JP2006303030A - Electroluminescent element - Google Patents

Electroluminescent element Download PDF

Info

Publication number
JP2006303030A
JP2006303030A JP2005120075A JP2005120075A JP2006303030A JP 2006303030 A JP2006303030 A JP 2006303030A JP 2005120075 A JP2005120075 A JP 2005120075A JP 2005120075 A JP2005120075 A JP 2005120075A JP 2006303030 A JP2006303030 A JP 2006303030A
Authority
JP
Japan
Prior art keywords
color conversion
layer
light
transparent electrode
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005120075A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamura
隆之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT Picture Display Co Ltd
Original Assignee
Matsushita Toshiba Picture Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Toshiba Picture Display Co Ltd filed Critical Matsushita Toshiba Picture Display Co Ltd
Priority to JP2005120075A priority Critical patent/JP2006303030A/en
Publication of JP2006303030A publication Critical patent/JP2006303030A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroluminescent element (EL) of which luminance is improved by efficiently picking up a light from a light emitting layer (2) to the observation surface side outside a surface substrate (11). <P>SOLUTION: The EL element is provided with at least a light emitting layer (5) between facing two electrodes (2 and 11), and the light pick-up side includes color conversion layers (13a, 13b and 13c). An electrode (7) on the side of the surface substrate (11) of the two electrodes is formed into a transparent electrode, and the surface of the side of the transparent electrode (7) in the color conversion layers (13a, 13b and 13c) is made smooth. Thus, irregular reflection of a light is prevented on the boundary between the transparent electrode (7) and the color conversion layers (13a, 13b and 13c), and a light from the light emitting layer is efficiently picked up to the side of the observation surface outside the surface substrate so as to improve luminance. The smooth surface of the color conversion layer is preferably 200 nm or less in arithmetic average height (Ra). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表示装置等に使用されるエレクトロルミネッセンス(EL)素子に関する。   The present invention relates to an electroluminescence (EL) element used for a display device or the like.

近年、ディスプレイデバイスとして平面型のディスプレイが注目されており、一例としてプラズマディスプレイが実用化されている。プラズマディスプレイは大型化が容易であること、高い輝度が得られること、視野角が広いことなどから注目されている。しかし、ディスプレイの構造が複雑であり、その製造工程も複雑であるため、改良が進んではいるものの現時点ではまだ高価なものとなっている。   In recent years, flat displays have attracted attention as display devices, and plasma displays have been put into practical use as an example. Plasma displays are attracting attention because they can be easily enlarged, have high brightness, and have a wide viewing angle. However, since the structure of the display is complicated and the manufacturing process is also complicated, the improvement is progressing, but it is still expensive at present.

また、エレクトロルミネッセンス(EL)現象を利用するディスプレイも提案されている。無機ELでは半導体の無機蛍光体に電極を配置し、電圧印加により無機蛍光体の電子とホールの再結合又は励起子により発光するか、又は半導体中の加速された電子が発光中心に衝突し、発光中心となる原子又はイオンが励起され、それが元の状態に戻る際に発光するものである。EL素子は、上下電極間に蛍光体層を挟み、前記蛍光体層に電界をかけることにより発光する原理を利用して、文字や画像(以下「画像等」という。)を表示する。単一光表示はもちろん可能であるが、単一光を色変換層により色変換してフルカラー表示することもできる。ところが、色変換をするに際しては、光取り出し効率が低下し、輝度が低下する問題がある。   In addition, a display using an electroluminescence (EL) phenomenon has been proposed. In inorganic EL, an electrode is disposed on a semiconductor inorganic phosphor, and light is emitted by recombination or excitons of electrons and holes of the inorganic phosphor when voltage is applied, or accelerated electrons in the semiconductor collide with the emission center, When the atom or ion that becomes the emission center is excited and returns to its original state, it emits light. The EL element displays characters and images (hereinafter referred to as “images”) using the principle of emitting light by sandwiching a phosphor layer between upper and lower electrodes and applying an electric field to the phosphor layer. Of course, single light display is possible, but single light can be color-converted by a color conversion layer to display full color. However, when performing color conversion, there is a problem that the light extraction efficiency is lowered and the luminance is lowered.

