WO2012121287A1 - Phosphor substrate and display device - Google Patents

Phosphor substrate and display device Download PDF

Info

Publication number
WO2012121287A1
WO2012121287A1 PCT/JP2012/055814 JP2012055814W WO2012121287A1 WO 2012121287 A1 WO2012121287 A1 WO 2012121287A1 JP 2012055814 W JP2012055814 W JP 2012055814W WO 2012121287 A1 WO2012121287 A1 WO 2012121287A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
phosphor
refractive index
substrate
phosphor layer
Prior art date
Application number
PCT/JP2012/055814
Other languages
French (fr)
Japanese (ja)
Inventor
勇毅 小林
悦昌 藤田
別所 久徳
大江 昌人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012121287A1 publication Critical patent/WO2012121287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a phosphor substrate and a display device.
  • This application claims priority on March 10, 2011 based on Japanese Patent Application No. 2011-053425 for which it applied to Japan, and uses the content here.
  • FPD thin flat panel display
  • LCD liquid crystal display
  • PDP self-luminous plasma display panel
  • inorganic electroluminescence (inorganic EL) display or organic electroluminescence (organic EL).
  • a display or the like is known.
  • organic EL displays are actively researched and developed because the elements used for display (organic EL elements) are thin and lightweight, and have characteristics such as low voltage drive, high luminance, and self-luminous emission. Has been done. Recently, application of organic EL elements to light sources such as electrophotographic copying machines or printers, light emitting devices, and the like is expected.
  • organic EL elements When an organic EL element is used in a light emitting device, the organic EL element has surface emission, has high color rendering properties, and has an advantage that light control is easy.
  • fluorescent lamps contain mercury, but organic EL elements do not contain mercury, or light emission from organic EL elements has many advantages such as no ultraviolet rays.
  • a technique for performing moving picture display by simple matrix driving, and a technique for performing moving picture display by active matrix driving of organic EL elements using a thin film transistor (TFT) as a driving element are known. .
  • TFT thin film transistor
  • full-color display is performed by arranging pixels emitting red, green, and blue as one unit to create various colors typified by white.
  • organic EL a method of forming each pixel of red, green, and blue by generally coating the organic light emitting layer by mask vapor deposition using a shadow mask is adopted.
  • this method requires improvement in mask processing accuracy, mask and substrate alignment accuracy, and mask size enlargement.
  • the substrate size has increased from the so-called G6 generation (1800 mm ⁇ 1500 mm) to G8 generation (2460 mm ⁇ 2160 mm) and G10 generation (3050 mm ⁇ 2850 mm). It is out. Therefore, since the conventional method requires a mask equivalent to or larger than the substrate size, it is necessary to manufacture and process a mask corresponding to a large substrate.
  • the mask is made of a very thin metal (general film thickness: 50 nm to 100 nm), it is difficult to increase the size of the mask. That is, it is difficult to manufacture and process a mask corresponding to a large substrate.
  • the mask processing accuracy and the mask alignment accuracy are lowered, color mixing due to mixing of the light emitting layers occurs.
  • the area of the pixels is determined, the area of the light emitting portion is reduced. That is, it leads to a decrease in the aperture ratio of the pixel, leading to a decrease in luminance of the organic EL element, an increase in power consumption, and a decrease in life.
  • the deposition source is disposed below the substrate, and the organic material is deposited from the bottom to the top, thereby forming an organic layer.
  • the mask is bent at the center, which causes the color mixture.
  • a portion where the organic layer is not formed is formed, which causes leakage of the upper and lower electrodes.
  • the mask if the mask is used a predetermined number of times, it cannot be used due to deterioration. Therefore, an increase in the size of the mask leads to a manufacturing cost of the display, which leads to an increase in cost.
  • an organic EL portion having a light emitting layer that emits light in a blue region to blue-green region, and a phosphor layer that emits green light by absorbing light emitted from the blue region to blue-green region from the organic EL portion as excitation light.
  • a method of emitting full color by combining a green pixel composed of a red pixel composed of a phosphor layer that emits red light and a blue pixel composed of a blue color filter for the purpose of improving color purity has been proposed ( See Patent Document 1 below). This method is superior to the above-described coating method in that it does not require patterning of the organic layer, can be easily manufactured, and is superior in cost.
  • Patent Document 2 is effective only at one of the excitation light incident side interface and the light extraction side interface of the phosphor layer, so that the effect of reducing power consumption is small. In addition, there is a concern that the yield may decrease due to an increase in the number of steps for forming the protective layer. Further, in the liquid crystal display devices proposed in Patent Document 3 and Non-Patent Document 1, it is caused by the refractive index difference at the excitation light incident side interface or the refractive index difference at the light extraction side interface of the phosphor layer described above. The emission efficiency and power consumption may still increase.
  • the aspect of the present invention has been made in view of such a background, and the amount of fluorescence generated in the phosphor layer is increased by efficiently causing excitation light to enter the phosphor layer, and further the fluorescence generated in the phosphor layer.
  • An object of the present invention is to provide a phosphor substrate having improved luminous efficiency by improving the conversion efficiency by improving the efficiency of extracting the components to the outside of the substrate. Combined with organic EL elements and liquid crystal elements, etc., it has excellent viewing angle characteristics (a good image can be obtained with no deviation in color purity and brightness regardless of the viewing angle), and costs and power consumption are reduced. It is an object of the present invention to provide a display device that can perform the above-described operation.
  • the inventors focused on the refractive index at the excitation light incident side interface of the phosphor layer and the refractive index at the fluorescence extraction side interface of the phosphor layer, and as a result of earnest studies, Realized a method capable of achieving both the efficient incidence of excitation light to the phosphor layer and the high light extraction efficiency from the phosphor layer to the outside of the substrate, and the idea that the above problem can be solved, Several embodiments of the present invention have been completed.
  • the phosphor substrate in one embodiment of the present invention includes a phosphor layer, a first layer, and a second layer.
  • the phosphor layer has an excitation light incident surface and a fluorescence extraction surface, and emits fluorescence by generating fluorescence by excitation light incident through the excitation light incident surface.
  • the first layer is in contact with the front excitation light incident surface.
  • the second layer is in contact with the fluorescence extraction surface.
  • the phosphor layer is configured such that the refractive index na in the vicinity of the excitation light incident surface is smaller than the refractive index n1 of the first layer.
  • of the difference between the refractive index na in the vicinity of the excitation light incident surface and the refractive index n1 of the first layer is different from the refractive index nb in the vicinity of the fluorescence extraction surface.
  • a refractive index distribution is formed between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value
  • the phosphor layer is configured such that a refractive index nb in the vicinity of the fluorescence extraction surface is larger than a refractive index n2 of the second layer, and the phosphor layer includes:
  • of the difference between the refractive index nb of the phosphor layer near the fluorescence extraction surface and the refractive index n2 of the second layer is the refraction of the phosphor layer near the excitation light incident surface.
  • the phosphor substrate in one embodiment of the present invention includes a phosphor layer, a first layer, and a second layer.
  • the phosphor layer has an excitation light incident surface and a fluorescence extraction surface.
  • the phosphor layer generates fluorescence by excitation light incident through the excitation light incident surface and emits light.
  • the first layer is in contact with the excitation light incident surface.
  • the second layer is in contact with the fluorescence extraction surface.
  • the phosphor layer is configured such that the refractive index nb in the vicinity of the fluorescence extraction surface is larger than the refractive index n2 of the second layer.
  • the phosphor layer has an absolute value
  • Refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value
  • the excitation light can be converted into the phosphor layer by the refractive index difference at the excitation light incident side interface of the phosphor layer without adding another layer. It is possible to reduce a component (for example, a total reflection component) that is reflected and lost without being absorbed by the phosphor, and to increase the amount of fluorescence generated in the phosphor layer. And / or the component that reflects and loses the fluorescence without being extracted to the outside due to the difference in the refractive index at the fluorescence extraction side interface of the phosphor layer (for example, total reflection component) is reduced to efficiently emit light from the phosphor layer. It can be taken out.
  • a component for example, a total reflection component
  • the difference between the refractive index na of the phosphor layer in the vicinity of the excitation light incident surface and the refractive index n1 of the first layer in the vicinity of the excitation light incident surface is preferably 0.41 or less, and more preferably less than 0.1.
  • of the difference between the refractive index nb in the vicinity of the fluorescence extraction surface of the phosphor layer and the refractive index n2 of the second layer in the vicinity of the fluorescence extraction surface is 0.41 or less. It is preferable that it is, and more preferably, it is less than 0.1.
  • the refractive index distribution of the phosphor layer may continuously change from the excitation light incident surface toward the fluorescence extraction surface. Preferably, it is changed gently. If the refractive index distribution of the phosphor layer is changed intermittently or exponentially, the refractive index change in the phosphor layer is large, and as a result, the fluorescence extraction efficiency from the phosphor layer may be reduced. Because there is. On the other hand, if the refractive index distribution of the phosphor layer changes continuously and smoothly, a difference in refractive index in the phosphor layer hardly occurs, and as a result, it is possible to improve the fluorescence extraction efficiency from the phosphor layer. Become.
  • the refractive index distribution does not need to increase or decrease uniformly from the excitation light incident surface of the phosphor layer toward the fluorescence extraction surface, and at least the difference in refractive index at the excitation light incident side interface of the phosphor layer. Alternatively, it is only necessary to distribute the refractive index difference at the fluorescence extraction side interface so as to be small.
  • the refractive index of the fluorescence extraction surface is smaller than the excitation light incident surface of the phosphor layer. More preferably, it decreases uniformly from the excitation light incident surface of the phosphor layer toward the fluorescence extraction surface.
  • the phosphor layer may contain an inorganic phosphor.
  • isotropic light emission is obtained by the scattering effect of the inorganic phosphor particles by causing the inorganic phosphor constituting the inorganic phosphor layer to emit light. Therefore, it is possible to provide a display device having excellent viewing angle characteristics.
  • the refractive index distribution of the phosphor layer may be adjusted by the dispersion concentration of the inorganic phosphor in the phosphor layer.
  • the phosphor layer is formed in a state where an inorganic phosphor having a high refractive index is dispersed in a binder material having a low refractive index. Therefore, if the dispersion concentration of the phosphor is lowered, the refractive index of the phosphor layer is decreased. Conversely, if the dispersion concentration is increased, the refractive index of the phosphor layer is increased. Therefore, by adjusting the dispersion concentration of the inorganic phosphor, it is possible to easily reduce the refractive index difference at the excitation light incident side interface and / or the fluorescence extraction side interface of the phosphor layer.
  • the refractive index distribution of the phosphor layer is preferably adjusted by the particle size distribution of the inorganic phosphor in the phosphor layer.
  • the adjustment of the dispersion concentration and the particle size distribution of the inorganic phosphor is not necessarily independent. By adjusting both the dispersion concentration and the particle size distribution, the excitation light incident side interface of the phosphor layer, and Alternatively, the difference in refractive index at the fluorescence extraction side interface may be reduced.
  • the phosphor layer may be formed by any one of a screen printing method, an ink jet method, a dispenser method, and a nozzle coating method.
  • the phosphor layer can be directly patterned. Therefore, the material utilization efficiency of the phosphor material is improved and the cost can be reduced as compared with the case where patterning is performed by the photolithography method.
  • the phosphor can be efficiently formed in a desired cross-sectional shape. This makes it possible to directly form a cross-sectional shape necessary for efficient light extraction.
  • a display device includes the phosphor substrate and an excitation light source that emits the excitation light.
  • the excitation light source may be any of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  • an organic electroluminescence element is used as an excitation light source, the display device has excellent viewing angle characteristics, low cost, and low power consumption.
  • the display device further includes a plurality of driving elements, wherein the excitation light source includes a plurality of light emitting elements, and the plurality of light emitting elements are driven by the corresponding driving elements.
  • the excitation light source includes a plurality of light emitting elements, and the plurality of light emitting elements are driven by the corresponding driving elements.
  • the light emission time can be made longer than in passive driving, it is possible to reduce the driving voltage for obtaining desired luminance, and to reduce power consumption.
  • a display device may have a substrate on which the drive element is formed.
  • the phosphor layer is located between the second layer and the substrate, and light from the phosphor layer is emitted through the second layer.
  • the display device may include a liquid crystal element that is provided between the excitation light source and the phosphor substrate and that can control a transmittance of light emitted from the excitation light source.
  • the excitation light source may be a planar light source that emits light from a light exit surface.
  • a phosphor substrate with improved luminous efficiency can be provided.
  • 1 is a schematic cross-sectional view illustrating an entire display device according to a first embodiment. It is sectional drawing which shows the principal part of the light source side board
  • FIG. 11 is a schematic diagram illustrating an example of an electronic device including a display device according to an aspect of the invention.
  • FIG. 11 is a schematic diagram illustrating an example of an electronic device including a display device according to an aspect of the invention. It is a side view for demonstrating a comparative example. It is a top view for demonstrating a comparative example. 1 is a side view for explaining Example 1.
  • FIG. 6 is a plan view of the manufacturing process of Example 1.
  • FIG. FIG. 6 is a side view for explaining Example 2; FIG.
  • Example 10 is a plan view in the manufacturing process of Example 2. It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3.
  • FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • 10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4.
  • FIG. 1A and 1B are diagrams illustrating a schematic configuration of a display device according to the first embodiment.
  • FIG. 1A is a cross-sectional view showing the entire display device of the present embodiment.
  • FIG. 1B is a cross-sectional view showing the main part of the light source side substrate.
  • the scale of the size may be varied depending on the component.
  • reference numeral 1 denotes a display device, and the display device 1 includes a phosphor substrate 2 and a light source side substrate 3 bonded onto the phosphor substrate 2.
  • one pixel which is the minimum unit that constitutes an image, is configured by three dots that respectively display red, green, and blue.
  • a dot that performs red display is referred to as a red pixel PR
  • a dot that performs green display is referred to as a green pixel PG
  • a dot that performs blue display is referred to as a blue pixel PB.
  • ultraviolet light is emitted from a light source side substrate (organic EL element substrate) 3 using an organic EL element as an excitation light source.
  • the ultraviolet light is incident on the phosphor substrate 2 as excitation light, and red fluorescence is generated in the red pixel PR, green fluorescence is generated in the green pixel PG, and blue fluorescence is generated in the blue pixel PB, and full color display is performed by these color lights. .
  • the phosphor substrate 2 of the present embodiment includes a substrate 5, a phosphor layer 6 (6B, 6R, 6G), and a planarization layer 7 (first layer).
  • the phosphor layer 6 (6B, 6R, 6G) is provided on the substrate 5, and is fluorescent by excitation light incident from the excitation light source 4 of the light source side substrate (organic EL element substrate) 3, that is, an organic EL element described later. To emit light.
  • the planarization layer 7 is formed on the substrate 5 so as to cover the phosphor layer 6.
  • the planarizing layer 7 is bonded to the light source side substrate 3 so as to cover the excitation light source 4 of the light source side substrate 3, whereby the light source side substrate 3 and the phosphor substrate 2 are bonded to each other and integrated.
  • the display device 1 is configured.
  • the phosphor layers 6B, 6R and 6G are composed of a plurality of phosphor layers divided for each pixel.
  • the plurality of phosphor layers 6B, 6R, and 6G are formed of different phosphor materials as will be described later in order to emit color light of different colors depending on the pixels. Further, since the phosphor layers 6B, 6R, and 6G are planarized by the planarization layer 7, depletion between the excitation light source 4 and the phosphor layers 6B, 6R, and 6G is prevented. And the adhesiveness between the light source side board
  • the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6 is denoted by na.
  • the refractive index of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6 is nb.
  • the refractive index of the flattening layer (first layer) 7 at the portion in contact with the excitation light incident side interface 6a of the phosphor layer 6 is n1.
  • the refractive index n1 of the flattening layer (first layer) 7 in the portion in contact with the excitation light incident side interface 6a of the phosphor layer 6 is simply referred to as the refractive index n1 of the flattening layer (first layer) 7.
  • the refractive index of the substrate 5 (second layer) at the portion in contact with the fluorescence extraction side interface 6b of the phosphor layer 6 is n2.
  • the refractive index n2 of the substrate 5 (second layer) in the portion of the phosphor layer 6 in contact with the fluorescence extraction side interface 6b may be simply referred to as the refractive index n2 of the substrate 5 (second layer).
  • the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the planarizing layer (first layer) 7 is smaller than n1 (na ⁇ n1).
  • the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b is designed to be larger than the refractive index of the substrate 5 (second layer) (nb> n2).
  • such conditions [na ⁇ n1] and [nb> n2] may satisfy only one or both of them in the present embodiment.
  • the expression “and / or” is used to mean “one or both”.
  • the phosphor layer 6 is configured to have a refractive index distribution between the excitation light incident side interface 6a and the fluorescence extraction side interface 6b.
  • the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the planarization layer (first layer) 7 is smaller than n1 (na ⁇ n1)
  • ) between the refractive index na of the phosphor layer 6 and the refractive index n1 of the planarizing layer 7 (first layer) at the excitation light incident side interface 6a is The phosphor layer 6 is excited so as to be smaller than the difference (refractive index difference
  • the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b is designed to be larger than the refractive index of the substrate 5 (second layer) (nb> n2), the fluorescence extraction side interface 6b.
  • the difference between the refractive index nb of the phosphor layer 6 and the refractive index n2 of the substrate 5 (second layer) is the excitation light incident side interface 6a.
  • the phosphor layer 6 is separated from the excitation light incident side interface 6a and the fluorescence extraction so that the difference between the refractive index na of the phosphor layer 6 and the refractive index n2 of the substrate 5 becomes smaller (refractive index difference
  • the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the flattening layer (first layer) 7 is smaller than n1, and the fluorescence at the fluorescence extraction side interface 6b.
  • the phosphor layer at the excitation light incident side interface 6a The difference between the refractive index na of 6 and the refractive index n1 of the planarizing layer 7 (first layer) (absolute value of refractive index difference,
  • the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b and the substrate 5 are smaller than the difference (refractive index difference
  • the difference from the refractive index n2 of the (second layer) is smaller than the difference (refractive index difference
  • the layer 6 has a refractive index distribution between the excitation light incident side interface 6a and the fluorescence extraction side interface 6b. (
  • ) at the fluorescence extraction side interface 6b is reduced so that the phosphor layer 6 Is formed.
  • the phosphor layer 6 is a phosphor layer. 6 and the adjacent layers (the first layer and the second layer) are formed so that the difference in refractive index is small. That is, the phosphor layer 6 of the present embodiment is formed so that the phosphor layer 6 has a refractive index distribution in the thickness direction.
  • FIG. 2 shows a first model of a conventional phosphor substrate (display device) in which the phosphor layer 6 does not have a refractive index distribution.
  • the first model shown in FIG. 2 is different from the phosphor substrate (display device) shown in FIG. 1A in that the phosphor layer 6 does not have a refractive index distribution. Therefore, the refractive index is uniformly formed from the excitation light incident side interface 6a to the fluorescence extraction side interface 6b.
  • the refractive index n1 of the flattening layer 7 in contact with the phosphor layer 6 at the excitation light incident side interface 6a is higher than the refractive index n of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6.
  • the refractive index n2 of the substrate 5 in contact with the phosphor layer 6 at the fluorescence extraction side interface 6b is lower than the refractive index n of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. . (N1>n> n2)
  • FIG. 3A shows a second model in which the phosphor layer 6 does not have a refractive index distribution, and a protective layer 8 is interposed between the phosphor layer 6 and the planarization layer 7.
  • the protective layer 8 reduces the difference between the refractive index n of the phosphor layer 6 and the refractive index n1 of the flattening layer 7 in contact with the excitation light incident side interface 6a of the phosphor layer 6. . That is, the refractive index of the protective layer 8 decreases from the refractive index n1 of the planarizing layer 7 toward the refractive index n of the phosphor layer 6.
  • the refractive index n of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6 and the protective layer 8 in contact with the phosphor layer 6 at the excitation light incident side interface 6a becomes small. Therefore, since total reflection hardly occurs, the excitation light component incident on the phosphor layer 6 increases as shown by the solid line in FIG. 3A, and the phosphor layer 6 is excited efficiently.
  • FIG. 3B shows a third model in which the phosphor layer 6 does not have a refractive index distribution, and a protective layer 9 is interposed between the phosphor layer 6 and the substrate 5.
  • the protective layer 9 reduces the difference between the refractive index n of the phosphor layer 6 and the refractive index n2 of the substrate 5 on the fluorescence extraction side interface 6b side of the phosphor layer 6. That is, the refractive index of the protective layer 9 decreases from the refractive index n of the phosphor layer 7 toward the refractive index n2 of the substrate 5.
  • the present embodiment by paying attention to the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a and the fluorescence extraction side interface 6b of the phosphor layer 6, as shown in FIG.
  • the light is incident on the layer 6 and the fluorescence from the phosphor layer 6 is efficiently extracted to the outside. That is, by providing the phosphor layer 6 with a refractive index distribution, excitation light is absorbed by the phosphor layer 6 due to a difference in refractive index at the excitation light incident side interface 6a of the phosphor layer 6 without adding a new layer.
  • the component (total reflection component) that is reflected and lost without being reduced can be reduced, and the amount of fluorescence generated in the phosphor layer 6 can be increased.
  • substrate As the substrate 5 for the phosphor substrate 2 used in the present embodiment, it is necessary to take out light from the phosphor layer 6 to the outside, and thus it is necessary to transmit light in the emission wavelength region of the phosphor. Accordingly, examples of the material of the substrate 5 include an inorganic material substrate made of glass, quartz, and the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, and the like. However, as described above, the present embodiment is not limited to these substrates. Here, it is preferable to use a plastic substrate from the viewpoint that it can be bent or bent without causing stress.
  • a substrate in which a plastic substrate is coated with an inorganic material it is more preferable to use a substrate in which a plastic substrate is coated with an inorganic material. Thereby, it is possible to eliminate the deterioration of the organic EL element due to the permeation of moisture which may occur when the plastic substrate is used as the organic EL substrate.
  • the phosphor layer 6 absorbs excitation light (ultraviolet light) from an ultraviolet light emitting organic EL element (excitation light source 4) in the present embodiment, and light having a wavelength in the red region (red light), green It is composed of a red phosphor layer 6R, a green phosphor layer 6G, and a blue phosphor layer 6B that respectively emit light having a wavelength in the region (green light) and light having a wavelength in the blue region (blue light).
  • excitation light ultraviolet light emitting organic EL element
  • the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is a planarization layer (first layer) in contact with the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6.
  • the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6 b is in contact with the phosphor layer 6 at the fluorescence extraction side interface 6 b of the phosphor layer 6. It has a refractive index distribution so as to be larger than the refractive index of the (second layer).
  • this refractive index distribution changes continuously, that is, stepwise from the excitation light incident side interface 6a of the phosphor layer 6 toward the fluorescence extraction side interface 6b.
  • a refractive index distribution can be formed by, for example, a stacked structure in which a plurality of phosphor layers having different refractive indexes are stacked. Specifically, it can be adjusted by the dispersion concentration of the inorganic phosphor in the phosphor layer 6 as shown in the examples described later. It can also be adjusted by the particle size distribution of the inorganic phosphor in the phosphor layer 6. Furthermore, the refractive index distribution can be adjusted by changing the type of polymer material (binding resin) in which the phosphor material is dispersed.
  • a phosphor layer emitting cyan light and yellow light may be added to the pixels as necessary.
  • the color purity of each pixel emitting cyan light and yellow light is set outside the triangle connected by the points indicating the color purity of the pixels emitting red light, green light, and blue light on the chromaticity diagram.
  • the color reproduction range can be expanded as compared with a display device using pixels that emit light of three primary colors of red, green, and blue.
  • the phosphor layers 6A, 6B, and 6C may be composed of only the phosphor materials exemplified below, and may optionally contain additives and the like, and these phosphor materials are polymer materials (binding). Resin) or dispersed in an inorganic material.
  • a known phosphor material can be used as the phosphor material of the present embodiment. This type of phosphor material is classified into an organic phosphor material and an inorganic phosphor material, and specific compounds thereof are exemplified below. However, this embodiment is not limited to these materials.
  • organic phosphor materials include blue fluorescent dyes (fluorescent dyes that convert ultraviolet excitation light into blue light), stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4 Examples include '-diphenylstilbenzene, coumarin dyes: 7-hydroxy-4-methylcoumarin.
  • green fluorescent dyes fluorescent dyes that convert ultraviolet and blue excitation light into green light
  • coumarin dyes 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9 , 9a, 1-gh) Coumarin (coumarin 153), 3- (2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin) 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like.
  • red fluorescent dye fluorescent dye that converts ultraviolet and blue excitation light into red light
  • cyanine dye 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H- Pyran
  • pyridine dye 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate
  • rhodamine dye rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
  • red phosphors fluorescent dyes that convert ultraviolet and blue excitation light into red light
  • Y 2 O 2 S Eu 3+
  • YAlO 3 Eu 3+
  • Ca 2 Y 2 (SiO 4 ) 6 Eu 3+
  • YVO 4 Eu 3+
  • CaS Eu 3+
  • Gd 2 O 3 Eu 3+
  • Gd 2 O 2 S Eu 3+
  • the inorganic phosphor may be subjected to surface modification treatment as necessary.
  • the surface modification method include a chemical treatment such as a silane coupling agent, a physical treatment by adding submicron order fine particles, and a combination of these.
  • a chemical treatment such as a silane coupling agent
  • a physical treatment by adding submicron order fine particles such as a silane coupling agent
  • a combination of these such as deterioration due to excitation light and deterioration due to light emission
  • the average particle diameter (d 50 ) is preferably 0.5 ⁇ m to 50 ⁇ m. When the average particle size is 1 ⁇ m or less, the luminous efficiency of the phosphor is rapidly reduced.
  • a depletion (air layer) with a refractive index of 1.0 is formed between an inorganic phosphor layer with a refractive index of about 2.0 and an organic EL element (excitation light source 4) with a refractive index of about 1.7. . Then, the light from the organic EL element (excitation light source 4) does not efficiently reach the phosphor layers 6R, 6G, 6B, and the luminous efficiency of the phosphor layers 6R, 6G, 6B decreases.
  • the phosphor layers 6R, 6G, and 6B are formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, or a doctor blade method.
  • a known wet process such as a coating method such as a discharge coating method, a spray coating method, an ink jet method, a relief printing method, an intaglio printing method, a screen printing method, a micro gravure coating method, or the like.
  • It can be formed by a known dry process such as a method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor phase vapor deposition (OVPD) method, or a laser transfer method.
  • EB electron beam
  • MBE molecular beam epitaxy
  • OVPD organic vapor phase vapor deposition
  • the phosphor layers 6R, 6G, and 6B can be patterned by a photolithography method.
  • a photosensitive resin one or more types of photosensitive resin (photo-curable resist material) having a reactive vinyl group such as acrylic resin, methacrylic resin, polyvinyl cinnamate resin, and hard rubber resin.
  • Various types of mixtures can be used.
  • wet processes such as the ink jet method, relief printing method, intaglio printing method, screen printing method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering It is also possible to directly pattern the phosphor material by a known dry process such as an organic vapor deposition (OVPD) method or a laser transfer method.
  • OVPD organic vapor deposition
  • the film thickness of the phosphor layers 6R, 6G, and 6B is preferably about 100 nm to 100 ⁇ m, and more preferably about 1 ⁇ m to 100 ⁇ m.
  • the film thickness is less than 100 nm, particularly when the organic EL emits blue light as in the first modification described later, the light emission from the organic EL cannot be sufficiently absorbed. Color purity is lowered by mixing blue transmitted light with color light. Therefore, in order to increase absorption of light emitted from the organic EL element (excitation light source 4) and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably set to 1 ⁇ m or more. Further, if the film thickness exceeds 100 ⁇ m, the blue light emission from the organic EL element (excitation light source 4) is already sufficiently absorbed, so that the efficiency is not increased, and only the material is consumed, and the material cost is increased. Connected.
  • planarization layer As shown in FIG. 1A, the flattening layer 7 is bonded to the light source side substrate 3 so as to cover the excitation light source 4 of the light source side substrate 3, so that the light source side substrate 3 and the phosphor substrate 2 are bonded to each other. Combined and integrated.
  • a planarizing layer 7 functions as the first layer in the present embodiment as described above.
  • the planarizing layer 7 has a refractive index n1 at the interface contacting the excitation light incident side interface 6a of the phosphor layer 6 larger than the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. It is comprised so that it may become.
  • an acrylic resin having a refractive index (n1) of 1.7 or the like is used as the planarizing layer 7, but other transparent resins can be used as long as the refractive index nb of the phosphor layer 6 is larger. It can be used.
  • a spin coat method is preferably employed in order to function as a flattening layer.
  • the light source side substrate 3 that functions as a light source in the display device 1 of the present embodiment will be described.
  • the light source side substrate 3 of the present embodiment has an anode (first electrode) 13, a hole injection layer 14, a hole transport layer 15, a light emitting layer 16, and hole blocking on one surface of the substrate body 22.
  • a plurality of organic EL elements 10 having a configuration in which a layer 17, an electron transport layer 18, an electron injection layer 19, and a cathode (second electrode) 20 are sequentially stacked are provided.
  • the organic EL element 10 comprises the excitation light source 4 shown to FIG. 1A.
  • An edge cover 21 is formed so as to cover the end face of the anode 13.
  • the organic EL element 10 (excitation light source 4) in the light source side substrate 3 of the present embodiment emits ultraviolet light, and the emission peak of ultraviolet light is preferably 360 nm to 410 nm.
  • a known element can be used as the organic EL element 10, and it is sufficient that at least an organic EL layer made of an organic light emitting material is included between the anode 13 and the cathode 20, and the specific configuration is as described above. It is not limited to.
  • layers from the hole injection layer 14 to the electron injection layer 19 may be referred to as an organic EL layer.
  • the plurality of organic EL elements 10 are provided in a matrix corresponding to each of the red pixel PR, the green pixel PG, and the blue pixel PB, and are individually controlled to be turned on / off.
  • the driving method of the plurality of organic EL elements 10 may be active matrix driving or passive matrix driving. A configuration example using an active matrix driving organic EL element substrate will be described in detail in a second embodiment later.
  • the substrate body 22 substantially the same material as the substrate 5 of the phosphor substrate 2 can be used. That is, as a material of the substrate body 22, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, an insulating substrate such as a ceramic substrate made of alumina, or the like, or aluminum (Al ), A metal substrate made of iron (Fe) or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ) or an organic insulating material on another substrate, or a metal substrate made of Al or the like.
  • substrate etc. which performed the insulation process by methods, such as an anodic oxidation, are mentioned, This embodiment is not limited to these board
  • a plastic substrate or a metal substrate from the viewpoint that it can be bent or bent without causing stress. Furthermore, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. Accordingly, it is possible to eliminate the deterioration of the organic EL due to the permeation of moisture that may occur when a plastic substrate is used as the organic EL substrate. Further, it is possible to eliminate leakage (short circuit) due to protrusions of the metal substrate that may occur when a metal substrate is used as the organic EL substrate.
  • the thickness of the organic EL layer is very thin, about 100 nm to 200 nm, it is known that when the metal substrate has a protrusion, a leak current or a short circuit occurs in the pixel portion. Further, when the light from the organic EL layer is extracted from the side opposite to the substrate, there is no restriction as the substrate body 22, but when the light from the organic EL layer is extracted from the substrate side, a transparent or translucent substrate is used. It is necessary to use the main body 22.
  • an electrode material for forming the anode 13 and the cathode 20 a known electrode material can be used.
  • a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more
  • an oxide (IZO) composed of indium (In) and zinc (Zn) are transparent electrodes.
  • a material As a material.
  • metals such as Ba) and aluminum (Al)
  • alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the anode 13 and the cathode 20 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. It is not limited to. Further, if necessary, the formed electrode can be patterned by a photolithography method or a laser peeling method, and a directly patterned electrode can also be formed by combining with a shadow mask.
  • the film thickness of the anode 13 and the cathode 20 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the anode 13 (cathode) It is preferable to use a semitransparent electrode as 20).
  • a material used here a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used.
  • the translucent electrode material silver is preferable from the viewpoints of reflectance and transmittance.
  • the film thickness of the translucent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, the light is not sufficiently reflected, and a sufficient interference effect cannot be obtained.
  • an electrode with a high light reflectivity for the electrode opposite to the light extraction side.
  • electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, and transparent and reflective metal electrodes (reflective electrodes). A combined electrode or the like can be given.
  • the organic EL layer used in the present embodiment may have a single layer structure of an organic light emitting layer, or a multilayer structure of an organic light emitting layer, a charge transport layer, and a charge injection layer.
  • the present embodiment is not limited to these.
  • each of the light emitting layer, the hole injection layer, the hole transport layer, the hole blocking layer, the electron blocking layer, the electron transport layer, and the electron injection layer may have a single layer structure or a multilayer structure.
  • the organic light emitting layer may be comprised only from the organic light emitting material illustrated below, and may be comprised from the combination of a luminescent dopant and host material. Further, it may optionally contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.), etc., and these materials are dispersed in a polymer material (binding resin) or an inorganic material. It may be. From the viewpoint of luminous efficiency and lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
  • the organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. In that case, it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
  • a known dopant material for organic EL can be used as the light-emitting dopant optionally contained in the light-emitting layer.
  • dopant materials include, for example, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p.
  • -Fluorescent materials such as quinckphenyl.
  • Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ).
  • a known host material for organic EL can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
  • the charge injection and transport layer is used to efficiently inject charges (holes and electrons) from the electrode and transport (injection) to the light-emitting layer with the charge injection layer (hole injection layer and electron injection layer) and the charge. It is classified as a transport layer (hole transport layer, electron transport layer).
  • the charge injecting and transporting layer may be composed of only the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (conjugation). Wear resin) or a structure dispersed in an inorganic material.
  • charge injecting and transporting material known charge transporting materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • hole injection and hole transport materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc.
  • oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 )
  • inorganic p-type semiconductor materials such as silicon oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-d
  • Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate ( PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (P VCz), poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
  • the material used as the hole injection layer is the highest occupied molecular orbit (HOMO) than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level. Further, as the hole transport layer, it is preferable to use a material having a higher hole mobility than the hole injection transport material used for the hole injection layer.
  • HOMO occupied molecular orbit
  • the hole injection and transport material is preferably doped with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because the carrier concentration can be increased more effectively.
  • Examples of electron injection and electron transport materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives. And low molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer has a higher energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection transport material used for the electron transport layer. It is preferable to use a material.
  • LUMO lowest unoccupied molecular orbital
  • the electron injection and transport material is preferably doped with a donor.
  • the donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -N
  • organic materials such as condensed polycyclic compounds (wherein the condensed polycyclic compounds may have a substituent), TTF (tetrathiafulvalene) s, dibenzofuran, phenothiazine, and carbazole.
  • TTF tetrathiafulvalene
  • dibenzofuran phenothiazine
  • carbazole a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are particularly preferable because the carrier concentration can be increased more effectively.
  • An organic EL layer including a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, and the like is prepared using a coating liquid for forming an organic EL layer in which the above materials are dissolved and dispersed in a solvent.
  • coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, microgravure coating method, etc.
  • a known dry process such as a wet process, a resistance heating vapor deposition method using the above materials, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or the like It can be formed by a laser transfer method or the like.
  • the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
  • the film thickness of each layer of the organic EL layer is preferably about 1 nm to 1000 nm, more preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the physical properties (charge injection characteristics, transport characteristics, confinement characteristics, etc.) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
  • an edge cover 21 is formed for the purpose of preventing leakage current between the anode 13 and the cathode 20 at the end of the anode 13.
  • the edge cover 21 can be formed by a known method such as an EB vapor deposition method using an insulating material, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like, by a known dry method or a wet photolithography method. Patterning can be performed, but the present embodiment is not limited to these forming methods.
  • the material constituting the edge cover 21 can be a known insulating material, and is not particularly limited in the present embodiment, but it is necessary to transmit light.
  • the film thickness of the edge cover 21 is preferably 100 nm to 2000 nm.
  • the thickness is 100 nm or less, the insulating property is not sufficient, and leakage occurs between the anode 13 and the cathode 20, causing an increase in power consumption and non-light emission.
  • the thickness is 2000 nm or more, the film forming process takes time, which causes a decrease in productivity and disconnection of the electrode at the edge cover 21.
  • the organic EL element 10 preferably has a microcavity structure (optical microresonator structure) due to an interference effect between a reflective electrode and a semitransparent electrode used as the anode 13 and the cathode 20 or a dielectric multilayer film.
  • a microcavity structure optical microresonator structure
  • light escaping to the surroundings can be reduced, and the light emission efficiency at the front can be increased.
  • the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Thereby, the spectrum which can excite the fluorescent substance which light-emits each color light more effectively can be controlled.
  • the display device 1 of the present embodiment by paying attention to the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a and the fluorescence extraction side interface 6b of the phosphor layer 6 as shown in FIG. Excitation light is efficiently incident on the phosphor layer 6 and fluorescence from the phosphor layer 6 is efficiently extracted to the outside. That is, by providing the phosphor layer 6 with a refractive index distribution, excitation light is absorbed by the phosphor layer 6 due to a difference in refractive index at the excitation light incident side interface 6a of the phosphor layer 6 without adding a new layer.
  • the total reflection component which is reflected and lost without being reduced can be reduced, and the amount of fluorescence generated in the phosphor layer 6 can be increased. And / or the total reflection component that is reflected and lost without being extracted to the outside due to the difference in refractive index at the fluorescence extraction side interface 6b of the phosphor layer 6 is reduced, and the light emission from the phosphor layer 6 is efficiently performed outside the substrate. Can be taken out.
  • low power consumption can be achieved simply by providing the phosphor layer 6 which is a light emitting part of the display and the display device with a refractive index distribution, so that yield reduction and cost increase due to the addition of the protective layer can be avoided.
  • wavelength selective transmission reflection having characteristics of transmitting the excitation light and reflecting the emission of the phosphor on the surface 6a on which the excitation light of the phosphor layers 6R, 6G, and 6B is incident.
  • a layer may be formed as the first layer of this embodiment.
  • This wavelength selective transmission / reflection layer needs to have a property of transmitting at least light corresponding to the peak wavelength of the excitation light and reflecting at least light corresponding to the emission peak wavelength of the phosphor layer 6.
  • the wavelength selective transmission / reflection layer has a refractive index n1 at the interface contacting the excitation light incident side interface 6a of the phosphor layer 6, and a refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. Need to be bigger than.
  • the material of the wavelength selective transmission / reflection layer include a dielectric multilayer film, an inorganic material film made of metal thin film glass, and the like, a resin film made of polyethylene terephthalate, polycarbazole, polyimide, and the like. Is not limited to these layers. The effect of the wavelength selective transmission / reflection layer will be described in detail in the following [Example] section.
  • excitation light from the light source side substrate 3 can be efficiently incident on the phosphor layers 6R, 6G, 6B, and isotropic in all directions from the phosphor layers 6R, 6G, 6B. It is possible to efficiently change the traveling direction of the light emitted to the front direction.
  • FIG. 4 is a cross-sectional view showing a display device of this modification.
  • the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the display device 25 of the present modification includes a phosphor substrate 26, a light source side substrate (organic EL element substrate) 27 bonded to the phosphor substrate 26 via the planarization layer 7, It is composed of
  • blue light is emitted from the organic EL elements that constitute the excitation light source 4 of the light source side substrate 27.
  • the main emission peak of blue light is preferably 410 nm to 470 nm, for example.
  • the red pixel PR is provided with a red phosphor layer 6R that emits red light using blue light as excitation light
  • the green pixel PG emits green light using blue light as excitation light.
  • a green phosphor layer 6G is provided.
  • the blue pixel PB is provided with a light scattering layer 28 for scattering incident blue light and emitting it to the outside.
  • the light scattering layer 28 has a configuration in which, for example, particles having a refractive index different from these materials are dispersed in a light-transmitting inorganic or organic material, and the light incident on the light scattering layer 28 is a layer. It is scattered isotropically inside.
  • the light scattering particles used in the light scattering layer 28 may be made of an organic material or may be made of an inorganic material, but is preferably made of an inorganic material. Thereby, the light having directivity from the excitation light source 4 (organic EL element 10) can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat. Moreover, it is preferable that the light scattering particles have high transparency.
  • the inorganic material may be an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony, for example. And particles (fine particles) containing as a main component.
  • examples of the inorganic fine particles include silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), and titanium oxide. Examples thereof include beads (refractive index: anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), and zinc oxide beads (refractive index: 2.00).
  • organic fine particles made of an organic material
  • examples of the organic fine particles include polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
  • the resin material used by mixing with the light scattering particles is preferably a translucent resin.
  • the resin material include melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine beads (refractive index: 1.57), polycarbonate ( Refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index: 1.46), polyethylene (refractive index: 1 .53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54). ), Tetrafluoroethylene (refractive index: 1.35), polytrifluoroethylene chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1.35),
  • the red pixel PR and the green pixel PG are formed to have a refractive index distribution as in the first embodiment.
  • Other configurations of the display device 25 are the same as those in the first embodiment.
  • blue light from the light source side substrate 27 is incident on the phosphor substrate 26 as excitation light, red fluorescence is generated by the red phosphor layer 6R in the red pixel PR, and in the green pixel PG.
  • Green fluorescence is generated by the green phosphor layer 6G.
  • the incident blue light is scattered by the light scattering layer 28 and emitted as it is, and full color display is performed by these respective color lights.
  • the display principle of the blue pixel PB is different from that of the first embodiment, the light emission from the red phosphor layer 6 ⁇ / b> R and the green phosphor layer 6 ⁇ / b> G can be efficiently extracted to the outside of the substrate also in this modification. The same effect as the first embodiment can be obtained.
  • FIG. 5 is a cross-sectional view showing a display device of this modification.
  • the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • color filters 32R, 32G, and 32B are provided between the substrate 5 constituting the phosphor substrate 31 and the phosphor layers 6R, 6G, and 6B of each pixel. Is provided.
  • the red pixel PR is provided with a red color filter 32R
  • the green pixel PG is provided with a green color filter 32G
  • the blue pixel PB is provided with a blue color filter 32B.
  • Conventional color filters can be used as the color filters 32R, 32G, and 32B. However, these color filters 32R, 32G, and 32B function as the second layer of the present embodiment in this modification.
  • the refractive index n2 at the interface contacting the fluorescence extraction side interface 6b of the phosphor layer 6 is such that the phosphor layer 6 has the refractive index n2 at the fluorescence extraction side interface 6b. It must be smaller than the refractive index nb.
  • Other configurations are the same as those of the first embodiment.
  • the color filters 32R, 32G, and 32B are provided for each pixel, so that the color purity of each of the red pixel PR, the green pixel PG, and the blue pixel PB can be increased.
  • the color reproduction range of the display device 30 can be expanded. Further, a red color filter 32R formed under the red phosphor layer 6R, a green color filter 32G formed under the green phosphor layer 6G, and a blue color filter 32B formed under the blue phosphor layer 6B. Absorbs the excitation light component contained in the external light.
  • the blue color filter 32B, the green color filter 32G, and the red color filter 32R can prevent excitation light that is not absorbed by the phosphor layers 6R, 6G, and 6B from leaking outside. For this reason, it is possible to prevent the color purity of the display from being deteriorated due to a mixture of light emitted from the phosphor layers 6R, 6G and 6B and excitation light.
  • FIG. 6A is a cross-sectional view illustrating an overall configuration of a display device according to this modification.
  • FIG. 6B is a cross-sectional view showing an LED substrate as a light source side substrate.
  • symbol is attached
  • the configuration of the phosphor substrate 2 is the same as that of the first embodiment, and the configuration of the excitation light source 4 is different.
  • the light source side substrate (LED substrate) 36 has a first buffer layer 38, an n-type contact layer 39, a second n-type cladding layer 40, and a first n-type on one surface of the substrate body 37.
  • a cladding layer 41, an active layer 42, a first p-type cladding layer 43, a second p-type cladding layer 44, and a second buffer layer 45 are sequentially stacked, and a cathode 46 is formed on the n-type contact layer 39.
  • An LED (light emitting diode) 48 having a configuration in which an anode 47 is formed on the second buffer layer 45 is provided.
  • LED light emitting diode
  • other well-known LED for example, ultraviolet light emission inorganic LED, blue light emission inorganic LED, etc. can be used as LED, A specific structure is not restricted to the above-mentioned thing.
  • the active layer 42 used in this modification is a layer that emits light by recombination of electrons and holes.
  • a known active layer material for LED can be used.
  • the active layer material for example, as ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-a-b N (0 ⁇ a, 0 ⁇ b, a + b ⁇ 1), as a blue active layer material includes In z Ga 1-z N (0 ⁇ z ⁇ 1) and the like, but this embodiment is not limited thereto.
  • a single quantum well structure or a multiple quantum well structure is used as the active layer 42.
  • the active layer of the quantum well structure may be either n-type or p-type. However, when it is a non-doped (no impurity added) active layer, the half-value width of the emission wavelength is narrowed due to interband emission, and light emission with good color purity is achieved. Since it is obtained, it is preferable.
  • the active layer 42 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with the impurity is the same as that of the non-doped layer, the emission intensity between bands can be further increased by doping the donor impurity as compared with the non-doped layer.
  • the acceptor impurity is doped, the peak wavelength can be shifted to the lower energy side by about 0.5 eV from the peak wavelength of interband light emission, but the full width at half maximum is widened.
  • the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity.
  • the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
  • n-type cladding layers 40 and 41 used in this modification a known n-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used.
  • the n-type cladding layers 40 and 41 are formed of an n-type semiconductor having a larger band gap energy than the active layer 42, a potential barrier against holes is formed between the n-type cladding layers 40 and 41 and the active layer 42. Holes can be confined in the active layer 42.
  • the n - type cladding layers 40 and 41 can be formed of n - type In x Ga 1-x N (0 ⁇ x ⁇ 1), but the present embodiment is not limited to these.
  • the p-type cladding layers 43 and 44 used in this modification a known p-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used.
  • the p-type cladding layers 43 and 44 are formed of a p-type semiconductor having a band gap energy larger than that of the active layer 42, a potential barrier against electrons is formed between the p-type cladding layers 43 and 44 and the active layer 42. Can be confined in the active layer 42.
  • the p-type cladding layers 43 and 44 can be formed of Al y Ga 1-y N (0 ⁇ y ⁇ 1), but the present embodiment is not limited to these.
  • n-type contact layer 39 used in this modification a known contact layer material for LED can be used.
  • an n-type GaN layer is used as a layer for forming an electrode in contact with the n-type cladding layers 40 and 41.
  • An n-type contact layer 39 can be formed.
  • a p-type contact layer made of p-type GaN is also possible.
  • this contact layer need not be formed if the second n-type cladding layer 40 and the second p-type cladding layer 44 are made of GaN, and the second cladding layer is used as the contact layer. It is also possible.
  • a known film forming process for LEDs can be used, but the present embodiment is not particularly limited thereto.
  • a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO) ) Or the like.
  • MOVPE metal organic vapor phase epitaxy
  • MBE molecular beam vapor phase epitaxy
  • HDVPE hydrogen vapor phase epitaxy
  • sapphire C plane, A plane, R
  • SiC including 6H—SiC, 4H—SiC
  • spinel MgAl 2 O 4 , especially its (111) plane
  • FIGS. 7A and 7B The basic configuration of the display device of this modification is the same as that of the first embodiment, and is different from the first embodiment in that an inorganic EL substrate is used as the light source side substrate.
  • FIG. 7A is a cross-sectional view illustrating an overall configuration of a display device according to this modification.
  • FIG. 7B is a cross-sectional view showing an inorganic EL substrate as a light source side substrate.
  • symbol is attached
  • the light source side substrate 51 includes a first electrode 53, a first dielectric layer 54, a light emitting layer 55, An inorganic EL element 58 having a structure in which a second dielectric layer 56 and a second electrode 57 are sequentially laminated is provided.
  • the inorganic EL element 58 a known inorganic EL, for example, an ultraviolet light emitting inorganic EL, a blue light emitting inorganic EL, or the like can be used, and the specific configuration is not limited to the above.
  • the same light source side substrate 3 (organic EL element substrate) on which the organic EL element 10 described above is formed can be used.
  • metals such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium (In) and tin (Sn) Oxide (ITO) made of), tin (Sn) oxide (SnO 2 ), indium (In) and oxide (IZO) made of zinc (Zn), etc., can be mentioned as transparent electrode materials. It is not limited to these materials. However, a transparent electrode such as ITO is preferable for the electrode on the side from which light is extracted, and a reflective film such as aluminum is preferably used for the electrode on the side opposite to the direction from which light is extracted.
  • the first electrode 53 and the second electrode 57 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. It is not limited to these formation methods. If necessary, the formed electrode can be patterned by a photolithography method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness of the first electrode 53 and the second electrode 57 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
  • a known dielectric material for inorganic EL can be used as the first dielectric layer 54 and the second dielectric layer 56 used in this modification.
  • a known dielectric material for inorganic EL examples include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( AlTiO 3 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like can be mentioned, but this modification is not limited thereto.
  • first dielectric layer 54 and the second dielectric layer 56 of the present modification may be configured by one type selected from the above dielectric materials, or may be configured by stacking two or more types of materials. Good.
  • the thickness of each dielectric layer 54, 56 is preferably about 200 nm to 500 nm.
  • the light emitting layer 55 used in this modification a known light emitting material for inorganic EL can be used.
  • a light emitting material for example, as an ultraviolet light emitting material, ZnF 2 : Gd, and as a blue light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 SiS. 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, and the like are exemplified, but the present modification is not limited thereto.
  • the film thickness of the light emitting layer 55 is preferably about 300 nm to 1000 nm.
  • the organic EL element is exemplified in the embodiment
  • the LED is exemplified in the third modification
  • the inorganic EL element is exemplified in the fourth modification.
  • a sealing film or a sealing substrate for sealing a light emitting element such as an organic EL element, an LED, or an inorganic EL element.
  • the sealing film and the sealing substrate can be formed by a known sealing material and sealing method.
  • the sealing film can be formed by applying a resin on the surface opposite to the substrate main body constituting the light source by using a spin coat method, an ODF, or a laminate method.
  • resin is further applied using spin coating, ODF, or lamination.
  • the sealing film can be formed by bonding.
  • Such a sealing film or a sealing substrate can prevent entry of oxygen and moisture into the light emitting element from the outside, thereby improving the life of the light source.
  • the light source and the phosphor substrate are bonded, they can be bonded with a general ultraviolet curable resin, a thermosetting resin, or the like.
  • a method of sealing an inert gas such as nitrogen gas or argon gas with a glass plate, a metal plate or the like can be mentioned.
  • a moisture absorbent such as barium oxide in the enclosed inert gas.
  • this embodiment is not limited to these members and forming methods. In the case where light is extracted from the side opposite to the substrate, it is necessary to use a light transmissive material for both the sealing film and the sealing substrate.
  • FIG. 8 is a cross-sectional view showing the display device of this embodiment.
  • FIG. 9 is a plan view showing the display device of this embodiment.
  • the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the display device 60 of the present embodiment includes a phosphor substrate 2 and a light source side substrate 61 (organic EL element substrate) bonded on the phosphor substrate 2.
  • the light source side substrate 61 of the present embodiment uses an active matrix driving system using TFTs as means for switching whether to irradiate light to each of the red pixel PR, the green pixel PG, and the blue pixel PB.
  • the configuration of the phosphor substrate 2 is the same as that of the first embodiment.
  • the blue pixel PB has a blue phosphor layer that emits blue light using ultraviolet light as excitation light.
  • the blue pixel PB shall have a light-scattering layer which scatters blue light.
  • the active matrix driving type light source side substrate 61 of this embodiment has a TFT 63 formed on one surface of the substrate body 62. That is, the gate electrode 64 and the gate line 65 are formed, and the gate insulating film 66 is formed on the substrate body 62 so as to cover the gate electrode 64 and the gate line 65.
  • An active layer (not shown) is formed on the gate insulating film 66, and a source electrode 67, a drain electrode 68 and a data line 69 are formed on the active layer, and covers the source electrode 67, the drain electrode 68 and the data line 69.
  • the planarizing film 70 is formed.
  • the planarization film 70 does not have to have a single layer structure, and may be configured by combining another interlayer insulating film and the planarization film. Further, a contact hole 71 that reaches the drain electrode 68 through the planarizing film or the interlayer insulating film is formed, and the organic EL element that is electrically connected to the drain electrode 68 through the contact hole 71 on the planarizing film 70 Ten anodes 13 are formed.
  • the configuration of the organic EL element 10 itself is the same as that of the first embodiment.
  • the substrate main body 62 used for the active matrix driving type it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 / ° C. or less.
  • the TFT can be transferred and formed on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT to the plastic substrate. Further, in the present embodiment, there is no restriction as a substrate when the light emission from the organic EL layer is taken out from the opposite side of the substrate, but when the light emission from the organic EL layer is taken out from the substrate side, it is transparent or translucent. It is necessary to use a substrate.
  • the TFT 63 is formed on the substrate body 62 before the organic EL element 10 is formed, and functions as a pixel switching element and an organic EL element driving element.
  • Examples of the TFT 63 used in this embodiment include known TFTs, which can be formed using known materials, structures, and formation methods.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT 63.
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- Examples thereof include oxide semiconductor materials such as zinc oxide, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene.
  • oxide semiconductor materials such as zinc oxide
  • organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene.
  • Examples of the structure of the TFT 63 include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • the method for forming the active layer constituting the TFT 63 (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD How is a polysilicon layer is formed by a PECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • PECVD low pressure chemical vapor deposition
  • the gate insulating film 66 of the TFT 63 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the data line 69, the gate line 65, the source electrode 67, and the drain electrode 68 of the TFT 63 used in this embodiment can be formed using a known conductive material, for example, tantalum (Ta), aluminum (Al ), Copper (Cu), and the like.
  • the TFT 63 according to this embodiment can be configured as described above, but is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film used in the present embodiment can be formed using a known material.
  • the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the organic EL element 10 when light from the organic EL element 10 is taken out from the opposite side of the substrate body 62, external light is prevented from entering the TFT 63 formed on the substrate body 62 and changes in the electrical characteristics of the TFT 63 are prevented.
  • a light-shielding insulating film having light-shielding properties.
  • the interlayer insulating film and the light-shielding insulating film can be used in combination.
  • Examples of the light-shielding interlayer insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclonone in a polymer resin such as polyimide, color resists, black matrix materials, inorganic insulating materials such as Ni x Zn y Fe 2 O 4, and the like. Can be mentioned. However, the present embodiment is not limited to these materials and forming methods.
  • unevenness is formed on the surface of the TFT 63 formed on the substrate body 62 and various wirings and electrodes, and the unevenness of the anode 13 and the cathode 20 in the organic EL element 10 due to the unevenness, organic EL
  • a layer defect, a short circuit between the anode 13 and the cathode 20, a decrease in breakdown voltage, or the like may occur. Therefore, it is desirable to provide the planarizing film 70 on the interlayer insulating film for the purpose of preventing these phenomena.
  • the planarization film 70 used in the present embodiment can be formed using a known material, for example, an inorganic material such as silicon oxide, silicon nitride, or tantalum oxide, or an organic material such as polyimide, acrylic resin, or resist material. Etc.
  • Examples of the method for forming the planarizing film 70 include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method, but the present embodiment is not limited to these materials and the forming method.
  • the planarization film 70 may have a single layer structure or a multilayer structure.
  • the display device 60 of the present embodiment includes a pixel portion 72 formed on a light source side substrate 61, a gate signal side drive circuit 74, a data signal side drive circuit 73, a signal wiring 75, and a current supply.
  • a line 76, a flexible printed wiring board 77 (FPC) connected to the light source side substrate 61, and an external drive circuit 100 are provided.
  • the light source side substrate 61 is electrically connected to an external driving circuit 100 including a scanning line electrode circuit, a data signal electrode circuit, a power supply circuit, and the like through the FPC 77 in order to drive the organic EL element 10. ing.
  • a switching circuit such as a TFT 63 is disposed in the pixel portion 72.
  • a data signal side driving circuit 73 and a gate signal side driving circuit 74 for driving the organic EL element 10 are connected to wirings such as a data line 69 and a gate line 65 to which the TFT 63 and the like are connected.
  • An external drive circuit 100 is connected to the data signal side drive circuit 73 and the gate signal side drive circuit 74 via a signal wiring 75.
  • a plurality of gate lines 65 and a plurality of data lines 69 are arranged, and a TFT 63 is arranged at an intersection of the gate lines 65 and the data lines 69.
  • the organic EL element 10 is driven by a voltage-driven digital gradation method as shown in FIG. 10, for example. That is, two TFTs, a switching TFT 78 and a driving TFT 79 (63), are arranged for each pixel, and the contact hole 71 in which the driving TFT 79 (TFT 63) and the anode 13 of the organic EL element 10 are formed in the planarization layer 70. It is electrically connected via. Further, a capacitor (not shown) for making the gate potential of the driving TFT 79 constant in one pixel is disposed so as to be connected to the gate electrode of the driving TFT 79. A planarizing layer 70 is formed on the TFTs 78 and 79.
  • the present embodiment is not particularly limited to these, and the driving method may be the voltage-driven digital gradation method described above or the current-driven analog gradation method.
  • the number of TFTs is not particularly limited, and the organic EL element 10 may be driven by the two TFTs described above.
  • the organic EL element 10 may be driven using two or more TFTs having a built-in compensation circuit therein.
  • the same effect as that of the first embodiment can be obtained such that the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
  • the active matrix driving type light source side substrate 61 since the active matrix driving type light source side substrate 61 is employed, a display device having excellent display quality can be realized.
  • the light emission time of the organic EL element 10 can be extended as compared with passive driving, and the driving current for obtaining desired luminance can be reduced, so that the power consumption can be reduced.
  • the light is extracted from the opposite side (phosphor substrate side) of the light source side substrate 61, the light emitting region can be expanded regardless of the formation region of the TFT and various wirings, and the aperture ratio of the pixel is increased. Can do.
  • FIG. 11 is a cross-sectional view showing the display device of this embodiment.
  • the same reference numerals are given to the same constituent elements as those in FIG. 1A used in the first embodiment, and the description thereof will be omitted.
  • the display device 80 of the present embodiment includes a phosphor substrate 2, a light source side substrate 81 (organic EL element substrate) including an organic EL element as the excitation light source 4, and a liquid crystal element 82.
  • a phosphor substrate 2 organic EL element substrate
  • the configuration of the phosphor substrate 2 is the same as that of the first embodiment, and a description thereof will be omitted.
  • the laminated structure of the light source side substrate 82 is the same as that shown in FIG. 1B in the first embodiment.
  • drive signals are individually supplied to the organic EL elements corresponding to each pixel, and each organic EL element is controlled to emit light and not emit light independently.
  • the organic EL element 83 is not divided for each pixel and functions as a planar light source common to all the pixels.
  • the liquid crystal element 82 is configured to be able to control the voltage applied to the liquid crystal layer for each pixel using a pair of electrodes, and to control the transmittance of light emitted from the entire surface of the organic EL element 83 for each pixel.
  • the liquid crystal element 82 has a function as an optical shutter that selectively transmits light from the light source side substrate 81 for each pixel.
  • the liquid crystal element 82 of the present embodiment a known liquid crystal element can be used.
  • the liquid crystal element 82 includes a pair of polarizing plates 84 and 85, electrodes 86 and 87, alignment films 88 and 89, and a substrate 90.
  • the liquid crystal 91 is sandwiched between the alignment films 88 and 89.
  • one optically anisotropic layer is disposed between the liquid crystal cell and one polarizing plate 84, 85, or the optically anisotropic layer is disposed between the liquid crystal cell and both polarizing plates 84, 85. 2 may be arranged.
  • the type of liquid crystal cell is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include TN mode, VA mode, OCB mode, IPS mode, and ECB mode.
  • the driving method of the liquid crystal element 82 may be passive driving or active driving using a switching element such as a TFT.
  • the same effect as that of the first embodiment can be obtained such that the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
  • the power consumption can be further reduced by combining the pixel switching by the liquid crystal element 82 and the light source side substrate 81 functioning as a planar light source.
  • Examples of the electronic device including the display device of the embodiment include a mobile phone shown in FIG. 12A and a television receiver shown in FIG. 12B.
  • a cellular phone 127 shown in FIG. 12A includes a main body 128, a display unit 129, an audio input unit 130, an audio output unit 131, an antenna 132, an operation switch 133, and the like, and the display device of the above embodiment is used as the display unit 129. It has been.
  • a television receiver 135 illustrated in FIG. 12B includes a main body cabinet 136, a display unit 137, a speaker 138, a stand 139, and the like, and the display device of the embodiment is used for the display unit 137. In such an electronic device, since the display device of the above-described embodiment is used, an electronic device with low power consumption and excellent display quality can be realized.
  • the display device described in the embodiment preferably includes a polarizing plate on the light extraction side.
  • a polarizing plate a combination of a conventional linear polarizing plate and a ⁇ / 4 plate can be used.
  • the polarizing plate By providing such a polarizing plate, external light reflection from the electrode of the display device or external light reflection on the surface of the substrate or the sealing substrate can be prevented, and the contrast of the display device can be improved.
  • specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the phosphor substrate and the display device are not limited to the above-described embodiments, and can be appropriately changed.
  • FIG. 13A is a side view of the phosphor substrate.
  • FIG. 13B is a plan view of the phosphor substrate.
  • As the substrate 101 a square glass having a thickness of 0.7 mm was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour. Next, green phosphor layers 102 having a thickness of 50 ⁇ m were formed on the substrate 101 at the four corners of the substrate 101.
  • the green phosphor layer 102 is formed by first adding 30 g of green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles having an average particle diameter of 4 ⁇ m and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol, followed by stirring with a disperser.
  • the green phosphor forming coating solution was prepared by mixing.
  • the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 ⁇ m and a pitch of 160 ⁇ m.
  • Example 1 will be described with reference to FIGS. 14A and 14B.
  • FIG. 14A shows a side view of the phosphor substrate.
  • FIG. 14B shows a plan view of the phosphor substrate during manufacture and a plan view of the completed phosphor substrate.
  • green phosphor layers 104 were formed at the four corners of the substrate 101.
  • the green phosphor layer 104 is formed by first using Ba 2 SiO 4 : Eu 2+ particles having an average particle diameter of 4 ⁇ m as the green phosphor, and using 20 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and polyvinyl alcohol. 30 g of a 10 wt% aqueous solution was added and stirred and mixed by a disperser to prepare a green phosphor forming coating solution. Next, the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 ⁇ m and a pitch of 160 ⁇ m.
  • the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol were added, and the mixture was stirred and mixed by a disperser to prepare a green phosphor forming coating solution.
  • the prepared green phosphor-forming coating solution was applied by pattern printing onto the green phosphor layer 104a with a width of 100 ⁇ m and a pitch of 160 ⁇ m.
  • a green phosphor layer 104 having a two-layer structure with a thickness of 50 ⁇ m was formed, and the phosphor substrate 105 as Example 1 was completed.
  • the surface of the green phosphor 104 of the phosphor substrate 105 thus produced was irradiated with light having a wavelength of 450 nm as excitation light from a blue LED, and a commercially available luminance meter (BM-7: Top Co., Ltd.) was irradiated.
  • the brightness of light emitted from the substrate 101 was measured using a Contechno House Co., Ltd. Thereby, the luminance at 25 ° C. of the light emitted from the green phosphor 104 was measured.
  • the luminance of the green phosphor 102 of the comparative example was measured in the same manner. As a result, in Example 1, a brightness improvement of 1.2 times compared to the comparative example was observed. The following will be considered regarding the luminance improvement.
  • the excitation light incident side interface of the phosphor layers 102 and 104 exists between the phosphor layer and the air layer (first layer) having a refractive index of 1.
  • the fluorescence extraction side interface of the phosphor layers 102 and 104 exists between the phosphor layer and glass (substrate 101) having a refractive index of 1.5.
  • the refractive index of the phosphor layers 102 and 104 is higher than the refractive index of the air layer. Therefore, the total reflection loss of the excitation light does not occur in both.
  • the refractive index of the phosphor layer is higher than the refractive index of the glass (second layer) in both the comparative example and Example 1. Therefore, the higher the refractive index difference between the two, the greater the total reflection loss of fluorescence, resulting in poor light extraction efficiency.
  • the refractive index difference in the comparative example is 0.5
  • the refractive index difference in Example 1 is 0.1. Therefore, Example 1 is considered to have improved brightness because the light extraction efficiency is higher than that of the comparative example.
  • the phosphor layer 104 is composed of two layers 104a and 104b. However, if the refractive index difference in the phosphor layer 104 is large, the phosphor layer 104 (the phosphor layer 104a and the phosphor layer 104b). Total reflection loss may occur at the interface). Therefore, in order to prevent the refractive index difference in the phosphor layer from becoming large, it is possible to gently change the refractive index difference in the phosphor layer by stacking three or more phosphor layers having different dispersion concentrations. preferable.
  • Example 2 Example 2 will be described with reference to FIGS. 15A and 15B.
  • FIG. 15A shows a side view of the phosphor substrate.
  • FIG. 15B shows a plan view of the phosphor substrate during manufacture and a plan view of the completed phosphor substrate.
  • green phosphor layers 106 were formed at the four corners of the substrate 101.
  • the green phosphor layer 106 is formed by first using Ba 2 SiO 4 : Eu 2+ particles having an average particle diameter of 500 nm as the green phosphor, and using 30 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and polyvinyl alcohol. 30 g of a 10 wt% aqueous solution was added and stirred and mixed by a disperser to prepare a green phosphor forming coating solution. Next, the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 ⁇ m and a pitch of 160 ⁇ m. Then, it heat-dried for 4 hours in the vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 15B, the refractive index 1.6 green fluorescent substance layer 106a was formed with the film thickness of 25 micrometers.
  • the refractive index 2.0 green fluorescent substance layer 106b was formed with the film thickness of 25 micrometers. Thereby, a green phosphor layer 106 having a two-layer structure with a thickness of 50 ⁇ m was formed, and a phosphor substrate 107 as Example 2 was completed.
  • the surface of the green phosphor 106 of the phosphor substrate 107 thus produced was irradiated with excitation light with light having a wavelength of 450 nm from a blue LED, and a commercially available luminance meter (BM-7: Top Co., Ltd.) was irradiated.
  • the brightness of light emitted from the substrate 101 was measured using a Contechno House Co., Ltd. Thereby, the luminance at 25 ° C. of the light emitted from the green phosphor 106 was measured.
  • Example 2 a luminance improvement of 1.3 times that of the comparative example was observed. The following will be considered regarding the luminance improvement.
  • the excitation light incident side interface of the phosphor layer 106 exists between the phosphor layer and the air layer (first layer) having a refractive index of 1 as in the first and comparative examples.
  • the fluorescence extraction side interface of the phosphor layer 106 exists between the phosphor layer and glass having a refractive index of 1.5.
  • the refractive index of the phosphor layers 102 and 106 is higher than the refractive index of the air layer in both the comparative example and the example 2. Therefore, the total reflection loss of the excitation light does not occur in both cases.
  • the refractive index of the phosphor layer is higher than the refractive index of the glass (second layer) in both the comparative example and the example 2. Therefore, the higher the refractive index difference between the two, the greater the total reflection loss of fluorescence, resulting in poor light extraction efficiency.
  • the refractive index difference in the comparative example is 0.5
  • the refractive index difference in Example 2 is 0.1. Therefore, Example 2 is considered to have improved brightness because the light extraction efficiency is higher than that of the comparative example.
  • the particle size of the phosphor layer 106a is as small as nm order, light scattering is suppressed, and it is considered that the luminance is improved as compared with Example 1.
  • the phosphor layer 106 is composed of two layers 106a and 106b.
  • the phosphor layer 106 (the phosphor layer 106a and the phosphor layer 106b). Total reflection loss may occur at the interface). Therefore, in order to prevent the refractive index difference in the phosphor layer from increasing, the refractive index difference in the phosphor layer can be gradually changed by stacking three or more phosphor layers having different particle diameters. preferable.
  • Example 3 [Example in which side scattering film and rear wavelength selective transmission / reflection film are employed] Embodiment 3 will be described with reference to FIGS. 16A to 16H. In this embodiment, an example will be described in which a side scattering film and a backside wavelength selective transmission / reflection film are employed for a phosphor substrate.
  • 16A to 16D are side sectional views showing steps of the method for manufacturing the phosphor substrate.
  • 16E to 16H are plan views showing the steps of the method for manufacturing the phosphor substrate. Using the glass substrate 101 cleaned and dried in the same manner as in Example 1, green phosphor layers 104 were formed at the four corners of the substrate 101.
  • a white resist pattern was formed in a forward taper shape with a 70 ⁇ m frame, a film thickness of 60 ⁇ m, and a pitch of 160 ⁇ m on the substrate 101, and a barrier 108 was produced as shown in FIGS. 16A and 16E.
  • the phosphor layers 104a and 104b are formed in this order in the region surrounded by the barrier 108 by the dispenser method to form the phosphor layer 104. did.
  • an acrylic resin was applied to the entire surface of the substrate 101 with a thickness of 20 ⁇ m by a spin coating method in order to minimize the occurrence of surface height imbalance on the obtained phosphor substrate.
  • a planarization layer 109 having a refractive index of 1.7 was formed as shown in FIGS. 16C and 16G.
  • a wavelength selective transmission / reflection film 110 having a thickness of 2 ⁇ m was formed, and a phosphor substrate 111 as Example 3 was completed.
  • the fluorescent component directed to the side and back of the phosphor layer 104 is lost in the first embodiment.
  • the fluorescent component directed to the side of the phosphor layer 104 is scattered by the barrier 108 and returns to the phosphor layer 104 so that it can be reused in the light extraction direction.
  • the fluorescent component toward the back surface of the phosphor layer 104 returns to the phosphor layer 104 by the wavelength selective transmission / reflection film 110 and can be reused in the light extraction direction. Therefore, by adopting the structure as in the third embodiment, the luminance can be further improved as compared with the first embodiment.
  • the barrier 108 may be made of metal such as silver or aluminum using light reflection instead of light scattering. Further, the entire barrier 108 does not need to be made of a light scattering or light reflecting material, and it is sufficient that a light scattering or light reflecting film is formed at least on the surface of the barrier 108. Further, the wavelength selective transmission / reflection film 110 may be formed of a metal thin film or an alloy thin film instead of a multilayer film.
  • FIGS. 17A to 18F are side sectional views showing the steps of the method for manufacturing the phosphor substrate.
  • FIG. 17E and FIG. 17H are plan views showing the steps of the method for manufacturing the phosphor substrate.
  • 18A and 18C are side cross-sectional views showing the steps of the method for manufacturing the light source side substrate.
  • 18D and 18F are plan views showing the steps of the method for manufacturing the light source side substrate.
  • the red phosphor layer 112, the green phosphor layer 113, and the blue scatterer layer 114 were formed, and the phosphor substrate 115 was formed.
  • a silver paste was formed into a forward taper pattern with a width of 70 ⁇ m, a film thickness of 60 ⁇ m, and a pitch of 160 ⁇ m on the substrate 101 by a screen printing method, and a reflection barrier 116 was produced as shown in FIGS. 17A and 17E.
  • a red phosphor layer 112, a green phosphor layer 113, and a blue scatterer layer 114 were formed in the region surrounded by the reflection barrier 116 as follows.
  • red phosphor layer 112 In the formation of the red phosphor layer 112, first, 20 g of red phosphor (K 5 Eu 2.5 (WO 4 ) 6.25 ) particles having an average particle diameter of 4 ⁇ m and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added, and a disperser is added. The mixture was stirred and mixed to prepare a red phosphor forming coating solution. Next, the prepared red phosphor forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser technique.
  • red phosphor K 5 Eu 2.5 (WO 4 ) 6.25
  • red phosphor layer 112 having a two-layer structure having a thickness of 50 ⁇ m was formed as shown in FIGS. 17B and 17F.
  • the green phosphor layer 113 first, 20 g of green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles having an average particle diameter of 4 ⁇ m and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred by a disperser.
  • the green phosphor forming coating solution was prepared by mixing.
  • the prepared green phosphor forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser method. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 17C, the green phosphor layer 113a with a refractive index of 1.6 was pattern-formed by the film thickness of 25 micrometers.
  • the blue scatterer layer first, 20 g of silica particles (refractive index: 1.65) having an average particle diameter of 1.5 ⁇ m and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred and mixed by a disperser. Thus, a coating liquid for forming a blue scatterer layer was prepared. Next, the prepared blue scatterer layer forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser technique. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 17D FIG. 17H, the blue scatterer layer 114 of refractive index 1.6 was pattern-formed with the film thickness of 50 micrometers. Thus, the phosphor substrate 115 was produced.
  • silica particles reffractive index: 1.65
  • a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred and mixed by a disperser.
  • a light source side substrate using an organic EL element as the excitation light source 4 was formed.
  • a reflective electrode is formed on a glass substrate 101 having a thickness of 0.7 mm by a sputtering method so that silver has a thickness of 100 nm, and indium-tin oxide (ITO) has a thickness of 20 nm on the reflective electrode.
  • a film was formed by sputtering, and a reflective electrode (anode) was formed as the first electrode 141 as shown in FIGS. 18A and 18D.
  • the first electrode 141 was patterned in a stripe pattern with a width of 70 ⁇ m and a pitch of 160 ⁇ m by a conventional photolithography method.
  • SiO 2 is deposited to 200 nm on the substrate 101 by sputtering, and is patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode 141 as shown in FIGS. 18B and 18E. 142 was formed.
  • the short side is covered with SiO 2 by 5 ⁇ m from the end of the first electrode 141. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
  • the substrate 101 is fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the inside of the resistance heating vapor deposition apparatus is depressurized to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form an organic light emitting layer as shown in FIGS. 18C and 18F.
  • An organic EL layer 143 containing was formed by resistance heating vapor deposition.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a translucent electrode was formed as the second electrode 144.
  • the substrate 101 was fixed in a metal deposition chamber.
  • a shadow mask for forming the second electrode 144 (a mask having an opening so that the second electrode 144 can be formed in a stripe shape having a width of 70 ⁇ m and a pitch of 160 ⁇ m in a direction opposite to the stripe of the first electrode 141. )
  • the substrate 101, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec, respectively.
  • a pattern was formed (thickness: 1 nm).
  • silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of enhancing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 144. )did.
  • the second electrode 144 is formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode 141) and the semi-transmissive electrode (second electrode 144), and the front luminance can be increased.
  • Light emission energy from the EL element can be more efficiently propagated to the phosphor layer.
  • the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of 3 ⁇ m of SiO 2 is patterned by plasma CVD from the edge of the display unit to the sealing area of 2 mm in the vertical and horizontal directions (not shown).
  • the light source side substrate provided with the organic EL element was produced as described above.
  • the light source side substrate (organic EL element substrate) produced as described above and the phosphor substrate 115 were aligned using an alignment marker formed outside the display unit.
  • a thermosetting resin was applied to the phosphor substrate 115, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 80 ° C. for 2 hours.
  • This bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
  • an organic EL display device was completed by connecting terminals formed in the periphery to an external power source.
  • a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source.
  • red and green By converting to red and green, isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
  • the blue scatterer layer 114 is not formed by stacking layers having different scatterer particle concentrations, but naturally, layers having different scatterer particle concentrations are stacked to form a blue scatterer layer. May be.
  • Example 5 In this embodiment, an example in which an active drive blue organic EL element and a phosphor system are employed will be described.
  • the phosphor substrate was produced in the same manner as in Example 4.
  • An amorphous silicon semiconductor film was formed on a 100 mm ⁇ 100 mm square glass substrate by PECVD.
  • a polycrystalline silicon semiconductor film was formed by performing a crystallization treatment.
  • the polycrystalline silicon semiconductor film was patterned into a plurality of islands by using a photolithography method.
  • a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed using a photolithography method.
  • the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was produced. Thereafter, a planarizing film was formed.
  • the planarizing film was formed by laminating a silicon nitride film formed by PECVD and an acrylic resin layer in this order using a spin coater. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source or drain region, and then a source wiring was formed.
  • an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film.
  • an active matrix substrate was completed.
  • the function as a planarizing film is realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT to a constant potential is formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT.
  • a driving TFT, a first electrode of a red light emitting organic EL element, a first electrode of a green light emitting organic EL element, and a first electrode of a blue light emitting organic EL element are provided on the active matrix substrate through the planarization layer. Contact holes were formed for electrical connection.
  • the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization layer connected to the TFT for driving each light emitting pixel. Formed.
  • the first electrode was formed by laminating with a thickness of Al (aluminum) 150 nm and IZO (indium oxide-zinc oxide) 20 nm.
  • the first electrode was patterned into a shape corresponding to each pixel by a conventional photolithography method.
  • the area of the first electrode was set to 70 ⁇ m ⁇ 70 ⁇ m.
  • the display portion formed on a 100 mm ⁇ 100 mm square substrate is 80 mm ⁇ 80 mm, and a 2 mm wide sealing area provided on the top, bottom, left and right of the display portion is provided.
  • Each was provided with a 2 mm terminal lead-out part. On the long side, a 2 mm terminal lead-out portion was provided on the side to be bent.
  • the active substrate was cleaned.
  • acetone and IPA were used for ultrasonic cleaning for 10 minutes, and then UV-ozone cleaning was performed for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less.
  • Each organic layer was formed.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • NPD N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine
  • a hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
  • a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer.
  • This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a semitransparent electrode was formed as the second electrode.
  • the substrate was fixed to a metal deposition chamber.
  • the shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode) and the substrate are aligned.
  • magnesium and silver are formed in a desired pattern by co-evaporation at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec by vacuum evaporation, respectively (thickness: 1 nm) )did.
  • silver is formed in a desired pattern (thickness: at a deposition rate of 1 ⁇ / sec) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode. 19 nm).
  • the second electrode was formed.
  • a microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be increased.
  • Light emission energy from the EL element can be more efficiently propagated to the phosphor layer.
  • the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
  • an inorganic protective layer made of SiO 2 having a thickness of 3 ⁇ m was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method.
  • an active drive type organic EL element substrate was produced.
  • the active drive type organic EL element substrate and the phosphor substrate produced as described above were aligned using an alignment marker formed outside the display unit.
  • a thermosetting resin was applied to the phosphor substrate, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 90 ° C. for 2 hours.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
  • a polarizing plate was attached to the substrate in the light extraction direction to complete an active drive organic EL.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, so that 80 mm ⁇ 80 mm
  • An active drive type organic EL display having the display part of FIG.
  • a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to each pixel from an external power source, and red light and green light are emitted from blue light in a red phosphor layer and a green phosphor layer, respectively.
  • isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
  • Example 6 In this embodiment, an example in which a blue LED and a phosphor system are employed will be described.
  • the phosphor substrate was produced in the same manner as in Example 4. Using TMG (trimethylgallium) and NH 3 , a buffer layer made of GaN was grown to a thickness of 60 nm on the C surface of the sapphire substrate set in the reaction vessel at 550 ° C. Next, the temperature was raised to 1050 ° C., and an n-type contact layer made of Si-doped n-type GaN was grown to a thickness of 5 ⁇ m using SiH 4 gas in addition to TMG and NH 3 .
  • TMA trimethylaluminum
  • the temperature is lowered to 850 ° C., and the first n-type cladding layer made of Si-doped n-type In 0.01 Ga 0.99 N is made 60 nm using TMG, TMI (trimethylindium), NH 3 and SiH 4. It was made to grow with the film thickness. Subsequently, an active layer made of non-doped In0.05Ga0.95N was grown at a thickness of 5 nm at 850 ° C. using TMG, TMI, and NH 3.
  • CPM cyclopentadienyl magnesium
  • TMG cyclopentadienyl magnesium
  • TMI cyclopentadienyl magnesium
  • a first p-type cladding layer made of Mg-doped p-type In 0.01 Ga 0.99 N at 850 ° C. has a thickness of 60 nm. It was made to grow with the film thickness.
  • the temperature is raised to 1100 ° C., and a second p-type cladding layer made of Mg-doped p-type Al 0.3 Ga 0.7 N is grown to a thickness of 150 nm using TMG, TMA, NH 3 , and CPMg. I let you.
  • a p-type contact layer made of Mg-doped p-type GaN was grown to a thickness of 600 nm.
  • the temperature was lowered to room temperature, the wafer was taken out of the reaction vessel, and the wafer was annealed at 720 ° C. to reduce the resistance of the p-type layer.
  • a mask having a predetermined shape was formed on the surface of the uppermost p-type contact layer, and etching was performed until the surface of the n-type contact layer was exposed.
  • a negative electrode made of titanium (Ti) and aluminum (Al) was formed on the surface of the n-type contact layer, and a positive electrode made of nickel (Ni) and gold (Au) was formed on the surface of the p-type contact layer.
  • the wafer is separated into 350 ⁇ m square chips, and the LED chip thus prepared is fixed with a UV curable resin on a substrate on which wiring for connecting to a separately prepared external circuit is formed, The chip and the wiring on the substrate were electrically connected to produce a light source substrate composed of a blue LED.
  • the light source substrate and the phosphor substrate produced as described above were aligned with an alignment marker formed outside the display unit.
  • a thermosetting resin was applied to the phosphor substrate, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 80 ° C. for 2 hours.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.).
  • the LED display device was completed by connecting terminals formed in the periphery to an external power source.
  • a blue LED is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source, and the red phosphor layer and the green phosphor layer emit light from blue light in red, By converting to green, isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
  • the embodiment of the present invention can provide a display device with a simple structure and low power consumption.

