2012122839A1 (zh) 汽油机风冷缸头及其汽油机
WO2012122838A1 (zh) 通用汽油机
CN202001097U (zh) 高效汽油机
CN102305144B (zh) 汽油机复合球形燃烧室缸头及其汽油机
CN111075589B (zh) 强制风冷柴油机机体
CN201284696Y (zh) 一种摩托车发动机缸头
WO2012122820A1 (zh) 垂直轴汽油机缸头总成及其汽油机
CN202391552U (zh) 复合面燃烧室缸头及其汽油机
CN202417729U (zh) 通用汽油机高效低排放缸头及其汽油机
WO2013078747A1 (zh) 小型通用汽油机缸头及其汽油机
US8991355B2 (en) Cylinder head of small-sized general-purpose gasoline engine and gasoline engine having the same
CN202001128U (zh) 通用汽油机快速散热缸头及其汽油机
CN202031714U (zh) 球面燃烧室的缸头及其汽油机
CN202001131U (zh) 低阻力进排气的缸头及其汽油机
CN202039959U (zh) 快速散热缸头及其汽油机
WO2012122846A1 (zh) 汽油机斜置气门缸头及其汽油机
CN202039939U (zh) 通用汽油机曲面燃烧室的缸头及其汽油机
KR101908949B1 (ko) 워터자켓이 구비된 가변 터보차져의 전기식 액추에이터
CN201953494U (zh) 一种发动机缸头
CN201568147U (zh) 发动机气缸头
CN200964903Y (zh) 发动机气缸头
CN102305143A (zh) 拱形燃烧室的缸头及其汽油机
WO2012122819A1 (zh) 风冷型通用垂直轴汽油机缸头及具有其的汽油机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13392021

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860952

Country of ref document: EP

Kind code of ref document: A1