この問題を解決するため、発光面側に透光性層と色変換層とを設け、色変換層の屈折率を透光性層の屈折率より大きくし、色変換層と透光性層との界面を凹凸にする提案がある(下記特許文献1)。別の提案として、有機ELの光取り出し側の電極から基板までの屈折率を特定の順番に配列する例もある(下記特許文献2)。
特開2000−284705号公報 国際公開WO 02/17689A1号公報
In order to solve this problem, a translucent layer and a color conversion layer are provided on the light emitting surface side, the refractive index of the color conversion layer is made larger than the refractive index of the translucent layer, and the color conversion layer, the translucent layer, There is a proposal to make the interface of the surface uneven (Patent Document 1 below). As another proposal, there is an example in which the refractive index from the electrode on the light extraction side of the organic EL to the substrate is arranged in a specific order (Patent Document 2 below).
JP 2000-284705 A International Publication WO 02 / 17689A1

しかし、色変換層は、基本的に樹脂をベースとするものであり、色変換層の透明電極側表面が粗面であると、発光層からの光が乱反射してしまい、光取り出し効率は改善されないという問題がある。   However, the color conversion layer is basically based on a resin. If the surface of the color conversion layer on the transparent electrode side is rough, the light from the light emitting layer is diffusely reflected, improving the light extraction efficiency. There is a problem that it is not.

本発明は前記従来の問題を解決するため、発光体層からの光を表面基板の外側の観察面側に効率よく取り出し、輝度を向上したEL素子を提供する。   In order to solve the above-described conventional problems, the present invention provides an EL element that improves the luminance by efficiently extracting light from a light-emitting layer to the observation surface outside the surface substrate.

本発明のEL素子は、対向する2つの電極間に少なくとも発光層を備え、光取り出し側に色変換層と表面基板を含み、前記2つの電極のうち表面基板側の電極を透明電極としたEL素子において、前記色変換層の透明電極側表面は平滑面であることを特徴とする。   The EL device of the present invention includes at least a light emitting layer between two opposing electrodes, includes a color conversion layer and a surface substrate on the light extraction side, and the surface substrate side electrode of the two electrodes is a transparent electrode. In the element, the transparent electrode side surface of the color conversion layer is a smooth surface.

本発明は、色変換層の透明電極側表面を平滑化したことにより、色変換層と透明電極発光層との界面における光の乱反射を防ぎ、発光体層からの光を表面基板の外側の観察面側に効率よく取り出し、輝度を向上したEL素子を提供できる。   The present invention smoothes the surface of the color conversion layer on the transparent electrode side, thereby preventing irregular reflection of light at the interface between the color conversion layer and the transparent electrode light-emitting layer, and observing light from the light-emitting layer on the outside of the surface substrate. It is possible to provide an EL element that is efficiently taken out to the surface side and improved in luminance.

本発明のEL素子は、対向する2つの電極間に少なくとも発光層を備える。前記発光層は、無機又は有機の蛍光体等の発光物体を層状にしたものである。前記発光層の両側又は片側には電気絶縁層(誘電体層)を配置してもよい。無機蛍光体の場合は、対向する2つの電極間に誘電体層を設け、キャパシターの原理を用いて電界により発光させる。   The EL element of the present invention includes at least a light emitting layer between two opposing electrodes. The light emitting layer is formed by layering a light emitting object such as an inorganic or organic phosphor. An electric insulating layer (dielectric layer) may be disposed on both sides or one side of the light emitting layer. In the case of an inorganic phosphor, a dielectric layer is provided between two opposing electrodes, and light is emitted by an electric field using the principle of a capacitor.