Abstract

This phosphor substrate is provided with a phosphor layer, a first layer, and a second layer. The phosphor layer has an excitation-light-incidence surface and a phosphorescent-light-extraction surface. Excitation light that enters through the excitation-light-incidence surface generates phosphorescent light, and the phosphorescent light is emitted. The first layer contacts the excitation-light-incidence surface. The second layer contacts the phosphorescent-light-extraction surface. The phosphor layer is configured such that a refractive index (na) in the vicinity of the excitation-light-incidence surface is smaller than a refractive index (n1) of the first layer. The phosphor layer is configured to have a refractive index distribution between the excitation-light-incidence surface and the phosphorescent-light-extraction surface such that the absolute value (│n1-na│) of the difference between the phosphor layer refractive index (na) in the vicinity of the excitation-light-incidence surface and the refractive index (n1) of the first layer is smaller than the absolute value (│n1-nb│) of the difference between a refractive index (nb) of the phosphor layer in the vicinity of the phosphorescent-light-extraction surface and the refractive index (n1) of the first layer.

Description

蛍光体基板および表示装置Phosphor substrate and display device
 本発明は、蛍光体基板および表示装置に関する。
 本願は、2011年3月10日に、日本に出願された特願2011-053425号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a phosphor substrate and a display device.
This application claims priority on March 10, 2011 based on Japanese Patent Application No. 2011-053425 for which it applied to Japan, and uses the content here.
 近年、従来主流であったブラウン管を使用した表示装置の代替として、薄型のフラットパネルディスプレイ(FPD)の表示装置のニーズが高まりつつある。FPDには各種のものがあり、例えば、非自発光型の液晶ディスプレイ(LCD)、自発光型のプラズマディスプレイパネル(PDP)、無機エレクトロルミネッセンス(無機EL)ディスプレイ、または有機エレクトロルミネッセンス(有機EL)ディスプレイ等が知られている。 In recent years, the need for a thin flat panel display (FPD) display device is increasing as an alternative to a display device using a cathode ray tube, which has been the mainstream in the past. There are various types of FPD, for example, non-self-luminous liquid crystal display (LCD), self-luminous plasma display panel (PDP), inorganic electroluminescence (inorganic EL) display, or organic electroluminescence (organic EL). A display or the like is known.
 中でも、有機ELディスプレイは、表示に使用する素子(有機EL素子)が薄型かつ軽量であり、なおかつ低電圧駆動、高輝度および自発光等の特性を有していることから、その研究開発が盛んに行われている。最近では、電子写真複写機、またはプリンター等の光源、または発光装置等への有機EL素子の応用が期待されている。有機EL素子を発光装置に用いた場合、有機EL素子は面発光であり、高い演色性を示し、なおかつ調光が容易であるという利点がある。さらには、蛍光灯は水銀を含んでいるが、有機EL素子は水銀を含んでいない、または有機EL素子の発光には紫外線を含まない等、優位な点が多い。
 このような有機ELディスプレイにおいては、単純マトリクス駆動によって動画表示を行う技術、さらには、薄膜トランジスタ(TFT)を駆動素子として用い、有機EL素子のアクティブマトリクス駆動によって動画表示を行う技術が知られている。
In particular, organic EL displays are actively researched and developed because the elements used for display (organic EL elements) are thin and lightweight, and have characteristics such as low voltage drive, high luminance, and self-luminous emission. Has been done. Recently, application of organic EL elements to light sources such as electrophotographic copying machines or printers, light emitting devices, and the like is expected. When an organic EL element is used in a light emitting device, the organic EL element has surface emission, has high color rendering properties, and has an advantage that light control is easy. Furthermore, fluorescent lamps contain mercury, but organic EL elements do not contain mercury, or light emission from organic EL elements has many advantages such as no ultraviolet rays.
In such an organic EL display, a technique for performing moving picture display by simple matrix driving, and a technique for performing moving picture display by active matrix driving of organic EL elements using a thin film transistor (TFT) as a driving element are known. .
 また、従来のディスプレイでは、赤色、緑色、青色を発光する画素を1つの単位として並置し、白色を代表とする様々な色を作り出すことにより、フルカラー表示を行っている。
 これを実現化するためには、有機ELの場合、一般的にシャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の各画素を形成する方法が採られる。しかし、この方法では、マスクの加工精度の向上、マスクと基板とのアライメント精度の向上、マスクの大型化が求められる。特に、テレビジョン(TV)に代表される大型ディスプレイの分野では、基板サイズが、いわゆるG6世代(1800mm×1500mm)からG8世代(2460mm×2160mm)、G10世代(3050mm×2850mm)と大型化が進んでいる。したがって、従来の方法であると、基板サイズと同等以上のマスクを必要とするため、大型基板に対応したマスクの作製、加工が必要となる。
Further, in a conventional display, full-color display is performed by arranging pixels emitting red, green, and blue as one unit to create various colors typified by white.
In order to realize this, in the case of organic EL, a method of forming each pixel of red, green, and blue by generally coating the organic light emitting layer by mask vapor deposition using a shadow mask is adopted. . However, this method requires improvement in mask processing accuracy, mask and substrate alignment accuracy, and mask size enlargement. In particular, in the field of large displays typified by television (TV), the substrate size has increased from the so-called G6 generation (1800 mm × 1500 mm) to G8 generation (2460 mm × 2160 mm) and G10 generation (3050 mm × 2850 mm). It is out. Therefore, since the conventional method requires a mask equivalent to or larger than the substrate size, it is necessary to manufacture and process a mask corresponding to a large substrate.
 マスクは、非常に薄い金属(一般的な膜厚:50nm~100nm)で構成されるため、大型化することが困難である。すなわち、大型基板に対応したマスクの作製、加工が困難である。マスクの加工精度やマスクのアライメント精度が低下すると、発光層の混じりによる混色が生じてしまう。
 これらの現象を防止するためには、画素間に設ける絶縁層の幅を広く取る必要があるが、画素の面積が決まっている場合、発光部の面積が少なくなる。すなわち、画素の開口率の低下に繋がり、有機EL素子の輝度の低下、消費電力の上昇、寿命の低下に繋がる。
Since the mask is made of a very thin metal (general film thickness: 50 nm to 100 nm), it is difficult to increase the size of the mask. That is, it is difficult to manufacture and process a mask corresponding to a large substrate. When the mask processing accuracy and the mask alignment accuracy are lowered, color mixing due to mixing of the light emitting layers occurs.
In order to prevent these phenomena, it is necessary to increase the width of the insulating layer provided between the pixels. However, when the area of the pixels is determined, the area of the light emitting portion is reduced. That is, it leads to a decrease in the aperture ratio of the pixel, leading to a decrease in luminance of the organic EL element, an increase in power consumption, and a decrease in life.
 また、従来の製造方法では、蒸着ソースが、基板より下側に配置され有機材料を下から上方向に蒸着することで有機層を成膜するため、基板の大型化(マスクの大型化)に伴い、中央部でのマスクの撓みが生じ、前記の混色の原因ともなる。また、極端な場合には、有機層が形成されない部分ができてしまい、上下の電極のリークが発生する原因となる。また、従来の方法では、マスクを所定の回数使用すると、劣化により使用不可能となる。したがって、マスクの大型化は、ディスプレイの製造コストに繋がり、コストアップに繋がる。 In the conventional manufacturing method, the deposition source is disposed below the substrate, and the organic material is deposited from the bottom to the top, thereby forming an organic layer. Along with this, the mask is bent at the center, which causes the color mixture. In an extreme case, a portion where the organic layer is not formed is formed, which causes leakage of the upper and lower electrodes. In the conventional method, if the mask is used a predetermined number of times, it cannot be used due to deterioration. Therefore, an increase in the size of the mask leads to a manufacturing cost of the display, which leads to an increase in cost.
 このため、青色域~青緑色域の光を発する発光層を有する有機EL部と、前記有機EL部からの青色域~青緑色域の発光を励起光として吸収し、緑色を発光する蛍光体層からなる緑色画素と、赤色に発光する蛍光体層からなる赤色画素と、色純度を向上させる目的での青色カラーフィルターからなる青色画素とを組み合わせることでフルカラーを発光させる方法が提案されている(下記特許文献1参照)。この方法は、前記塗り分け方式に比べて、有機層のパターン化を行う必要がなく、簡単に製造できる点、コスト的に優れている。 Therefore, an organic EL portion having a light emitting layer that emits light in a blue region to blue-green region, and a phosphor layer that emits green light by absorbing light emitted from the blue region to blue-green region from the organic EL portion as excitation light. A method of emitting full color by combining a green pixel composed of a red pixel composed of a phosphor layer that emits red light and a blue pixel composed of a blue color filter for the purpose of improving color purity has been proposed ( See Patent Document 1 below). This method is superior to the above-described coating method in that it does not require patterning of the organic layer, can be easily manufactured, and is superior in cost.
 しかし、蛍光体層の励起光入射側界面での屈折率差により、励起光の一部が全反射して蛍光体層に吸収されず、結果的に生成される蛍光量が少なくなるという現象が起こり、得られる発光効率が低下する。また、蛍光体層の光取出し側界面での屈折率差により、蛍光体層からの発光が当該界面で全反射してしまい、結果的に蛍光体層からの光取出し効率が低くなるという現象が起こり、得られる発光効率が低下する。このような発光効率の低下は、ディスプレイ、表示装置の消費電力の上昇に繋がる。 However, due to the refractive index difference at the excitation light incident side interface of the phosphor layer, a part of the excitation light is totally reflected and not absorbed by the phosphor layer, resulting in a phenomenon that the amount of fluorescence generated is reduced. Occurs and the resulting luminous efficiency is reduced. Moreover, due to the difference in refractive index at the light extraction side interface of the phosphor layer, the light emitted from the phosphor layer is totally reflected at the interface, resulting in a phenomenon that the light extraction efficiency from the phosphor layer is lowered. Occurs and the resulting luminous efficiency is reduced. Such a decrease in luminous efficiency leads to an increase in power consumption of the display and display device.
 このような現象を解決するため、励起光源を構成する部材と色変換層(蛍光体層)を構成する部材との間、あるいは色変換層を構成する部材と支持基板との間に屈折率差を小さくする機能を有した保護層を形成する方法が提案されている(下記特許文献2参照)。
 また、従来の液晶表示装置と蛍光体を組み合わせた、自発光型の液晶表示装置も提案されている。これは、従来の液晶表示装置とは異なり、液晶層の外側に設けられたRGBの蛍光体層が発光するため、視野角特性の非常に優れた表示装置を実現することが可能となる(特許文献3、非特許文献1)。
In order to solve such a phenomenon, the refractive index difference between the member constituting the excitation light source and the member constituting the color conversion layer (phosphor layer) or between the member constituting the color conversion layer and the support substrate. There has been proposed a method of forming a protective layer having a function of reducing the thickness (see Patent Document 2 below).
A self-luminous liquid crystal display device combining a conventional liquid crystal display device and a phosphor has also been proposed. This is different from the conventional liquid crystal display device, because the RGB phosphor layer provided outside the liquid crystal layer emits light, so that it is possible to realize a display device with excellent viewing angle characteristics (patent) Document 3, Non-Patent Document 1).
特許第2795932号公報Japanese Patent No. 2795932 特開2003-133062号公報JP 2003-133062 A 特開2000-131683号公報JP 2000-131683 A
 しかしながら、特許文献2に提案された方法では、蛍光体層の励起光入射側界面、あるいは光取出し側界面のいずれか一方の界面でしか効果が発揮されないため、消費電力の低減効果が小さい。また、保護層を形成する工程が増えることにより、歩留まり低下も懸念される。
 また、特許文献3、非特許文献1に提案された液晶表示装置にあっては、前述した蛍光体層の励起光入射側界面での屈折率差や光取出し側界面での屈折率差に起因する発光効率の低下、消費電力の上昇が依然起こりうる。
However, the method proposed in Patent Document 2 is effective only at one of the excitation light incident side interface and the light extraction side interface of the phosphor layer, so that the effect of reducing power consumption is small. In addition, there is a concern that the yield may decrease due to an increase in the number of steps for forming the protective layer.
Further, in the liquid crystal display devices proposed in Patent Document 3 and Non-Patent Document 1, it is caused by the refractive index difference at the excitation light incident side interface or the refractive index difference at the light extraction side interface of the phosphor layer described above. The emission efficiency and power consumption may still increase.
 本発明の態様はこのような背景に鑑みてなされたもので、励起光を効率良く蛍光体層に入射させることによって蛍光体層で生成される蛍光量を増やし、さらに蛍光体層で発生した蛍光成分の基板外部への取出し効率を向上させることにより、変換効率を向上させて発光効率を高めた蛍光体基板を提供することを目的とする。また、有機EL素子や液晶素子等と組み合わせることにより、視野角特性に優れ(視野角によらず色純度、輝度がズレない良好な画像が得られ)、かつ、低コスト化、低消費電力化が可能な表示装置を提供することを目的とする。 The aspect of the present invention has been made in view of such a background, and the amount of fluorescence generated in the phosphor layer is increased by efficiently causing excitation light to enter the phosphor layer, and further the fluorescence generated in the phosphor layer. An object of the present invention is to provide a phosphor substrate having improved luminous efficiency by improving the conversion efficiency by improving the efficiency of extracting the components to the outside of the substrate. Combined with organic EL elements and liquid crystal elements, etc., it has excellent viewing angle characteristics (a good image can be obtained with no deviation in color purity and brightness regardless of the viewing angle), and costs and power consumption are reduced. It is an object of the present invention to provide a display device that can perform the above-described operation.
 本発明者らは、前記問題を解決すべく、蛍光体層の励起光入射側界面での屈折率、および前記蛍光体層の蛍光取出し側界面での屈折率に着目し、鋭意検討した結果、蛍光体層への励起光の効率の良い入射と、蛍光体層から基板外部への高光取出し効率の両立を行うことが可能な方法を実現し、前記課題を解決することができることに想到し、本発明の幾つかの態様を完成させた。 In order to solve the above problems, the inventors focused on the refractive index at the excitation light incident side interface of the phosphor layer and the refractive index at the fluorescence extraction side interface of the phosphor layer, and as a result of earnest studies, Realized a method capable of achieving both the efficient incidence of excitation light to the phosphor layer and the high light extraction efficiency from the phosphor layer to the outside of the substrate, and the idea that the above problem can be solved, Several embodiments of the present invention have been completed.
 すなわち、本発明の一態様における蛍光体基板は、蛍光体層と、第一の層と、第二の層と、を備える。前記蛍光体層は、励起光入射面と蛍光取出し面とを有し、前記励起光入射面を介して入射された励起光により蛍光を生じて発光する。第一の層は、前励起光入射面と接する。第二の層は、前記蛍光取出し面と接する。前記蛍光体層は、前記励起光入射面近傍における屈折率naが、前記第一の層の屈折率n1よりも小さくなるよう構成される。前記蛍光体層は、前記励起光入射面近傍における屈折率naと前記第一の層の屈折率n1の差の絶対値|n1-na|が、前記蛍光取出し面近傍における屈折率nbと前記第一の層の屈折率n1の差の絶対値|n1-nb|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されている。 That is, the phosphor substrate in one embodiment of the present invention includes a phosphor layer, a first layer, and a second layer. The phosphor layer has an excitation light incident surface and a fluorescence extraction surface, and emits fluorescence by generating fluorescence by excitation light incident through the excitation light incident surface. The first layer is in contact with the front excitation light incident surface. The second layer is in contact with the fluorescence extraction surface. The phosphor layer is configured such that the refractive index na in the vicinity of the excitation light incident surface is smaller than the refractive index n1 of the first layer. In the phosphor layer, the absolute value | n1-na | of the difference between the refractive index na in the vicinity of the excitation light incident surface and the refractive index n1 of the first layer is different from the refractive index nb in the vicinity of the fluorescence extraction surface. A refractive index distribution is formed between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n1-nb | of the difference in the refractive index n1 of one layer.
 本発明の一態様における蛍光体基板は、前記蛍光体層は、前記蛍光取出し面近傍における屈折率nbが、前記第二の層の屈折率n2よりも大きくなるよう構成され、前記蛍光体層は、前記蛍光取出し面近傍における前記蛍光体層の屈折率nbと前記第二の層の屈折率n2の差の絶対値|n2-nb|が、前記励起光入射面近傍における前記蛍光体層の屈折率naと前記第二の層の屈折率n2の差の絶対値|n2-na|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されていてもよい。 In the phosphor substrate according to one aspect of the present invention, the phosphor layer is configured such that a refractive index nb in the vicinity of the fluorescence extraction surface is larger than a refractive index n2 of the second layer, and the phosphor layer includes: The absolute value | n2-nb | of the difference between the refractive index nb of the phosphor layer near the fluorescence extraction surface and the refractive index n2 of the second layer is the refraction of the phosphor layer near the excitation light incident surface. And having a refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n2-na | of the difference between the refractive index na and the refractive index n2 of the second layer. May be.
 本発明の一態様における蛍光体基板は、蛍光体層と、第一の層と、第二の層と、を備える。蛍光体層は、励起光入射面と蛍光取出し面とを有し、前記励起光入射面を介して入射された励起光により蛍光を生じて発光する。第一の層は、前記励起光入射面と接する。第二の層は、前記蛍光取出し面と接する。前記蛍光体層は、前記蛍光取出し面近傍における屈折率nbが、前記第二の層の屈折率n2よりも大きくなるよう構成される。前記蛍光体層は、前記蛍光取出し面近傍における前記蛍光体層の屈折率nbと前記第二の層の屈折率n2の差の絶対値|n2-nb|が、前記励起光入射面近傍における前記蛍光体層の屈折率naと前記第二の層の屈折率n2の差の絶対値|n2-na|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されている。 The phosphor substrate in one embodiment of the present invention includes a phosphor layer, a first layer, and a second layer. The phosphor layer has an excitation light incident surface and a fluorescence extraction surface. The phosphor layer generates fluorescence by excitation light incident through the excitation light incident surface and emits light. The first layer is in contact with the excitation light incident surface. The second layer is in contact with the fluorescence extraction surface. The phosphor layer is configured such that the refractive index nb in the vicinity of the fluorescence extraction surface is larger than the refractive index n2 of the second layer. The phosphor layer has an absolute value | n2-nb | of the difference between the refractive index nb of the phosphor layer and the refractive index n2 of the second layer in the vicinity of the fluorescence extraction surface, in the vicinity of the excitation light incident surface. Refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n2-na | of the difference between the refractive index na of the phosphor layer and the refractive index n2 of the second layer. It is comprised.
 このように、蛍光体基板の蛍光体層に屈折率分布を持たせることで、他の層を追加することなく、蛍光体層の励起光入射側界面における屈折率差により励起光が蛍光体層に吸収されずに反射してロスする成分(例えば全反射成分)を低減し、蛍光体層で生成される蛍光量を増やすことが可能になる。および/または、蛍光体層の蛍光取出し側界面における屈折率差により蛍光が外部へ取り出されずに反射してロスする成分(例えば全反射成分)を低減し、蛍光体層からの発光を効率良く基板外部へ取り出すことが可能になる。 Thus, by providing the phosphor layer of the phosphor substrate with a refractive index distribution, the excitation light can be converted into the phosphor layer by the refractive index difference at the excitation light incident side interface of the phosphor layer without adding another layer. It is possible to reduce a component (for example, a total reflection component) that is reflected and lost without being absorbed by the phosphor, and to increase the amount of fluorescence generated in the phosphor layer. And / or the component that reflects and loses the fluorescence without being extracted to the outside due to the difference in the refractive index at the fluorescence extraction side interface of the phosphor layer (for example, total reflection component) is reduced to efficiently emit light from the phosphor layer. It can be taken out.
 好適には、本発明の一態様における蛍光体基板において、前記蛍光体層の前記励起光入射面近傍における屈折率naと前記励起光入射面近傍における前記第一の層の屈折率n1の差の絶対値|n1-na|は、0.41以下であるのが好ましく、より好適には、0.1未満であるのが好ましい。また、前記蛍光体層の前記蛍光取出し面近傍における屈折率nbと、前記蛍光取出し面近傍における前記第二の層の屈折率n2の差の絶対値|n2-nb|は、0.41以下であるのが好ましく、より好適には、0.1未満であるのが好ましい。なぜなら、励起光や蛍光が等方光である場合、スネルの法則より前記屈折率差が0.41以下でなければ正面光成分の半分以上が全反射によりロスするからである。もちろん、励起光や蛍光が正面方向に指向性を有する光の場合は、これに限定されない。また、当然のことながら、屈折率差が小さければ小さいほど、全反射のロスは少なくなる。 Preferably, in the phosphor substrate according to one aspect of the present invention, the difference between the refractive index na of the phosphor layer in the vicinity of the excitation light incident surface and the refractive index n1 of the first layer in the vicinity of the excitation light incident surface. The absolute value | n1-na | is preferably 0.41 or less, and more preferably less than 0.1. The absolute value | n2-nb | of the difference between the refractive index nb in the vicinity of the fluorescence extraction surface of the phosphor layer and the refractive index n2 of the second layer in the vicinity of the fluorescence extraction surface is 0.41 or less. It is preferable that it is, and more preferably, it is less than 0.1. This is because when excitation light or fluorescence is isotropic light, more than half of the front light component is lost due to total reflection unless the refractive index difference is 0.41 or less according to Snell's law. Of course, the present invention is not limited to this when the excitation light or fluorescence is light having directivity in the front direction. Of course, the smaller the refractive index difference, the less total reflection loss.
 また、前記蛍光体層の屈折率分布が前記励起光入射面から、前記蛍光取出し面に向けて連続的に変化していてもよい。好適には、なだらかに変化していることが好ましい。
 蛍光体層の屈折率分布が断続的に変化し、あるいは指数関数的に変化すると、蛍光体層内での屈折率変化が大きく、結果的に蛍光体層からの蛍光取出し効率が低下するおそれがあるからである。一方、蛍光体層の屈折率分布が連続的になだらかに変化すると、蛍光体層内での屈折率差がほとんど生じなくなり、結果的に蛍光体層からの蛍光取出し効率を向上させることが可能となる。
 なお、屈折率分布については、蛍光体層の励起光入射面から蛍光取出し面に向かって一様に増加しあるいは減少する必要はなく、少なくとも蛍光体層の励起光入射側界面での屈折率差、または、蛍光取出し側界面での屈折率差を、小さくするように分布していればよい。好適には、蛍光体層の励起光入射面よりも蛍光取出し面面の屈折率が小さいことが好ましい。より好適には、蛍光体層の励起光入射面から蛍光取出し面に向かって一様に減少することが好ましい。蛍光体層の屈折率分布をこのようにすることで、より効果的に蛍光を外部へ取り出すことが可能となる。
Further, the refractive index distribution of the phosphor layer may continuously change from the excitation light incident surface toward the fluorescence extraction surface. Preferably, it is changed gently.
If the refractive index distribution of the phosphor layer is changed intermittently or exponentially, the refractive index change in the phosphor layer is large, and as a result, the fluorescence extraction efficiency from the phosphor layer may be reduced. Because there is. On the other hand, if the refractive index distribution of the phosphor layer changes continuously and smoothly, a difference in refractive index in the phosphor layer hardly occurs, and as a result, it is possible to improve the fluorescence extraction efficiency from the phosphor layer. Become.
The refractive index distribution does not need to increase or decrease uniformly from the excitation light incident surface of the phosphor layer toward the fluorescence extraction surface, and at least the difference in refractive index at the excitation light incident side interface of the phosphor layer. Alternatively, it is only necessary to distribute the refractive index difference at the fluorescence extraction side interface so as to be small. Preferably, the refractive index of the fluorescence extraction surface is smaller than the excitation light incident surface of the phosphor layer. More preferably, it decreases uniformly from the excitation light incident surface of the phosphor layer toward the fluorescence extraction surface. By making the refractive index distribution of the phosphor layer in this way, it becomes possible to take out the fluorescence to the outside more effectively.
 また、前記蛍光体層が無機蛍光体を含有してもよい。
 励起光源として指向性を有する励起光を採用する場合、無機蛍光体層を構成する無機蛍光体で発光をなさせることにより、無機蛍光体の粒子による散乱効果によって等方的な発光が得られる。したがって、視野角特性の優れた表示装置の提供が可能となる。
The phosphor layer may contain an inorganic phosphor.
When directional excitation light is employed as the excitation light source, isotropic light emission is obtained by the scattering effect of the inorganic phosphor particles by causing the inorganic phosphor constituting the inorganic phosphor layer to emit light. Therefore, it is possible to provide a display device having excellent viewing angle characteristics.
 また、前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での分散濃度によって調整されていてもよい。
 蛍光体層は、屈折率の低いバインダー材料に屈折率の高い無機蛍光体が分散された状態に形成される。そのため、蛍光体の分散濃度を低くすれば蛍光体層の屈折率は小さくなり、逆に分散濃度を高くすれば蛍光体層の屈折率は高くなる。したがって、無機蛍光体の分散濃度を調整することにより、蛍光体層の励起光入射側界面、および/または、蛍光取出し側界面における屈折率差を容易に小さくすることができる。
The refractive index distribution of the phosphor layer may be adjusted by the dispersion concentration of the inorganic phosphor in the phosphor layer.
The phosphor layer is formed in a state where an inorganic phosphor having a high refractive index is dispersed in a binder material having a low refractive index. Therefore, if the dispersion concentration of the phosphor is lowered, the refractive index of the phosphor layer is decreased. Conversely, if the dispersion concentration is increased, the refractive index of the phosphor layer is increased. Therefore, by adjusting the dispersion concentration of the inorganic phosphor, it is possible to easily reduce the refractive index difference at the excitation light incident side interface and / or the fluorescence extraction side interface of the phosphor layer.
 また、前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での粒径分布によって調整されていることが好ましい。
 無機蛍光体の粒径が小さくなればなるほど、蛍光体の屈折率は小さくなる。したがって無機蛍光体の粒径分布を調整することにより、蛍光体層の励起光入射側界面、および/または、蛍光取出し側界面における屈折率差を容易に小さくすることができる。
 なお、無機蛍光体の分散濃度と粒径分布の調整は、必ずしも独立している必要はなく、分散濃度と粒径分布の両方を調整することにより、蛍光体層の励起光入射側界面、および/または、蛍光取出し側界面における屈折率差を小さくするようにしてもよい。
The refractive index distribution of the phosphor layer is preferably adjusted by the particle size distribution of the inorganic phosphor in the phosphor layer.
The smaller the particle size of the inorganic phosphor, the smaller the refractive index of the phosphor. Therefore, by adjusting the particle size distribution of the inorganic phosphor, the difference in refractive index between the excitation light incident side interface and / or the fluorescence extraction side interface of the phosphor layer can be easily reduced.
The adjustment of the dispersion concentration and the particle size distribution of the inorganic phosphor is not necessarily independent. By adjusting both the dispersion concentration and the particle size distribution, the excitation light incident side interface of the phosphor layer, and Alternatively, the difference in refractive index at the fluorescence extraction side interface may be reduced.
 また、前記蛍光体層が、スクリーン印刷法、インクジェット法、ディスペンサー法、ノズルコート法のいずれかで形成されていてもよい。
 前記手法を用いることにより、蛍光体層を直接パターン化することができる。したがって、フォトリソ法でパターニングを行う場合に比べ、蛍光体材料の材料利用効率が向上し、低コスト化が可能となる。また、ウエットプロセスで撥水処理を併用することにより、蛍光体を効率良く、所望の断面形状に形成することが可能となる。これにより、効率の良い光取り出しに必要な断面形状をダイレクトに形成することが可能となる。
The phosphor layer may be formed by any one of a screen printing method, an ink jet method, a dispenser method, and a nozzle coating method.
By using the above method, the phosphor layer can be directly patterned. Therefore, the material utilization efficiency of the phosphor material is improved and the cost can be reduced as compared with the case where patterning is performed by the photolithography method. In addition, by using a water repellent treatment in combination with a wet process, the phosphor can be efficiently formed in a desired cross-sectional shape. This makes it possible to directly form a cross-sectional shape necessary for efficient light extraction.
 本発明の他の態様における表示装置は、前記蛍光体基板と、前記励起光を発光する励起光源とを備える。
 前記励起光源が、発光ダイオード、有機エレクトロルミネセンス素子、無機エレクトロルミネセンス素子のいずれかであってもよい。
 例えば有機エレクトロルミネセンス素子を励起光源とした場合、視野角特性が優れ、低コスト、低消費電力の表示装置となる。
A display device according to another aspect of the present invention includes the phosphor substrate and an excitation light source that emits the excitation light.
The excitation light source may be any of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
For example, when an organic electroluminescence element is used as an excitation light source, the display device has excellent viewing angle characteristics, low cost, and low power consumption.
 また、本発明の他の態様における表示装置は、さらに複数の駆動素子を有し、前記励起光源が複数の発光素子からなり、前記複数の発光素子がそれぞれに対応する駆動素子で駆動されてもよい。
 アクティブ駆動型となっていることにより、表示品位の優れたディスプレイ、表示装置となる。また、パッシブ駆動に比べて発光時間を長くすることができるため、所望の輝度を得る駆動電圧を低減することが可能となり、低消費電力化が可能となる。
The display device according to another aspect of the present invention further includes a plurality of driving elements, wherein the excitation light source includes a plurality of light emitting elements, and the plurality of light emitting elements are driven by the corresponding driving elements. Good.
Due to the active drive type, a display and a display device with excellent display quality are obtained. In addition, since the light emission time can be made longer than in passive driving, it is possible to reduce the driving voltage for obtaining desired luminance, and to reduce power consumption.
 さらに、本発明の他の態様における表示装置は、前記駆動素子が形成された基板を有していてもよい。前記蛍光体層は、前記第二の層と前記基板との間に位置し、前記蛍光体層からの光は、前記第二の層を介して射出される。 これにより、TFT等からなる駆動素子や配線等に関係なく、高開口率に形成することが可能となる。この結果、低消費電力化が可能となる。 Furthermore, a display device according to another aspect of the present invention may have a substrate on which the drive element is formed. The phosphor layer is located between the second layer and the substrate, and light from the phosphor layer is emitted through the second layer. Thereby, it becomes possible to form with a high aperture ratio irrespective of a driving element or wiring made of TFT or the like. As a result, power consumption can be reduced.
 さらに、本発明の他の態様における表示装置は、前記励起光源と前記蛍光体基板との間に設けられ、前記励起光源から射出された光の透過率を制御可能な液晶素子を有してもよい。前記励起光源が、光射出面から光を射出する面状光源であってもよい。
 これにより、液晶素子をスイッチング素子とする表示品位の優れた表示装置となる。
Furthermore, the display device according to another aspect of the present invention may include a liquid crystal element that is provided between the excitation light source and the phosphor substrate and that can control a transmittance of light emitted from the excitation light source. Good. The excitation light source may be a planar light source that emits light from a light exit surface.
As a result, a display device with excellent display quality using a liquid crystal element as a switching element is obtained.
 本発明の態様によれば、発光効率を高めた蛍光体基板を提供することができる。また、低コスト化、低消費電力化が可能な表示装置を提供することができる。 According to the aspect of the present invention, a phosphor substrate with improved luminous efficiency can be provided. In addition, it is possible to provide a display device capable of reducing cost and power consumption.
第1の実施形態の表示装置の全体を示す模式断面図である。1 is a schematic cross-sectional view illustrating an entire display device according to a first embodiment. 第1の実施形態の表示装置の光源側基板の要部を示す断面図である。It is sectional drawing which shows the principal part of the light source side board | substrate of the display apparatus of 1st Embodiment. 従来の蛍光体基板(表示装置)の第1のモデルの模式断面図である。It is a schematic cross section of the 1st model of the conventional fluorescent substance substrate (display apparatus). 従来の蛍光体基板(表示装置)の第2のモデルの模式断面図である。It is a schematic cross section of the 2nd model of the conventional fluorescent substance substrate (display apparatus). 従来の蛍光体基板(表示装置)の第3のモデルの模式断面図である。It is a schematic cross section of the 3rd model of the conventional fluorescent substance substrate (display apparatus). 第1の実施形態の第1の変形例の表示装置を示す模式断面図である。It is a schematic cross section which shows the display apparatus of the 1st modification of 1st Embodiment. 第1の実施形態の第2の変形例の表示装置を示す模式断面図である。It is a schematic cross section which shows the display apparatus of the 2nd modification of 1st Embodiment. 第1の実施形態の第3の変形例の表示装置の全体を示す模式断面図である。It is a schematic cross section which shows the whole display apparatus of the 3rd modification of 1st Embodiment. 第1の実施形態の第3の変形例の表示装置の光源側基板の要部を示す断面図である。It is sectional drawing which shows the principal part of the light source side board | substrate of the display apparatus of the 3rd modification of 1st Embodiment. 第1の実施形態の第4の変形例の表示装置の全体を示す模式断面図である。It is a schematic cross section which shows the whole display apparatus of the 4th modification of 1st Embodiment. 第1の実施形態の第4の変形例の表示装置の光源側基板の要部を示す断面図である。It is sectional drawing which shows the principal part of the light source side board | substrate of the display apparatus of the 4th modification of 1st Embodiment. 第2の実施形態の表示装置の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure of the display apparatus of 2nd Embodiment. 第2の実施形態の表示装置を示す平面図である。It is a top view which shows the display apparatus of 2nd Embodiment. アクティブマトリックス駆動型有機EL素子の電圧駆動デジタル階調方式の模式図である。It is a schematic diagram of the voltage drive digital gradation system of an active matrix drive type organic EL element. 第3の実施形態の表示装置の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure of the display apparatus of 3rd Embodiment. 本発明の態様に係る表示装置を備えた電子機器の例を示す模式図である。FIG. 11 is a schematic diagram illustrating an example of an electronic device including a display device according to an aspect of the invention. 本発明の態様に係る表示装置を備えた電子機器の例を示す模式図である。FIG. 11 is a schematic diagram illustrating an example of an electronic device including a display device according to an aspect of the invention. 比較例を説明するための側面図である。It is a side view for demonstrating a comparative example. 比較例を説明するための平面図である。It is a top view for demonstrating a comparative example. 実施例1を説明する側面図である。1 is a side view for explaining Example 1. FIG. 実施例1の製造過程での平面図である。6 is a plan view of the manufacturing process of Example 1. FIG. 実施例2を説明する側面図である。FIG. 6 is a side view for explaining Example 2; 実施例2の製造過程での平面図である。FIG. 10 is a plan view in the manufacturing process of Example 2. 実施例3の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例3の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 3. 実施例4の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す側断面図である。It is a sectional side view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の蛍光体基板の製造方法の工程を示す平面図である。It is a top view which shows the process of the manufacturing method of the fluorescent substance substrate of Example 4. 実施例4の光源側基板の製造方法の工程を示す側断面図である。FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4. 実施例4の光源側基板の製造方法の工程を示す側断面図である。FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4. 実施例4の光源側基板の製造方法の工程を示す側断面図である。FIG. 10 is a side cross-sectional view showing a process of a method for manufacturing a light source side substrate of Example 4. 実施例4の光源側基板の製造方法の工程を示す平面図である。10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4. FIG. 実施例4の光源側基板の製造方法の工程を示す平面図である。10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4. FIG. 実施例4の光源側基板の製造方法の工程を示す平面図である。10 is a plan view showing a process of a method for manufacturing a light source side substrate of Example 4. FIG.
 以下、実施形態及び実施例を挙げ、本発明の態様を更に詳細に説明するが、本発明の態様はこれらの実施形態及び実施例に限定されるものではない。
[第1の実施形態]
 図1A及び図1Bは、第1の実施形態に係る表示装置の概略構成を示す図である。図1Aは、本実施形態の表示装置の全体を示す断面図である。図1Bは、光源側基板の要部を示す断面図である。なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
The embodiments and examples will be described below to describe the aspects of the present invention in more detail. However, the aspects of the present invention are not limited to these embodiments and examples.
[First Embodiment]
1A and 1B are diagrams illustrating a schematic configuration of a display device according to the first embodiment. FIG. 1A is a cross-sectional view showing the entire display device of the present embodiment. FIG. 1B is a cross-sectional view showing the main part of the light source side substrate. In the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 図1A中符号1は表示装置であり、この表示装置1は、蛍光体基板2と、蛍光体基板2上に貼り合わされた光源側基板3と、を備えて構成されている。本実施形態の表示装置1は、赤色、緑色、青色の表示をそれぞれ行う3つのドットにより画像を構成する最小単位である1つの画素が構成されている。ただし、以下の説明では、赤色の表示を行うドットを赤色画素PR、緑色の表示を行うドットを緑色画素PG、青色の表示を行うドットを青色画素PB、と称する。本実施形態の表示装置1においては、励起光源として有機EL素子を用いた光源側基板(有機EL素子基板)3から紫外光が射出される。蛍光体基板2にこの紫外光が励起光として入射され、赤色画素PRでは赤色の蛍光、緑色画素PGでは緑色の蛍光、青色画素PBでは青色の蛍光が生じ、これら各色光によってフルカラー表示が行われる。 In FIG. 1A, reference numeral 1 denotes a display device, and the display device 1 includes a phosphor substrate 2 and a light source side substrate 3 bonded onto the phosphor substrate 2. In the display device 1 of the present embodiment, one pixel, which is the minimum unit that constitutes an image, is configured by three dots that respectively display red, green, and blue. However, in the following description, a dot that performs red display is referred to as a red pixel PR, a dot that performs green display is referred to as a green pixel PG, and a dot that performs blue display is referred to as a blue pixel PB. In the display device 1 of the present embodiment, ultraviolet light is emitted from a light source side substrate (organic EL element substrate) 3 using an organic EL element as an excitation light source. The ultraviolet light is incident on the phosphor substrate 2 as excitation light, and red fluorescence is generated in the red pixel PR, green fluorescence is generated in the green pixel PG, and blue fluorescence is generated in the blue pixel PB, and full color display is performed by these color lights. .
(蛍光体基板)
 以下、本実施形態の蛍光体基板について詳細に説明する。
 本実施形態の蛍光体基板2は、基板5と、蛍光体層6(6B、6R、6G)と、平坦化層7(第一の層)と、を備えて構成されている。蛍光体層6(6B、6R、6G)は、前記基板5上に設けられ、光源側基板(有機EL素子基板)3の励起光源4、すなわち後述する有機EL素子から入射された励起光により蛍光を生じて発光する。平坦化層7は、前記蛍光体層6を覆って基板5上に形成される。そして、平坦化層7が光源側基板3の励起光源4を覆った状態で前記光源側基板3に接合されていることにより、光源側基板3と蛍光体基板2とは互いに貼り合わされ、一体化されて表示装置1を構成している。
(Phosphor substrate)
Hereinafter, the phosphor substrate of this embodiment will be described in detail.
The phosphor substrate 2 of the present embodiment includes a substrate 5, a phosphor layer 6 (6B, 6R, 6G), and a planarization layer 7 (first layer). The phosphor layer 6 (6B, 6R, 6G) is provided on the substrate 5, and is fluorescent by excitation light incident from the excitation light source 4 of the light source side substrate (organic EL element substrate) 3, that is, an organic EL element described later. To emit light. The planarization layer 7 is formed on the substrate 5 so as to cover the phosphor layer 6. The planarizing layer 7 is bonded to the light source side substrate 3 so as to cover the excitation light source 4 of the light source side substrate 3, whereby the light source side substrate 3 and the phosphor substrate 2 are bonded to each other and integrated. Thus, the display device 1 is configured.
 蛍光体層6B、6R、6Gは、画素毎に分割された複数の蛍光体層からなっている。これら複数の蛍光体層6B、6R、6Gは、画素によって異なる色の色光を発光するため、後述するように異なる蛍光体材料で形成されている。また、蛍光体層6B、6R、6G上が平坦化層7で平坦化されたことにより、励起光源4と蛍光体層6B、6R、6Gとの間に空乏ができることが防止される。かつ、光源側基板3と蛍光体基板2との間の密着性が高められている。 The phosphor layers 6B, 6R and 6G are composed of a plurality of phosphor layers divided for each pixel. The plurality of phosphor layers 6B, 6R, and 6G are formed of different phosphor materials as will be described later in order to emit color light of different colors depending on the pixels. Further, since the phosphor layers 6B, 6R, and 6G are planarized by the planarization layer 7, depletion between the excitation light source 4 and the phosphor layers 6B, 6R, and 6G is prevented. And the adhesiveness between the light source side board | substrate 3 and the fluorescent substance board | substrate 2 is improved.
 このような構成からなる蛍光体基板2(表示装置1)において、蛍光体層6の、励起光入射側界面6aにおける蛍光体層6の屈折率をnaとする。蛍光体層6の、蛍光取出し側界面6bにおける蛍光体層6の屈折率をnbとする。蛍光体層6の励起光入射側界面6aと接する部分における平坦化層(第一の層)7の屈折率をn1とする。以下、蛍光体層6の励起光入射側界面6aと接する部分における平坦化層(第一の層)7の屈折率n1を、単に平坦化層(第一の層)7の屈折率n1と呼ぶことがある。蛍光体層6の蛍光取出し側界面6bと接する部分における基板5(第二の層)の屈折率をn2とする。以下、蛍光体層6の蛍光取出し側界面6bと接する部分における基板5(第二の層)の屈折率n2を、単に基板5(第二の層)の屈折率n2と呼ぶことがある。励起光入射側界面6aにおける蛍光体層6の屈折率naは、平坦化層(第一の層)7の屈折率をn1よりも小さくなるよう設計されている(na<n1)。また、蛍光取出し側界面6bにおける該蛍光体層6の屈折率nbは、基板5(第二の層)の屈折率よりも大きくなるよう設計されている(nb>n2)。ただし、このような条件[na<n1]、[nb>n2]は、本実施形態ではいずれか一方のみを満たしていてもよく、両方満たしていてもよい。また、このように「いずれか一方、あるいは両方」との意味で、本実施形態では「および/または」の表現を用いている。 In the phosphor substrate 2 (display device 1) having such a configuration, the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6 is denoted by na. The refractive index of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6 is nb. The refractive index of the flattening layer (first layer) 7 at the portion in contact with the excitation light incident side interface 6a of the phosphor layer 6 is n1. Hereinafter, the refractive index n1 of the flattening layer (first layer) 7 in the portion in contact with the excitation light incident side interface 6a of the phosphor layer 6 is simply referred to as the refractive index n1 of the flattening layer (first layer) 7. Sometimes. The refractive index of the substrate 5 (second layer) at the portion in contact with the fluorescence extraction side interface 6b of the phosphor layer 6 is n2. Hereinafter, the refractive index n2 of the substrate 5 (second layer) in the portion of the phosphor layer 6 in contact with the fluorescence extraction side interface 6b may be simply referred to as the refractive index n2 of the substrate 5 (second layer). The refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the planarizing layer (first layer) 7 is smaller than n1 (na <n1). Further, the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b is designed to be larger than the refractive index of the substrate 5 (second layer) (nb> n2). However, such conditions [na <n1] and [nb> n2] may satisfy only one or both of them in the present embodiment. Further, in this embodiment, the expression “and / or” is used to mean “one or both”.