色変換層は、発光層よりも観察面側基板に形成される。また、色変換層と前記発光層との間には透明電極を介在させる。色変換層の透明電極側表面を200nm以下の算術平均高さ(Ra)となるように平滑化するのが好ましい。これにより、色変換層と透明電極発光層との界面における光の乱反射を防ぐことができる。前記色変換層の透明電極側表面の算術平均高さが200nm以下となるように平滑化するのは、可視光線(波長400nm〜750nm)のλ/2以下の凹凸であれば光の散乱が起きないためである。ここで算術平均高さ(Ra)とは、JIS B 0601−2001で規定されている算術平均高さ(Ra)をいう。   The color conversion layer is formed on the observation surface side substrate with respect to the light emitting layer. A transparent electrode is interposed between the color conversion layer and the light emitting layer. The surface of the color conversion layer on the transparent electrode side is preferably smoothed so as to have an arithmetic average height (Ra) of 200 nm or less. Thereby, irregular reflection of light at the interface between the color conversion layer and the transparent electrode light emitting layer can be prevented. The reason why the arithmetic average height of the surface of the color conversion layer on the transparent electrode side is 200 nm or less is that light is scattered if the irregularity is λ / 2 or less of visible light (wavelength 400 nm to 750 nm). This is because there is not. Here, the arithmetic average height (Ra) refers to the arithmetic average height (Ra) defined in JIS B 0601-2001.

色変換層の平滑面は、熱プレス、熱プレスしたまま移動、研磨等の手段を採用して形成する。この場合、観察面側のガラス基板の表面に色変換層を形成しておき、この状態で平滑化処理をしてもよい。別な方法としては、色変換層の片面又は両面を平滑化しておき、これを転写法によってガラス基板又は透明電極に転写してもよい。転写法を採用する場合は、接着剤又は紫外線硬化樹脂等を用いて色変換層をガラス基板又は透明電極に一体的に貼り付ける。研磨の場合、研磨布、研磨紙、研磨スラリー等を用いる。研磨スラリーを用いる場合は、一般的な樹脂研磨用の水スラリーでよく、アルミナ、シリカ、酸化セリウム等の研磨粒子と水からなるスラリーを用いる。   The smooth surface of the color conversion layer is formed by adopting means such as hot pressing, moving and polishing while being hot pressed. In this case, a color conversion layer may be formed on the surface of the observation side glass substrate, and smoothing may be performed in this state. As another method, one or both surfaces of the color conversion layer may be smoothed and transferred to a glass substrate or a transparent electrode by a transfer method. When the transfer method is employed, the color conversion layer is integrally attached to the glass substrate or the transparent electrode using an adhesive, an ultraviolet curable resin, or the like. In the case of polishing, polishing cloth, polishing paper, polishing slurry or the like is used. When the polishing slurry is used, a general water slurry for resin polishing may be used, and a slurry composed of abrasive particles such as alumina, silica, cerium oxide and water is used.

透明電極と色変換層との間には、透光性樹脂平滑層をさらに設けることが好ましい。この場合は、透明電極と透光性樹脂平滑層との界面、及び透光性樹脂平滑層と色変換層との界面をいずれも算術平均高さ(Ra)が200nm以下となるように平滑化するのが好ましい。さらに、透明電極の屈折率をn1、色変換層の屈折率をn2、透光性樹脂平滑層の屈折率をn3としたとき、各層の屈折率が、n1>n3>n2の関係を満たすことが好ましい。これにより、さらに屈折率の大きな変化による反射を防ぎ、発光体層からの光を表面基板の外側の観察面側に効率よく取り出し、輝度を向上したEL素子を提供できる。   It is preferable to further provide a translucent resin smooth layer between the transparent electrode and the color conversion layer. In this case, the interface between the transparent electrode and the translucent resin smooth layer and the interface between the translucent resin smooth layer and the color conversion layer are both smoothed so that the arithmetic average height (Ra) is 200 nm or less. It is preferable to do this. Furthermore, when the refractive index of the transparent electrode is n1, the refractive index of the color conversion layer is n2, and the refractive index of the transparent resin smooth layer is n3, the refractive index of each layer satisfies the relationship of n1> n3> n2. Is preferred. Thereby, it is possible to prevent reflection caused by a large change in the refractive index, efficiently extract light from the light emitting layer to the observation surface side outside the surface substrate, and provide an EL element with improved luminance.

透光性樹脂平滑層の屈折率は、1.5以上2以下あることが好ましい。透光性樹脂平滑層としては、ポリスチレン(屈折率1.59)、エポキシ樹脂(屈折率1.55〜1.60)、ポリ塩化ビニリデン(屈折率1.60〜1.63)、ポリスルホン(屈折率1.63)、フェノール−フォルムアルデヒド樹脂(屈折率1.70)、ポリシラン、ポリシラザン等のケイ素樹脂層(屈折率1.70)等が使用できる。   The refractive index of the translucent resin smooth layer is preferably 1.5 or more and 2 or less. As the translucent resin smooth layer, polystyrene (refractive index 1.59), epoxy resin (refractive index 1.55 to 1.60), polyvinylidene chloride (refractive index 1.60 to 1.63), polysulfone (refractive index). 1.63), a phenol-formaldehyde resin (refractive index 1.70), a silicon resin layer (refractive index 1.70) such as polysilane and polysilazane, and the like can be used.

色変換層にはブラックマトリックスを配置させてもよい。色変換層は、一例として厚みが5〜20μm程度のポリメチルメタクリレート(PMMA)等の樹脂材料を使用する。この場合、屈折率n2は1.49である。   A black matrix may be disposed in the color conversion layer. For example, a resin material such as polymethyl methacrylate (PMMA) having a thickness of about 5 to 20 μm is used for the color conversion layer. In this case, the refractive index n2 is 1.49.

透明電極には、厚みが200〜300μmのインジウム−スズ酸化物合金(ITO)からなる透明電極層を用いる。この場合、屈折率n1は2.1である。発光層からの光を透明電極層を介して直接色変換層に入れると、屈折率の差が大きいために反射してしまう。このため、透明電極層と色変換層との間に、例えば屈折率n3が1.59のポリスチレン層、又は屈折率n3が1.70のポリシラン、ポリシラザン等のケイ素樹脂層を介在させる。これにより、色変換層に入る光の反射を押さえることができる。   As the transparent electrode, a transparent electrode layer made of an indium-tin oxide alloy (ITO) having a thickness of 200 to 300 μm is used. In this case, the refractive index n1 is 2.1. When light from the light emitting layer is directly input to the color conversion layer through the transparent electrode layer, the light is reflected due to a large difference in refractive index. For this reason, for example, a polystyrene layer having a refractive index n3 of 1.59 or a silicon resin layer such as polysilane or polysilazane having a refractive index n3 of 1.70 is interposed between the transparent electrode layer and the color conversion layer. Thereby, reflection of light entering the color conversion layer can be suppressed.

前記誘電体層としては、Y23,Li2O,MgO,CaO,BaO,SrO,Al23,SiO2,MgTiO3,CaTiO3,BaTiO3,SrTiO3,ZrO2,TiO2,B23,PbTiO3,PbZrO3,PbZrTiO3(PZT)の少なくとも1種類を使用できる。さらに、両電極間には強誘電体層を介在させ、さらに発光効率を上げる手段を講じてもよい。 As the dielectric layer, Y 2 O 3 , Li 2 O, MgO, CaO, BaO, SrO, Al 2 O 3 , SiO 2 , MgTiO 3 , CaTiO 3 , BaTiO 3 , SrTiO 3 , ZrO 2 , TiO 2 , At least one of B 2 O 3 , PbTiO 3 , PbZrO 3 , and PbZrTiO 3 (PZT) can be used. Further, a ferroelectric layer may be interposed between both electrodes, and a means for further increasing the luminous efficiency may be taken.

発光層に使用可能な発光物質としては、例えばZnS:Ag,ZnS:Cu,ZnS:Mn,SrS:Ce:Eu,ZnS:Sm:Cl,CaS:Eu,ZnS:Tb:F,CaS:Ce,ZnMgS:Mn,CaGa24:Ce,SrS:Cu,CaS:Pb,BaAl24:Eu,Y23:Eu,Ca2Ge27:Mn等の蛍光体として一般に知られているものを用いることができる。 Examples of the light-emitting substance that can be used in the light-emitting layer include ZnS: Ag, ZnS: Cu, ZnS: Mn, SrS: Ce: Eu, ZnS: Sm: Cl, CaS: Eu, ZnS: Tb: F, and CaS: Ce. ZnMgS: Mn, CaGa 2 S 4 : Ce, SrS: Cu, CaS: Pb, BaAl 2 S 4: Eu, Y 2 O 3: Eu, Ca 2 Ge 2 O 7: generally known as a phosphor, such as Mn Can be used.