 そして、蛍光体層6は、励起光入射側界面6aと蛍光取出し側界面6bとの間において、屈折率分布を有するよう構成されている。
 なお、励起光入射側界面6aにおける蛍光体層6の屈折率naが、平坦化層(第一の層)7の屈折率をn1よりも小さくなるよう設計されている場合(na<n1)、励起光入射側界面6aにおける蛍光体層6の屈折率naと平坦化層7(第一の層)の屈折率n1との間の差(屈折率差の絶対値、|n1-na|)が、蛍光取出し側界面6bにおける蛍光体層の屈折率nbと平坦化層7の屈折率n1との間の差(屈折率差|n1-nb|)より小さくなるように、蛍光体層6は励起光入射側界面6aと蛍光取出し側界面6bとの間において屈折率分布を有している(|n1-na|<|n1-nb|)。
The phosphor layer 6 is configured to have a refractive index distribution between the excitation light incident side interface 6a and the fluorescence extraction side interface 6b.
When the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the planarization layer (first layer) 7 is smaller than n1 (na <n1), The difference (absolute value of refractive index difference, | n1-na |) between the refractive index na of the phosphor layer 6 and the refractive index n1 of the planarizing layer 7 (first layer) at the excitation light incident side interface 6a is The phosphor layer 6 is excited so as to be smaller than the difference (refractive index difference | n1-nb |) between the refractive index nb of the phosphor layer and the refractive index n1 of the planarizing layer 7 at the fluorescence extraction side interface 6b. There is a refractive index distribution between the light incident side interface 6a and the fluorescence extraction side interface 6b (| n1-na | <| n1-nb |).
 また、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbが、基板5(第二の層)の屈折率よりも大きくなるよう設計されている場合(nb>n2)、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbと基板5(第二の層)の屈折率n2との間の差(屈折率差の絶対値、|n2-nb|)が、励起光入射側界面6aにおける蛍光体層6の屈折率naと基板5の屈折率n2との間の差(屈折率差|n2-na|)より小さくなるように、蛍光体層6は励起光入射側界面6aと蛍光取出し側界面6bとの間において屈折率分布を有している。(|n2-nb|<|n2-na|) Further, when the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b is designed to be larger than the refractive index of the substrate 5 (second layer) (nb> n2), the fluorescence extraction side interface 6b. The difference between the refractive index nb of the phosphor layer 6 and the refractive index n2 of the substrate 5 (second layer) (absolute value of refractive index difference, | n2-nb |) is the excitation light incident side interface 6a. The phosphor layer 6 is separated from the excitation light incident side interface 6a and the fluorescence extraction so that the difference between the refractive index na of the phosphor layer 6 and the refractive index n2 of the substrate 5 becomes smaller (refractive index difference | n2-na |). It has a refractive index distribution with the side interface 6b. (| N2-nb | <| n2-na |)
 さらに、励起光入射側界面6aにおける蛍光体層6の屈折率naが、平坦化層(第一の層)7の屈折率をn1よりも小さくなるよう設計され、かつ蛍光取出し側界面6bにおける蛍光体層6の屈折率nbが、基板5(第二の層)の屈折率よりも大きくなるよう設計されている場合(na<n1かつnb>n2)、励起光入射側界面6aにおける蛍光体層6の屈折率naと平坦化層7(第一の層)の屈折率n1との間の差(屈折率差の絶対値、|n1-na|)が、蛍光取出し側界面6bにおける蛍光体層の屈折率nbと平坦化層7の屈折率n1との間の差(屈折率差|n1-nb|)より小さくなり、かつ蛍光取出し側界面6bにおける蛍光体層6の屈折率nbと基板5(第二の層)の屈折率n2との間の差(屈折率差の絶対値、|n2-nb|)が、励起光入射側界面6aにおける蛍光体層6の屈折率naと基板5の屈折率n2との間の差(屈折率差|n2-na|)より小さくなるように、蛍光体層6は励起光入射側界面6aと蛍光取出し側界面6bとの間において屈折率分布を有している。(|n1-na|<|n1-nb|かつ|n2-nb|<|n2-na|)。 Further, the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is designed so that the refractive index of the flattening layer (first layer) 7 is smaller than n1, and the fluorescence at the fluorescence extraction side interface 6b. When the refractive index nb of the body layer 6 is designed to be larger than the refractive index of the substrate 5 (second layer) (na <n1 and nb> n2), the phosphor layer at the excitation light incident side interface 6a The difference between the refractive index na of 6 and the refractive index n1 of the planarizing layer 7 (first layer) (absolute value of refractive index difference, | n1-na |) is the phosphor layer at the fluorescence extraction side interface 6b. The refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b and the substrate 5 are smaller than the difference (refractive index difference | n1-nb |) between the refractive index nb of the phosphor layer and the refractive index n1 of the planarizing layer 7. The difference from the refractive index n2 of the (second layer) (absolute value of the refractive index difference, | n2− b |) is smaller than the difference (refractive index difference | n2-na |) between the refractive index na of the phosphor layer 6 and the refractive index n2 of the substrate 5 at the excitation light incident side interface 6a. The layer 6 has a refractive index distribution between the excitation light incident side interface 6a and the fluorescence extraction side interface 6b. (| N1-na | <| n1-nb | and | n2-nb | <| n2-na |).
 すなわち、前記した励起光入射側界面6aにおける蛍光体層6の屈折率naと平坦化層7(第一の層)の屈折率n1との間の差(|n1-na|)、および/または、蛍光取出し側界面6bにおける該蛍光体層6の屈折率nbと基板5(第二の層)の屈折率n2との間の差(|n2-nb|)が、小さくなるよう蛍光体層6が形成されている。屈折率分布がなく均一な単層で形成された従来の蛍光体層の場合における、蛍光体層と隣接する層の各界面での屈折率差に比べて、蛍光体層6は、蛍光体層6と隣接する層(第一の層及び第二の層)の各界面での屈折率差が小さくなるよう形成されている。すなわち、蛍光体層6は、その厚さ方向に屈折率分布を有するように本実施形態の蛍光体層6が形成されている。 That is, the difference (| n1-na |) between the refractive index na of the phosphor layer 6 and the refractive index n1 of the planarizing layer 7 (first layer) at the excitation light incident side interface 6a, and / or The difference between the refractive index nb of the phosphor layer 6 and the refractive index n2 of the substrate 5 (second layer) (| n2-nb |) at the fluorescence extraction side interface 6b is reduced so that the phosphor layer 6 Is formed. Compared to the difference in refractive index at each interface between the phosphor layer and the adjacent layer in the case of a conventional phosphor layer formed of a uniform single layer having no refractive index distribution, the phosphor layer 6 is a phosphor layer. 6 and the adjacent layers (the first layer and the second layer) are formed so that the difference in refractive index is small. That is, the phosphor layer 6 of the present embodiment is formed so that the phosphor layer 6 has a refractive index distribution in the thickness direction.
 ここで、蛍光体層6が屈折率分布を有していない従来の蛍光体基板(表示装置)の第1のモデルを図2に示す。図2に示す第1のモデルが図1Aに示した蛍光体基板(表示装置)と異なるところは、蛍光体層6が屈折率分布を有していない点である。したがって、励起光入射側界面6aから蛍光取出し側界面6bにかけて屈折率が均一に構成されている。
 また、このモデルでは、蛍光体層6の励起光入射側界面6aにおいて蛍光体層6の屈折率nより励起光入射側界面6aで蛍光体層6と接する平坦化層7の屈折率n1のほうが高いものとし、さらに、蛍光体層6の蛍光取出し側界面6bにおいて蛍光体層6の屈折率nより蛍光取出し側界面6bで蛍光体層6と接する基板5の屈折率n2のほうが低いものとする。(n1>n>n2)
Here, FIG. 2 shows a first model of a conventional phosphor substrate (display device) in which the phosphor layer 6 does not have a refractive index distribution. The first model shown in FIG. 2 is different from the phosphor substrate (display device) shown in FIG. 1A in that the phosphor layer 6 does not have a refractive index distribution. Therefore, the refractive index is uniformly formed from the excitation light incident side interface 6a to the fluorescence extraction side interface 6b.
In this model, the refractive index n1 of the flattening layer 7 in contact with the phosphor layer 6 at the excitation light incident side interface 6a is higher than the refractive index n of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6. Further, the refractive index n2 of the substrate 5 in contact with the phosphor layer 6 at the fluorescence extraction side interface 6b is lower than the refractive index n of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. . (N1>n> n2)
 このような第1のモデルにおいて、蛍光体層6に外部(励起光源4)から図2中実線で示すように励起光を入射すると、臨界角を超える角度で蛍光体層6に入射する励起光は、図2中破線で示すように蛍光体層6の励起光入射側界面6aにおいて全反射する。したがって、蛍光体層6を効率良く励起することができず、得られる発光効率が低下してしまう。
 また、図2中実線で示すように蛍光体層6から基板5を透過して外部へ蛍光を出射する際、臨界角を超える角度で蛍光体層6から基板5側に出射する蛍光は、図2中破線で示すように蛍光体層6の蛍光取出し側界面6bにおいて全反射する。したがって、光取出し効率が低くなり、得られる発光効率が低下してしまう。
In such a first model, when excitation light is incident on the phosphor layer 6 from the outside (excitation light source 4) as shown by a solid line in FIG. 2, the excitation light is incident on the phosphor layer 6 at an angle exceeding the critical angle. Is totally reflected at the excitation light incident side interface 6a of the phosphor layer 6 as indicated by a broken line in FIG. Therefore, the phosphor layer 6 cannot be excited efficiently, and the light emission efficiency obtained is lowered.
Further, as shown by the solid line in FIG. 2, when the fluorescent light is transmitted from the fluorescent material layer 6 through the substrate 5 and emitted to the outside, the fluorescent light emitted from the fluorescent material layer 6 to the substrate 5 side at an angle exceeding the critical angle is shown in FIG. 2 is totally reflected at the fluorescence extraction side interface 6b of the phosphor layer 6 as indicated by a broken line. Therefore, the light extraction efficiency is lowered, and the obtained light emission efficiency is lowered.
 また、図3Aに、蛍光体層6が屈折率分布を有しておらず、さらに蛍光体層6と平坦化層7との間に保護層8を介在させた第2のモデルを示す。この第2のモデルにおいて保護層8は、蛍光体層6の屈折率nと蛍光体層6の励起光入射側界面6aと接する平坦化層7の屈折率n1との差を小さくするものである。すなわち保護層8の屈折率は、平坦化層7の屈折率n1から蛍光体層6の屈折率nに向かって減少していく。
 このような保護層8を設けると、蛍光体層6の励起光入射側界面6aにおいて蛍光体層6の屈折率nと前記励起光入射側界面6aで蛍光体層6と接する保護層8との間の屈折率差が小さくなる。したがって全反射がほとんど起きないため、図3A中実線で示すように蛍光体層6に入射する励起光成分が多くなり、蛍光体層6は効率良く励起する。
FIG. 3A shows a second model in which the phosphor layer 6 does not have a refractive index distribution, and a protective layer 8 is interposed between the phosphor layer 6 and the planarization layer 7. In this second model, the protective layer 8 reduces the difference between the refractive index n of the phosphor layer 6 and the refractive index n1 of the flattening layer 7 in contact with the excitation light incident side interface 6a of the phosphor layer 6. . That is, the refractive index of the protective layer 8 decreases from the refractive index n1 of the planarizing layer 7 toward the refractive index n of the phosphor layer 6.
When such a protective layer 8 is provided, the refractive index n of the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6 and the protective layer 8 in contact with the phosphor layer 6 at the excitation light incident side interface 6a. The refractive index difference between them becomes small. Therefore, since total reflection hardly occurs, the excitation light component incident on the phosphor layer 6 increases as shown by the solid line in FIG. 3A, and the phosphor layer 6 is excited efficiently.
 ところが、蛍光体層6と基板5との間には保護層が設けられていない。図3A中実線で示すように蛍光体層6から基板5を透過して外部へ蛍光が出射する際、臨界角を超える角度で蛍光体層6から基板5側に出射する蛍光は、図3A中破線で示すように蛍光体層6の蛍光取出し側界面6bにおいて全反射する。したがって、光取出し効率が低くなり、得られる発光効率が低下してしまう。 However, no protective layer is provided between the phosphor layer 6 and the substrate 5. As shown by the solid line in FIG. 3A, when the fluorescence is transmitted from the phosphor layer 6 through the substrate 5 and emitted to the outside, the fluorescence emitted from the phosphor layer 6 to the substrate 5 side at an angle exceeding the critical angle is shown in FIG. 3A. As indicated by the broken line, the light is totally reflected at the fluorescence extraction side interface 6b of the phosphor layer 6. Therefore, the light extraction efficiency is lowered, and the obtained light emission efficiency is lowered.
 また、図3Bに、蛍光体層6が屈折率分布を有しておらず、さらに蛍光体層6と基板5との間に保護層9を介在させた第3のモデルを示す。この第3のモデルにおいて保護層9は、蛍光体層6の屈折率nと蛍光体層6の蛍光取出し側界面6b側の基板5の屈折率n2との差を小さくするものである。すなわち保護層9の屈折率は、蛍光体層7の屈折率nから基板5の屈折率n2に向かって減少する。
 このような保護層9を設けると、蛍光体層6の蛍光取出し側界面6bにおいて蛍光体層6の屈折率nと前記蛍光取出し側界面6bで該蛍光体層と接する保護層9との間の屈折率差が小さくなる。したがって全反射がほとんど起きないため、図3B中実線で示すように蛍光体層6から外部へ効率良く光を取出すことが可能となる。
FIG. 3B shows a third model in which the phosphor layer 6 does not have a refractive index distribution, and a protective layer 9 is interposed between the phosphor layer 6 and the substrate 5. In this third model, the protective layer 9 reduces the difference between the refractive index n of the phosphor layer 6 and the refractive index n2 of the substrate 5 on the fluorescence extraction side interface 6b side of the phosphor layer 6. That is, the refractive index of the protective layer 9 decreases from the refractive index n of the phosphor layer 7 toward the refractive index n2 of the substrate 5.
When such a protective layer 9 is provided, between the refractive index n of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6 and the protection layer 9 in contact with the phosphor layer at the fluorescence extraction side interface 6b. The refractive index difference is reduced. Accordingly, since total reflection hardly occurs, it is possible to efficiently extract light from the phosphor layer 6 to the outside as shown by a solid line in FIG. 3B.
 ところが、これら蛍光体層6と平坦化層7との間には保護層が設けられていない。図3B中実線で示すように蛍光体層6に外部(励起光源4)から励起光が入射すると、臨界角を超える角度で蛍光体層6から基板5側に出射する蛍光は、図3B中破線で示すように蛍光体層6の励起光入射側界面6aにおいて全反射する。したがって、蛍光体層6を効率良く励起することができず、得られる発光効率が低下してしまう。 However, no protective layer is provided between the phosphor layer 6 and the flattening layer 7. As shown by the solid line in FIG. 3B, when excitation light is incident on the phosphor layer 6 from the outside (excitation light source 4), the fluorescence emitted from the phosphor layer 6 toward the substrate 5 at an angle exceeding the critical angle is indicated by the broken line in FIG. 3B. As shown in FIG. 2, the phosphor layer 6 is totally reflected at the excitation light incident side interface 6a. Therefore, the phosphor layer 6 cannot be excited efficiently, and the light emission efficiency obtained is lowered.
 つまり、保護層8(9)を用いた第2、第3のモデルでは、蛍光体層6の励起光入射側界面6aあるいは蛍光取出し側界面6bのいずれか一方だけしか効果が得られない。したがって消費電力の低減効果が不十分になる。また、保護層を励起光入射側界面6aと蛍光取出し側界面6bの両方に適用すれば、消費電力の低減効果は高くなるものの、製造上、保護層の形成プロセスを追加することで歩留まりが低下し、さらには材料コスト・プロセスコストも増大する。 That is, in the second and third models using the protective layer 8 (9), only one of the excitation light incident side interface 6a and the fluorescence extraction side interface 6b of the phosphor layer 6 is effective. Therefore, the effect of reducing power consumption becomes insufficient. Moreover, if the protective layer is applied to both the excitation light incident side interface 6a and the fluorescence extraction side interface 6b, the effect of reducing power consumption is enhanced, but the yield is reduced by adding a protective layer forming process in manufacturing. Furthermore, material costs and process costs also increase.
 本実施形態では、蛍光体層6の励起光入射側界面6aと蛍光取出し側界面6bとにおける蛍光体層6の屈折率に着目することで、図1Aに示すように励起光を効率良く蛍光体層6に入射させ、また、蛍光体層6からの蛍光を効率良く外部に取出すようにしている。
 すなわち、蛍光体層6に屈折率分布を持たせることで、新たな層を追加することなく、蛍光体層6の励起光入射側界面6aにおける屈折率差により励起光が蛍光体層6に吸収されずに反射してロスする成分(全反射成分)を低減し、蛍光体層6で生成される蛍光量を増やすことができる。および/または、蛍光体層6の蛍光取出し側界面6bにおける屈折率差により蛍光が外部へ取り出されずに反射してロスする成分(全反射成分)を低減し、蛍光体層6からの発光を効率良く基板外部へ取り出すことができる。
 また、ディスプレイ及び表示装置の発光部位である蛍光体層6に屈折率分布を持たせることで、低消費電力化が達成できるため、保護層追加による歩留まり低下、コストアップを回避できる。
In the present embodiment, by paying attention to the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a and the fluorescence extraction side interface 6b of the phosphor layer 6, as shown in FIG. The light is incident on the layer 6 and the fluorescence from the phosphor layer 6 is efficiently extracted to the outside.
That is, by providing the phosphor layer 6 with a refractive index distribution, excitation light is absorbed by the phosphor layer 6 due to a difference in refractive index at the excitation light incident side interface 6a of the phosphor layer 6 without adding a new layer. The component (total reflection component) that is reflected and lost without being reduced can be reduced, and the amount of fluorescence generated in the phosphor layer 6 can be increased. And / or a component (total reflection component) that is reflected and lost without being extracted to the outside due to a difference in refractive index at the fluorescence extraction-side interface 6b of the phosphor layer 6 to reduce light emission from the phosphor layer 6 efficiently. It can be taken out of the substrate well.
Moreover, since the phosphor layer 6 which is a light emitting part of the display and the display device has a refractive index distribution, low power consumption can be achieved, so that yield reduction and cost increase due to the addition of the protective layer can be avoided.
 以下、本実施形態に係る蛍光体基板2の構成部材について具体的に説明する。
 「基板」
 本実施形態で用いられる蛍光体基板2用の基板5としては、蛍光体層6からの光を外部に取り出す必要があるため、蛍光体の発光波長領域で光を透過する必要がある。したがって、基板5の材料としては、例えばガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板等が挙げられる。ただし、本実施形態はこれらの基板に限定されないのは前述した通りである。ここで、ストレスが生じることなく湾曲させたり、折り曲げたりできるという観点では、プラスティック基板を用いることが好ましい。また、ガスバリア性を向上させる観点では、プラスティック基板に無機材料をコートした基板を用いることがさらに好ましい。これにより、プラスティック基板を有機ELの基板として用いた場合に生じ得る水分の透過による有機EL素子の劣化を解消することができる。
Hereinafter, the constituent members of the phosphor substrate 2 according to the present embodiment will be specifically described.
"substrate"
As the substrate 5 for the phosphor substrate 2 used in the present embodiment, it is necessary to take out light from the phosphor layer 6 to the outside, and thus it is necessary to transmit light in the emission wavelength region of the phosphor. Accordingly, examples of the material of the substrate 5 include an inorganic material substrate made of glass, quartz, and the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, and the like. However, as described above, the present embodiment is not limited to these substrates. Here, it is preferable to use a plastic substrate from the viewpoint that it can be bent or bent without causing stress. Further, from the viewpoint of improving gas barrier properties, it is more preferable to use a substrate in which a plastic substrate is coated with an inorganic material. Thereby, it is possible to eliminate the deterioration of the organic EL element due to the permeation of moisture which may occur when the plastic substrate is used as the organic EL substrate.
 「蛍光体層」
 図1Aに示すように蛍光体層6は、本実施形態では紫外発光有機EL素子(励起光源4)からの励起光(紫外光)を吸収し、赤色域の波長の光(赤色光)、緑色域の波長の光(緑色光)、青色域の波長の光(青色光)をそれぞれ発する赤色蛍光体層6R、緑色蛍光体層6G、青色蛍光体層6Bから構成されている。また、前述したように、励起光入射側界面6aにおける蛍光体層6の屈折率naが、蛍光体層6の励起光入射側界面6aで蛍光体層6と接する平坦化層(第一の層)7の屈折率n1よりも小さくなり、および/または、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbが、蛍光体層6の蛍光取出し側界面6bで蛍光体層6と接する基板5(第二の層)の屈折率よりも大きくなるように、屈折率分布を有して形成されている。
`` Phosphor layer ''
As shown in FIG. 1A, the phosphor layer 6 absorbs excitation light (ultraviolet light) from an ultraviolet light emitting organic EL element (excitation light source 4) in the present embodiment, and light having a wavelength in the red region (red light), green It is composed of a red phosphor layer 6R, a green phosphor layer 6G, and a blue phosphor layer 6B that respectively emit light having a wavelength in the region (green light) and light having a wavelength in the blue region (blue light). Further, as described above, the refractive index na of the phosphor layer 6 at the excitation light incident side interface 6a is a planarization layer (first layer) in contact with the phosphor layer 6 at the excitation light incident side interface 6a of the phosphor layer 6. ) 7 and / or the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6 b is in contact with the phosphor layer 6 at the fluorescence extraction side interface 6 b of the phosphor layer 6. It has a refractive index distribution so as to be larger than the refractive index of the (second layer).
 この屈折率分布は、蛍光体層6の励起光入射側界面6aから蛍光取出し側界面6bに向けて連続的に、すなわち段階的に変化しているのが好ましい。このような屈折率分布については、例えば異なる屈折率の蛍光体層を複数積層した積層構造とすることで、形成することができる。具体的には、後述する実施例で示すように、蛍光体層6中での無機蛍光体の分散濃度によって調整することができる。また、蛍光体層6中での無機蛍光体の粒径分布によっても調整することもできる。さらに、蛍光体材料を分散させる高分子材料(結着用樹脂)の種類を変えることで、屈折率分布を調整することも可能である。 It is preferable that this refractive index distribution changes continuously, that is, stepwise from the excitation light incident side interface 6a of the phosphor layer 6 toward the fluorescence extraction side interface 6b. Such a refractive index distribution can be formed by, for example, a stacked structure in which a plurality of phosphor layers having different refractive indexes are stacked. Specifically, it can be adjusted by the dispersion concentration of the inorganic phosphor in the phosphor layer 6 as shown in the examples described later. It can also be adjusted by the particle size distribution of the inorganic phosphor in the phosphor layer 6. Furthermore, the refractive index distribution can be adjusted by changing the type of polymer material (binding resin) in which the phosphor material is dispersed.
 また、蛍光体層6としては、必要に応じて、シアン光、イエロー光を発する蛍光体層を画素に加えてもよい。その場合、シアン光、イエロー光を発する画素のそれぞれの色純度を、色度図上での赤色光、緑色光、青色光を発する画素の色純度を示す点で結ばれる三角形より外側に設定することで、赤色、緑色、青色の3原色光を発する画素を使用する表示装置より色再現範囲を広げることが可能となる。 Further, as the phosphor layer 6, a phosphor layer emitting cyan light and yellow light may be added to the pixels as necessary. In that case, the color purity of each pixel emitting cyan light and yellow light is set outside the triangle connected by the points indicating the color purity of the pixels emitting red light, green light, and blue light on the chromaticity diagram. As a result, the color reproduction range can be expanded as compared with a display device using pixels that emit light of three primary colors of red, green, and blue.
 蛍光体層6A、6B、6Cは、以下に例示する蛍光体材料のみから構成されていてもよく、任意に添加剤等を含んでいてもよく、これらの蛍光体材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。本実施形態の蛍光体材料としては、公知の蛍光体材料を用いることができる。この種の蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示する。ただし、本実施形態はこれらの材料に限定されるものではない。 The phosphor layers 6A, 6B, and 6C may be composed of only the phosphor materials exemplified below, and may optionally contain additives and the like, and these phosphor materials are polymer materials (binding). Resin) or dispersed in an inorganic material. A known phosphor material can be used as the phosphor material of the present embodiment. This type of phosphor material is classified into an organic phosphor material and an inorganic phosphor material, and specific compounds thereof are exemplified below. However, this embodiment is not limited to these materials.
 有機系蛍光体材料としては、青色蛍光色素(紫外の励起光を青色光に変換する蛍光色素)として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4‘-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。また、緑色蛍光色素(紫外、青色の励起光を緑色光に変換する蛍光色素)として、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2′-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、3-(2′-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等が挙げられる。また、赤色蛍光色素(紫外、青色の励起光を赤色光に変換する蛍光色素)としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。 Examples of organic phosphor materials include blue fluorescent dyes (fluorescent dyes that convert ultraviolet excitation light into blue light), stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4,4 Examples include '-diphenylstilbenzene, coumarin dyes: 7-hydroxy-4-methylcoumarin. Further, as green fluorescent dyes (fluorescent dyes that convert ultraviolet and blue excitation light into green light), coumarin dyes: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9 , 9a, 1-gh) Coumarin (coumarin 153), 3- (2'-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2'-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin) 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like. Further, as a red fluorescent dye (fluorescent dye that converts ultraviolet and blue excitation light into red light), cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H- Pyran, pyridine dye: 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dye: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
 また、無機系蛍光体材料としては、青色蛍光体(紫外の励起光を青色光に変換する蛍光色素)として、Sr:Sn4+、SrAl1425:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba、0Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr,Ca,Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(POCl:Eu2+、BaMgSi:Eu2+、SrMgSi:Eu2+等が挙げられる。また、緑色蛍光体(紫外、青色の励起光を緑色光に変換する蛍光色素)として、(BaMg)Al1627:Eu2+,Mn2+、SrAl1425:Eu2+、(SrBa)Al12Si:Eu2+、(BaMg)SiO:Eu2+、YSiO:Ce3+,Tb3+、Sr-Sr:Eu2+、(BaCaMg)(POCl:Eu2+、SrSi-2SrCl:Eu2+、ZrSiO、MgAl1119:Ce3+,Tb3+、BaSiO:Eu2+、SrSiO:Eu2+、(BaSr)SiO:Eu2+等が挙げられる。
 また、赤色蛍光体(紫外、青色の励起光を赤色光に変換する蛍光色素)としては、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、NaEu2.5(MoO6.25等が挙げられる。
In addition, as an inorganic phosphor material, as a blue phosphor (fluorescent dye that converts ultraviolet excitation light into blue light), Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , 0Mg ) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: u 2+, Sr 3 MgSi 2 O 8: Eu 2+ and the like. Further, as a green phosphor (fluorescent dye that converts ultraviolet and blue excitation light into green light), (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 -Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) ) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
As red phosphors (fluorescent dyes that convert ultraviolet and blue excitation light into red light), Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4: Eu 3+, Mg 4 GeO 5.5 F: Mn 4+, Mg 4 GeO 6: Mn 4+, K 5 Eu 2.5 (WO 4) 6.25, Na 5 Eu 2.5 (WO 4) 6. 25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25, and the like.
 また、前記無機系蛍光体は、必要に応じて表面改質処理を施してもよい。表面改質方法としては、シランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、さらにこれらを併用するもの等が挙げられる。励起光による劣化、発光による劣化等の安定性を考慮すると、無機材料を使用する方が好ましい。さらに、無機材料を用いる場合には、平均粒径(d50)が、0.5μm~50μmであることが好ましい。平均粒径が1μm以下であると、蛍光体の発光効率が急激に低下する。また、50μm以上であると、平坦な膜を形成することが非常に困難となり、蛍光体層と有機EL素子との間に空乏が形成されてしまう。例えば、屈折率が約2.0の無機蛍光体層と屈折率が約1.7の有機EL素子(励起光源4)との間に、屈折率が1.0の空乏(空気層)ができる。すると、有機EL素子(励起光源4)からの光が効率良く蛍光体層6R,6G,6Bに届かず、蛍光体層6R,6G,6Bの発光効率が低下する。 The inorganic phosphor may be subjected to surface modification treatment as necessary. Examples of the surface modification method include a chemical treatment such as a silane coupling agent, a physical treatment by adding submicron order fine particles, and a combination of these. In consideration of stability such as deterioration due to excitation light and deterioration due to light emission, it is preferable to use an inorganic material. Further, when an inorganic material is used, the average particle diameter (d 50 ) is preferably 0.5 μm to 50 μm. When the average particle size is 1 μm or less, the luminous efficiency of the phosphor is rapidly reduced. If it is 50 μm or more, it becomes very difficult to form a flat film, and depletion occurs between the phosphor layer and the organic EL element. For example, a depletion (air layer) with a refractive index of 1.0 is formed between an inorganic phosphor layer with a refractive index of about 2.0 and an organic EL element (excitation light source 4) with a refractive index of about 1.7. . Then, the light from the organic EL element (excitation light source 4) does not efficiently reach the phosphor layers 6R, 6G, 6B, and the luminous efficiency of the phosphor layers 6R, 6G, 6B decreases.
 また、蛍光体層6R,6G,6Bは、前記の蛍光体材料と樹脂材料とを溶剤に溶解、分散させた蛍光体層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、前記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等により形成することができる。 The phosphor layers 6R, 6G, and 6B are formed by using a phosphor layer forming coating solution obtained by dissolving and dispersing the phosphor material and the resin material in a solvent, using a spin coating method, a dipping method, or a doctor blade method. A known wet process such as a coating method such as a discharge coating method, a spray coating method, an ink jet method, a relief printing method, an intaglio printing method, a screen printing method, a micro gravure coating method, or the like. It can be formed by a known dry process such as a method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor phase vapor deposition (OVPD) method, or a laser transfer method.
 前記樹脂材料として感光性樹脂を用いることで、フォトリソグラフィー法により蛍光体層6R,6G,6Bをパターンニングすることが可能になる。感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の一種類または複数種類の混合物を用いることができる。また、前記のインクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法等のウエットプロセス、シャドーマスクを用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等により、蛍光体材料をダイレクトにパターニングすることも可能である。 By using a photosensitive resin as the resin material, the phosphor layers 6R, 6G, and 6B can be patterned by a photolithography method. As the photosensitive resin, one or more types of photosensitive resin (photo-curable resist material) having a reactive vinyl group such as acrylic resin, methacrylic resin, polyvinyl cinnamate resin, and hard rubber resin. Various types of mixtures can be used. Also, wet processes such as the ink jet method, relief printing method, intaglio printing method, screen printing method, resistance heating vapor deposition method using shadow mask, electron beam (EB) vapor deposition method, molecular beam epitaxy (MBE) method, sputtering It is also possible to directly pattern the phosphor material by a known dry process such as an organic vapor deposition (OVPD) method or a laser transfer method.
 前記の蛍光体層6R、6G、6Bの膜厚は、100nm~100μm程度であるのが好ましく、1μm~100μm程度であるのがさらに好ましい。膜厚が100nm未満であると、特に後述する第1の変形例のように有機ELが青色発光をなす場合に、有機ELからの光を十分吸収できないため、発光効率が低下したり、所望の色光に青色の透過光が混じることにより色純度が低下したりする。
 したがって、有機EL素子(励起光源4)からの発光の吸収を高め、色純度の悪影響を及ぼさない程度に青色の透過光を低減するためには、膜厚を1μm以上とすることが好ましい。また、膜厚が100μmを超えると、有機EL素子(励起光源4)からの青色発光を既に十分吸収することから効率の上昇には繋がらず、材料を消費するだけに留まり、材料コストのアップに繋がる。
The film thickness of the phosphor layers 6R, 6G, and 6B is preferably about 100 nm to 100 μm, and more preferably about 1 μm to 100 μm. When the film thickness is less than 100 nm, particularly when the organic EL emits blue light as in the first modification described later, the light emission from the organic EL cannot be sufficiently absorbed. Color purity is lowered by mixing blue transmitted light with color light.
Therefore, in order to increase absorption of light emitted from the organic EL element (excitation light source 4) and reduce blue transmitted light to such an extent that the color purity is not adversely affected, the film thickness is preferably set to 1 μm or more. Further, if the film thickness exceeds 100 μm, the blue light emission from the organic EL element (excitation light source 4) is already sufficiently absorbed, so that the efficiency is not increased, and only the material is consumed, and the material cost is increased. Connected.
 「平坦化層」
 図1Aに示すように平坦化層7は、光源側基板3の励起光源4を覆った状態で光源側基板3に接合されていることにより、光源側基板3と蛍光体基板2とを互いに貼り合わせ、一体化させている。このような平坦化層7は、前述したように本実施形態において第一の層として機能する。平坦化層7は、蛍光体層6の励起光入射側界面6aと接する界面での屈折率n1が、蛍光体層6の、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbよりも大きくなるように構成されている。
 平坦化層7として具体的には、屈折率(n1)が1.7のアクリル樹脂などが用いられるが、これ以外の透明樹脂も、蛍光体層6の屈折率nbよりも大きいものであれば使用可能である。また、このような平坦化層7の形成法としては、平坦化層として機能するうえで、スピンコート法が好適に採用される。
"Planarization layer"
As shown in FIG. 1A, the flattening layer 7 is bonded to the light source side substrate 3 so as to cover the excitation light source 4 of the light source side substrate 3, so that the light source side substrate 3 and the phosphor substrate 2 are bonded to each other. Combined and integrated. Such a planarizing layer 7 functions as the first layer in the present embodiment as described above. The planarizing layer 7 has a refractive index n1 at the interface contacting the excitation light incident side interface 6a of the phosphor layer 6 larger than the refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. It is comprised so that it may become.
Specifically, an acrylic resin having a refractive index (n1) of 1.7 or the like is used as the planarizing layer 7, but other transparent resins can be used as long as the refractive index nb of the phosphor layer 6 is larger. It can be used. In addition, as a method for forming such a flattening layer 7, a spin coat method is preferably employed in order to function as a flattening layer.
(有機EL素子基板)
 次に、本実施形態の表示装置1において、光源として機能する光源側基板3について説明する。
 本実施形態の光源側基板3は、図1Bに示すように、基板本体22の一面に陽極(第1電極)13、正孔注入層14、正孔輸送層15、発光層16、正孔ブロッキング層17、電子輸送層18、電子注入層19、陰極(第2電極)20が順次積層された構成の複数の有機EL素子10を有している。そして、有機EL素子10が、図1Aに示した励起光源4を構成している。なお、陽極13の端面を覆うようにエッジカバー21が形成されている。
(Organic EL device substrate)
Next, the light source side substrate 3 that functions as a light source in the display device 1 of the present embodiment will be described.
As shown in FIG. 1B, the light source side substrate 3 of the present embodiment has an anode (first electrode) 13, a hole injection layer 14, a hole transport layer 15, a light emitting layer 16, and hole blocking on one surface of the substrate body 22. A plurality of organic EL elements 10 having a configuration in which a layer 17, an electron transport layer 18, an electron injection layer 19, and a cathode (second electrode) 20 are sequentially stacked are provided. And the organic EL element 10 comprises the excitation light source 4 shown to FIG. 1A. An edge cover 21 is formed so as to cover the end face of the anode 13.
 本実施形態の光源側基板3における有機EL素子10(励起光源4)は紫外光を発光するものであり、紫外光の発光ピークは360nm~410nmとすることが望ましい。ただし、有機EL素子10としては公知のものを用いることができ、陽極13と陰極20との間に少なくとも有機発光材料からなる有機EL層を含んでいればよく、具体的な構成は前記のものに限ることはない。なお、以下の説明では、正孔注入層14から電子注入層19までの層を有機EL層と称することもある。 The organic EL element 10 (excitation light source 4) in the light source side substrate 3 of the present embodiment emits ultraviolet light, and the emission peak of ultraviolet light is preferably 360 nm to 410 nm. However, a known element can be used as the organic EL element 10, and it is sufficient that at least an organic EL layer made of an organic light emitting material is included between the anode 13 and the cathode 20, and the specific configuration is as described above. It is not limited to. In the following description, layers from the hole injection layer 14 to the electron injection layer 19 may be referred to as an organic EL layer.
 また、複数の有機EL素子10は、赤色画素PR、緑色画素PG、青色画素PBの各々に対応してマトリクス状に設けられ、個別にオン/オフが制御されるようになっている。
 複数の有機EL素子10の駆動方法は、アクティブマトリクス駆動でもよいし、パッシブマトリクス駆動でもよい。アクティブマトリクス駆動の有機EL素子基板を用いた構成例は、後の第2の実施形態で詳述する。
The plurality of organic EL elements 10 are provided in a matrix corresponding to each of the red pixel PR, the green pixel PG, and the blue pixel PB, and are individually controlled to be turned on / off.
The driving method of the plurality of organic EL elements 10 may be active matrix driving or passive matrix driving. A configuration example using an active matrix driving organic EL element substrate will be described in detail in a second embodiment later.
 以下、有機EL素子基板の各構成要素について詳細に説明する。
 基板本体22としては、蛍光体基板2の基板5と略同じ材料を用いることができる。すなわち、基板本体22の材料として、例えばガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、または、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、他の基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。
Hereinafter, each component of the organic EL element substrate will be described in detail.
As the substrate body 22, substantially the same material as the substrate 5 of the phosphor substrate 2 can be used. That is, as a material of the substrate body 22, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, an insulating substrate such as a ceramic substrate made of alumina, or the like, or aluminum (Al ), A metal substrate made of iron (Fe) or the like, or a substrate coated with an insulator made of silicon oxide (SiO 2 ) or an organic insulating material on another substrate, or a metal substrate made of Al or the like. Although the board | substrate etc. which performed the insulation process by methods, such as an anodic oxidation, are mentioned, This embodiment is not limited to these board | substrates.
 ただし、ストレスを生じること無く、湾曲させたり、折り曲げたりできるという観点では、プラスティック基板、もしくは金属基板を用いることが好ましい。さらに、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板がより好ましい。これにより、有機ELの基板としてプラスティック基板を用いた場合に生じ得る水分の透過による有機ELの劣化を解消することができる。また、有機ELの基板として金属基板を用いた場合に生じ得る金属基板の突起によるリーク(ショート)を解消することができる。なお、一般的に有機EL層の膜厚は100nm~200nm程度と非常に薄いため、金属基板に突起がある場合、画素部でのリーク電流もしくは短絡が生じることが知られている。
 さらに、有機EL層からの光を基板と逆側から取り出す場合には、基板本体22としての制約はないが、有機EL層からの光を基板側から取り出す場合には、透明または半透明の基板本体22を用いる必要がある。
However, it is preferable to use a plastic substrate or a metal substrate from the viewpoint that it can be bent or bent without causing stress. Furthermore, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. Accordingly, it is possible to eliminate the deterioration of the organic EL due to the permeation of moisture that may occur when a plastic substrate is used as the organic EL substrate. Further, it is possible to eliminate leakage (short circuit) due to protrusions of the metal substrate that may occur when a metal substrate is used as the organic EL substrate. In general, since the thickness of the organic EL layer is very thin, about 100 nm to 200 nm, it is known that when the metal substrate has a protrusion, a leak current or a short circuit occurs in the pixel portion.
Further, when the light from the organic EL layer is extracted from the side opposite to the substrate, there is no restriction as the substrate body 22, but when the light from the organic EL layer is extracted from the substrate side, a transparent or translucent substrate is used. It is necessary to use the main body 22.
 次に、陽極13および陰極20を形成する電極材料としては、公知の電極材料を用いることができる。陽極13の場合には、発光層16への正孔の注入をより効率良く行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、および、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられる。また、陰極20の場合には、発光層16への電子の注入をより効率良く行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、または、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 Next, as an electrode material for forming the anode 13 and the cathode 20, a known electrode material can be used. In the case of the anode 13, from the viewpoint of efficiently injecting holes into the light emitting layer 16, a metal such as gold (Au), platinum (Pt), nickel (Ni) having a work function of 4.5 eV or more, In addition, an oxide (ITO) composed of indium (In) and tin (Sn), an oxide (SnO 2 ) of tin (Sn), an oxide (IZO) composed of indium (In) and zinc (Zn), and the like are transparent electrodes. As a material. Further, in the case of the cathode 20, from the viewpoint of more efficiently injecting electrons into the light emitting layer 16, lithium (Li), calcium (Ca), cerium (Ce), barium (with a work function of 4.5 eV or less) Examples thereof include metals such as Ba) and aluminum (Al), and alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
 陽極13および陰極20は、前記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフィー法、レーザー剥離法により、形成した電極をパターニングすることもでき、シャドーマスクと組み合わせることで直接パターニングした電極を形成することもできる。陽極13および陰極20の膜厚は50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。 The anode 13 and the cathode 20 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. It is not limited to. Further, if necessary, the formed electrode can be patterned by a photolithography method or a laser peeling method, and a directly patterned electrode can also be formed by combining with a shadow mask. The film thickness of the anode 13 and the cathode 20 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