(実施形態1)
(1)色変換層の形成
(1−1)塗材ペーストの作成
以下の成分を90℃で1時間混合し、塗材ペーストを作成した。
(a)溶媒
N−メチル−2−ピロリドン:5g
ベンジルアルコール:5g
(b)透明バインダー樹脂
ポリメチルメタクリレート粉末(PMMA:住友化学工業製、屈折率1.49):3g
(c)色素
緑:クマリン540(Exciton社製):40mg
赤:DCM(Exciton社製):40mg
青:無添加(発光層が青色発光のため)
(1−2)コーティング方法
ガラス基板の表面に、グラファイトとPMMAを含む厚さ2μm、幅50μm、ピッチ間隔150μmのブラックマトリックスを形成した。このブラックマトリックスの上に前記ピッチ間隔をまたいで、前記緑と赤と無色のペーストをスクリーン印刷法によりG,B(無色),Rの順番に各々印刷し、溶媒を徐々に蒸発させ、170℃、60分で乾燥した。乾燥後の膜厚は30μmであった。
(Embodiment 1)
(1) Formation of color conversion layer (1-1) Preparation of coating material paste The following components were mixed at 90 ° C for 1 hour to prepare a coating material paste.
(A) Solvent N-methyl-2-pyrrolidone: 5 g
Benzyl alcohol: 5g
(B) Transparent binder resin Polymethylmethacrylate powder (PMMA: manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.49): 3 g
(C) Pigment Green: Coumarin 540 (Exciton): 40 mg
Red: DCM (Exciton): 40mg
Blue: No additive (because the light emitting layer emits blue light)
(1-2) Coating Method A black matrix containing graphite and PMMA and having a thickness of 2 μm, a width of 50 μm, and a pitch interval of 150 μm was formed on the surface of the glass substrate. On the black matrix, the green, red and colorless pastes are printed in the order of G, B (colorless) and R by screen printing method over the pitch interval, and the solvent is gradually evaporated to 170 ° C. , Dried in 60 minutes. The film thickness after drying was 30 μm.

以下図面を用いて説明する。図1は本発明の一実施形態におけるEL素子の透明基板と色変換層からなる光取り出し部20の製造工程を示す斜視図である。この光取り出し部20は、ガラス透明基板11の上に前記ブラックマトリックス12が形成され、その上にG,B(無色透明、発光層は青色発光のため色変換は不要),Rからなる色変換層13a,13b,13cが形成されている。この色変換層13a,13b,13cの上に金属熱プレス板15を置き、200℃の温度で100Paの圧力をかけた後に矢印方向にスライドさせた。これにより、各色変換層の上表面はJIS B0601−2001で規定される算術平均高さ(Ra)が150nmとなった。各色変換層の厚さは15μmであった。   This will be described below with reference to the drawings. FIG. 1 is a perspective view showing a manufacturing process of a light extraction portion 20 composed of a transparent substrate and a color conversion layer of an EL element in one embodiment of the present invention. The light extraction unit 20 is formed by forming the black matrix 12 on a glass transparent substrate 11 and color conversion comprising G and B (colorless and transparent, the light emitting layer emits blue light and does not require color conversion) and R. Layers 13a, 13b, and 13c are formed. A metal hot press plate 15 was placed on the color conversion layers 13a, 13b, and 13c, and a pressure of 100 Pa was applied at a temperature of 200 ° C., followed by sliding in the arrow direction. Thereby, the arithmetic average height (Ra) prescribed | regulated by JISB0601-2001 became 150 nm on the upper surface of each color conversion layer. The thickness of each color conversion layer was 15 μm.

図2は本発明の一実施形態におけるEL素子の背面側基板から透明電極の上の透光性樹脂保護層までの発光部10を示す断面図である。まず、背面ガラス1の上に10μmの厚みの銅配線からなる背面電極2をストライプ状に平行に形成した。その上に、厚み30μmのBaTiO3からなる誘電体層3と、厚み0.6μmのBaTiO3有機酸からなる平滑層4と、その上に厚み0.6μmのBaAl24:Euからなる蛍光体発光層5と、厚み0.5μmのAl23からなる拡散防止層6を形成した。その上に厚み0.5μm、幅150μmのインジウム−スズ酸化物合金(ITO)層(屈折率n1=2.1)からなる透明電極7を背面電極2と直交する方向にストライプ状に平行に形成した。背面電極2から透明電極7まではスパッタリングにより形成した。 FIG. 2 is a cross-sectional view showing the light emitting unit 10 from the back side substrate of the EL element to the translucent resin protective layer on the transparent electrode in one embodiment of the present invention. First, a back electrode 2 made of copper wiring having a thickness of 10 μm was formed on the back glass 1 in parallel in a stripe shape. Furthermore, a dielectric layer 3 made of BaTiO 3 with a thickness of 30 μm, a smooth layer 4 made of a BaTiO 3 organic acid with a thickness of 0.6 μm, and a fluorescent light made of BaAl 2 S 4 : Eu with a thickness of 0.6 μm thereon. A body light emitting layer 5 and a diffusion preventing layer 6 made of Al 2 O 3 having a thickness of 0.5 μm were formed. A transparent electrode 7 made of an indium-tin oxide alloy (ITO) layer (refractive index n1 = 2.1) having a thickness of 0.5 μm and a width of 150 μm is formed in parallel in a stripe shape in a direction perpendicular to the back electrode 2. did. The back electrode 2 to the transparent electrode 7 were formed by sputtering.

次に図3に示すように、発光部10の上に光取り出し部20を位置合わせして置き、周囲をエポキシ樹脂で封止して表示素子30を組み立てた。   Next, as shown in FIG. 3, the light extraction unit 20 is aligned and placed on the light emitting unit 10, and the display element 30 is assembled by sealing the periphery with an epoxy resin.

このEL素子30に対して、1kHz、10μA、180Vの交流電圧を印加したところ、平滑処理をしない色変換層に比べて、約15%の輝度向上が認められた。   When an alternating voltage of 1 kHz, 10 μA, and 180 V was applied to the EL element 30, a luminance improvement of about 15% was recognized as compared with the color conversion layer that was not subjected to the smoothing process.

(実施形態2)
実施の形態1において、色変換層の平滑処理を熱プレス法に代えて研磨法を用いた。すなわち、研磨剤として、平均粒径10μmのアルミナ粒子を用い、水を40重量%加えてスラリーとし、このスラリーを布に塗布し、研磨時の圧力を6.9×103Pa〜20.7×103Paの圧力で行うことで、研磨した。研磨面はJIS B0601−2001で規定される算術平均高さ(Ra)が30nmであった。これを光取り出し部とした。
(Embodiment 2)
In Embodiment 1, a polishing method was used instead of the hot press method for the smoothing treatment of the color conversion layer. That is, alumina particles having an average particle diameter of 10 μm are used as an abrasive, water is added by 40% by weight to form a slurry, the slurry is applied to a cloth, and the polishing pressure is 6.9 × 10 3 Pa to 20.7. Polishing was performed at a pressure of × 10 3 Pa. The polished surface had an arithmetic average height (Ra) defined by JIS B0601-2001 of 30 nm. This was made into the light extraction part.

その後、実施形態1と同様に表示素子30を組み立てた。   Thereafter, the display element 30 was assembled in the same manner as in the first embodiment.

このEL素子30に対して、1kHz、10μA、180Vの交流電圧を印加したところ、平滑処理をしない色変換層に比べて、約20%の輝度向上が認められた。   When an alternating voltage of 1 kHz, 10 μA, and 180 V was applied to the EL element 30, a luminance improvement of about 20% was recognized compared to the color conversion layer that was not smoothed.

(実施形態3)
透光性樹脂であるポリスチレン(PSジャパン社製商品名“GPPS”、屈折率1.59):3gを溶媒であるN−メチル−2−ピロリドン:10gに溶解して塗材ペーストとした。ガラス基板の上にこの塗材ペーストをドクターブレードでコーティングし、溶媒を徐々に蒸発させ、170℃、60分で乾燥した。乾燥後の膜厚は40μmであった。これを実施形態2と同様な方法で両面を研磨した。研磨面はJIS B0601−2001で規定される算術平均高さ(Ra)が30nmであった。研磨後の膜厚は325μmであった。
(Embodiment 3)
3 g of polystyrene (trade name “GPPS” manufactured by PS Japan Co., Ltd., refractive index: 1.59): 3 g was dissolved in 10 g of N-methyl-2-pyrrolidone as a solvent to obtain a coating material paste. This coating material paste was coated on a glass substrate with a doctor blade, and the solvent was gradually evaporated, followed by drying at 170 ° C. for 60 minutes. The film thickness after drying was 40 μm. This was polished on both sides by the same method as in the second embodiment. The polished surface had an arithmetic average height (Ra) defined by JIS B0601-2001 of 30 nm. The film thickness after polishing was 325 μm.