 色純度の向上、発光効率の向上、正面輝度の向上等の目的でマイクロキャビティ効果を用いる場合、発光層16からの光を陽極13側(陰極20側)から取り出す場合には、陽極13(陰極20)として半透明電極を用いることが好ましい。ここで用いる材料として、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いることができる。半透明電極材料としては、反射率および透過率の観点から銀が好ましい。半透明電極の膜厚は5nm~30nmが好ましい。膜厚が5nm未満の場合には、光が十分に反射せず、干渉の効果を十分得ることができない。また、膜厚が30nmを超える場合には、光の透過率が急激に低下することから、輝度や効率が低下するおそれがある。また、光を取り出す側と反対側の電極には、光反射率が高い電極を用いることが好ましい。
 この際に用いる電極材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属電極、透明電極と反射性金属電極(反射電極)を組み合わせた電極等が挙げられる。
When the microcavity effect is used for the purpose of improving color purity, light emission efficiency, front luminance, etc., when light from the light emitting layer 16 is extracted from the anode 13 side (cathode 20 side), the anode 13 (cathode) It is preferable to use a semitransparent electrode as 20). As a material used here, a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used. As the translucent electrode material, silver is preferable from the viewpoints of reflectance and transmittance. The film thickness of the translucent electrode is preferably 5 nm to 30 nm. When the film thickness is less than 5 nm, the light is not sufficiently reflected, and a sufficient interference effect cannot be obtained. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered. Moreover, it is preferable to use an electrode with a high light reflectivity for the electrode opposite to the light extraction side.
Examples of electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, and transparent and reflective metal electrodes (reflective electrodes). A combined electrode or the like can be given.
 本実施形態で用いられる有機EL層は、有機発光層の単層構造でもよいし、有機発光層と電荷輸送層、電荷注入層の多層構造でもよく、具体的には下記の構成が挙げられるが、本実施形態はこれらにより限定されるものではない。
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔ブロッキング層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔ブロッキング層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子ブロッキング層/有機発光層/正孔ブロッキング層/電子輸送層/電子注入層
 なお、本実施形態では、図1Bに示すように、前記の(8)を採用している。
The organic EL layer used in the present embodiment may have a single layer structure of an organic light emitting layer, or a multilayer structure of an organic light emitting layer, a charge transport layer, and a charge injection layer. The present embodiment is not limited to these.
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / hole blocking layer / electron transport layer (8) hole injection layer / hole transport layer / organic light emitting layer / hole blocking layer / electron transport layer / electron injection layer (9) hole injection layer / hole Transport Layer / Electron Blocking Layer / Organic Light-Emitting Layer / Hole Blocking Layer / Electron Transport Layer / Electron Injection Layer In this embodiment, as shown in FIG. 1B, (8) above is adopted.
 前記の構成例において、発光層、正孔注入層、正孔輸送層、正孔ブロッキング層、電子ブロッキング層、電子輸送層および電子注入層の各層は、単層構造でもよいし、多層構造でもよい。有機発光層は、以下に例示する有機発光材料のみから構成されていてもよいし、発光性のドーパントとホスト材料の組み合わせから構成されていてもよい。また、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいても良く、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であっても良い。発光効率、寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。 In the above configuration example, each of the light emitting layer, the hole injection layer, the hole transport layer, the hole blocking layer, the electron blocking layer, the electron transport layer, and the electron injection layer may have a single layer structure or a multilayer structure. . The organic light emitting layer may be comprised only from the organic light emitting material illustrated below, and may be comprised from the combination of a luminescent dopant and host material. Further, it may optionally contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.), etc., and these materials are dispersed in a polymer material (binding resin) or an inorganic material. It may be. From the viewpoint of luminous efficiency and lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
 有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。また、前記の発光材料は、蛍光材料、燐光材料等に分類されるものでも良く、その場合、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。 As the organic light emitting material, a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. In that case, it is preferable to use a phosphorescent material with high light emission efficiency from the viewpoint of reducing power consumption.
 発光層に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、紫外発光材料としては、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6‘-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr)等の燐光発光有機金属錯体等が挙げられる。 As the light-emitting dopant optionally contained in the light-emitting layer, a known dopant material for organic EL can be used. Examples of such dopant materials include, for example, p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl, 3,5,3,5 tetra-t-butyl-p. -Fluorescent materials such as quinckphenyl. Fluorescent light-emitting materials such as styryl derivatives, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6′-difluorophenyl) And phosphorescent organometallic complexes such as polydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ).
 また、ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、前述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 Further, as a host material when using a dopant, a known host material for organic EL can be used. Examples of such host materials include the low-molecular light-emitting materials, polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB).
 電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率良く行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類される。電荷注入輸送層は、以下に例示する電荷注入輸送材料のみから構成されていても良く、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。 The charge injection and transport layer is used to efficiently inject charges (holes and electrons) from the electrode and transport (injection) to the light-emitting layer with the charge injection layer (hole injection layer and electron injection layer) and the charge. It is classified as a transport layer (hole transport layer, electron transport layer). The charge injecting and transporting layer may be composed of only the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (conjugation). Wear resin) or a structure dispersed in an inorganic material.
 電荷注入輸送材料としては、有機EL用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料および電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
 正孔注入および正孔輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。
As the charge injecting and transporting material, known charge transporting materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
Examples of hole injection and hole transport materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc. Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate ( PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (P VCz), poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
 また、陽極からの正孔の注入および輸送をより効率良く行う目的で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料よりも最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましい。また、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料よりも正孔の移動度が高い材料を用いることが好ましい。 In addition, for the purpose of more efficiently injecting and transporting holes from the anode, the material used as the hole injection layer is the highest occupied molecular orbit (HOMO) than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level. Further, as the hole transport layer, it is preferable to use a material having a higher hole mobility than the hole injection transport material used for the hole injection layer.
 また、正孔の注入および輸送性をより向上させるため、前記の正孔注入および輸送材料にアクセプターをドープすることが好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
 アクセプター材料としては、Au、Pt、W,Ir、POCl3 、AsF6 、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4 (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。このうち、TCNQ、TCNQF4 、TCNE、HCNB、DDQ等のシアノ基を有する化合物がキャリア濃度をより効果的に増加させられるため、より好ましい。
In order to further improve the hole injection and transport properties, the hole injection and transport material is preferably doped with an acceptor. As the acceptor, a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. And compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because the carrier concentration can be increased more effectively.
 電子注入および電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。 Examples of electron injection and electron transport materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives. And low molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS). In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
 陰極からの電子の注入および輸送をより効率良く行う目的で、電子注入層として用いる材料としては、電子輸送層に使用する電子注入輸送材料よりも最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましい。また、電子輸送層として用いる材料としては、電子注入層に使用する電子注入輸送材料よりも電子の移動度が高い材料を用いることが好ましい。
 また、電子の注入および輸送性をより向上させるため、前記の電子注入および輸送材料にドナーをドープすることが好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
For the purpose of more efficiently injecting and transporting electrons from the cathode, the material used for the electron injection layer has a higher energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection transport material used for the electron transport layer. It is preferable to use a material. In addition, as a material used for the electron transport layer, it is preferable to use a material having higher electron mobility than the electron injection transport material used for the electron injection layer.
In order to further improve the electron injection and transport properties, the electron injection and transport material is preferably doped with a donor. As the donor, a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有しても良い)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。
 これらのうち、特に、芳香族3級アミンを骨格に持つ化合物、縮合多環化合物、アルカリ金属がキャリア濃度をより効果的に増加させられるため、より好ましい。
Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), triphenyldiamines ( N, N'- Compounds having an aromatic tertiary amine skeleton such as di- (4-methyl-phenyl) -N, N′-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene, anthracene, tetracene, pentacene, etc. There are organic materials such as condensed polycyclic compounds (wherein the condensed polycyclic compounds may have a substituent), TTF (tetrathiafulvalene) s, dibenzofuran, phenothiazine, and carbazole.
Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are particularly preferable because the carrier concentration can be increased more effectively.
 発光層、正孔輸送層、電子輸送層、正孔注入層、および電子注入層等を含む有機EL層は、前記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス、前記の材料を用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機EL層を形成する場合には、有機EL層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 An organic EL layer including a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, an electron injection layer, and the like is prepared using a coating liquid for forming an organic EL layer in which the above materials are dissolved and dispersed in a solvent. , Known by coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, microgravure coating method, etc. A known dry process such as a wet process, a resistance heating vapor deposition method using the above materials, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or the like It can be formed by a laser transfer method or the like. In addition, when forming an organic EL layer by a wet process, the coating liquid for organic EL layer formation may contain the additive for adjusting the physical properties of coating liquid, such as a leveling agent and a viscosity modifier.
 前記の有機EL層の各層の膜厚は、1nm~1000nm程度が好ましいが、10nm~200nmがより好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性など)が得られない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると、有機EL層の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。 The film thickness of each layer of the organic EL layer is preferably about 1 nm to 1000 nm, more preferably 10 nm to 200 nm. If the film thickness is less than 10 nm, the physical properties (charge injection characteristics, transport characteristics, confinement characteristics, etc.) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, if the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer, leading to an increase in power consumption.
 本実施形態の場合、陽極13の端部において陽極13と陰極20との間でリーク電流が生じることを防止する目的で、エッジカバー21が形成されている。エッジカバー21は、絶縁材料を用いたEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ法およびウエット法のフォトリソグラフィー法によりパターニングすることができるが、本実施形態はこれらの形成方法に限定されるものではない。エッジカバー21を構成する材料は、公知の絶縁材料を使用することができ、本実施形態では特に限定されないが、光を透過する必要があり、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。エッジカバー21の膜厚としては、100nm~2000nmが好ましい。100nm以下であると、絶縁性が十分ではなく、陽極13と陰極20との間でリークが生じ、消費電力の上昇、非発光の原因となる。また、2000nm以上であると、成膜プロセスに時間が掛かり、生産性の低下、エッジカバー21での電極の断線の原因となる。 In the case of this embodiment, an edge cover 21 is formed for the purpose of preventing leakage current between the anode 13 and the cathode 20 at the end of the anode 13. The edge cover 21 can be formed by a known method such as an EB vapor deposition method using an insulating material, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like, by a known dry method or a wet photolithography method. Patterning can be performed, but the present embodiment is not limited to these forming methods. The material constituting the edge cover 21 can be a known insulating material, and is not particularly limited in the present embodiment, but it is necessary to transmit light. For example, SiO, SiON, SiN, SiOC, SiC, HfSiON , ZrO, HfO, LaO and the like. The film thickness of the edge cover 21 is preferably 100 nm to 2000 nm. When the thickness is 100 nm or less, the insulating property is not sufficient, and leakage occurs between the anode 13 and the cathode 20, causing an increase in power consumption and non-light emission. On the other hand, when the thickness is 2000 nm or more, the film forming process takes time, which causes a decrease in productivity and disconnection of the electrode at the edge cover 21.
 有機EL素子10は、陽極13、陰極20として用いられる反射電極と半透明電極との干渉効果による、もしくは、誘電体多層膜によるマイクロキャビティ構造(光微小共振器構造)を有することが好ましい。これにより、有機EL素子10からの光を正面方向に集光する(指向性を持たせる)ことが可能となる。その結果、周囲に逃げる光を低減することができ、正面での発光効率を高めることができる。これにより、有機EL素子10の発光層16中で生じる発光エネルギーをより効率良く蛍光体層6R、6G、6Bへ伝搬することが可能となり、正面輝度を高めることが可能となる。また、干渉効果により、発光スペクトルの調整も可能となり、所望の発光ピーク波長、半値幅に調整することで発光スペクトルの調整が可能となる。これにより、各色光を発光する蛍光体をより効果的に励起し得るスペクトルに制御することができる。 The organic EL element 10 preferably has a microcavity structure (optical microresonator structure) due to an interference effect between a reflective electrode and a semitransparent electrode used as the anode 13 and the cathode 20 or a dielectric multilayer film. Thereby, it becomes possible to condense the light from the organic EL element 10 in the front direction (provide directivity). As a result, light escaping to the surroundings can be reduced, and the light emission efficiency at the front can be increased. As a result, it is possible to more efficiently propagate the light emission energy generated in the light emitting layer 16 of the organic EL element 10 to the phosphor layers 6R, 6G, 6B, and to increase the front luminance. In addition, the emission spectrum can be adjusted due to the interference effect, and the emission spectrum can be adjusted by adjusting to a desired emission peak wavelength and half width. Thereby, the spectrum which can excite the fluorescent substance which light-emits each color light more effectively can be controlled.
 本実施形態の表示装置1によれば、図1Aに示したように蛍光体層6の励起光入射側界面6aと蛍光取出し側界面6bとにおける蛍光体層6の屈折率に着目することで、励起光を効率良く蛍光体層6に入射させ、また、蛍光体層6からの蛍光を効率良く外部に取出すようにしている。
 すなわち、蛍光体層6に屈折率分布を持たせることで、新たな層を追加することなく、蛍光体層6の励起光入射側界面6aにおける屈折率差により励起光が蛍光体層6に吸収されずに反射してロスする全反射成分を低減し、蛍光体層6で生成される蛍光量を増やすことができる。および/または、蛍光体層6の蛍光取出し側界面6bにおける屈折率差により蛍光が外部へ取り出されずに反射してロスする全反射成分を低減し、蛍光体層6からの発光を効率良く基板外部へ取り出すことができる。
 また、ディスプレイ及び表示装置の発光部位である蛍光体層6に屈折率分布を持たせるだけで、低消費電力化が達成できるため、保護層追加による歩留まり低下、コストアップを回避できる。
According to the display device 1 of the present embodiment, by paying attention to the refractive index of the phosphor layer 6 at the excitation light incident side interface 6a and the fluorescence extraction side interface 6b of the phosphor layer 6 as shown in FIG. Excitation light is efficiently incident on the phosphor layer 6 and fluorescence from the phosphor layer 6 is efficiently extracted to the outside.
That is, by providing the phosphor layer 6 with a refractive index distribution, excitation light is absorbed by the phosphor layer 6 due to a difference in refractive index at the excitation light incident side interface 6a of the phosphor layer 6 without adding a new layer. The total reflection component which is reflected and lost without being reduced can be reduced, and the amount of fluorescence generated in the phosphor layer 6 can be increased. And / or the total reflection component that is reflected and lost without being extracted to the outside due to the difference in refractive index at the fluorescence extraction side interface 6b of the phosphor layer 6 is reduced, and the light emission from the phosphor layer 6 is efficiently performed outside the substrate. Can be taken out.
In addition, low power consumption can be achieved simply by providing the phosphor layer 6 which is a light emitting part of the display and the display device with a refractive index distribution, so that yield reduction and cost increase due to the addition of the protective layer can be avoided.
 なお、図1Aには図示していないが、蛍光体層6R、6G、6Bの励起光を入射させる面6aに、励起光を透過し、蛍光体の発光を反射する特性を有する波長選択透過反射層を本実施形態の第一の層として形成してもよい。この波長選択透過反射層は、励起光のピーク波長にあたる光を少なくとも透過し、蛍光体層6の発光ピーク波長にあたる光を少なくとも反射させる特性を有することが必要である。さらに、波長選択透過反射層は、蛍光体層6の励起光入射側界面6aと接する界面での屈折率n1が、蛍光体層6の、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbよりも大きくなる必要がある。このような波長選択透過反射層の材料としては、例えば誘電体多層膜、金属薄膜ガラス等からなる無機材料膜、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなる樹脂膜等が挙げられるが、本実施形態はこれらの層に限定されるものではない。波長選択透過反射層の効果については後の[実施例]の項で詳述する。
 この波長選択透過反射層により、光源側基板3からの励起光を蛍光体層6R、6G、6Bに効率良く入射させることができるとともに、蛍光体層6R、6G、6Bから全方向に等方的に発光する光の進行方向を効率良く正面方向に変えることができる。
Although not shown in FIG. 1A, wavelength selective transmission reflection having characteristics of transmitting the excitation light and reflecting the emission of the phosphor on the surface 6a on which the excitation light of the phosphor layers 6R, 6G, and 6B is incident. A layer may be formed as the first layer of this embodiment. This wavelength selective transmission / reflection layer needs to have a property of transmitting at least light corresponding to the peak wavelength of the excitation light and reflecting at least light corresponding to the emission peak wavelength of the phosphor layer 6. Further, the wavelength selective transmission / reflection layer has a refractive index n1 at the interface contacting the excitation light incident side interface 6a of the phosphor layer 6, and a refractive index nb of the phosphor layer 6 at the fluorescence extraction side interface 6b of the phosphor layer 6. Need to be bigger than. Examples of the material of the wavelength selective transmission / reflection layer include a dielectric multilayer film, an inorganic material film made of metal thin film glass, and the like, a resin film made of polyethylene terephthalate, polycarbazole, polyimide, and the like. Is not limited to these layers. The effect of the wavelength selective transmission / reflection layer will be described in detail in the following [Example] section.
With this wavelength selective transmission / reflection layer, excitation light from the light source side substrate 3 can be efficiently incident on the phosphor layers 6R, 6G, 6B, and isotropic in all directions from the phosphor layers 6R, 6G, 6B. It is possible to efficiently change the traveling direction of the light emitted to the front direction.
[第1の実施形態の第1の変形例]
 以下、前記実施形態の第1の変形例について、図4を用いて説明する。
 本変形例の表示装置の基本構成は第1の実施形態と同様であり、青色光を発光する有機EL素子からなる励起光源4を備えた光源側基板を用いた点が、第1の実施形態と異なっている。
 図4は、本変形例の表示装置を示す断面図である。図4において、第1の実施形態で用いた図1Aと共通の構成要素には同一の符号を付し、説明は省略する。
[First Modification of First Embodiment]
Hereinafter, a first modification of the embodiment will be described with reference to FIG.
The basic configuration of the display device of the present modification is the same as that of the first embodiment, and the point that the light source side substrate including the excitation light source 4 made of an organic EL element that emits blue light is used is the first embodiment. Is different.
FIG. 4 is a cross-sectional view showing a display device of this modification. In FIG. 4, the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本変形例の表示装置25は、図4に示すように、蛍光体基板26と、蛍光体基板26上に平坦化層7を介して貼り合わされた光源側基板(有機EL素子基板)27と、から構成されている。本変形例の表示装置25においては、光源側基板27の励起光源4を構成する有機EL素子から青色光が射出される。青色光の主発光ピークは、例えば410nm~470nmであることが望ましい。 As shown in FIG. 4, the display device 25 of the present modification includes a phosphor substrate 26, a light source side substrate (organic EL element substrate) 27 bonded to the phosphor substrate 26 via the planarization layer 7, It is composed of In the display device 25 of the present modification, blue light is emitted from the organic EL elements that constitute the excitation light source 4 of the light source side substrate 27. The main emission peak of blue light is preferably 410 nm to 470 nm, for example.
 また、蛍光体基板26においては、赤色画素PRには青色光を励起光として赤色光を発光する赤色蛍光体層6Rが設けられ、緑色画素PGには青色光を励起光として緑色光を発光する緑色蛍光体層6Gが設けられている。これに対して、青色画素PBには入射した青色光を散乱させて外部に射出させるための光散乱層28が設けられている。光散乱層28は、例えば光透過性を有する無機材料もしくは有機材料中にこれら材料とは屈折率が異なる粒子等が分散された構成を有しており、光散乱層28に入射した光は層内で等方的に散乱するようになっている。 In the phosphor substrate 26, the red pixel PR is provided with a red phosphor layer 6R that emits red light using blue light as excitation light, and the green pixel PG emits green light using blue light as excitation light. A green phosphor layer 6G is provided. In contrast, the blue pixel PB is provided with a light scattering layer 28 for scattering incident blue light and emitting it to the outside. The light scattering layer 28 has a configuration in which, for example, particles having a refractive index different from these materials are dispersed in a light-transmitting inorganic or organic material, and the light incident on the light scattering layer 28 is a layer. It is scattered isotropically inside.
 光散乱層28に用いる光散乱粒子としては、有機材料によって構成されていてもよく、また、無機材料によって構成されていてもよいが、無機材料によって構成されているのが好ましい。これにより、励起光源4(有機EL素子10)からの指向性を有する光を、より等方的に効果的に拡散または散乱させることが可能になる。また、無機材料を使用することにより、光および熱に安定な光散乱層を提供することが可能になる。また、光散乱粒子としては、透明度が高いものであるのが好ましい。 The light scattering particles used in the light scattering layer 28 may be made of an organic material or may be made of an inorganic material, but is preferably made of an inorganic material. Thereby, the light having directivity from the excitation light source 4 (organic EL element 10) can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, it is possible to provide a light scattering layer that is stable to light and heat. Moreover, it is preferable that the light scattering particles have high transparency.
 このような光散乱粒子として無機材料を用いる場合、この無機材料としては、例えばケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、およびアンチモンからなる群より選ばれる少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。
 また、光散乱粒子として無機材料からなる粒子(無機微粒子)を用いる場合、この無機微粒子としては、例えばシリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)等が挙げられる。
When an inorganic material is used as such light scattering particles, the inorganic material may be an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony, for example. And particles (fine particles) containing as a main component.
Further, when using particles (inorganic fine particles) made of an inorganic material as light scattering particles, examples of the inorganic fine particles include silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), and titanium oxide. Examples thereof include beads (refractive index: anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), and zinc oxide beads (refractive index: 2.00).
 光散乱粒子として有機材料からなる粒子(有機微粒子)を用いる場合、この有機微粒子としては、例えばポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, examples of the organic fine particles include polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic- Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), Styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
 前記光散乱粒子と混合して用いる樹脂材料としては、透光性の樹脂であることが好ましい。樹脂材料としては、例えばメラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。 The resin material used by mixing with the light scattering particles is preferably a translucent resin. Examples of the resin material include melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine beads (refractive index: 1.57), polycarbonate ( Refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index: 1.46), polyethylene (refractive index: 1 .53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53), high density polyethylene (refractive index: 1.54). ), Tetrafluoroethylene (refractive index: 1.35), polytrifluoroethylene chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1.35), and the like.
 なお、赤色画素PRと緑色画素PGについては、第1の実施形態と同様、屈折率分布を有して形成されている。表示装置25のその他の構成は、第1の実施形態と同様である。
 本変形例の表示装置25においては、蛍光体基板26に光源側基板27からの青色光が励起光として入射され、赤色画素PRでは赤色蛍光体層6Rにより赤色の蛍光が生じ、緑色画素PGでは緑色蛍光体層6Gにより緑色の蛍光が生じる。青色画素PBでは入射した青色光を光散乱層28で散乱させてそのまま射出させ、これら各色光によってフルカラー表示が行われる。このように、青色画素PBの表示原理が第1の実施形態と異なるものの、本変形例においても、特に赤色蛍光体層6Rおよび緑色蛍光体層6Gからの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。
Note that the red pixel PR and the green pixel PG are formed to have a refractive index distribution as in the first embodiment. Other configurations of the display device 25 are the same as those in the first embodiment.
In the display device 25 of this modification, blue light from the light source side substrate 27 is incident on the phosphor substrate 26 as excitation light, red fluorescence is generated by the red phosphor layer 6R in the red pixel PR, and in the green pixel PG. Green fluorescence is generated by the green phosphor layer 6G. In the blue pixel PB, the incident blue light is scattered by the light scattering layer 28 and emitted as it is, and full color display is performed by these respective color lights. As described above, although the display principle of the blue pixel PB is different from that of the first embodiment, the light emission from the red phosphor layer 6 </ b> R and the green phosphor layer 6 </ b> G can be efficiently extracted to the outside of the substrate also in this modification. The same effect as the first embodiment can be obtained.
[第1の実施形態の第2の変形例]
 以下、前記実施形態の第2の変形例について、図5を用いて説明する。
 本変形例の表示装置の基本構成は第1の実施形態と同様であり、各画素にカラーフィルターを備えた点が第1の実施形態と異なっている。
 図5は、本変形例の表示装置を示す断面図である。図5において、第1の実施形態で用いた図1Aと共通の構成要素には同一の符号を付し、説明は省略する。
[Second Modification of First Embodiment]
Hereinafter, a second modification of the embodiment will be described with reference to FIG.
The basic configuration of the display device of this modification is the same as that of the first embodiment, and is different from the first embodiment in that each pixel includes a color filter.
FIG. 5 is a cross-sectional view showing a display device of this modification. In FIG. 5, the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本変形例の表示装置30においては、図5に示すように、蛍光体基板31を構成する基板5と各画素の蛍光体層6R、6G、6Bとの間にカラーフィルター32R、32G、32Bが設けられている。赤色画素PRには赤色カラーフィルター32Rが設けられ、緑色画素PGには緑色カラーフィルター32Gが設けられ、青色画素PBには青色カラーフィルター32Bが設けられている。カラーフィルター32R、32G、32Bとしては、従来一般のカラーフィルターを用いることが可能である。ただし、これらカラーフィルター32R、32G、32Bは、本変形例では本実施形態の第二の層として機能する。したがって、これらカラーフィルター32R、32G、32Bについては、蛍光体層6の蛍光取出し側界面6bと接する界面での屈折率n2が、蛍光体層6の、蛍光取出し側界面6bにおける蛍光体層6の屈折率nbよりも小さくなる必要がある。その他の構成は第1の実施形態と同様である。 In the display device 30 of this modification, as shown in FIG. 5, color filters 32R, 32G, and 32B are provided between the substrate 5 constituting the phosphor substrate 31 and the phosphor layers 6R, 6G, and 6B of each pixel. Is provided. The red pixel PR is provided with a red color filter 32R, the green pixel PG is provided with a green color filter 32G, and the blue pixel PB is provided with a blue color filter 32B. Conventional color filters can be used as the color filters 32R, 32G, and 32B. However, these color filters 32R, 32G, and 32B function as the second layer of the present embodiment in this modification. Therefore, for these color filters 32R, 32G, and 32B, the refractive index n2 at the interface contacting the fluorescence extraction side interface 6b of the phosphor layer 6 is such that the phosphor layer 6 has the refractive index n2 at the fluorescence extraction side interface 6b. It must be smaller than the refractive index nb. Other configurations are the same as those of the first embodiment.
 本変形例においても、蛍光体層6からの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。
 また、本変形例の場合、各画素に対応してカラーフィルター32R、32G、32Bが備えられているため、赤色画素PR、緑色画素PG、青色画素PBの各々の色純度を高めることができ、表示装置30の色再現範囲を拡大することができる。また、赤色蛍光体層6Rの下層に形成された赤色カラーフィルター32R、緑色蛍光体層6Gの下層に形成された緑色カラーフィルター32G、青色蛍光体層6Bの下層に形成された青色カラーフィルター32Bが、外光中に含まれる励起光成分を吸収する。そのため、外光による蛍光体層6R、6G、6Bの発光を低減もしくは防止することが可能となり、コントラストの低下を低減もしくは防止することができる。さらに、青色カラーフィルター32B、緑色カラーフィルター32G、赤色カラーフィルター32Rによって、蛍光体層6R、6G、6Bで吸収されず、透過しようとする励起光が外部に漏れ出すのを防止できる。そのため、蛍光体層6R、6G、6Bからの発光と励起光による混色によって表示の色純度が低下するのを防止することができる。
Also in this modification, it is possible to obtain the same effect as that of the first embodiment in which the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
In the case of this modification, the color filters 32R, 32G, and 32B are provided for each pixel, so that the color purity of each of the red pixel PR, the green pixel PG, and the blue pixel PB can be increased. The color reproduction range of the display device 30 can be expanded. Further, a red color filter 32R formed under the red phosphor layer 6R, a green color filter 32G formed under the green phosphor layer 6G, and a blue color filter 32B formed under the blue phosphor layer 6B. Absorbs the excitation light component contained in the external light. Therefore, it is possible to reduce or prevent light emission of the phosphor layers 6R, 6G, and 6B due to external light, and it is possible to reduce or prevent a decrease in contrast. Further, the blue color filter 32B, the green color filter 32G, and the red color filter 32R can prevent excitation light that is not absorbed by the phosphor layers 6R, 6G, and 6B from leaking outside. For this reason, it is possible to prevent the color purity of the display from being deteriorated due to a mixture of light emitted from the phosphor layers 6R, 6G and 6B and excitation light.
[第1の実施形態の第3の変形例]
 以下、前記実施形態の第3の変形例について、図6A及び図6Bを用いて説明する。
 本変形例の表示装置の基本構成は第1の実施形態と同様であり、光源側基板としてLED基板を用いている点が第1の実施形態と異なっている。
 図6Aは、本変形例の表示装置の全体構成を示す断面図である。図6Bは、光源側基板としてのLED基板を示す断面図である。図6A及び図6Bにおいて、第1の実施形態で用いた図1A及び図1Bと共通の構成要素には同一の符号を付し、説明は省略する。
[Third Modification of First Embodiment]
Hereinafter, a third modification of the embodiment will be described with reference to FIGS. 6A and 6B.
The basic configuration of the display device of this modification is the same as that of the first embodiment, and is different from the first embodiment in that an LED substrate is used as the light source side substrate.
FIG. 6A is a cross-sectional view illustrating an overall configuration of a display device according to this modification. FIG. 6B is a cross-sectional view showing an LED substrate as a light source side substrate. In FIG. 6A and FIG. 6B, the same code | symbol is attached | subjected to the same component as FIG. 1A and FIG. 1B used in 1st Embodiment, and description is abbreviate | omitted.
 本変形例の表示装置35において、蛍光体基板2の構成は第1の実施形態と同一であり、励起光源4の構成が異なっている。光源側基板(LED基板)36は、図6Bに示すように、基板本体37の一面に第1のバッファ層38、n型コンタクト層39、第2のn型クラッド層40、第1のn型クラッド層41、活性層42、第1のp型クラッド層43、第2のp型クラッド層44、第2のバッファ層45が順次積層され、n型コンタクト層39上に陰極46が形成され、第2のバッファ層45上に陽極47が形成された構成のLED(発光ダイオード)48を有している。なお、LEDとしては他の公知のLED、例えば紫外発光無機LED、青色発光無機LED等を用いることができるが、具体的な構成は前記のものに限ることはない。 In the display device 35 of this modification, the configuration of the phosphor substrate 2 is the same as that of the first embodiment, and the configuration of the excitation light source 4 is different. As shown in FIG. 6B, the light source side substrate (LED substrate) 36 has a first buffer layer 38, an n-type contact layer 39, a second n-type cladding layer 40, and a first n-type on one surface of the substrate body 37. A cladding layer 41, an active layer 42, a first p-type cladding layer 43, a second p-type cladding layer 44, and a second buffer layer 45 are sequentially stacked, and a cathode 46 is formed on the n-type contact layer 39. An LED (light emitting diode) 48 having a configuration in which an anode 47 is formed on the second buffer layer 45 is provided. In addition, although other well-known LED, for example, ultraviolet light emission inorganic LED, blue light emission inorganic LED, etc. can be used as LED, A specific structure is not restricted to the above-mentioned thing.
 以下、光源側基板(LED基板)36の各構成要素について詳細に説明する。
 本変形例で用いられる活性層42は、電子と正孔の再結合により発光を行う層である。活性層42の材料としては、LED用の公知の活性層材料を用いることができる。このような活性層材料としては、例えば紫外活性層材料として、AlGaN、InAlN、InAlGa1-a-bN(0≦a、0≦b、a+b≦1)、青色活性層材料としては、InGa1-z N(0<z<1)等が挙げられるが、本実施形態はこれらに限定されるものではない。
 また、活性層42として、単一量子井戸構造または多重量子井戸構造のものが用いられる。量子井戸構造の活性層はn型、p型のいずれでもよいが、特にノンドープ(不純物無添加)の活性層とすると、バンド間発光により発光波長の半値幅が狭くなり、色純度のよい発光が得られるため、好ましい。
Hereinafter, each component of the light source side substrate (LED substrate) 36 will be described in detail.
The active layer 42 used in this modification is a layer that emits light by recombination of electrons and holes. As the material of the active layer 42, a known active layer material for LED can be used. Examples of the active layer material, for example, as ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-a-b N (0 ≦ a, 0 ≦ b, a + b ≦ 1), as a blue active layer material Includes In z Ga 1-z N (0 <z <1) and the like, but this embodiment is not limited thereto.
Moreover, as the active layer 42, a single quantum well structure or a multiple quantum well structure is used. The active layer of the quantum well structure may be either n-type or p-type. However, when it is a non-doped (no impurity added) active layer, the half-value width of the emission wavelength is narrowed due to interband emission, and light emission with good color purity is achieved. Since it is obtained, it is preferable.
 また、活性層42にドナー不純物、アクセプター不純物の少なくとも一方をドープしてもよい。不純物をドープした活性層の結晶性がノンドープのものと同じであれば、ドナー不純物をドープすることにより、ノンドープのものに比べてバンド間発光強度をさらに強くすることができる。アクセプター不純物をドープすると、バンド間発光のピーク波長よりも約0.5eVだけ低エネルギー側にピーク波長をシフトさせることができるが、半値幅は広くなる。アクセプター不純物とドナー不純物との両者をドープすると、アクセプター不純物のみをドープした活性層の発光強度に比べて、その発光強度をさらに大きくすることができる。特に、アクセプター不純物をドープした活性層を形成する場合、活性層の導電型はSi等のドナー不純物をもドープしてn型とすることが好ましい。 The active layer 42 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with the impurity is the same as that of the non-doped layer, the emission intensity between bands can be further increased by doping the donor impurity as compared with the non-doped layer. When the acceptor impurity is doped, the peak wavelength can be shifted to the lower energy side by about 0.5 eV from the peak wavelength of interband light emission, but the full width at half maximum is widened. When both the acceptor impurity and the donor impurity are doped, the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity. In particular, when an active layer doped with an acceptor impurity is formed, the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
 本変形例で用いられるn型クラッド層40、41としては、LED用の公知のn型クラッド層材料を用いることができ、単層でも多層構成でもよい。活性層42よりもバンドギャップエネルギーが大きいn型半導体でn型クラッド層40、41を構成した場合、n型クラッド層40、41と活性層42との間には正孔に対する電位障壁ができ、正孔を活性層42に閉じ込めることが可能となる。例えば、n型InGa1-xN(0≦x<1)によりn型クラッド層40、41を形成することが可能であるが、本実施形態は、これらに限定されるものではない。 As the n-type cladding layers 40 and 41 used in this modification, a known n-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used. When the n-type cladding layers 40 and 41 are formed of an n-type semiconductor having a larger band gap energy than the active layer 42, a potential barrier against holes is formed between the n-type cladding layers 40 and 41 and the active layer 42. Holes can be confined in the active layer 42. For example, the n - type cladding layers 40 and 41 can be formed of n - type In x Ga 1-x N (0 ≦ x <1), but the present embodiment is not limited to these.
 本変形例で用いられるp型クラッド層43、44としては、LED用の公知のp型クラッド層材料を用いることができ、単層でも多層構成でもよい。活性層42よりもバンドギャップエネルギーが大きいp型半導体でp型クラッド層43、44を構成した場合、p型クラッド層43、44と活性層42との間には電子に対する電位障壁ができ、電子を活性層42に閉じ込めることが可能となる。例えば、AlGa1-yN(0≦y≦1)によりp型クラッド層43、44を形成することが可能であるが、本実施形態はこれらに限定されるものではない。 As the p-type cladding layers 43 and 44 used in this modification, a known p-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used. When the p-type cladding layers 43 and 44 are formed of a p-type semiconductor having a band gap energy larger than that of the active layer 42, a potential barrier against electrons is formed between the p-type cladding layers 43 and 44 and the active layer 42. Can be confined in the active layer 42. For example, the p-type cladding layers 43 and 44 can be formed of Al y Ga 1-y N (0 ≦ y ≦ 1), but the present embodiment is not limited to these.
 本変形例で用いられるn型コンタクト層39としては、LED用の公知のコンタクト層材料を用いることができ、例えば、n型クラッド層40、41に接して電極を形成する層としてn型GaNからなるn型コンタクト層39を形成することが可能である。また、p型クラッド層43、44に接して電極を形成する層として、p型GaNからなるp型コンタクト層を形成することも可能である。ただし、このコンタクト層は、第2のn型クラッド層40、第2のp型クラッド層44がGaNで形成されていれば、特に形成する必要はなく、第2のクラッド層をコンタクト層とすることも可能である。 As the n-type contact layer 39 used in this modification, a known contact layer material for LED can be used. For example, an n-type GaN layer is used as a layer for forming an electrode in contact with the n-type cladding layers 40 and 41. An n-type contact layer 39 can be formed. It is also possible to form a p-type contact layer made of p-type GaN as a layer for forming an electrode in contact with the p-type cladding layers 43 and 44. However, this contact layer need not be formed if the second n-type cladding layer 40 and the second p-type cladding layer 44 are made of GaN, and the second cladding layer is used as the contact layer. It is also possible.
 本変形例で用いられる前記の各層は、LED用の公知の成膜プロセスを用いることが可能であるが、本実施形態は特にこれらに限定されるものではない。例えば、MOVPE(有機金属気相成長法)、MBE(分子線気相成長法)、HDVPE(ハイドライド気相成長法)等の気相成長法を用いて、例えばサファイア(C面、A面、R面を含む)、SiC(6H-SiC、4H-SiCも含む)、スピネル(MgAl、特にその(111)面)、ZnO、Si、GaAs、あるいは他の酸化物単結晶基板(NGO等)等の基板上に形成することが可能である。
 本変形例においても、蛍光体層6からの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。
For each of the layers used in the present modification, a known film forming process for LEDs can be used, but the present embodiment is not particularly limited thereto. For example, by using a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R ), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates (such as NGO) ) Or the like.
Also in this modification, it is possible to obtain the same effect as that of the first embodiment in which the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
[第1の実施形態の第4の変形例]
 以下、前記実施形態の第4の変形例について、図7A及び図7Bを用いて説明する。
 本変形例の表示装置の基本構成は第1の実施形態と同様であり、光源側基板として無機EL基板を用いている点が第1の実施形態と異なっている。
 図7Aは、本変形例の表示装置の全体構成を示す断面図である。図7Bは、光源側基板としての無機EL基板を示す断面図である。図7A及び図7Bにおいて、第1の実施形態で用いた図1A図1Bと共通の構成要素には同一の符号を付し、説明は省略する。
[Fourth Modification of First Embodiment]
Hereinafter, a fourth modification of the embodiment will be described with reference to FIGS. 7A and 7B.
The basic configuration of the display device of this modification is the same as that of the first embodiment, and is different from the first embodiment in that an inorganic EL substrate is used as the light source side substrate.
FIG. 7A is a cross-sectional view illustrating an overall configuration of a display device according to this modification. FIG. 7B is a cross-sectional view showing an inorganic EL substrate as a light source side substrate. In FIG. 7A and FIG. 7B, the same code | symbol is attached | subjected to the same component as FIG. 1A FIG. 1B used in 1st Embodiment, and description is abbreviate | omitted.