得られた透光性樹脂平滑層14を、実施形態2と同様に研磨処理した光取り出し部20と、実施形態1と同様に得られた発光部10との間に介在させ、上下から押圧し、周囲をエポキシ樹脂で封止して表示素子30を組み立てた。   The obtained translucent resin smooth layer 14 is interposed between the light extraction portion 20 polished as in the second embodiment and the light emitting portion 10 obtained in the same manner as in the first embodiment, and pressed from above and below. The display element 30 was assembled by sealing the periphery with an epoxy resin.

このEL素子30に対して、1kHz、10μA、180Vの交流電圧を印加したところ、実施形態2の表示素子に比べてさらに約5%の輝度向上が認められた。   When an alternating voltage of 1 kHz, 10 μA, and 180 V was applied to the EL element 30, a brightness improvement of about 5% was recognized as compared with the display element of the second embodiment.

本発明の実施形態1における色変換層表面の平滑処理を示す斜視図である。It is a perspective view which shows the smoothing process of the color conversion layer surface in Embodiment 1 of this invention. 本発明の実施形態におけるEL素子の発光部を示す断面図である。It is sectional drawing which shows the light emission part of the EL element in embodiment of this invention. 本発明の実施形態1におけるEL素子の断面図である。It is sectional drawing of the EL element in Embodiment 1 of this invention. 本発明の実施形態3におけるEL素子の断面図である。It is sectional drawing of the EL element in Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 背面ガラス
2 背面電極
3 誘電体層
4 平滑層
5 蛍光体発光層
6 拡散防止層
7 透明電極
10 光取り出し部
11 透明基板
12 ブラックマトリックス
13a,13b,13c 色変換層
14 透光性樹脂平滑層
15 熱プレス板
20 発光部
30 EL素子

DESCRIPTION OF SYMBOLS 1 Back glass 2 Back electrode 3 Dielectric layer 4 Smooth layer 5 Phosphor light emitting layer 6 Diffusion prevention layer 7 Transparent electrode 10 Light extraction part 11 Transparent substrate 12 Black matrix 13a, 13b, 13c Color conversion layer 14 Translucent resin smooth layer 15 Hot press board 20 Light emission part 30 EL element

Claims (4)

対向する2つの電極間に少なくとも発光層を備え、光取り出し側に色変換層と表面基板を含み、前記2つの電極のうち表面基板側の電極を透明電極としたエレクトロルミネッセンス素子において、
前記色変換層の透明電極側表面は平滑面であることを特徴とするエレクトロルミネッセンス素子。
In an electroluminescent device comprising at least a light emitting layer between two opposing electrodes, including a color conversion layer and a surface substrate on the light extraction side, and using the electrode on the surface substrate side of the two electrodes as a transparent electrode,
The surface of the color conversion layer on the transparent electrode side is a smooth surface.
前記色変換層の平滑面は、算術平均高さ(Ra)が200nm以下である請求項1に記載のエレクトロルミネッセンス素子。   The electroluminescent device according to claim 1, wherein the smooth surface of the color conversion layer has an arithmetic average height (Ra) of 200 nm or less. 前記透明電極と前記色変換層との間に、透光性樹脂平滑層をさらに設けた請求項1に記載のするエレクトロルミネッセンス素子。   The electroluminescent element according to claim 1, further comprising a translucent resin smooth layer between the transparent electrode and the color conversion layer. 前記透明電極と前記透光性樹脂平滑層との界面、及び前記透光性樹脂平滑層と前記色変換層との界面をいずれも算術平均高さ(Ra)が200nm以下となるように平滑化する請求項3に記載のするエレクトロルミネッセンス素子。


The interface between the transparent electrode and the translucent resin smooth layer and the interface between the translucent resin smooth layer and the color conversion layer are all smoothed so that the arithmetic average height (Ra) is 200 nm or less. The electroluminescent device according to claim 3.


JP2005120075A 2005-04-18 2005-04-18 Electroluminescent element Withdrawn JP2006303030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120075A JP2006303030A (en) 2005-04-18 2005-04-18 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120075A JP2006303030A (en) 2005-04-18 2005-04-18 Electroluminescent element

Publications (1)

Publication Number Publication Date
JP2006303030A true JP2006303030A (en) 2006-11-02

Family

ID=37470992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120075A Withdrawn JP2006303030A (en) 2005-04-18 2005-04-18 Electroluminescent element

Country Status (1)

Country Link
JP (1) JP2006303030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059621A (en) * 2009-09-14 2011-03-24 Fujifilm Corp Light extraction member, organic el element and method for manufacturing the organic el element
WO2012121287A1 (en) * 2011-03-10 2012-09-13 シャープ株式会社 Phosphor substrate and display device
CN106206968A (en) * 2016-08-17 2016-12-07 京东方科技集团股份有限公司 Dot structure of OLED display device and preparation method thereof, OLED display device
WO2019216200A1 (en) * 2018-05-09 2019-11-14 東レ株式会社 Color conversion composition, color conversion sheet, light source unit, display and lighting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059621A (en) * 2009-09-14 2011-03-24 Fujifilm Corp Light extraction member, organic el element and method for manufacturing the organic el element
WO2012121287A1 (en) * 2011-03-10 2012-09-13 シャープ株式会社 Phosphor substrate and display device
CN106206968A (en) * 2016-08-17 2016-12-07 京东方科技集团股份有限公司 Dot structure of OLED display device and preparation method thereof, OLED display device
WO2019216200A1 (en) * 2018-05-09 2019-11-14 東レ株式会社 Color conversion composition, color conversion sheet, light source unit, display and lighting device
JPWO2019216200A1 (en) * 2018-05-09 2021-03-25 東レ株式会社 Color conversion composition, color conversion sheet, light source unit, display and lighting equipment
JP7306265B2 (en) 2018-05-09 2023-07-11 東レ株式会社 Color conversion composition, color conversion sheet, light source unit, display and lighting device

Similar Documents

Publication Publication Date Title
JP5195755B2 (en) Translucent substrate, manufacturing method thereof, organic LED element and manufacturing method thereof
WO2009116531A1 (en) Substrate for electronic device, layered body for organic led element, method for manufacturing the same, organic led element, and method for manufacturing the same
JP5590754B2 (en) Organic electronic device substrate, organic electronic device substrate manufacturing method, and organic electronic device
JP5824807B2 (en) Electronic device substrate and electronic device using the same
WO2011126097A1 (en) Organic led element, translucent substrate, and method for manufacturing organic led element
JP2008108439A (en) Electroluminescent element and electroluminescent panel
JPWO2009060916A1 (en) Translucent substrate, manufacturing method thereof, organic LED element and manufacturing method thereof
WO2006095632A1 (en) Electroluminescence element and lighting apparatus
KR20060114387A (en) Field-emission phosphor, its manufacturing method, and field-emission device
JP2016167441A (en) Organic electroluminescent element and lighting system
JP2006228677A (en) Polychromatic light emitting device
WO2005099315A1 (en) Electro-luminescence element
JP2006269382A (en) Electroluminescent display element
JP2006303030A (en) Electroluminescent element
WO2006093095A1 (en) Dispersion-type electroluminescent element
JPH118063A (en) Electroluminescence element and manufacture thereof
KR101114917B1 (en) Substrate for Organic Electronic Devices and Method for Manufacturing Thereof
WO2015009059A1 (en) Method for manufacturing ultrathin organic light-emitting device
JP2007059195A (en) Upper face light emission type organic electroluminescent element
JP4533775B2 (en) Electroluminescent phosphor particles and dispersive electroluminescence device
JP2002260844A (en) Organic electroluminescence device
JP3570943B2 (en) Organic electroluminescence device and method of manufacturing the same
US9688571B2 (en) Method of fabricating light extraction substrate for organic light emitting device
JP2006040642A (en) Color conversion film and electroluminescent element using this
JP2006107837A (en) Electroluminescent element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701