 本変形例の表示装置50において、光源側基板51(無機EL素子基板)は、図7Bに示すように、基板本体52の一面に第1電極53、第1誘電体層54、発光層55、第2誘電体層56、第2電極57が順次積層された構成の無機EL素子58を有している。なお、無機EL素子58としては公知の無機EL、例えば紫外発光無機EL、青色発光無機EL等を用いることができ、具体的な構成は前記のものに限ることはない。 In the display device 50 of the present modification, the light source side substrate 51 (inorganic EL element substrate) includes a first electrode 53, a first dielectric layer 54, a light emitting layer 55, An inorganic EL element 58 having a structure in which a second dielectric layer 56 and a second electrode 57 are sequentially laminated is provided. As the inorganic EL element 58, a known inorganic EL, for example, an ultraviolet light emitting inorganic EL, a blue light emitting inorganic EL, or the like can be used, and the specific configuration is not limited to the above.
 以下、光源側基板51(無機EL素子基板)の各構成要素について詳細に説明する。
 基板本体52としては、前述の有機EL素子10を形成した光源側基板3(有機EL素子基板)と同様のものを用いることができる。
 本変形例で用いられる第1電極53および第2電極57としては、アルミニウム(Al)、金(Au)、白金(Pt)、ニッケル(Ni)等の金属、およびインジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられるが、本変形例はこれらの材料に限定されるものではない。しかし、光を取り出す側の電極には、ITO等の透明電極がよく、光を取り出す方向と逆側の電極には、アルミニウム等の反射膜を用いることが好ましい。
Hereinafter, each component of the light source side substrate 51 (inorganic EL element substrate) will be described in detail.
As the substrate body 52, the same light source side substrate 3 (organic EL element substrate) on which the organic EL element 10 described above is formed can be used.
As the first electrode 53 and the second electrode 57 used in this modification, metals such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and indium (In) and tin (Sn) Oxide (ITO) made of), tin (Sn) oxide (SnO 2 ), indium (In) and oxide (IZO) made of zinc (Zn), etc., can be mentioned as transparent electrode materials. It is not limited to these materials. However, a transparent electrode such as ITO is preferable for the electrode on the side from which light is extracted, and a reflective film such as aluminum is preferably used for the electrode on the side opposite to the direction from which light is extracted.
 第1電極53および第2電極57は、前記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本変形例はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターニングすることもでき、シャドーマスクと組み合わせることでパターニングした電極を直接形成することもできる。第1電極53および第2電極57の膜厚は、50nm以上であることが好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなり、駆動電圧が上昇するおそれがある。 The first electrode 53 and the second electrode 57 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above-described materials. It is not limited to these formation methods. If necessary, the formed electrode can be patterned by a photolithography method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask. The film thickness of the first electrode 53 and the second electrode 57 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
 本変形例で用いられる第1誘電体層54および第2誘電体層56としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)、チタン酸バリウム(BaTiO)、およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本変形例はこれらに限定されるものではない。また、本変形例の第1誘電体層54および第2誘電体層56は前記の誘電体材料のうちから選んだ1種類で構成してもよいし、2種類以上の材料を積層した構成でもよい。また、各誘電体層54、56の膜厚は、200nm~500nm程度が好ましい。 As the first dielectric layer 54 and the second dielectric layer 56 used in this modification, a known dielectric material for inorganic EL can be used. Examples of such a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( AlTiO 3 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like can be mentioned, but this modification is not limited thereto. Further, the first dielectric layer 54 and the second dielectric layer 56 of the present modification may be configured by one type selected from the above dielectric materials, or may be configured by stacking two or more types of materials. Good. The thickness of each dielectric layer 54, 56 is preferably about 200 nm to 500 nm.
 本変形例で用いられる発光層55としては、無機EL用の公知の発光材料を用いることができる。このような発光材料としては、例えば紫外発光材料としては、ZnF:Gd、青色発光材料としては、BaAl:Eu、CaAl:Eu、ZnAl:Eu、BaSiS:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba,Mg)Al:Eu等が挙げられるが、本変形例はこれらに限定されるものではない。また、発光層55の膜厚は、300nm~1000nm程度が好ましい。 As the light emitting layer 55 used in this modification, a known light emitting material for inorganic EL can be used. As such a light emitting material, for example, as an ultraviolet light emitting material, ZnF 2 : Gd, and as a blue light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 SiS. 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, and the like are exemplified, but the present modification is not limited thereto. The film thickness of the light emitting layer 55 is preferably about 300 nm to 1000 nm.
 本変形例においても、蛍光体層6からの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。 Also in the present modification, it is possible to obtain the same effect as that of the first embodiment in which light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
 なお、光源の構成として、前記実施形態では有機EL素子、第3の変形例ではLED、第4の変形例では無機EL素子を例示した。これらの構成例において、有機EL素子、LED、無機EL素子等の発光素子を封止する封止膜または封止基板を設けることが好ましい。封止膜および封止基板は、公知の封止材料および封止方法により形成することができる。具体的には、光源を構成する基板本体と逆側の表面上にスピンコート法、ODF、ラミレート法を用いて樹脂を塗布することによって封止膜とすることもできる。もしくは、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を形成した後、さらに、スピンコート法、ODF、ラミレート法を用いて樹脂を塗布する、または、貼り合わせることによって封止膜とすることもできる。 As the configuration of the light source, the organic EL element is exemplified in the embodiment, the LED is exemplified in the third modification, and the inorganic EL element is exemplified in the fourth modification. In these structural examples, it is preferable to provide a sealing film or a sealing substrate for sealing a light emitting element such as an organic EL element, an LED, or an inorganic EL element. The sealing film and the sealing substrate can be formed by a known sealing material and sealing method. Specifically, the sealing film can be formed by applying a resin on the surface opposite to the substrate main body constituting the light source by using a spin coat method, an ODF, or a laminate method. Alternatively, after forming an inorganic film such as SiO, SiON, or SiN by plasma CVD, ion plating, ion beam, sputtering, etc., resin is further applied using spin coating, ODF, or lamination. Alternatively, the sealing film can be formed by bonding.
 このような封止膜や封止基板により、外部からの発光素子内への酸素や水分の混入を防止することができ、光源の寿命が向上する。また、光源と蛍光体基板とを接合するときは、一般の紫外線硬化樹脂、熱硬化樹脂等で接着させることが可能である。また、蛍光体基板上に光源を直接形成した場合には、例えば窒素ガス、アルゴンガス等の不活性ガスをガラス板、金属板等で封止する方法が挙げられる。さらに、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入することが好ましい。光源として有機EL素子を用いた場合、水分による有機EL素子の劣化をより効果的に低減できる。ただし、本実施形態は、これらの部材や形成方法に限定されるものではない。また、基板と逆側から光を取り出す場合は、封止膜、封止基板ともに光透過性の材料を使用する必要がある。 Such a sealing film or a sealing substrate can prevent entry of oxygen and moisture into the light emitting element from the outside, thereby improving the life of the light source. Further, when the light source and the phosphor substrate are bonded, they can be bonded with a general ultraviolet curable resin, a thermosetting resin, or the like. Further, when the light source is directly formed on the phosphor substrate, for example, a method of sealing an inert gas such as nitrogen gas or argon gas with a glass plate, a metal plate or the like can be mentioned. Furthermore, it is preferable to mix a moisture absorbent such as barium oxide in the enclosed inert gas. When an organic EL element is used as the light source, deterioration of the organic EL element due to moisture can be more effectively reduced. However, this embodiment is not limited to these members and forming methods. In the case where light is extracted from the side opposite to the substrate, it is necessary to use a light transmissive material for both the sealing film and the sealing substrate.
[第2の実施形態]
 以下、第2の実施形態について、図8、図9を用いて説明する。
 本実施形態の表示装置は、アクティブマトリクス駆動型有機EL素子基板を光源とした構成例である。
 図8は本実施形態の表示装置を示す断面図である。図9は本実施形態の表示装置を示す平面図である。図8において、第1の実施形態で用いた図1Aと共通の構成要素には同一の符号を付し、説明は省略する。
[Second Embodiment]
Hereinafter, a second embodiment will be described with reference to FIGS.
The display device of the present embodiment is a configuration example using an active matrix driving type organic EL element substrate as a light source.
FIG. 8 is a cross-sectional view showing the display device of this embodiment. FIG. 9 is a plan view showing the display device of this embodiment. In FIG. 8, the same components as those in FIG. 1A used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図8に示すように本実施形態の表示装置60は、蛍光体基板2と、蛍光体基板2上に貼り合わされた光源側基板61(有機EL素子基板)と、から構成されている。本実施形態の光源側基板61は、赤色画素PR、緑色画素PG、青色画素PBの各々に光を照射するか否かを切り換える手段として、TFTを用いたアクティブマトリクス駆動方式が用いられている。一方、蛍光体基板2の構成は第1の実施形態と同様である。本実施形態の光源側基板61が紫外光を発光する場合には、青色画素PBは紫外光を励起光として青色光を発光する青色蛍光体層を有するものとする。もしくは、本実施形態の光源側基板61が青色光を発光する場合には、青色画素PBは青色光を散乱させる光散乱層を有するものとする。 As shown in FIG. 8, the display device 60 of the present embodiment includes a phosphor substrate 2 and a light source side substrate 61 (organic EL element substrate) bonded on the phosphor substrate 2. The light source side substrate 61 of the present embodiment uses an active matrix driving system using TFTs as means for switching whether to irradiate light to each of the red pixel PR, the green pixel PG, and the blue pixel PB. On the other hand, the configuration of the phosphor substrate 2 is the same as that of the first embodiment. When the light source side substrate 61 of the present embodiment emits ultraviolet light, the blue pixel PB has a blue phosphor layer that emits blue light using ultraviolet light as excitation light. Or when the light source side board | substrate 61 of this embodiment light-emits blue light, the blue pixel PB shall have a light-scattering layer which scatters blue light.
(アクティブマトリクス駆動型有機EL素子基板)
 以下、アクティブマトリクス駆動型の本実施形態の光源側基板61について詳細に説明する。
 本実施形態の光源側基板61は、図8に示すように、基板本体62の一面にTFT63が形成されている。すなわち、ゲート電極64およびゲート線65が形成され、これらゲート電極64およびゲート線65を覆うように基板本体62上にゲート絶縁膜66が形成されている。ゲート絶縁膜66上には活性層(図示略)が形成され、活性層上にソース電極67、ドレイン電極68およびデータ線69が形成され、これらソース電極67、ドレイン電極68およびデータ線69を覆うように平坦化膜70が形成されている。
(Active matrix drive type organic EL element substrate)
Hereinafter, the active matrix driving type light source side substrate 61 of this embodiment will be described in detail.
As shown in FIG. 8, the light source side substrate 61 of this embodiment has a TFT 63 formed on one surface of the substrate body 62. That is, the gate electrode 64 and the gate line 65 are formed, and the gate insulating film 66 is formed on the substrate body 62 so as to cover the gate electrode 64 and the gate line 65. An active layer (not shown) is formed on the gate insulating film 66, and a source electrode 67, a drain electrode 68 and a data line 69 are formed on the active layer, and covers the source electrode 67, the drain electrode 68 and the data line 69. Thus, the planarizing film 70 is formed.
 なお、この平坦化膜70は単層構造でなくてもよく、他の層間絶縁膜と平坦化膜を組み合わせた構成としてもよい。また、平坦化膜もしくは層間絶縁膜を貫通してドレイン電極68に達するコンタクトホール71が形成され、平坦化膜70上にコンタクトホール71を介してドレイン電極68と電気的に接続された有機EL素子10の陽極13が形成されている。有機EL素子10自体の構成は第1の実施形態と同様である。 Note that the planarization film 70 does not have to have a single layer structure, and may be configured by combining another interlayer insulating film and the planarization film. Further, a contact hole 71 that reaches the drain electrode 68 through the planarizing film or the interlayer insulating film is formed, and the organic EL element that is electrically connected to the drain electrode 68 through the contact hole 71 on the planarizing film 70 Ten anodes 13 are formed. The configuration of the organic EL element 10 itself is the same as that of the first embodiment.
 アクティブマトリクス駆動型に用いる基板本体62としては、500℃以下の温度で溶融することなく、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にTFTを形成することが困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用い、線膨張係数をガラスに合わせ込むことで、従来の生産装置を用いて金属基板上にTFTを安価に形成することができる。また、プラスティック基板の場合には、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスティック基板にTFTを転写することで、プラスティック基板上にTFTを転写形成することができる。さらに、本実施形態では、有機EL層からの発光を基板と逆側から取り出す場合には基板としての制約はないが、有機EL層からの発光を基板側から取り出す場合には透明または半透明の基板を用いる必要がある。 As the substrate main body 62 used for the active matrix driving type, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion. In addition, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / ° C. or less. By using a metal substrate that is an iron-nickel alloy of this type and adjusting the linear expansion coefficient to glass, a TFT can be formed on the metal substrate at low cost using a conventional production apparatus. In the case of a plastic substrate, since the heat resistant temperature is very low, the TFT can be transferred and formed on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT to the plastic substrate. Further, in the present embodiment, there is no restriction as a substrate when the light emission from the organic EL layer is taken out from the opposite side of the substrate, but when the light emission from the organic EL layer is taken out from the substrate side, it is transparent or translucent. It is necessary to use a substrate.
 TFT63は、有機EL素子10を形成する前に基板本体62上に形成され、画素スイッチング用素子および有機EL素子駆動用素子として機能する。本実施形態で用いられるTFT63としては、公知のTFTが挙げられ、公知の材料、構造および形成方法を用いて形成することができる。また、本実施形態では、TFT63の代わりに、金属-絶縁体-金属(MIM)ダイオードを用いることもできる。 The TFT 63 is formed on the substrate body 62 before the organic EL element 10 is formed, and functions as a pixel switching element and an organic EL element driving element. Examples of the TFT 63 used in this embodiment include known TFTs, which can be formed using known materials, structures, and formation methods. In this embodiment, a metal-insulator-metal (MIM) diode can be used instead of the TFT 63.
 TFT63の活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料、またはポリチオフェン誘導体、チオフェンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料などが挙げられる。また、TFT63の構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型などが挙げられる。 As the material of the active layer of the TFT 63, for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- Examples thereof include oxide semiconductor materials such as zinc oxide, or organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Examples of the structure of the TFT 63 include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
 TFT63を構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法またはSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法またはPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。 As the method for forming the active layer constituting the TFT 63, (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used. Forming amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD How is a polysilicon layer is formed by a PECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C. or higher, thereon to form a gate electrode of the n + polysilicon, then, ion doping ( High temperature process), (5) a method of forming an organic semiconductor material by an inkjet method, and (6) a method of obtaining a single crystal film of the organic semiconductor material.
 本実施形態で用いられるTFT63のゲート絶縁膜66は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiOまたはポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、本実施形態で用いられるTFT63のデータ線69、ゲート線65、ソース電極67およびドレイン電極68は、公知の導電性材料を用いて形成することができ、例えばタンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。本実施形態に係るTFT63は、前記のような構成とすることができるが、これらの材料、構造および形成方法に限定されるものではない。 The gate insulating film 66 of the TFT 63 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the data line 69, the gate line 65, the source electrode 67, and the drain electrode 68 of the TFT 63 used in this embodiment can be formed using a known conductive material, for example, tantalum (Ta), aluminum (Al ), Copper (Cu), and the like. The TFT 63 according to this embodiment can be configured as described above, but is not limited to these materials, structures, and formation methods.
 本実施形態に用いられる層間絶縁膜は、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、または、Si)、酸化タンタル(TaO、または、Ta)等の無機材料、または、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じて、フォトリソグラフィー法等によりパターニングすることもできる。 The interlayer insulating film used in the present embodiment can be formed using a known material. For example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 3 N 4 ), tantalum oxide (TaO, Alternatively, an inorganic material such as Ta 2 O 5 ), an organic material such as an acrylic resin or a resist material, or the like can be given. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
 その他、有機EL素子10からの光を基板本体62の逆側から取り出す場合には、基板本体62上に形成されたTFT63に外光が入射し、TFT63の電気的特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を用いることが好ましい。また、前記の層間絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。遮光性層間絶縁膜としては、フタロシアニン、キナクロドン等の顔料または染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態はこれらの材料および形成方法に限定されるものではない。 In addition, when light from the organic EL element 10 is taken out from the opposite side of the substrate body 62, external light is prevented from entering the TFT 63 formed on the substrate body 62 and changes in the electrical characteristics of the TFT 63 are prevented. For the purpose, it is preferable to use a light-shielding insulating film having light-shielding properties. In addition, the interlayer insulating film and the light-shielding insulating film can be used in combination. Examples of the light-shielding interlayer insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclonone in a polymer resin such as polyimide, color resists, black matrix materials, inorganic insulating materials such as Ni x Zn y Fe 2 O 4, and the like. Can be mentioned. However, the present embodiment is not limited to these materials and forming methods.
 本実施形態においては、基板本体62上に形成したTFT63や各種配線、電極により、その表面に凸凹が形成され、この凸凹によって有機EL素子10において、陽極13や陰極20の欠損や断線、有機EL層の欠損、陽極13と陰極20との短絡、耐圧の低下等が発生するおそれがある。よって、これらの現象を防止する目的で層間絶縁膜上に平坦化膜70を設けることが望ましい。本実施形態で用いられる平坦化膜70は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜70の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜70は、単層構造でも多層構造でもよい。 In the present embodiment, unevenness is formed on the surface of the TFT 63 formed on the substrate body 62 and various wirings and electrodes, and the unevenness of the anode 13 and the cathode 20 in the organic EL element 10 due to the unevenness, organic EL There is a possibility that a layer defect, a short circuit between the anode 13 and the cathode 20, a decrease in breakdown voltage, or the like may occur. Therefore, it is desirable to provide the planarizing film 70 on the interlayer insulating film for the purpose of preventing these phenomena. The planarization film 70 used in the present embodiment can be formed using a known material, for example, an inorganic material such as silicon oxide, silicon nitride, or tantalum oxide, or an organic material such as polyimide, acrylic resin, or resist material. Etc. Examples of the method for forming the planarizing film 70 include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method, but the present embodiment is not limited to these materials and the forming method. . Further, the planarization film 70 may have a single layer structure or a multilayer structure.
 本実施形態の表示装置60は、図9に示すように、光源側基板61上に形成された画素部72、ゲート信号側駆動回路74、データ信号側駆動回路73、信号配線75、および電流供給線76と、光源側基板61に接続されたフレキシブルプリント配線板77(FPC)および外部駆動回路100とを備えている。 As shown in FIG. 9, the display device 60 of the present embodiment includes a pixel portion 72 formed on a light source side substrate 61, a gate signal side drive circuit 74, a data signal side drive circuit 73, a signal wiring 75, and a current supply. A line 76, a flexible printed wiring board 77 (FPC) connected to the light source side substrate 61, and an external drive circuit 100 are provided.
 本実施形態に係る光源側基板61は、有機EL素子10を駆動するために走査線電極回路、データ信号電極回路、電源回路等を含む外部駆動回路100に、FPC77を介して電気的に接続されている。本実施形態の場合、TFT63等のスイッチング回路が画素部72内に配置される。TFT63等が接続されるデータ線69、ゲート線65等の配線に、有機EL素子10を駆動するためのデータ信号側駆動回路73、ゲート信号側駆動回路74がそれぞれ接続される。データ信号側駆動回路73、ゲート信号側駆動回路74に信号配線75を介して外部駆動回路100が接続されている。画素部72内には、複数のゲート線65および複数のデータ線69が配置され、ゲート線65とデータ線69との交差部にTFT63が配置されている。 The light source side substrate 61 according to the present embodiment is electrically connected to an external driving circuit 100 including a scanning line electrode circuit, a data signal electrode circuit, a power supply circuit, and the like through the FPC 77 in order to drive the organic EL element 10. ing. In the present embodiment, a switching circuit such as a TFT 63 is disposed in the pixel portion 72. A data signal side driving circuit 73 and a gate signal side driving circuit 74 for driving the organic EL element 10 are connected to wirings such as a data line 69 and a gate line 65 to which the TFT 63 and the like are connected. An external drive circuit 100 is connected to the data signal side drive circuit 73 and the gate signal side drive circuit 74 via a signal wiring 75. In the pixel portion 72, a plurality of gate lines 65 and a plurality of data lines 69 are arranged, and a TFT 63 is arranged at an intersection of the gate lines 65 and the data lines 69.
 本実施形態に係る有機EL素子10は、例えば図10に示すように電圧駆動デジタル階調方式によって駆動される。すなわち、画素毎にスイッチング用TFT78および駆動用TFT79(63)の2つのTFTが配置され、駆動用TFT79(TFT63)と有機EL素子10の陽極13とが平坦化層70に形成されるコンタクトホール71を介して電気的に接続されている。また、一つの画素内には駆動用TFT79のゲート電位を定電位にするためのコンデンサー(図示略)が、駆動用TFT79のゲート電極に接続されるように配置されている。また、TFT78、79上には平坦化層70が形成されている。
 しかし、本実施形態では、特にこれらに限定されるものではなく、駆動方式は、前述した電圧駆動デジタル階調方式でもよく、電流駆動アナログ階調方式でもよい。また、TFTの数も特に限定されるものではなく、前述した2つのTFTにより有機EL素子10を駆動してもよいし、TFTの特性(移動度、閾値電圧)バラツキを防止する目的で、画素内に補償回路を内蔵した2個以上のTFTを用いて有機EL素子10を駆動してもよい。
The organic EL element 10 according to this embodiment is driven by a voltage-driven digital gradation method as shown in FIG. 10, for example. That is, two TFTs, a switching TFT 78 and a driving TFT 79 (63), are arranged for each pixel, and the contact hole 71 in which the driving TFT 79 (TFT 63) and the anode 13 of the organic EL element 10 are formed in the planarization layer 70. It is electrically connected via. Further, a capacitor (not shown) for making the gate potential of the driving TFT 79 constant in one pixel is disposed so as to be connected to the gate electrode of the driving TFT 79. A planarizing layer 70 is formed on the TFTs 78 and 79.
However, the present embodiment is not particularly limited to these, and the driving method may be the voltage-driven digital gradation method described above or the current-driven analog gradation method. The number of TFTs is not particularly limited, and the organic EL element 10 may be driven by the two TFTs described above. For the purpose of preventing variations in TFT characteristics (mobility and threshold voltage), The organic EL element 10 may be driven using two or more TFTs having a built-in compensation circuit therein.
 本実施形態においても、蛍光体層6からの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。
 また、特に本実施形態では、アクティブマトリクス駆動型の光源側基板61を採用しているため、表示品位に優れた表示装置を実現することができる。また、パッシブ駆動に比べて有機EL素子10の発光時間を長くすることができ、所望の輝度を得るための駆動電流を低減することができるため、低消費電力化が図れる。さらに、光源側基板61の逆側(蛍光体基板側)から光を取り出す構成であるから、TFTや各種配線等の形成領域に関係なく発光領域を広げることができ、画素の開口率を高めることができる。
Also in the present embodiment, the same effect as that of the first embodiment can be obtained such that the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
In particular, in the present embodiment, since the active matrix driving type light source side substrate 61 is employed, a display device having excellent display quality can be realized. In addition, the light emission time of the organic EL element 10 can be extended as compared with passive driving, and the driving current for obtaining desired luminance can be reduced, so that the power consumption can be reduced. Further, since the light is extracted from the opposite side (phosphor substrate side) of the light source side substrate 61, the light emitting region can be expanded regardless of the formation region of the TFT and various wirings, and the aperture ratio of the pixel is increased. Can do.
[第3の実施形態]
 以下、第3の実施形態について、図11を用いて説明する。
 本実施形態の表示装置は、蛍光体基板と光源との間に液晶素子を挿入した構成例である。
 図11は本実施形態の表示装置を示す断面図である。図11において、第1の実施形態で用いた図1Aと共通の構成要素には同一の符号を付し、説明は省略する。
[Third Embodiment]
Hereinafter, a third embodiment will be described with reference to FIG.
The display device of this embodiment is a configuration example in which a liquid crystal element is inserted between a phosphor substrate and a light source.
FIG. 11 is a cross-sectional view showing the display device of this embodiment. In FIG. 11, the same reference numerals are given to the same constituent elements as those in FIG. 1A used in the first embodiment, and the description thereof will be omitted.
 本実施形態の表示装置80は、図11に示すように、蛍光体基板2と、励起光源4として有機EL素子を備えた光源側基板81(有機EL素子基板)と、液晶素子82と、を備えている。蛍光体基板2の構成は第1の実施形態と同様であり、説明は省略する。また、光源側基板82の積層構造は、第1の実施形態において図1Bに示したものと同様である。しかし、第1の実施形態では、各画素に対応する有機EL素子に個別に駆動信号が供給され、各有機EL素子が独立して発光、非発光が制御されていた。これに対し、本実施形態では、有機EL素子83は、画素毎に分割されておらず、全ての画素に共通の面状光源として機能する。また、液晶素子82は、一対の電極を用いて液晶層に印加する電圧を画素毎に制御可能な構成とされ、有機EL素子83の全面から射出された光の透過率を画素毎に制御する。すなわち、液晶素子82は、光源側基板81からの光を画素毎に選択的に透過させる光シャッターとしての機能を有するようになっている。 As shown in FIG. 11, the display device 80 of the present embodiment includes a phosphor substrate 2, a light source side substrate 81 (organic EL element substrate) including an organic EL element as the excitation light source 4, and a liquid crystal element 82. I have. The configuration of the phosphor substrate 2 is the same as that of the first embodiment, and a description thereof will be omitted. The laminated structure of the light source side substrate 82 is the same as that shown in FIG. 1B in the first embodiment. However, in the first embodiment, drive signals are individually supplied to the organic EL elements corresponding to each pixel, and each organic EL element is controlled to emit light and not emit light independently. On the other hand, in this embodiment, the organic EL element 83 is not divided for each pixel and functions as a planar light source common to all the pixels. The liquid crystal element 82 is configured to be able to control the voltage applied to the liquid crystal layer for each pixel using a pair of electrodes, and to control the transmittance of light emitted from the entire surface of the organic EL element 83 for each pixel. . In other words, the liquid crystal element 82 has a function as an optical shutter that selectively transmits light from the light source side substrate 81 for each pixel.
 本実施形態の液晶素子82は、公知の液晶素子を用いることが可能であり、例えば一対の偏光板84、85と、電極86、87と、配向膜88、89と、基板90と、を有し、配向膜88、89間に液晶91が挟持されている。さらに、液晶セルと一方の偏光板84、85との間に光学異方性層が1枚配置されるか、または、液晶セルと双方の偏光板84、85との間に光学異方性層が2枚配置されることもある。 液晶セルの種類としては特に制限はなく、目的に応じて適宜選択することができ、例えばTNモード、VAモード、OCBモード、IPSモード、ECBモードなどが挙げられる。また、液晶素子82の駆動法は、パッシブ駆動でも良いし、TFT等のスイッチング素子を用いたアクティブ駆動でもよい。 As the liquid crystal element 82 of the present embodiment, a known liquid crystal element can be used. For example, the liquid crystal element 82 includes a pair of polarizing plates 84 and 85, electrodes 86 and 87, alignment films 88 and 89, and a substrate 90. The liquid crystal 91 is sandwiched between the alignment films 88 and 89. Further, one optically anisotropic layer is disposed between the liquid crystal cell and one polarizing plate 84, 85, or the optically anisotropic layer is disposed between the liquid crystal cell and both polarizing plates 84, 85. 2 may be arranged. The type of liquid crystal cell is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include TN mode, VA mode, OCB mode, IPS mode, and ECB mode. The driving method of the liquid crystal element 82 may be passive driving or active driving using a switching element such as a TFT.
 本実施形態においても、蛍光体層6からの発光を効率良く基板外部へ取り出すことができるといった、第1の実施形態と同様の効果を得ることができる。
 また、本実施形態の場合、液晶素子82による画素のスイッチングと面状光源として機能する光源側基板81とを組み合わせることで、消費電力をより低減することができる。
Also in the present embodiment, the same effect as that of the first embodiment can be obtained such that the light emitted from the phosphor layer 6 can be efficiently taken out of the substrate.
In the case of this embodiment, the power consumption can be further reduced by combining the pixel switching by the liquid crystal element 82 and the light source side substrate 81 functioning as a planar light source.
[電子機器の例]
 前記実施形態の表示装置を備えた電子機器の例として、図12Aに示す携帯電話機、図12Bに示すテレビ受信装置などが挙げられる。
 図12Aに示す携帯電話機127は、本体128、表示部129、音声入力部130、音声出力部131、アンテナ132、操作スイッチ133等を備えており、表示部129に前記実施形態の表示装置が用いられている。
 図12Bに示すテレビ受信装置135は、本体キャビネット136、表示部137、スピーカー138、スタンド139等を備えており、表示部137に前記実施形態の表示装置が用いられている。
 このような電子機器においては、前記実施形態の表示装置が用いられているため、表示品位に優れた低消費電力の電子機器を実現することができる。
[Example of electronic equipment]
Examples of the electronic device including the display device of the embodiment include a mobile phone shown in FIG. 12A and a television receiver shown in FIG. 12B.
A cellular phone 127 shown in FIG. 12A includes a main body 128, a display unit 129, an audio input unit 130, an audio output unit 131, an antenna 132, an operation switch 133, and the like, and the display device of the above embodiment is used as the display unit 129. It has been.
A television receiver 135 illustrated in FIG. 12B includes a main body cabinet 136, a display unit 137, a speaker 138, a stand 139, and the like, and the display device of the embodiment is used for the display unit 137.
In such an electronic device, since the display device of the above-described embodiment is used, an electronic device with low power consumption and excellent display quality can be realized.
 なお、本発明の態様における技術範囲は前記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態で説明した表示装置には、光取り出し側に偏光板を設けることが好ましい。偏光板としては、従来の直線偏光板とλ/4板とを組み合わせたものを用いることができる。このような偏光板を設けることによって、表示装置の電極からの外光反射、もしくは基板や封止基板の表面での外光反射を防止することができ、表示装置のコントラストを向上させることができる。その他、蛍光体基板、表示装置の各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、前記実施形態に限ることなく、適宜変更が可能である。
The technical scope in the aspect of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
For example, the display device described in the embodiment preferably includes a polarizing plate on the light extraction side. As the polarizing plate, a combination of a conventional linear polarizing plate and a λ / 4 plate can be used. By providing such a polarizing plate, external light reflection from the electrode of the display device or external light reflection on the surface of the substrate or the sealing substrate can be prevented, and the contrast of the display device can be improved. . In addition, specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the phosphor substrate and the display device are not limited to the above-described embodiments, and can be appropriately changed.
 以下、実施例および比較例によって本発明の態様をさらに詳細に説明するが、本発明の態様はこれらの例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the embodiments of the present invention are not limited to these examples.
(比較例)
 図13A及び図13Bを用いて、実施例の蛍光体基板に対する比較例の蛍光体基板を説明する。図13Aは、蛍光体基板の側面図である。図13Bは蛍光体基板の平面図である。
 基板101として、厚さ0.7mmの正方形状のガラスを用いた。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
 次に、基板101上に膜厚50μmの緑色蛍光体層102を、基板101の四隅に形成した。
(Comparative example)
A phosphor substrate of a comparative example with respect to the phosphor substrate of the example will be described with reference to FIGS. 13A and 13B. FIG. 13A is a side view of the phosphor substrate. FIG. 13B is a plan view of the phosphor substrate.
As the substrate 101, a square glass having a thickness of 0.7 mm was used. After washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, and isopropyl alcohol vapor cleaning 5 minutes were performed, followed by drying at 100 ° C. for 1 hour.
Next, green phosphor layers 102 having a thickness of 50 μm were formed on the substrate 101 at the four corners of the substrate 101.
 ここで、緑色蛍光体層102の形成は、まず、平均粒径4μmの緑色蛍光体(BaSiO:Eu2+)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 次に、作製した緑色蛍光体形成用塗液をスクリーン印刷法により、前記基板101上に幅100μm、ピッチ160μmでパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率2.0の緑色蛍光体層102を形成し、比較例としての蛍光体基板103を完成させた。
Here, the green phosphor layer 102 is formed by first adding 30 g of green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles having an average particle diameter of 4 μm and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol, followed by stirring with a disperser. The green phosphor forming coating solution was prepared by mixing.
Next, the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 μm and a pitch of 160 μm. Subsequently, it was heated and dried in a vacuum oven (200 ° C., 10 mmHg) for 4 hours to form a green phosphor layer 102 having a refractive index of 2.0, and a phosphor substrate 103 as a comparative example was completed.
(実施例1)
 図14A及び図14Bを用いて実施例1を説明する。本実施例では、蛍光体層に蛍光体の濃度勾配を持たせ、屈折率を調整した例について説明する。図14Aは、蛍光体基板の側面図を示す。図14Bは、製造途中での蛍光体基板の平面図と、完成した蛍光体基板の平面図を示す。
 比較例と同様にして洗浄及び乾燥したガラス基板101を用い、緑色蛍光体層104を、基板101の四隅に形成した。
 緑色蛍光体層104の形成は、まず、緑色蛍光体として平均粒径4μmのBaSiO:Eu2+粒子を用い、この緑色蛍光体(BaSiO:Eu2+)粒子20gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 次に、作製した緑色蛍光体形成用塗液をスクリーン印刷法により、前記基板101上に幅100μm、ピッチ160μmでパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図14Bに示すように屈折率1.6の緑色蛍光体層104aを25μmの膜厚で形成した。
Example 1
Example 1 will be described with reference to FIGS. 14A and 14B. In the present embodiment, an example in which the phosphor layer has a phosphor concentration gradient and the refractive index is adjusted will be described. FIG. 14A shows a side view of the phosphor substrate. FIG. 14B shows a plan view of the phosphor substrate during manufacture and a plan view of the completed phosphor substrate.
Using the glass substrate 101 cleaned and dried in the same manner as in the comparative example, green phosphor layers 104 were formed at the four corners of the substrate 101.
The green phosphor layer 104 is formed by first using Ba 2 SiO 4 : Eu 2+ particles having an average particle diameter of 4 μm as the green phosphor, and using 20 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and polyvinyl alcohol. 30 g of a 10 wt% aqueous solution was added and stirred and mixed by a disperser to prepare a green phosphor forming coating solution.
Next, the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 μm and a pitch of 160 μm. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and formed the green fluorescent substance layer 104a with a refractive index of 1.6 with a film thickness of 25 micrometers as shown to FIG. 14B.
 次いで、前記緑色蛍光体(BaSiO:Eu2+)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 その後、作製した緑色蛍光体形成用塗液をスクリーン印刷法により、前記緑色蛍光体層104a上に幅100μm、ピッチ160μmでパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図14Bに示すように屈折率2.0の緑色蛍光体層104bを25μmの膜厚で形成した。これにより、厚さ50μmの二層構造の緑色蛍光体層104を形成し、実施例1としての蛍光体基板105を完成させた。
Next, 30 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol were added, and the mixture was stirred and mixed by a disperser to prepare a green phosphor forming coating solution.
Thereafter, the prepared green phosphor-forming coating solution was applied by pattern printing onto the green phosphor layer 104a with a width of 100 μm and a pitch of 160 μm. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and formed the green fluorescent substance layer 104b of refractive index 2.0 with a film thickness of 25 micrometers as shown to FIG. 14B. Thereby, a green phosphor layer 104 having a two-layer structure with a thickness of 50 μm was formed, and the phosphor substrate 105 as Example 1 was completed.
 次に、このようにして作製した蛍光体基板105の緑色蛍光体104の表面側に、青色LEDから波長が450nmの光を励起光として照射し、市販の輝度計(BM-7:株式会社トップコンテクノハウス社製)を用いて基板101から射出された光の輝度を測定した。これにより、緑色蛍光体104で発光した光の25℃での輝度を測定した。また、前記比較例の緑色蛍光体102についても同様にして輝度を測定した。
 その結果、実施例1では比較例に対して1.2倍の輝度向上が観測された。輝度向上に関し、以下に考察する。
Next, the surface of the green phosphor 104 of the phosphor substrate 105 thus produced was irradiated with light having a wavelength of 450 nm as excitation light from a blue LED, and a commercially available luminance meter (BM-7: Top Co., Ltd.) was irradiated. The brightness of light emitted from the substrate 101 was measured using a Contechno House Co., Ltd. Thereby, the luminance at 25 ° C. of the light emitted from the green phosphor 104 was measured. The luminance of the green phosphor 102 of the comparative example was measured in the same manner.
As a result, in Example 1, a brightness improvement of 1.2 times compared to the comparative example was observed. The following will be considered regarding the luminance improvement.
 蛍光体層102、104の励起光入射側界面は、蛍光体層と屈折率1の空気層(第一の層)との間に存在する。蛍光体層102、104の蛍光取出し側界面は蛍光体層と屈折率1.5のガラス(基板101)との間に存在する。
 ここで、励起光入射側界面を考えると、比較例1及び実施例1は共に蛍光体層102、104の屈折率が空気層の屈折率よりも高い。よって、励起光の全反射ロスは両者共に発生しない。一方、蛍光取出し側界面を考えると、比較例及び実施例1共に蛍光体層の屈折率がガラス(第二の層)の屈折率よりも高い。よって、両者の屈折率差が高いほど蛍光の全反射ロスが多くなり、結果的に光取出し効率が悪くなる。
 比較例での屈折率差は0.5であるのに対し、実施例1での屈折率差は0.1である。
 よって、実施例1は比較例よりも光取出し効率が高くなるため、輝度が向上したと考えられる。
The excitation light incident side interface of the phosphor layers 102 and 104 exists between the phosphor layer and the air layer (first layer) having a refractive index of 1. The fluorescence extraction side interface of the phosphor layers 102 and 104 exists between the phosphor layer and glass (substrate 101) having a refractive index of 1.5.
Here, when considering the excitation light incident side interface, in Comparative Example 1 and Example 1, the refractive index of the phosphor layers 102 and 104 is higher than the refractive index of the air layer. Therefore, the total reflection loss of the excitation light does not occur in both. On the other hand, considering the fluorescence extraction side interface, the refractive index of the phosphor layer is higher than the refractive index of the glass (second layer) in both the comparative example and Example 1. Therefore, the higher the refractive index difference between the two, the greater the total reflection loss of fluorescence, resulting in poor light extraction efficiency.
The refractive index difference in the comparative example is 0.5, whereas the refractive index difference in Example 1 is 0.1.
Therefore, Example 1 is considered to have improved brightness because the light extraction efficiency is higher than that of the comparative example.
 なお、実施例1では蛍光体層104を104aと104bの2層で構成したが、蛍光体層104内での屈折率差が大きいと蛍光体層104内(蛍光体層104aと蛍光体層104bとの界面)で全反射ロスが生じる可能性がある。したがって、蛍光体層内の屈折率差が大きくなるのを防ぐため、分散濃度が異なる蛍光体層を3層以上積層することにより、蛍光体層内での屈折率差を緩やかに変化させることが好ましい。 In Example 1, the phosphor layer 104 is composed of two layers 104a and 104b. However, if the refractive index difference in the phosphor layer 104 is large, the phosphor layer 104 (the phosphor layer 104a and the phosphor layer 104b). Total reflection loss may occur at the interface). Therefore, in order to prevent the refractive index difference in the phosphor layer from becoming large, it is possible to gently change the refractive index difference in the phosphor layer by stacking three or more phosphor layers having different dispersion concentrations. preferable.
 (実施例2)
 図15A及び図15Bを用いて実施例2を説明する。本実施例では、蛍光体層の蛍光体の粒径分布を変化させ、屈折率を調整した例について説明する。図15Aは蛍光体基板の側面図を示す。図15Bは、製造途中での蛍光体基板の平面図と、完成した蛍光体基板の平面図を示す。
 比較例と同様にして洗浄及び乾燥したガラス基板101を用い、緑色蛍光体層106を、基板101の四隅に形成した。
 緑色蛍光体層106の形成は、まず、緑色蛍光体として平均粒径500nmのBaSiO:Eu2+粒子を用い、この緑色蛍光体(BaSiO:Eu2+)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 次に、作製した緑色蛍光体形成用塗液をスクリーン印刷法により、前記基板101上に幅100μm、ピッチ160μmでパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図15Bに示すように、屈折率1.6の緑色蛍光体層106aを25μmの膜厚で形成した。
(Example 2)
Example 2 will be described with reference to FIGS. 15A and 15B. In this embodiment, an example in which the refractive index is adjusted by changing the particle size distribution of the phosphor in the phosphor layer will be described. FIG. 15A shows a side view of the phosphor substrate. FIG. 15B shows a plan view of the phosphor substrate during manufacture and a plan view of the completed phosphor substrate.
Using the glass substrate 101 cleaned and dried in the same manner as in the comparative example, green phosphor layers 106 were formed at the four corners of the substrate 101.
The green phosphor layer 106 is formed by first using Ba 2 SiO 4 : Eu 2+ particles having an average particle diameter of 500 nm as the green phosphor, and using 30 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and polyvinyl alcohol. 30 g of a 10 wt% aqueous solution was added and stirred and mixed by a disperser to prepare a green phosphor forming coating solution.
Next, the prepared green phosphor forming coating solution was applied by pattern printing on the substrate 101 with a width of 100 μm and a pitch of 160 μm. Then, it heat-dried for 4 hours in the vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 15B, the refractive index 1.6 green fluorescent substance layer 106a was formed with the film thickness of 25 micrometers.
 次いで、平均粒径4μmの緑色蛍光体(BaSiO:Eu2+)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 その後、作製した緑色蛍光体形成用塗液をスクリーン印刷法により、前記緑色蛍光体層106a上に幅100μm、ピッチ160μmでパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図15Bに示すように、屈折率2.0の緑色蛍光体層106bを25μmの膜厚で形成した。これにより、厚さ50μmの二層構造の緑色蛍光体層106を形成し、実施例2としての蛍光体基板107を完成させた。
Next, 30 g of green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles having an average particle diameter of 4 μm and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred and mixed by a disperser to produce a green phosphor forming coating solution. did.
Thereafter, the prepared green phosphor-forming coating solution was applied by pattern printing onto the green phosphor layer 106a with a width of 100 μm and a pitch of 160 μm. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 15B, the refractive index 2.0 green fluorescent substance layer 106b was formed with the film thickness of 25 micrometers. Thereby, a green phosphor layer 106 having a two-layer structure with a thickness of 50 μm was formed, and a phosphor substrate 107 as Example 2 was completed.
 次に、このようにして作製した蛍光体基板107の緑色蛍光体106の表面側に、青色LEDから波長が450nmの光を励起光として照射し、市販の輝度計(BM-7:株式会社トップコンテクノハウス社製)を用いて基板101から射出された光の輝度を測定した。これにより、緑色蛍光体106で発光した光の25℃での輝度を測定した。
 その結果、実施例2では比較例に対して1.3倍の輝度向上が観測された。輝度向上に関し、以下に考察する。
Next, the surface of the green phosphor 106 of the phosphor substrate 107 thus produced was irradiated with excitation light with light having a wavelength of 450 nm from a blue LED, and a commercially available luminance meter (BM-7: Top Co., Ltd.) was irradiated. The brightness of light emitted from the substrate 101 was measured using a Contechno House Co., Ltd. Thereby, the luminance at 25 ° C. of the light emitted from the green phosphor 106 was measured.
As a result, in Example 2, a luminance improvement of 1.3 times that of the comparative example was observed. The following will be considered regarding the luminance improvement.
 蛍光体層106の励起光入射側界面は、前記実施例1、比較例と同様に蛍光体層と屈折率1の空気層(第一の層)との間に存在する。蛍光体層106の蛍光取出し側界面は該蛍光体層と屈折率1.5のガラスとの間に存在する。
 ここで、励起光入射側界面を考えると、比較例及び実施例2共に蛍光体層102、106の屈折率は空気層の屈折率よりも高い。よって、励起光の全反射ロスは両者共発生しない。一方、蛍光取出し側界面を考えると、比較例及び実施例2共に蛍光体層の屈折率がガラス(第二の層)の屈折率よりも高い。よって、両者の屈折率差が高いほど蛍光の全反射ロスが多くなり、結果的に光取出し効率が悪くなる。
 比較例での屈折率差は0.5であるのに対し、実施例2での屈折率差は0.1である。
 よって、実施例2は比較例よりも光取出し効率が高くなるため、輝度が向上したと考えられる。さらに、蛍光体層106aの粒径がnmオーダーと小さいので、光の散乱が抑えられ、実施例1よりも輝度が向上したと考えられる。
The excitation light incident side interface of the phosphor layer 106 exists between the phosphor layer and the air layer (first layer) having a refractive index of 1 as in the first and comparative examples. The fluorescence extraction side interface of the phosphor layer 106 exists between the phosphor layer and glass having a refractive index of 1.5.
Here, considering the excitation light incident side interface, the refractive index of the phosphor layers 102 and 106 is higher than the refractive index of the air layer in both the comparative example and the example 2. Therefore, the total reflection loss of the excitation light does not occur in both cases. On the other hand, considering the fluorescence extraction side interface, the refractive index of the phosphor layer is higher than the refractive index of the glass (second layer) in both the comparative example and the example 2. Therefore, the higher the refractive index difference between the two, the greater the total reflection loss of fluorescence, resulting in poor light extraction efficiency.
The refractive index difference in the comparative example is 0.5, whereas the refractive index difference in Example 2 is 0.1.
Therefore, Example 2 is considered to have improved brightness because the light extraction efficiency is higher than that of the comparative example. Furthermore, since the particle size of the phosphor layer 106a is as small as nm order, light scattering is suppressed, and it is considered that the luminance is improved as compared with Example 1.
 なお、実施例2は蛍光体層106を106aと106bの2層で構成したが、蛍光体層106内での屈折率差が大きくなると蛍光体層106内(蛍光体層106aと蛍光体層106bとの界面)で全反射ロスが生じる可能性がある。したがって、蛍光体層内の屈折率差が大きくなるのを防ぐため、粒径が異なる蛍光体層を3層以上積層することにより、光体層内での屈折率差を緩やかに変化させることが好ましい。 In Example 2, the phosphor layer 106 is composed of two layers 106a and 106b. However, when the refractive index difference in the phosphor layer 106 increases, the phosphor layer 106 (the phosphor layer 106a and the phosphor layer 106b). Total reflection loss may occur at the interface). Therefore, in order to prevent the refractive index difference in the phosphor layer from increasing, the refractive index difference in the phosphor layer can be gradually changed by stacking three or more phosphor layers having different particle diameters. preferable.
(実施例3)[側面散乱膜と背面波長選択透過反射膜を採用した例]
 図16A~図16Hを用いて実施例3を説明する。本実施例では、蛍光体基板に、側面散乱膜と背面波長選択透過反射膜を採用した例について説明する。図16A~図16Dは、蛍光体基板の製造方法の工程を示す側断面図である。図16E~図16Hは、蛍光体基板の製造方法の工程を示す平面図である。
 実施例1と同様にして洗浄及び乾燥したガラス基板101を用い、緑色蛍光体層104を、基板101の四隅に形成した。
 まず、基板101上に、白色レジストを70μm枠、膜厚60μm、160μmピッチで順テーパー形状にパターン形成し、図16A及び図16Eに示すように障壁108を作製した。
(Example 3) [Example in which side scattering film and rear wavelength selective transmission / reflection film are employed]
Embodiment 3 will be described with reference to FIGS. 16A to 16H. In this embodiment, an example will be described in which a side scattering film and a backside wavelength selective transmission / reflection film are employed for a phosphor substrate. 16A to 16D are side sectional views showing steps of the method for manufacturing the phosphor substrate. 16E to 16H are plan views showing the steps of the method for manufacturing the phosphor substrate.
Using the glass substrate 101 cleaned and dried in the same manner as in Example 1, green phosphor layers 104 were formed at the four corners of the substrate 101.
First, a white resist pattern was formed in a forward taper shape with a 70 μm frame, a film thickness of 60 μm, and a pitch of 160 μm on the substrate 101, and a barrier 108 was produced as shown in FIGS. 16A and 16E.
 次に、実施例1と同様にして、図16B及び図16Fに示すように障壁108に囲まれた領域に蛍光体層104a、104bをこの順でディスペンサー手法により形成し、蛍光体層104を形成した。
 次いで、得られる蛍光体基板に表面高さの不釣り合いが形成されるのを最小限に抑えるため、アクリル樹脂をスピンコート法により厚さ20μmで基板101の表面全体に塗布した。続いて、120℃で30分加熱することにより、図16C及び図16Gに示すように屈折率1.7の平坦化層109を形成した。
 その後、平坦化膜109上に酸化チタン(TiO2:屈折率=2.30)と酸化シリコン(SiO2:屈折率=1.47)とをEB蒸着法で交互に6層成膜し、図16D及び図16Hに示すように、膜厚2μmの波長選択透過反射膜110を形成し、実施例3としての蛍光体基板111を完成させた。
Next, in the same manner as in Example 1, as shown in FIGS. 16B and 16F, the phosphor layers 104a and 104b are formed in this order in the region surrounded by the barrier 108 by the dispenser method to form the phosphor layer 104. did.
Next, an acrylic resin was applied to the entire surface of the substrate 101 with a thickness of 20 μm by a spin coating method in order to minimize the occurrence of surface height imbalance on the obtained phosphor substrate. Subsequently, by heating at 120 ° C. for 30 minutes, a planarization layer 109 having a refractive index of 1.7 was formed as shown in FIGS. 16C and 16G.
Thereafter, six layers of titanium oxide (TiO2: refractive index = 2.30) and silicon oxide (SiO2: refractive index = 1.47) are alternately formed on the planarizing film 109 by the EB vapor deposition method. As shown in FIG. 16H, a wavelength selective transmission / reflection film 110 having a thickness of 2 μm was formed, and a phosphor substrate 111 as Example 3 was completed.
 次に、このようにして作製した蛍光体基板111の、波長選択透過反射膜110側より緑色蛍光体104の表面に青色LEDから波長が450nmの光を励起光として照射し、市販の輝度計(BM-7:株式会社トップコンテクノハウス社製)を用いて基板101から射出された光の輝度を測定した。これにより、緑色蛍光体104で発光した光の25℃での輝度を測定した。
 その結果、実施例3では実施例1に対して2.5倍の輝度向上が観測された。輝度向上に関し、以下に考察する。
Next, light having a wavelength of 450 nm is emitted as excitation light from the blue LED to the surface of the green phosphor 104 from the wavelength selective transmission / reflection film 110 side of the phosphor substrate 111 thus manufactured, and a commercially available luminance meter ( The brightness of light emitted from the substrate 101 was measured using BM-7 (manufactured by Topcontec House Co., Ltd.). Thereby, the luminance at 25 ° C. of the light emitted from the green phosphor 104 was measured.
As a result, in Example 3, a brightness improvement of 2.5 times that in Example 1 was observed. The following will be considered regarding the luminance improvement.
 蛍光体層104からの発光は等方的なので、蛍光体層104の側方や背面に向かう蛍光成分は実施例1ではロスになる。これに対し、実施例3では蛍光体層104の側方に向かう蛍光成分は障壁108によって散乱されて蛍光体層104に戻り、光取出し方向へ再利用可能となる。また、蛍光体層104の背面に向かう蛍光成分は波長選択透過反射膜110によって蛍光体層104に戻り、光取出し方向へ再利用可能となる。したがって、実施例3のような構造を採ることで、実施例1よりもさらに輝度を向上させることができる。 Since the light emission from the phosphor layer 104 is isotropic, the fluorescent component directed to the side and back of the phosphor layer 104 is lost in the first embodiment. On the other hand, in Example 3, the fluorescent component directed to the side of the phosphor layer 104 is scattered by the barrier 108 and returns to the phosphor layer 104 so that it can be reused in the light extraction direction. Further, the fluorescent component toward the back surface of the phosphor layer 104 returns to the phosphor layer 104 by the wavelength selective transmission / reflection film 110 and can be reused in the light extraction direction. Therefore, by adopting the structure as in the third embodiment, the luminance can be further improved as compared with the first embodiment.
 なお、障壁108としては、光散乱ではなく、光反射を利用する銀やアルミニウムなどの金属を用いてもよい。また、障壁108全体を光散乱や光反射性の材料で構成する必要はなく、少なくとも障壁108の表面に光散乱や光反射性の膜が形成されていればよい。
 さらに、波長選択透過反射膜110に関しても、多層膜ではなく、金属薄膜や合金薄膜によって形成してもよい。
Note that the barrier 108 may be made of metal such as silver or aluminum using light reflection instead of light scattering. Further, the entire barrier 108 does not need to be made of a light scattering or light reflecting material, and it is sufficient that a light scattering or light reflecting film is formed at least on the surface of the barrier 108.
Further, the wavelength selective transmission / reflection film 110 may be formed of a metal thin film or an alloy thin film instead of a multilayer film.
(実施例4)[青色有機ELと蛍光体方式を採用した例]
 図17A~図18Fを用いて実施例4を説明する。本実施例では、青色有機EL素子と蛍光体方式を採用した例について説明する。図17A~図17Dは、蛍光体基板の製造方法の工程示す側断面図を示す。図17E図17Hは、蛍光体基板の製造方法の工程示す平面図である。また、図18A図18Cは、光源側基板の製造方法の工程を示す側断面図である。図18D図18Fは、光源側基板の製造方法の工程を示す平面図である。
(Example 4) [Example of adopting blue organic EL and phosphor system]
Embodiment 4 will be described with reference to FIGS. 17A to 18F. In this embodiment, an example in which a blue organic EL element and a phosphor system are employed will be described. 17A to 17D are side sectional views showing the steps of the method for manufacturing the phosphor substrate. FIG. 17E and FIG. 17H are plan views showing the steps of the method for manufacturing the phosphor substrate. 18A and 18C are side cross-sectional views showing the steps of the method for manufacturing the light source side substrate. 18D and 18F are plan views showing the steps of the method for manufacturing the light source side substrate.
 実施例1と同様にして洗浄及び乾燥したガラス基板101を用い、赤色蛍光体層112、緑色蛍光体層113、青色散乱体層114を形成し、蛍光体基板115を形成した。
 まず、基板101上に、スクリーン印刷手法によって銀ペーストを幅70μm、膜厚60μm、160μmピッチで順テーパー形状にパターン形成し、図17A及び図17Eに示すように反射障壁116を作製した。
 次に、反射障壁116に囲まれた領域に、赤色蛍光体層112、緑色蛍光体層113、青色散乱体層114を以下のようにして形成した。
Using the glass substrate 101 cleaned and dried in the same manner as in Example 1, the red phosphor layer 112, the green phosphor layer 113, and the blue scatterer layer 114 were formed, and the phosphor substrate 115 was formed.
First, a silver paste was formed into a forward taper pattern with a width of 70 μm, a film thickness of 60 μm, and a pitch of 160 μm on the substrate 101 by a screen printing method, and a reflection barrier 116 was produced as shown in FIGS. 17A and 17E.
Next, a red phosphor layer 112, a green phosphor layer 113, and a blue scatterer layer 114 were formed in the region surrounded by the reflection barrier 116 as follows.
 赤色蛍光体層112の形成では、まず、平均粒径4μmの赤色蛍光体(KEu2.5(WO6.25)粒子20gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して赤色蛍光体形成用塗液を作製した。
 次いで、作製した赤色蛍光体形成用塗液をディスペンサー手法により、前記反射障壁116間の所定領域にパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図17Bに示すように屈折率1.6の赤色蛍光体層112aを膜厚25μmでパターン形成した。
In the formation of the red phosphor layer 112, first, 20 g of red phosphor (K 5 Eu 2.5 (WO 4 ) 6.25 ) particles having an average particle diameter of 4 μm and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added, and a disperser is added. The mixture was stirred and mixed to prepare a red phosphor forming coating solution.
Next, the prepared red phosphor forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser technique. Subsequently, it was heated and dried in a vacuum oven (200 ° C., 10 mmHg) for 4 hours, and a red phosphor layer 112a having a refractive index of 1.6 was patterned with a film thickness of 25 μm as shown in FIG. 17B.
 次に、前記赤色蛍光体(KEu2.5(WO6.25)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して赤色蛍光体形成用塗液を作製した。
 次いで、作製した赤色蛍光体形成用塗液をディスペンサー手法により、前記赤色蛍光体層112a上にパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率2.0の赤色蛍光体層112bを25μmの膜厚で形成した。これにより、図17B及び図17Fに示すように厚さ50μmの二層構造の赤色蛍光体層112を形成した。
Next, 30 g of the red phosphor (K 5 Eu 2.5 (WO 4 ) 6.25 ) particles and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added, and the mixture is stirred and mixed by a disperser to form a red phosphor forming coating. A liquid was prepared.
Next, the prepared red phosphor forming coating solution was applied onto the red phosphor layer 112a by a dispenser method. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and formed the red fluorescent substance layer 112b with a refractive index of 2.0 with the film thickness of 25 micrometers. As a result, a red phosphor layer 112 having a two-layer structure having a thickness of 50 μm was formed as shown in FIGS. 17B and 17F.
 次に、緑色蛍光体層113の形成では、まず、平均粒径4μmの緑色蛍光体(BaSiO:Eu2+)粒子20gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 次いで、作製した緑色蛍光体形成用塗液をディスペンサー手法により、前記反射障壁116間の所定領域にパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図17Cに示すように屈折率1.6の緑色蛍光体層113aを膜厚25μmでパターン形成した。
Next, in the formation of the green phosphor layer 113, first, 20 g of green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles having an average particle diameter of 4 μm and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred by a disperser. The green phosphor forming coating solution was prepared by mixing.
Next, the prepared green phosphor forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser method. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 17C, the green phosphor layer 113a with a refractive index of 1.6 was pattern-formed by the film thickness of 25 micrometers.
 次いで、前記緑色蛍光体(BaSiO:Eu2+)粒子30gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して緑色蛍光体形成用塗液を作製した。
 次いで、作製した緑色蛍光体形成用塗液をディスペンサー手法により、前記緑色蛍光体層113a上にパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、屈折率2.0の緑色蛍光体層113bを25μmの膜厚で形成した。これにより、図17C及び図17Gに示すように厚さ50μmの二層構造の赤色蛍光体層112を形成した。
Next, 30 g of the green phosphor (Ba 2 SiO 4 : Eu 2+ ) particles and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol were added, and the mixture was stirred and mixed by a disperser to prepare a green phosphor forming coating solution.
Next, the produced green phosphor forming coating solution was applied onto the green phosphor layer 113a by a dispenser method. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and formed the green fluorescent substance layer 113b with a refractive index of 2.0 with the film thickness of 25 micrometers. Thereby, as shown in FIGS. 17C and 17G, a red phosphor layer 112 having a two-layer structure having a thickness of 50 μm was formed.
 次に、青色散乱体層の形成では、まず、平均粒径1.5μmのシリカ粒子(屈折率:1.65)20gとポリビニルアルコールの10wt%水溶液30gとを加え、分散機により撹拌し混合して青色散乱体層形成用塗液を作製した。
 次いで、作製した青色散乱体層形成用塗液をディスペンサー手法により、前記反射障壁116間の所定領域にパターン塗布した。続いて、真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥し、図17D図17Hに示すように屈折率1.6の青色散乱体層114を膜厚50μmでパターン形成した。
 以上により、蛍光体基板115を作製した。
Next, in the formation of the blue scatterer layer, first, 20 g of silica particles (refractive index: 1.65) having an average particle diameter of 1.5 μm and 30 g of a 10 wt% aqueous solution of polyvinyl alcohol are added and stirred and mixed by a disperser. Thus, a coating liquid for forming a blue scatterer layer was prepared.
Next, the prepared blue scatterer layer forming coating solution was applied to a predetermined region between the reflection barriers 116 by a dispenser technique. Then, it heat-dried for 4 hours in vacuum oven (200 degreeC, 10 mmHg conditions), and as shown to FIG. 17D FIG. 17H, the blue scatterer layer 114 of refractive index 1.6 was pattern-formed with the film thickness of 50 micrometers.
Thus, the phosphor substrate 115 was produced.
 次に、実施例1と同様にして洗浄及び乾燥したガラス基板101を用い、励起光源4として有機EL素子を用いた光源側基板を形成した。
 まず、0.7mmの厚みのガラス基板101上に、銀を膜厚100nmとなるようスパッタ法により反射電極を成膜し、その上にインジウム-スズ酸化物(ITO)を膜厚20nmとなるようスパッタ法により成膜し、図18A及び図18Dに示すように第1電極141として反射電極(陽極)を形成した。従来のフォトリソグラフィー法により、第1電極141の幅が70μm幅、ピッチが160μmでストライプ状にパターニングした。
Next, using the glass substrate 101 cleaned and dried in the same manner as in Example 1, a light source side substrate using an organic EL element as the excitation light source 4 was formed.
First, a reflective electrode is formed on a glass substrate 101 having a thickness of 0.7 mm by a sputtering method so that silver has a thickness of 100 nm, and indium-tin oxide (ITO) has a thickness of 20 nm on the reflective electrode. A film was formed by sputtering, and a reflective electrode (anode) was formed as the first electrode 141 as shown in FIGS. 18A and 18D. The first electrode 141 was patterned in a stripe pattern with a width of 70 μm and a pitch of 160 μm by a conventional photolithography method.
 次に、基板101上にSiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、図18B及び図18Eに示すように第1電極141のエッジ部のみを覆うようにパターン化し、エッジカバー142を形成した。ここでは、第1電極141の端から5μm分だけ短辺をSiOで覆う構造とした。これを水洗した後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, SiO 2 is deposited to 200 nm on the substrate 101 by sputtering, and is patterned by a conventional photolithography method so as to cover only the edge portion of the first electrode 141 as shown in FIGS. 18B and 18E. 142 was formed. Here, the short side is covered with SiO 2 by 5 μm from the end of the first electrode 141. This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
 次いで、この基板101を抵抗加熱蒸着装置内の基板ホルダーに固定し、抵抗加熱蒸着装置内を1×10-4Pa以下の真空まで減圧して、図18C及び図18Fに示すように有機発光層を含む有機EL層143を抵抗加熱蒸着法によって形成した。
 まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
 次に正孔輸送材料として、N,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、抵抗加熱蒸着法によって膜厚40nmの正孔輸送層を形成した。
Next, the substrate 101 is fixed to a substrate holder in a resistance heating vapor deposition apparatus, and the inside of the resistance heating vapor deposition apparatus is depressurized to a vacuum of 1 × 10 −4 Pa or less to form an organic light emitting layer as shown in FIGS. 18C and 18F. An organic EL layer 143 containing was formed by resistance heating vapor deposition.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
 次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成する。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。
 次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔ブロッキング層(厚さ:10nm)を形成した。
 次いで、正孔ブロッキング層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq3)を用いて電子輸送層(厚さ:30nm)を形成した。
 次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, a blue organic light emitting layer (thickness: 30 nm) is formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
 その後、第2電極144として半透明電極を形成した。まず、前記基板101を金属蒸着用チャンバーに固定した。次に、第2電極144形成用のシャドーマスク(前記第1電極141のストライプと対抗する向きに70μm幅、160μmピッチのストライプ状に第2電極144を形成できるように開口部が空いているマスク)と前記基板101とをアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着でマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。さらにその上に、干渉効果を強調する目的、及び、第2電極144での配線抵抗による電圧降下を防止する目的で、銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)した。 Thereafter, a translucent electrode was formed as the second electrode 144. First, the substrate 101 was fixed in a metal deposition chamber. Next, a shadow mask for forming the second electrode 144 (a mask having an opening so that the second electrode 144 can be formed in a stripe shape having a width of 70 μm and a pitch of 160 μm in a direction opposite to the stripe of the first electrode 141. ) And the substrate 101, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 Å / sec and 0.9 Å / sec, respectively. A pattern was formed (thickness: 1 nm). Furthermore, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness: 19 nm) for the purpose of enhancing the interference effect and preventing voltage drop due to wiring resistance at the second electrode 144. )did.
 これにより、第2電極144が形成される。ここで、有機EL素子としては、反射電極(第1電極141)と半透過電極(第2電極144)間でマイクロキャビティ効果(干渉効果)が発現し、正面輝度を高めることが可能となり、有機EL素子からの発光エネルギーをより効率良く、蛍光体層に伝搬させることが可能となる。また、同様にマイクロキャビティ効果により発光ピークを460nm、半値幅を50nmに調整している。 Thereby, the second electrode 144 is formed. Here, as an organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode 141) and the semi-transmissive electrode (second electrode 144), and the front luminance can be increased. Light emission energy from the EL element can be more efficiently propagated to the phosphor layer. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
 次に、プラズマCVD法により、3μmのSiOからなる無機保護層を、シャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成する(図示せず)。以上により、有機EL素子を備えてなる光源側基板を作製した。 Next, an inorganic protective layer made of 3 μm of SiO 2 is patterned by plasma CVD from the edge of the display unit to the sealing area of 2 mm in the vertical and horizontal directions (not shown). The light source side substrate provided with the organic EL element was produced as described above.
 次に、以上のようにして作製した光源側基板(有機EL素子基板)と蛍光体基板115とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。なお、この前に蛍光体基板115には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着させ、80℃、2時間加熱することで硬化を行った。この貼り合わせ工程は、有機ELの水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
 最後に、周辺に形成している端子を外部電源に接続することで有機EL表示装置を完成させた。
Next, the light source side substrate (organic EL element substrate) produced as described above and the phosphor substrate 115 were aligned using an alignment marker formed outside the display unit. Prior to this, a thermosetting resin was applied to the phosphor substrate 115, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 80 ° C. for 2 hours. This bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
Finally, an organic EL display device was completed by connecting terminals formed in the periphery to an external power source.
 ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし、赤色蛍光体層、緑色蛍光体層で青色光から発光をそれぞれ赤色、緑色に変換し、赤色、緑色の等方発光が得られ、かつ、青色散乱体層を介することで、等方的な青色発光を得ることができた。このようにして、フルカラー表示が可能で、良好な画像、視野角特性の良い画像を得ることができた。
 なお、この実施例4では、青色散乱体層114は散乱体粒子濃度の異なる層を積層していないが、当然のことながら、散乱体粒子濃度の異なる層を積層して青色散乱体層を形成してもよい。
Here, a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source. By converting to red and green, isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
In Example 4, the blue scatterer layer 114 is not formed by stacking layers having different scatterer particle concentrations, but naturally, layers having different scatterer particle concentrations are stacked to form a blue scatterer layer. May be.
 (実施例5)
 本実施例では、アクティブ駆動青色有機EL素子と蛍光体方式を採用した例について説明する。蛍光体基板は実施例4と同様にして作製した。
 100mm×100mm角のガラス基板上に、PECVD法を用いて、アモルファスシリコン半導体膜を形成した。続いて、結晶化処理を施すことにより多結晶シリコン半導体膜を形成した。次に、フォトリソグラフィー法を用いて多結晶シリコン半導体膜を複数の島状にパターンニングした。続いて、パターニングした多結晶シリコン半導体層の上にゲート絶縁膜及びゲート電極層をこの順番で形成し、フォトリソグラフィー法を用いてパターニングを行った。
(Example 5)
In this embodiment, an example in which an active drive blue organic EL element and a phosphor system are employed will be described. The phosphor substrate was produced in the same manner as in Example 4.
An amorphous silicon semiconductor film was formed on a 100 mm × 100 mm square glass substrate by PECVD. Subsequently, a polycrystalline silicon semiconductor film was formed by performing a crystallization treatment. Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by using a photolithography method. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed using a photolithography method.
 その後、パターニングした多結晶シリコン半導体膜にリン等の不純物元素をドーピングすることにより、ソースおよびドレイン領域を形成し、TFT素子を作製した。その後、平坦化膜を形成した。平坦化膜としては、PECVD法で形成した窒化シリコン膜、スピンコーターでアクリル系樹脂層をこの順で積層して形成した。まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることにより、ソースまたはドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成した。以上の工程を経て、アクティブマトリクス基板を完成させた。平坦化膜としての機能は、アクリル系樹脂層で実現される。なお、TFTのゲート電位を定電位にするためのコンデンサーは、スイッチング用TFTのドレインと駆動用TFTのソースとの間に層間絶縁膜等の絶縁膜を介することで形成される。 Thereafter, the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was produced. Thereafter, a planarizing film was formed. The planarizing film was formed by laminating a silicon nitride film formed by PECVD and an acrylic resin layer in this order using a spin coater. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source or drain region, and then a source wiring was formed. Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film. Through the above steps, an active matrix substrate was completed. The function as a planarizing film is realized by an acrylic resin layer. Note that the capacitor for setting the gate potential of the TFT to a constant potential is formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT.
 アクティブマトリクス基板上には、平坦化層を貫通して駆動用TFTと、赤色発光有機EL素子の第1電極、緑色発光有機EL素子の第1電極、青色発光有機EL素子の第1電極とをそれぞれ電気的に接続するコンタクトホールを形成した。
 次に、各発光画素を駆動する為のTFTと接続した平坦化層を貫通して設けられたコンタクトホールに電気的に接続するように、スパッタ法により、各画素の第1電極(陽極)を形成した。第1電極は、Al(アルミニウム)150nmとIZO(酸化インジウム-酸化亜鉛)20nmの膜厚で積層して形成した。次に、第1電極を各画素に対応した形状に従来のフォトリソグラフィー法でパターン化した。ここでは、第1電極の面積としては、70μm×70μmとした。また、100mm×100mm角の基板に形成する、表示部は、80mm×80mmで、表示部の上下左右に設けている2mm幅の封止エリアが設け、短辺側にはさらに封止エリアの外にそれぞれ2mmの端子取出し部が設けた。長辺側は、折り曲げを行う方に、2mm端子取出し部が設けた。
A driving TFT, a first electrode of a red light emitting organic EL element, a first electrode of a green light emitting organic EL element, and a first electrode of a blue light emitting organic EL element are provided on the active matrix substrate through the planarization layer. Contact holes were formed for electrical connection.
Next, the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization layer connected to the TFT for driving each light emitting pixel. Formed. The first electrode was formed by laminating with a thickness of Al (aluminum) 150 nm and IZO (indium oxide-zinc oxide) 20 nm. Next, the first electrode was patterned into a shape corresponding to each pixel by a conventional photolithography method. Here, the area of the first electrode was set to 70 μm × 70 μm. In addition, the display portion formed on a 100 mm × 100 mm square substrate is 80 mm × 80 mm, and a 2 mm wide sealing area provided on the top, bottom, left and right of the display portion is provided. Each was provided with a 2 mm terminal lead-out part. On the long side, a 2 mm terminal lead-out portion was provided on the side to be bent.
 次に、第1電極上に、SiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、第1電極のエッジ部を覆うようにパターニングした。ここでは、第1電極の端から10μm分だけ4辺をSiOで覆う構造とし、エッジカバーとした。
 次に、前記アクティブ基板を洗浄した。アクティブ基板の洗浄としては、例えば、アセトン、IPAを用いて、超音波洗浄を10分間行い、次に、UV-オゾン洗浄を30分間行った。
Next, 200 nm of SiO 2 was laminated on the first electrode by sputtering, and was patterned by a conventional photolithography method so as to cover the edge portion of the first electrode. Here, a structure in which four sides from the end of the first electrode by 10 μm are covered with SiO 2 to form an edge cover.
Next, the active substrate was cleaned. As the cleaning of the active substrate, for example, acetone and IPA were used for ultrasonic cleaning for 10 minutes, and then UV-ozone cleaning was performed for 30 minutes.
 次に、この基板をインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。各有機層の成膜を行った。
 まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。
 次に正孔輸送材料として、N,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。
 次いで、正孔輸送層の上に青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。
 次いで、発光層の上に2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した。
 次いで、正孔ブロッキング層の上にトリス(8-ヒドロキシキノリン)アルミニウム(Alq3)を用いて電子輸送層(厚さ:30nm)を形成した。
 次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, this substrate was fixed to a substrate holder in an in-line type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less. Each organic layer was formed.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used, and a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition.
Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a thickness of 40 nm was formed by resistance heating vapor deposition.
Next, a blue organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
 その後、第2電極として半透明電極を形成した。まず、前記基板を金属蒸着用チャンバーに固定した。次に、第2電極形成用のシャドーマスク(前記第1電極のストライプと対抗する向きに2mm幅のストライプ状に第2電極を形成できるように開口部が空いているマスク)と前記基板をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着によってマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。さらに、その上に、干渉効果を強調する目的、及び、第2電極での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で銀を所望のパターンで形成(厚さ:19nm)した。これにより、第2電極を形成した。ここで、有機EL素子としては、反射電極(第1電極)と半透過電極(第2電極)との間でマイクロキャビティ効果(干渉効果)が発現し、正面輝度を高めることが可能となり、有機EL素子からの発光エネルギーをより効率良く、蛍光体層に伝搬させることが可能となる。また、同様にマイクロキャビティ効果により、発光ピークを460nm、半値幅を50nmに調整している。 Thereafter, a semitransparent electrode was formed as the second electrode. First, the substrate was fixed to a metal deposition chamber. Next, the shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode) and the substrate are aligned. Then, on the surface of the electron injection layer, magnesium and silver are formed in a desired pattern by co-evaporation at a deposition rate of 0.1 Å / sec and 0.9 Å / sec by vacuum evaporation, respectively (thickness: 1 nm) )did. Furthermore, silver is formed in a desired pattern (thickness: at a deposition rate of 1 Å / sec) for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode. 19 nm). Thereby, the second electrode was formed. Here, as the organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be increased. Light emission energy from the EL element can be more efficiently propagated to the phosphor layer. Similarly, the emission peak is adjusted to 460 nm and the half-value width is adjusted to 50 nm by the microcavity effect.
 次に、プラズマCVD法により、3μmのSiOからなる無機保護層を、シャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した。以上により、アクティブ駆動型有機EL素子基板を作製した。
 次に、以上のようにして作製したアクティブ駆動型有機EL素子基板と蛍光体基板を、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。なお、この前に蛍光体基板には熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着させ、90℃、2時間加熱することで硬化を行った。また、前記貼り合わせ工程は、有機ELの水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
Next, an inorganic protective layer made of SiO 2 having a thickness of 3 μm was formed by patterning from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions by a plasma CVD method. Thus, an active drive type organic EL element substrate was produced.
Next, the active drive type organic EL element substrate and the phosphor substrate produced as described above were aligned using an alignment marker formed outside the display unit. Prior to this, a thermosetting resin was applied to the phosphor substrate, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 90 ° C. for 2 hours. The bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
 次に、光取り出し方向の基板に偏光板を張り合わせ、アクティブ駆動型有機ELを完成させた。
 最後に、短辺側に形成している端子を、ソースドライバを介して電源回路に、長辺側に形成している端子を、ゲートドライバを介して外部電源に接続することで、80mm×80mmの表示部を持つアクティブ駆動型有機ELディスプレイを完成させた。
 ここで、外部電源により所望の電流を各画素に印加することで青色発光有機ELを任意にスイッチング可能な励起光源とし、赤色蛍光体層、緑色蛍光体層で青色光から発光をそれぞれ赤色、緑色に変換し、赤色、緑色の等方発光が得られ、かつ、青色散乱体層を介することで、等方的な青色発光を得ることができた。このようにして、フルカラー表示が可能で、良好な画像、視野角特性の良い画像を得ることができた。
Next, a polarizing plate was attached to the substrate in the light extraction direction to complete an active drive organic EL.
Finally, the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, so that 80 mm × 80 mm An active drive type organic EL display having the display part of FIG.
Here, a blue light emitting organic EL is used as an excitation light source that can be arbitrarily switched by applying a desired current to each pixel from an external power source, and red light and green light are emitted from blue light in a red phosphor layer and a green phosphor layer, respectively. And isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
 (実施例6)
 本実施例では、青色LEDと蛍光体方式を採用した例について説明する。蛍光体基板は実施例4と同様にして作製した。
 TMG(トリメチルガリウム)とNHとを用い、反応容器にセットしたサファイア基板のC面に550℃でGaNよりなるバッファ層を60nmの膜厚で成長させた。次に、温度を1050℃まで上げ、TMG、NHに加えSiHガスを用い、Siドープn型GaNよりなるn型コンタクト層を5μmの膜厚で成長させた。続いて、原料ガスにTMA(トリメチルアルミニウム)を加え、同じく1050℃でSiドープn型Al0.3Ga0.7N層よりなる第2のクラッド層を0.2μmの膜厚で成長させた。
(Example 6)
In this embodiment, an example in which a blue LED and a phosphor system are employed will be described. The phosphor substrate was produced in the same manner as in Example 4.
Using TMG (trimethylgallium) and NH 3 , a buffer layer made of GaN was grown to a thickness of 60 nm on the C surface of the sapphire substrate set in the reaction vessel at 550 ° C. Next, the temperature was raised to 1050 ° C., and an n-type contact layer made of Si-doped n-type GaN was grown to a thickness of 5 μm using SiH 4 gas in addition to TMG and NH 3 . Subsequently, TMA (trimethylaluminum) was added to the source gas, and a second cladding layer made of a Si-doped n-type Al0.3Ga0.7N layer was grown at a thickness of 0.2 μm at 1050 ° C.
 次に、温度を850℃に下げ、TMG、TMI(トリメチルインジウム)、NHおよびSiHを用い、Siドープn型In0.01Ga0.99Nよりなる第1のn型クラッド層を60nmの膜厚で成長させた。
 続いて、TMG、TMIおよびNH3を用い、850℃でノンドープIn0.05Ga0.95Nよりなる活性層を5nmの膜厚で成長させた。さらに、TMG、TMI、NHに加え新たにCPMg(シクロペンタジエニルマグネシウム)を用い、850℃でMgドープp型In0.01Ga0.99Nよりなる第1のp型クラッド層を60nmの膜厚で成長させた。
 次に、温度を1100℃に上げ、TMG、TMA、NH、CPMgを用い、Mgドープp型Al0.3Ga0.7Nよりなる第2のp型クラッド層を150nmの膜厚で成長させた。
Next, the temperature is lowered to 850 ° C., and the first n-type cladding layer made of Si-doped n-type In 0.01 Ga 0.99 N is made 60 nm using TMG, TMI (trimethylindium), NH 3 and SiH 4. It was made to grow with the film thickness.
Subsequently, an active layer made of non-doped In0.05Ga0.95N was grown at a thickness of 5 nm at 850 ° C. using TMG, TMI, and NH 3. Further, CPM (cyclopentadienyl magnesium) is newly used in addition to TMG, TMI, and NH 3, and a first p-type cladding layer made of Mg-doped p-type In 0.01 Ga 0.99 N at 850 ° C. has a thickness of 60 nm. It was made to grow with the film thickness.
Next, the temperature is raised to 1100 ° C., and a second p-type cladding layer made of Mg-doped p-type Al 0.3 Ga 0.7 N is grown to a thickness of 150 nm using TMG, TMA, NH 3 , and CPMg. I let you.
 続いて、1100℃でTMG、NHおよびCPMgを用い、Mgドープp型GaNよりなるp型コンタクト層を600nmの膜厚で成長させた。以上の操作終了後、温度を室温まで下げてウェーハを反応容器から取り出し、720℃でウェーハのアニーリングを行い、p型層を低抵抗化した。次に、最上層のp型コンタクト層の表面に所定の形状のマスクを形成し、n型コンタクト層の表面が露出するまでエッチングした。エッチング後、n型コンタクト層の表面にチタン(Ti)とアルミニウム(Al)よりなる負電極、p型コンタクト層の表面にニッケル(Ni)と金(Au)よりなる正電極を形成した。電極形成後、ウェーハを350μm角のチップに分離した後、別に用意してある外部回路に接続するための配線を形成してある基板上に前記作製したLEDチップをUV硬化樹脂で固定し、LEDチップと基板上の配線とを電気的に接続し、青色LEDからなる光源基板を作製した。 Subsequently, using TMG, NH 3 and CPMg at 1100 ° C., a p-type contact layer made of Mg-doped p-type GaN was grown to a thickness of 600 nm. After the above operation was completed, the temperature was lowered to room temperature, the wafer was taken out of the reaction vessel, and the wafer was annealed at 720 ° C. to reduce the resistance of the p-type layer. Next, a mask having a predetermined shape was formed on the surface of the uppermost p-type contact layer, and etching was performed until the surface of the n-type contact layer was exposed. After the etching, a negative electrode made of titanium (Ti) and aluminum (Al) was formed on the surface of the n-type contact layer, and a positive electrode made of nickel (Ni) and gold (Au) was formed on the surface of the p-type contact layer. After electrode formation, the wafer is separated into 350 μm square chips, and the LED chip thus prepared is fixed with a UV curable resin on a substrate on which wiring for connecting to a separately prepared external circuit is formed, The chip and the wiring on the substrate were electrically connected to produce a light source substrate composed of a blue LED.
 次に、以上のようにして作製した光源基板と蛍光体基板とを、表示部の外に形成されている位置合わせマーカーによって位置合わせした。なお、この前に蛍光体基板には熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着させ、80℃、2時間加熱することで硬化を行った。また前記貼り合わせ工程は、ドライエアー環境下(水分量:-80℃)で行った。
 最後に、周辺に形成している端子を外部電源に接続することでLED表示装置を完成させた。
Next, the light source substrate and the phosphor substrate produced as described above were aligned with an alignment marker formed outside the display unit. Prior to this, a thermosetting resin was applied to the phosphor substrate, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 80 ° C. for 2 hours. The bonding step was performed in a dry air environment (water content: −80 ° C.).
Finally, the LED display device was completed by connecting terminals formed in the periphery to an external power source.
 ここで、外部電源により所望の電流を所望のストライプ状電極に印加することで青色LEDを任意にスイッチング可能な励起光源とし、赤色蛍光体層、緑色蛍光体層で青色光から発光をそれぞれ赤色、緑色に変換し、赤色、緑色の等方発光が得られ、かつ、青色散乱体層を介することで、等方的な青色発光を得ることができた。このようにして、フルカラー表示が可能で、良好な画像、視野角特性の良い画像を得ることができた。 Here, a blue LED is used as an excitation light source that can be arbitrarily switched by applying a desired current to a desired striped electrode from an external power source, and the red phosphor layer and the green phosphor layer emit light from blue light in red, By converting to green, isotropic light emission of red and green was obtained, and isotropic blue light emission could be obtained through the blue scatterer layer. In this way, full color display was possible, and a good image and an image with good viewing angle characteristics could be obtained.
 本発明の態様は、簡便な構造で低消費電力の表示装置を提供することができる。 The embodiment of the present invention can provide a display device with a simple structure and low power consumption.
1、25、30、35、50、60、80…表示装置、2、26、31、115…蛍光体基板、3、27、36、51、61、81…光源側基板、4…励起光源、5…基板(第二の層)、6、6R、6G、6B…蛍光体層、6a…励起光入射側界面、6b…蛍光取出し側界面、7…平坦化層(第一の層)、10、83…有機EL素子、82…液晶素子 DESCRIPTION OF SYMBOLS 1, 25, 30, 35, 50, 60, 80 ... Display device, 2, 26, 31, 115 ... Phosphor substrate, 3, 27, 36, 51, 61, 81 ... Light source side substrate, 4 ... Excitation light source, 5 ... substrate (second layer), 6, 6R, 6G, 6B ... phosphor layer, 6a ... excitation light incident side interface, 6b ... fluorescence extraction side interface, 7 ... flattening layer (first layer), 10 83 ... Organic EL element, 82 ... Liquid crystal element

Claims (23)

  1.  励起光入射面と蛍光取出し面とを有し、前記励起光入射面を介して入射された励起光により蛍光を生じて発光する蛍光体層と、
     前記励起光入射面と接する第一の層と、
     前記蛍光取出し面と接する第二の層と、を備え、
     前記蛍光体層は、前記励起光入射面近傍における屈折率naが、第一の層の屈折率n1よりも小さくなるよう構成され、
     前記蛍光体層は、前記励起光入射面近傍における前記蛍光体層の屈折率naと前記第一の層の屈折率n1の差の絶対値|n1-na|が、前記蛍光取出し面近傍における前記蛍光体層の屈折率nbと前記第一の層の屈折率n1の差の絶対値|n1-nb|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されている蛍光体基板。
    A phosphor layer that has an excitation light incident surface and a fluorescence extraction surface, and emits fluorescent light by excitation light incident through the excitation light incident surface;
    A first layer in contact with the excitation light incident surface;
    A second layer in contact with the fluorescence extraction surface,
    The phosphor layer is configured such that the refractive index na in the vicinity of the excitation light incident surface is smaller than the refractive index n1 of the first layer,
    The phosphor layer has an absolute value | n1-na | of the difference between the refractive index na of the phosphor layer and the refractive index n1 of the first layer in the vicinity of the excitation light incident surface, in the vicinity of the fluorescence extraction surface. Refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n1-nb | of the difference between the refractive index nb of the phosphor layer and the refractive index n1 of the first layer. A phosphor substrate configured to include:
  2.  前記蛍光体層は、前記蛍光取出し面近傍における屈折率nbが、前記第二の層の屈折率n2よりも大きくなるよう構成され、
     前記蛍光体層は、前記蛍光取出し面近傍における前記蛍光体層の屈折率nbと前記第二の層の屈折率n2の差の絶対値|n2-nb|が、前記励起光入射面近傍における前記蛍光体層の屈折率naと前記第二の層の屈折率n2の差の絶対値|n2-na|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されている請求項1に記載の蛍光体基板。
    The phosphor layer is configured such that a refractive index nb in the vicinity of the fluorescence extraction surface is larger than a refractive index n2 of the second layer,
    The phosphor layer has an absolute value | n2-nb | of the difference between the refractive index nb of the phosphor layer and the refractive index n2 of the second layer in the vicinity of the fluorescence extraction surface, in the vicinity of the excitation light incident surface. Refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n2-na | of the difference between the refractive index na of the phosphor layer and the refractive index n2 of the second layer. The phosphor substrate according to claim 1, comprising:
  3.  前記蛍光体層の屈折率分布が前記励起光入射面から、前記蛍光取出し面に向けて連続的に変化している請求項1に記載の蛍光体基板。 The phosphor substrate according to claim 1, wherein the refractive index distribution of the phosphor layer continuously changes from the excitation light incident surface toward the fluorescence extraction surface.
  4.  前記蛍光体層が無機蛍光体を含有してなる請求項1に記載の蛍光体基板。 The phosphor substrate according to claim 1, wherein the phosphor layer contains an inorganic phosphor.
  5.  前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での分散濃度によって調整されている請求項4に記載の蛍光体基板。 The phosphor substrate according to claim 4, wherein a refractive index distribution of the phosphor layer is adjusted by a dispersion concentration of the inorganic phosphor in the phosphor layer.
  6.  前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での粒径分布によって調整されている請求項4に記載の蛍光体基板。 The phosphor substrate according to claim 4, wherein a refractive index distribution of the phosphor layer is adjusted by a particle size distribution of the inorganic phosphor in the phosphor layer.
  7.  前記蛍光体層が、スクリーン印刷法、インクジェット法、ディスペンサー法、ノズルコート法のいずれかで形成されている請求項1に記載の蛍光体基板。 The phosphor substrate according to claim 1, wherein the phosphor layer is formed by any one of a screen printing method, an ink jet method, a dispenser method, and a nozzle coating method.
  8.  請求項1に記載の蛍光体基板と、前記励起光を発光する励起光源とを備える表示装置。 A display device comprising the phosphor substrate according to claim 1 and an excitation light source that emits the excitation light.
  9.  前記励起光源が、発光ダイオード、有機エレクトロルミネセンス素子、無機エレクトロルミネセンス素子のいずれかである請求項8に記載の表示装置。 The display device according to claim 8, wherein the excitation light source is any one of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  10.  さらに複数の駆動素子を有し、 
     前記励起光源が複数の発光素子からなり、前記複数の発光素子がそれぞれに対応する前記駆動素子で駆動される請求項8に記載の表示装置。
    Furthermore, it has a plurality of drive elements,
    The display device according to claim 8, wherein the excitation light source includes a plurality of light emitting elements, and the plurality of light emitting elements are driven by the corresponding driving elements.
  11.  さらに、前記駆動素子が形成された基板を有し、
     前記蛍光体層は、前記第二の層と前記基板との間に位置し、
     前記蛍光体層からの光は、前記第二の層を介して射出される請求項10に記載の表示装置。
    And a substrate on which the drive element is formed,
    The phosphor layer is located between the second layer and the substrate;
    The display device according to claim 10, wherein light from the phosphor layer is emitted through the second layer.
  12.  さらに、前記励起光源と前記蛍光体基板との間に設けられ、前記励起光源から射出された光の透過率を制御可能な液晶素子を有し、
     前記励起光源が、光射出面から光を射出する面状光源である請求項8記載の表示装置。
    Furthermore, the liquid crystal device is provided between the excitation light source and the phosphor substrate, and can control the transmittance of light emitted from the excitation light source,
    The display device according to claim 8, wherein the excitation light source is a planar light source that emits light from a light emission surface.
  13.  励起光入射面と蛍光取出し面とを有し、前記励起光入射面を介して入射された励起光により蛍光を生じて発光し、蛍光体層と、
     前記励起光入射面と接する第一の層と、
     前記蛍光取出し面と接する第二の層と、を備え、
      前記蛍光体層は、前記蛍光取出し面における屈折率nbが、前記第二の層の屈折率n2よりも大きくなるよう構成され、
     前記蛍光体層は、前記蛍光取出し面近傍における前記蛍光体層の屈折率nbと前記第二の層の屈折率n2の差の絶対値|n2-nb|が、前記励起光入射面近傍における前記蛍光体層の屈折率naと前記第二の層の屈折率n2の差の絶対値|n2-na|より小さくなるように、前記励起光入射面と前記蛍光取出し面との間において屈折率分布を有して構成されている蛍光体基板。
    An excitation light incident surface and a fluorescence extraction surface; the excitation light incident through the excitation light incident surface generates fluorescence and emits light; and a phosphor layer;
    A first layer in contact with the excitation light incident surface;
    A second layer in contact with the fluorescence extraction surface,
    The phosphor layer is configured such that a refractive index nb at the fluorescence extraction surface is larger than a refractive index n2 of the second layer,
    The phosphor layer has an absolute value | n2-nb | of the difference between the refractive index nb of the phosphor layer and the refractive index n2 of the second layer in the vicinity of the fluorescence extraction surface, in the vicinity of the excitation light incident surface. Refractive index distribution between the excitation light incident surface and the fluorescence extraction surface so as to be smaller than the absolute value | n2-na | of the difference between the refractive index na of the phosphor layer and the refractive index n2 of the second layer. A phosphor substrate configured to include:
  14.  前記蛍光体層の屈折率分布が前記励起光入射面から、前記蛍光取出し面に向けて連続的に変化している請求項13に記載の蛍光体基板。 The phosphor substrate according to claim 13, wherein the refractive index distribution of the phosphor layer continuously changes from the excitation light incident surface toward the fluorescence extraction surface.
  15.  前記蛍光体層が無機蛍光体を含有してなる請求項13に記載の蛍光体基板。 The phosphor substrate according to claim 13, wherein the phosphor layer contains an inorganic phosphor.
  16.  前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での分散濃度によって調整されている請求項15に記載の蛍光体基板。 The phosphor substrate according to claim 15, wherein a refractive index distribution of the phosphor layer is adjusted by a dispersion concentration of the inorganic phosphor in the phosphor layer.
  17.  前記蛍光体層の屈折率分布が、前記無機蛍光体の前記蛍光体層中での粒径分布によって調整されている請求項15に記載の蛍光体基板。 The phosphor substrate according to claim 15, wherein a refractive index distribution of the phosphor layer is adjusted by a particle size distribution of the inorganic phosphor in the phosphor layer.
  18.  前記蛍光体層が、スクリーン印刷法、インクジェット法、ディスペンサー法、ノズルコート法のいずれかで形成されている請求項13に記載の蛍光体基板。 The phosphor substrate according to claim 13, wherein the phosphor layer is formed by any one of a screen printing method, an ink jet method, a dispenser method, and a nozzle coating method.
  19.  請求項13に記載の蛍光体基板と、前記励起光源とを備える表示装置。 A display device comprising the phosphor substrate according to claim 13 and the excitation light source.
  20.  前記励起光源が、発光ダイオード、有機エレクトロルミネセンス素子、無機エレクトロルミネセンス素子のいずれかである請求項19に記載の表示装置。 The display device according to claim 19, wherein the excitation light source is any one of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  21.  さらに複数の駆動素子を有し、 
     前記励起光源が複数の発光素子からなり、前記複数の発光素子がそれぞれに対応する前記駆動素子で駆動される請求項19に記載の表示装置。
    Furthermore, it has a plurality of drive elements,
    The display device according to claim 19, wherein the excitation light source includes a plurality of light emitting elements, and the plurality of light emitting elements are driven by the corresponding driving elements.
  22.  さらに、前記駆動素子が形成された基板を有し、
     前記蛍光体層は、前記第二の層と前記基板との間に位置し、
     前記蛍光体層からの光は、前記第二の層を介して射出される請求項21に記載の表示装置。
    And a substrate on which the drive element is formed,
    The phosphor layer is located between the second layer and the substrate;
    The display device according to claim 21, wherein light from the phosphor layer is emitted through the second layer.
  23.  さらに、前記励起光源と前記蛍光体基板との間に設けられ、前記励起光源から射出された光の透過率を制御可能な液晶素子を有し、
     前記励起光源が、光射出面から光を射出する面状光源である請求項19記載の表示装置。 
    Furthermore, the liquid crystal device is provided between the excitation light source and the phosphor substrate, and can control the transmittance of light emitted from the excitation light source,
    The display device according to claim 19, wherein the excitation light source is a planar light source that emits light from a light emission surface.
PCT/JP2012/055814 2011-03-10 2012-03-07 Phosphor substrate and display device WO2012121287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011053425 2011-03-10
JP2011-053425 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121287A1 true WO2012121287A1 (en) 2012-09-13

Family

ID=46798243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055814 WO2012121287A1 (en) 2011-03-10 2012-03-07 Phosphor substrate and display device

Country Status (1)

Country Link
WO (1) WO2012121287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532898A (en) * 2013-07-30 2016-10-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH CONVERSION ELEMENT AND OPTOELECTRONIC COMPONENT MANUFACTURING METHOD, CONVERSION ELEMENT AND OPTOELECTRONIC COMPONENT
CN110112125A (en) * 2013-07-09 2019-08-09 三星显示有限公司 Utilize the LED light lamp of microminiature light emitting diode electrode assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133062A (en) * 2001-10-30 2003-05-09 Idemitsu Kosan Co Ltd Organic electroluminescence emitting device
JP2005085709A (en) * 2003-09-10 2005-03-31 Samsung Sdi Co Ltd Light emitting element substrate and light emitting element using it
JP2006303030A (en) * 2005-04-18 2006-11-02 Matsushita Toshiba Picture Display Co Ltd Electroluminescent element
JP2006338954A (en) * 2005-05-31 2006-12-14 Optrex Corp Organic led element, organic led display device and substrate for organic led display device
JP2008060092A (en) * 2005-01-31 2008-03-13 Sharp Corp Optical functional film, and manufacturing method thereof
JP2008108514A (en) * 2006-10-24 2008-05-08 Fuji Electric Holdings Co Ltd Color conversion light emitting device, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133062A (en) * 2001-10-30 2003-05-09 Idemitsu Kosan Co Ltd Organic electroluminescence emitting device
JP2005085709A (en) * 2003-09-10 2005-03-31 Samsung Sdi Co Ltd Light emitting element substrate and light emitting element using it
JP2008060092A (en) * 2005-01-31 2008-03-13 Sharp Corp Optical functional film, and manufacturing method thereof
JP2006303030A (en) * 2005-04-18 2006-11-02 Matsushita Toshiba Picture Display Co Ltd Electroluminescent element
JP2006338954A (en) * 2005-05-31 2006-12-14 Optrex Corp Organic led element, organic led display device and substrate for organic led display device
JP2008108514A (en) * 2006-10-24 2008-05-08 Fuji Electric Holdings Co Ltd Color conversion light emitting device, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112125A (en) * 2013-07-09 2019-08-09 三星显示有限公司 Utilize the LED light lamp of microminiature light emitting diode electrode assembly
CN110112125B (en) * 2013-07-09 2023-10-13 三星显示有限公司 LED lamp using microminiature LED electrode assembly
JP2016532898A (en) * 2013-07-30 2016-10-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH CONVERSION ELEMENT AND OPTOELECTRONIC COMPONENT MANUFACTURING METHOD, CONVERSION ELEMENT AND OPTOELECTRONIC COMPONENT

Similar Documents

Publication Publication Date Title
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
US8908125B2 (en) Fluorescent substrate and method for producing the same, and display device
US9117977B2 (en) Light emitting device, display apparatus, and illuminating apparatus
US9182631B2 (en) Phosphor substrate, display device, and electronic apparatus
US9512976B2 (en) Light-emitting device, display device and illumination device
US9091415B2 (en) Light-emitting device, and display apparatus, which can efficiently emit, to outside, fluorescence generated in fluorescent layer and can realize high-luminance light emission and in which generation of blurriness and fuzziness of display is suppressed
JP5538519B2 (en) Light emitting element, display and display device
WO2014084012A1 (en) Scatterer substrate
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
WO2013073611A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
WO2013183751A1 (en) Fluorescent substrate, light-emitting device, display device, and lighting device
JP2013109907A (en) Phosphor substrate and display device
JP2014052606A (en) Phosphor substrate, light-emitting device, display device and luminaire
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2013183696A1 (en) Fluorescent material substrate, display apparatus, and illuminating apparatus
WO2013133139A1 (en) Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method
WO2012043611A1 (en) Organic el display device and method for manufacturing same
WO2011145418A1 (en) Phosphor display device, and phosphor layer
JP2016143658A (en) Light emitting element and display device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
WO2011102024A1 (en) Display device
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
WO2012144426A1 (en) Fluorescent light body substrate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP