WO2013133139A1 - Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method - Google Patents

Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method Download PDF

Info

Publication number
WO2013133139A1
WO2013133139A1 PCT/JP2013/055560 JP2013055560W WO2013133139A1 WO 2013133139 A1 WO2013133139 A1 WO 2013133139A1 JP 2013055560 W JP2013055560 W JP 2013055560W WO 2013133139 A1 WO2013133139 A1 WO 2013133139A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion layer
light
substrate
layer
Prior art date
Application number
PCT/JP2013/055560
Other languages
French (fr)
Japanese (ja)
Inventor
悦昌 藤田
別所 久徳
晶子 岩田
優香 伊神
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013133139A1 publication Critical patent/WO2013133139A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a wavelength conversion substrate, a display device using the same, an electronic apparatus, and a method for manufacturing the wavelength conversion substrate.
  • a flat panel display for example, a non-self-luminous liquid crystal display (LCD), a self-luminous plasma display (PDP), an inorganic electroluminescence (inorganic EL) display, organic electroluminescence (hereinafter referred to as “organic EL”) Also referred to as “organic LED.” Display and the like.
  • the organic EL display has attracted particular attention in terms of self-luminescence.
  • pixels that emit light in the red, green, and blue wavelength regions are provided as one unit, thereby creating various colors typified by white and realizing full color.
  • a method of forming red, green, and blue pixels by separately coating the organic light emitting layer by a mask vapor deposition method using a shadow mask is generally employed.
  • mask processing accuracy, mask alignment accuracy, mask enlargement, and the like are significant issues.
  • the area of the pixel is determined, if the mask processing accuracy or the mask alignment accuracy is low, the area of the non-light-emitting portion decreases, which leads to a decrease in the aperture ratio of the pixel, a decrease in luminance, and power consumption. Will lead to an increase in life and a decrease in service life. Also, in the field of large displays typified by TVs, the substrate size is increasing, but the mask requires a very thin metal (general film thickness: 50 nm to 100 nm). Is very difficult.
  • an organic EL having an organic light emitting layer that emits light in the blue to blue-green wavelength region and a phosphor layer that emits green light by absorbing light in the blue to blue-green wavelength region from the organic EL.
  • the organic EL display is made full color by combining a red pixel, a green pixel composed of a phosphor layer emitting light in the red wavelength region, and a blue pixel composed of a blue color filter for the purpose of improving color purity.
  • a method is known (see, for example, Patent Document 1).
  • the present invention has been made in view of the above circumstances, and provides a wavelength conversion substrate that can be reduced in cost and high definition, a display device using the same, an electronic device, and a method for manufacturing the wavelength conversion substrate.
  • the purpose is to provide.
  • the wavelength conversion substrate of the present invention comprises at least a substrate and a wavelength conversion layer laminate provided on the substrate, and the wavelength conversion layer laminate absorbs light and emits light having a wavelength different from the absorbed light. It is composed of a laminate of two or more wavelength conversion layers that emit light.
  • the wavelength conversion layer laminate may include at least one wavelength conversion layer in which the wavelength conversion capability of at least all of the wavelength conversion layer or a part of the region is reduced.
  • each of the wavelength conversion layers constituting the wavelength conversion layer laminate may emit light having a different wavelength.
  • the wavelength conversion layer laminate is provided on the excitation light limit side and the first wavelength conversion layer provided on the substrate side, and absorbs light emitted from the first wavelength conversion layer. And a second wavelength conversion layer that emits light.
  • the wavelength conversion layer laminate may have a wavelength conversion layer that emits light on a long wavelength side sequentially from the substrate side.
  • the wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in the red wavelength region and a green wavelength conversion layer that emits light in the green wavelength region in order from the substrate side. And may have a region that emits light in the green wavelength region and a region that emits light in the red wavelength region.
  • the wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in a red wavelength region in order from the substrate side, and a green wavelength conversion layer that emits light in a green wavelength region.
  • a blue wavelength conversion layer that emits light in the blue wavelength region, and a region that emits light in the green wavelength region, a region that emits light in the red wavelength region, and a blue wavelength region And a region that emits light.
  • a color filter may be provided between the substrate and the wavelength conversion layer laminate.
  • the refractive index of the substrate and the refractive index of the wavelength conversion layer are provided between the substrate and the wavelength conversion layer laminate, or between the color filter and the wavelength conversion layer laminate.
  • a low refractive index layer having a lower refractive index than the lower one may be provided.
  • substrate of this invention WHEREIN:
  • the said wavelength conversion layer laminated body forms a pixel,
  • the light absorptive partition may be provided in the position corresponding between each pixel.
  • the partition may have a laminated structure of a light absorption layer and a light reflective or light scattering bank at least from the substrate side.
  • the display device of the present invention includes the wavelength conversion substrate of the present invention and an excitation light source.
  • the excitation light source may be a light source that emits light in an ultraviolet wavelength region to a blue-green wavelength region.
  • the excitation light source may be any of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  • an active matrix driving element that drives the excitation light source may be provided.
  • light may be extracted from the side opposite to the substrate on which the active matrix driving element is provided.
  • the display device of the present invention may include a liquid crystal element that performs switching by voltage.
  • An electronic apparatus includes the display device according to the present invention.
  • the method for producing a wavelength conversion substrate of the present invention is characterized in that a wavelength conversion layer containing a wavelength conversion material is formed on a substrate, and a step of exposing a desired portion is performed using light absorbed by the wavelength conversion material.
  • a wavelength conversion layer containing a wavelength conversion material is formed on a substrate, a mask is formed on a portion that is not exposed, and then the light that is absorbed by the wavelength conversion material is used.
  • a step of exposing a portion of the conversion layer where the mask is not formed is performed.
  • the present invention it is possible to provide a wavelength conversion substrate and a display device with high definition and high conversion efficiency and at low cost.
  • FIG. 18 is a block diagram showing a circuit configuration of the display device according to the first to sixteenth embodiments.
  • FIG. 18 is a block diagram showing a circuit configuration of the display device according to the first to sixteenth embodiments.
  • FIG. 38 is an external view showing a ceiling light which is an application example of the display device according to the first to sixteenth embodiments.
  • FIG. 38 is an external view showing a lighting stand as an application example of the display device according to the first to sixteenth embodiments.
  • FIG. 38 is an external view showing a mobile phone as an application example of the display device according to the first to sixteenth embodiments.
  • FIG. 44 is an external view showing a flat-screen television as an application example of the display device according to the first to sixteenth embodiments.
  • FIG. 44 is an external view showing a portable game machine as an application example of the display device according to the first to sixteenth embodiments.
  • FIG. 44 is an external view showing a notebook computer that is one application example of the display device according to the first to sixteenth embodiments.
  • Example 38 is an external view showing a tablet terminal as an application example of the display device according to the first to sixteenth embodiments. It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 2.
  • FIG. 1 is a schematic sectional view showing a first embodiment of a wavelength conversion substrate.
  • the wavelength conversion substrate 10 is roughly composed of a substrate 11, a wavelength conversion layer stack 14 provided on one surface 11 a of the substrate 11, and a partition wall 15 that partitions pixels composed of the wavelength conversion layer stack 14. Yes.
  • the wavelength conversion layer laminate 14 includes a first wavelength conversion layer 12 and a second wavelength conversion layer 13 that are sequentially stacked from the substrate 11 side.
  • a red color filter 16 is provided between the substrate 11 and the wavelength conversion layer stack 14 in a region constituting the red pixel 21 in the wavelength conversion layer stack 14.
  • a green color filter 17 is provided in a region constituting the green pixel 22 in the wavelength conversion layer stack 14.
  • a blue color filter 18 is provided in a region constituting the blue pixel 23 between the substrate 11 and the wavelength conversion layer stack 14.
  • a black matrix 19 is provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
  • the substrate 11 it is necessary to extract light emitted from the wavelength conversion material constituting the first wavelength conversion layer 12 and the second wavelength conversion layer 13 to the outside.
  • an inorganic material substrate made of glass, quartz, or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like is used, but the substrate is not limited to these.
  • the plastic substrate since it becomes possible to form a bent part and a bent part on the wavelength conversion substrate 10 without stress, it is preferable to use the plastic substrate as the substrate 11. From the viewpoint of improving gas barrier properties, it is more preferable to use a substrate obtained by coating a plastic substrate with an inorganic material as the substrate 11. Thereby, when the plastic substrate is used as the substrate 11, it is possible to prevent the wavelength conversion material from being deteriorated due to the transmission of moisture, which is the biggest problem.
  • the first wavelength conversion layer 12 and the second wavelength conversion layer 13 constituting the wavelength conversion layer laminate 14 are sometimes referred to as excitation light (hereinafter simply referred to as “excitation light”) from the ultraviolet wavelength region to the blue-green wavelength region. .) And emit light at different wavelengths.
  • excitation light a light emitting diode (LED (ultraviolet light emitting LED, blue LED)
  • organic EL element ultraviolet light emitting organic EL element, blue light emitting organic EL element
  • inorganic electro And a luminescence element inorganic EL element (ultraviolet light emitting inorganic EL element, blue light emitting inorganic EL element)).
  • Examples of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 include a red wavelength conversion layer that emits red light, a green wavelength conversion layer that emits green light, and a blue wavelength conversion layer that emits blue light.
  • the 1st wavelength conversion layer 12 or the 2nd wavelength conversion layer 13 it is preferable to provide the wavelength conversion layer which light-emits cyan, and the wavelength conversion layer which light-emits yellow as needed.
  • the chromaticity diagram shows the color purity of light in the cyan wavelength range from the wavelength conversion layer emitting cyan and the color purity of light in the yellow wavelength range from the wavelength conversion layer emitting yellow.
  • the point of color purity of light in the red wavelength range from the red wavelength conversion layer the point of color purity of light in the green wavelength range from the green wavelength conversion layer, and the blue wavelength from the blue wavelength conversion layer
  • the color reproduction range can be further expanded as compared with a display device using pixels emitting three primary colors of red, green and blue. it can.
  • a first wavelength conversion layer 12 made of a red wavelength conversion layer and a second wavelength conversion layer 13 made of a green wavelength conversion layer are laminated in order from the substrate 11 side, and are necessary for colorization when excitation light is used.
  • the red pixel 21, green pixel 22, and blue pixel 23 will be described.
  • an unexposed (not exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion layer). 13) are stacked in order.
  • an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and a non-exposed green wavelength conversion layer (second wavelength conversion layer 13) are formed on one surface 11 a of the substrate 11. Are sequentially stacked.
  • an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an exposed green wavelength conversion layer (second wavelength conversion layer 13) are provided on one surface 11 a of the substrate 11. They are stacked in order.
  • the excitation arranged at the position facing the substrate 11 through the wavelength conversion layer laminate 14, that is, the side opposite to the substrate 11 (second wavelength conversion layer 13 side) through the wavelength conversion layer laminate 14.
  • a light source not shown
  • blue light is absorbed by the green wavelength conversion layer (second wavelength conversion layer 13), and the green wavelength range from the green wavelength conversion layer is increased. Light is emitted.
  • the red wavelength conversion layer (first wavelength conversion layer 12) absorbs light in the green wavelength range from the green wavelength conversion layer (second wavelength conversion layer 13) formed on the light source side, and the red wavelength range.
  • the green wavelength conversion layer absorbs the excitation light transmitted through the green wavelength conversion layer and emits light in the red wavelength range, or the green wavelength conversion layer. Without being absorbed in the light, both the excitation light transmitted through the green wavelength conversion layer and the light emission in the green wavelength region from the green wavelength conversion layer are absorbed, and light in the red wavelength region is emitted.
  • the wavelength conversion ability of the wavelength conversion layer is the ability to absorb the excitation light from the excitation light source and emit light different from the excitation light, and indicates the light emission efficiency (emission intensity).
  • the wavelength conversion capability can be represented by the quantum yield, luminance, and energy amount of the wavelength conversion layer, such as a commercially available quantum yield measuring device, luminance meter, photometer, illuminometer, optical power meter, etc. It is possible to measure with.
  • that the wavelength conversion capability is reduced means that the light emission efficiency (light emission intensity) is lowered.
  • the emission intensity (emission intensity at the peak wavelength of the emission spectrum) of the wavelength conversion layer forming the non-emission part (the part where the emission efficiency is lowered) is the wavelength forming the emission part (the part where the emission efficiency is not lowered). It is preferable to reduce it to 1/10 or less of the emission intensity of the conversion layer.
  • the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) is not exposed.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion capability (light emission capability) of the green wavelength conversion layer that has not been exposed is maintained.
  • the red wavelength conversion layer (first wavelength conversion layer 12) and the green wavelength conversion layer (second wavelength conversion layer 13) are both exposed, the wavelengths of the red wavelength conversion layer and the green wavelength conversion layer are exposed. Conversion ability (light emission ability) is reduced, and light absorption ability is also reduced.
  • the green wavelength conversion layer (first Since the excitation light is not absorbed by the two-wavelength conversion layer 13) and the red wavelength conversion layer (first wavelength conversion layer 12) the green wavelength conversion layer and the red wavelength conversion layer do not emit light. Transmits through the red wavelength conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 23.
  • the wavelength conversion layer which light-emits the light of a long wavelength side is laminated
  • the wavelength conversion of excitation light is performed efficiently and the wavelength conversion board
  • the first wavelength conversion layer 12 emits light, and the emitted light is extracted outside. Thereby, light emission with excellent color purity can be obtained from the wavelength conversion substrate 10.
  • the wavelength conversion layer emits light.
  • the light (excitation light) that is not absorbed by the wavelength conversion layer that emits light on the long wavelength side is absorbed by the wavelength conversion layer that emits light on the short wavelength side provided on the light extraction side, The wavelength conversion layer emits light.
  • the wavelength conversion layer emits light.
  • the light emission on the long wavelength side and the light emission on the short wavelength side are simultaneously extracted to the outside, light emission with reduced color purity can be obtained from the wavelength conversion substrate.
  • a wavelength conversion layer that emits light on the short wavelength side in order from the excitation light source side that is, a wavelength conversion layer that emits light on the long wavelength side in order from the one surface 11a side of the substrate 11.
  • both the wavelength conversion layer that emits the light on the short wavelength side and the wavelength conversion layer that emits the light on the long wavelength side are provided at the location (pixel) that transmits the excitation light as it is as described above. It exposes and in each wavelength conversion layer, the absorption in the light emission wavelength range of excitation light is reduced, and excitation light is transmitted more efficiently.
  • the wavelength conversion layer that emits light on the short wavelength side and wavelength conversion that emits light on the long wavelength side Do not expose both layers.
  • wavelength conversion that emits light on the long wavelength side formed on the one surface 11a side of the substrate 11 is performed. The layer is exposed, and the photochemical reaction reduces the light emission efficiency of the wavelength conversion layer that emits light on the long wavelength side and the light absorption, and does not expose the wavelength conversion layer that emits light on the short wavelength side.
  • the wavelength conversion layer that emits light on the short wavelength side is used in the wavelength conversion substrate in which the wavelength conversion layer that emits light on the long wavelength side is laminated in order from the excitation light source side.
  • the wavelength conversion layer that emits light on the short wavelength side is exposed without exposing the wavelength conversion layer that emits light on the long wavelength side formed on the substrate side.
  • the photochemical reaction reduces the light emission efficiency of the wavelength conversion layer that emits light on the long wavelength side and also reduces the light absorption.
  • the wavelength conversion layer that emits light on the short wavelength side is also exposed at the same time, and the luminous efficiency of the wavelength conversion layer that emits light on the short wavelength side is also reduced by the photochemical reaction.
  • substrate 10 light-emits the red wavelength conversion layer (1st wavelength conversion layer 12) which light-emits the light of a red wavelength range, and the light of a green wavelength range sequentially from the one surface 11a side of the board
  • a green wavelength conversion layer (second wavelength conversion layer 13) is laminated, and can emit light in the red wavelength region and light in the green wavelength region.
  • the wavelength conversion substrate 10 is provided with a plurality of red pixels 21, green pixels 22 and blue pixels 23 in a planar direction (a direction parallel to one surface 11a of the substrate 11).
  • a red wavelength conversion layer first wavelength conversion layer 12
  • a green wavelength conversion layer second wavelength conversion layer 13
  • the 1st wavelength conversion layer 12 is exposed using a photomask.
  • the green pixel 22 and the blue pixel 23 the emission intensity of light in the red wavelength region is reduced.
  • the second wavelength conversion layer 13 is formed on the first wavelength conversion layer 12, the second wavelength conversion layer 13 is exposed using a photomask, so that only the blue pixel 23 has a green wavelength region.
  • the light emission intensity of is reduced.
  • the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this. Using a direct exposure machine or a laser drawing apparatus, light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
  • the wavelength conversion layer stack 14 is arranged on the substrate 11 side.
  • the first wavelength conversion layer 12 composed of a red wavelength conversion layer
  • the yellow wavelength conversion layer (not shown) that emits yellow light the second wavelength conversion layer 13 composed of a green wavelength conversion layer, and cyan that emits cyan.
  • a color wavelength conversion layer (not shown) is laminated.
  • the red pixel 21, green pixel 22, blue pixel 23, yellow pixel (not shown), and cyan pixel (not shown) necessary for colorization will be described.
  • an unexposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (first A two-wavelength conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially laminated.
  • an exposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength) A conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially stacked.
  • an exposed red wavelength conversion layer (first wavelength conversion layer 12), an exposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength) on one surface 11 a of the substrate 11.
  • a conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially stacked.
  • a cyan pixel on one surface 11a of the substrate 11, an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer).
  • Layer 13) and a non-exposed cyan wavelength conversion layer are laminated in order.
  • an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer) are formed on one surface 11 a of the substrate 11.
  • Layer 13) and an exposed cyan wavelength conversion layer are laminated in order.
  • the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), and the cyan wavelength conversion layer are not exposed.
  • the wavelength conversion capability (light emission capability) of the red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is maintained. Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer.
  • the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the yellow wavelength conversion layer, green wavelength conversion layer (second wavelength conversion layer 13), and cyan wavelength conversion layer are exposed. Absent.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion capability (light emission capability) of the unexposed yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is maintained.
  • the cyan wavelength conversion layer stack 14 when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer.
  • the red wavelength conversion layer (first wavelength conversion layer 12) and the yellow wavelength conversion layer are exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) and the cyan wavelength conversion layer are not exposed. .
  • the wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer and yellow wavelength conversion layer is reduced, and the light absorption ability is also reduced.
  • the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the cyan wavelength conversion layer that are not exposed is maintained.
  • the cyan wavelength conversion layer stack 14 when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer.
  • the yellow wavelength conversion layer emits light because the light in the green wavelength region is not absorbed in the yellow wavelength conversion layer.
  • the light in the green wavelength region is transmitted through the yellow wavelength conversion layer.
  • the red wavelength conversion layer emits light because the red wavelength conversion layer does not absorb the light in the green wavelength range. Instead, the light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 22.
  • the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the cyan wavelength conversion layer is not exposed. .
  • the wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, and green wavelength conversion layer is reduced, and the light absorption ability is also reduced.
  • the wavelength conversion capability (light emission capability) of the unexposed cyan wavelength conversion layer is maintained.
  • the cyan wavelength conversion layer stack 14 when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), but light in the cyan wavelength region is not absorbed by the green wavelength conversion layer. Therefore, the green wavelength conversion layer does not emit light, and light in the cyan wavelength region is transmitted through the green wavelength conversion layer.
  • a red wavelength conversion layer (first wavelength conversion layer 12), a yellow wavelength conversion layer, a green wavelength conversion layer (second wavelength conversion layer 13), and a cyan wavelength conversion layer are exposed.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is reduced. Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Since the excitation light is not absorbed, the excitation light passes through the cyan wavelength conversion layer.
  • the green wavelength conversion layer emits light because the excitation light is not absorbed by the green wavelength conversion layer. Without passing through, the excitation light passes through the green wavelength conversion layer.
  • the excitation light that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the excitation light is not absorbed by the yellow wavelength conversion layer. Permeates through the conversion layer.
  • the excitation light that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the excitation light is not absorbed by the red wavelength conversion layer, so the red wavelength conversion layer does not emit light, and the excitation light has a red wavelength. Permeates through the conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 23.
  • the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) emits light in the same direction, not only the light extraction direction but also the opposite direction (here, the wavelength conversion layer laminate 14) Through the opposite side of the substrate 11). Therefore, light emission in the direction perpendicular to the thickness direction of the wavelength conversion layer (film surface direction) and the direction opposite to the light extraction direction is a loss. Therefore, by arranging a light-reflective or light-scattering partition wall (bank) 15 to be described later for each pixel, it becomes possible to reflect and scatter light in the pixel and reuse the light. Utilization efficiency is improved, loss of light in the direction of the film surface is reduced, and high brightness and low consumption can be achieved.
  • the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) may be composed of only the wavelength conversion material (phosphor material) exemplified below, and optionally contains additives and the like. Alternatively, a structure in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be used.
  • a known phosphor material can be used as the phosphor material constituting the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.
  • Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
  • the film thickness of the wavelength conversion layer stack 14 (the first wavelength constituting the wavelength conversion layer stack 14 rather than the width of the pixel pattern).
  • the film thickness of the conversion layer 12, the second wavelength conversion layer 13, etc.) needs to be reduced.
  • the thickness of the wavelength conversion layer stack 14 is reduced, the absorption amount of the excitation light is decreased, and the excitation light from the excitation light source and the red color are mixed from the wavelength conversion layer stack 14, thereby reducing the color purity.
  • concentration of the wavelength conversion material contained in the wavelength conversion layer laminate 14 When the concentration of the wavelength conversion material is increased, the light emission efficiency is reduced by so-called concentration quenching.
  • the wavelength conversion layer laminate 14 has two types of phosphor materials mainly responsible for light absorption and light emission as the wavelength conversion material (the wavelength conversion material included in the first wavelength conversion layer 12, the second wavelength conversion layer 13). It is preferable to contain the 2nd wavelength conversion material contained in 1). As a result, the thin film can sufficiently absorb the excitation light and achieve both high luminous efficiency.
  • first wavelength conversion material when the wavelength conversion material (hereinafter sometimes referred to as “first wavelength conversion material”) included in the second wavelength conversion layer 13 absorbs excitation light from the excitation light source and enters an excited state.
  • the wavelength conversion material contained in the first wavelength conversion layer 12 having an energy level lower than that of the first wavelength conversion material from the first wavelength conversion material (hereinafter referred to as “second”) than the energy transfer between the first wavelength conversion materials.
  • Energy transfer to “wavelength conversion material” is more likely to occur. Therefore, most of the excitation energy of the first wavelength conversion material moves to the second wavelength conversion material without being lost (concentration quenching) due to movement between the first wavelength conversion materials, and the second wavelength conversion material emits light. It is thought that it can contribute to.
  • the second wavelength conversion material can efficiently utilize the excitation energy transferred from the first wavelength conversion material. Wavelength conversion can be performed to emit light in a desired wavelength range. Thus, in the wavelength conversion layer laminated body 14, it becomes possible to make thin film thickness and high luminous efficiency compatible.
  • the function of absorbing the excitation light from the excitation light source and the function of emitting light in a desired wavelength range are separated, and each function is shared between the first wavelength conversion material and the second wavelength conversion material.
  • the high wavelength absorptivity and high luminous efficiency can be suitably maintained in the wavelength conversion layer laminate 14 without increasing the film thickness of the wavelength conversion layer laminate 14.
  • both the first wavelength conversion material and the second wavelength conversion material may be excited by absorbing excitation light from the excitation light source.
  • the sufficient absorption of the excitation light is preferably 80% or more, more preferably 90% or more, at an excitation wavelength.
  • the wavelength conversion layer laminate 14 is a phosphor material that absorbs excitation light from the excitation light source (first wavelength conversion material) and a phosphor material that emits a desired color (for example, red) ( By containing the second wavelength conversion material), the first wavelength conversion material absorbs the incident light to the wavelength conversion layer laminate 14, transfers the energy to the second wavelength conversion material, When the two-wavelength conversion material receives energy from the first wavelength conversion material, the wavelength conversion layer stack 14 can emit light having a spectrum different from that of the initial incident light.
  • the first wavelength conversion material is a wavelength conversion material that can absorb the excitation light from the excitation light source incident on the wavelength conversion layer laminate 14 and transfer the absorbed energy to the second wavelength conversion material. Therefore, it is preferable that the absorption spectrum of the first wavelength conversion material overlaps the spectrum of the excitation light from the excitation light source. It is more preferable that the absorption maximum of the first wavelength conversion material and the maximum of the spectrum of the excitation light from the light source match. Moreover, it is preferable that the emission spectrum of the first wavelength conversion material overlaps with the absorption spectrum of the second wavelength conversion material. Furthermore, it is more preferable that the maximum of the emission spectrum of the first wavelength conversion material matches the absorption maximum of the second wavelength conversion material. Here, it is preferable that the difference between the maximum wavelengths is 20% or less, and more preferably 10% or less that the maximums of the spectra match.
  • the absorption peak wavelength of the incident light by the first wavelength conversion material and the second wavelength conversion are realized by realizing the absorption and emission of the excitation light from the excitation light source by different wavelength conversion materials.
  • the difference from the emission peak wavelength after wavelength conversion by the material can be increased.
  • the options for the materials used as the first wavelength conversion material and the second wavelength conversion material are expanded. Can do.
  • organic phosphor material As an organic phosphor material, as a fluorescent dye that converts excitation light in the ultraviolet region into light emission in a blue wavelength region, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4, 4'-diphenylstilbenzene, coumarin dyes: 7-hydroxy-4-methylcoumarin and the like.
  • coumarin dyes 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9 , 9a, 1-gh) Coumarin (coumarin 153), 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin) 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like.
  • cyanine dyes 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran
  • Pyridine dyes 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate
  • rhodamine dyes rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101 , Rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
  • Sr 2 P 2 O 7 Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+
  • a phosphor that converts excitation light in the ultraviolet region into light emission in the blue wavelength region BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba ) 5 (PO 4) 3 Cl : Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2
  • phosphors that convert ultraviolet to excitation light into green light emission include (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 -Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) ) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
  • Y 2 O 2 S Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25, and the like.
  • the inorganic phosphor material may be subjected to a surface modification treatment as necessary.
  • the method includes chemical treatment such as a silane coupling agent and addition of fine particles of submicron order. And the like by the physical treatment by the above, and those by the combined use thereof.
  • an inorganic phosphor material it is preferable to use an inorganic phosphor material as the wavelength conversion material.
  • the average particle diameter (d 50 ) is preferably 0.5 ⁇ m to 50 ⁇ m. If the average particle size is 0.5 ⁇ m or less, the luminous efficiency of the phosphor is drastically reduced. On the other hand, when the average particle diameter exceeds 50 ⁇ m, it becomes very difficult to form a flat film (wavelength conversion layer).
  • the wavelength conversion substrate 10 is applied to an organic EL display, the wavelength conversion layer, the organic EL element, Between the organic EL element (refractive index: about 1.7) and the wavelength conversion layer (refractive index: about 2.3) made of an inorganic phosphor layer (refractive index: 1. 0)).
  • the light from an organic EL element cannot reach a wavelength conversion layer efficiently, and the problem that the luminous efficiency of a wavelength conversion layer falls arises.
  • the wavelength conversion layer since it is difficult to flatten the wavelength conversion layer, there is a problem that it becomes impossible to form the liquid crystal layer when the wavelength conversion substrate 10 and the liquid crystal are combined. This is because if the wavelength conversion layer is not flat, the distance between the electrodes sandwiching the liquid crystal layer becomes non-uniform, and an electric field is not uniformly applied between the electrodes, so that the liquid crystal layer does not operate uniformly.
  • binding resin As the polymer material (binding resin) for forming the wavelength conversion layer, a known polymer material can be used. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
  • Polymer materials (binding resins) include methacrylic resin, fluorene resin, cycloolefin resin, epoxy resin, silicone resin, organic / inorganic hybrid resin, polycarbonate resin, triacetyl cellulose (TAC) resin, polystyrene resin, fluorine Resin, polyethylene terephthalate resin, methyl methacrylate / styrene (MS) resin, polyvinyl alcohol resin, poval resin, alkyd resin and the like.
  • TAC triacetyl cellulose
  • MS methyl methacrylate / styrene
  • thermosetting resin a known photocurable resin can be used as the photocurable resin. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
  • the photocurable resin include (meth) acrylate photocurable resins, imide photocurable resins, and silicone photocurable resins.
  • a known thermosetting resin can be used as the thermosetting resin. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
  • the thermosetting resin include an epoxy thermosetting resin and a silicone thermosetting resin.
  • the film thicknesses of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are usually about 100 nm to 100 ⁇ m, but preferably 1 ⁇ m to 100 ⁇ m. If the film thickness of the first wavelength conversion layer 12 or the second wavelength conversion layer 13 is less than 100 nm, the excitation light from the excitation light source cannot be sufficiently absorbed. There arises a problem of deterioration of color purity due to mixing of excitation light from the excitation light source. Furthermore, in order to increase the absorption of the excitation light from the excitation light source and reduce the transmitted light of the excitation light to such an extent that the color purity is not adversely affected, the film thicknesses of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are reduced. Is preferably 1 ⁇ m or more. On the other hand, when the film thickness of the first wavelength conversion layer 12 or the second wavelength conversion layer 13 exceeds 100 ⁇ m, the pumping light from the pumping light source is already sufficiently absorbed. This leads to an increase in material costs.
  • a coating liquid for forming a wavelength conversion layer in which the phosphor material and the polymer material are dissolved and dispersed in a solvent is used.
  • coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, microgravure coating method, etc.
  • dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD) using the above materials Or the like.
  • EB electron beam
  • MBE molecular beam epitaxy
  • OVPD organic vapor deposition
  • the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are laminated.
  • the wavelength conversion substrate 10 can easily and efficiently convert the wavelength of the excitation light from the same excitation light source into light of two or more different wavelengths.
  • the first wavelength conversion layer 12 formed first is converted to the second wavelength conversion layer 12.
  • the solvent used when forming the layer 13 may dissolve, and the material constituting the first wavelength conversion layer 12 and the material constituting the second wavelength conversion layer 13 may be mixed.
  • the light emission efficiency of the first wavelength conversion layer 12 and / or the second wavelength conversion layer 13 is reduced, and energy is transferred to the wavelength conversion layer that emits light with lower energy, so that desired light emission can be obtained. May cause problems. Therefore, when the second wavelength conversion layer 13 is laminated on the first wavelength conversion layer 12, it is preferable that the respective layers are not mixed.
  • At least the wavelength conversion layer formed last (the wavelength conversion layer formed at the position farthest from the substrate 11) is used.
  • the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) constituting the wavelength conversion layer laminate 14 is irradiated with light having an absorption region in the wavelength conversion layer, so that photochemistry is achieved.
  • the wavelength conversion layer (the wavelength conversion layer having a reduced wavelength conversion capability in the wavelength conversion layer laminate 14 by reducing the emission intensity of the wavelength conversion layer irradiated with light (emission intensity at the peak wavelength of the emission spectrum)) At least one non-light emitting portion is formed.
  • the light emission part and the non-light-emitting part in the wavelength conversion layer laminated body 14 are patterned by using a photomask.
  • the photomask is formed with a light shielding portion made of chrome or the like so as to correspond to a desired position of the wavelength conversion layer laminate 14, and light does not reach the wavelength conversion layer covered with the light shielding portion upon light irradiation. Designed to be Moreover, it is preferable that the light emission intensity (light emission intensity at the peak wavelength of the light emission spectrum) of the wavelength conversion layer forming the non-light emitting part is 1/10 or less of the light emission intensity of the wavelength conversion layer forming the light emitting part.
  • the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this. Using a direct exposure machine or a laser drawing apparatus, light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
  • the light-emitting portion and the non-light-emitting portion are simply patterned in the wavelength conversion layer using a photochemical reaction. Since a very simple method of irradiating light can be applied by shielding the part where the wavelength conversion capability is not desired to be reduced, only one exposure for each wavelength conversion layer is required, and a photomask is also used. Since one is sufficient, the light emitting portion and the non-light emitting portion can be patterned in the wavelength conversion layer at low cost.
  • the green pixel is reduced only in the fluorescence intensity (emission intensity) of the red wavelength conversion material.
  • the fluorescence intensity of the green wavelength conversion material is also reduced by the light of the wavelength that reduces only the fluorescence intensity of the red wavelength conversion material.
  • the photochemical reaction is used, and after patterning the light emitting part and the non-light emitting part in the wavelength conversion layer, Since another wavelength conversion layer is formed and patterned in the same manner for the wavelength conversion layer, there is no problem of a decrease in fluorescence intensity of the wavelength conversion material in the conventional method.
  • the fluorescence intensity of only the red wavelength conversion material is reduced among the two wavelength conversion materials constituting one wavelength conversion layer, and the fluorescence of the green wavelength conversion material is reduced. It is not necessary to change the intensity, and it is possible to completely reduce (eliminate) the fluorescence intensity of the wavelength conversion material constituting each wavelength conversion layer. For example, in the green pixel 22, from the red wavelength conversion material A decrease in color purity due to light emission can be eliminated.
  • wavelength color conversion is performed by irradiating the wavelength conversion material constituting the wavelength color conversion layer with high energy light (electromagnetic waves) in a wavelength region that is absorbed by the wavelength conversion layer, such as ultraviolet rays, using a photomask.
  • the fluorescence intensity (absorption intensity of excitation light) of the wavelength conversion material constituting the wavelength conversion layer is reduced.
  • the modification of the wavelength conversion material is any mode in which the decomposition or oxidation of the color conversion dye and the emission intensity of other wavelength conversion materials are reduced (light transmittance with respect to excitation light is reduced) (formation of aggregates).
  • the modification of the wavelength conversion material means that the fluorescence intensity is reduced by the excitation light from the light source, and the light transmittance for the excitation light at the wavelength of the emission maximum of the organic EL element is reduced. To do.
  • a lamp such as a high pressure UV lamp, an ultra high pressure UV lamp, a low pressure UV lamp, a deep UV lamp, a metal halide lamp, an excimer lamp, a xenon lamp, or a halogen lamp is usually used.
  • the wavelength of the light source is not particularly limited as long as it is an absorption wavelength of the wavelength conversion material, and is preferably in a wavelength range in which part or all of the wavelength conversion material can be modified.
  • the illuminance of the light source is not particularly limited, and it is better to reduce the process time.
  • irradiation intensity in order to prevent deterioration of the color filter it is better not very high, 10mW / cm 2 ⁇ 300mW / cm 2 is preferably about.
  • a photomask is used to convert the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer). 13)) is irradiated with high energy light to partially modify the color conversion dye, but in this embodiment, other means may be used.
  • the wavelength conversion layer the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.
  • the wavelength conversion layer is changed while changing the irradiation intensity.
  • a method of irradiating an electromagnetic wave to the entire surface of the two-wavelength conversion layer 13 or the like for example, a method of exposing an electromagnetic wave through a filter having a partially different transmittance such as a black and white negative film, an irradiation intensity of light emitted from a minute light source And a method in which scanning is performed while changing the wavelength, a method in which electromagnetic waves are partially irradiated by masking, and the like.
  • the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), for example, contact exposure using a photomask or projection exposure (light condensed by a lens) Or a method of performing partial exposure using light emitted from a minute light source, a method using a photomask in combination with these methods, or the like).
  • the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this.
  • a direct exposure machine or a laser drawing apparatus light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
  • a light-absorbing partition wall 15 is provided between each pixel formed of the wavelength conversion layer stack 14. Thereby, the display contrast by the wavelength conversion board
  • substrate 10 can be improved.
  • the film thickness of the partition wall 15 is usually about 100 nm to 100 ⁇ m, but preferably 100 nm to 10 ⁇ m.
  • the partition wall 15 preferably has a laminated structure of a light absorption layer and a light reflective or light scattering bank from the substrate 11 side.
  • a light absorption layer the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.
  • light is emitted in the side surface direction (waveguide component through the wavelength conversion layer), and the substrate 11 side
  • the loss component of light emission that cannot be extracted in the light is reflected and scattered in a desired pixel by a light reflective or light scattering bank, so that the light emission can be used effectively. It is possible to prevent a decrease in color purity due to leakage of light emission.
  • the light emitted from the wavelength conversion layer can be reflected in each pixel, and the light emission from the wavelength conversion layer can be used effectively, so that the light emission efficiency can be improved and the power consumption can be reduced. be able to.
  • the light absorption layer on the substrate 11 side it is possible to prevent external light reflection by the light-reflective or light-scattering bank, and consequently, it is possible to prevent a decrease in contrast due to external light.
  • the material for forming the light-reflective or light-scattering bank is not particularly limited, and examples thereof include a reflective film such as a metal such as gold, silver, and aluminum, and a scattering film such as titanium oxide.
  • the wavelength conversion substrate 10 includes pixels (for example, blue pixels 23) that directly use light emitted from excitation light having different light distribution characteristics and pixels (red pixels 21 and green pixels 22) that use light emitted from the wavelength conversion layer. ) To reduce luminance and color changes due to misalignment of orientation characteristics due to viewing angle by combining light distribution characteristics of pixels that directly use excitation light and pixels that use light emitted from the wavelength conversion layer. Therefore, a light scattering layer may be formed on the surface of the partition wall 15.
  • the light scattering layer As a material for forming the light scattering layer, it is preferable to use a material in which light scattering particles are dispersed in a resin.
  • the light scattering particles particles composed of organic materials (organic fine particles), inorganic materials or particles composed of inorganic materials (inorganic fine particles) are used, and inorganic fine particles are preferable.
  • light scattering particles By using light scattering particles as a material for forming the light scattering layer, light having directivity from the outside (for example, a light emitting element) can be diffused or scattered more isotropically and effectively.
  • inorganic fine particles a light scattering layer stable to light and heat can be formed.
  • the light scattering particles have high transparency.
  • the light scattering particles preferably have a higher refractive index than the resin serving as a base material.
  • the particle size of the light scattering particles needs to be in the Mie scattering region, so that the particle size of the light scattering particles is 100 nm to 500 nm. The degree is preferred.
  • an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin and antimony is used as a main component.
  • Particles fine particles.
  • silica beads reffractive index: 1.44
  • alumina beads reffractive index: 1.63
  • titanium oxide beads reffractive index
  • zirconia oxide beads reffractive index: 2.05), zinc oxide beads (refractive index: 2.00), barium titanate (BaTiO 3 ) (refractive index: 2.4).
  • organic fine particles when organic fine particles are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic-styrene copolymer beads (refractive index). : 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), styrene beads (refractive index: 1. 60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), silicone beads (refractive index: 1. 50) and the like.
  • the resin material used by mixing with the light scattering particles is preferably a translucent resin.
  • the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine.
  • Beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index) : 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53).
  • High density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1). .3 ), And the like.
  • a red color filter 16, a green color filter 17, and a blue color filter 18 are provided between the substrate 11 and the wavelength conversion layer stack 14 as shown in FIG. 1.
  • the red color filter 16, the green color filter 17, and the blue color filter 18 conventional color filters can be used.
  • the excitation light that is not absorbed by the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) and passes through the wavelength conversion layer leaks to the outside. Therefore, it is possible to prevent a decrease in color purity of light emission due to a color mixture of light emission from the wavelength conversion layer and excitation light.
  • the color purity of the red pixel 21, the green pixel 22, and the blue pixel 23 can be increased, and as a result, the color reproduction range by the wavelength conversion substrate 10 can be expanded.
  • the red color filter 16 provided on the red pixel 21, the green color filter 17 provided on the green pixel 22, and the blue color filter 18 provided on the blue pixel 23 convert each wavelength of external light. Since the excitation light that excites the material is absorbed, the light emission of the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) due to external light can be reduced and prevented, and the display by the wavelength conversion substrate 10 The reduction in contrast can be reduced or prevented. On the other hand, the red color filter 16, the green color filter 17, and the blue color filter 18 are not absorbed by the wavelength conversion layer (first wavelength conversion layer 12, second wavelength conversion layer 13, etc.), and the wavelength conversion layer (first wavelength conversion layer). Light from the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) can be prevented from leaking to the outside. It is possible to prevent a decrease in color purity of light emission due to color mixing of excitation light.
  • a color filter corresponding to each light emission can be provided.
  • a black matrix 19 is preferably provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
  • a low refractive index layer (not shown) having a lower refractive index than the lower one of the refractive index of the substrate 11 and the refractive index of the wavelength conversion layer (first wavelength conversion layer 12, second wavelength conversion layer 13, etc.) is provided. It is preferable that Thereby, light emitted from the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) is guided through the substrate 11 on the light extraction side and guided to the side surface of the substrate 11. The loss of light emission that occurs can be reduced.
  • Reflecting with a reflective layer dielectric multilayer film, bandpass filter, metal ultra-thin film, etc. reflecting light emitted from the body 14, a semi-transparent electrode or a reflective electrode provided in an inorganic EL part or an organic EL part)
  • a reflective layer dielectric multilayer film, bandpass filter, metal ultra-thin film, etc.
  • a semi-transparent electrode or a reflective electrode provided in an inorganic EL part or an organic EL part
  • the material that can be used for the low refractive index layer is not particularly limited.
  • Poly (2,2,3,3,4,4,4-heptafluorobutyl methacrylate): n 1.383
  • Poly (2,2,3,3,3-pentafluoropropyl methacrylate): n 1.395
  • a gas such as dry air or nitrogen introduced into the space between the color filters (red color filter 16, green color filter 17, blue color filter 18) and wavelength conversion layer laminate 14.
  • the space may be formed under reduced pressure.
  • the sealing film covers the surface 14a of the wavelength conversion layer stack 14 (second wavelength conversion layer 13) opposite to the substrate 11 (hereinafter also referred to as “one surface”) 14a. It may be provided.
  • the sealing film is formed by applying a resin to one surface 14a of the wavelength conversion layer laminate 14 using a spin coat method, ODF, or a laminate method.
  • an inorganic film made of SiO, SiON, SiN or the like is formed by plasma CVD, ion plating, ion beam, sputtering, or the like so as to cover one surface 14a of the wavelength conversion layer stack 14
  • a sealing film is formed by applying a resin using a spin coat method, ODF, a laminate method or the like so as to cover the inorganic film, or by bonding a resin film so as to cover the inorganic film. You can also With this sealing film, it is possible to prevent external oxygen and moisture from being mixed into the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13 and the like). Deterioration can be reduced.
  • the wavelength conversion substrate 10 when the wavelength conversion substrate 10 is applied to a display device, oxygen and moisture contained in the wavelength conversion layer reach the liquid crystal layer, the inorganic EL element, the organic EL element, etc., and the liquid crystal layer, the inorganic EL element, the organic EL element, etc. Can be prevented from deteriorating.
  • a planarization film may be provided so as to cover the surface of the sealing film opposite to the surface in contact with the wavelength conversion layer laminate 14.
  • the planarization film can be formed using a known material.
  • the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is limited to these materials and the formation method. is not.
  • the planarization film may have either a single layer structure or a multilayer structure.
  • substrate 10 when the wavelength conversion board
  • Pixels are formed on one surface 11a of the substrate 11 at a predetermined interval, and partition walls 15 are formed at positions corresponding to the respective pixels (see FIG. 2A).
  • the first wavelength conversion layer 12 made of a red wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the partition wall 15 (see FIG. 2B).
  • the first wavelength conversion layer 12 is formed in a vacuum, in an inert gas or in dry air (dew point: ⁇ 60 ° C. or lower) for the purpose of preventing deterioration due to moisture or oxygen (decrease in emission intensity).
  • the wavelength conversion layer the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.
  • a display device using the wavelength conversion substrate 10 is obtained after the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) is formed on the substrate 11, a display device using the wavelength conversion substrate 10 is obtained.
  • All the steps are preferably performed in vacuum, in an inert gas or in dry air (dew point: ⁇ 60 ° C. or lower).
  • the photocurable resin or the thermosetting resin is cured. It is preferable to perform the process of forming the 2nd wavelength conversion layer 13 by performing the exposure process which patterns the 1st wavelength conversion layer 12, after passing through the process to make. Also in these steps, it is preferable to perform all the steps in vacuum, in an inert gas or in dry air (dew point: ⁇ 60 ° C. or lower).
  • a region corresponding to the red pixel 21 is shielded from light (a light shielding part 31 a is provided), and a region corresponding to the green pixel 22 and the blue pixel 23 is shielded from light.
  • a photomask 31 that is not provided (the light shielding portion 31a is not provided) is disposed (see FIG. 2C).
  • the region corresponding to the green pixel 22 and the blue pixel 23 in the first wavelength conversion layer 12 is irradiated with light 41 from the above-described lamp 11 to expose the region.
  • the emission intensity of light in the red wavelength region in the region is reduced (wavelength conversion capability (emission capability) is reduced) to make no light emission (see FIG. 2D).
  • the second wavelength conversion layer 13 made of the green wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the first wavelength conversion layer 12 (see FIG. 2E).
  • the second wavelength conversion layer 13 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
  • the areas corresponding to the red pixels 21 and the green pixels 22 are shielded from light (the light shielding part 32 a is provided), and the areas corresponding to the blue pixels 23 are shielded from light.
  • a photomask 32 that is not provided (the light shielding portion 32a is not provided) is disposed (see FIG. 2F).
  • the light corresponding to the blue pixel 23 in the second wavelength conversion layer 13 is irradiated with the light 41 by the lamp described above, the region is exposed, and the green wavelength in the region is utilized using a photochemical reaction.
  • the light emission intensity of the light in the region is reduced (wavelength conversion ability (light emission ability) is reduced) and no light is emitted (see FIG. 2G).
  • the second wavelength conversion layer 13 is exposed in the same manner as the step of exposing the first wavelength conversion layer 12.
  • the wavelength conversion substrate 10 in which the red pixel 21, the green pixel 22, and the blue pixel 23 are formed on one surface 11a of the substrate 11 is obtained (see FIG. 2H).
  • the excitation light from the excitation light source is absorbed by the green wavelength conversion layer, the light in the green wavelength region is emitted from the green wavelength conversion layer, and then the green wavelength from the green wavelength conversion layer is emitted.
  • Light in the wavelength range is absorbed by the red wavelength conversion layer, and light in the red wavelength range is emitted from the red wavelength conversion layer.
  • the red wavelength conversion layer and the green wavelength conversion layer have high wavelength without impairing the wavelength conversion capability (light emission capability). It can be used while maintaining the luminous efficiency.
  • the red wavelength conversion layer can directly absorb the excitation light transmitted through the green wavelength conversion layer, and can emit light in the red wavelength range, and the excitation transmitted through the green wavelength conversion layer. Both the light and the light emitted in the green wavelength region from the green wavelength conversion layer can be absorbed, and the light in the red wavelength region can be emitted.
  • the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has high absorbance of the excitation light emitted from the excitation light source.
  • the thing which absorbs the light of the green wavelength range from a green wavelength conversion layer, and has a high light absorbency of the light of the green wavelength range from a green wavelength conversion layer is preferable.
  • the excitation light from an excitation light source can be absorbed more efficiently, high-luminance red light emission can be obtained, and power consumption can also be reduced.
  • the red wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
  • the red wavelength conversion layer absorbs the excitation light emitted from the excitation light source that reaches the red wavelength conversion layer without being absorbed by the green wavelength conversion layer, and can also be used for red light emission. Red light emission can be obtained and power consumption can be reduced.
  • the first wavelength conversion layer 12 (red wavelength conversion layer) is exposed and the photochemical reaction is used to reduce the emission intensity of light in the red wavelength range, while the second wavelength conversion layer 13 ( The green wavelength conversion layer) is not exposed. Therefore, the red wavelength conversion layer can be made to emit no light, and the green wavelength conversion layer can emit light as it is.
  • the excitation light from the excitation light source is absorbed by the green wavelength conversion layer, the light in the green wavelength region is emitted from the green wavelength conversion layer, and then the green wavelength from the green wavelength conversion layer is emitted. Light in the wavelength region is transmitted through the red wavelength conversion layer, and light in the green wavelength region is emitted.
  • the emission intensity of only the red wavelength conversion layer formed on the one surface 11a of the substrate 11 is reduced, and only the red wavelength conversion layer need not emit light. It is not necessary to consider that the wavelength conversion capability (light emission capability) of the green wavelength conversion layer is impaired by exposure (patterning), and the green wavelength conversion layer can be used while maintaining high luminous efficiency. Further, in the green pixel 22, when the light emission intensity of the red wavelength conversion layer is reduced, the light in the green wavelength region from the green wavelength conversion layer is more efficiently reduced by reducing the absorbance of the light in the green wavelength region. Can be taken out, green light emission with high luminance can be obtained, and power consumption can be reduced.
  • the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has high absorbance of the excitation light emitted from the excitation light source.
  • the excitation light from an excitation light source can be absorbed more efficiently, high-luminance green light emission can be obtained, and power consumption can also be reduced.
  • the first wavelength conversion layer 12 (red wavelength conversion layer) and the second wavelength conversion layer 13 (green wavelength conversion layer) are exposed together, and light is emitted in the red wavelength region using a photochemical reaction.
  • the intensity and emission intensity of light in the green wavelength range are reduced. Therefore, these two wavelength conversion layers can be made to emit no light.
  • the excitation light from the excitation light source is transmitted through the green wavelength conversion layer, and then the excitation light transmitted through the green wavelength conversion layer is transmitted through the red wavelength conversion layer. Emits light in the wavelength range.
  • the blue pixel 23 the light emission intensities of the red wavelength conversion layer and the green wavelength conversion layer are reduced, and these two wavelength conversion layers are made non-light emitting. Therefore, the red wavelength conversion layer or the green wavelength conversion layer is excited by the excitation light from the excitation light source. It is possible to prevent the color purity from deteriorating due to mixing of the excitation light from the excitation light source and the light in the red wavelength band or the light in the green wavelength band from the wavelength conversion layer. Furthermore, in the blue pixel 23, when the emission intensity of the red wavelength conversion layer is reduced, the excitation light from the excitation light source can be extracted more efficiently by reducing the absorbance of the excitation light from the excitation light source, High-luminance blue light emission can be obtained, and power consumption can be reduced.
  • FIG. 3 is a schematic sectional view showing a second embodiment of the wavelength conversion substrate.
  • the wavelength conversion substrate 50 is provided on the substrate 11 and one surface 11 a of the substrate 11, and the first wavelength conversion layer 12, the second wavelength conversion layer 13, and the third wavelength conversion layer 51 are sequentially stacked from the substrate 11 side.
  • a partition wall 15 that is provided on one surface 11a of the first substrate 11 and that partitions the pixels made of the wavelength conversion layer stack 52.
  • the red color filter 16 is provided in a region of the wavelength conversion layer stack 52 that constitutes the red pixel 61.
  • the green color filter 17 is provided in a region of the wavelength conversion layer stack 52 that constitutes the green pixel 62. Further, a blue color filter 18 is provided in a region constituting the blue pixel 63 between the substrate 11 and the wavelength conversion layer stack 52. Further, in the thickness direction of the wavelength conversion substrate 50, between the substrate 11 and the partition wall 15, and in the direction perpendicular to the thickness direction of the wavelength conversion substrate 50, between the red color filter 16 and the green color filter 17, A black matrix 19 is provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
  • the 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51 which comprise the wavelength conversion layer laminated body 52 absorb excitation light, and light-emit a different wavelength.
  • the first wavelength conversion layer 12, the second wavelength conversion layer 13, or the third wavelength conversion layer 51 for example, a red wavelength conversion layer that emits red light, a green wavelength conversion layer that emits green light, or a blue wavelength conversion that emits blue light. Layer.
  • the first wavelength conversion layer 12, the second wavelength conversion layer 13, or the third wavelength conversion layer 51 may be provided with a wavelength conversion layer that emits cyan or a wavelength conversion layer that emits yellow. preferable.
  • red pixel 61 an unexposed (not exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion) are formed on one surface 11 a of the substrate 11.
  • Layer 13) and a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
  • the green pixel 62 an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion layer 13) are formed on one surface 11 a of the substrate 11.
  • a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
  • the blue pixel 63 an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an exposed green wavelength conversion layer (second wavelength conversion layer 13) on one surface 11 a of the substrate 11. And a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
  • the red wavelength conversion layer (first wavelength conversion layer 12), the green wavelength conversion layer (second wavelength conversion layer 13), and the blue wavelength conversion layer (third wavelength conversion layer 51) are not exposed.
  • the wavelength conversion ability (light emission ability) of the green wavelength conversion layer, red wavelength conversion layer, and blue wavelength conversion layer is maintained.
  • the excitation arranged at the position facing the substrate 11 via the wavelength conversion layer laminate 52, that is, on the opposite side (third wavelength conversion layer 51 side) from the substrate 11 via the wavelength conversion layer laminate 52.
  • the excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown)
  • the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted.
  • the red wavelength conversion layer (first wavelength conversion layer 12) only absorbs light in the green wavelength range from the green wavelength conversion layer (second wavelength conversion layer 13) and emits light in the red wavelength range. Rather than being absorbed by the blue wavelength conversion layer and the green wavelength conversion layer, the excitation light transmitted through these wavelength conversion layers is absorbed and light in the red wavelength region is emitted or absorbed by the blue wavelength conversion layer. Instead, the excitation light transmitted through the blue wavelength conversion layer enters the green wavelength conversion layer, absorbs the light in the green wavelength region emitted from the green wavelength conversion layer, and emits light in the red wavelength region. Or, it absorbs both the excitation light transmitted through these wavelength conversion layers and the emission of the green wavelength region from the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer and the green wavelength conversion layer, Emits light in the red wavelength range.
  • the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) and the blue wavelength conversion layer (third wavelength conversion layer 51) are exposed. Not.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the blue wavelength conversion layer which are not exposed is maintained. Thereby, the excitation arranged at the position facing the substrate 11 via the wavelength conversion layer laminate 52, that is, on the opposite side (third wavelength conversion layer 51 side) from the substrate 11 via the wavelength conversion layer laminate 52.
  • the excitation light When excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown), the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted. Subsequently, light in the blue wavelength region is incident on the green wavelength conversion layer (second wavelength conversion layer 13) from the blue wavelength conversion layer, and light in the blue wavelength region is absorbed in the green wavelength conversion layer. To emit light in the green wavelength region. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), but light in the green wavelength region is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 62.
  • the red wavelength conversion layer (first wavelength conversion layer 12) and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the blue wavelength conversion layer (third wavelength conversion layer 51) is exposed. Not.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer and green wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion capability (light emission capability) of the unexposed blue wavelength conversion layer is maintained.
  • the excitation light When excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown), the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted. Subsequently, light in the blue wavelength region is incident on the green wavelength conversion layer (second wavelength conversion layer 13) from the blue wavelength conversion layer, but light in the blue wavelength region is not absorbed by the green wavelength conversion layer, so the green wavelength The conversion layer does not emit light, and light in the blue wavelength region is transmitted through the green wavelength conversion layer.
  • the wavelength conversion layer which light-emits the light of a long wavelength side is laminated
  • the wavelength conversion of excitation light is performed efficiently and the wavelength conversion board
  • the light (light emission) from the second wavelength conversion layer 13 is provided on the light extraction side (one surface 11a side of the substrate 11), and the first wavelength conversion layer 12 that emits light on the long wavelength side is emitted. Absorbed, the first wavelength conversion layer 12 emits light, and the emitted light is extracted outside. Thereby, light emission with excellent color purity can be obtained from the wavelength conversion substrate 50.
  • substrate 10 light-emits the red wavelength conversion layer (1st wavelength conversion layer 12) which light-emits the light of a red wavelength range in order from the one surface 11a side of the board
  • a green wavelength conversion layer (second wavelength conversion layer 13) and a blue wavelength conversion layer (third wavelength conversion layer 51) that emits light in the blue wavelength range are laminated, and light in the red wavelength range and green It is possible to emit light in the wavelength region of blue and light in the wavelength region of blue.
  • the wavelength conversion substrate 50 when the light source that emits the excitation light is used as the excitation light source, the wavelength conversion substrate 50 has the red pixel, the green pixel, and the blue light emission pixel necessary for the full color display device. Can be formed. More specifically, the wavelength conversion substrate 50 is provided with a plurality of red pixels 61, green pixels 62, and blue pixels 63 in a planar direction (a direction parallel to one surface 11a of the substrate 11). In the vertical direction, the red wavelength conversion layer (first wavelength conversion layer 12), the green wavelength conversion layer (second wavelength conversion layer 13), and the blue wavelength conversion layer (third) are sequentially formed from the one surface 11a side of the substrate 11. Wavelength conversion layer 51).
  • substrate 50 after forming the 1st wavelength conversion layer 12 on the one surface 11a of the board
  • the wavelength conversion layer stack 52 is provided on the substrate 11 side.
  • the first wavelength conversion layer 12 composed of a red wavelength conversion layer, the yellow wavelength conversion layer (not shown) that emits yellow light
  • the second wavelength conversion layer 13 composed of a green wavelength conversion layer
  • the red pixel 61, the green pixel 62, the blue pixel 63, the yellow pixel (not shown), and the cyan pixel (not shown) necessary for colorization will be described.
  • a non-exposed red wavelength conversion layer (first wavelength conversion layer 12), a non-exposed yellow wavelength conversion layer, and a non-exposed green wavelength conversion layer (first A two-wavelength conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
  • an exposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength).
  • a conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
  • a conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
  • Layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
  • an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer) are formed on one surface 11 a of the substrate 11.
  • a red wavelength conversion layer (first wavelength conversion layer 12), a yellow wavelength conversion layer, a green wavelength conversion layer (second wavelength conversion layer 13), a cyan wavelength conversion layer, and a blue wavelength conversion layer ( Since the third wavelength conversion layer 51) is not exposed, the wavelength conversion capability (light emission capability) of the red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, cyan wavelength conversion layer and blue wavelength conversion layer is maintained. ing.
  • the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer.
  • the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), the cyan wavelength conversion layer, and the blue wavelength conversion.
  • the layer (third wavelength conversion layer 51) is not exposed.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion ability (light emission ability) of the unexposed yellow wavelength conversion layer, green wavelength conversion layer, cyan wavelength conversion layer, and blue wavelength conversion layer is maintained.
  • the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer.
  • the red wavelength conversion layer (first wavelength conversion layer 12) and the yellow wavelength conversion layer are exposed, the green wavelength conversion layer (second wavelength conversion layer 13), the cyan wavelength conversion layer, and the blue wavelength.
  • the conversion layer (third wavelength conversion layer 51) is not exposed.
  • the wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer and yellow wavelength conversion layer is reduced, and the light absorption ability is also reduced.
  • the wavelength conversion ability (light emission ability) of the green wavelength conversion layer, the cyan wavelength conversion layer, and the blue wavelength conversion layer that are not exposed is maintained.
  • the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer.
  • the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer.
  • the yellow wavelength conversion layer emits light because the light in the green wavelength region is not absorbed in the yellow wavelength conversion layer.
  • the light in the green wavelength region is transmitted through the yellow wavelength conversion layer.
  • the red wavelength conversion layer emits light because the red wavelength conversion layer does not absorb the light in the green wavelength range. Instead, the light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 62.
  • the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the cyan wavelength conversion layer and the blue wavelength conversion layer are exposed.
  • (Third wavelength conversion layer 51) is not exposed.
  • the wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, and green wavelength conversion layer is reduced, and the light absorption ability is also reduced.
  • the wavelength conversion capability (light emission capability) of the cyan wavelength conversion layer and the blue wavelength conversion layer that are not exposed is maintained.
  • the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), but light in the cyan wavelength region is not absorbed by the green wavelength conversion layer.
  • the green wavelength conversion layer does not emit light, and light in the cyan wavelength region is transmitted through the green wavelength conversion layer. Subsequently, light in the cyan wavelength region that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, but light in the cyan wavelength region is not absorbed in the yellow wavelength conversion layer. Without emitting light, light in the cyan wavelength region passes through the yellow wavelength conversion layer. Subsequently, light in the cyan wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, but light in the cyan wavelength range is not absorbed in the red wavelength conversion layer, so the red wavelength conversion layer is Without emitting light, light in the cyan wavelength region is transmitted through the red wavelength conversion layer. In this way, cyan light can be extracted from the cyan pixels.
  • the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), and the cyan wavelength conversion layer are exposed, and the blue wavelength conversion layer is exposed.
  • the (third wavelength conversion layer 51) is not exposed.
  • the wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is reduced, and the light absorption capability is also reduced.
  • the wavelength conversion capability (light emission capability) of the unexposed blue wavelength conversion layer is maintained.
  • the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, since light in the blue wavelength region from the blue wavelength conversion layer is not absorbed by the cyan wavelength conversion layer, the light in the blue wavelength region is transmitted through the cyan wavelength conversion layer. Subsequently, although light in the blue wavelength range that has passed through the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), light in the blue wavelength range is not absorbed by the green wavelength conversion layer.
  • the green wavelength conversion layer does not emit light, and light in the blue wavelength region is transmitted through the green wavelength conversion layer. Subsequently, although the light in the blue wavelength range that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the yellow wavelength conversion layer emits light because the yellow wavelength conversion layer does not absorb light in the blue wavelength range. Instead, the light in the blue wavelength region is transmitted through the yellow wavelength conversion layer. Subsequently, although the light in the blue wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the red wavelength conversion layer emits light because the light in the blue wavelength range is not absorbed by the red wavelength conversion layer. Instead, the light in the blue wavelength region is transmitted through the red wavelength conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 63.
  • the sealing film covers the wavelength conversion layer stack 52 (third wavelength conversion layer 51) on the opposite side of the substrate 11 (hereinafter also referred to as “one side”) 52a. It may be provided. Furthermore, a planarization film may be provided so as to cover the surface of the sealing film opposite to the surface in contact with the wavelength conversion layer laminate 52.
  • Pixels are formed on one surface 11a of the substrate 11 at a predetermined interval, and partition walls 15 are formed at positions corresponding to the respective pixels (see FIG. 4A).
  • the first wavelength conversion layer 12 made of a red wavelength conversion layer is formed on one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the partition wall 15 (see FIG. 4B).
  • the light shielding unit 31 a is provided on the first wavelength conversion layer 12 formed on the substrate 11, a region corresponding to the red pixel 61 is shielded (the light shielding unit 31 a is provided), and a region corresponding to the green pixel 62 and the blue pixel 63 is shielded.
  • the region corresponding to the green pixel 62 and the blue pixel 63 is irradiated with the light 41 by the lamp, the region is exposed, and the region is exposed to light using a photochemical reaction.
  • the light emission intensity of light in the red wavelength region is reduced (wavelength conversion ability (light emission ability) is reduced), and no light is emitted (see FIG. 4D).
  • the second wavelength conversion layer 13 made of the green wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the first wavelength conversion layer 12 (see FIG. 4E).
  • the second wavelength conversion layer 13 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
  • the region corresponding to the red pixel 61 and the green pixel 62 is shielded (the light shielding part 32 a is provided), and the region corresponding to the blue pixel 63 is shielded.
  • a photomask 32 that is not provided (the light shielding portion 32a is not provided) is disposed (see FIG. 4F).
  • the light corresponding to the blue pixel 63 is irradiated with the light 41 in the second wavelength conversion layer 13 by the lamp described above, the region is exposed, and the green wavelength in the region is utilized using a photochemical reaction.
  • the emission intensity of the light in the region is reduced (wavelength conversion ability (light emission ability) is reduced), and no light is emitted (see FIG. 4G).
  • the second wavelength conversion layer 13 is exposed in the same manner as the step of exposing the first wavelength conversion layer 12.
  • a third wavelength conversion layer 51 made of a blue wavelength conversion layer is formed on one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the second wavelength conversion layer 13 (see FIG. 4H).
  • the third wavelength conversion layer 51 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
  • the first wavelength conversion layer 12 red wavelength conversion layer
  • the second wavelength conversion layer 13 green wavelength conversion layer
  • the third wavelength conversion layer 51 blue wavelength conversion layer
  • the red wavelength conversion layer can directly absorb the excitation light transmitted through the blue wavelength conversion layer and the green wavelength conversion layer, and can emit light in the red wavelength range. Both the excitation light transmitted through the layer and the green wavelength conversion layer and the emission in the green wavelength region from the green wavelength conversion layer can be absorbed, and the light in the red wavelength region can be emitted.
  • the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
  • the excitation light from the excitation light source can be absorbed more efficiently, high-luminance blue light emission can be obtained, and energy can be transferred to the green wavelength conversion layer more efficiently. Power consumption can be reduced.
  • the thing which absorbs the light of the blue wavelength range from a blue wavelength conversion layer, and has a high light absorbency of the light of the blue wavelength range from a blue wavelength conversion layer is preferable.
  • the excitation light from the excitation light source can be more efficiently absorbed, green light emission with high luminance can be obtained, and energy can be more efficiently transferred to the red wavelength conversion layer. And power consumption can be reduced.
  • the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. As a result, the green wavelength conversion layer absorbs the excitation light emitted from the excitation light source that reaches the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer, and can also be used for green light emission. Green light emission can be obtained and power consumption can be reduced.
  • the first wavelength conversion layer 12 red wavelength conversion layer
  • the photochemical reaction is used to reduce the emission intensity of light in the red wavelength range
  • the second wavelength conversion layer 13 The green wavelength conversion layer
  • the third wavelength conversion layer 51 blue wavelength conversion layer
  • the red wavelength conversion layer can be made to emit no light
  • the green wavelength conversion layer and the blue wavelength conversion layer can emit light as they are.
  • the excitation light from the excitation light source is absorbed by the blue wavelength conversion layer, and then the light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the green wavelength conversion layer.
  • Light in the green wavelength region is emitted from the conversion layer, and then light in the green wavelength region from the green wavelength conversion layer is transmitted through the red wavelength conversion layer to emit light in the green wavelength region.
  • the emission intensity of only the red wavelength conversion layer previously formed on the one surface 11a of the substrate 11 may be reduced, and only the red wavelength conversion layer may be made non-light emitting.
  • the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the blue wavelength conversion layer is impaired by exposure (patterning), and the green wavelength conversion layer and the blue wavelength conversion layer maintain high luminous efficiency. Can be used as is.
  • the green wavelength conversion is performed more efficiently by reducing the absorbance of light in the green wavelength range and the light in the blue wavelength range. Light in the green wavelength region from the layer and light in the blue wavelength region from the blue wavelength conversion layer can be extracted, and high-luminance green light emission can be obtained, and power consumption can be reduced.
  • the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
  • the thing which absorbs the light of the blue wavelength range from a blue wavelength conversion layer, and has a high light absorbency of the light of the blue wavelength range from a blue wavelength conversion layer is preferable.
  • the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
  • the excitation light emitted from the excitation light source that reaches the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer can also be absorbed and used for green light emission, thereby obtaining high-luminance green light emission. And power consumption can be reduced.
  • the first wavelength conversion layer 12 red wavelength conversion layer
  • the second wavelength conversion layer 13 green wavelength conversion layer
  • these two wavelength conversion layers can be made to emit no light.
  • the excitation light from the excitation light source is absorbed by the blue wavelength conversion layer, and then the light in the blue wavelength region from the blue wavelength conversion layer is transmitted through the green wavelength conversion layer.
  • light in the blue wavelength range that has passed through the green wavelength conversion layer is transmitted through the red wavelength conversion layer, and light in the blue wavelength range is emitted.
  • the blue pixel 63 the light emission intensities of the red wavelength conversion layer and the green wavelength conversion layer are reduced and these two wavelength conversion layers are made non-light emitting.
  • the layer emits light the light in the blue wavelength range from the blue wavelength conversion layer and the light in the red wavelength range from the red wavelength conversion layer or the light in the green wavelength range from the green wavelength conversion layer are mixed, It is possible to prevent the color purity from deteriorating.
  • the blue pixel 63 when the emission intensity of the red wavelength conversion layer and the green wavelength conversion layer is reduced, the blue wavelength region is more efficiently reduced by reducing the absorbance of light in the blue wavelength region from the blue wavelength conversion layer. Light in the blue wavelength region can be extracted from the wavelength conversion layer, blue light emission with high luminance can be obtained, and power consumption can be reduced.
  • the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
  • the excitation light from an excitation light source can be absorbed more efficiently, high-intensity blue light emission can be obtained, and power consumption can also be reduced.
  • FIG. 5 is a schematic sectional view showing a first embodiment of a display device.
  • the display device 70 includes a first substrate 71, a light emitting layer 72 provided on one surface 71 a of the first substrate 71, a light source 73 provided on the light emitting layer 72, and the light emitting layer 72 and the light source 73.
  • the second substrate (sealing substrate) 74 provided so as to face the first substrate 71, and the first substrate 71 and the second substrate 74 are provided at the outer edge portions of the first substrate 71 and the second substrate 74. It is schematically configured from a bonding member 75 that is fixed to each other in a bonded state.
  • the light emitting layer 72 is the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate or the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate.
  • substrate and sealing substrate which are used with the conventional organic EL display apparatus are used.
  • the first substrate 71 and the second substrate 74 include an insulating substrate such as an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbonate, polyimide, etc., a ceramic substrate made of alumina, or the like, or A metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate whose surface is coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like, or a metal made of aluminum or the like Examples thereof include a substrate obtained by subjecting the surface of the substrate to insulation treatment by a method such as anodic oxidation. Among these, it is preferable to use a plastic substrate or a metal substrate because it is possible to form a bent portion and a bent portion without stress
  • a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are preferable.
  • a substrate coated with such an inorganic material deterioration of the organic EL material due to the permeation of moisture, which is the biggest problem when a plastic substrate is used as a substrate of a display device (the organic EL material is a particularly small amount of moisture).
  • TFTs driving elements
  • substrates that do not melt at a temperature of 500 ° C. or less and do not cause distortion are used as the first substrate 71 and the second substrate 74.
  • the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 /
  • the TFT is transferred and formed on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT on the glass substrate to the plastic substrate.
  • substrate 74 There is no restriction
  • a driving method of the light source 73 conventional passive matrix driving, active matrix driving, and conventional materials and processes used for them can be used.
  • peak luminance display can be easily performed, display quality is excellent, light emission time can be extended as compared with passive matrix driving, and a desired luminance can be obtained.
  • Active matrix driving is preferable because the driving voltage can be reduced and power consumption can be reduced.
  • the TFTs formed on the first substrate 71 and the second substrate 74 are formed in advance on the first substrate 71 and the second substrate 74 before the light source 73 is formed, and function as switching and driving.
  • a well-known TFT is mentioned, for example.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT.
  • a TFT that can be used for the display device 70 can be formed using a known material, structure, and formation method.
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide-
  • oxide semiconductor material such as zinc oxide
  • organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene
  • Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • an active layer forming method for forming a TFT (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD method or The polysilicon layer is formed by ECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • LPCVD low pressure chemical vapor deposition
  • a method of performing ion doping high temperature Process
  • a method of forming an organic semiconductor material by an inkjet method a method of obtaining a single crystal film of the organic semiconductor material.
  • the gate insulating film of the TFT in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, the second drive electrode, and the like of the TFT in this embodiment can be formed using known materials.
  • Examples of the material for the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode include tantalum (Ta), aluminum (Al), copper (Cu), and the like.
  • the TFT of the display device 70 can be formed with the above-described configuration, but the present embodiment is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film that can be used for the active drive type organic EL display device 70 can be formed using a known material.
  • a material of the interlayer insulating film for example, inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O 5 ), acrylic resin, resist material Organic materials, etc. are mentioned.
  • the method for forming the interlayer insulating film include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. If necessary, the interlayer insulating film can be patterned by a photolithography method or the like.
  • the light-shielding insulating film having both properties.
  • the interlayer insulating film and the light-shielding insulating film can be used in combination.
  • the material of the light-shielding insulating film include inorganic pigments such as phthalocyanine and quinaclodon dispersed in a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulation such as Ni x Zn y Fe 2 O 4. Materials and the like. However, the present embodiment is not limited to these materials and forming methods.
  • the display device 70 is an active drive type and a TFT or the like is formed on the first substrate 71 or the second substrate 74, irregularities are formed on the surface, and the irregularities of the light emitting layer 72 (for example, the first substrate) There is a risk that an electrode defect, an organic layer defect, a disconnection of the second electrode, a short circuit between the first electrode and the second electrode, a decrease in breakdown voltage, and the like.
  • a planarizing film may be provided on the interlayer insulating film.
  • planarization film can be formed using a known material.
  • the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is limited to these materials and the formation method. is not.
  • the planarization film may have either a single layer structure or a multilayer structure.
  • the bonding member 75 for example, a resin adhesive, an inorganic material, or the like is used.
  • the material of the bonding member 75 will not be specifically limited.
  • the light source 73 a known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL element, blue light emitting inorganic EL element, ultraviolet light emitting organic EL element, blue light emitting organic EL element, or the like is used. It is not limited, The light source produced with the well-known material and the well-known manufacturing method can be used.
  • the ultraviolet light preferably emits light having a main light emission peak of 360 nm to 410 nm
  • the blue light preferably has light emission of a main light emission peak of 410 nm to 470 nm.
  • FIG. 6 is a schematic cross-sectional view showing an embodiment of an organic EL element substrate (light source) constituting the display device.
  • the organic EL element substrate 80 includes a substrate 81 and an organic EL element 82 provided on one surface 81 a of the substrate 81.
  • the organic EL element 82 is schematically configured from a first electrode 83, an organic EL layer 84, and a second electrode 85 that are sequentially provided on one surface 81 a of the substrate 81. That is, the organic EL element 82 includes, on one surface 81a of the substrate 81, a pair of electrodes including the first electrode 83 and the second electrode 85, and an organic EL layer 84 sandwiched between the pair of electrodes. I have.
  • the first electrode 83 and the second electrode 85 function as a pair as an anode or a cathode of the organic EL element 82.
  • the optical distance between the first electrode 83 and the second electrode 85 is adjusted so as to constitute a microresonator structure (microcavity structure).
  • the organic EL layer 84 is laminated in order from the first electrode 83 side to the second electrode 85 side, and includes a hole injection layer 86, a hole transport layer 87, an organic light emitting layer 88, a hole prevention layer 89, and an electron transport.
  • the layer 90 and the electron injection layer 91 are configured.
  • the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 may each have a single layer structure or a multilayer structure. Further, the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 may each be an organic thin film or an inorganic thin film.
  • the hole injection layer 86 efficiently injects holes from the first electrode 83.
  • the hole transport layer 87 efficiently transports holes to the organic light emitting layer 88.
  • the electron transport layer 90 efficiently transports electrons to the organic light emitting layer 88.
  • the electron injection layer 91 efficiently injects electrons from the second electrode 85.
  • the hole injection layer 86, the hole transport layer 87, the electron transport layer 90, and the electron injection layer 91 correspond to a carrier injection transport layer.
  • the organic EL element 82 is not limited to the above configuration, and the organic EL layer 84 has a multilayer structure of an organic light emitting layer and a carrier injecting and transporting layer even if the organic EL layer 84 has a single layer structure of an organic light emitting layer. Also good.
  • Specific examples of the configuration of the organic EL element 82 include the following.
  • the structure in which the electron transport layer and the electron injection layer are laminated in this order From the first electrode 83 side A structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, and an electron transport layer are laminated in this order toward the two electrode 85 side (8) From the first electrode 83 side to the second electrode 85 A structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, an electron transport layer, and an electron injection layer are laminated in this order toward the side (9) From the first electrode 83 side to the second electrode A structure in which a hole injection layer, a hole transport layer, an electron blocking layer, an organic light emitting layer, a hole blocking layer, an electron transport layer and an electron injection layer are laminated in this order toward the 85 side.
  • each of the injection layer, the hole transport layer, the hole prevention layer, the electron prevention layer, the electron transport layer, and the electron injection layer may have a single layer structure or a multilayer structure.
  • each of the organic light emitting layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer, and electron injection layer may be either an organic thin film or an inorganic thin film.
  • An edge cover 92 is formed so as to cover the end surface of the first electrode 83. That is, the edge cover 92 is formed on one surface 81 a of the substrate 81 between the first electrode 83 and the second electrode 85 in order to prevent leakage between the first electrode 83 and the second electrode 85. It is provided so as to cover the edge portion of the formed first electrode 83.
  • each structural member which comprises the organic EL element substrate 80, and its formation method are demonstrated concretely, this embodiment is not limited to these structural members and a formation method.
  • the substrate 81 for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, an insulating substrate such as a ceramic substrate made of alumina, or the like, or aluminum (Al), iron A metal substrate made of (Fe) or the like, or a substrate coated with an insulating material made of silicon oxide (SiO 2 ), an organic insulating material or the like on the substrate, or a metal substrate made of aluminum or the like is anodized.
  • substrate etc. which performed the insulation process by this method are mentioned, this embodiment is not limited to these board
  • a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are preferable.
  • a substrate coated with such an inorganic material deterioration of organic EL due to moisture permeation, which is the biggest problem when a plastic substrate is used as a substrate of an organic EL element substrate (organic EL, in particular, a small amount of It is known that deterioration also occurs with respect to moisture.).
  • leakage (short) due to protrusions on the metal substrate which is the biggest problem when a metal substrate is used as the substrate of the organic EL element substrate (the film thickness of the organic EL layer is very thin, about 100 nm to 200 nm, It is known that leakage (short-circuiting) occurs in the current in the pixel portion due to the above.
  • a substrate that does not melt at a temperature of 500 ° C. or less and does not generate distortion as the substrate 81.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on a metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 ⁇ 10 ⁇ 5 / ° C. or less.
  • the metal substrate that is an iron-nickel alloy of this type and matching the linear expansion coefficient to glass it becomes possible to form TFTs on the metal substrate at low cost using a conventional production apparatus.
  • the TFT on the glass substrate is transferred to the plastic substrate, thereby transferring the TFT onto the plastic substrate. be able to.
  • the organic EL layer 84 when light emitted from the organic EL layer 84 is taken out from the side opposite to the substrate 81, there is no restriction as a substrate, but when light emitted from the organic EL layer 84 is taken out from the substrate 81 side, the organic EL layer In order to extract light emitted from the light source 84 to the outside, it is necessary to use a transparent or translucent substrate.
  • the TFT formed on the substrate 81 is formed in advance on one surface 81a of the substrate 81 before the organic EL element 82 is formed, and functions as a pixel switching element and an organic EL element driving element.
  • a known TFT can be cited.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT.
  • TFTs that can be used in active drive organic EL display devices and organic EL display devices can be formed using known materials, structures, and formation methods.
  • the material of the active layer constituting the TFT include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, cadmium selenide, zinc oxide, indium oxide-oxide Examples thereof include oxide semiconductor materials such as gallium-zinc oxide, and organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene.
  • the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • an active layer forming method for forming a TFT (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD method or The polysilicon layer is formed by ECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • LPCVD low pressure chemical vapor deposition
  • a method of performing ion doping high temperature Process
  • a method of forming an organic semiconductor material by an inkjet method a method of obtaining a single crystal film of the organic semiconductor material.
  • the gate insulating film constituting the TFT in this embodiment can be formed using a known material.
  • As the gate insulating film for example, PECVD method, and a SiO 2 or polysilicon film formed by the LPCVD method or the like insulating film made of SiO 2 or the like obtained by thermal oxidation.
  • the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT in this embodiment can be formed using a known material.
  • the material of the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode include tantalum (Ta), aluminum (Al), copper (Cu), and the like.
  • the TFT of the organic EL element substrate 80 can be configured as described above, but the present embodiment is not limited to these materials, structures, and formation methods.
  • the interlayer insulating film that can be used in the active drive organic EL display device and the organic EL display device can be formed using a known material.
  • a material of the interlayer insulating film for example, inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O 5 ), acrylic resin, resist material Organic materials, etc. are mentioned.
  • Examples of the method for forming the interlayer insulating film include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. If necessary, the interlayer insulating film can be patterned by a photolithography method or the like.
  • the organic EL element 82 When light emitted from the organic EL element 82 is extracted from the side opposite to the substrate 81 (second electrode 85 side), external light is incident on the TFT formed on the one surface 81a of the substrate 81, and the characteristics of the TFT. In order to prevent the change from occurring, it is preferable to form a light-shielding insulating film having light-shielding properties. Further, the interlayer insulating film and the light-shielding insulating film can be used in combination.
  • Examples of the material of the light-shielding insulating film include, for example, pigments or dyes such as phthalocyanine and quinaclonone dispersed in a polymer resin such as polyimide, color resists, black matrix materials, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4 Although materials etc. are mentioned, this embodiment is not limited to these materials and a formation method.
  • the active drive type organic EL display device when a TFT or the like is formed on one surface 81a of the substrate 81, an unevenness is formed on the surface, and this unevenness causes a defect of the organic EL element 82 (for example, a defect of a pixel electrode). There is a risk that a defect of the organic EL layer, a disconnection of the second electrode, a short circuit between the first electrode and the second electrode, a decrease in breakdown voltage, or the like) may occur.
  • a planarizing film may be provided on the interlayer insulating film.
  • planarization film can be formed using a known material.
  • the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method.
  • the present embodiment is limited to these materials and the formation method. is not.
  • the planarization film may have either a single layer structure or a multilayer structure.
  • the first electrode 83 and the second electrode 85 function as a pair as an anode or a cathode of the organic EL element 82. That is, when the first electrode 83 is an anode, the second electrode 85 is a cathode, and when the first electrode 83 is a cathode, the second electrode 85 is an anode.
  • an electrode material for forming the first electrode 83 and the second electrode 85 a known electrode material can be used.
  • an electrode material for forming the anode gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more from the viewpoint of more efficiently injecting holes into the organic EL layer 84.
  • lithium (Li), calcium (Ca), cerium (Ce) having a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer 84.
  • metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloys and Li: Al alloys containing these metals.
  • the first electrode 83 and the second electrode 85 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. Moreover, the electrode formed by the photolithographic method and the laser peeling method can also be patterned as needed, and the electrode patterned directly by combining with a shadow mask can also be formed.
  • the film thickness of the first electrode 83 and the second electrode 85 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
  • the microcavity effect is used for the purpose of improving the color purity of the display device, the light emission efficiency, the front luminance, etc., or when the light emitted from the organic EL layer 84 is taken out from the first electrode 83 or the second electrode 85 side. It is preferable to use a translucent electrode as the first electrode 83 or the second electrode 85.
  • a translucent electrode As a material for the semitransparent electrode, a metal semitransparent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used. In particular, as a material for the semitransparent electrode, silver is preferable from the viewpoint of reflectance and transmittance.
  • the film thickness of the translucent electrode is preferably 5 to 30 nm.
  • the film thickness of the translucent electrode is less than 5 nm, the light cannot be sufficiently reflected, and the interference effect cannot be obtained sufficiently.
  • the film thickness of the translucent electrode exceeds 30 nm, the light transmittance is rapidly decreased, so that the luminance and light emission efficiency of the display device may be decreased.
  • the electrode having high reflectivity include a reflective metal electrode (reflective electrode) made of, for example, aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, aluminum-silicon alloy, and the like. The electrode etc. which combined are mentioned.
  • the charge injecting and transporting layer is a charge injecting layer (hole injecting layer 86, electron injecting layer 91) for the purpose of more efficiently injecting charges (holes and electrons) from the electrode and transporting (injecting) the light emitting layer.
  • a charge transport layer (a hole transport layer 87, an electron transport layer 90), and may be composed of only the charge injecting and transporting material exemplified below, optionally including additives (donor, acceptor, etc.)
  • a structure in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be used.
  • charge injecting and transporting material known charge injecting and transporting materials for organic EL elements and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
  • the material of the hole injection layer 86 and the hole transport layer 87 known materials are used.
  • oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), and inorganic p-type semiconductor materials are used.
  • a porphyrin compound N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N ′ -Diphenyl-benzidine ( ⁇ -NPD), 4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (TCTA), N, N-dicarbazolyl-3,5-benzene (m-CP), 4,4 ′-(cyclohexane-1,1-diyl) bis (N, N-di-p-tolylaniline) (TAPC), 2,2′-bis (N, N-diphenylamine) -9,9′- Spirobifluorene (DPAS) N1, N1 ′-(biphenyl-4,4′-diyl) bis (N1-phenyl-N4, N4-di-m-tolylbenzene-1,
  • the energy level of the highest occupied molecular orbital (HOMO) is higher than that of the material of the hole transport layer 87 from the viewpoint of more efficiently injecting and transporting holes from the anode. It is preferable to use a low material. Further, as the material of the hole transport layer 87, a material having higher hole mobility than the material of the hole injection layer 86 is preferably used.
  • the hole injection layer 86 and the hole transport layer 87 may optionally contain an additive (donor, acceptor, etc.).
  • the hole injection layer 86 and the hole transport layer 87 preferably include an acceptor.
  • the acceptor a known acceptor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • the acceptor may be either an inorganic material or an organic material.
  • the inorganic material include gold (Au), platinum (Pt), tungsten (W), iridium (Ir), phosphorus oxychloride (POCl 3 ), hexafluoroarsenate ion (AsF 6 ⁇ ), chlorine (Cl), Examples include bromine (Br), iodine (I), vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and the like.
  • organic materials include 7,7,8,8, -tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF 4 ), tetracyanoethylene (TCNE), hexacyanobutadiene (HCNB), and dicyclohexane.
  • Compounds having a cyano group such as dicyanobenzoquinone (DDQ); compounds having a nitro group such as trinitrofluorenone (TNF) and dinitrofluorenone (DNF); fluoranil; chloranil; bromanyl and the like.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, and DDQ are preferable because the effect of increasing the hole concentration is higher.
  • a low molecular material an inorganic material that is an n-type semiconductor; 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene (Bpy-OXD), 1,3-bis (5- (4- (tert-butyl) phenyl) Oxadiazole derivatives such as -1,3,4-oxadiazol-2-yl) benzene (OXD7); 3- (4-biphenyl) -4-phenyl-5-tert-butylphenyl-1,2,4 -Triazole derivatives such as triazole (TAZ); thiopyrazine dioxide derivative; benzoquinone derivative; naphthoquinone derivative; anthraquinone derivative; diphenoquinone derivative; fluorenone derivative
  • a material for the electron injection layer 91 As a material for the electron injection layer 91, a material having a higher energy level of the lowest unoccupied molecular orbital (LUMO) than that of the material for the electron transport layer 90 is used from the viewpoint of more efficiently injecting and transporting electrons from the cathode. Is preferred. Further, as the material for the electron transport layer 90, a material having higher electron mobility than the material for the electron injection layer 91 is preferably used.
  • LUMO lowest unoccupied molecular orbital
  • the electron transport layer 90 and the electron injection layer 91 may optionally contain an additive (donor, acceptor, etc.).
  • the electron transport layer 90 and the electron injection layer 91 preferably include a donor.
  • a donor the well-known donor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
  • the donor may be either an inorganic material or an organic material.
  • the inorganic material include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as magnesium and calcium; rare earth elements; aluminum (Al); silver (Ag); copper (Cu); It is done.
  • the organic material include a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent such as phenanthrene, pyrene, perylene, anthracene, tetracene and pentacene, tetrathiafulvalene (TTF), Examples include dibenzofuran, phenothiazine, and carbazole.
  • Compounds having an aromatic tertiary amine skeleton include anilines; phenylenediamines; N, N, N ′, N′-tetraphenylbenzidine, N, N′-bis- (3-methylphenyl) -N, N Benzidines such as' -bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine; triphenylamine, 4,4'4 "-tris ( N, N-diphenyl-amino) -triphenylamine, 4,4'4 "-tris (N-3-methylphenyl-N-phenyl-amino) -triphenylamine, 4,4'4" -tris (N Triphenylamines such as-(1-naphthyl) -N-phenyl-amino) -triphenylamine; N, N'-di- (4-methyl-
  • the above-mentioned condensed polycyclic compound “has a substituent” means that one or more hydrogen atoms in the condensed polycyclic compound are substituted with a group (substituent) other than a hydrogen atom.
  • the number of is not particularly limited, and all hydrogen atoms may be substituted with a substituent.
  • the position of the substituent is not particularly limited. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. An aryloxy group having 6 to 15 carbon atoms, a hydroxyl group, a halogen atom, and the like.
  • the alkyl group may be linear, branched or cyclic.
  • Examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl group.
  • the cyclic alkyl group may be monocyclic or polycyclic, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group Group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group and the like.
  • Examples of the alkoxy group include monovalent groups in which an alkyl group is bonded to an oxygen atom.
  • Examples of the alkenyl group include an alkyl group having 2 to 10 carbon atoms in which one single bond (C—C) between carbon atoms is substituted with a double bond (C ⁇ C).
  • Examples of the alkenyloxy group include a monovalent group in which the alkenyl group is bonded to an oxygen atom.
  • the aryl group may be monocyclic or polycyclic, and the number of ring members is not particularly limited, and preferred examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like.
  • the aryloxy group includes a monovalent group in which an aryl group is bonded to an oxygen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent, and an alkali metal are preferable because the effect of increasing the electron concentration is higher.
  • the organic light emitting layer 88 may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included. Moreover, the structure by which these each material was disperse
  • organic light emitting material a known light emitting material for an organic EL element can be used.
  • Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • Low molecular light emitting materials (including host materials) used for the organic light emitting layer 88 include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl Oxadiazole compounds such as -2- [2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenyl) -4-phenyl-5-t- Triazole derivatives such as butylphenyl-1,2,4-triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives , Fluorescent organic materials such as diphenoquinone derivatives and fluorenone derivatives; azomethine zinc complexes, (8- Mud
  • Polymer light emitting materials used for the organic light emitting layer 88 include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N— Triethylammonium) ethoxy] -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt 3+ ), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4- Phenylenevinylene] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) 1,4-phenylene- (1-cyanovinylene)] (CN-PPV) and other polyphenylene vinylene derivatives; poly (9,9-dioctylfluorene) (PDAF) and other polyphen
  • the organic light emitting material is preferably a low molecular light emitting material, and a phosphorescent material having high light emission efficiency is preferably used from the viewpoint of reducing power consumption.
  • a well-known dopant for organic EL elements can be used.
  • the dopant in the case of an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5-tetra-tert-butylsecphenyl, 3,5,3,5-tetra-tert-butyl-p- Examples thereof include fluorescent light emitting materials such as quinckphenyl.
  • a fluorescent light emitting material such as a styryl derivative; bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6 And phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate iridium (III) (FIr6).
  • the green light emitting material include phosphorescent organic metal complexes such as tris (2-phenylpyridinate) iridium (Ir (ppy) 3 ).
  • each layer which comprises the organic EL layer 84 was demonstrated, for example, a host material can also be used as a hole transport material or an electron transport material, and a hole transport material and an electron transport material can also be used as a host material.
  • each of the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 known wet processes, dry processes, and laser transfer methods are used. Etc. are used.
  • a coating method such as a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spray coating method, or the like using a liquid in which a material constituting each layer is dissolved or dispersed in a solvent; an inkjet method; Examples thereof include a printing method such as a relief printing method, an intaglio printing method, a screen printing method, and a micro gravure coating method.
  • the liquid used in the above coating method and printing method may contain additives for adjusting the physical properties of the liquid, such as a leveling agent and a viscosity modifier.
  • a resistance heating vapor deposition method As the dry process, a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor phase vapor deposition (OVPD) method, or the like, using the material constituting each of the above layers is used. It is done.
  • the thickness of each of the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 is usually about 1 nm to 1000 nm, but 10 nm to 200 nm is preferred.
  • the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, when the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer 84, resulting in an increase in power consumption.
  • the edge cover 92 can be formed using an insulating material by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like, by a known dry method or a wet photolithography method. Patterning can be performed, but the present embodiment is not limited to these forming methods. Further, as the insulating material constituting the edge cover 92, a known material is used, but in this embodiment, the insulating material is not particularly limited. Since the edge cover 92 needs to transmit light, examples of the insulating material constituting the edge cover 92 include SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, and LaO.
  • the film thickness of the edge cover 92 is preferably 100 nm to 2000 nm. If the film thickness is less than 100 nm, the insulation is not sufficient, and leakage occurs between the first electrode 83 and the second electrode 85, resulting in an increase in power consumption and non-light emission. On the other hand, if the film thickness exceeds 2000 nm, the film forming process takes time, which results in a decrease in production efficiency and disconnection of the second electrode 85 by the edge cover 92.
  • the organic EL element 82 has a microcavity structure (optical microresonator structure) due to an interference effect between the first electrode 83 and the second electrode 85, or a microcavity structure (optical microresonator structure) formed of a dielectric multilayer film. ).
  • the microresonator structure is configured by the first electrode 83 and the second electrode 85
  • the light emission of the organic EL layer 84 is caused in the front direction (light extraction direction) due to the interference effect between the first electrode 83 and the second electrode 85. It can be condensed.
  • the directivity can be given to the light emission of the organic EL layer 84, the light emission loss escaping to the periphery can be reduced, and the light emission efficiency can be increased. Thereby, it is possible to more efficiently propagate the emission energy generated in the organic EL layer 84 to the phosphor layer, and the front luminance of the display device can be increased.
  • the emission spectrum of the organic EL layer 84 can be adjusted, and the desired emission peak wavelength and half width can be adjusted. Thereby, it is possible to control the red phosphor and the green phosphor to a spectrum that can be excited more effectively, and the color purity of the blue pixel can be improved.
  • the display device of this embodiment is electrically connected to an external drive circuit (scanning line electrode circuit, data signal electrode circuit, power supply circuit).
  • an external drive circuit scanning line electrode circuit, data signal electrode circuit, power supply circuit.
  • the substrate 81 constituting the organic EL element substrate 80 a substrate coated with an insulating material on a glass substrate, more preferably a metal substrate or a substrate coated with an insulating material on a plastic substrate, more preferably a metal substrate.
  • a substrate obtained by coating an insulating material on an upper or plastic substrate is used.
  • FIG. 7 is a schematic cross-sectional view showing an embodiment of an LED substrate (light source) constituting the display device.
  • the LED substrate 100 includes a substrate 101, a first buffer layer 102, an n-type contact layer 103, a second n-type cladding layer 104, and a first n-type cladding that are sequentially stacked on one surface 101a of the substrate 101.
  • LED other well-known LED, for example, ultraviolet light emission inorganic LED, blue light emission inorganic LED, etc. can be used, However, A specific structure is not limited to said thing.
  • the active layer 106 is a layer that emits light by recombination of electrons and holes, and a known active layer material for LED can be used as the active layer material.
  • a known active layer material for LED can be used as the active layer material.
  • an active layer material for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ⁇ a, 0 ⁇ b, a + b ⁇ 1), blue active layer material Examples thereof include In z Ga 1-z N (0 ⁇ z ⁇ 1), but the present embodiment is not limited to these.
  • As the active layer 106 a single quantum well structure or a multiple quantum well structure is used.
  • the active layer of the quantum well structure may be either n-type or p-type. However, when it is a non-doped (no impurity added) active layer, the half-value width of the emission wavelength is narrowed due to interband emission, and light emission with good color purity is achieved. Since it is obtained, it is preferable.
  • the active layer 106 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with the impurity is the same as that of the non-doped layer, the emission intensity between bands can be further increased by doping the donor impurity as compared with the non-doped layer.
  • the acceptor impurity is doped, the peak wavelength can be shifted to the lower energy side by about 0.5 eV from the peak wavelength of interband light emission, but the full width at half maximum is widened.
  • the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity.
  • the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
  • the second n-type cladding layer 104 and the first n-type cladding layer 105 a known n-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used.
  • the second n-type cladding layer 104 and the first n-type cladding layer 105 are formed of an n-type semiconductor having a band gap energy larger than that of the active layer 106, the second n-type cladding layer 104 and the first n-type cladding layer 105 are formed.
  • a potential barrier against holes is formed between the mold cladding layer 105 and the active layer 106, and holes can be confined in the active layer 106.
  • the second n-type cladding layer 104 and the first n-type cladding layer 105 can be formed from n-type In x Ga 1-x N (0 ⁇ x ⁇ 1). Is not limited to these.
  • the first p-type cladding layer 107 and the second p-type cladding layer 108 a known p-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used.
  • the first p-type cladding layer 107 and the second p-type cladding layer 108 are formed of a p-type semiconductor having a band gap energy larger than that of the active layer 106, the first p-type cladding layer 107 and the second p-type cladding layer 107 are formed.
  • a potential barrier against electrons is formed between the mold cladding layer 108 and the active layer 106, and the electrons can be confined in the active layer 106.
  • the first p-type cladding layer 107 and the second p-type cladding layer 108 can be formed from Al y Ga 1-y N (0 ⁇ y ⁇ 1). It is not limited to.
  • n-type contact layer 103 a known contact layer material for LED can be used.
  • a layer for forming an electrode in contact with the second n-type cladding layer 104 and the first n-type cladding layer 105 An n-type contact layer 103 made of n-type GaN can be formed. It is also possible to form a p-type contact layer made of p-type GaN as a layer for forming an electrode in contact with the first p-type cladding layer 107 and the second p-type cladding layer 108. However, this p-type contact layer need not be formed if the second n-type cladding layer 104 and the second p-type cladding layer 108 are formed of GaN.
  • the n-type cladding layer 104 and the second p-type cladding layer 108) may be used as contact layers.
  • a known film forming process for LEDs can be used, but the present embodiment is not particularly limited thereto.
  • a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R plane), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates ( It is possible to form on a substrate such as NGO.
  • MOVPE metal organic vapor phase epitaxy
  • MBE molecular beam vapor phase epitaxy
  • HDVPE hydrogen vapor phase epitaxy
  • sapphire C plane, A plane, R plane
  • SiC including 6H—SiC, 4H—SiC
  • spinel MgAl 2 O 4 , especially its (111) plane
  • FIG. 8 is a schematic cross-sectional view showing an embodiment of an inorganic EL element substrate (light source) constituting the display device.
  • the inorganic EL element substrate 120 includes a substrate 121 and an inorganic EL element 122 provided on one surface 121a of the substrate 121.
  • the inorganic EL element 122 includes a first electrode 123, a first dielectric layer 124, a light emitting layer 125, a second dielectric layer 126, and a second electrode 127, which are sequentially stacked on one surface 121a of the substrate 121. Yes.
  • the first electrode 123 and the second electrode 127 function as a pair as an anode or a cathode of the inorganic EL element 122.
  • the inorganic EL element 122 a known inorganic EL element such as an ultraviolet light emitting inorganic EL element, a blue light emitting inorganic EL element, or the like can be used, but the specific configuration is not limited to the above. Absent.
  • each structural member which comprises the inorganic EL element substrate 120, and its formation method are demonstrated concretely, this embodiment is not limited to these structural members and a formation method.
  • the substrate 121 a substrate similar to the substrate 81 constituting the organic EL element substrate 80 is used.
  • the first electrode 123 and the second electrode 127 function as a pair as an anode or a cathode of the inorganic EL element 122. That is, when the first electrode 123 is an anode, the second electrode 127 is a cathode, and when the first electrode 123 is a cathode, the second electrode 127 is an anode.
  • a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and an oxide made of indium (In) and tin (Sn) (ITO), tin (Sn) oxide (SnO 2 ), oxide (IZO) made of indium (In) and zinc (Zn), and the like can be cited as transparent electrode materials. It is not limited.
  • a transparent electrode such as ITO is good for the electrode on the light extraction side, and a reflective electrode made of aluminum or the like is preferably used for the electrode on the opposite side to the light extraction direction.
  • the first electrode 123 and the second electrode 127 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. Moreover, the electrode formed by the photolithographic method and the laser peeling method can also be patterned as needed, and the electrode patterned by combining with a shadow mask can also be formed.
  • the film thicknesses of the first electrode 123 and the second electrode 127 are preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
  • a known dielectric material for inorganic EL elements can be used as the first dielectric layer 124 and the second dielectric layer 126.
  • a known dielectric material for inorganic EL elements include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ), barium titanate (BaTiO 3 ), and strontium titanate (SrTiO 3 ).
  • the present embodiment is not limited to these dielectric materials.
  • first dielectric layer 124 and the second dielectric layer 126 may have a single layer structure made of one type selected from the above dielectric materials, or may have a multilayer structure in which two or more types are stacked. Also good.
  • the film thicknesses of the first dielectric layer 124 and the second dielectric layer 126 are preferably about 200 nm to 500 nm.
  • the light emitting layer 125 a known light emitting material for an inorganic EL element can be used.
  • a light emitting material for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 SiS 4 as a blue light emitting material.
  • the thickness of the light emitting layer 125 is preferably about 300 nm to 1000 nm.
  • a sealing film or a sealing substrate for sealing a light emitting element such as an organic EL element, an LED, or an inorganic EL element is provided. It is preferable.
  • the sealing film and the sealing substrate can be formed by a known sealing material and sealing method. Specifically, the sealing film can be formed by applying a resin on the surface opposite to the substrate constituting the light source by using a spin coat method, an ODF, a laminate method, or the like. Alternatively, after forming an inorganic film such as SiO, SiON, SiN, etc. by plasma CVD, ion plating, ion beam, sputtering, etc., resin is further added using spin coating, ODF, lamination, etc.
  • a sealing film can be formed by coating, or a sealing substrate can be attached.
  • Such a sealing film or a sealing substrate can prevent entry of oxygen and moisture from the outside into the light-emitting element, thereby improving the life of the light source.
  • it can also be made to adhere
  • the method of sealing inert gas, such as nitrogen gas and argon gas, with a glass plate, a metal plate, etc. is mentioned, for example.
  • a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL element due to moisture can be more effectively reduced.
  • this embodiment is not limited to these members and forming methods.
  • it is necessary to use a light transmissive material for both the sealing film and the sealing substrate.
  • the display device of the present embodiment it is possible to realize an excellent display device that improves light extraction efficiency and greatly improves conversion efficiency, has excellent viewing angle characteristics, and can reduce power consumption.
  • FIG. 9 is a schematic sectional view showing a second embodiment of the display device.
  • the display device 130 includes a first substrate 71, a light source 73 provided on one surface 71 a of the first substrate 71, a light emitting layer 72 provided on the light source 73, and the light source 73 and the light emitting layer 72.
  • a second substrate (sealing substrate) 74 provided so as to face the first substrate 71, and provided on the outer edges of the first substrate 71 and the second substrate 74, and the first substrate 71 and the second substrate 74 are attached to each other. It is generally configured from a bonding member 75 that is fixed to each other in a combined state.
  • the light emitting layer 72 refers to the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate and the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate. It is.
  • FIG. 10 is a schematic sectional view showing a third embodiment of the display device.
  • the display device 140 is provided on the first substrate 71, the light emitting layer 72 provided on one surface 71 a of the first substrate 71, the liquid crystal element 141 provided on the light emitting layer 72, and the liquid crystal element 141.
  • a second substrate (sealing substrate) 74 provided to face the first substrate 71 via the light source 73, the light emitting layer 72, the light source 73, and the liquid crystal element 141, and the first substrate 71 and the second substrate 74.
  • the light emitting layer 72 refers to the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate and the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate. It is.
  • the liquid crystal element 141 a known liquid crystal element can be used.
  • the liquid crystal element 141 includes, for example, a pair of polarizing plates, a pair of transparent electrodes, a pair of alignment films, and a substrate, and has a structure in which a liquid crystal layer is sandwiched between the pair of alignment films.
  • the liquid crystal element 141 is configured to be able to control the voltage applied to the liquid crystal layer for each pixel using a pair of electrodes, and controls the transmittance of light emitted from the entire surface of the light source 73 for each pixel.
  • the liquid crystal element 141 has a function as an optical shutter that selectively transmits light from the light source 73 for each pixel. Further, both the liquid crystal element 141 and the light source 73 can be controlled to be turned ON / OFF.
  • the light source 73 In the case where the light source 73 does not have a layer having a shutter function like the liquid crystal element 141, the light source 73 is driven by a passive drive or an active element to turn on / off light emission for each pixel. Brightness can be displayed and a vivid image can be provided. Furthermore, when driven by an active element, the light emission time can be increased compared to passive drive, and light emission in the most efficient region of a light source with relatively low brightness can be used. The current can be reduced and the power consumption can be further reduced. In addition, in the case where the liquid crystal element 141 has a layer having a shutter function, light emission can be turned on / off for each pixel, and light emission can be turned on / off for each fixed area. Thereby, power consumption can be reduced. Further, this makes it possible to display the peak luminance and provide a vivid image.
  • FIG. 11 is a schematic sectional view showing a fourth embodiment of the display device.
  • the display device 150 includes a first substrate 71, a light source 73 provided on one surface 71 a of the first substrate 71, a light emitting layer 72 provided on the light source 73, and the light source 73 and the light emitting layer 72.
  • a second substrate (sealing substrate) 74 provided so as to face the first substrate 71 is schematically configured.
  • the light emitting layer 72 is provided on one surface 74a of the second substrate 74, and the wavelength conversion layer laminate 14 including the first wavelength conversion layer 12 and the second wavelength conversion layer 13 stacked in order from the second substrate 74 side. It is composed of
  • the light source 73 includes an organic EL element 82 provided on one surface 71 a of the first substrate 71.
  • An inorganic sealing film 151 is provided so as to cover the light emitting layer 72, and an inorganic sealing film 152 is provided so as to cover the light source 73. Further, a filler 153 is filled between the inorganic sealing film 152 provided on the first substrate 71 side and the inorganic sealing film 151 provided on the second substrate 74 side. The first substrate 71 and the second substrate 74 are bonded by the adhesive layer 154.
  • a TFT (driving element) 160 is formed on one surface 71 a of the first substrate 71. That is, the gate electrode 161 is formed on one surface 71 a of the first substrate 71, and the gate insulating film 162 is formed on the one surface 71 a of the first substrate 71 so as to cover the gate electrode 161.
  • An active layer (not shown) is formed on the gate insulating film 162, and a source electrode 163, a drain electrode 164, and a wiring 165 are formed on the active layer so as to cover the source electrode 163, the drain electrode 164, and the wiring 165.
  • a planarizing film 166 is formed.
  • the planarization film 166 may not have a single-layer structure, and may have a structure in which another interlayer insulating film and a planarization film are combined.
  • a contact hole 167 that penetrates the planarization film or the interlayer insulating film and reaches the drain electrode 164 is formed, and the light source 73 that is electrically connected to the drain electrode 164 through the contact hole 167 is formed on the planarization film 166.
  • a first electrode 83 is formed.
  • the first electrode 83 includes a reflective electrode 168 and a transparent electrode 169 that are sequentially stacked from the first substrate 71 side.
  • an inorganic film made of SiO, SiON, SiN or the like is formed by a plasma CVD method, an ion plating method, an ion beam method, a sputtering method or the like so as to cover the light emitting layer 72 or the light source 73.
  • the resin may be further applied by spin coating, ODF, lamination, or the like so as to cover the inorganic film, or may be formed by bonding the resin film so as to cover the inorganic film. it can.
  • the inorganic sealing films 151 and 152 can prevent oxygen and moisture from being mixed into the light emitting layer 72 and the light source 73 from the outside, and thus the lifetime of the light emitting layer 72 and the light source 73 can be improved.
  • a light scattering layer 155 is provided on one surface 74 a of the second substrate 74 so as to cover the red color filter 16, the green color filter 17, the blue color filter 18, the black matrix 19, and the partition wall 15.
  • a circularly polarizing plate 156 is provided on the other surface 74 b of the second substrate 74.
  • the light scattering layer 155 As a material for the light scattering layer 155, a material in which light scattering particles are dispersed in a resin is preferably used.
  • the light scattering particles are composed of an organic material or an inorganic material, but are preferably composed of an inorganic material. Thereby, light having directivity from the outside (for example, a light emitting element) can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, the light scattering layer 155 that is stable to light and heat can be formed. Moreover, as a light-scattering particle, a thing with high transparency is preferable.
  • the light scattering particles are preferably particles in which fine particles having a higher refractive index than the base material are dispersed in a low refractive index base material.
  • the inorganic material is, for example, an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony And the like (particles) containing as a main component.
  • particles (inorganic fine particles) made of an inorganic material include silica beads (refractive index: 1.44) and alumina beads (refractive index: 1 ..
  • titanium oxide beads (refractive index anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), titanic acid barium (BaTiO 3) (refractive index: 2.4), and the like.
  • organic fine particles made of an organic material
  • examples of the organic fine particles include polymethyl methacrylate beads (refractive index: 1.49) and acrylic beads (refractive index: 1.. 50), acrylic-styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), silicone beads (refractive index: 1.50) and the like.
  • the resin material used by mixing with the light-scattering particles is preferably a translucent resin material.
  • the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine.
  • Beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index) : 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53).
  • High density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1). .3 ), And the like.
  • the circularly polarizing plate 156 is preferably a combination of a conventional linearly polarizing plate and a ⁇ / 4 plate. By providing the circularly polarizing plate 156, the display contrast of the display device 150 can be improved.
  • FIG. 12 is a schematic sectional view showing a fifth embodiment of the display device. 12, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 170 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side. It is a point comprised from the wavelength conversion layer laminated body 52 which consists of the laminated
  • FIG. 13 is a schematic cross-sectional view showing a sixth embodiment of the display device. 13, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 180 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side.
  • the display device 180 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 182 is provided on the one surface 71a of the first substrate 71 so as to cover the light scattering layer 155. This is the point.
  • FIG. 14 is a schematic sectional view showing a seventh embodiment of the display device. 14, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and description thereof is omitted.
  • the display device 190 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side.
  • the display device 190 is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and is sequentially stacked from the first substrate 71 side.
  • the organic EL element 82 includes an organic light emitting layer 88, a hole blocking layer 89, and an electron transport layer 90.
  • FIG. 15 is a schematic sectional view showing an eighth embodiment of the display device. 15, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the difference between the display device 200 of the present embodiment and the display device 150 of the fourth embodiment is that the low refractive index layer 201 is formed on one surface 74a of the second substrate 74 so as to cover the light scattering layer 155. It is a point provided.
  • the display device 200 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
  • FIG. 16 is a schematic sectional view showing a ninth embodiment of the display device. 16, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 210 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side.
  • the display device 210 is different from the display device 150 of the fourth embodiment in that a low refractive index layer 201 is provided on one surface 74 a of the second substrate 74 so as to cover the light scattering layer 155. It is a point. Furthermore, the display device 210 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
  • FIG. 17 is a schematic sectional view showing a tenth embodiment of the display device. 17, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 220 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side.
  • the display device 220 is different from the display device 150 of the fourth embodiment in that the red color filter 16, the green color filter 17, the blue color filter 18, and the black color are formed on one surface 74 a of the second substrate 74.
  • the low refractive index layer 201 is provided so as to cover the matrix 19 and the partition wall 15. Furthermore, the display device 220 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
  • FIG. 18 is a schematic sectional view showing an eleventh embodiment of the display device. 18, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 230 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side.
  • the display device 230 is different from the display device 150 of the fourth embodiment in that the red color filter 16, the green color filter 17, the blue color filter 18, and black are formed on one surface 74 a of the second substrate 74.
  • the low refractive index layer 201 is provided so as to cover the matrix 19 and the partition wall 15. Further, the display device 230 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
  • the display device 230 is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and is laminated in order from the first substrate 71 side.
  • the organic EL element 82 includes a hole transport layer 87, an organic light emitting layer 88, a hole blocking layer 89, a dielectric layer 231, and an electron transport layer 90.
  • a known dielectric material for inorganic EL can be used as the dielectric layer 231.
  • a known dielectric material for inorganic EL can be used.
  • examples of such a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but the present invention is not limited thereto.
  • FIG. 19 is a schematic sectional view showing a twelfth embodiment of the display device. 19, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 240 includes a first substrate 71, a light emitting layer 72 provided on one surface 71 a of the first substrate 71, a light source 73 provided on the light emitting layer 72, and the light emitting layer 72 and the light source 73. And a second substrate (sealing substrate) 74 provided so as to face the first substrate 71.
  • the light emitting layer 72 is provided on the one surface 71a of the first substrate 71, and the wavelength conversion layer laminate 14 including the first wavelength conversion layer 12 and the second wavelength conversion layer 13 stacked in order from the first substrate 71 side. It is composed of
  • the light source 73 includes an organic EL element 82 provided on the light emitting layer 72.
  • an inorganic sealing film 151 is provided so as to cover the light emitting layer 72
  • a planarization film 241 is provided so as to cover the inorganic sealing film 151
  • the inorganic sealing film 151 and the light source 73 are provided between the light emitting layer 72 and the light source 73.
  • a planarizing film 241 is interposed.
  • a filler 153 is filled between the light source 73 and the second substrate 74, and the first substrate 71 and the second substrate 74 are bonded by the adhesive layer 154 through the filler 153.
  • a TFT (driving element) 160 is formed on one surface 71 a of the first substrate 71. That is, the gate electrode 161 is formed on one surface 71 a of the first substrate 71, and the gate insulating film 162 is formed on the one surface 71 a of the first substrate 71 so as to cover the gate electrode 161.
  • An active layer (not shown) is formed on the gate insulating film 162, and a source electrode 163, a drain electrode 164, and a wiring 165 are formed on the active layer so as to cover the source electrode 163, the drain electrode 164, and the wiring 165.
  • a planarizing film 166 is formed.
  • the planarization film 166 may not have a single-layer structure, and may have a structure in which another interlayer insulating film and a planarization film are combined.
  • a contact hole 167 that penetrates the planarization film or the interlayer insulating film and reaches the drain electrode 164 is formed, and the light source 73 that is electrically connected to the drain electrode 164 through the contact hole 167 is formed on the planarization film 166.
  • a first electrode 83 is formed.
  • the first electrode 83 includes a reflective electrode 168 and a transparent electrode 169 that are sequentially stacked from the first substrate 71 side.
  • a red color filter 16, a green color filter 17, and a blue color filter 18 are provided between the planarization film 166 provided on the one surface 71 a of the first substrate 71 and the wavelength conversion layer stacked body 14. Yes. Further, in the thickness direction of the display device 240, between the planarization film 166 provided on the one surface 71 a of the first substrate 71 and the partition wall 15 and in a direction perpendicular to the thickness direction of the display device 240. A black matrix 19 is provided between the red color filter 16 and the green color filter 17, between the green color filter 17 and the blue color filter 18, and between the blue color filter 18 and the red color filter 16. Yes.
  • a circularly polarizing plate 156 is provided on the other surface 71 b of the first substrate 71.
  • FIG. 20 is a schematic sectional view showing a thirteenth embodiment of the display device. 20, the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, the display device 150 shown in FIG. 11, and the display device shown in FIG.
  • the same components as those of the display device 240 are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 250 of the present embodiment is different from the display device 240 of the twelfth embodiment in that the light emitting layer 72 is provided on one surface 71a of the first substrate 71 and from the first substrate 71 side. It is the point comprised from the wavelength conversion layer laminated body 52 which consists of the 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51 laminated
  • FIG. 21 is a schematic sectional view showing a fourteenth embodiment of the display device. 21, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the inorganic EL element substrate 120 shown in FIG. 8, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
  • the display device 260 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side.
  • the inorganic EL element 122 includes the first electrode 123, the first dielectric layer 124, the light emitting layer 125, the second dielectric layer 126, and the second electrode 127.
  • FIG. 22 is a schematic sectional view showing the fifteenth embodiment of the display device.
  • the display device 270 is schematically configured by a wavelength conversion substrate 271 and a liquid crystal cell 272 and a backlight unit 273 that are sequentially stacked on the wavelength conversion laminate 14 side of the wavelength conversion substrate 271.
  • the wavelength conversion substrate 271 is, for example, the wavelength conversion layer stack 14 in the first embodiment of the wavelength conversion substrate or the wavelength conversion layer stack 52 in the second embodiment of the wavelength conversion substrate. It is.
  • the wavelength conversion substrate 271 a substrate having the same structure as that of the wavelength conversion layer laminate 14 is illustrated.
  • a low refractive index layer 274 is provided on one surface 71 a of the first substrate 71 so as to cover the red color filter 16, the green color filter 17, and the blue color filter 18. Further, a light scattering layer 275 is provided so as to cover the low refractive index layer 274 provided on the blue color filter 18. Further, a planarization film 276 is provided so as to cover the second wavelength conversion layer 13.
  • the liquid crystal cell 272 includes a backlight side glass substrate 277, a backlight side transparent electrode 278 and a backlight side alignment film 279 provided on one surface 277a of the backlight side glass substrate 277, and a backlight side alignment film 279.
  • a liquid crystal layer 280, a light extraction side alignment film 281, a light extraction side transparent electrode 282, and a light extraction side glass substrate 283, which are provided in this order, are roughly configured.
  • a backlight side polarizing plate 284 is provided on the surface (the other surface) 277 b of the backlight side glass substrate 277 facing the backlight unit 273.
  • the backlight side polarizing plate 284 is composed of, for example, a backlight side second transparent protective film, a backlight side polarizer, and a backlight side first transparent protective film.
  • a light extraction side polarizing plate 285 is provided on the surface 283 a of the light extraction side glass substrate 283 facing the wavelength conversion substrate 271.
  • the light extraction side polarizing plate 285 includes a light extraction side first transparent protective film, a light extraction side polarizer, and a light extraction side second transparent protective film. Further, the excitation light is transmitted between the wavelength conversion substrate 271 (wavelength conversion layer stack 14) and the liquid crystal cell 272, the light emitted from the wavelength conversion layer stack 14 is reflected, and the light emission is efficiently extracted outside. Therefore, a wavelength selective transmission film 286 is provided.
  • a light source is disposed on the back surface (the side opposite to the wavelength conversion substrate 271) or the side surface of the liquid crystal cell 272.
  • the backlight unit 273 is constituted by, for example, a reflection sheet, an excitation light source, a reflection plate, a light guide plate, a first diffusion sheet, a prism sheet, and a second diffusion sheet.
  • a diffusion plate or a brightness enhancement film may be disposed between the backlight unit 273 and the backlight side polarizing plate 284.
  • the backlight unit 273 the light source 287 disposed on the side surface of the liquid crystal cell 272 and the excitation light from the light source 287 in the surface direction of the liquid crystal cell 272 (in the direction of the other surface 277 b of the backlight side glass substrate 277). And a light guide plate 288 that is guided by the other surface 277b of the backlight side glass substrate 277 and that makes the excitation light incident on the liquid crystal cell 272.
  • FIG. 23 is a schematic cross-sectional view showing a sixteenth embodiment of the display device.
  • the display device 290 of the present embodiment is different from the display device 270 of the fifteenth embodiment in that the liquid crystal cell 272 is on the backlight side glass substrate 277 and one surface 277a of the backlight side glass substrate 277.
  • FIG. 24 is a block diagram showing a circuit configuration of the display device according to the first to sixteenth embodiments.
  • the display device according to the first to sixteenth embodiments includes an AD conversion circuit 301, an image processing circuit 302, a control circuit 303, a scanning line driving circuit 304, and a signal line driving circuit.
  • a circuit 305 and a power supply circuit 306 are provided.
  • the pixel portion 307 of the liquid crystal cell includes a plurality of scanning lines 308, a plurality of signal lines 309, and a plurality of power supply lines 310.
  • each pixel corresponding to each scanning line 308, each signal line 309, and each power supply line 310 is provided with a switching transistor 311, a driving transistor 312, an organic EL element 313, and a capacitor 314.
  • the power supply circuit 306 that drives the organic EL element 313 sequentially selects the scanning line 308 of the pixel portion 307 by the scanning line driving circuit 304, and outputs a signal to each pixel arranged along the selected scanning line 308.
  • Pixel data is written by the line driver circuit 305. That is, the scanning line driving circuit 304 sequentially drives the scanning lines 308, and the signal line driving circuit 305 outputs pixel data to the signal lines 309, so that the driven scanning lines 308 and the signal lines 309 to which the data is output are output. Pixels arranged at the intersecting positions are driven.
  • the power supply circuit 306 that drives the backlight unit supplies a constant voltage and current to light the backlight unit with a constant luminance while displaying an image. Furthermore, the power consumption can be reduced by controlling the brightness of the backlight unit in synchronization with the image.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, the ceiling light (illumination device) 320 shown in FIG.
  • a ceiling light 320 illustrated in FIG. 25 is a lighting device including a light emitting unit 321, a hanging line 322, and a power cord 323.
  • the light emitting unit 321 includes any of the display devices of the first to sixteenth embodiments.
  • the ceiling light 320 includes the display device according to any of the first to sixteenth embodiments as the light emitting unit 321, thereby providing a lighting device with excellent luminous efficiency.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, the illumination stand (illumination device) 330 shown in FIG.
  • An illumination stand 330 illustrated in FIG. 26 is an illumination device including a light emitting unit 331, a stand 332, a main switch 333, and a power cord 334.
  • the light emitting unit 331 is configured from any of the display devices of the first to sixteenth embodiments.
  • the illumination stand 330 includes the display device according to any of the first to sixteenth embodiments as the light emitting unit 331, so that the illumination stand 330 has excellent luminous efficiency.
  • the display devices of the first to sixteenth embodiments can be applied to various electronic devices.
  • electronic devices including the display devices according to the first to sixteenth embodiments will be described with reference to FIGS.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, the mobile phone shown in FIG.
  • a cellular phone 340 illustrated in FIG. 27 includes a voice input portion 341, a voice output portion 342, an antenna 343, an operation switch 344, a display portion 345, a housing 346, and the like.
  • the display devices of the first to sixteenth embodiments can be suitably applied as the display unit 345.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, a thin television shown in FIG.
  • a thin television 350 shown in FIG. 28 includes a display portion 351, speakers 352, a cabinet 353, a stand 354, and the like.
  • the display devices of the first to sixteenth embodiments can be suitably applied as the display unit 351.
  • an image can be displayed with good luminous efficiency.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, the portable game machine shown in FIG.
  • a portable game machine 360 illustrated in FIG. 29 includes operation buttons 361 and 362, an external connection terminal 363, a display portion 364, a housing 365, and the like.
  • the display devices of the first to sixteenth embodiments can be suitably applied as the display unit 364. By applying the display device of the first to sixteenth embodiments to the display unit 364 of the portable game machine 360, an image can be displayed with good luminous efficiency.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, a notebook computer shown in FIG.
  • a notebook computer 370 illustrated in FIG. 30 includes a display portion 371, a keyboard 372, a touch pad 373, a main switch 374, a camera 375, a recording medium slot 376, a housing 377, and the like.
  • the display devices of the first to sixteenth embodiments can be suitably applied as the display unit 371.
  • an image can be displayed with good light emission efficiency.
  • the display devices of the first to sixteenth embodiments can be applied to, for example, the tablet terminal shown in FIG.
  • a tablet terminal 380 illustrated in FIG. 31 includes a display unit (touch panel) 381, a camera 382, a housing 383, and the like.
  • the display device of the first to sixteenth embodiments can be suitably applied as the display unit 381.
  • an image can be displayed with good light emission efficiency.
  • Embodiment 1 will be described with reference to FIGS. 2A to 2H.
  • a non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate.
  • pure water ultrasonic cleaning was performed for 10 minutes
  • acetone ultrasonic cleaning was performed for 10 minutes
  • isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
  • epoxy resin reffractive index: 1.59
  • acrylic resin reffractive index: 1.49
  • rutile titanium oxide Refractive index: 2.71, particle size 250 nm
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
  • this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 ⁇ m.
  • a light reflective bank with a film thickness of 5 ⁇ m is formed on the substrate. Formed (FIG. 2A).
  • polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a red wavelength conversion layer.
  • a red wavelength conversion layer forming coating solution was applied on the substrate by spin coating to form a red wavelength conversion layer having a thickness of 1 ⁇ m (FIG. 2B).
  • a photomask designed so as to shield one-third of the pixels sandwiched between the banks (region corresponding to the red pixels) is disposed, and the red wavelength conversion layer The region corresponding to the red pixel in Fig. 2 was shielded from light (Fig. 2C).
  • the red wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer was provided with a metal halide lamp (FIG. 2D).
  • FOG. 2D metal halide lamp
  • the red wavelength conversion capability light emission capability
  • the color purity is obtained by modifying the light in the red wavelength region to non-emission, transmitting the excitation light as it is, and mixing the light in the red wavelength region. Can be prevented.
  • polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
  • a green wavelength conversion layer forming coating solution was applied on the red wavelength conversion layer by spin coating to form a green wavelength conversion layer having a thickness of 2 ⁇ m (FIG. 2E).
  • the green wavelength conversion layer 2/3 of the pixels sandwiched between the banks including the pixels shielded by the photomask (regions corresponding to red pixels and regions corresponding to green pixels) A photomask designed to shield the light was placed, and the region corresponding to the red pixel and the region corresponding to the green pixel in the green wavelength conversion layer were shielded (FIG. 2F).
  • the green wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided (FIG. 2G). Thereby, in the area
  • the color purity is obtained by modifying the light in the green wavelength range to non-emission, allowing the excitation light to pass efficiently as it is, and mixing the light in the green wavelength range. Can be prevented.
  • the photomask was removed to obtain the wavelength conversion substrate of Example 1 (FIG. 2H).
  • “108 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 108 mJ.
  • 356 mJ indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 356 mJ.
  • “852 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 852 mJ.
  • “1846 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 0 mJ.
  • “2840 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 2840 mJ.
  • “0 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 0 mJ.
  • “12 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 12 mJ.
  • 108 mJ indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 108 mJ.
  • 356 mJ indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 356 mJ.
  • “852 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 852 mJ.
  • “1846 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 1846 mJ.
  • “2840 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 2840 mJ.
  • the solid line shows the emission spectrum when the red wavelength conversion layer and the green wavelength conversion layer are not exposed.
  • a broken line shows an emission spectrum when the red wavelength conversion layer is exposed and the green wavelength conversion layer is not exposed.
  • red pixels and green pixels can be patterned by irradiating light. Furthermore, when combined with a light source that emits excitation light in the ultraviolet wavelength region to the blue wavelength region, the light-irradiated portion of the red wavelength conversion layer and the green wavelength conversion layer can be used for blue pixels. It was confirmed that red, green, and blue pixels necessary for display can be patterned.
  • Example 2 A second embodiment will be described with reference to FIGS. 4A to 4H.
  • a non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
  • epoxy resin reffractive index: 1.59
  • acrylic resin refractive index: 1.49
  • rutile titanium oxide Refractive index: 2.71, particle size 250 nm
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
  • this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 ⁇ m.
  • a light reflective bank having a thickness of 10 ⁇ m is formed on the substrate.
  • Formed (FIG. 4A).
  • polystyrene resin (10 g) and rumogen red (0.1 g) were dissolved in toluene to prepare a red wavelength conversion layer forming coating solution.
  • a red wavelength conversion layer forming coating solution was applied on the substrate by spin coating to form a red wavelength conversion layer having a thickness of 1 ⁇ m (FIG. 4B).
  • the red wavelength conversion layer On the red wavelength conversion layer, a photomask designed to shield one-third of the pixels sandwiched between the banks (the region corresponding to the red pixels) is disposed, and the red wavelength conversion layer The area corresponding to the red pixel in Fig. 4 was shielded from light (Fig. 4C).
  • the red wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer was provided (FIG. 4D). Thereby, in the area
  • polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (0.1 g) was dissolved to prepare a coating solution for forming a green wavelength conversion layer.
  • a green wavelength conversion layer forming coating solution was applied on the red wavelength conversion layer by spin coating to form a green wavelength conversion layer having a thickness of 2 ⁇ m (FIG. 4E).
  • the green wavelength conversion layer 2/3 of the pixels sandwiched between the banks including the pixels shielded by the photomask (regions corresponding to red pixels and regions corresponding to green pixels) A photomask designed to shield the light was placed, and the region corresponding to the red pixel and the region corresponding to the green pixel in the green wavelength conversion layer were shielded (FIG. 4F).
  • the green wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided (FIG. 4G). Thereby, in the area
  • the color purity is obtained by modifying the light in the green wavelength range to non-emission, allowing the excitation light to pass efficiently as it is, and mixing the light in the green wavelength range. Can be prevented.
  • a polystyrene resin (10 g) and 1,4-bis- [2- (4-fluoro-phenyl) -vinyl] -2,5-bis-octyloxy-benzene (0.1 g) are added to toluene. It melt
  • a blue wavelength conversion layer-forming coating solution was applied onto the green wavelength conversion layer by a spin coating method to form a blue wavelength conversion layer having a thickness of 4 ⁇ m, thereby obtaining the wavelength conversion substrate of Example 2 ( FIG. 4H).
  • Example 3 A non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. Next, polystyrene resin (10 g) and coumarin 6 (0.1 g) were dissolved in toluene to prepare a coating solution for forming a green wavelength conversion layer. Next, a green wavelength conversion layer forming coating solution was applied on a substrate by a spin coating method to form a green wavelength conversion layer having a thickness of 1 ⁇ m, and the green wavelength conversion layer was formed on the substrate.
  • Example 4 A wavelength conversion substrate of Example 4 was produced in the same manner as Example 3 except that a photomask having alternating openings having a width of 1000 ⁇ m and light-shielding parts having a width of 1000 ⁇ m was used. About the obtained wavelength conversion board
  • Example 5 A wavelength conversion substrate of Example 5 was produced in the same manner as in Example 3 except that a photomask having alternately 500 ⁇ m wide openings and 500 ⁇ m wide light shielding parts was used. About the obtained wavelength conversion board
  • Example 6 A wavelength conversion substrate of Example 6 was produced in the same manner as in Example 3 except that a photomask having alternating openings with a width of 100 ⁇ m and light shielding parts with a width of 100 ⁇ m was used. About the obtained wavelength conversion board
  • Example 7 A wavelength conversion substrate of Example 7 was produced in the same manner as Example 3 except that a photomask having alternately 50 ⁇ m wide openings and 50 ⁇ m wide light shielding parts was used. About the obtained wavelength conversion board
  • Example 8 A wavelength conversion substrate of Example 8 was produced in the same manner as in Example 3 except that a photomask having alternating openings having a width of 20 ⁇ m and light-shielding portions having a width of 20 ⁇ m was used. About the obtained wavelength conversion board
  • Example 9 A wavelength conversion substrate of Example 9 was produced in the same manner as in Example 3 except that a photomask having alternating openings with a width of 10 ⁇ m and light-shielding portions with a width of 10 ⁇ m was used. About the obtained wavelength conversion board
  • Example 10 A wavelength conversion substrate of Example 10 was produced in the same manner as in Example 3 except that a photomask having alternately 5 ⁇ m wide openings and 5 ⁇ m wide light shielding parts was used. About the obtained wavelength conversion board
  • Example 11 A wavelength conversion substrate of Example 11 was produced in the same manner as in Example 3 except that a photomask having alternating openings having a width of 1 ⁇ m and light-shielding portions having a width of 1 ⁇ m was used. About the obtained wavelength conversion board
  • Example 12 "Production of wavelength conversion substrate" A non-alkali glass substrate having a thickness of 0.7 mm and a 20 mm ⁇ 20 mm square was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
  • this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 ⁇ m. A light reflective bank with a film thickness of 5 ⁇ m is formed on the substrate. Formed.
  • polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a red wavelength conversion layer.
  • a red wavelength conversion layer forming coating solution was applied on the substrate by a spin coating method to form a red wavelength conversion layer having a thickness of 1 ⁇ m.
  • a photomask designed to shield 2/3 of the region sandwiched between the banks region corresponding to the red pixel and region corresponding to the green pixel.
  • the region corresponding to the red pixel and the region corresponding to the green pixel in the red wavelength conversion layer were shielded from light.
  • the red wavelength conversion layer was irradiated with light (3000 mJ / cm 2 ) from the side of the substrate on which the red wavelength conversion layer was provided with a metal halide lamp.
  • polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
  • a green wavelength conversion layer-forming coating solution was applied onto the red wavelength conversion layer by a spin coating method to form a green wavelength conversion layer having a thickness of 2 ⁇ m.
  • the green wavelength conversion layer it is designed to shield one third of the pixels sandwiched between the banks (the region corresponding to red pixels) including the pixels shielded by the photomask.
  • a photomask was placed to shield the area corresponding to the red pixel in the red wavelength conversion layer.
  • the green wavelength conversion layer was irradiated with light (3000 mJ / cm 2 ) from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided using a metal halide lamp.
  • acetone, isopropyl alcohol (IPA) or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • a hole injection material 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used, and a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
  • N, N′-di-l-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) was used to form a 20 nm-thick hole transport layer by resistance heating vapor deposition.
  • NPD N-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer having a thickness of 5 nm was formed on the electron transport layer by using lithium fluoride (LiF).
  • a semitransparent electrode was formed as the second electrode.
  • substrate was fixed to the board
  • magnesium and silver are vapor-deposited at a rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern.
  • silver is deposited by vacuum deposition at a deposition rate of 1 ⁇ / sec. On top, 19 nm thick silver was formed in the desired pattern.
  • the wavelength conversion substrate and the blue light-emitting organic EL element were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • the wavelength conversion substrate was heated in a glove box at 90 ° C. for 1 hour to remove moisture in the wavelength conversion layer.
  • an ultraviolet curable resin is applied to the outer peripheral portion of the wavelength conversion substrate, and the wavelength conversion substrate and the blue light emitting organic EL element are aligned by alignment with an alignment marker formed outside the display unit, It exposed with the ultraviolet curing resin curing apparatus, and obtained the wavelength conversion system organic EL element of Example 12.
  • a direct current voltage of 5 V was applied using an electrode made of aluminum and IZO as an anode and silver as a cathode, and the emission characteristics in each region were measured.
  • the red wavelength conversion layer and the green wavelength conversion layer are not exposed, light in the red wavelength range from the red wavelength conversion layer is observed, the red wavelength conversion layer is exposed, and the green wavelength conversion layer is exposed.
  • Light in the green wavelength region from the green wavelength conversion layer is observed from the unexposed portion, and the blue wavelength from the blue light emitting organic EL element is observed from the portion exposed to the red wavelength conversion layer and the green wavelength conversion layer. Area light was observed.
  • Example 13 A thirteenth embodiment will be described with reference to FIGS. "Production of wavelength conversion substrate"
  • a glass substrate having a thickness of 0.7 mm and a size of 100 mm ⁇ 100 mm was used. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. Next, a BK resist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied as a black partition material on the substrate using a spin coater.
  • a BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • This coating film was covered with a mask (pixel pitch 200 ⁇ m, line width 20 ⁇ m) so that a desired image pattern can be formed, irradiated with i-line (100 mJ / cm 2 ) and exposed. Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, rinsed with the pure water, and formed the light absorption layer (low reflection layer).
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
  • this positive resist is coated on the substrate by spin coating, patterned by a photolithography method with a pixel pitch of 200 ⁇ m and a line width of 20 ⁇ m, and a 10 ⁇ m thick light reflective bank on the low reflective layer. Formed.
  • a red color filter, a green color filter, and a blue color filter were patterned in the area partitioned by the bank.
  • a light scattering layer was formed on the red color filter, the green color filter, and the blue color filter.
  • 30 g of the polyvinyl alcohol thus prepared was added and stirred with a disperser to prepare a coating solution for forming a light scattering layer.
  • the light scattering layer forming coating liquid was applied to the region where the light absorption layer on the glass substrate was not formed by a screen printing method.
  • a red wavelength conversion layer-forming coating solution was applied onto the color filter of the glass substrate by a spin coating method to form a red wavelength conversion layer having a thickness of 2 ⁇ m.
  • the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side.
  • the blue pixel and the green pixel the absorbance of light in the blue wavelength range of the red wavelength conversion layer is reduced, and the red wavelength conversion capability (light emission capability) is reduced, and light in the red wavelength range is reduced. Modified to non-luminescence. As a result, the light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the red wavelength region can be prevented.
  • polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
  • a green wavelength conversion layer forming coating solution was applied onto the red wavelength conversion layer by a spin coating method to form a green wavelength conversion layer having a thickness of 3 ⁇ m.
  • a portion corresponding to the blue pixel transmits light, and a portion corresponding to the red pixel and the green pixel is shielded against the green wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side.
  • the absorbance of light in the blue wavelength region of the green wavelength conversion layer is reduced, and the green wavelength conversion capability (light emission capability) is reduced, so that light in the green wavelength region is not emitted. Denatured.
  • light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the green wavelength region can be prevented.
  • the above process was performed in dry air.
  • the substrate on which the wavelength conversion layer is formed is transferred to a glove box (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less) and heated at 80 ° C. for 1 hour. Was removed.
  • a gas barrier layer made of a SiON film having a thickness of 2 ⁇ m was formed on the wavelength conversion layer by sputtering.
  • a blue wavelength conversion layer was formed on the green wavelength conversion layer.
  • the blue wavelength conversion layer in order to form the blue wavelength conversion layer, first, toluene, polystyrene resin (10 g), 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi) (0.1 g), and was dissolved to prepare a coating solution for forming a blue wavelength conversion layer. Next, a blue wavelength conversion layer-forming coating solution was applied onto the green wavelength conversion layer by a spin coating method to form a blue wavelength conversion layer having a thickness of 4 ⁇ m to obtain a wavelength conversion substrate.
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) biphenyl
  • a glass substrate having a thickness of 0.7 mm and a size of 100 mm ⁇ 100 mm was used as a substrate, and an amorphous silicon semiconductor film was formed on the glass substrate by PECVD. Next, the amorphous silicon semiconductor film was crystallized to form a polycrystalline silicon semiconductor film. Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by photolithography. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed by a photolithography method.
  • the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was produced. Thereafter, a planarizing film was formed.
  • a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source and / or drain region, and then a source wiring was formed.
  • an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, thereby obtaining an active matrix substrate.
  • the function as a planarizing film is realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
  • the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
  • the first electrode is formed by laminating a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by a sputtering method. Patterning was performed by photolithography.
  • the area of the first electrode was 180 ⁇ m ⁇ 540 ⁇ m.
  • a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
  • a photosensitive resin containing rutile-type titanium oxide is laminated to a thickness of 200 nm on the first electrode in the same manner as the bank material by spin coating, and then by conventional photolithography.
  • the photosensitive resin was patterned so as to cover the edge portion of the first electrode.
  • the edge cover is formed as a structure that covers four sides by 10 ⁇ m from the end of the first electrode.
  • the active substrate was cleaned.
  • an active substrate cleaning method for example, acetone, isopropyl alcohol (IPA), or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer having a thickness of 0.5 nm was formed on the electron transport layer using lithium fluoride (LiF).
  • a second electrode was formed on the electron injection layer.
  • the glass substrate on which each of the above parts was formed was fixed in a metal vapor deposition chamber.
  • magnesium and silver are vapor-deposited at a rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern.
  • silver is deposited by vacuum deposition at a deposition rate of 1 ⁇ / sec. On top, 19 nm thick silver was formed in the desired pattern. Thereby, the second electrode was formed.
  • the inorganic protective layer is patterned from the edge of the display portion to a sealing area of 2 mm vertically and horizontally using a shadow mask.
  • an active drive type blue light-emitting organic EL substrate shown in FIG. 11 was obtained.
  • SPPO1 9,9-spirobifluoren-2-yl-biphenyl-phosphate
  • tris (1-phenyl-) is used as the luminescent dopant instead of FIrpic.
  • the active drive type organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • an ultraviolet curable adhesive (trade name: 30Y-437, manufactured by ThreeBond Co., Ltd.) in which a spacer of 20 ⁇ m was dispersed was applied to the outer peripheral portion of the wavelength conversion substrate using a dispenser to obtain an outer peripheral sealing material.
  • a transparent silicone resin (trade name: TSE3051, manufactured by Toshiba Silicone Co., Ltd.) was applied as a filler to the outer peripheral sealing material using a dispenser.
  • the active drive type organic EL substrate and the wavelength conversion substrate were transferred into a vacuum chamber, and the pressure in the vacuum chamber was reduced to 1 Pa. Then, while performing primary alignment using an alignment marker, the active drive type organic EL substrate and the wavelength conversion substrate were temporarily bonded and fixed. Next, the temporarily bonded active drive type organic EL substrate and the wavelength conversion substrate were transferred to a glove box, and secondary alignment was performed using a CCD. Next, the outer peripheral sealing material was irradiated with ultraviolet rays using a UV lamp, and the outer peripheral sealing material was cured to form an outer peripheral sealing layer. Next, it heated at 80 degreeC for 1 hour, and the said transparent silicone resin was gelatinized.
  • a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and the display unit has an 80 mm ⁇ 80 mm square.
  • An active drive organic EL display device was obtained.
  • Example 14 A fourteenth embodiment will be described with reference to FIGS. "Production of color filter substrate"
  • a glass substrate having a thickness of 0.7 mm and a size of 100 mm ⁇ 100 mm was used. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour. Next, a BK resist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied as a black partition material on the substrate using a spin coater.
  • a BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • This coating film was covered with a mask (pixel pitch 200 ⁇ m, line width 20 ⁇ m) so that a desired image pattern can be formed, irradiated with i-line (100 mJ / cm 2 ) and exposed. Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, rinsed with the pure water, and formed the light absorption layer (low reflection layer).
  • a positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent. Next, this positive resist is applied onto the substrate by spin coating, patterned by a photolithography method with a pixel pitch of 200 ⁇ m and a line width of 20 ⁇ m, and a light reflective bank having a thickness of 5 ⁇ m on the low reflective layer. Formed. Next, a red color filter, a green color filter, and a blue color filter were patterned in the area partitioned by the bank.
  • a light scattering layer was formed on the red color filter, the green color filter, and the blue color filter.
  • 30 g of the polyvinyl alcohol thus prepared was added and stirred with a disperser to prepare a coating solution for forming a light scattering layer.
  • the light scattering layer forming coating liquid was applied to the region where the light absorption layer on the glass substrate was not formed by a screen printing method.
  • the color filter substrate shown in FIGS. 15 and 16 was produced by the above method. Further, a color filter substrate having no light scattering layer shown in FIGS. 15 and 16 was produced.
  • a doped polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form a source region and a drain region, and a TFT element was manufactured.
  • a planarizing film was formed.
  • a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order.
  • the silicon nitride film and the gate insulating film are etched together to form a contact hole that leads to the source region and / or the drain region, and then a source wiring is formed. .
  • an acrylic resin layer was formed, and a contact hole leading to the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, and then a source wiring was formed. Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film to obtain an active matrix substrate.
  • the function as a planarizing film is realized by an acrylic resin layer.
  • the capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
  • contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
  • the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
  • the first electrode is formed by laminating a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by a sputtering method. Patterning was performed by photolithography. Thereby, the color purity can be enhanced by the interference (microcavity) effect between the reflective electrode and the translucent electrode.
  • the area of the first electrode was 180 ⁇ m ⁇ 540 ⁇ m.
  • a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
  • a photosensitive resin containing rutile-type titanium oxide is laminated on the first electrode so as to have a thickness of 10 ⁇ m by spin coating as with the bank material described above, and then by a conventional photolithography method.
  • the photosensitive resin was patterned so as to cover the edge portion of the first electrode.
  • the edge cover is formed as a structure that covers four sides by 10 ⁇ m from the end of the first electrode.
  • the active substrate was cleaned.
  • an active substrate cleaning method for example, acetone, isopropyl alcohol (IPA), or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
  • this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less to form each layer constituting the organic layer.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
  • a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer.
  • 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
  • This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively.
  • an electron transport layer having a thickness of 10 nm was formed on the blue organic light-emitting layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer having a thickness of 0.5 nm was formed on the electron transport layer using lithium fluoride (LiF).
  • LiF lithium fluoride
  • a second electrode made of a translucent electrode was formed on the electron injection layer.
  • the glass substrate on which each of the above parts was formed was fixed in a metal vapor deposition chamber.
  • magnesium and silver are vapor-deposited at a rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern. Further, for the purpose of emphasizing the interference effect and preventing the voltage drop due to the wiring resistance at the second electrode, silver is deposited by vacuum deposition at a deposition rate of 1 ⁇ / sec. On top, 19 nm thick silver was formed in the desired pattern. Thereby, the second electrode was formed.
  • a microcavity effect appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be increased. Can be more efficiently propagated to the wavelength conversion layer and the light scattering layer.
  • a portion corresponding to the blue pixel transmits light, and a portion corresponding to the red pixel and the green pixel is shielded against the green wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side.
  • the absorbance of light in the blue wavelength region of the green wavelength conversion layer is reduced, and the green wavelength conversion capability (light emission capability) is reduced, so that light in the green wavelength region is not emitted. Denatured.
  • light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the green wavelength region can be prevented.
  • the wavelength conversion capability of the green wavelength conversion layer corresponding to the shaded green and red pixels is not changed.
  • coumarin 6 and 4- (dicyanomethylene) -2-tertiarybutyl-6- (1,1,7,7-tetramethyljunolidine) (DCJTB) are applied to the entire display portion by resistance heating vapor deposition.
  • the red wavelength conversion layer having a film thickness of 400 nm was formed by co-evaporation.
  • a portion corresponding to the blue pixel and the green pixel transmits light, and a portion corresponding to the red pixel is shielded against a red wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side.
  • the blue pixel and the green pixel the light in the blue wavelength region and the light absorbance in the green wavelength region of the red wavelength conversion layer are reduced, and the red wavelength conversion capability (light emission capability) is reduced.
  • the light in the wavelength region was denatured to non-light emission. Thereby, light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the red wavelength region can be prevented.
  • Methylbenzimidazoline-2-iridine-C, C2 ′) iridium (III) (Ir (Pmb) 3 )) was used for co-evaporation at 1.5 ⁇ / sec and 0.2 ⁇ / sec, respectively. .
  • a 2 nm-thick tungsten oxide (WO 3 ) is deposited to form a charge generation layer, and through this charge generation layer, a hole injection layer, a positive electrode is formed in the same manner as described above.
  • a hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and a cathode were formed to obtain an active drive type blue light emitting organic EL substrate shown in FIGS.
  • the blue wavelength conversion layer was formed on the green wavelength conversion layer.
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) biphenyl
  • DPVBi 4,4′-bis (2,2′-diphenylvinyl) biphenyl
  • the active drive type blue light emitting organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
  • the active drive type blue light emitting organic EL substrate and the wavelength conversion substrate were aligned with an alignment marker formed outside the display unit.
  • a thermosetting resin is applied in advance to the outer peripheral portion of the active drive type blue light emitting organic EL substrate, and both substrates are brought into close contact with each other through the thermosetting resin and heated at 90 ° C. for 2 hours. Thus, the thermosetting resin was cured.
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) in order to prevent deterioration of the organic EL due to water.
  • a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and the display unit has an 80 mm ⁇ 80 mm square.
  • An active drive organic EL display device was obtained.
  • Example 15 [Blue LED substrate + wavelength conversion substrate] Using TMG (trimethylgallium) and NH 3 , a buffer layer made of GaN was grown at a film thickness of 60 nm on the C surface of the sapphire substrate set in the reaction vessel at 550 ° C. Next, the temperature was increased to 1050 ° C., and an n-type contact layer made of Si-doped n-type GaN was grown to a thickness of 5 ⁇ m using SiH 4 gas in addition to TMG and NH 3 .
  • TMA trimethylaluminum
  • a second cladding layer composed of a Si-doped n-type Al 0.3 Ga 0.7 N layer was grown at a thickness of 0.2 ⁇ m at 1050 ° C. .
  • the temperature is lowered to 850 ° C., and a first n-type cladding layer made of Si-doped n-type In 0.01 Ga 0.99 N is used using TMG, TMI (trimethylindium), NH 3 and SiH 4 .
  • the film was grown at a film thickness of 60 nm.
  • an active layer made of non-doped In 0.05 Ga 0.95 N was grown at a thickness of 5 nm at 850 ° C. using TMG, TMI and NH 3 . Furthermore, in addition to TMG, TMI, and NH 3 , a first p-type cladding layer made of Mg-doped p-type In 0.01 Ga 0.99 N at 850 ° C. newly using CPMg (cyclopentadienyl magnesium) was grown at a film thickness of 60 nm.
  • CPMg cyclopentadienyl magnesium
  • a second p-type cladding layer made of Mg-doped p-type Al 0.3 Ga 0.7 N is grown at a thickness of 150 nm using TMG, TMA, NH 3 , and CPMg. I let you.
  • a p-type contact layer made of Mg-doped p-type GaN was grown at a film thickness of 600 nm using TMG, NH 3 and CPMg at 1100 ° C.
  • the temperature was lowered to room temperature, the wafer was taken out from the reaction vessel, and the wafer was annealed at 720 ° C. to reduce the resistance of the p-type layer.
  • a mask having a predetermined shape was formed on the surface of the uppermost p-type contact layer, and etching was performed until the surface of the n-type contact layer was exposed. After the etching, a negative electrode made of titanium (Ti) and aluminum (Al) was formed on the surface of the n-type contact layer, and a positive electrode made of nickel (Ni) and gold (Au) was formed on the surface of the p-type contact layer. After electrode formation, after separating the wafer into 350 ⁇ m square chips, the prepared LED chip is fixed with a UV curable resin on a substrate on which wiring for connecting to an external circuit prepared separately is formed, The LED chip and the wiring on the substrate were electrically connected to produce a light source substrate made of a blue LED.
  • the light source substrate and the wavelength conversion substrate manufactured as described above were aligned using an alignment marker formed outside the display unit.
  • the wavelength conversion substrate is pre-coated with a thermosetting resin, and the two substrates are brought into close contact with each other via the thermosetting resin and heated at 80 ° C. for 2 hours to cure the thermosetting resin. It was.
  • the bonding process was performed in a dry air environment (water content: ⁇ 80 ° C.).
  • an LED display device was obtained by connecting terminals formed in the periphery to an external power source.
  • the present invention can be applied to a display device.
  • wavelength conversion substrate 11 substrate 12 first wavelength conversion layer 13 second wavelength conversion layer 14 wavelength conversion layer stack 15 partition 16 red color filter 17 green color filter 18 blue color filter 21 red pixel 22 green pixel 23 blue pixel 31 photomask 32 Photomask 50 Wavelength conversion substrate 51 Third wavelength conversion layer 52 Wavelength conversion layer laminate 61 Red pixel 62 Green pixel 63 Blue pixel 70 Display device 71 First substrate 72 Light emitting layer 73 Light source 74 Second substrate 75 Bonding member 80 Organic EL element substrate 81 Substrate 82 Organic EL element 83 First electrode 84 Organic EL layer 85 Second electrode 86 Hole injection layer 87 Hole transport layer 88 Organic light emitting layer 89 Hole prevention layer 90 Electron transport layer 91 Electron injection layer 100 LED Substrate 101 Substrate 102 First buffer layer 103 n-type contact layer 104 Second n-type cladding layer 105 first n-type cladding layer 106 active layer 107 first p-type cladding layer 108 second p-type cladding layer 109 second buffer layer 110

Abstract

In the present invention, a wavelength conversion substrate is provided with at least a substrate and a wavelength conversion layer laminated body disposed on the substrate. The wavelength conversion layer laminated body comprises a laminated body of at least a first wavelength conversion layer and a second wavelength conversion layer, and the laminated body absorbs light and outputs light having a different wavelength from that of the absorbed light.

Description

波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法Wavelength conversion substrate, display device using the same, electronic device, and method for manufacturing wavelength conversion substrate
本発明は、波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法に関する。
 本願は、2012年3月7日に、日本に出願された特願2012-050766号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wavelength conversion substrate, a display device using the same, an electronic apparatus, and a method for manufacturing the wavelength conversion substrate.
This application claims priority based on Japanese Patent Application No. 2012-050766 filed in Japan on March 7, 2012, the contents of which are incorporated herein by reference.
近年、社会の高度情報化に伴い、フラットパネルディスプレイのニーズが高まっている。フラットパネルディスプレイとしては、例えば、非自発光型の液晶ディスプレイ(LCD)、自発光型のプラズマディスプレイ(PDP)、無機エレクトロルミネセンス(無機EL)ディスプレイ、有機エレクトロルミネセンス(以下「有機EL」又は「有機LED」とも言う。)ディスプレイ等が挙げられる。これらのフラットパネルディスプレイの中でも、有機ELディスプレイは、自発光の点で特に注目されている。 In recent years, the need for flat panel displays has increased with the advancement of sophistication in society. As a flat panel display, for example, a non-self-luminous liquid crystal display (LCD), a self-luminous plasma display (PDP), an inorganic electroluminescence (inorganic EL) display, organic electroluminescence (hereinafter referred to as “organic EL”) Also referred to as “organic LED.” Display and the like. Among these flat panel displays, the organic EL display has attracted particular attention in terms of self-luminescence.
従来の有機ELディスプレイでは、赤色、緑色および青色の波長域の光を発光する画素を、1つの単位として設けることにより、白色を代表とする様々な色を作り出してフルカラー化を実現している。
このような画素を形成するためには、一般的にシャドーマスクを用いたマスク蒸着法により、有機発光層を塗り分けて、赤色、緑色および青色の画素を形成する方法が採用されている。
しかしながら、上記の方法では、マスクの加工精度、マスクのアライメント精度、マスクの大型化等が大きな課題となっている。有機発光層の混じりによる混色を防止するためには、通常、画素間に設ける絶縁層の幅を広く取る必要がある。そのため、画素の面積が決まっている場合、マスクの加工精度やマスクのアライメント精度が低いと、非発光部の面積が少なくなり、ひいては、画素の開口率の低下に繋がり、輝度の低下、消費電力の上昇、寿命の低下に繋がる。また、TVに代表される大型ディスプレイの分野では、基板サイズの大型化が進んでいるが、マスクは、非常に薄い金属(一般的な膜厚:50nm~100nm)が必要とされるため、大型化が非常に困難である。
In a conventional organic EL display, pixels that emit light in the red, green, and blue wavelength regions are provided as one unit, thereby creating various colors typified by white and realizing full color.
In order to form such a pixel, a method of forming red, green, and blue pixels by separately coating the organic light emitting layer by a mask vapor deposition method using a shadow mask is generally employed.
However, in the above method, mask processing accuracy, mask alignment accuracy, mask enlargement, and the like are significant issues. In order to prevent color mixing due to mixing of the organic light emitting layers, it is usually necessary to increase the width of the insulating layer provided between the pixels. Therefore, when the area of the pixel is determined, if the mask processing accuracy or the mask alignment accuracy is low, the area of the non-light-emitting portion decreases, which leads to a decrease in the aperture ratio of the pixel, a decrease in luminance, and power consumption. Will lead to an increase in life and a decrease in service life. Also, in the field of large displays typified by TVs, the substrate size is increasing, but the mask requires a very thin metal (general film thickness: 50 nm to 100 nm). Is very difficult.
そこで、青色~青緑色の波長域の光を発光する有機発光層を有する有機ELと、その有機ELからの青色~青緑色の波長域の光を吸収して緑色を発光する蛍光体層からなる赤色画素と、赤色の波長域の光を発光する蛍光体層からなる緑色画素と、色純度を向上させる目的での青色カラーフィルターからなる青色画素とを組み合わせることにより、有機ELディスプレイをフルカラー化する方法が知られている(例えば、特許文献1参照)。 Therefore, an organic EL having an organic light emitting layer that emits light in the blue to blue-green wavelength region and a phosphor layer that emits green light by absorbing light in the blue to blue-green wavelength region from the organic EL. The organic EL display is made full color by combining a red pixel, a green pixel composed of a phosphor layer emitting light in the red wavelength region, and a blue pixel composed of a blue color filter for the purpose of improving color purity. A method is known (see, for example, Patent Document 1).
特許第2795932号公報Japanese Patent No. 2795932
近年、モバイル分野、特にスマートフォン、タブレットの分野での進歩が著しく、ディスプレイにおいては、高精細化が加速している。さらに、大型TVの分野でも、HDTVから2K4Kへ、さらに4K8Kへのより高精細なディスプレイが発表されている。しかしながら、このような高精細化が進む中、波長変換層の高精細化に関する技術は未だ確立されていない。従来のフォトリソグラフィー法によるパターニングにおいては、フォトリソグラフィー法で用いる光開始剤や、感光性樹脂中の不飽和基が波長変換材料と反応して退色が起こり、波長変換層の変換効率が大幅に低下するという問題がある。したがって、低コスト化、高精細化、大型基板での製造が同時に実現可能な波長変換層の塗り分け方法が求められている。 In recent years, remarkable progress has been made in the mobile field, particularly in the fields of smartphones and tablets, and high definition has been accelerated in displays. Furthermore, in the field of large TVs, higher definition displays from HDTV to 2K4K and further to 4K8K have been announced. However, while such high definition is progressing, a technology relating to high definition of the wavelength conversion layer has not yet been established. In conventional photolithographic patterning, the photoinitiator used in the photolithographic method and unsaturated groups in the photosensitive resin react with the wavelength conversion material to cause discoloration, greatly reducing the conversion efficiency of the wavelength conversion layer. There is a problem of doing. Therefore, there is a need for a method for coating a wavelength conversion layer that can simultaneously achieve low cost, high definition, and large substrate manufacturing.
本発明は、上記の事情に鑑みてなされたものであって、低コスト化および高精細化が可能な波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a wavelength conversion substrate that can be reduced in cost and high definition, a display device using the same, an electronic device, and a method for manufacturing the wavelength conversion substrate. The purpose is to provide.
本発明の波長変換基板は、基板と、前記基板上に設けられた波長変換層積層体とを少なくとも備え、前記波長変換層積層体が、光を吸収し、吸収した光と異なる波長の光を発光する波長変換層の2層以上の積層体で構成されていることを特徴とする。 The wavelength conversion substrate of the present invention comprises at least a substrate and a wavelength conversion layer laminate provided on the substrate, and the wavelength conversion layer laminate absorbs light and emits light having a wavelength different from the absorbed light. It is composed of a laminate of two or more wavelength conversion layers that emit light.
本発明の波長変換基板において、前記波長変換層積層体は、少なくとも波長変換層の全て、または、一部の領域の波長変換能力が低減された波長変換層を少なくとも1つ有していてもよい。 In the wavelength conversion substrate of the present invention, the wavelength conversion layer laminate may include at least one wavelength conversion layer in which the wavelength conversion capability of at least all of the wavelength conversion layer or a part of the region is reduced. .
本発明の波長変換基板において、前記波長変換層積層体を構成する波長変換層のぞれぞれは、異なる波長の光を発光してもよい。 In the wavelength conversion substrate of the present invention, each of the wavelength conversion layers constituting the wavelength conversion layer laminate may emit light having a different wavelength.
本発明の波長変換基板において、前記波長変換層積層体は、励起光限側に設けられた第1波長変換層と、前記基板側に設けられ、前記第1波長変換層の発光を吸収して発光する第2波長変換層と、を有していてもよい。 In the wavelength conversion substrate of the present invention, the wavelength conversion layer laminate is provided on the excitation light limit side and the first wavelength conversion layer provided on the substrate side, and absorbs light emitted from the first wavelength conversion layer. And a second wavelength conversion layer that emits light.
本発明の波長変換基板において、前記波長変換層積層体は、前記基板側から順に長波長側の光を発光する波長変換層が積層されていてもよい。 In the wavelength conversion substrate of the present invention, the wavelength conversion layer laminate may have a wavelength conversion layer that emits light on a long wavelength side sequentially from the substrate side.
本発明の波長変換基板において、前記波長変換層積層体は、前記基板側から順に赤色の波長域の光を発光する赤色波長変換層と緑色の波長域の光を発光する緑色波長変換層が積層され、かつ、緑色の波長域の光を発光する領域と赤色の波長域の光を発光する領域を有していてもよい。 In the wavelength conversion substrate of the present invention, the wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in the red wavelength region and a green wavelength conversion layer that emits light in the green wavelength region in order from the substrate side. And may have a region that emits light in the green wavelength region and a region that emits light in the red wavelength region.
本発明の波長変換基板において、前記波長変換層積層体は、前記基板側から順に赤色の波長域の光を発光する赤色波長変換層と、緑色の波長域の光を発光する緑色波長変換層と、青色の波長域の光を発光する青色波長変換層とが積層され、かつ、緑色の波長域の光を発光する領域と、赤色の波長域の光を発光する領域と、青色の波長域の光を発光する領域とを有していてもよい。 In the wavelength conversion substrate of the present invention, the wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in a red wavelength region in order from the substrate side, and a green wavelength conversion layer that emits light in a green wavelength region. A blue wavelength conversion layer that emits light in the blue wavelength region, and a region that emits light in the green wavelength region, a region that emits light in the red wavelength region, and a blue wavelength region And a region that emits light.
本発明の波長変換基板において、前記基板と前記波長変換層積層体との間に、カラーフィルターが設けられていてもよい。 In the wavelength conversion substrate of the present invention, a color filter may be provided between the substrate and the wavelength conversion layer laminate.
本発明の波長変換基板において、前記基板と波長変換層積層体との間、または、前記カラーフィルターと前記波長変換層積層体との間に、前記基板の屈折率と前記波長変換層の屈折率のうち、低い方よりも屈折率が低い低屈折率層が設けられていてもよい。 In the wavelength conversion substrate of the present invention, between the substrate and the wavelength conversion layer laminate, or between the color filter and the wavelength conversion layer laminate, the refractive index of the substrate and the refractive index of the wavelength conversion layer. Of these, a low refractive index layer having a lower refractive index than the lower one may be provided.
本発明の波長変換基板において、前記波長変換層積層体は、画素を形成し、各画素間に対応した位置に、光吸収性の隔壁が設けられていてもよい。 The wavelength conversion board | substrate of this invention WHEREIN: The said wavelength conversion layer laminated body forms a pixel, The light absorptive partition may be provided in the position corresponding between each pixel.
本発明の波長変換基板において、前記隔壁は、少なくとも前記基板側から光吸収層と、光反射性または光散乱性のバンクの積層構造をなしていてもよい。 In the wavelength conversion substrate of the present invention, the partition may have a laminated structure of a light absorption layer and a light reflective or light scattering bank at least from the substrate side.
本発明の表示装置は、本発明の波長変換基板と、励起光源と、を備えたことを特徴とする。 The display device of the present invention includes the wavelength conversion substrate of the present invention and an excitation light source.
本発明の表示装置において、前記励起光源は、紫外の波長域から青緑色の波長域の光を発光する光源であってもよい。 In the display device of the present invention, the excitation light source may be a light source that emits light in an ultraviolet wavelength region to a blue-green wavelength region.
本発明の表示装置において、前記励起光源は、発光ダイオード、有機エレクトロルミネセンス素子または無機エレクトロルミネセンス素子のいずれかであってもよい。 In the display device of the present invention, the excitation light source may be any of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
本発明の表示装置において、前記励起光源を駆動させるアクティブマトリックス駆動素子が設けられていてもよい。 In the display device of the present invention, an active matrix driving element that drives the excitation light source may be provided.
本発明の表示装置において、前記アクティブマトリックス駆動素子が設けられた基板とは反対側から光を取り出してもよい。 In the display device of the present invention, light may be extracted from the side opposite to the substrate on which the active matrix driving element is provided.
本発明の表示装置において、電圧によりスイッチングを行う液晶素子を備えていてもよい。 The display device of the present invention may include a liquid crystal element that performs switching by voltage.
本発明の電子機器は、本発明の表示装置を備えたことを特徴とする。 An electronic apparatus according to the present invention includes the display device according to the present invention.
本発明の波長変換基板の製造方法は、基板上に波長変換材料を含む波長変換層を形成し、前記波長変換材料が吸収する光を用いて、所望の部分を露光する工程を行うことを特徴とする。 The method for producing a wavelength conversion substrate of the present invention is characterized in that a wavelength conversion layer containing a wavelength conversion material is formed on a substrate, and a step of exposing a desired portion is performed using light absorbed by the wavelength conversion material. And
本発明の波長変換基板の製造方法は、基板上に波長変換材料を含む波長変換層を形成し、露光しない部分にマスクを形成した後、前記波長変換材料が吸収する光を用いて、前記波長変換層のうち前記マスクが形成されていない部分を露光する工程を行うことを特徴とする。 In the method for manufacturing a wavelength conversion substrate of the present invention, a wavelength conversion layer containing a wavelength conversion material is formed on a substrate, a mask is formed on a portion that is not exposed, and then the light that is absorbed by the wavelength conversion material is used. A step of exposing a portion of the conversion layer where the mask is not formed is performed.
本発明によれば、高精細及び高変換効率で、かつ、低コストの波長変換基板と表示装置を提供することができる。 According to the present invention, it is possible to provide a wavelength conversion substrate and a display device with high definition and high conversion efficiency and at low cost.
波長変換基板の第一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第一実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 1st embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 波長変換基板の第二実施形態の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of 2nd embodiment of a wavelength conversion board | substrate. 表示装置の第一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st embodiment of a display apparatus. 表示装置を構成する有機EL素子基板(光源)の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the organic EL element substrate (light source) which comprises a display apparatus. 表示装置を構成するLED基板(光源)の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the LED board (light source) which comprises a display apparatus. 表示装置を構成する無機EL素子基板(光源)の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the inorganic EL element substrate (light source) which comprises a display apparatus. 表示装置の第二実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd embodiment of a display apparatus. 表示装置の第三実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd embodiment of a display apparatus. 表示装置の第四実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th embodiment of a display apparatus. 表示装置の第五実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 5th embodiment of a display apparatus. 表示装置の第六実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 6th embodiment of a display apparatus. 表示装置の第七実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 7th embodiment of a display apparatus. 表示装置の第八実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 8th embodiment of a display apparatus. 表示装置の第九実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 9th embodiment of a display apparatus. 表示装置の第十実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 10th embodiment of a display apparatus. 表示装置の第十一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 11th Embodiment of a display apparatus. 表示装置の第十二実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 12th embodiment of a display apparatus. 表示装置の第十三実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 13th embodiment of a display apparatus. 表示装置の第十四実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 14th embodiment of a display apparatus. 表示装置の第十五実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 15th embodiment of a display apparatus. 表示装置の第十六実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 16th embodiment of a display apparatus. 第一~第十六実施形態の表示装置の回路構成を示すブロック図である。FIG. 18 is a block diagram showing a circuit configuration of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例であるシーリングライトを示す外観図である。FIG. 38 is an external view showing a ceiling light which is an application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例である照明スタンドを示す外観図である。FIG. 38 is an external view showing a lighting stand as an application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例である携帯電話を示す外観図である。FIG. 38 is an external view showing a mobile phone as an application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例である薄型テレビを示す外観図である。FIG. 44 is an external view showing a flat-screen television as an application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例である携帯型ゲーム機を示す外観図である。FIG. 44 is an external view showing a portable game machine as an application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例であるノートパソコンを示す外観図である。FIG. 44 is an external view showing a notebook computer that is one application example of the display device according to the first to sixteenth embodiments. 第一~第十六実施形態の表示装置の一適用例であるタブレット端末を示す外観図である。FIG. 38 is an external view showing a tablet terminal as an application example of the display device according to the first to sixteenth embodiments. 実施例1の波長変換基板について、発光スペクトルを測定した結果を示すグラフである。It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. 実施例1の波長変換基板について、発光スペクトルを測定した結果を示すグラフである。It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. 実施例1の波長変換基板について、発光スペクトルを測定した結果を示すグラフである。It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 1. 実施例2の波長変換基板について、発光スペクトルを測定した結果を示すグラフである。It is a graph which shows the result of having measured the emission spectrum about the wavelength conversion board of Example 2.
以下、図面を参照して、本発明に係る波長変換基板およびそれを用いた電子機器、並びに、波長変換基板の製造方法の実施形態について説明する。
なお、以下に示す実施形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
また、以下の説明で用いる図面は、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
Hereinafter, embodiments of a wavelength conversion board, an electronic apparatus using the same, and a method of manufacturing the wavelength conversion board according to the present invention will be described with reference to the drawings.
The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
「波長変換基板」
(1)第一実施形態
図1は、波長変換基板の第一実施形態を示す概略断面図である。
波長変換基板10は、基板11と、基板11の一方の面11a上に設けられた波長変換層積層体14と、波長変換層積層体14からなる画素を区画する隔壁15とから概略構成されている。
波長変換層積層体14は、基板11側から順に積層された第一波長変換層12および第二波長変換層13から構成されている。
また、基板11と波長変換層積層体14との間において、波長変換層積層体14のうち赤色画素21を構成する領域に赤色カラーフィルター16が設けられている。また、基板11と波長変換層積層体14との間において、波長変換層積層体14のうち緑色画素22を構成する領域に緑色カラーフィルター17が設けられている。さらに、基板11と波長変換層積層体14との間において、青色画素23を構成する領域に青色カラーフィルター18が設けられている。
また、波長変換基板10の厚さ方向において、基板11と隔壁15との間、かつ、波長変換基板10の厚さ方向と垂直な方向において、赤色カラーフィルター16と緑色カラーフィルター17との間、緑色カラーフィルター17と青色カラーフィルター18との間、および、青色カラーフィルター18と赤色カラーフィルター16との間に、ブラックマトリックス19が設けられている。
"Wavelength conversion board"
(1) First Embodiment FIG. 1 is a schematic sectional view showing a first embodiment of a wavelength conversion substrate.
The wavelength conversion substrate 10 is roughly composed of a substrate 11, a wavelength conversion layer stack 14 provided on one surface 11 a of the substrate 11, and a partition wall 15 that partitions pixels composed of the wavelength conversion layer stack 14. Yes.
The wavelength conversion layer laminate 14 includes a first wavelength conversion layer 12 and a second wavelength conversion layer 13 that are sequentially stacked from the substrate 11 side.
In addition, a red color filter 16 is provided between the substrate 11 and the wavelength conversion layer stack 14 in a region constituting the red pixel 21 in the wavelength conversion layer stack 14. Further, between the substrate 11 and the wavelength conversion layer stack 14, a green color filter 17 is provided in a region constituting the green pixel 22 in the wavelength conversion layer stack 14. Further, a blue color filter 18 is provided in a region constituting the blue pixel 23 between the substrate 11 and the wavelength conversion layer stack 14.
Further, in the thickness direction of the wavelength conversion substrate 10, between the substrate 11 and the partition wall 15, and in the direction perpendicular to the thickness direction of the wavelength conversion substrate 10, between the red color filter 16 and the green color filter 17, A black matrix 19 is provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
基板11としては、第一波長変換層12や第二波長変換層13を構成する波長変換材料からの発光を外部に取り出す必要があることから、波長変換材料の発光領域で、発光を透過するものが用いられ、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスチック基板等が挙げられるが、これらの基板に限定されるものではない。
ここで、波長変換基板10にストレスなく湾曲部、折り曲げ部を形成することが可能となることから、基板11としては、上記のプラスチック基板を用いることが好ましい。
また、ガスバリア性を向上させる観点から、基板11としては、プラスチック基板に無機材料をコーティングした基板を用いることがさらに好ましい。これにより、基板11としてプラスチック基板を用いた場合に最大の問題となる、水分の透過による波長変換材料の劣化を防止することができる。
As the substrate 11, it is necessary to extract light emitted from the wavelength conversion material constituting the first wavelength conversion layer 12 and the second wavelength conversion layer 13 to the outside. For example, an inorganic material substrate made of glass, quartz, or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like is used, but the substrate is not limited to these.
Here, since it becomes possible to form a bent part and a bent part on the wavelength conversion substrate 10 without stress, it is preferable to use the plastic substrate as the substrate 11.
From the viewpoint of improving gas barrier properties, it is more preferable to use a substrate obtained by coating a plastic substrate with an inorganic material as the substrate 11. Thereby, when the plastic substrate is used as the substrate 11, it is possible to prevent the wavelength conversion material from being deteriorated due to the transmission of moisture, which is the biggest problem.
波長変換層積層体14を構成する第一波長変換層12と第二波長変換層13は、紫外の波長域から青緑色の波長域の励起光(以下、単に「励起光」と言うこともある。)を吸収し、異なる波長を発光する。
励起光を発光する励起光源としては、発光ダイオード(LED(紫外発光LED、青色LED))、有機エレクトロルミネセンス素子(有機EL素子(紫外発光有機EL素子、青色発光有機EL素子))、無機エレクトロルミネセンス素子(無機EL素子(紫外発光無機EL素子、青色発光無機EL素子))等が挙げられる。
The first wavelength conversion layer 12 and the second wavelength conversion layer 13 constituting the wavelength conversion layer laminate 14 are sometimes referred to as excitation light (hereinafter simply referred to as “excitation light”) from the ultraviolet wavelength region to the blue-green wavelength region. .) And emit light at different wavelengths.
As an excitation light source that emits excitation light, a light emitting diode (LED (ultraviolet light emitting LED, blue LED)), an organic electroluminescent element (organic EL element (ultraviolet light emitting organic EL element, blue light emitting organic EL element)), inorganic electro And a luminescence element (inorganic EL element (ultraviolet light emitting inorganic EL element, blue light emitting inorganic EL element)).
第一波長変換層12や第二波長変換層13としては、例えば、赤色に発光する赤色波長変換層、緑色に発光する緑色波長変換層または青色に発光する青色波長変換層が挙げられる。
また、必要に応じて、第一波長変換層12や第二波長変換層13としては、シアン色に発光する波長変換層や黄色に発光する波長変換層を設けることが好ましい。ここで、シアン色に発光する波長変換層からのシアン色の波長域の光の色純度と、黄色に発光する波長変換層からの黄色の波長域の光の色純度とをそれぞれ、色度図上において、赤色波長変換層からの赤色の波長域の光の色純度の点と、緑色波長変換層からの緑色の波長域の光の色純度の点と、青色波長変換層からの青色の波長域の光の色純度の点とを結んで形成される三角形より外側にすることにより、赤色、緑色および青色の3原色を発光する画素を使用する表示装置よりも色再現範囲をさらに広げることができる。
Examples of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 include a red wavelength conversion layer that emits red light, a green wavelength conversion layer that emits green light, and a blue wavelength conversion layer that emits blue light.
Moreover, as the 1st wavelength conversion layer 12 or the 2nd wavelength conversion layer 13, it is preferable to provide the wavelength conversion layer which light-emits cyan, and the wavelength conversion layer which light-emits yellow as needed. Here, the chromaticity diagram shows the color purity of light in the cyan wavelength range from the wavelength conversion layer emitting cyan and the color purity of light in the yellow wavelength range from the wavelength conversion layer emitting yellow. Above, the point of color purity of light in the red wavelength range from the red wavelength conversion layer, the point of color purity of light in the green wavelength range from the green wavelength conversion layer, and the blue wavelength from the blue wavelength conversion layer By extending outside the triangle formed by connecting the color purity points of the light in the region, the color reproduction range can be further expanded as compared with a display device using pixels emitting three primary colors of red, green and blue. it can.
以下、波長変換層の機能を説明する。
ここでは、基板11側から順に赤色波長変換層からなる第一波長変換層12と、緑色波長変換層からなる第二波長変換層13が積層され、励起光を用いた場合に、カラー化に必要な赤色画素21、緑色画素22、青色画素23について説明する。
赤色画素21では、基板11の一方の面11a上に、非露光の(露光されていない)赤色波長変換層(第一波長変換層12)と非露光の緑色波長変換層(第二波長変換層13)が順に積層されている。
緑色画素22では、基板11の一方の面11a上に、露光の(露光された)赤色波長変換層(第一波長変換層12)と非露光の緑色波長変換層(第二波長変換層13)が順に積層されている。
青色画素23では、基板11の一方の面11a上に、露光の(露光された)赤色波長変換層(第一波長変換層12)と露光の緑色波長変換層(第二波長変換層13)が順に積層されている。
Hereinafter, the function of the wavelength conversion layer will be described.
Here, a first wavelength conversion layer 12 made of a red wavelength conversion layer and a second wavelength conversion layer 13 made of a green wavelength conversion layer are laminated in order from the substrate 11 side, and are necessary for colorization when excitation light is used. The red pixel 21, green pixel 22, and blue pixel 23 will be described.
In the red pixel 21, on one surface 11a of the substrate 11, an unexposed (not exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion layer). 13) are stacked in order.
In the green pixel 22, an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and a non-exposed green wavelength conversion layer (second wavelength conversion layer 13) are formed on one surface 11 a of the substrate 11. Are sequentially stacked.
In the blue pixel 23, an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an exposed green wavelength conversion layer (second wavelength conversion layer 13) are provided on one surface 11 a of the substrate 11. They are stacked in order.
赤色画素21においては、赤色波長変換層(第一波長変換層12)と緑色波長変換層(第二波長変換層13)が共に露光されていないので、緑色波長変換層および赤色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置、すなわち、波長変換層積層体14を介して基板11とは反対側(第二波長変換層13側)に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、緑色波長変換層(第二波長変換層13)に青色光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に緑色波長変換層からの緑色の波長域の光が入射し、赤色波長変換層に緑色の波長域の光が吸収され、赤色波長変換層から赤色の波長域の光が発光する。このようにして、赤色画素21から赤色光を取り出し可能となる。
なお、赤色波長変換層(第一波長変換層12)は、光源側に形成された緑色波長変換層(第二波長変換層13)からの緑色の波長域の光を吸収し、赤色の波長域の光を発光するだけでなく、緑色波長変換層に吸収されずに、緑色波長変換層を透過した励起光を吸収して、赤色の波長域の光を発光するか、または、緑色波長変換層に吸収されずに、緑色波長変換層を透過した励起光と緑色波長変換層からの緑色の波長域の発光の両方を吸収し、赤色の波長域の光を発光する。
In the red pixel 21, since the red wavelength conversion layer (first wavelength conversion layer 12) and the green wavelength conversion layer (second wavelength conversion layer 13) are not exposed, the wavelengths of the green wavelength conversion layer and the red wavelength conversion layer are not exposed. Conversion ability (light emission ability) is maintained.
Thereby, the excitation arranged at the position facing the substrate 11 through the wavelength conversion layer laminate 14, that is, the side opposite to the substrate 11 (second wavelength conversion layer 13 side) through the wavelength conversion layer laminate 14. When excitation light is incident on the wavelength conversion layer laminate 14 from a light source (not shown), blue light is absorbed by the green wavelength conversion layer (second wavelength conversion layer 13), and the green wavelength range from the green wavelength conversion layer is increased. Light is emitted. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), and light in the green wavelength region is absorbed in the red wavelength conversion layer, thereby converting the red wavelength. Light in the red wavelength region is emitted from the layer. In this way, red light can be extracted from the red pixel 21.
The red wavelength conversion layer (first wavelength conversion layer 12) absorbs light in the green wavelength range from the green wavelength conversion layer (second wavelength conversion layer 13) formed on the light source side, and the red wavelength range. In addition to emitting light, the green wavelength conversion layer absorbs the excitation light transmitted through the green wavelength conversion layer and emits light in the red wavelength range, or the green wavelength conversion layer. Without being absorbed in the light, both the excitation light transmitted through the green wavelength conversion layer and the light emission in the green wavelength region from the green wavelength conversion layer are absorbed, and light in the red wavelength region is emitted.
ところで、波長変換層の波長変換能力とは、励起光源からの励起光を吸収し、励起光と異なる光を発光する能力であり、発光効率(発光強度)を示す。ここで、波長変換能力としては、波長変換層の量子収率、輝度、エネルギー量で表すことが可能であり、市販の量子収率測定装置、輝度計、光度計、照度計、光パワーメーター等で測定することが可能である。
本実施形態において、波長変換能力が低減されたとは、前記の発光効率(発光強度)が低くなることを意味する。ここで、非発光部(発光効率が低くされた部分)をなす波長変換層の発光強度(発光スペクトルのピーク波長における発光強度)は、発光部(発光効率が低くされていない部分)をなす波長変換層の発光強度の1/10以下まで低減させることが好ましい。
By the way, the wavelength conversion ability of the wavelength conversion layer is the ability to absorb the excitation light from the excitation light source and emit light different from the excitation light, and indicates the light emission efficiency (emission intensity). Here, the wavelength conversion capability can be represented by the quantum yield, luminance, and energy amount of the wavelength conversion layer, such as a commercially available quantum yield measuring device, luminance meter, photometer, illuminometer, optical power meter, etc. It is possible to measure with.
In the present embodiment, that the wavelength conversion capability is reduced means that the light emission efficiency (light emission intensity) is lowered. Here, the emission intensity (emission intensity at the peak wavelength of the emission spectrum) of the wavelength conversion layer forming the non-emission part (the part where the emission efficiency is lowered) is the wavelength forming the emission part (the part where the emission efficiency is not lowered). It is preferable to reduce it to 1/10 or less of the emission intensity of the conversion layer.
緑色画素22においては、赤色波長変換層(第一波長変換層12)が露光され、緑色波長変換層(第二波長変換層13)が露光されていない。露光された赤色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない緑色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、緑色波長変換層(第二波長変換層13)に励起光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に緑色波長変換層からの緑色の波長域の光が入射するが、赤色波長変換層には緑色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、緑色の波長域の光は赤色波長変換層を透過する。このようにして、緑色画素22から緑色光を取り出し可能となる。
In the green pixel 22, the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) is not exposed. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the green wavelength conversion layer that has not been exposed is maintained.
Thus, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the green wavelength conversion layer (first The excitation light is absorbed by the two-wavelength conversion layer 13), and light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), but light in the green wavelength region is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 22.
青色画素23においては、赤色波長変換層(第一波長変換層12)と緑色波長変換層(第二波長変換層13)が共に露光されているので、赤色波長変換層および緑色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、緑色波長変換層(第二波長変換層13)および赤色波長変換層(第一波長変換層12)で励起光が吸収されないので、緑色波長変換層および赤色波長変換層が発光することなく、励起光は緑色波長変換層および赤色波長変換層を透過する。このようにして、青色画素23から青色の波長域の光を取り出し可能となる。
In the blue pixel 23, since the red wavelength conversion layer (first wavelength conversion layer 12) and the green wavelength conversion layer (second wavelength conversion layer 13) are both exposed, the wavelengths of the red wavelength conversion layer and the green wavelength conversion layer are exposed. Conversion ability (light emission ability) is reduced, and light absorption ability is also reduced.
Thus, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the green wavelength conversion layer (first Since the excitation light is not absorbed by the two-wavelength conversion layer 13) and the red wavelength conversion layer (first wavelength conversion layer 12), the green wavelength conversion layer and the red wavelength conversion layer do not emit light. Transmits through the red wavelength conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 23.
このように、波長変換層積層体14では、基板11の一方の面11a側から順に、長波長側の光を発光する波長変換層が積層されている。これにより、波長変換層積層体14において、励起光の波長変換が効率よく行われ、波長変換基板10は色純度に優れたものとなる。
より詳細には、励起光源からの励起光が、短波長側の光を発光する第二波長変換層13に吸収され、第二波長変換層13が発光する。続いて、第二波長変換層13からの光(発光)が、光取出し側(基板11の一方の面11a側)に設けられた、長波長側の光を発光する第一波長変換層12に吸収され、第一波長変換層12が発光し、この発光が外部に取り出される。これにより、波長変換基板10から色純度の優れた発光を得ることができる。
これに対して、励起光源側から順に、長波長側の光を発光する波長変換層が積層された波長変換基板では、励起光源からの励起光が、長波長側の光を発光する波長変換層に吸収され、その波長変換層が発光する。続いて、長波長側の光を発光する波長変換層で吸収されなかった光(励起光)が、光取出し側に設けられた、短波長側の光を発光する波長変換層に吸収され、その波長変換層が発光する。しかしながら、この構造では、長波長側の発光と短波長側の発光が同時に外部に取り出されるため、波長変換基板からは色純度が低下した発光が得られる。
Thus, in the wavelength conversion layer laminated body 14, the wavelength conversion layer which light-emits the light of a long wavelength side is laminated | stacked from the one surface 11a side of the board | substrate 11 in order. Thereby, in the wavelength conversion layer laminated body 14, the wavelength conversion of excitation light is performed efficiently and the wavelength conversion board | substrate 10 becomes the thing excellent in color purity.
More specifically, the excitation light from the excitation light source is absorbed by the second wavelength conversion layer 13 that emits light on the short wavelength side, and the second wavelength conversion layer 13 emits light. Subsequently, the light (light emission) from the second wavelength conversion layer 13 is provided on the light extraction side (one surface 11a side of the substrate 11), and the first wavelength conversion layer 12 that emits light on the long wavelength side is emitted. Absorbed, the first wavelength conversion layer 12 emits light, and the emitted light is extracted outside. Thereby, light emission with excellent color purity can be obtained from the wavelength conversion substrate 10.
On the other hand, in the wavelength conversion substrate in which the wavelength conversion layer that emits the light on the long wavelength side is laminated in order from the excitation light source side, the wavelength conversion layer in which the excitation light from the excitation light source emits the light on the long wavelength side. The wavelength conversion layer emits light. Subsequently, the light (excitation light) that is not absorbed by the wavelength conversion layer that emits light on the long wavelength side is absorbed by the wavelength conversion layer that emits light on the short wavelength side provided on the light extraction side, The wavelength conversion layer emits light. However, in this structure, since the light emission on the long wavelength side and the light emission on the short wavelength side are simultaneously extracted to the outside, light emission with reduced color purity can be obtained from the wavelength conversion substrate.
また、励起光源側から順に、短波長側の光を発光する波長変換層を積層することにより(すなわち、基板11の一方の面11a側から順に、長波長側の光を発光する波長変換層が積層されたことにより)、上記のように、励起光をそのまま透過させる箇所(画素)では、短波長側の光を発光する波長変換層と長波長側の光を発光する波長変換層の両方を露光し、それぞれの波長変換層において、励起光の発光波長領域での吸収を低下させ、励起光をより効率よく透過させる。また、長波長側の光を発光する波長変換層からの発光を得る(吸収する)箇所(画素)では、短波長側の光を発光する波長変換層と長波長側の光を発光する波長変換層の両方を露光しない。さらに、短波長側の光を発光する波長変換層からの発光を得る(吸収する)箇所(画素)では、基板11の一方の面11a側に形成された長波長側の光を発光する波長変換層を露光し、光化学反応により、長波長側の光を発光する波長変換層の発光効率を低下させると共に光の吸収を低下させ、短波長側の光を発光する波長変換層を露光しない。 Further, by laminating a wavelength conversion layer that emits light on the short wavelength side in order from the excitation light source side (that is, a wavelength conversion layer that emits light on the long wavelength side in order from the one surface 11a side of the substrate 11). As described above, both the wavelength conversion layer that emits the light on the short wavelength side and the wavelength conversion layer that emits the light on the long wavelength side are provided at the location (pixel) that transmits the excitation light as it is as described above. It exposes and in each wavelength conversion layer, the absorption in the light emission wavelength range of excitation light is reduced, and excitation light is transmitted more efficiently. Also, at the location (pixel) that obtains (absorbs) light from the wavelength conversion layer that emits light on the long wavelength side, the wavelength conversion layer that emits light on the short wavelength side and wavelength conversion that emits light on the long wavelength side Do not expose both layers. Further, at a place (pixel) that obtains (absorbs) light from the wavelength conversion layer that emits light on the short wavelength side, wavelength conversion that emits light on the long wavelength side formed on the one surface 11a side of the substrate 11 is performed. The layer is exposed, and the photochemical reaction reduces the light emission efficiency of the wavelength conversion layer that emits light on the long wavelength side and the light absorption, and does not expose the wavelength conversion layer that emits light on the short wavelength side.
ところが、本実施形態とは異なり、励起光源側から順に、長波長側の光を発光する波長変換層が積層された波長変換基板にあっては、短波長側の光を発光する波長変換層からの発光を得る(吸収する)箇所(画素)では、基板側に形成された長波長側の光を発光する波長変換層を露光せずに、長波長側の光を発光する波長変換層を露光し、光化学反応により、長波長側の光を発光する波長変換層の発光効率を低下させると共に光の吸収を低下させる。しかしながら、このとき、同時に短波長側の光を発光する波長変換層も露光され、光化学反応により、短波長側の光を発光する波長変換層の発光効率も低下させてしまう。 However, unlike the present embodiment, in the wavelength conversion substrate in which the wavelength conversion layer that emits light on the long wavelength side is laminated in order from the excitation light source side, the wavelength conversion layer that emits light on the short wavelength side is used. In the place (pixel) that obtains (absorbs) the emission of light, the wavelength conversion layer that emits light on the long wavelength side is exposed without exposing the wavelength conversion layer that emits light on the long wavelength side formed on the substrate side. In addition, the photochemical reaction reduces the light emission efficiency of the wavelength conversion layer that emits light on the long wavelength side and also reduces the light absorption. However, at this time, the wavelength conversion layer that emits light on the short wavelength side is also exposed at the same time, and the luminous efficiency of the wavelength conversion layer that emits light on the short wavelength side is also reduced by the photochemical reaction.
また、波長変換基板10は、基板11の一方の面11a側から順に、赤色の波長域の光を発光する赤色波長変換層(第一波長変換層12)と緑色の波長域の光を発光する緑色波長変換層(第二波長変換層13)が積層され、赤色の波長域の光と緑色の波長域の光を発光することができる。
これにより、波長変換基板10を用いた表示装置において、励起光源として、励起光を発光する光源を用いた場合、波長変換基板10は、フルカラー表示装置に必要な赤色画素、緑色画素および青色発光画素を形成することができる。
より具体的には、波長変換基板10は、平面方向(基板11の一方の面11aと平行な方向)に、複数個の赤色画素21、緑色画素22および青色画素23が設けられており、厚さ方向に、基板11の一方の面11a側から順に、赤色波長変換層(第一波長変換層12)と緑色波長変換層(第二波長変換層13)が設けられている。
Moreover, the wavelength conversion board | substrate 10 light-emits the red wavelength conversion layer (1st wavelength conversion layer 12) which light-emits the light of a red wavelength range, and the light of a green wavelength range sequentially from the one surface 11a side of the board | substrate 11. A green wavelength conversion layer (second wavelength conversion layer 13) is laminated, and can emit light in the red wavelength region and light in the green wavelength region.
Thereby, in the display device using the wavelength conversion substrate 10, when a light source that emits excitation light is used as the excitation light source, the wavelength conversion substrate 10 has red, green, and blue light emitting pixels necessary for the full color display device. Can be formed.
More specifically, the wavelength conversion substrate 10 is provided with a plurality of red pixels 21, green pixels 22 and blue pixels 23 in a planar direction (a direction parallel to one surface 11a of the substrate 11). In the vertical direction, a red wavelength conversion layer (first wavelength conversion layer 12) and a green wavelength conversion layer (second wavelength conversion layer 13) are provided in this order from the one surface 11a side of the substrate 11.
また、波長変換基板10の製造工程では、まず、基板11の一方の面11a上に第一波長変換層12を形成した後、フォトマスクを用いて、第一波長変換層12を露光することにより、緑色画素22および青色画素23において、赤色の波長域の光の発光強度を低下させる。続いて、第一波長変換層12上に第二波長変換層13を形成した後、フォトマスクを用いて、第二波長変換層13を露光することにより、青色画素23のみにおいて、緑色の波長域の光の発光強度を低下させる。
また、前記製造工程では、フォトマスクを用い、遮光部と露光部を形成したが、本実施形態はこれに限定されない。ダイレクト露光機やレーザー描画装置を用いて、フォトマスクを用いることなく、直接、波長変換層の所望の位置にのみ光を照射することができる。
Moreover, in the manufacturing process of the wavelength conversion board | substrate 10, after forming the 1st wavelength conversion layer 12 on the one surface 11a of the board | substrate 11 first, the 1st wavelength conversion layer 12 is exposed using a photomask. In the green pixel 22 and the blue pixel 23, the emission intensity of light in the red wavelength region is reduced. Subsequently, after the second wavelength conversion layer 13 is formed on the first wavelength conversion layer 12, the second wavelength conversion layer 13 is exposed using a photomask, so that only the blue pixel 23 has a green wavelength region. The light emission intensity of is reduced.
In the manufacturing process, the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this. Using a direct exposure machine or a laser drawing apparatus, light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
赤色画素21、緑色画素22および青色画素23に加えて、さらに、黄色光を取り出し可能な黄色画素やシアン色光を取り出し可能なシアン色画素を設ける場合、波長変換層積層体14は、基板11側から順に赤色波長変換層からなる第一波長変換層12と、黄色に発光する黄色波長変換層(図示略)と、緑色波長変換層からなる第二波長変換層13と、シアン色に発光するシアン色波長変換層(図示略)とが積層されたものとなる。ここで、カラー化に必要な赤色画素21、緑色画素22、青色画素23、黄色画素(図示略)、シアン色画素(図示略)について説明する。 In addition to the red pixel 21, the green pixel 22, and the blue pixel 23, when a yellow pixel that can extract yellow light or a cyan pixel that can extract cyan light is provided, the wavelength conversion layer stack 14 is arranged on the substrate 11 side. The first wavelength conversion layer 12 composed of a red wavelength conversion layer, the yellow wavelength conversion layer (not shown) that emits yellow light, the second wavelength conversion layer 13 composed of a green wavelength conversion layer, and cyan that emits cyan. A color wavelength conversion layer (not shown) is laminated. Here, the red pixel 21, green pixel 22, blue pixel 23, yellow pixel (not shown), and cyan pixel (not shown) necessary for colorization will be described.
赤色画素21では、基板11の一方の面11a上に、非露光の赤色波長変換層(第一波長変換層12)と、非露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層とが順に積層されている。
黄色画素では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、非露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層とが順に積層されている。
緑色画素22では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層とが順に積層されている。
シアン色画素では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層とが順に積層されている。
青色画素23では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、露光の緑色波長変換層(第二波長変換層13)と、露光のシアン色波長変換層とが順に積層されている。
In the red pixel 21, on one surface 11a of the substrate 11, an unexposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (first A two-wavelength conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially laminated.
In the yellow pixel, on one surface 11a of the substrate 11, an exposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength) A conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially stacked.
In the green pixel 22, an exposed red wavelength conversion layer (first wavelength conversion layer 12), an exposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength) on one surface 11 a of the substrate 11. A conversion layer 13) and a non-exposed cyan wavelength conversion layer are sequentially stacked.
In a cyan pixel, on one surface 11a of the substrate 11, an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer). Layer 13) and a non-exposed cyan wavelength conversion layer are laminated in order.
In the blue pixel 23, an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer) are formed on one surface 11 a of the substrate 11. Layer 13) and an exposed cyan wavelength conversion layer are laminated in order.
赤色画素21においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層、緑色波長変換層(第二波長変換層13)、および、シアン色波長変換層が露光されていないので、赤色波長変換層、黄色波長変換層、緑色波長変換層およびシアン色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、シアン色波長変換層に励起光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射し、黄色波長変換層に緑色の波長域の光が吸収され、黄色波長変換層から黄色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に黄色波長変換層からの黄色の波長域の光が入射し、赤色波長変換層に黄色の波長域の光が吸収され、赤色波長変換層から赤色の波長域の光が発光する。このようにして、赤色画素21から赤色光を取り出し可能となる。
In the red pixel 21, the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), and the cyan wavelength conversion layer are not exposed. The wavelength conversion capability (light emission capability) of the red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is maintained.
Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, light in the green wavelength region is absorbed in the yellow wavelength conversion layer, and light in the yellow wavelength region is transmitted from the yellow wavelength conversion layer. Emits light. Subsequently, light in the yellow wavelength range from the yellow wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), and light in the yellow wavelength range is absorbed in the red wavelength conversion layer, thereby converting the red wavelength. Light in the red wavelength region is emitted from the layer. In this way, red light can be extracted from the red pixel 21.
黄色画素においては、赤色波長変換層(第一波長変換層12)が露光され、黄色波長変換層、緑色波長変換層(第二波長変換層13)、および、シアン色波長変換層が露光されていない。露光された赤色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない黄色波長変換層、緑色波長変換層およびシアン色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、シアン色波長変換層に励起光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射し、黄色波長変換層に緑色の波長域の光が吸収され、黄色波長変換層から黄色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に黄色波長変換層からの黄色の波長域の光が入射するが、赤色波長変換層には黄色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、黄色の波長域の光は赤色波長変換層を透過する。このようにして、黄色画素から黄色光を取り出し可能となる。
In the yellow pixel, the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the yellow wavelength conversion layer, green wavelength conversion layer (second wavelength conversion layer 13), and cyan wavelength conversion layer are exposed. Absent. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the unexposed yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is maintained.
Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, light in the green wavelength region is absorbed in the yellow wavelength conversion layer, and light in the yellow wavelength region is transmitted from the yellow wavelength conversion layer. Emits light. Subsequently, light in the yellow wavelength range from the yellow wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), but light in the yellow wavelength range is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the yellow wavelength region passes through the red wavelength conversion layer. In this way, yellow light can be extracted from the yellow pixel.
緑色画素22においては、赤色波長変換層(第一波長変換層12)および黄色波長変換層が露光され、緑色波長変換層(第二波長変換層13)およびシアン色波長変換層が露光されていない。露光された赤色波長変換層および黄色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない緑色波長変換層およびシアン色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、シアン色波長変換層に励起光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射するが、黄色波長変換層には緑色の波長域の光が吸収されないので、黄色波長変換層は発光することなく、緑色の波長域の光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過した緑色の波長域の光が入射するが、赤色波長変換層には緑色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、緑色の波長域の光は赤色波長変換層を透過する。このようにして、緑色画素22から緑色光を取り出し可能となる。
In the green pixel 22, the red wavelength conversion layer (first wavelength conversion layer 12) and the yellow wavelength conversion layer are exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) and the cyan wavelength conversion layer are not exposed. . The wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer and yellow wavelength conversion layer is reduced, and the light absorption ability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the cyan wavelength conversion layer that are not exposed is maintained.
Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, although the light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the yellow wavelength conversion layer emits light because the light in the green wavelength region is not absorbed in the yellow wavelength conversion layer. In addition, the light in the green wavelength region is transmitted through the yellow wavelength conversion layer. Subsequently, although the light in the green wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the red wavelength conversion layer emits light because the red wavelength conversion layer does not absorb the light in the green wavelength range. Instead, the light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 22.
シアン色画素においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層および緑色波長変換層(第二波長変換層13)が露光され、シアン色波長変換層が露光されていない。露光された赤色波長変換層、黄色波長変換層および緑色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていないシアン色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、シアン色波長変換層に励起光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射するが、緑色波長変換層にシアン色の波長域の光が吸収されないので、緑色波長変換層は発光することなく、シアン色の波長域の光は緑色波長変換層を透過する。続いて、黄色波長変換層に緑色波長変換層を透過したシアン色の波長域の光が入射するが、黄色波長変換層にはシアン色の波長域の光が吸収されないので、黄色波長変換層は発光することなく、シアン色の波長域の光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過したシアン色の波長域の光が入射するが、赤色波長変換層にはシアン色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、シアン色の波長域の光は赤色波長変換層を透過する。このようにして、シアン色画素からシアン色光を取り出し可能となる。
In the cyan pixel, the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the cyan wavelength conversion layer is not exposed. . The wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, and green wavelength conversion layer is reduced, and the light absorption ability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the unexposed cyan wavelength conversion layer is maintained.
Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Excitation light is absorbed, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), but light in the cyan wavelength region is not absorbed by the green wavelength conversion layer. Therefore, the green wavelength conversion layer does not emit light, and light in the cyan wavelength region is transmitted through the green wavelength conversion layer. Subsequently, light in the cyan wavelength region that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, but light in the cyan wavelength region is not absorbed in the yellow wavelength conversion layer. Without emitting light, light in the cyan wavelength region passes through the yellow wavelength conversion layer. Subsequently, light in the cyan wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, but light in the cyan wavelength range is not absorbed in the red wavelength conversion layer, so the red wavelength conversion layer is Without emitting light, light in the cyan wavelength region is transmitted through the red wavelength conversion layer. In this way, cyan light can be extracted from the cyan pixels.
青色画素23においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層、緑色波長変換層(第二波長変換層13)およびシアン色波長変換層が露光されている。露光された赤色波長変換層、黄色波長変換層、緑色波長変換層およびシアン色波長変換層の波長変換能力(発光能力)が低減されている。
これにより、波長変換層積層体14を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体14に励起光を入射した場合、シアン色波長変換層に励起光が吸収されないので、励起光はシアン色波長変換層を透過する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層を透過した励起光が入射するが、緑色波長変換層に励起光が吸収されないので、緑色波長変換層は発光することなく、励起光は緑色波長変換層を透過する。続いて、黄色波長変換層に緑色波長変換層を透過した励起光が入射するが、黄色波長変換層には励起光が吸収されないので、黄色波長変換層は発光することなく、励起光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過した励起光が入射するが、赤色波長変換層には励起光が吸収されないので、赤色波長変換層は発光することなく、励起光は赤色波長変換層を透過する。このようにして、青色画素23から青色の波長域の光を取り出し可能となる。
In the blue pixel 23, a red wavelength conversion layer (first wavelength conversion layer 12), a yellow wavelength conversion layer, a green wavelength conversion layer (second wavelength conversion layer 13), and a cyan wavelength conversion layer are exposed. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is reduced.
Accordingly, when excitation light is incident on the wavelength conversion layer stack 14 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 14, the cyan wavelength conversion layer Since the excitation light is not absorbed, the excitation light passes through the cyan wavelength conversion layer. Subsequently, although the excitation light transmitted through the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), the green wavelength conversion layer emits light because the excitation light is not absorbed by the green wavelength conversion layer. Without passing through, the excitation light passes through the green wavelength conversion layer. Subsequently, although the excitation light that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the excitation light is not absorbed by the yellow wavelength conversion layer. Permeates through the conversion layer. Subsequently, although the excitation light that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the excitation light is not absorbed by the red wavelength conversion layer, so the red wavelength conversion layer does not emit light, and the excitation light has a red wavelength. Permeates through the conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 23.
さらに、波長変換層(第一波長変換層12、第二波長変換層13等)は等方向に発光するため、光取出し方向のみならず、その反対方向(ここでは、波長変換層積層体14を介して基板11とは反対側)にも発光する。そのため、波長変換層の厚さ方向と垂直な方向(膜面方向)と、光取出し方向とは反対方向への発光は損失となる。そこで、後述する光反射性、もしくは、光散乱性の隔壁(バンク)15を画素毎に配置することにより、光を画素内に反射、散乱させて、光を再利用することが可能となり、光の利用効率が向上し、膜面方向の光の損失を低減するとともに、高輝度化、低消費化が可能となる。 Furthermore, since the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) emits light in the same direction, not only the light extraction direction but also the opposite direction (here, the wavelength conversion layer laminate 14) Through the opposite side of the substrate 11). Therefore, light emission in the direction perpendicular to the thickness direction of the wavelength conversion layer (film surface direction) and the direction opposite to the light extraction direction is a loss. Therefore, by arranging a light-reflective or light-scattering partition wall (bank) 15 to be described later for each pixel, it becomes possible to reflect and scatter light in the pixel and reuse the light. Utilization efficiency is improved, loss of light in the direction of the film surface is reduced, and high brightness and low consumption can be achieved.
波長変換層(第一波長変換層12、第二波長変換層13等)は、以下に例示する波長変換材料(蛍光体材料)のみから構成されていてもよく、任意に添加剤等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。
波長変換層(第一波長変換層12、第二波長変換層13等)を構成する蛍光体材料としては、公知の蛍光体材料を用いることができる。このような蛍光体材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
The wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) may be composed of only the wavelength conversion material (phosphor material) exemplified below, and optionally contains additives and the like. Alternatively, a structure in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be used.
As the phosphor material constituting the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), a known phosphor material can be used. Such phosphor materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials. .
特に、波長変換基板10を高精細な表示装置などに適用する場合には、画素のパターンの幅よりも、波長変換層積層体14の膜厚(波長変換層積層体14を構成する第一波長変換層12、第二波長変換層13等の膜厚)を薄くする必要がある。
しかしながら、波長変換層積層体14の膜厚を薄くすると、励起光の吸収量が低下し、励起光源からの励起光と波長変換層積層体14から赤色が混色し、色純度が低下するため、波長変換層積層体14に含まれる波長変換材料の濃度を上げる必要がある。波長変換材料の濃度を上げると、いわゆる濃度消光による発光効率の低下が起こる。そこで、波長変換層積層体14が、波長変換材料として、光吸収と発光をそれぞれ主に担う2種類の蛍光体材料(第一波長変換層12に含まれる波長変換材料、第二波長変換層13に含まれる第二波長変換材料等)を含有することが好ましい。これにより、薄膜で励起光を十分に吸収し、かつ、高発光効率を両立することが可能となる。
In particular, when the wavelength conversion substrate 10 is applied to a high-definition display device or the like, the film thickness of the wavelength conversion layer stack 14 (the first wavelength constituting the wavelength conversion layer stack 14 rather than the width of the pixel pattern). The film thickness of the conversion layer 12, the second wavelength conversion layer 13, etc.) needs to be reduced.
However, when the thickness of the wavelength conversion layer stack 14 is reduced, the absorption amount of the excitation light is decreased, and the excitation light from the excitation light source and the red color are mixed from the wavelength conversion layer stack 14, thereby reducing the color purity. It is necessary to increase the concentration of the wavelength conversion material contained in the wavelength conversion layer laminate 14. When the concentration of the wavelength conversion material is increased, the light emission efficiency is reduced by so-called concentration quenching. Therefore, the wavelength conversion layer laminate 14 has two types of phosphor materials mainly responsible for light absorption and light emission as the wavelength conversion material (the wavelength conversion material included in the first wavelength conversion layer 12, the second wavelength conversion layer 13). It is preferable to contain the 2nd wavelength conversion material contained in 1). As a result, the thin film can sufficiently absorb the excitation light and achieve both high luminous efficiency.
すなわち、第二波長変換層13に含まれる波長変換材料(以下、「第一波長変換材料」と言うこともある。)が、励起光源からの励起光を吸収して励起状態となった場合、第一波長変換材料間でのエネルギー移動よりも、第一波長変換材料から、第一波長変換材料よりもエネルギー準位の低い第一波長変換層12に含まれる波長変換材料(以下、「第二波長変換材料」と言うこともある。)へのエネルギー移動の方が起こりやい。そのため、第一波長変換材料の励起エネルギーは、第一波長変換材料間での移動による消失(濃度消光)を受けずに、ほとんどが第二波長変換材料へ移動し、第二波長変換材料の発光に寄与することができると考えられる。そして、第一波長変換材料の濃度を、実質的に濃度消光を起こす高い濃度にすることにより、第一波長変換材料の吸収率を上げることで、第一波長変換材料において、励起光源からの励起光を十分に吸収し、第一波長変換材料から第二波長変換材料にエネルギーを移動させる。さらに、第二波長変換材料の濃度を、実質的に濃度消光を起こさない低い濃度にすることにより、第二波長変換材料において、第一波長変換材料から移動してきた励起エネルギーを効率よく利用して波長変換を行い、所望の波長域の光を発光することができる。
このようにして、波長変換層積層体14において、薄い膜厚と高い発光効率とを両立することが可能となる。換言すれば、励起光源からの励起光を吸収する機能と、所望の波長域の光を発光する機能とを分離し、それぞれの機能を第一波長変換材料と第二波長変換材料に分担させることによって、波長変換層積層体14の膜厚を増加させることなく、波長変換層積層体14において、好適に、高い吸収率と高い発光効率を維持することができる。さらに、第一波長変換材料と第二波長変換材料がともに励起光源からの励起光を吸収して励起されてもよい。
That is, when the wavelength conversion material (hereinafter sometimes referred to as “first wavelength conversion material”) included in the second wavelength conversion layer 13 absorbs excitation light from the excitation light source and enters an excited state. The wavelength conversion material contained in the first wavelength conversion layer 12 having an energy level lower than that of the first wavelength conversion material from the first wavelength conversion material (hereinafter referred to as “second”) than the energy transfer between the first wavelength conversion materials. Energy transfer to “wavelength conversion material” is more likely to occur. Therefore, most of the excitation energy of the first wavelength conversion material moves to the second wavelength conversion material without being lost (concentration quenching) due to movement between the first wavelength conversion materials, and the second wavelength conversion material emits light. It is thought that it can contribute to. Then, by increasing the absorption rate of the first wavelength conversion material by increasing the concentration of the first wavelength conversion material to a concentration that substantially causes concentration quenching, excitation from the excitation light source is performed in the first wavelength conversion material. It absorbs light sufficiently and transfers energy from the first wavelength conversion material to the second wavelength conversion material. Furthermore, by making the concentration of the second wavelength conversion material low enough not to cause concentration quenching, the second wavelength conversion material can efficiently utilize the excitation energy transferred from the first wavelength conversion material. Wavelength conversion can be performed to emit light in a desired wavelength range.
Thus, in the wavelength conversion layer laminated body 14, it becomes possible to make thin film thickness and high luminous efficiency compatible. In other words, the function of absorbing the excitation light from the excitation light source and the function of emitting light in a desired wavelength range are separated, and each function is shared between the first wavelength conversion material and the second wavelength conversion material. Thus, the high wavelength absorptivity and high luminous efficiency can be suitably maintained in the wavelength conversion layer laminate 14 without increasing the film thickness of the wavelength conversion layer laminate 14. Furthermore, both the first wavelength conversion material and the second wavelength conversion material may be excited by absorbing excitation light from the excitation light source.
ここで、励起光の十分な吸収とは、励起波長における吸収率が80%以上であることが好ましく、90%以上であることがより好ましい。
さらに、ここで、波長変換層積層体14が、励起光源からの励起光を吸収する蛍光体材料(第一波長変換材料)、および、所望の色(例えば、赤色)を発光する蛍光体材料(第二波長変換材料)を含有することによって、第一波長変換材料が、波長変換層積層体14への入射光を吸収して、そのエネルギーを第二波長変換材料へとエネルギーを移動させ、第二波長変換材料が、第一波長変換材料から、そのエネルギーを受容することにより、波長変換層積層体14が、当初の入射光とは異なるスペクトルの光を放射することができる。
Here, the sufficient absorption of the excitation light is preferably 80% or more, more preferably 90% or more, at an excitation wavelength.
Furthermore, here, the wavelength conversion layer laminate 14 is a phosphor material that absorbs excitation light from the excitation light source (first wavelength conversion material) and a phosphor material that emits a desired color (for example, red) ( By containing the second wavelength conversion material), the first wavelength conversion material absorbs the incident light to the wavelength conversion layer laminate 14, transfers the energy to the second wavelength conversion material, When the two-wavelength conversion material receives energy from the first wavelength conversion material, the wavelength conversion layer stack 14 can emit light having a spectrum different from that of the initial incident light.
すなわち、第一波長変換材料は、波長変換層積層体14へ入射する励起光源からの励起光を吸収し、吸収したエネルギーを第二波長変換材料に移動させることができる波長変換材料である。したがって、第一波長変換材料の吸収スペクトルは、励起光源からの励起光のスペクトルと重なっていることが好ましい。また、第一波長変換材料の吸収極大と、光源からの励起光のスペクトルの極大とが一致していることがより好ましい。また、第一波長変換材料の発光スペクトルが、第二波長変換材料の吸収スペクトルと重なっていることが好ましい。さらに、第一波長変換材料の発光スペクトルの極大と、第二波長変換材料の吸収極大とが一致していることがより好ましい。ここで、スペクトルの極大が一致しているとは、極大波長の差が20%以下であることが好ましく、10%以下であることがより好ましい。 That is, the first wavelength conversion material is a wavelength conversion material that can absorb the excitation light from the excitation light source incident on the wavelength conversion layer laminate 14 and transfer the absorbed energy to the second wavelength conversion material. Therefore, it is preferable that the absorption spectrum of the first wavelength conversion material overlaps the spectrum of the excitation light from the excitation light source. It is more preferable that the absorption maximum of the first wavelength conversion material and the maximum of the spectrum of the excitation light from the light source match. Moreover, it is preferable that the emission spectrum of the first wavelength conversion material overlaps with the absorption spectrum of the second wavelength conversion material. Furthermore, it is more preferable that the maximum of the emission spectrum of the first wavelength conversion material matches the absorption maximum of the second wavelength conversion material. Here, it is preferable that the difference between the maximum wavelengths is 20% or less, and more preferably 10% or less that the maximums of the spectra match.
また、波長変換層積層体14において、励起光源からの励起光の吸収と発光とを異なる波長変換材料によって実現することによって、第一波長変換材料による入射光の吸収ピーク波長と、第二波長変換材料による波長変換後の発光ピーク波長との差を大きくすることができる。さらに、励起光源からの励起光を吸収する機能と、所望の波長域の光を発光する機能とを分離したことによって、第一波長変換材料および第二波長変換材料として用いる材料の選択肢を広げることができる。 Moreover, in the wavelength conversion layer laminated body 14, the absorption peak wavelength of the incident light by the first wavelength conversion material and the second wavelength conversion are realized by realizing the absorption and emission of the excitation light from the excitation light source by different wavelength conversion materials. The difference from the emission peak wavelength after wavelength conversion by the material can be increased. Furthermore, by separating the function of absorbing the excitation light from the excitation light source and the function of emitting light in the desired wavelength range, the options for the materials used as the first wavelength conversion material and the second wavelength conversion material are expanded. Can do.
有機系蛍光体材料としては、紫外域の励起光を、青色の波長域の発光に変換する蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4’-ジフェニルスチルベンゼン、クマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。
また、紫外域~励起光を、緑色の波長域の発光に変換する蛍光色素としては、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等が挙げられる。
また、紫外域~励起光を、赤色の波長域の発光に変換する蛍光色素としては、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、及びローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等が挙げられる。
As an organic phosphor material, as a fluorescent dye that converts excitation light in the ultraviolet region into light emission in a blue wavelength region, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, trans-4, 4'-diphenylstilbenzene, coumarin dyes: 7-hydroxy-4-methylcoumarin and the like.
Further, as a fluorescent dye that converts ultraviolet light to excitation light into emission in the green wavelength band, coumarin dyes: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9 , 9a, 1-gh) Coumarin (coumarin 153), 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin) 7), naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116 and the like.
Further, as a fluorescent dye that converts ultraviolet light to excitation light into red wavelength light, cyanine dyes: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran Pyridine dyes: 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101 , Rhodamine 110, basic violet 11, sulforhodamine 101 and the like.
また、無機系蛍光体材料としては、紫外域の励起光を、青色の波長域の発光に変換する蛍光体として、Sr:Sn4+、SrAl1425:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba、Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr,Ca,Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(POCl:Eu2+、BaMgSi:Eu2+、SrMgSi:Eu2+等が挙げられる。
また、紫外域~励起光を、緑色の波長域の発光に変換する蛍光体としては、(BaMg)Al1627:Eu2+、Mn2+、SrAl1425:Eu2+、(SrBa)Al12Si:Eu2+、(BaMg)SiO:Eu2+、YSiO:Ce3+、Tb3+、Sr-Sr:Eu2+、(BaCaMg)(POCl:Eu2+、SrSi-2SrCl:Eu2+、ZrSiO、MgAl1119:Ce3+、Tb3+、BaSiO:Eu2+、SrSiO:Eu2+、(BaSr)SiO:Eu2+等が挙げられる。
また、紫外域~励起光を、赤色の波長域の発光に変換する蛍光体としては、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、NaEu2.5(MoO6.25等が挙げられる。
Moreover, as an inorganic fluorescent material, Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , as a phosphor that converts excitation light in the ultraviolet region into light emission in the blue wavelength region, BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba ) 5 (PO 4) 3 Cl : Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: E 2+, Sr 3 MgSi 2 O 8 : Eu 2+ and the like.
In addition, phosphors that convert ultraviolet to excitation light into green light emission include (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 -Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) ) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
As phosphors that convert ultraviolet light to excitation light into red wavelength light, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25, and the like.
また、上記無機系蛍光体材料は、必要に応じて表面改質処理を施してもよく、その方法としては、シランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、さらにそれらの併用によるもの等が挙げられる。
励起光による劣化、発光による劣化や発光による劣化等の安定性を考慮すると、波長変換材料としては、無機系蛍光体材料を用いることが好ましい。
In addition, the inorganic phosphor material may be subjected to a surface modification treatment as necessary. The method includes chemical treatment such as a silane coupling agent and addition of fine particles of submicron order. And the like by the physical treatment by the above, and those by the combined use thereof.
In consideration of stability such as deterioration due to excitation light, deterioration due to light emission, and deterioration due to light emission, it is preferable to use an inorganic phosphor material as the wavelength conversion material.
さらに、無機系蛍光体材料を用いる場合には、その平均粒径(d50)が、0.5μm~50μmであることが好ましい。
平均粒径が0.5μm以下であると、蛍光体の発光効率が急激に低下する。一方、平均粒径が50μmを超えると、平坦な膜(波長変換層)を形成することが非常に困難となり、波長変換基板10を有機ELディスプレイに適用した場合、波長変換層と有機EL素子との間に空隙が生じてしまう(有機EL素子(屈折率:約1.7)と無機蛍光体層からなる波長変換層(屈折率:約2.3)の間の空隙(屈折率:1.0))。そのため、有機EL素子からの光が効率よく波長変換層に届かず、波長変換層の発光効率の低下が起こるという問題が生じる。また、波長変換層の平坦化が困難でるため、波長変換基板10と液晶を組み合わせる場合、液晶層を形成することが不可能となるという問題が生じる。なぜならば、波長変換層が平坦でないと、液晶層を挟む電極間の距離が不均一となり、電極間に均一に電界が掛からないため、液晶層が均一に動作しないからである。
Further, when an inorganic phosphor material is used, the average particle diameter (d 50 ) is preferably 0.5 μm to 50 μm.
If the average particle size is 0.5 μm or less, the luminous efficiency of the phosphor is drastically reduced. On the other hand, when the average particle diameter exceeds 50 μm, it becomes very difficult to form a flat film (wavelength conversion layer). When the wavelength conversion substrate 10 is applied to an organic EL display, the wavelength conversion layer, the organic EL element, Between the organic EL element (refractive index: about 1.7) and the wavelength conversion layer (refractive index: about 2.3) made of an inorganic phosphor layer (refractive index: 1. 0)). Therefore, the light from an organic EL element cannot reach a wavelength conversion layer efficiently, and the problem that the luminous efficiency of a wavelength conversion layer falls arises. In addition, since it is difficult to flatten the wavelength conversion layer, there is a problem that it becomes impossible to form the liquid crystal layer when the wavelength conversion substrate 10 and the liquid crystal are combined. This is because if the wavelength conversion layer is not flat, the distance between the electrodes sandwiching the liquid crystal layer becomes non-uniform, and an electric field is not uniformly applied between the electrodes, so that the liquid crystal layer does not operate uniformly.
波長変換層を形成する高分子材料(結着用樹脂)としては、公知の高分子材料を用いることができる。これらの具体的な材料を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
高分子材料(結着用樹脂)としては、メタクリル樹脂、フルオレン系樹脂、シクロオレフィン樹脂、エポキシ樹脂、シリコーン系樹脂、有機・無機ハイブリッド樹脂、ポリカーボネート樹脂、トリアセチルセルロース(TAC)樹脂、ポリスチレン樹脂、フッ素系樹脂、ポリエチレンテレフタレート樹脂、メチルメタクリレート・スチレン(MS)樹脂、ポリビニルアルコール樹脂、ポバール樹脂、アルキド樹脂等が挙げられる。
As the polymer material (binding resin) for forming the wavelength conversion layer, a known polymer material can be used. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
Polymer materials (binding resins) include methacrylic resin, fluorene resin, cycloolefin resin, epoxy resin, silicone resin, organic / inorganic hybrid resin, polycarbonate resin, triacetyl cellulose (TAC) resin, polystyrene resin, fluorine Resin, polyethylene terephthalate resin, methyl methacrylate / styrene (MS) resin, polyvinyl alcohol resin, poval resin, alkyd resin and the like.
さらに、ここで、高分子材料(結着用樹脂)として、光硬化性樹脂、熱硬化性樹脂を用いることにより、波長変換層を2層以上に積層化したとき、各層間で高分子材料や波長変換材料が混じり合うのを防止することが可能となり、前記の材料の混じり合いによる波長変換層の発光強度の低下を防止することが可能となる。
光硬化性樹脂としては、公知の光硬化性樹脂を用いることができる。これらの具体的な材料を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
光硬化性樹脂としては、(メタ)アクリレート系光硬化樹脂、イミド系光硬化樹脂、シリコーン系光硬化樹脂等が挙げられる。
熱硬化性樹脂としては、公知の熱硬化性樹脂を用いることができる。これらの具体的な材料を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
熱硬化性樹脂としては、エポキシ系熱硬化樹脂、シリコーン系熱硬化樹脂等が挙げられる。
Furthermore, when a wavelength conversion layer is laminated in two or more layers by using a photo-curing resin or a thermosetting resin as the polymer material (binding resin), the polymer material or the wavelength between the layers. It becomes possible to prevent the conversion materials from being mixed, and it is possible to prevent the emission intensity of the wavelength conversion layer from being lowered due to the mixing of the materials.
As the photocurable resin, a known photocurable resin can be used. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
Examples of the photocurable resin include (meth) acrylate photocurable resins, imide photocurable resins, and silicone photocurable resins.
A known thermosetting resin can be used as the thermosetting resin. Although these specific materials are illustrated below, this embodiment is not limited to these materials.
Examples of the thermosetting resin include an epoxy thermosetting resin and a silicone thermosetting resin.
第一波長変換層12や第二波長変換層13の膜厚は、通常100nm~100μm程度であるが、1μm~100μmであることが好ましい。
第一波長変換層12や第二波長変換層13の膜厚が100nm未満であると、励起光源からの励起光を十分に吸収することができないため、発光効率の低下、必要とされる色に励起光源からの励起光が混ざることによる色純度の悪化といった問題が生じる。さらに、励起光源からの励起光の吸収を高め、色純度に悪影響を及ぼさない程度に励起光の透過光を低減するためには、第一波長変換層12や第二波長変換層13の膜厚が、1μm以上であることが好ましい。一方、第一波長変換層12や第二波長変換層13の膜厚が100μmを超えると、励起光源からの励起光を既に十分に吸収することから、発光効率の上昇には繋がらずに、材料を消費するだけに留まり、材料コストの上昇に繋がる。
The film thicknesses of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are usually about 100 nm to 100 μm, but preferably 1 μm to 100 μm.
If the film thickness of the first wavelength conversion layer 12 or the second wavelength conversion layer 13 is less than 100 nm, the excitation light from the excitation light source cannot be sufficiently absorbed. There arises a problem of deterioration of color purity due to mixing of excitation light from the excitation light source. Furthermore, in order to increase the absorption of the excitation light from the excitation light source and reduce the transmitted light of the excitation light to such an extent that the color purity is not adversely affected, the film thicknesses of the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are reduced. Is preferably 1 μm or more. On the other hand, when the film thickness of the first wavelength conversion layer 12 or the second wavelength conversion layer 13 exceeds 100 μm, the pumping light from the pumping light source is already sufficiently absorbed. This leads to an increase in material costs.
また、波長変換層(第一波長変換層12、第二波長変換層13等)は、上記の蛍光体材料と高分子材料を溶剤に溶解、分散させた波長変換層形成用塗液を用いた、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセスや、上記の材料を用いた、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス等により形成することができる。さらに、フォトブリーチ法、転写法(レーザー転写法、熱転写法)を用いることにより、低コストで高精細化できる。 For the wavelength conversion layer (first wavelength conversion layer 12, second wavelength conversion layer 13, etc.), a coating liquid for forming a wavelength conversion layer in which the phosphor material and the polymer material are dissolved and dispersed in a solvent is used. , Known by coating methods such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method, screen printing method, microgravure coating method, etc. Well-known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD) using the above materials Or the like. Further, by using a photo bleaching method and a transfer method (laser transfer method, thermal transfer method), high definition can be achieved at low cost.
また、本実施形態では、例えば、第一波長変換層12や第二波長変換層13が積層されている。これにより、波長変換基板10によって、同一の励起光源から励起光を、2色以上の異なる波長の光に、容易に、かつ、効率よく、波長変換することができる。 In the present embodiment, for example, the first wavelength conversion layer 12 and the second wavelength conversion layer 13 are laminated. Thus, the wavelength conversion substrate 10 can easily and efficiently convert the wavelength of the excitation light from the same excitation light source into light of two or more different wavelengths.
ここで、ウエットプロセスにより、第一波長変換層12上に第二波長変換層13を形成して、波長変換層を積層する際、最初に形成した第一波長変換層12を、第二波長変換層13を形成する際に用いた溶剤が溶かしてしまい、第一波長変換層12を構成する材料と第二波長変換層13を構成する材料が混合してしまうことがある。これにより、第一波長変換層12および/または第二波長変換層13の発光効率が低下し、より低いエネルギーで発光する波長変換層にエネルギーが移動してしまい、所望の発光を得ることが出来ないといった問題が生じる可能性がある。そのため、第一波長変換層12に第二波長変換層13を積層する場合には、それぞれの層が混合しないようにすることが好ましい。 Here, when the second wavelength conversion layer 13 is formed on the first wavelength conversion layer 12 by the wet process and the wavelength conversion layer is laminated, the first wavelength conversion layer 12 formed first is converted to the second wavelength conversion layer 12. The solvent used when forming the layer 13 may dissolve, and the material constituting the first wavelength conversion layer 12 and the material constituting the second wavelength conversion layer 13 may be mixed. As a result, the light emission efficiency of the first wavelength conversion layer 12 and / or the second wavelength conversion layer 13 is reduced, and energy is transferred to the wavelength conversion layer that emits light with lower energy, so that desired light emission can be obtained. May cause problems. Therefore, when the second wavelength conversion layer 13 is laminated on the first wavelength conversion layer 12, it is preferable that the respective layers are not mixed.
波長変換層積層体14を構成する各層が混合しないようにする方法としては、例えば、(1)少なくとも最後に形成する波長変換層(基板11から最も離れた位置に形成する波長変換層)以外の波長変換層を、光硬化性樹脂や熱硬化性樹脂に波長変換材料を含有させた材料で形成し、波長変換層を硬化させる方法、(2)先に形成する波長変換層と、その上に形成する波長変換層とを、互いに溶媒への溶解性が異なる高分子材料(例えば、「水溶性高分子材料と有機溶剤可溶性高分子材料」)を含有させ材料で形成する方法等が挙げられる。 As a method for preventing the layers constituting the wavelength conversion layer laminate 14 from being mixed, for example, (1) At least the wavelength conversion layer formed last (the wavelength conversion layer formed at the position farthest from the substrate 11) is used. A method of forming a wavelength conversion layer with a material containing a wavelength conversion material in a photocurable resin or a thermosetting resin, and curing the wavelength conversion layer; (2) a wavelength conversion layer formed first; Examples thereof include a method of forming a wavelength conversion layer to be formed from a material containing polymer materials having different solubility in a solvent (for example, “water-soluble polymer material and organic solvent-soluble polymer material”).
ここで、波長変換層積層体14を構成する波長変換層(第一波長変換層12、第二波長変換層13等)に、その波長変換層が吸収領域を持つ光を照射することにより、光化学反応を利用して、光が照射された波長変換層の発光強度(発光スペクトルのピーク波長における発光強度)を低減させて、波長変換層積層体14に波長変換能力を低下させた波長変換層(非発光部分)を少なくとも1つ形成する。
また、波長変換層積層体14に光を照射する際、フォトマスクを用いることにより、波長変換層積層体14における発光部と非発光部をパターニングする。なお、フォトマスクには、波長変換層積層体14の所望の位置に対応するようにクロム等からなる遮光部が形成され、光照射に際し、遮光部に覆われた波長変換層に光が届かないように設計されている。
また、非発光部をなす波長変換層の発光強度(発光スペクトルのピーク波長における発光強度)は、発光部をなす波長変換層の発光強度の1/10以下であることが好ましい。
また、前記製造工程では、フォトマスクを用い、遮光部と露光部を形成したが、本実施形態はこれに限定されない。ダイレクト露光機やレーザー描画装置を用いて、フォトマスクを用いることなく、直接、波長変換層の所望の位置にのみ光を照射することができる。
Here, the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) constituting the wavelength conversion layer laminate 14 is irradiated with light having an absorption region in the wavelength conversion layer, so that photochemistry is achieved. Using the reaction, the wavelength conversion layer (the wavelength conversion layer having a reduced wavelength conversion capability in the wavelength conversion layer laminate 14 by reducing the emission intensity of the wavelength conversion layer irradiated with light (emission intensity at the peak wavelength of the emission spectrum)) At least one non-light emitting portion is formed.
Moreover, when irradiating light to the wavelength conversion layer laminated body 14, the light emission part and the non-light-emitting part in the wavelength conversion layer laminated body 14 are patterned by using a photomask. The photomask is formed with a light shielding portion made of chrome or the like so as to correspond to a desired position of the wavelength conversion layer laminate 14, and light does not reach the wavelength conversion layer covered with the light shielding portion upon light irradiation. Designed to be
Moreover, it is preferable that the light emission intensity (light emission intensity at the peak wavelength of the light emission spectrum) of the wavelength conversion layer forming the non-light emitting part is 1/10 or less of the light emission intensity of the wavelength conversion layer forming the light emitting part.
In the manufacturing process, the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this. Using a direct exposure machine or a laser drawing apparatus, light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
特に、波長変換層(第一波長変換層12、第二波長変換層13等)を形成する毎に、光化学反応を利用して、その波長変換層において発光部と非発光部をパターニングするだけでよいので、波長変換能力を低下させたくない部分を遮光して、光を照射するだけの非常に単純な方法を適用できるため、各波長変換層に対する露光が1回で済み、かつ、フォトマスクも1つで足りるから、低コストで波長変換層において発光部と非発光部をパターニングすることができる。
また、従来のように緑色と赤色の波長変換材料を混合して、1つの波長変換層を形成する場合には、緑色画素を、赤色の波長変換材料の蛍光強度(発光強度)のみを低下させる波長の光で露光する必要があるが、赤色の波長変換材料の蛍光強度のみを低下させる波長の光で、緑色の波長変換材料の蛍光強度も低下させてしまう問題が生じる。これに対して、本実施形態では、波長変換層を形成する毎に、光化学反応を利用して、その波長変換層において発光部と非発光部をパターニングした後、パターニング後の波長変換層に、別の波長変換層を形成して、その波長変換層に対して、同様にパターニングするので、従来の方法における波長変換材料の蛍光強度の低下の問題が生じない。さらに、本実施形態では、従来の方法のように、1つの波長変換層を構成する2つの波長変換材料のうち、赤色の波長変換材料のみ蛍光強度を低下させて、緑色の波長変換材料の蛍光強度を変化させないという必要がなく、各波長変換層を構成する波長変換材料の蛍光強度を完全に低下させること(なくすこと)が可能となり、例えば、緑色画素22において、赤色の波長変換材料からの発光による色純度の低下をなくすことができる。
In particular, every time the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) is formed, the light-emitting portion and the non-light-emitting portion are simply patterned in the wavelength conversion layer using a photochemical reaction. Since a very simple method of irradiating light can be applied by shielding the part where the wavelength conversion capability is not desired to be reduced, only one exposure for each wavelength conversion layer is required, and a photomask is also used. Since one is sufficient, the light emitting portion and the non-light emitting portion can be patterned in the wavelength conversion layer at low cost.
Further, when a single wavelength conversion layer is formed by mixing green and red wavelength conversion materials as in the prior art, the green pixel is reduced only in the fluorescence intensity (emission intensity) of the red wavelength conversion material. Although it is necessary to carry out exposure with light of a wavelength, there arises a problem that the fluorescence intensity of the green wavelength conversion material is also reduced by the light of the wavelength that reduces only the fluorescence intensity of the red wavelength conversion material. On the other hand, in this embodiment, every time the wavelength conversion layer is formed, the photochemical reaction is used, and after patterning the light emitting part and the non-light emitting part in the wavelength conversion layer, Since another wavelength conversion layer is formed and patterned in the same manner for the wavelength conversion layer, there is no problem of a decrease in fluorescence intensity of the wavelength conversion material in the conventional method. Furthermore, in the present embodiment, as in the conventional method, the fluorescence intensity of only the red wavelength conversion material is reduced among the two wavelength conversion materials constituting one wavelength conversion layer, and the fluorescence of the green wavelength conversion material is reduced. It is not necessary to change the intensity, and it is possible to completely reduce (eliminate) the fluorescence intensity of the wavelength conversion material constituting each wavelength conversion layer. For example, in the green pixel 22, from the red wavelength conversion material A decrease in color purity due to light emission can be eliminated.
本実施形態では、フォトマスクを用いて、波長色変換層を構成する波長変換材料に、紫外線等の波長変換層が吸収を持つ波長域の高エネルギー光(電磁波)を照射して、波長色変換層を構成する波長変換材料を部分的に変性することにより、波長変換層を構成する波長変換材料の蛍光強度(励起光の吸収強度)を低下させている。
なお、波長変換材料の変性とは、色変換色素の分解や酸化、および、その他の波長変換材料の発光強度が低下(励起光に対する光透過率が低下)する任意の態様(会合体の形成)を含む。特に、本実施形態では、波長変換材料の変性とは、光源からの励起光により蛍光強度が低下することや、有機EL素子の発光極大の波長における励起光に対する光透過率が低下することを意味する。
In the present embodiment, wavelength color conversion is performed by irradiating the wavelength conversion material constituting the wavelength color conversion layer with high energy light (electromagnetic waves) in a wavelength region that is absorbed by the wavelength conversion layer, such as ultraviolet rays, using a photomask. By partially modifying the wavelength conversion material constituting the layer, the fluorescence intensity (absorption intensity of excitation light) of the wavelength conversion material constituting the wavelength conversion layer is reduced.
The modification of the wavelength conversion material is any mode in which the decomposition or oxidation of the color conversion dye and the emission intensity of other wavelength conversion materials are reduced (light transmittance with respect to excitation light is reduced) (formation of aggregates). including. In particular, in this embodiment, the modification of the wavelength conversion material means that the fluorescence intensity is reduced by the excitation light from the light source, and the light transmittance for the excitation light at the wavelength of the emission maximum of the organic EL element is reduced. To do.
波長変換材料を変性させるための光源としては、通常、高圧UVランプ、超高圧UVランプ、低圧UVランプ、Deep UVランプ、メタルハライドランプ、エキシマランプ、キセノンランプ、ハロゲンランプ等のランプが用いられる。
なお、光源の波長は、波長変換材料の吸収波長であればよく、特に限定されるものではなく、波長変換材料の一部または全部を変性できる波長範囲であることが好ましい。
光源の照度は、特に限定されるものではなく、プロセスの時間を短縮するためには大きい方がよいが、露光時に波長変換層積層体14と基板11の間にカラーフィルターが設けられている場合、カラーフィルターの劣化を防止する目的で照射強度は、あまり高くない方がよく、10mW/cm~300mW/cm程度が好ましい。
As a light source for modifying the wavelength converting material, a lamp such as a high pressure UV lamp, an ultra high pressure UV lamp, a low pressure UV lamp, a deep UV lamp, a metal halide lamp, an excimer lamp, a xenon lamp, or a halogen lamp is usually used.
The wavelength of the light source is not particularly limited as long as it is an absorption wavelength of the wavelength conversion material, and is preferably in a wavelength range in which part or all of the wavelength conversion material can be modified.
The illuminance of the light source is not particularly limited, and it is better to reduce the process time. However, when a color filter is provided between the wavelength conversion layer stack 14 and the substrate 11 at the time of exposure. , irradiation intensity in order to prevent deterioration of the color filter, it is better not very high, 10mW / cm 2 ~ 300mW / cm 2 is preferably about.
波長変換層(第一波長変換層12、第二波長変換層13等)を部分的に変性させる手段として、フォトマスクを用いて、波長変換層(第一波長変換層12、第二波長変換層13等)に高エネルギー光を照射し、色変換色素を部分的に変性させる場合について説明したが、本実施形態では、他の手段を用いてもよい。例えば、波長変換層(第一波長変換層12、第二波長変換層13等)を部分的に変性させる方法としては、照射強度を変化させながら、波長変換層(第一波長変換層12、第二波長変換層13等)の全面に対して電磁波を照射する方法(例えば、白黒ネガフィルムのような部分的に透過度の異なるフィルタを通して電磁波を露光する方法、微小な光源が発する光の照射強度を変化させながら走査させる方法 、マスキングにより部分的に電磁波を照射する方法等)が挙げられる。波長変換層(第一波長変換層12、第二波長変換層13等)を部分的に露光する場合には、例えば、フォトマスクを用いて密着露光したり、投影露光(レンズで集光した光、または、微小な光源から発光する光を用いて部分的に露光する方法、あるいは、これらの方法にフォトマスクを併用する方法等)したりすることによって実施することができる。
また、前記製造工程では、フォトマスクを用い、遮光部と露光部を形成したが、本実施形態はこれに限定されない。ダイレクト露光機やレーザー描画装置を用いて、フォトマスクを用いることなく、直接、波長変換層の所望の位置にのみ光を照射することができる。
As means for partially modifying the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), a photomask is used to convert the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer). 13)) is irradiated with high energy light to partially modify the color conversion dye, but in this embodiment, other means may be used. For example, as a method of partially modifying the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), the wavelength conversion layer (the first wavelength conversion layer 12, the first wavelength conversion layer is changed while changing the irradiation intensity). A method of irradiating an electromagnetic wave to the entire surface of the two-wavelength conversion layer 13 or the like (for example, a method of exposing an electromagnetic wave through a filter having a partially different transmittance such as a black and white negative film, an irradiation intensity of light emitted from a minute light source And a method in which scanning is performed while changing the wavelength, a method in which electromagnetic waves are partially irradiated by masking, and the like. When partially exposing the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), for example, contact exposure using a photomask or projection exposure (light condensed by a lens) Or a method of performing partial exposure using light emitted from a minute light source, a method using a photomask in combination with these methods, or the like).
In the manufacturing process, the light shielding part and the exposure part are formed using a photomask, but the present embodiment is not limited to this. Using a direct exposure machine or a laser drawing apparatus, light can be directly irradiated only at a desired position of the wavelength conversion layer without using a photomask.
基板11の一方の面11aにおいて、波長変換層積層体14からなる各画素間には、光吸収性の隔壁15が設けられている。これにより、波長変換基板10による表示のコントラストを向上することができる。
隔壁15の膜厚は、通常、100nm~100μm程度であるが、100nm~10μmであることが好ましい。
On one surface 11 a of the substrate 11, a light-absorbing partition wall 15 is provided between each pixel formed of the wavelength conversion layer stack 14. Thereby, the display contrast by the wavelength conversion board | substrate 10 can be improved.
The film thickness of the partition wall 15 is usually about 100 nm to 100 μm, but preferably 100 nm to 10 μm.
また、隔壁15は、基板11側から光吸収層と、光反射性または光散乱性のバンクの積層構造をなしていることが好ましい。これにより、波長変換層(第一波長変換層12、第二波長変換層13等)からの等方発光のうち、側面方向へ発光(波長変換層を通しての導波成分)して、基板11側に取り出すことができない発光の損失成分を、光反射性または光散乱性のバンクにより、所望の画素内に反射、散乱させることで、発光を有効利用することができるようになり、所望の画素以外への発光の漏れによる色純度の低下を防止することができる。また、波長変換層からの発光を、各画素内に反射させることができるようになり、波長変換層からの発光を有効利用できるので、発光効率を向上することができるとともに、消費電力を低下させることができる。さらに、基板11側に光吸収層を設けることにより、光反射性または光散乱性のバンクによる外光反射を防止することができ、ひいては、外光によるコントラストの低下を防止することができる。 The partition wall 15 preferably has a laminated structure of a light absorption layer and a light reflective or light scattering bank from the substrate 11 side. Thereby, out of the isotropic light emission from the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.), light is emitted in the side surface direction (waveguide component through the wavelength conversion layer), and the substrate 11 side The loss component of light emission that cannot be extracted in the light is reflected and scattered in a desired pixel by a light reflective or light scattering bank, so that the light emission can be used effectively. It is possible to prevent a decrease in color purity due to leakage of light emission. In addition, the light emitted from the wavelength conversion layer can be reflected in each pixel, and the light emission from the wavelength conversion layer can be used effectively, so that the light emission efficiency can be improved and the power consumption can be reduced. be able to. Furthermore, by providing the light absorption layer on the substrate 11 side, it is possible to prevent external light reflection by the light-reflective or light-scattering bank, and consequently, it is possible to prevent a decrease in contrast due to external light.
光反射性または光散乱性のバンクを形成する材料としては、特に限定されるものではないが、例えば、金、銀、アルミニウム等の金属等の反射膜、酸化チタン等の散乱膜が挙げられる。 The material for forming the light-reflective or light-scattering bank is not particularly limited, and examples thereof include a reflective film such as a metal such as gold, silver, and aluminum, and a scattering film such as titanium oxide.
また、波長変換基板10は、配光特性が異なる励起光からの発光を直接使用する画素(例えば、青色画素23)と、波長変換層からの発光を使用する画素(赤色画素21、緑色画素22)とを備えているので、励起光を直接使用する画素と、波長変換層からの発光を使用する画素との配光特性を合わせて、視野角による配向特性のズレによる輝度、色変化を低減するために、隔壁15の表面に光散乱層を形成してもよい。 Further, the wavelength conversion substrate 10 includes pixels (for example, blue pixels 23) that directly use light emitted from excitation light having different light distribution characteristics and pixels (red pixels 21 and green pixels 22) that use light emitted from the wavelength conversion layer. ) To reduce luminance and color changes due to misalignment of orientation characteristics due to viewing angle by combining light distribution characteristics of pixels that directly use excitation light and pixels that use light emitted from the wavelength conversion layer. Therefore, a light scattering layer may be formed on the surface of the partition wall 15.
光散乱層を形成する材料としては、樹脂中に光散乱性粒子を分散したものを用いることが好ましい。
光散乱性粒子としては、有機材料により構成された粒子(有機微粒子)、無機材料または無機材料により構成された粒子(無機微粒子)が用いられるが、無機微粒子が好ましい。光散乱層を形成する材料として光散乱性粒子を用いることにより、外部(例えば、発光素子)からの指向性を有する光を、より等方的かつ効果的に拡散または散乱させることができる。特に、無機微粒子を用いることにより、光および熱に安定な光散乱層を形成することができる。
また、光散乱性粒子としては、透明度が高いものであることが好ましい。
また、光散乱性粒子としては、母材となる樹脂よりも高屈折率のものであることが好ましい。
また、励起光が光散乱層によって効果的に散乱するためには、光散乱性粒子の粒径がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径は100nm~500nm程度が好ましい。
As a material for forming the light scattering layer, it is preferable to use a material in which light scattering particles are dispersed in a resin.
As the light scattering particles, particles composed of organic materials (organic fine particles), inorganic materials or particles composed of inorganic materials (inorganic fine particles) are used, and inorganic fine particles are preferable. By using light scattering particles as a material for forming the light scattering layer, light having directivity from the outside (for example, a light emitting element) can be diffused or scattered more isotropically and effectively. In particular, by using inorganic fine particles, a light scattering layer stable to light and heat can be formed.
Moreover, it is preferable that the light scattering particles have high transparency.
In addition, the light scattering particles preferably have a higher refractive index than the resin serving as a base material.
In addition, in order for the excitation light to be effectively scattered by the light scattering layer, the particle size of the light scattering particles needs to be in the Mie scattering region, so that the particle size of the light scattering particles is 100 nm to 500 nm. The degree is preferred.
光散乱性粒子として、無機材料を用いる場合には、例えば、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫およびアンチモンからなる群より選択される少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。
また、光散乱性粒子として、無機微粒子を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 
アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。
When an inorganic material is used as the light scattering particle, for example, an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin and antimony is used as a main component. Particles (fine particles).
When inorganic fine particles are used as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (refractive index).
Anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), barium titanate (BaTiO 3 ) (refractive index: 2.4).
光散乱性粒子として、有機微粒子を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When organic fine particles are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic-styrene copolymer beads (refractive index). : 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), styrene beads (refractive index: 1. 60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), silicone beads (refractive index: 1. 50) and the like.
光散乱性粒子と混合して用いる樹脂材料としては、透光性の樹脂であることが好ましい。樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。 The resin material used by mixing with the light scattering particles is preferably a translucent resin. Examples of the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine. Beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index) : 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53). ), High density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1). .3 ), And the like.
波長変換基板10では、図1に示すように、基板11と波長変換層積層体14との間において、赤色カラーフィルター16、緑色カラーフィルター17および青色カラーフィルター18が設けられていることが好ましい。
赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18としては、従来のカラーフィルターを用いることができる。ここで、カラーフィルターを設けることによって、波長変換層(第一波長変換層12、第二波長変換層13等)によって吸収されず、波長変換層を透過してしまう励起光が外部に漏れ出すことを防止できるので、波長変換層からの発光と励起光の混色による発光の色純度の低下を防止することができる。さらに、赤色画素21、緑色画素22および青色画素23の色純度を高めることができ、ひいては、波長変換基板10による色再現範囲を拡大することができる。
In the wavelength conversion substrate 10, it is preferable that a red color filter 16, a green color filter 17, and a blue color filter 18 are provided between the substrate 11 and the wavelength conversion layer stack 14 as shown in FIG. 1.
As the red color filter 16, the green color filter 17, and the blue color filter 18, conventional color filters can be used. Here, by providing a color filter, the excitation light that is not absorbed by the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) and passes through the wavelength conversion layer leaks to the outside. Therefore, it is possible to prevent a decrease in color purity of light emission due to a color mixture of light emission from the wavelength conversion layer and excitation light. Furthermore, the color purity of the red pixel 21, the green pixel 22, and the blue pixel 23 can be increased, and as a result, the color reproduction range by the wavelength conversion substrate 10 can be expanded.
また、赤色画素21上に設けられた赤色カラーフィルター16、緑色画素22上に設けられた緑色カラーフィルター17および青色画素23上に設けられた青色カラーフィルター18は、外光のうち、各波長変換材料を励起する励起光を吸収するため、外光による波長変換層(第一波長変換層12、第二波長変換層13等)の発光を低減・防止することができ、波長変換基板10による表示のコントラストの低下を低減・防止することができる。一方、赤色カラーフィルター16、緑色カラーフィルター17および青色カラーフィルター18によって、波長変換層(第一波長変換層12、第二波長変換層13等)に吸収されず、波長変換層(第一波長変換層12、第二波長変換層13等)を透過した励起光が外部に漏れ出すことを防止できるので、波長変換層(第一波長変換層12、第二波長変換層13等)からの発光と励起光の混色による発光の色純度の低下を防止することができる。 The red color filter 16 provided on the red pixel 21, the green color filter 17 provided on the green pixel 22, and the blue color filter 18 provided on the blue pixel 23 convert each wavelength of external light. Since the excitation light that excites the material is absorbed, the light emission of the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) due to external light can be reduced and prevented, and the display by the wavelength conversion substrate 10 The reduction in contrast can be reduced or prevented. On the other hand, the red color filter 16, the green color filter 17, and the blue color filter 18 are not absorbed by the wavelength conversion layer (first wavelength conversion layer 12, second wavelength conversion layer 13, etc.), and the wavelength conversion layer (first wavelength conversion layer). Light from the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) can be prevented from leaking to the outside. It is possible to prevent a decrease in color purity of light emission due to color mixing of excitation light.
さらに、波長変換層として、シアン色波長変換層や黄色波長変換層を設けた場合、それぞれの発光に対応したカラーフィルターを設けることができる。 Furthermore, when a cyan wavelength conversion layer or a yellow wavelength conversion layer is provided as the wavelength conversion layer, a color filter corresponding to each light emission can be provided.
波長変換基板10では、図1に示すように、基板11と隔壁15との間、かつ、波長変換基板10の厚さ方向と垂直な方向において、赤色カラーフィルター16と緑色カラーフィルター17との間、緑色カラーフィルター17と青色カラーフィルター18との間、および、青色カラーフィルター18と赤色カラーフィルター16との間に、ブラックマトリックス19が設けられていることが好ましい。 In the wavelength conversion substrate 10, as shown in FIG. 1, between the red color filter 16 and the green color filter 17 between the substrate 11 and the partition wall 15 and in a direction perpendicular to the thickness direction of the wavelength conversion substrate 10. A black matrix 19 is preferably provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
波長変換基板10では、基板11と波長変換層積層体14との間、または、カラーフィルター(赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18)と波長変換層積層体14との間に、基板11の屈折率と波長変換層(第一波長変換層12、第二波長変換層13等)の屈折率のうち、低い方よりも屈折率が低い低屈折率層(図示略)が設けられていることが好ましい。
これにより、波長変換層(第一波長変換層12、第二波長変換層13等)からの発光が、光取出し側となる基板11を導波して、基板11の側面に導波することによって生じる発光の損失を低減することができる。すなわち、低屈折率層と基板11との屈折率差を利用し、基板11から空気層(外部)へ取り出すことができない臨界角以上の光を、波長変換層と低屈層との屈折率差で反射させ、波長変換層積層体14を介して、基板11と反対側に形成されている反射部材(波長変換層積層体14と光源の間で生じた励起光は透過し、波長変換層積層体14からの発光を反射させる反射層(誘電体多層膜、バンドパスフィルター、金属の超薄膜等)、無機EL部や有機EL部に設けられた半透明電極または反射電極)で反射させて、その反射光を、再度、基板11方向に出射させることにより、基板11を導波する発光の損失を低減することができ、波長変換基板10を適用した表示装置の消費電力を低減することや、輝度を向上させることができる。
In the wavelength conversion substrate 10, between the substrate 11 and the wavelength conversion layer stack 14, or between the color filters (red color filter 16, green color filter 17, blue color filter 18) and the wavelength conversion layer stack 14. A low refractive index layer (not shown) having a lower refractive index than the lower one of the refractive index of the substrate 11 and the refractive index of the wavelength conversion layer (first wavelength conversion layer 12, second wavelength conversion layer 13, etc.) is provided. It is preferable that
Thereby, light emitted from the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) is guided through the substrate 11 on the light extraction side and guided to the side surface of the substrate 11. The loss of light emission that occurs can be reduced. That is, by utilizing the difference in refractive index between the low refractive index layer and the substrate 11, light having a critical angle or more that cannot be extracted from the substrate 11 to the air layer (external) is converted into a refractive index difference between the wavelength conversion layer and the low bending layer. The reflection member (excitation light generated between the wavelength conversion layer laminate 14 and the light source is transmitted through the wavelength conversion layer laminate 14 through the wavelength conversion layer laminate 14 and transmits the wavelength conversion layer laminate. Reflecting with a reflective layer (dielectric multilayer film, bandpass filter, metal ultra-thin film, etc.) reflecting light emitted from the body 14, a semi-transparent electrode or a reflective electrode provided in an inorganic EL part or an organic EL part) By emitting the reflected light again in the direction of the substrate 11, it is possible to reduce the loss of light emission guided through the substrate 11, and to reduce the power consumption of the display device to which the wavelength conversion substrate 10 is applied, Brightness can be improved.
低屈折率層に用いることができる材料としては、特に限定されるものではなく、例えば、フッ素系樹脂(Poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate):n=1.375、Poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate):n=1.383、Poly(2,2,3,3,3-pentafluoroproyl methacrylate):n=1.395、Poly(2,2,2-trifluoroethyl
 methacrylate):n=1.418、メソポーラスシリカ(n=1.2)、エアロゲル(n=1.05)等の膜で形成されていてもよく、基板11と波長変換層積層体14との間の空間、または、カラーフィルター(赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18)と波長変換層積層体14との間の空間に導入されたドライエアー、窒素等の気体で形成されていてもよく、前記の空間を減圧状態にして形成されていてもよい。
The material that can be used for the low refractive index layer is not particularly limited. For example, a fluorine-based resin (Poly (1,1,1,3,3,3-hexafluoropropyl acrylate): n = 1.375. , Poly (2,2,3,3,4,4,4-heptafluorobutyl methacrylate): n = 1.383, Poly (2,2,3,3,3-pentafluoropropyl methacrylate): n = 1.395, Poly (2,2,2-trifluoroethyl
(methacrylate): n = 1.418, mesoporous silica (n = 1.2), aerogel (n = 1.05), etc. may be formed between the substrate 11 and the wavelength conversion layer laminate 14. Or a gas such as dry air or nitrogen introduced into the space between the color filters (red color filter 16, green color filter 17, blue color filter 18) and wavelength conversion layer laminate 14. Alternatively, the space may be formed under reduced pressure.
また、波長変換層積層体14(第二波長変換層13)における基板11とは反対側の面(以下、「一方の面」と言うこともある。)14aを覆うように、封止膜が設けられていてもよい。
封止膜は、スピンコート法、ODF、ラミレート法を用いて、波長変換層積層体14の一方の面14aに樹脂を塗布することによって形成される。あるいは、波長変換層積層体14の一方の面14aを覆うように、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタリング法等により、SiO、SiON、SiN等からなる無機膜を形成した後、さらに、その無機膜を覆うように、スピンコート法、ODF、ラミレート法等を用いて樹脂を塗布するか、または、無機膜を覆うように樹脂膜を貼り合わせることによって、封止膜を形成することもできる。
この封止膜により、波長変換層(第一波長変換層12、第二波長変換層13等)に、外部からの酸素や水分が混入するのを防止することができ、ひいては、波長変換層の劣化を低減することができる。さらに、波長変換基板10を表示装置に適用したとき、波長変換層に含まれる酸素や水分が液晶層、無機EL素子、有機EL素子等に到達し、液晶層、無機EL素子、有機EL素子等を劣化させることを防止することができる。
The sealing film covers the surface 14a of the wavelength conversion layer stack 14 (second wavelength conversion layer 13) opposite to the substrate 11 (hereinafter also referred to as “one surface”) 14a. It may be provided.
The sealing film is formed by applying a resin to one surface 14a of the wavelength conversion layer laminate 14 using a spin coat method, ODF, or a laminate method. Alternatively, after an inorganic film made of SiO, SiON, SiN or the like is formed by plasma CVD, ion plating, ion beam, sputtering, or the like so as to cover one surface 14a of the wavelength conversion layer stack 14 Furthermore, a sealing film is formed by applying a resin using a spin coat method, ODF, a laminate method or the like so as to cover the inorganic film, or by bonding a resin film so as to cover the inorganic film. You can also
With this sealing film, it is possible to prevent external oxygen and moisture from being mixed into the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13 and the like). Deterioration can be reduced. Furthermore, when the wavelength conversion substrate 10 is applied to a display device, oxygen and moisture contained in the wavelength conversion layer reach the liquid crystal layer, the inorganic EL element, the organic EL element, etc., and the liquid crystal layer, the inorganic EL element, the organic EL element, etc. Can be prevented from deteriorating.
さらに、封止膜における波長変換層積層体14と接する面とは反対側の面を覆うように、平坦化膜が設けられていてもよい。
平坦化膜は、公知の材料を用いて形成することができる。平坦化膜の材料としては、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、例えば、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセス等が挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜は、単層構造または多層構造のいずれであってもよい。
これにより、波長変換基板10を、有機光源または液晶層と組み合わせた場合に、波長変換基板10と、有機光源または液晶層との間に空隙が生じることを防止でき、かつ、波長変換基板10と、有機光源または液晶層との密着性を向上することができる。
Furthermore, a planarization film may be provided so as to cover the surface of the sealing film opposite to the surface in contact with the wavelength conversion layer laminate 14.
The planarization film can be formed using a known material. Examples of the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is limited to these materials and the formation method. is not. Further, the planarization film may have either a single layer structure or a multilayer structure.
Thereby, when the wavelength conversion board | substrate 10 is combined with an organic light source or a liquid crystal layer, it can prevent that a space | gap arises between the wavelength conversion board | substrate 10 and an organic light source or a liquid crystal layer, and the wavelength conversion board | substrate 10 Adhesion with an organic light source or a liquid crystal layer can be improved.
次に、図2Aを参照して、本実施形態の波長変換基板の製造方法の概略を説明する。
基板11の一方の面11aに、所定の間隔を置いて、画素を形成し、各画素間に対応した位置に隔壁15を形成する(図2A参照)。
Next, with reference to FIG. 2A, the outline of the manufacturing method of the wavelength conversion board of this embodiment is explained.
Pixels are formed on one surface 11a of the substrate 11 at a predetermined interval, and partition walls 15 are formed at positions corresponding to the respective pixels (see FIG. 2A).
次いで、基板11の一方の面11a上に、隔壁15を覆うように、上記のウエットプロセスやドライプロセス等により、赤色波長変換層からなる第一波長変換層12を形成する(図2B参照)。
ここで、第一波長変換層12は、水分や酸素による劣化(発光強度の低下)を防止する目的で、真空中、不活性ガス中またはドライエアー中(露点:-60℃以下)で形成される。
なお、本実施形態では、基板11上に波長変換層(第一波長変換層12、第二波長変換層13等)が形成された後、波長変換基板10を用いた表示装置が得られるまでの全ての工程を、真空中、不活性ガス中またはドライエアー中(露点:-60℃以下)で行うことが好ましい。
さらに、光硬化性樹脂や熱硬化性樹脂を用いてウエットプロセスで第一波長変換層12を形成する場合、第一波長変換層12を形成した後、光硬化性樹脂や熱硬化性樹脂を硬化させる工程を経た後、第一波長変換層12をパターニングする露光工程を行い、第二波長変換層13を形成する工程を行うことが好ましい。これらの工程においても、全ての工程を真空中、不活性ガス中またはドライエアー中(露点:-60℃以下)で行うことが好ましい。
Next, the first wavelength conversion layer 12 made of a red wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the partition wall 15 (see FIG. 2B).
Here, the first wavelength conversion layer 12 is formed in a vacuum, in an inert gas or in dry air (dew point: −60 ° C. or lower) for the purpose of preventing deterioration due to moisture or oxygen (decrease in emission intensity). The
In the present embodiment, after the wavelength conversion layer (the first wavelength conversion layer 12, the second wavelength conversion layer 13, etc.) is formed on the substrate 11, a display device using the wavelength conversion substrate 10 is obtained. All the steps are preferably performed in vacuum, in an inert gas or in dry air (dew point: −60 ° C. or lower).
Further, when the first wavelength conversion layer 12 is formed by a wet process using a photocurable resin or a thermosetting resin, after the first wavelength conversion layer 12 is formed, the photocurable resin or the thermosetting resin is cured. It is preferable to perform the process of forming the 2nd wavelength conversion layer 13 by performing the exposure process which patterns the 1st wavelength conversion layer 12, after passing through the process to make. Also in these steps, it is preferable to perform all the steps in vacuum, in an inert gas or in dry air (dew point: −60 ° C. or lower).
次いで、基板11上に形成された第一波長変換層12上に、赤色画素21に対応する領域が遮光され(遮光部31aが設けられ)、緑色画素22と青色画素23に対応する領域が遮光されていない(遮光部31aが設けられていない)フォトマスク31を配置する(図2C参照)。 Next, on the first wavelength conversion layer 12 formed on the substrate 11, a region corresponding to the red pixel 21 is shielded from light (a light shielding part 31 a is provided), and a region corresponding to the green pixel 22 and the blue pixel 23 is shielded from light. A photomask 31 that is not provided (the light shielding portion 31a is not provided) is disposed (see FIG. 2C).
次いで、上記のランプにより、基板11の一方の面11a側から、第一波長変換層12のうち、緑色画素22と青色画素23に対応する領域に光41を照射して、その領域を露光し、光化学反応を利用して、その領域における赤色の波長域の光の発光強度を低減させて(波長変換能力(発光能力)を低減させて)、非発光とする(図2D参照)。 Next, from the one surface 11 a side of the substrate 11, the region corresponding to the green pixel 22 and the blue pixel 23 in the first wavelength conversion layer 12 is irradiated with light 41 from the above-described lamp 11 to expose the region. By using a photochemical reaction, the emission intensity of light in the red wavelength region in the region is reduced (wavelength conversion capability (emission capability) is reduced) to make no light emission (see FIG. 2D).
次いで、基板11の一方の面11a上に、第一波長変換層12を覆うように、上記のウエットプロセスやドライプロセス等により、緑色波長変換層からなる第二波長変換層13を形成する(図2E参照)。
この工程では、第一波長変換層12を形成する工程と同様にして、第二波長変換層13を形成する。
Next, the second wavelength conversion layer 13 made of the green wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the first wavelength conversion layer 12 (see FIG. 2E).
In this step, the second wavelength conversion layer 13 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
次いで、基板11上に形成された第二波長変換層13上に、赤色画素21と緑色画素22に対応する領域が遮光され(遮光部32aが設けられ)、青色画素23に対応する領域が遮光されていない(遮光部32aが設けられていない)フォトマスク32を配置する(図2F参照)。 Next, on the second wavelength conversion layer 13 formed on the substrate 11, the areas corresponding to the red pixels 21 and the green pixels 22 are shielded from light (the light shielding part 32 a is provided), and the areas corresponding to the blue pixels 23 are shielded from light. A photomask 32 that is not provided (the light shielding portion 32a is not provided) is disposed (see FIG. 2F).
次いで、上記のランプにより、第二波長変換層13のうち、青色画素23に対応する領域に光41を照射して、その領域を露光し、光化学反応を利用して、その領域における緑色の波長域の光の発光強度を低減させて(波長変換能力(発光能力)を低減させて)、非発光とする(図2G参照)。
この工程では、第一波長変換層12を露光する工程と同様にして、第二波長変換層13を露光する。
Next, the light corresponding to the blue pixel 23 in the second wavelength conversion layer 13 is irradiated with the light 41 by the lamp described above, the region is exposed, and the green wavelength in the region is utilized using a photochemical reaction. The light emission intensity of the light in the region is reduced (wavelength conversion ability (light emission ability) is reduced) and no light is emitted (see FIG. 2G).
In this step, the second wavelength conversion layer 13 is exposed in the same manner as the step of exposing the first wavelength conversion layer 12.
以上の工程により、基板11の一方の面11a上に、赤色画素21、緑色画素22および青色画素23が形成された波長変換基板10を得る(図2H参照)。 Through the above steps, the wavelength conversion substrate 10 in which the red pixel 21, the green pixel 22, and the blue pixel 23 are formed on one surface 11a of the substrate 11 is obtained (see FIG. 2H).
赤色画素21では、第一波長変換層12(赤色波長変換層)と第二波長変換層13(緑色波長変換層)を共に露光していない。したがって、これら2つの波長変換層を、そのまま発光させることができる。これにより、赤色画素21では、励起光源からの励起光を緑色波長変換層に吸収させて、緑色波長変換層から緑色の波長域の光を発光させ、続いて、緑色波長変換層からの緑色の波長域の光を赤色波長変換層に吸収させて、赤色波長変換層から赤色の波長域の光を発光する。
また、赤色画素21では、赤色波長変換層と緑色波長変換層を共に光を露光する必要がないため、赤色波長変換層と緑色波長変換層の波長変換能力(発光能力)を損なうことなく、高発光効率を維持したまま、使用することができる。
さらに、赤色画素21では、赤色波長変換層が、緑色波長変換層を透過した励起光を直接吸収し、赤色の波長域の光を発光することもでき、また、緑色波長変換層を透過した励起光と緑色波長変換層からの緑色の波長域の発光の両方を吸収し、赤色の波長域の光を発光することもできる。
In the red pixel 21, neither the first wavelength conversion layer 12 (red wavelength conversion layer) nor the second wavelength conversion layer 13 (green wavelength conversion layer) is exposed. Therefore, these two wavelength conversion layers can emit light as they are. Thereby, in the red pixel 21, the excitation light from the excitation light source is absorbed by the green wavelength conversion layer, the light in the green wavelength region is emitted from the green wavelength conversion layer, and then the green wavelength from the green wavelength conversion layer is emitted. Light in the wavelength range is absorbed by the red wavelength conversion layer, and light in the red wavelength range is emitted from the red wavelength conversion layer.
Moreover, in the red pixel 21, since it is not necessary to expose both the red wavelength conversion layer and the green wavelength conversion layer to light, the red wavelength conversion layer and the green wavelength conversion layer have high wavelength without impairing the wavelength conversion capability (light emission capability). It can be used while maintaining the luminous efficiency.
Further, in the red pixel 21, the red wavelength conversion layer can directly absorb the excitation light transmitted through the green wavelength conversion layer, and can emit light in the red wavelength range, and the excitation transmitted through the green wavelength conversion layer. Both the light and the light emitted in the green wavelength region from the green wavelength conversion layer can be absorbed, and the light in the red wavelength region can be emitted.
ここで、緑色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。
また、赤色波長変換層としては、緑色波長変換層からの緑色の波長域の光を吸収し、緑色波長変換層からの緑色の波長域の光の吸光度が高いものが好ましい。これにより、赤色画素21において、励起光源からの励起光を、より効率よく吸収することができ、高輝度の赤色発光を得ることができ、消費電力を低減させることもできる。さらに、赤色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、赤色波長変換層では、緑色波長変換層で吸収されずに、赤色波長変換層に達する、励起光源が発光する励起光も吸収して、赤色発光に利用することもでき、高輝度の赤色発光を得ることができ、消費電力を低減させることもできる。
Here, the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has high absorbance of the excitation light emitted from the excitation light source.
Moreover, as a red wavelength conversion layer, the thing which absorbs the light of the green wavelength range from a green wavelength conversion layer, and has a high light absorbency of the light of the green wavelength range from a green wavelength conversion layer is preferable. Thereby, in the red pixel 21, the excitation light from an excitation light source can be absorbed more efficiently, high-luminance red light emission can be obtained, and power consumption can also be reduced. Further, the red wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. As a result, the red wavelength conversion layer absorbs the excitation light emitted from the excitation light source that reaches the red wavelength conversion layer without being absorbed by the green wavelength conversion layer, and can also be used for red light emission. Red light emission can be obtained and power consumption can be reduced.
緑色画素22では、第一波長変換層12(赤色波長変換層)を露光し、光化学反応を利用して、赤色の波長域の光の発光強度を低減させ、一方、第二波長変換層13(緑色波長変換層)を露光していない。したがって、赤色波長変換層を非発光とし、緑色波長変換層をそのまま発光させることができる。これにより、緑色画素22では、励起光源からの励起光を緑色波長変換層に吸収させて、緑色波長変換層から緑色の波長域の光を発光させ、続いて、緑色波長変換層からの緑色の波長域の光を、赤色波長変換層を透過させて、緑色の波長域の光を発光する。 In the green pixel 22, the first wavelength conversion layer 12 (red wavelength conversion layer) is exposed and the photochemical reaction is used to reduce the emission intensity of light in the red wavelength range, while the second wavelength conversion layer 13 ( The green wavelength conversion layer) is not exposed. Therefore, the red wavelength conversion layer can be made to emit no light, and the green wavelength conversion layer can emit light as it is. Thus, in the green pixel 22, the excitation light from the excitation light source is absorbed by the green wavelength conversion layer, the light in the green wavelength region is emitted from the green wavelength conversion layer, and then the green wavelength from the green wavelength conversion layer is emitted. Light in the wavelength region is transmitted through the red wavelength conversion layer, and light in the green wavelength region is emitted.
緑色画素22では、基板11の一方の面11a上に先に形成した赤色波長変換層のみの発光強度を低減させて、赤色波長変換層のみを非発光とすればよいので、赤色波長変換層の露光(パターニング)により、緑色波長変換層の波長変換能力(発光能力)が損なわれることを考慮する必要がなく、緑色波長変換層を、高発光効率を維持したまま、使用することができる。
さらに、緑色画素22では、赤色波長変換層の発光強度を低減する際に、緑色の波長域の光の吸光度を低減することによって、より効率よく、緑色波長変換層からの緑色の波長域の光を取り出すことができ、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。
In the green pixel 22, the emission intensity of only the red wavelength conversion layer formed on the one surface 11a of the substrate 11 is reduced, and only the red wavelength conversion layer need not emit light. It is not necessary to consider that the wavelength conversion capability (light emission capability) of the green wavelength conversion layer is impaired by exposure (patterning), and the green wavelength conversion layer can be used while maintaining high luminous efficiency.
Further, in the green pixel 22, when the light emission intensity of the red wavelength conversion layer is reduced, the light in the green wavelength region from the green wavelength conversion layer is more efficiently reduced by reducing the absorbance of the light in the green wavelength region. Can be taken out, green light emission with high luminance can be obtained, and power consumption can be reduced.
ここで、緑色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、緑色画素22において、励起光源からの励起光を、より効率よく吸収することができ、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。 Here, the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has high absorbance of the excitation light emitted from the excitation light source. Thereby, in the green pixel 22, the excitation light from an excitation light source can be absorbed more efficiently, high-luminance green light emission can be obtained, and power consumption can also be reduced.
青色画素23では、第一波長変換層12(赤色波長変換層)と第二波長変換層13(緑色波長変換層)を共に露光し、光化学反応を利用して、赤色の波長域の光の発光強度と緑色の波長域の光の発光強度を低減させている。したがって、これら2つの波長変換層を、非発光とすることができる。これにより、青色画素23では、励起光源からの励起光を、緑色波長変換層を透過させて、続いて、緑色波長変換層を透過した励起光を、赤色波長変換層を透過させて、青色の波長域の光を発光する。 In the blue pixel 23, the first wavelength conversion layer 12 (red wavelength conversion layer) and the second wavelength conversion layer 13 (green wavelength conversion layer) are exposed together, and light is emitted in the red wavelength region using a photochemical reaction. The intensity and emission intensity of light in the green wavelength range are reduced. Therefore, these two wavelength conversion layers can be made to emit no light. Thereby, in the blue pixel 23, the excitation light from the excitation light source is transmitted through the green wavelength conversion layer, and then the excitation light transmitted through the green wavelength conversion layer is transmitted through the red wavelength conversion layer. Emits light in the wavelength range.
青色画素23では、赤色波長変換層と緑色波長変換層の発光強度を低減させて、これら2つの波長変換層を非発光とするので、励起光源からの励起光により赤色波長変換層または緑色波長変換層が発光して、励起光源からの励起光と、波長変換層からの赤色の波長域の光または緑色の波長域の光とが混ざって、色純度が悪化するのを防止することができる。
さらに、青色画素23では、赤色波長変換層の発光強度を低減する際に、励起光源からの励起光の吸光度を低減することによって、より効率よく、励起光源からの励起光を取り出すことができ、高輝度の青色発光を得ることができ、消費電力を低減させることもできる。
In the blue pixel 23, the light emission intensities of the red wavelength conversion layer and the green wavelength conversion layer are reduced, and these two wavelength conversion layers are made non-light emitting. Therefore, the red wavelength conversion layer or the green wavelength conversion layer is excited by the excitation light from the excitation light source. It is possible to prevent the color purity from deteriorating due to mixing of the excitation light from the excitation light source and the light in the red wavelength band or the light in the green wavelength band from the wavelength conversion layer.
Furthermore, in the blue pixel 23, when the emission intensity of the red wavelength conversion layer is reduced, the excitation light from the excitation light source can be extracted more efficiently by reducing the absorbance of the excitation light from the excitation light source, High-luminance blue light emission can be obtained, and power consumption can be reduced.
(2)第二実施形態
図3は、波長変換基板の第二実施形態を示す概略断面図である。図3において、図1に示した波長変換基板10と同一の構成要素には同一符号を付して、その説明を省略する。
波長変換基板50は、基板11と、基板11の一方の面11a上に設けられ、基板11側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51から構成される波長変換層積層体52と、第一基板11の一方の面11a上に設けられ、波長変換層積層体52からなる画素を区画する隔壁15とから概略構成されている。
また、基板11と波長変換層積層体52との間において、波長変換層積層体52のうち赤色画素61を構成する領域に赤色カラーフィルター16が設けられている。また、基板11と波長変換層積層体52との間において、波長変換層積層体52のうち緑色画素62を構成する領域に緑色カラーフィルター17が設けられている。さらに、基板11と波長変換層積層体52との間において、青色画素63を構成する領域に青色カラーフィルター18が設けられている。
また、波長変換基板50の厚さ方向において、基板11と隔壁15との間、かつ、波長変換基板50の厚さ方向と垂直な方向において、赤色カラーフィルター16と緑色カラーフィルター17との間、緑色カラーフィルター17と青色カラーフィルター18との間、および、青色カラーフィルター18と赤色カラーフィルター16との間に、ブラックマトリックス19が設けられている。
(2) Second Embodiment FIG. 3 is a schematic sectional view showing a second embodiment of the wavelength conversion substrate. In FIG. 3, the same components as those of the wavelength conversion substrate 10 shown in FIG.
The wavelength conversion substrate 50 is provided on the substrate 11 and one surface 11 a of the substrate 11, and the first wavelength conversion layer 12, the second wavelength conversion layer 13, and the third wavelength conversion layer 51 are sequentially stacked from the substrate 11 side. And a partition wall 15 that is provided on one surface 11a of the first substrate 11 and that partitions the pixels made of the wavelength conversion layer stack 52.
Further, between the substrate 11 and the wavelength conversion layer stack 52, the red color filter 16 is provided in a region of the wavelength conversion layer stack 52 that constitutes the red pixel 61. Further, between the substrate 11 and the wavelength conversion layer stack 52, the green color filter 17 is provided in a region of the wavelength conversion layer stack 52 that constitutes the green pixel 62. Further, a blue color filter 18 is provided in a region constituting the blue pixel 63 between the substrate 11 and the wavelength conversion layer stack 52.
Further, in the thickness direction of the wavelength conversion substrate 50, between the substrate 11 and the partition wall 15, and in the direction perpendicular to the thickness direction of the wavelength conversion substrate 50, between the red color filter 16 and the green color filter 17, A black matrix 19 is provided between the green color filter 17 and the blue color filter 18 and between the blue color filter 18 and the red color filter 16.
波長変換層積層体52を構成する第一波長変換層12、第二波長変換層13および第三波長変換層51は、励起光を吸収し、異なる波長を発光する。 The 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51 which comprise the wavelength conversion layer laminated body 52 absorb excitation light, and light-emit a different wavelength.
第一波長変換層12、第二波長変換層13または第三波長変換層51としては、例えば、赤色に発光する赤色波長変換層、緑色に発光する緑色波長変換層または青色に発光する青色波長変換層が挙げられる。
また、必要に応じて、第一波長変換層12、第二波長変換層13または第三波長変換層51としては、シアン色に発光する波長変換層や黄色に発光する波長変換層を設けることが好ましい。
As the first wavelength conversion layer 12, the second wavelength conversion layer 13, or the third wavelength conversion layer 51, for example, a red wavelength conversion layer that emits red light, a green wavelength conversion layer that emits green light, or a blue wavelength conversion that emits blue light. Layer.
As necessary, the first wavelength conversion layer 12, the second wavelength conversion layer 13, or the third wavelength conversion layer 51 may be provided with a wavelength conversion layer that emits cyan or a wavelength conversion layer that emits yellow. preferable.
以下、波長変換層の機能を説明する。
ここでは、基板11側から順に赤色波長変換層からなる第一波長変換層12と、緑色波長変換層からなる第二波長変換層13と、青色波長変換層からなる第三波長変換層51とが積層され、励起光(以下、「青色光」と言うこともある。)を用いた場合に、カラー化に必要な赤色画素61、緑色画素62、青色画素63について説明する。
赤色画素61では、基板11の一方の面11a上に、非露光の(露光されていない)赤色波長変換層(第一波長変換層12)と、非露光の緑色波長変換層(第二波長変換層13)と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
緑色画素62では、基板11の一方の面11a上に、露光の(露光された)赤色波長変換層(第一波長変換層12)と、非露光の緑色波長変換層(第二波長変換層13)と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
青色画素63では、基板11の一方の面11a上に、露光の(露光された)赤色波長変換層(第一波長変換層12)と、露光の緑色波長変換層(第二波長変換層13)と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
Hereinafter, the function of the wavelength conversion layer will be described.
Here, a first wavelength conversion layer 12 made of a red wavelength conversion layer, a second wavelength conversion layer 13 made of a green wavelength conversion layer, and a third wavelength conversion layer 51 made of a blue wavelength conversion layer in order from the substrate 11 side. A description will be given of the red pixel 61, the green pixel 62, and the blue pixel 63 that are stacked and use excitation light (hereinafter also referred to as “blue light”), which are necessary for colorization.
In the red pixel 61, an unexposed (not exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion) are formed on one surface 11 a of the substrate 11. Layer 13) and a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
In the green pixel 62, an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an unexposed green wavelength conversion layer (second wavelength conversion layer 13) are formed on one surface 11 a of the substrate 11. ) And a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
In the blue pixel 63, an exposed (exposed) red wavelength conversion layer (first wavelength conversion layer 12) and an exposed green wavelength conversion layer (second wavelength conversion layer 13) on one surface 11 a of the substrate 11. And a non-exposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
赤色画素61においては、赤色波長変換層(第一波長変換層12)、緑色波長変換層(第二波長変換層13)および青色波長変換層(第三波長変換層51)が露光されていないので、緑色波長変換層、赤色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置、すなわち、波長変換層積層体52を介して基板11とは反対側(第三波長変換層51側)に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)に青色波長変換層から青色の波長域の光が入射し、緑色波長変換層に青色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に緑色波長変換層からの緑色の波長域の光が入射し、赤色波長変換層に緑色の波長域の光が吸収され、赤色波長変換層から赤色の波長域の光が発光する。このようにして、赤色画素61から赤色光を取り出し可能となる。
In the red pixel 61, the red wavelength conversion layer (first wavelength conversion layer 12), the green wavelength conversion layer (second wavelength conversion layer 13), and the blue wavelength conversion layer (third wavelength conversion layer 51) are not exposed. The wavelength conversion ability (light emission ability) of the green wavelength conversion layer, red wavelength conversion layer, and blue wavelength conversion layer is maintained.
Thereby, the excitation arranged at the position facing the substrate 11 via the wavelength conversion layer laminate 52, that is, on the opposite side (third wavelength conversion layer 51 side) from the substrate 11 via the wavelength conversion layer laminate 52. When excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown), the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted. Subsequently, light in the blue wavelength region is incident on the green wavelength conversion layer (second wavelength conversion layer 13) from the blue wavelength conversion layer, and light in the blue wavelength region is absorbed in the green wavelength conversion layer. To emit light in the green wavelength region. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), and light in the green wavelength region is absorbed in the red wavelength conversion layer, thereby converting the red wavelength. Light in the red wavelength region is emitted from the layer. In this way, red light can be extracted from the red pixel 61.
なお、赤色波長変換層(第一波長変換層12)は、緑色波長変換層(第二波長変換層13)からの緑色の波長域の光を吸収し、赤色の波長域の光を発光するだけでなく、青色波長変換層および緑色波長変換層に吸収されずに、これらの波長変換層を透過した励起光を吸収して、赤色の波長域の光を発光するか、青色波長変換層に吸収されずに、青色波長変換層を透過した励起光が緑色波長変換層に入射して、緑色波長変換層から発光した緑色の波長域の光を吸収して、赤色の波長域の光を発光するか、または、青色波長変換層および緑色波長変換層に吸収されずに、これらの波長変換層を透過した励起光と、緑色波長変換層からの緑色の波長域の発光との両方を吸収し、赤色の波長域の光を発光する。 The red wavelength conversion layer (first wavelength conversion layer 12) only absorbs light in the green wavelength range from the green wavelength conversion layer (second wavelength conversion layer 13) and emits light in the red wavelength range. Rather than being absorbed by the blue wavelength conversion layer and the green wavelength conversion layer, the excitation light transmitted through these wavelength conversion layers is absorbed and light in the red wavelength region is emitted or absorbed by the blue wavelength conversion layer. Instead, the excitation light transmitted through the blue wavelength conversion layer enters the green wavelength conversion layer, absorbs the light in the green wavelength region emitted from the green wavelength conversion layer, and emits light in the red wavelength region. Or, it absorbs both the excitation light transmitted through these wavelength conversion layers and the emission of the green wavelength region from the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer and the green wavelength conversion layer, Emits light in the red wavelength range.
緑色画素62においては、赤色波長変換層(第一波長変換層12)が露光され、緑色波長変換層(第二波長変換層13)および青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない緑色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置、すなわち、波長変換層積層体52を介して基板11とは反対側(第三波長変換層51側)に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)に青色波長変換層から青色の波長域の光が入射し、緑色波長変換層に青色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に緑色波長変換層からの緑色の波長域の光が入射するが、赤色波長変換層には緑色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、緑色の波長域の光は赤色波長変換層を透過する。このようにして、緑色画素62から緑色光を取り出し可能となる。
In the green pixel 62, the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, and the green wavelength conversion layer (second wavelength conversion layer 13) and the blue wavelength conversion layer (third wavelength conversion layer 51) are exposed. Not. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the blue wavelength conversion layer which are not exposed is maintained.
Thereby, the excitation arranged at the position facing the substrate 11 via the wavelength conversion layer laminate 52, that is, on the opposite side (third wavelength conversion layer 51 side) from the substrate 11 via the wavelength conversion layer laminate 52. When excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown), the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted. Subsequently, light in the blue wavelength region is incident on the green wavelength conversion layer (second wavelength conversion layer 13) from the blue wavelength conversion layer, and light in the blue wavelength region is absorbed in the green wavelength conversion layer. To emit light in the green wavelength region. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), but light in the green wavelength region is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 62.
青色画素63においては、赤色波長変換層(第一波長変換層12)および緑色波長変換層(第二波長変換層13)が露光され、青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層および緑色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置、すなわち、波長変換層積層体52を介して基板11とは反対側(第三波長変換層51側)に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)に青色波長変換層から青色の波長域の光が入射するが、緑色波長変換層に青色の波長域の光が吸収されないので、緑色波長変換層は発光することなく、青色の波長域の光は緑色波長変換層を透過する。続いて、赤色波長変換層(第一波長変換層12)に緑色波長変換層を透過した青色の波長域の光が入射するが、赤色波長変換層には青色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、青色の波長域の光は赤色波長変換層を透過する。このようにして、青色画素63から青色光を取り出し可能となる。
In the blue pixel 63, the red wavelength conversion layer (first wavelength conversion layer 12) and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the blue wavelength conversion layer (third wavelength conversion layer 51) is exposed. Not. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer and green wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the unexposed blue wavelength conversion layer is maintained.
Thereby, the excitation arranged at the position facing the substrate 11 via the wavelength conversion layer laminate 52, that is, on the opposite side (third wavelength conversion layer 51 side) from the substrate 11 via the wavelength conversion layer laminate 52. When excitation light is incident on the wavelength conversion layer laminate 52 from a light source (not shown), the excitation light is absorbed by the blue wavelength conversion layer (third wavelength conversion layer 51), and the blue wavelength conversion layer has a blue wavelength region. Light is emitted. Subsequently, light in the blue wavelength region is incident on the green wavelength conversion layer (second wavelength conversion layer 13) from the blue wavelength conversion layer, but light in the blue wavelength region is not absorbed by the green wavelength conversion layer, so the green wavelength The conversion layer does not emit light, and light in the blue wavelength region is transmitted through the green wavelength conversion layer. Subsequently, although light in the blue wavelength range that has passed through the green wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), light in the blue wavelength range is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the blue wavelength region is transmitted through the red wavelength conversion layer. In this way, blue light can be extracted from the blue pixel 63.
このように、波長変換層積層体52では、基板11の一方の面11a側から順に、長波長側の光を発光する波長変換層が積層されている。これにより、波長変換層積層体52において、励起光の波長変換が効率よく行われ、波長変換基板50は色純度に優れたものとなる。
より詳細には、励起光源からの励起光が、短波長側の光を発光する第三波長変換層51に吸収され、第三波長変換層51が発光する。続いて、第三波長変換層51からの光(発光)が、第二波長変換層13に吸収され、第二波長変換層13が発光する。続いて、第二波長変換層13からの光(発光)が、光取出し側(基板11の一方の面11a側)に設けられた、長波長側の光を発光する第一波長変換層12に吸収され、第一波長変換層12が発光し、この発光が外部に取り出される。これにより、波長変換基板50から色純度の優れた発光を得ることができる。
Thus, in the wavelength conversion layer laminated body 52, the wavelength conversion layer which light-emits the light of a long wavelength side is laminated | stacked from the one surface 11a side of the board | substrate 11 in order. Thereby, in the wavelength conversion layer laminated body 52, the wavelength conversion of excitation light is performed efficiently and the wavelength conversion board | substrate 50 becomes the thing excellent in color purity.
More specifically, the excitation light from the excitation light source is absorbed by the third wavelength conversion layer 51 that emits light on the short wavelength side, and the third wavelength conversion layer 51 emits light. Subsequently, light (light emission) from the third wavelength conversion layer 51 is absorbed by the second wavelength conversion layer 13 and the second wavelength conversion layer 13 emits light. Subsequently, the light (light emission) from the second wavelength conversion layer 13 is provided on the light extraction side (one surface 11a side of the substrate 11), and the first wavelength conversion layer 12 that emits light on the long wavelength side is emitted. Absorbed, the first wavelength conversion layer 12 emits light, and the emitted light is extracted outside. Thereby, light emission with excellent color purity can be obtained from the wavelength conversion substrate 50.
また、波長変換基板10は、基板11の一方の面11a側から順に、赤色の波長域の光を発光する赤色波長変換層(第一波長変換層12)と、緑色の波長域の光を発光する緑色波長変換層(第二波長変換層13)と、青色の波長域の光を発光する青色波長変換層(第三波長変換層51)とが積層され、赤色の波長域の光と、緑色の波長域の光と、青色の波長域の光とを発光することができる。
これにより、波長変換基板50を用いた表示装置において、励起光源として、励起光を発光する光源を用いた場合、波長変換基板50は、フルカラー表示装置に必要な赤色画素、緑色画素および青色発光画素を形成することができる。
より具体的には、波長変換基板50は、平面方向(基板11の一方の面11aと平行な方向)に、複数個の赤色画素61、緑色画素62および青色画素63が設けられており、厚さ方向に、基板11の一方の面11a側から順に、赤色波長変換層(第一波長変換層12)と、緑色波長変換層(第二波長変換層13)と、青色波長変換層(第三波長変換層51)とが設けられている。
Moreover, the wavelength conversion board | substrate 10 light-emits the red wavelength conversion layer (1st wavelength conversion layer 12) which light-emits the light of a red wavelength range in order from the one surface 11a side of the board | substrate 11, and the light of a green wavelength range. A green wavelength conversion layer (second wavelength conversion layer 13) and a blue wavelength conversion layer (third wavelength conversion layer 51) that emits light in the blue wavelength range are laminated, and light in the red wavelength range and green It is possible to emit light in the wavelength region of blue and light in the wavelength region of blue.
Thereby, in the display device using the wavelength conversion substrate 50, when the light source that emits the excitation light is used as the excitation light source, the wavelength conversion substrate 50 has the red pixel, the green pixel, and the blue light emission pixel necessary for the full color display device. Can be formed.
More specifically, the wavelength conversion substrate 50 is provided with a plurality of red pixels 61, green pixels 62, and blue pixels 63 in a planar direction (a direction parallel to one surface 11a of the substrate 11). In the vertical direction, the red wavelength conversion layer (first wavelength conversion layer 12), the green wavelength conversion layer (second wavelength conversion layer 13), and the blue wavelength conversion layer (third) are sequentially formed from the one surface 11a side of the substrate 11. Wavelength conversion layer 51).
また、波長変換基板50の製造工程では、まず、基板11の一方の面11a上に第一波長変換層12を形成した後、フォトマスクを用いて、第一波長変換層12を露光することにより、緑色画素62および青色画素63において、赤色の波長域の光の発光強度を低下させる。続いて、第一波長変換層12上に第二波長変換層13を形成した後、フォトマスクを用いて、第二波長変換層63を露光することにより、青色画素63のみにおいて、緑色の波長域の光の発光強度を低下させる。そして、第二波長変換層13上に第三波長変換層51を形成する。 Moreover, in the manufacturing process of the wavelength conversion board | substrate 50, after forming the 1st wavelength conversion layer 12 on the one surface 11a of the board | substrate 11 first, by exposing the 1st wavelength conversion layer 12 using a photomask. In the green pixel 62 and the blue pixel 63, the light emission intensity of light in the red wavelength region is reduced. Subsequently, after the second wavelength conversion layer 13 is formed on the first wavelength conversion layer 12, the second wavelength conversion layer 63 is exposed using a photomask, so that only the blue pixel 63 has a green wavelength region. The light emission intensity of is reduced. Then, the third wavelength conversion layer 51 is formed on the second wavelength conversion layer 13.
赤色画素61、緑色画素62および青色画素63に加えて、さらに、黄色光を取り出し可能な黄色画素やシアン色光を取り出し可能なシアン色画素を設ける場合、波長変換層積層体52は、基板11側から順に赤色波長変換層からなる第一波長変換層12と、黄色に発光する黄色波長変換層(図示略)と、緑色波長変換層からなる第二波長変換層13と、シアン色に発光するシアン色波長変換層(図示略)と、青色波長変換層からなる第三波長変換層51とが積層されたものとなる。ここで、カラー化に必要な赤色画素61、緑色画素62、青色画素63、黄色画素(図示略)、シアン色画素(図示略)について説明する。 In addition to the red pixel 61, the green pixel 62, and the blue pixel 63, in the case where a yellow pixel that can extract yellow light and a cyan pixel that can extract cyan light are provided, the wavelength conversion layer stack 52 is provided on the substrate 11 side. The first wavelength conversion layer 12 composed of a red wavelength conversion layer, the yellow wavelength conversion layer (not shown) that emits yellow light, the second wavelength conversion layer 13 composed of a green wavelength conversion layer, and cyan that emits cyan. A color wavelength conversion layer (not shown) and a third wavelength conversion layer 51 made of a blue wavelength conversion layer are laminated. Here, the red pixel 61, the green pixel 62, the blue pixel 63, the yellow pixel (not shown), and the cyan pixel (not shown) necessary for colorization will be described.
赤色画素61では、基板11の一方の面11a上に、非露光の赤色波長変換層(第一波長変換層12)と、非露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
黄色画素では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、非露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
緑色画素62では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、非露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
シアン色画素では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、露光の緑色波長変換層(第二波長変換層13)と、非露光のシアン色波長変換層と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
青色画素63では、基板11の一方の面11a上に、露光の赤色波長変換層(第一波長変換層12)と、露光の黄色波長変換層と、露光の緑色波長変換層(第二波長変換層13)と、露光のシアン色波長変換層と、非露光の青色波長変換層(第三波長変換層51)とが順に積層されている。
In the red pixel 61, on one surface 11a of the substrate 11, a non-exposed red wavelength conversion layer (first wavelength conversion layer 12), a non-exposed yellow wavelength conversion layer, and a non-exposed green wavelength conversion layer (first A two-wavelength conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially laminated.
In the yellow pixel, on one surface 11a of the substrate 11, an exposed red wavelength conversion layer (first wavelength conversion layer 12), an unexposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength). A conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
In the green pixel 62, an exposed red wavelength conversion layer (first wavelength conversion layer 12), an exposed yellow wavelength conversion layer, and an unexposed green wavelength conversion layer (second wavelength) on one surface 11 a of the substrate 11. A conversion layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
In the cyan pixel, on one surface 11a of the substrate 11, an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer). Layer 13), an unexposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
In the blue pixel 63, an exposure red wavelength conversion layer (first wavelength conversion layer 12), an exposure yellow wavelength conversion layer, and an exposure green wavelength conversion layer (second wavelength conversion layer) are formed on one surface 11 a of the substrate 11. Layer 13), an exposed cyan wavelength conversion layer, and an unexposed blue wavelength conversion layer (third wavelength conversion layer 51) are sequentially stacked.
赤色画素61においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層、緑色波長変換層(第二波長変換層13)、シアン色波長変換層、および、青色波長変換層(第三波長変換層51)が露光されていないので、赤色波長変換層、黄色波長変換層、緑色波長変換層、シアン色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、シアン色波長変換層に青色波長変換層からの青色の波長域の光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射し、黄色波長変換層に緑色の波長域の光が吸収され、黄色波長変換層から黄色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に黄色波長変換層からの黄色の波長域の光が入射し、赤色波長変換層に黄色の波長域の光が吸収され、赤色波長変換層から赤色の波長域の光が発光する。このようにして、赤色画素61から赤色光を取り出し可能となる。
In the red pixel 61, a red wavelength conversion layer (first wavelength conversion layer 12), a yellow wavelength conversion layer, a green wavelength conversion layer (second wavelength conversion layer 13), a cyan wavelength conversion layer, and a blue wavelength conversion layer ( Since the third wavelength conversion layer 51) is not exposed, the wavelength conversion capability (light emission capability) of the red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, cyan wavelength conversion layer and blue wavelength conversion layer is maintained. ing.
Thus, when excitation light is incident on the wavelength conversion layer stack 52 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 52, the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, light in the green wavelength region is absorbed in the yellow wavelength conversion layer, and light in the yellow wavelength region is transmitted from the yellow wavelength conversion layer. Emits light. Subsequently, light in the yellow wavelength range from the yellow wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), and light in the yellow wavelength range is absorbed in the red wavelength conversion layer, thereby converting the red wavelength. Light in the red wavelength region is emitted from the layer. In this way, red light can be extracted from the red pixel 61.
黄色画素においては、赤色波長変換層(第一波長変換層12)が露光され、黄色波長変換層、緑色波長変換層(第二波長変換層13)、シアン色波長変換層、および、青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない黄色波長変換層、緑色波長変換層、シアン色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、シアン色波長変換層に青色波長変換層からの青色の波長域の光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射し、黄色波長変換層に緑色の波長域の光が吸収され、黄色波長変換層から黄色の波長域の光が発光する。続いて、赤色波長変換層(第一波長変換層12)に黄色波長変換層からの黄色の波長域の光が入射するが、赤色波長変換層には黄色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、黄色の波長域の光は赤色波長変換層を透過する。このようにして、黄色画素から黄色光を取り出し可能となる。
In the yellow pixel, the red wavelength conversion layer (first wavelength conversion layer 12) is exposed, the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), the cyan wavelength conversion layer, and the blue wavelength conversion. The layer (third wavelength conversion layer 51) is not exposed. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion ability (light emission ability) of the unexposed yellow wavelength conversion layer, green wavelength conversion layer, cyan wavelength conversion layer, and blue wavelength conversion layer is maintained.
Thus, when excitation light is incident on the wavelength conversion layer stack 52 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 52, the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, light in the green wavelength region is absorbed in the yellow wavelength conversion layer, and light in the yellow wavelength region is transmitted from the yellow wavelength conversion layer. Emits light. Subsequently, light in the yellow wavelength range from the yellow wavelength conversion layer is incident on the red wavelength conversion layer (first wavelength conversion layer 12), but light in the yellow wavelength range is not absorbed by the red wavelength conversion layer. The red wavelength conversion layer does not emit light, and light in the yellow wavelength region passes through the red wavelength conversion layer. In this way, yellow light can be extracted from the yellow pixel.
緑色画素62においては、赤色波長変換層(第一波長変換層12)および黄色波長変換層が露光され、緑色波長変換層(第二波長変換層13)、シアン色波長変換層、および、青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層および黄色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない緑色波長変換層、シアン色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、シアン色波長変換層に青色波長変換層からの青色の波長域の光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射し、緑色波長変換層にシアン色の波長域の光が吸収され、緑色波長変換層から緑色の波長域の光が発光する。続いて、黄色波長変換層に緑色波長変換層からの緑色の波長域の光が入射するが、黄色波長変換層には緑色の波長域の光が吸収されないので、黄色波長変換層は発光することなく、緑色の波長域の光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過した緑色の波長域の光が入射するが、赤色波長変換層には緑色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、緑色の波長域の光は赤色波長変換層を透過する。このようにして、緑色画素62から緑色光を取り出し可能となる。
In the green pixel 62, the red wavelength conversion layer (first wavelength conversion layer 12) and the yellow wavelength conversion layer are exposed, the green wavelength conversion layer (second wavelength conversion layer 13), the cyan wavelength conversion layer, and the blue wavelength. The conversion layer (third wavelength conversion layer 51) is not exposed. The wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer and yellow wavelength conversion layer is reduced, and the light absorption ability is also reduced. On the other hand, the wavelength conversion ability (light emission ability) of the green wavelength conversion layer, the cyan wavelength conversion layer, and the blue wavelength conversion layer that are not exposed is maintained.
Thus, when excitation light is incident on the wavelength conversion layer stack 52 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 52, the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), and light in the cyan wavelength region is absorbed in the green wavelength conversion layer, Light in the green wavelength region is emitted from the green wavelength conversion layer. Subsequently, although the light in the green wavelength region from the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the yellow wavelength conversion layer emits light because the light in the green wavelength region is not absorbed in the yellow wavelength conversion layer. In addition, the light in the green wavelength region is transmitted through the yellow wavelength conversion layer. Subsequently, although the light in the green wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the red wavelength conversion layer emits light because the red wavelength conversion layer does not absorb the light in the green wavelength range. Instead, the light in the green wavelength region is transmitted through the red wavelength conversion layer. In this way, green light can be extracted from the green pixel 62.
シアン色画素においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層および緑色波長変換層(第二波長変換層13)が露光され、シアン色波長変換層および青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層、黄色波長変換層および緑色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていないシアン色波長変換層および青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、シアン色波長変換層に青色波長変換層からの青色の波長域の光が吸収され、シアン色波長変換層からシアン色の波長域の光が発光する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層からのシアン色の波長域の光が入射するが、緑色波長変換層にシアン色の波長域の光が吸収されないので、緑色波長変換層は発光することなく、シアン色の波長域の光は緑色波長変換層を透過する。続いて、黄色波長変換層に緑色波長変換層を透過したシアン色の波長域の光が入射するが、黄色波長変換層にはシアン色の波長域の光が吸収されないので、黄色波長変換層は発光することなく、シアン色の波長域の光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過したシアン色の波長域の光が入射するが、赤色波長変換層にはシアン色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、シアン色の波長域の光は赤色波長変換層を透過する。このようにして、シアン色画素からシアン色光を取り出し可能となる。
In the cyan pixel, the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, and the green wavelength conversion layer (second wavelength conversion layer 13) are exposed, and the cyan wavelength conversion layer and the blue wavelength conversion layer are exposed. (Third wavelength conversion layer 51) is not exposed. The wavelength conversion ability (light emission ability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, and green wavelength conversion layer is reduced, and the light absorption ability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the cyan wavelength conversion layer and the blue wavelength conversion layer that are not exposed is maintained.
Thus, when excitation light is incident on the wavelength conversion layer stack 52 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 52, the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the cyan wavelength conversion layer, and light in the cyan wavelength region is emitted from the cyan wavelength conversion layer. Subsequently, light in the cyan wavelength region from the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), but light in the cyan wavelength region is not absorbed by the green wavelength conversion layer. Therefore, the green wavelength conversion layer does not emit light, and light in the cyan wavelength region is transmitted through the green wavelength conversion layer. Subsequently, light in the cyan wavelength region that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, but light in the cyan wavelength region is not absorbed in the yellow wavelength conversion layer. Without emitting light, light in the cyan wavelength region passes through the yellow wavelength conversion layer. Subsequently, light in the cyan wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, but light in the cyan wavelength range is not absorbed in the red wavelength conversion layer, so the red wavelength conversion layer is Without emitting light, light in the cyan wavelength region is transmitted through the red wavelength conversion layer. In this way, cyan light can be extracted from the cyan pixels.
青色画素63においては、赤色波長変換層(第一波長変換層12)、黄色波長変換層、緑色波長変換層(第二波長変換層13)およびシアン色波長変換層が露光され、青色波長変換層(第三波長変換層51)が露光されていない。露光された赤色波長変換層、黄色波長変換層、緑色波長変換層およびシアン色波長変換層の波長変換能力(発光能力)が低減され、光の吸収能力も低減されている。一方、露光されていない青色波長変換層の波長変換能力(発光能力)が維持されている。
これにより、波長変換層積層体52を介して基板11と対向する位置に配置された励起光源(図示略)から、波長変換層積層体52に励起光を入射した場合、青色波長変換層(第三波長変換層51)に励起光が吸収され、青色波長変換層から青色の波長域の光が発光する。続いて、シアン色波長変換層に青色波長変換層からの青色の波長域の光が吸収されないので、青色の波長域の光はシアン色波長変換層を透過する。続いて、緑色波長変換層(第二波長変換層13)にシアン色波長変換層を透過した青色の波長域の光が入射するが、緑色波長変換層に青色の波長域の光が吸収されないので、緑色波長変換層は発光することなく、青色の波長域の光は緑色波長変換層を透過する。続いて、黄色波長変換層に緑色波長変換層を透過した青色の波長域の光が入射するが、黄色波長変換層には青色の波長域の光が吸収されないので、黄色波長変換層は発光することなく、青色の波長域の光は黄色波長変換層を透過する。続いて、赤色波長変換層に黄色波長変換層を透過した青色の波長域の光が入射するが、赤色波長変換層には青色の波長域の光が吸収されないので、赤色波長変換層は発光することなく、青色の波長域の光は赤色波長変換層を透過する。このようにして、青色画素63から青色の波長域の光を取り出し可能となる。
In the blue pixel 63, the red wavelength conversion layer (first wavelength conversion layer 12), the yellow wavelength conversion layer, the green wavelength conversion layer (second wavelength conversion layer 13), and the cyan wavelength conversion layer are exposed, and the blue wavelength conversion layer is exposed. The (third wavelength conversion layer 51) is not exposed. The wavelength conversion capability (light emission capability) of the exposed red wavelength conversion layer, yellow wavelength conversion layer, green wavelength conversion layer, and cyan wavelength conversion layer is reduced, and the light absorption capability is also reduced. On the other hand, the wavelength conversion capability (light emission capability) of the unexposed blue wavelength conversion layer is maintained.
Thus, when excitation light is incident on the wavelength conversion layer stack 52 from an excitation light source (not shown) disposed at a position facing the substrate 11 via the wavelength conversion layer stack 52, the blue wavelength conversion layer (first The excitation light is absorbed by the three-wavelength conversion layer 51), and light in the blue wavelength region is emitted from the blue wavelength conversion layer. Subsequently, since light in the blue wavelength region from the blue wavelength conversion layer is not absorbed by the cyan wavelength conversion layer, the light in the blue wavelength region is transmitted through the cyan wavelength conversion layer. Subsequently, although light in the blue wavelength range that has passed through the cyan wavelength conversion layer is incident on the green wavelength conversion layer (second wavelength conversion layer 13), light in the blue wavelength range is not absorbed by the green wavelength conversion layer. The green wavelength conversion layer does not emit light, and light in the blue wavelength region is transmitted through the green wavelength conversion layer. Subsequently, although the light in the blue wavelength range that has passed through the green wavelength conversion layer is incident on the yellow wavelength conversion layer, the yellow wavelength conversion layer emits light because the yellow wavelength conversion layer does not absorb light in the blue wavelength range. Instead, the light in the blue wavelength region is transmitted through the yellow wavelength conversion layer. Subsequently, although the light in the blue wavelength range that has passed through the yellow wavelength conversion layer is incident on the red wavelength conversion layer, the red wavelength conversion layer emits light because the light in the blue wavelength range is not absorbed by the red wavelength conversion layer. Instead, the light in the blue wavelength region is transmitted through the red wavelength conversion layer. In this way, light in the blue wavelength region can be extracted from the blue pixel 63.
また、波長変換層積層体52(第三波長変換層51)における基板11とは反対側の面(以下、「一方の面」と言うこともある。)52aを覆うように、封止膜が設けられていてもよい。
さらに、封止膜における波長変換層積層体52と接する面とは反対側の面を覆うように、平坦化膜が設けられていてもよい。
In addition, the sealing film covers the wavelength conversion layer stack 52 (third wavelength conversion layer 51) on the opposite side of the substrate 11 (hereinafter also referred to as “one side”) 52a. It may be provided.
Furthermore, a planarization film may be provided so as to cover the surface of the sealing film opposite to the surface in contact with the wavelength conversion layer laminate 52.
次に、図4A~図4Hを参照して、本実施形態の波長変換基板の製造方法の概略を説明する。
基板11の一方の面11aに、所定の間隔を置いて、画素を形成し、各画素間に対応した位置に隔壁15を形成する(図4A参照)。
Next, with reference to FIGS. 4A to 4H, an outline of the method for manufacturing the wavelength conversion substrate of the present embodiment will be described.
Pixels are formed on one surface 11a of the substrate 11 at a predetermined interval, and partition walls 15 are formed at positions corresponding to the respective pixels (see FIG. 4A).
次いで、基板11の一方の面11a上に、隔壁15を覆うように、上記のウエットプロセスやドライプロセス等により、赤色波長変換層からなる第一波長変換層12を形成する(図4B参照)。 Next, the first wavelength conversion layer 12 made of a red wavelength conversion layer is formed on one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the partition wall 15 (see FIG. 4B).
次いで、基板11上に形成された第一波長変換層12上に、赤色画素61に対応する領域が遮光され(遮光部31aが設けられ)、緑色画素62と青色画素63に対応する領域が遮光されていない(遮光部31aが設けられていない)フォトマスク31を配置する(図4C参照)。 Next, on the first wavelength conversion layer 12 formed on the substrate 11, a region corresponding to the red pixel 61 is shielded (the light shielding unit 31 a is provided), and a region corresponding to the green pixel 62 and the blue pixel 63 is shielded. A photomask 31 that is not provided (the light shielding portion 31a is not provided) is disposed (see FIG. 4C).
次いで、上記のランプにより、第一波長変換層12のうち、緑色画素62と青色画素63に対応する領域に光41を照射して、その領域を露光し、光化学反応を利用して、その領域における赤色の波長域の光の発光強度を低減させて(波長変換能力(発光能力)を低減させて)、非発光とする(図4D参照)。 Next, in the first wavelength conversion layer 12, the region corresponding to the green pixel 62 and the blue pixel 63 is irradiated with the light 41 by the lamp, the region is exposed, and the region is exposed to light using a photochemical reaction. The light emission intensity of light in the red wavelength region is reduced (wavelength conversion ability (light emission ability) is reduced), and no light is emitted (see FIG. 4D).
次いで、基板11の一方の面11a上に、第一波長変換層12を覆うように、上記のウエットプロセスやドライプロセス等により、緑色波長変換層からなる第二波長変換層13を形成する(図4E参照)。
この工程では、第一波長変換層12を形成する工程と同様にして、第二波長変換層13を形成する。
Next, the second wavelength conversion layer 13 made of the green wavelength conversion layer is formed on the one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the first wavelength conversion layer 12 (see FIG. 4E).
In this step, the second wavelength conversion layer 13 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
次いで、基板11上に形成された第二波長変換層13上に、赤色画素61と緑色画素62に対応する領域が遮光され(遮光部32aが設けられ)、青色画素63に対応する領域が遮光されていない(遮光部32aが設けられていない)フォトマスク32を配置する(図4F参照)。 Next, on the second wavelength conversion layer 13 formed on the substrate 11, the region corresponding to the red pixel 61 and the green pixel 62 is shielded (the light shielding part 32 a is provided), and the region corresponding to the blue pixel 63 is shielded. A photomask 32 that is not provided (the light shielding portion 32a is not provided) is disposed (see FIG. 4F).
次いで、上記のランプにより、第二波長変換層13のうち、青色画素63に対応する領域に光41を照射して、その領域を露光し、光化学反応を利用して、その領域における緑色の波長域の光の発光強度を低減させて(波長変換能力(発光能力)を低減させて)、非発光とする(図4G参照)。
この工程では、第一波長変換層12を露光する工程と同様にして、第二波長変換層13を露光する。
Next, the light corresponding to the blue pixel 63 is irradiated with the light 41 in the second wavelength conversion layer 13 by the lamp described above, the region is exposed, and the green wavelength in the region is utilized using a photochemical reaction. The emission intensity of the light in the region is reduced (wavelength conversion ability (light emission ability) is reduced), and no light is emitted (see FIG. 4G).
In this step, the second wavelength conversion layer 13 is exposed in the same manner as the step of exposing the first wavelength conversion layer 12.
次いで、基板11の一方の面11a上に、第二波長変換層13を覆うように、上記のウエットプロセスやドライプロセス等により、青色波長変換層からなる第三波長変換層51を形成する(図4H参照)。
この工程では、第一波長変換層12を形成する工程と同様にして、第三波長変換層51を形成する。
以上の工程により、基板11の一方の面11a上に、赤色画素61、緑色画素62および青色画素63が形成された波長変換基板50を得る。
Next, a third wavelength conversion layer 51 made of a blue wavelength conversion layer is formed on one surface 11a of the substrate 11 by the wet process, the dry process, or the like so as to cover the second wavelength conversion layer 13 (see FIG. 4H).
In this step, the third wavelength conversion layer 51 is formed in the same manner as the step of forming the first wavelength conversion layer 12.
Through the above steps, the wavelength conversion substrate 50 in which the red pixel 61, the green pixel 62, and the blue pixel 63 are formed on the one surface 11a of the substrate 11 is obtained.
赤色画素61では、第一波長変換層12(赤色波長変換層)、第二波長変換層13(緑色波長変換層)および第三波長変換層51(青色波長変換層)を露光していない。したがって、これら3つの波長変換層を、そのまま発光させることができる。これにより、赤色画素61では、励起光源からの励起光を青色波長変換層に吸収させて、青色波長変換層から青色の波長域の光を発光させ、続いて、青色波長変換層からの青色の波長域の光を緑色波長変換層に吸収させて、緑色波長変換層から緑色の波長域の光を発光させ、続いて、緑色波長変換層からの緑色の波長域の光を赤色波長変換層に吸収させて、赤色波長変換層から赤色の波長域の光を発光する。
また、赤色画素61では、赤色波長変換層、緑色波長変換層および青色波長変換層を露光する必要がないため、赤色波長変換層、緑色波長変換層および青色波長変換層の波長変換能力(発光能力)を損なうことなく、高発光効率を維持したまま、使用することができる。
さらに、赤色画素61では、赤色波長変換層が、青色波長変換層および緑色波長変換層を透過した励起光を直接吸収し、赤色の波長域の光を発光することもでき、また、青色波長変換層および緑色波長変換層を透過した励起光と緑色波長変換層からの緑色の波長域の発光の両方を吸収し、赤色の波長域の光を発光することもできる。
In the red pixel 61, the first wavelength conversion layer 12 (red wavelength conversion layer), the second wavelength conversion layer 13 (green wavelength conversion layer), and the third wavelength conversion layer 51 (blue wavelength conversion layer) are not exposed. Therefore, these three wavelength conversion layers can emit light as they are. Thereby, in the red pixel 61, the excitation light from the excitation light source is absorbed by the blue wavelength conversion layer, the light in the blue wavelength region is emitted from the blue wavelength conversion layer, and then the blue wavelength from the blue wavelength conversion layer is emitted. Light in the wavelength range is absorbed by the green wavelength conversion layer, light in the green wavelength range is emitted from the green wavelength conversion layer, and then light in the green wavelength range from the green wavelength conversion layer is converted into the red wavelength conversion layer. By absorbing the light, light in the red wavelength region is emitted from the red wavelength conversion layer.
Further, in the red pixel 61, since it is not necessary to expose the red wavelength conversion layer, the green wavelength conversion layer, and the blue wavelength conversion layer, the wavelength conversion capability (light emission capability) of the red wavelength conversion layer, the green wavelength conversion layer, and the blue wavelength conversion layer. ) Can be used while maintaining high luminous efficiency.
Further, in the red pixel 61, the red wavelength conversion layer can directly absorb the excitation light transmitted through the blue wavelength conversion layer and the green wavelength conversion layer, and can emit light in the red wavelength range. Both the excitation light transmitted through the layer and the green wavelength conversion layer and the emission in the green wavelength region from the green wavelength conversion layer can be absorbed, and the light in the red wavelength region can be emitted.
ここで、青色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、青色波長変換層では、励起光源からの励起光を、より効率よく吸収することができ、高輝度の青色発光を得ることができ、より効率よく緑色波長変換層にエネルギーを移動させることができ、消費電力を低減させることができる。
また、緑色波長変換層としては、青色波長変換層からの青色の波長域の光を吸収し、青色波長変換層からの青色の波長域の光の吸光度が高いものが好ましい。これにより、赤色画素61において、励起光源からの励起光を、より効率よく吸収することができ、高輝度の緑色発光を得ることができ、より効率よく赤色波長変換層にエネルギーを移動させることができ、消費電力を低減させることもできる。さらに、緑色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、緑色波長変換層では、青色波長変換層で吸収されずに、緑色波長変換層に達する、励起光源が発光する励起光も吸収して、緑色発光に利用することもでき、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。
Here, the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. Thereby, in the blue wavelength conversion layer, the excitation light from the excitation light source can be absorbed more efficiently, high-luminance blue light emission can be obtained, and energy can be transferred to the green wavelength conversion layer more efficiently. Power consumption can be reduced.
Moreover, as a green wavelength conversion layer, the thing which absorbs the light of the blue wavelength range from a blue wavelength conversion layer, and has a high light absorbency of the light of the blue wavelength range from a blue wavelength conversion layer is preferable. Thereby, in the red pixel 61, the excitation light from the excitation light source can be more efficiently absorbed, green light emission with high luminance can be obtained, and energy can be more efficiently transferred to the red wavelength conversion layer. And power consumption can be reduced. Further, the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. As a result, the green wavelength conversion layer absorbs the excitation light emitted from the excitation light source that reaches the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer, and can also be used for green light emission. Green light emission can be obtained and power consumption can be reduced.
緑色画素62では、第一波長変換層12(赤色波長変換層)を露光し、光化学反応を利用して、赤色の波長域の光の発光強度を低減させ、一方、第二波長変換層13(緑色波長変換層)および第三波長変換層51(青色波長変換層)を露光していない。したがって、赤色波長変換層を非発光とし、緑色波長変換層および青色波長変換層をそのまま発光させることができる。これにより、緑色画素62では、励起光源からの励起光を青色波長変換層に吸収させ、続いて、青色波長変換層からの青色の波長域の光を緑色波長変換層に吸収させて、緑色波長変換層から緑色の波長域の光を発光させ、続いて、緑色波長変換層からの緑色の波長域の光を、赤色波長変換層を透過させて、緑色の波長域の光を発光する。 In the green pixel 62, the first wavelength conversion layer 12 (red wavelength conversion layer) is exposed and the photochemical reaction is used to reduce the emission intensity of light in the red wavelength range, while the second wavelength conversion layer 13 ( The green wavelength conversion layer) and the third wavelength conversion layer 51 (blue wavelength conversion layer) are not exposed. Therefore, the red wavelength conversion layer can be made to emit no light, and the green wavelength conversion layer and the blue wavelength conversion layer can emit light as they are. As a result, in the green pixel 62, the excitation light from the excitation light source is absorbed by the blue wavelength conversion layer, and then the light in the blue wavelength region from the blue wavelength conversion layer is absorbed by the green wavelength conversion layer. Light in the green wavelength region is emitted from the conversion layer, and then light in the green wavelength region from the green wavelength conversion layer is transmitted through the red wavelength conversion layer to emit light in the green wavelength region.
緑色画素62では、基板11の一方の面11a上に先に形成した赤色波長変換層のみの発光強度を低減させて、赤色波長変換層のみを非発光とすればよいので、赤色波長変換層の露光(パターニング)により、緑色波長変換層および青色波長変換層の波長変換能力(発光能力)を損なうことを考慮する必要がなく、緑色波長変換層および青色波長変換層を、高発光効率を維持したまま、使用することができる。
さらに、緑色画素62では、赤色波長変換層の発光強度を低減する際に、緑色の波長域の光の吸光度および青色の波長域の光の吸光度を低減することによって、より効率よく、緑色波長変換層からの緑色の波長域の光および青色波長変換層からの青色の波長域の光を取り出すことができ、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。
In the green pixel 62, the emission intensity of only the red wavelength conversion layer previously formed on the one surface 11a of the substrate 11 may be reduced, and only the red wavelength conversion layer may be made non-light emitting. There is no need to consider that the wavelength conversion capability (light emission capability) of the green wavelength conversion layer and the blue wavelength conversion layer is impaired by exposure (patterning), and the green wavelength conversion layer and the blue wavelength conversion layer maintain high luminous efficiency. Can be used as is.
Further, in the green pixel 62, when the emission intensity of the red wavelength conversion layer is reduced, the green wavelength conversion is performed more efficiently by reducing the absorbance of light in the green wavelength range and the light in the blue wavelength range. Light in the green wavelength region from the layer and light in the blue wavelength region from the blue wavelength conversion layer can be extracted, and high-luminance green light emission can be obtained, and power consumption can be reduced.
ここで、青色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。
また、緑色波長変換層としては、青色波長変換層からの青色の波長域の光を吸収し、青色波長変換層からの青色の波長域の光の吸光度が高いものが好ましい。これにより、緑色画素62において、励起光源からの励起光を、より効率よく吸収することができ、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。
さらに、緑色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、青色波長変換層に吸収されずに、緑色波長変換層に達する、励起光源が発光する励起光も吸収して、緑色発光に利用することもでき、高輝度の緑色発光を得ることができ、消費電力を低減させることもできる。
Here, the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source.
Moreover, as a green wavelength conversion layer, the thing which absorbs the light of the blue wavelength range from a blue wavelength conversion layer, and has a high light absorbency of the light of the blue wavelength range from a blue wavelength conversion layer is preferable. Thereby, in the green pixel 62, the excitation light from an excitation light source can be absorbed more efficiently, high-luminance green light emission can be obtained, and power consumption can also be reduced.
Further, the green wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. As a result, the excitation light emitted from the excitation light source that reaches the green wavelength conversion layer without being absorbed by the blue wavelength conversion layer can also be absorbed and used for green light emission, thereby obtaining high-luminance green light emission. And power consumption can be reduced.
青色画素63では、第一波長変換層12(赤色波長変換層)と第二波長変換層13(緑色波長変換層)を共に露光し、光化学反応を利用して、赤色の波長域の光の発光強度と緑色の波長域の光の発光強度を低減させている。したがって、これら2つの波長変換層を、非発光とすることができる。これにより、青色画素63では、励起光源からの励起光をを青色波長変換層に吸収させ、続いて、青色波長変換層からの青色の波長域の光を、緑色波長変換層を透過させ、続いて、緑色波長変換層を透過した青色の波長域の光を、赤色波長変換層を透過させて、青色の波長域の光を発光する。 In the blue pixel 63, the first wavelength conversion layer 12 (red wavelength conversion layer) and the second wavelength conversion layer 13 (green wavelength conversion layer) are exposed together, and light is emitted in the red wavelength region using a photochemical reaction. The intensity and emission intensity of light in the green wavelength range are reduced. Therefore, these two wavelength conversion layers can be made to emit no light. Thereby, in the blue pixel 63, the excitation light from the excitation light source is absorbed by the blue wavelength conversion layer, and then the light in the blue wavelength region from the blue wavelength conversion layer is transmitted through the green wavelength conversion layer. Thus, light in the blue wavelength range that has passed through the green wavelength conversion layer is transmitted through the red wavelength conversion layer, and light in the blue wavelength range is emitted.
青色画素63では、赤色波長変換層と緑色波長変換層の発光強度を低減させて、これら2つの波長変換層を非発光とするので、励起光源からの励起光により赤色波長変換層または緑色波長変換層が発光して、青色波長変換層からの青色の波長域の光と、赤色波長変換層からの赤色の波長域の光または緑色波長変換層からの緑色の波長域の光とが混ざって、色純度が悪化するのを防止することができる。
さらに、青色画素63では、赤色波長変換層および緑色波長変換層の発光強度を低減する際に、青色波長変換層からの青色の波長域の光の吸光度を低減することによって、より効率よく、青色波長変換層からの青色の波長域の光を取り出すことができ、高輝度の青色発光を得ることができ、消費電力を低減させることもできる。
In the blue pixel 63, the light emission intensities of the red wavelength conversion layer and the green wavelength conversion layer are reduced and these two wavelength conversion layers are made non-light emitting. When the layer emits light, the light in the blue wavelength range from the blue wavelength conversion layer and the light in the red wavelength range from the red wavelength conversion layer or the light in the green wavelength range from the green wavelength conversion layer are mixed, It is possible to prevent the color purity from deteriorating.
Furthermore, in the blue pixel 63, when the emission intensity of the red wavelength conversion layer and the green wavelength conversion layer is reduced, the blue wavelength region is more efficiently reduced by reducing the absorbance of light in the blue wavelength region from the blue wavelength conversion layer. Light in the blue wavelength region can be extracted from the wavelength conversion layer, blue light emission with high luminance can be obtained, and power consumption can be reduced.
ここで、青色波長変換層としては、励起光源が発光する励起光を吸収し、励起光源が発光する励起光の吸光度が高いものが好ましい。これにより、青色画素63において、励起光源からの励起光を、より効率よく吸収することができ、高輝度の青色発光を得ることができ、消費電力を低減させることもできる。 Here, the blue wavelength conversion layer preferably absorbs the excitation light emitted from the excitation light source and has a high absorbance of the excitation light emitted from the excitation light source. Thereby, in the blue pixel 63, the excitation light from an excitation light source can be absorbed more efficiently, high-intensity blue light emission can be obtained, and power consumption can also be reduced.
「表示装置」
(1)第一実施形態
図5は、表示装置の第一実施形態を示す概略断面図である。
表示装置70は、第一基板71と、第一基板71の一方の面71a上に設けられた発光層72と、発光層72上に設けられた光源73と、発光層72および光源73を介して第一基板71と対向するように設けられた第二基板(封止基板)74と、第一基板71および第二基板74の外縁部に設けられ、第一基板71と第二基板74を貼り合わせた状態で相互に固定する貼り合わせ部材75とから概略構成されている。
表示装置70において、発光層72とは、上記の波長変換基板の第一実施形態における波長変換層積層体14や、波長変換基板の第二実施形態における波長変換層積層体52のことである。
"Display device"
(1) First Embodiment FIG. 5 is a schematic sectional view showing a first embodiment of a display device.
The display device 70 includes a first substrate 71, a light emitting layer 72 provided on one surface 71 a of the first substrate 71, a light source 73 provided on the light emitting layer 72, and the light emitting layer 72 and the light source 73. The second substrate (sealing substrate) 74 provided so as to face the first substrate 71, and the first substrate 71 and the second substrate 74 are provided at the outer edge portions of the first substrate 71 and the second substrate 74. It is schematically configured from a bonding member 75 that is fixed to each other in a bonded state.
In the display device 70, the light emitting layer 72 is the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate or the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate.
第一基板71、第二基板74としては、特に限定されるものではないが、従来の有機EL表示装置で使用される基板および封止基板が用いられる。
第一基板71、第二基板74としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド等からなるプラスチック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、または、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、これらの基板の表面に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、アルミニウム等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられる。これらのなかでも、ストレスなく湾曲部、折り曲げ部を形成することが可能となる点から、プラスチック基板または金属基板を用いることが好ましい。
Although it does not specifically limit as the 1st board | substrate 71 and the 2nd board | substrate 74, The board | substrate and sealing substrate which are used with the conventional organic EL display apparatus are used.
Examples of the first substrate 71 and the second substrate 74 include an insulating substrate such as an inorganic material substrate made of glass, quartz, etc., a plastic substrate made of polyethylene terephthalate, polycarbonate, polyimide, etc., a ceramic substrate made of alumina, or the like, or A metal substrate made of aluminum (Al), iron (Fe), or the like, or a substrate whose surface is coated with an insulator made of silicon oxide (SiO 2 ), an organic insulating material, or the like, or a metal made of aluminum or the like Examples thereof include a substrate obtained by subjecting the surface of the substrate to insulation treatment by a method such as anodic oxidation. Among these, it is preferable to use a plastic substrate or a metal substrate because it is possible to form a bent portion and a bent portion without stress.
さらに、プラスチック基板に無機材料をコーティングした基板、金属基板に無機絶縁材料をコーティングした基板が好ましい。このような無機材料をコーティングした基板を用いることにより、プラスチック基板を表示装置の基板として用いた場合に最大の問題となる水分の透過による有機EL材料の劣化(有機EL材料は、特に少量の水分に対しても劣化が起こることが知られている。)を解消することが可能となる。また、金属基板を表示装置の基板として用いた場合の最大の問題となる、金属基板の突起によるリーク(ショート)(有機ELなどからなる光源73の厚さは、100nm~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消することが可能となる。 Furthermore, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are preferable. By using a substrate coated with such an inorganic material, deterioration of the organic EL material due to the permeation of moisture, which is the biggest problem when a plastic substrate is used as a substrate of a display device (the organic EL material is a particularly small amount of moisture). It is known that degradation will occur even if In addition, the biggest problem when using a metal substrate as a substrate of a display device is a leak (short) due to protrusions on the metal substrate (the thickness of the light source 73 made of organic EL or the like is very thin, about 100 nm to 200 nm. For this reason, it is known that leakage (short circuit) is remarkably generated in the current in the pixel portion due to the protrusion.
また、アクティブマトリックス駆動するためのTFT(駆動素子)を形成する場合には、第一基板71、第二基板74としては、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置を用いて金属基板上にTFTを形成することは困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込むことにより、金属基板上にTFTを、従来の生産装置を用いて安価に形成することが可能となる。 When forming TFTs (driving elements) for active matrix driving, as the first substrate 71 and the second substrate 74, substrates that do not melt at a temperature of 500 ° C. or less and do not cause distortion are used. Is preferred. Further, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate using a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / By using a metal substrate that is an iron-nickel alloy at or below ℃ and matching the linear expansion coefficient to glass, it becomes possible to form TFTs on the metal substrate at low cost using conventional production equipment. .
また、プラスチック基板の場合は、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスチック基板にガラス基板上のTFTを転写することにより、プラスチック基板上にTFTを転写形成する。 In the case of a plastic substrate, since the heat-resistant temperature is very low, the TFT is transferred and formed on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT on the glass substrate to the plastic substrate.
第一基板71、第二基板74としては、特に制限がなく、上記の基板を用いることができるが、発光層72および光源73からの発光を第一基板71側から取り出す場合、第一基板71としては、透明または半透明の基板が用いられる。一方、発光層72および光源73からの発光を第二基板74側から取り出す場合、第二基板74としては、透明または半透明の基板が用いられる。 There is no restriction | limiting in particular as the 1st board | substrate 71 and the 2nd board | substrate 74, Although said board | substrate can be used, When light emission from the light emitting layer 72 and the light source 73 is taken out from the 1st board | substrate 71 side, the 1st board | substrate 71 is used. As such, a transparent or translucent substrate is used. On the other hand, when light emitted from the light emitting layer 72 and the light source 73 is extracted from the second substrate 74 side, a transparent or translucent substrate is used as the second substrate 74.
光源73の駆動方法としては、従来のパッシブマトリックス駆動、アクティブマトリックス駆動、および、それらに用いられる従来の材料、プロセス等を用いることができる。
ここで、光源73の駆動方法としては、容易にピーク輝度表示が可能であり、表示品位が優れており、パッシブマトリックス駆動に比べて発光時間を長くすることができ、所望の輝度を得るための駆動電圧を低減することが可能となり、低消費電力化が可能となることから、アクティブマトリックス駆動が好ましい。
As a driving method of the light source 73, conventional passive matrix driving, active matrix driving, and conventional materials and processes used for them can be used.
Here, as a driving method of the light source 73, peak luminance display can be easily performed, display quality is excellent, light emission time can be extended as compared with passive matrix driving, and a desired luminance can be obtained. Active matrix driving is preferable because the driving voltage can be reduced and power consumption can be reduced.
第一基板71、第二基板74に形成されるTFTは、光源73を形成する前に、予め第一基板71、第二基板74上に形成され、スイッチング用および駆動用として機能する。
本実施形態におけるTFTとしては、例えば、公知のTFTが挙げられる。また、TFTの代わりに、金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
The TFTs formed on the first substrate 71 and the second substrate 74 are formed in advance on the first substrate 71 and the second substrate 74 before the light source 73 is formed, and function as switching and driving.
As TFT in this embodiment, a well-known TFT is mentioned, for example. Further, a metal-insulator-metal (MIM) diode can be used instead of the TFT.
表示装置70に用いることが可能なTFTは、公知の材料、構造および形成方法を用いて形成することができる。TFTの活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料、または、ポリチオフェン誘導体、チオフェンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型等が挙げられる。 A TFT that can be used for the display device 70 can be formed using a known material, structure, and formation method. As the material of the active layer of TFT, for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- An oxide semiconductor material such as zinc oxide, or an organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene can be given. Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
TFTを構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法またはSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法またはPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。 As an active layer forming method for forming a TFT, (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used. Forming amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD method or The polysilicon layer is formed by ECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C. or higher, thereon to form a gate electrode of the n + polysilicon, then, a method of performing ion doping (high temperature Process), (5) a method of forming an organic semiconductor material by an inkjet method, and (6) a method of obtaining a single crystal film of the organic semiconductor material.
本実施形態におけるTFTのゲート絶縁膜は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiOまたはポリシリコン膜を熱酸化して得られるSiO等が挙げられる。 The gate insulating film of the TFT in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film.
また、本実施形態におけるTFTの信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極等は、公知の材料を用いて形成することができる。これら信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極等の材料としては、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。表示装置70のTFTは、上記のような構成で形成することができるが、本実施形態は、これらの材料、構造および形成方法に限定されるものではない。 In addition, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, the second drive electrode, and the like of the TFT in this embodiment can be formed using known materials. Examples of the material for the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode include tantalum (Ta), aluminum (Al), copper (Cu), and the like. The TFT of the display device 70 can be formed with the above-described configuration, but the present embodiment is not limited to these materials, structures, and formation methods.
アクティブ駆動型の有機EL表示装置70に用いることが可能な層間絶縁膜は、公知の材料を用いて形成することができる。層間絶縁膜の材料としては、例えば、酸化シリコン(SiO)、窒化シリコン(SiNまたはSi)、酸化タンタル(TaOまたはTa)等の無機材料、または、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。
また、層間絶縁膜の形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じて、フォトリソグラフィー法等により、層間絶縁膜をパターニングすることもできる。
The interlayer insulating film that can be used for the active drive type organic EL display device 70 can be formed using a known material. As a material of the interlayer insulating film, for example, inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O 5 ), acrylic resin, resist material Organic materials, etc. are mentioned.
Examples of the method for forming the interlayer insulating film include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. If necessary, the interlayer insulating film can be patterned by a photolithography method or the like.
発光層72からの発光を第二基板74側から取り出す場合には、外光が第二基板74上に形成されたTFTに入射して、TFTの特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を形成することが好ましい。また、上記の層間絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。
遮光性絶縁膜の材料としては、例えば、フタロシアニン、キナクロドン等の顔料または染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本実施形態は、これらの材料および形成方法に限定されるものではない。
When light emitted from the light emitting layer 72 is extracted from the second substrate 74 side, the light is blocked for the purpose of preventing external light from entering the TFT formed on the second substrate 74 and changing the characteristics of the TFT. It is preferable to form a light-shielding insulating film having both properties. Further, the interlayer insulating film and the light-shielding insulating film can be used in combination.
Examples of the material of the light-shielding insulating film include inorganic pigments such as phthalocyanine and quinaclodon dispersed in a polymer resin such as polyimide, color resist, black matrix material, and inorganic insulation such as Ni x Zn y Fe 2 O 4. Materials and the like. However, the present embodiment is not limited to these materials and forming methods.
表示装置70をアクティブ駆動型とし、第一基板71または第二基板74上にTFT等を形成した場合には、その表面に凹凸が形成され、この凹凸によって発光層72の欠陥(例えば、第一電極の欠損、有機層の欠損、第二電極の断線、第一電極と第二電極の短絡、耐圧の低下等)等が発生するおそれがある。これらの欠陥を防止するために、層間絶縁膜上に平坦化膜を設けてもよい。 When the display device 70 is an active drive type and a TFT or the like is formed on the first substrate 71 or the second substrate 74, irregularities are formed on the surface, and the irregularities of the light emitting layer 72 (for example, the first substrate) There is a risk that an electrode defect, an organic layer defect, a disconnection of the second electrode, a short circuit between the first electrode and the second electrode, a decrease in breakdown voltage, and the like. In order to prevent these defects, a planarizing film may be provided on the interlayer insulating film.
このような平坦化膜は、公知の材料を用いて形成することができる。平坦化膜の材料としては、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、例えば、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセス等が挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜は、単層構造または多層構造のいずれであってもよい。 Such a planarization film can be formed using a known material. Examples of the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is limited to these materials and the formation method. is not. Further, the planarization film may have either a single layer structure or a multilayer structure.
貼り合わせ部材75としては、例えば、樹脂系の接着剤、無機材料等が用いられる。なお、第一基板71および第二基板74と、貼り合わせ部材75との間の密着性が確保できれば、貼り合わせ部材75の材質は特に限定されない。 As the bonding member 75, for example, a resin adhesive, an inorganic material, or the like is used. In addition, as long as the adhesiveness between the 1st board | substrate 71 and the 2nd board | substrate 74, and the bonding member 75 can be ensured, the material of the bonding member 75 will not be specifically limited.
光源73としては、公知の紫外LED、青色LED、紫外発光無機EL素子、青色発光無機EL素子、紫外発光有機EL素子、青色発光有機EL素子等が用いられるが、本実施形態はこれらの光源に限定されるものではなく、公知の材料、公知の製造方法で作製した光源を用いることができる。
ここで、紫外光としては、主発光ピークが360nm~410nmの発光が好ましく、青色光としては、主発光ピークが410nm~470nmの発光が好ましい。
As the light source 73, a known ultraviolet LED, blue LED, ultraviolet light emitting inorganic EL element, blue light emitting inorganic EL element, ultraviolet light emitting organic EL element, blue light emitting organic EL element, or the like is used. It is not limited, The light source produced with the well-known material and the well-known manufacturing method can be used.
Here, the ultraviolet light preferably emits light having a main light emission peak of 360 nm to 410 nm, and the blue light preferably has light emission of a main light emission peak of 410 nm to 470 nm.
図6は、表示装置を構成する有機EL素子基板(光源)の一実施形態を示す概略断面図である。
有機EL素子基板80は、基板81と、基板81の一方の面81a上に設けられた有機EL素子82とから概略構成されている。
有機EL素子82は、基板81の一方の面81a上に順に設けられた、第一電極83と、有機EL層84と、第二電極85とから概略構成されている。すなわち、有機EL素子82は、基板81の一方の面81a上に、第一電極83および第二電極85からなる一対の電極と、これら一対の電極間に挟持された有機EL層84と、を備えている。
第一電極83および第二電極85は、有機EL素子82の陽極または陰極として対で機能する。
第一電極83と第二電極85との間の光学距離は、微小共振器構造(マイクロキャビティ構造)を構成するように調整されている。
FIG. 6 is a schematic cross-sectional view showing an embodiment of an organic EL element substrate (light source) constituting the display device.
The organic EL element substrate 80 includes a substrate 81 and an organic EL element 82 provided on one surface 81 a of the substrate 81.
The organic EL element 82 is schematically configured from a first electrode 83, an organic EL layer 84, and a second electrode 85 that are sequentially provided on one surface 81 a of the substrate 81. That is, the organic EL element 82 includes, on one surface 81a of the substrate 81, a pair of electrodes including the first electrode 83 and the second electrode 85, and an organic EL layer 84 sandwiched between the pair of electrodes. I have.
The first electrode 83 and the second electrode 85 function as a pair as an anode or a cathode of the organic EL element 82.
The optical distance between the first electrode 83 and the second electrode 85 is adjusted so as to constitute a microresonator structure (microcavity structure).
有機EL層84は、第一電極83側から第二電極85側に向かって順に積層された、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90および電子注入層91から構成されている。
正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90および電子注入層91は、それぞれ単層構造または多層構造のいずれであってもよい。また、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90および電子注入層91は、それぞれ有機薄膜または無機薄膜のいずれであってもよい。
The organic EL layer 84 is laminated in order from the first electrode 83 side to the second electrode 85 side, and includes a hole injection layer 86, a hole transport layer 87, an organic light emitting layer 88, a hole prevention layer 89, and an electron transport. The layer 90 and the electron injection layer 91 are configured.
The hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 may each have a single layer structure or a multilayer structure. Further, the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 may each be an organic thin film or an inorganic thin film.
正孔注入層86は、第一電極83からの正孔の注入を効率よく行うものである。
正孔輸送層87は、有機発光層88への正孔の輸送を効率よく行うものである。
電子輸送層90は、有機発光層88への電子の輸送を効率よく行うものである。
電子注入層91は、第二電極85からの電子の注入を効率よく行うものである。
正孔注入層86、正孔輸送層87、電子輸送層90および電子注入層91は、キャリア注入輸送層に該当する。
The hole injection layer 86 efficiently injects holes from the first electrode 83.
The hole transport layer 87 efficiently transports holes to the organic light emitting layer 88.
The electron transport layer 90 efficiently transports electrons to the organic light emitting layer 88.
The electron injection layer 91 efficiently injects electrons from the second electrode 85.
The hole injection layer 86, the hole transport layer 87, the electron transport layer 90, and the electron injection layer 91 correspond to a carrier injection transport layer.
なお、有機EL素子82は上記の構成に限定されるものではなく、有機EL層84が、有機発光層の単層構造であっても、有機発光層とキャリア注入輸送層の多層構造であってもよい。有機EL素子82の構成としては、具体的には、下記のものが挙げられる。
(1)第一電極83と第二電極85の間に、有機発光層のみが設けられた構成
(2)第一電極83側から第二電極85側に向かって、正孔輸送層および有機発光層がこの順に積層された構成
(3)第一電極83側から第二電極85側に向かって、有機発光層および電子輸送層がこの順に積層された構成
(4)第一電極83側から第二電極85側に向かって、正孔輸送層、有機発光層および電子輸送層がこの順に積層された構成
(5)第一電極83側から第二電極85側に向かって、正孔注入層、正孔輸送層、有機発光層および電子輸送層がこの順に積層された構成
(6)第一電極83側から第二電極85側に向かって、正孔注入層、正孔輸送層、有機発光層、電子輸送層および電子注入層がこの順に積層された構成
(7)第一電極83側から第二電極85側に向かって、正孔注入層、正孔輸送層、有機発光層、正孔防止層および電子輸送層がこの順に積層された構成
(8)第一電極83側から第二電極85側に向かって、正孔注入層、正孔輸送層、有機発光層、正孔防止層、電子輸送層および電子注入層がこの順に積層された構成
(9)第一電極83側から第二電極85側に向かって、正孔注入層、正孔輸送層、電子防止層、有機発光層、正孔防止層、電子輸送層および電子注入層がこの順に積層された構成 これら有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層および電子注入層の各層は、単層構造または多層構造のいずれであってもよい。また、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層および電子注入層の各層は、それぞれ有機薄膜または無機薄膜のいずれであってもよい。
The organic EL element 82 is not limited to the above configuration, and the organic EL layer 84 has a multilayer structure of an organic light emitting layer and a carrier injecting and transporting layer even if the organic EL layer 84 has a single layer structure of an organic light emitting layer. Also good. Specific examples of the configuration of the organic EL element 82 include the following.
(1) Configuration in which only the organic light emitting layer is provided between the first electrode 83 and the second electrode 85 (2) The hole transport layer and the organic light emission from the first electrode 83 side toward the second electrode 85 side Configuration in which layers are stacked in this order (3) Configuration in which an organic light emitting layer and an electron transport layer are stacked in this order from the first electrode 83 side to the second electrode 85 side (4) A structure in which a hole transport layer, an organic light emitting layer, and an electron transport layer are laminated in this order toward the second electrode 85 side. (5) From the first electrode 83 side toward the second electrode 85 side, a hole injection layer. A structure in which a hole transport layer, an organic light emitting layer and an electron transport layer are laminated in this order. (6) From the first electrode 83 side toward the second electrode 85 side, a hole injection layer, a hole transport layer, and an organic light emitting layer. The structure in which the electron transport layer and the electron injection layer are laminated in this order (7) From the first electrode 83 side A structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, and an electron transport layer are laminated in this order toward the two electrode 85 side (8) From the first electrode 83 side to the second electrode 85 A structure in which a hole injection layer, a hole transport layer, an organic light emitting layer, a hole prevention layer, an electron transport layer, and an electron injection layer are laminated in this order toward the side (9) From the first electrode 83 side to the second electrode A structure in which a hole injection layer, a hole transport layer, an electron blocking layer, an organic light emitting layer, a hole blocking layer, an electron transport layer and an electron injection layer are laminated in this order toward the 85 side. These organic light emitting layer, hole Each of the injection layer, the hole transport layer, the hole prevention layer, the electron prevention layer, the electron transport layer, and the electron injection layer may have a single layer structure or a multilayer structure. In addition, each of the organic light emitting layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron transport layer, and electron injection layer may be either an organic thin film or an inorganic thin film.
また、第一電極83の端面を覆うようにエッジカバー92が形成されている。すなわち、エッジカバー92は、第一電極83と第二電極85の間でリークを起こすことを防止するために、第一電極83と第二電極85の間において、基板81の一方の面81aに形成された第一電極83のエッジ部を覆うように設けられている。 An edge cover 92 is formed so as to cover the end surface of the first electrode 83. That is, the edge cover 92 is formed on one surface 81 a of the substrate 81 between the first electrode 83 and the second electrode 85 in order to prevent leakage between the first electrode 83 and the second electrode 85. It is provided so as to cover the edge portion of the formed first electrode 83.
以下、有機EL素子基板80を構成する各構成部材およびその形成方法について具体的に説明するが、本実施形態はこれら構成部材および形成方法に限定されるものではない。 Hereinafter, although each structural member which comprises the organic EL element substrate 80, and its formation method are demonstrated concretely, this embodiment is not limited to these structural members and a formation method.
基板81としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスチック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、または、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、これらの基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、アルミニウム等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本実施形態はこれらの基板に限定されるものではない。これらの基板の中でも、ストレスなく湾曲部、折り曲げ部を形成することが可能となることから、プラスチック基板または金属基板を用いることが好ましい。 As the substrate 81, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, an insulating substrate such as a ceramic substrate made of alumina, or the like, or aluminum (Al), iron A metal substrate made of (Fe) or the like, or a substrate coated with an insulating material made of silicon oxide (SiO 2 ), an organic insulating material or the like on the substrate, or a metal substrate made of aluminum or the like is anodized. Although the board | substrate etc. which performed the insulation process by this method are mentioned, this embodiment is not limited to these board | substrates. Among these substrates, it is possible to form a bent portion and a bent portion without stress, and therefore it is preferable to use a plastic substrate or a metal substrate.
さらに、プラスチック基板に無機材料をコーティングした基板、金属基板に無機絶縁材料をコーティングした基板が好ましい。このような無機材料をコーティングした基板を用いることにより、プラスチック基板を有機EL素子基板の基板として用いた場合に最大の問題となる水分の透過による有機ELの劣化(有機ELは、特に、少量の水分に対しても劣化が起こることが知られている。)を解消することが可能となる。また、金属基板を有機EL素子基板の基板として用いた場合の最大の問題となる金属基板の突起によるリーク(ショート)(有機EL層の膜厚は、100nm~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消することが可能となる。 Furthermore, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are preferable. By using a substrate coated with such an inorganic material, deterioration of organic EL due to moisture permeation, which is the biggest problem when a plastic substrate is used as a substrate of an organic EL element substrate (organic EL, in particular, a small amount of It is known that deterioration also occurs with respect to moisture.). In addition, leakage (short) due to protrusions on the metal substrate, which is the biggest problem when a metal substrate is used as the substrate of the organic EL element substrate (the film thickness of the organic EL layer is very thin, about 100 nm to 200 nm, It is known that leakage (short-circuiting) occurs in the current in the pixel portion due to the above.
また、TFTを形成する場合には、基板81としては、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にTFTを形成することは困難であるが、線膨張係数が1×10-5/ ℃ 以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込むことにより、金属基板上にTFTを従来の生産装置を用いて安価に形成することが可能となる。
また、プラスチック基板の場合には、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスチック基板にガラス基板上のTFTを転写することにより、プラスチック基板上にTFTを転写形成することができる。
In the case of forming a TFT, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not generate distortion as the substrate 81. In addition, since a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on a metal substrate with a conventional production apparatus, but the linear expansion coefficient is 1 × 10 −5 / ° C. or less. By using a metal substrate that is an iron-nickel alloy of this type and matching the linear expansion coefficient to glass, it becomes possible to form TFTs on the metal substrate at low cost using a conventional production apparatus.
In the case of a plastic substrate, since the heat-resistant temperature is very low, after forming the TFT on the glass substrate, the TFT on the glass substrate is transferred to the plastic substrate, thereby transferring the TFT onto the plastic substrate. be able to.
さらに、有機EL層84からの発光を基板81とは反対側から取り出す場合には、基板としての制約はないが、有機EL層84からの発光を基板81側から取り出す場合には、有機EL層84からの発光を外部に取り出すために、透明または半透明の基板を用いる必要がある。 Further, when light emitted from the organic EL layer 84 is taken out from the side opposite to the substrate 81, there is no restriction as a substrate, but when light emitted from the organic EL layer 84 is taken out from the substrate 81 side, the organic EL layer In order to extract light emitted from the light source 84 to the outside, it is necessary to use a transparent or translucent substrate.
基板81に形成されるTFTは、有機EL素子82を形成する前に、予め基板81の一方の面81aに形成され、画素スイッチング用素子および有機EL素子駆動用素子として機能する。
本実施形態におけるTFTとしては、公知のTFTが挙げられる。また、TFTの代わりに、金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
The TFT formed on the substrate 81 is formed in advance on one surface 81a of the substrate 81 before the organic EL element 82 is formed, and functions as a pixel switching element and an organic EL element driving element.
As the TFT in this embodiment, a known TFT can be cited. Further, a metal-insulator-metal (MIM) diode can be used instead of the TFT.
アクティブ駆動型有機EL表示装置、有機EL表示装置に用いることが可能なTFTは、公知の材料、構造および形成方法を用いて形成することができる。
TFTを構成する活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料、または、ポリチオフェン誘導体、チオフェンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型等が挙げられる。
TFTs that can be used in active drive organic EL display devices and organic EL display devices can be formed using known materials, structures, and formation methods.
Examples of the material of the active layer constituting the TFT include inorganic semiconductor materials such as amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, cadmium selenide, zinc oxide, indium oxide-oxide Examples thereof include oxide semiconductor materials such as gallium-zinc oxide, and organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
TFTを構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法またはSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法またはPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。 As an active layer forming method for forming a TFT, (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used. Forming amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase growth to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, etc., and amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD method or The polysilicon layer is formed by ECVD method, a gate insulating film formed by thermal oxidation at 1000 ° C. or higher, thereon to form a gate electrode of the n + polysilicon, then, a method of performing ion doping (high temperature Process), (5) a method of forming an organic semiconductor material by an inkjet method, and (6) a method of obtaining a single crystal film of the organic semiconductor material.
本実施形態におけるTFTを構成するゲート絶縁膜は、公知の材料を用いて形成することができる。ゲート絶縁膜としては、例えば、PECVD法、LPCVD法等により形成されたSiOまたはポリシリコン膜を熱酸化して得られるSiO等からなる絶縁膜が挙げられる。 The gate insulating film constituting the TFT in this embodiment can be formed using a known material. As the gate insulating film, for example, PECVD method, and a SiO 2 or polysilicon film formed by the LPCVD method or the like insulating film made of SiO 2 or the like obtained by thermal oxidation.
また、本実施形態におけるTFTの信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極は、公知の材料を用いて形成することができる。これら信号電極線、走査電極線、共通電極線、第一駆動電極および第二駆動電極の材料としては、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。有機EL素子基板80のTFTは、上記のような構成とすることができるが、本実施形態は、これらの材料、構造および形成方法に限定されるものではない。 In addition, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT in this embodiment can be formed using a known material. Examples of the material of the signal electrode line, the scan electrode line, the common electrode line, the first drive electrode, and the second drive electrode include tantalum (Ta), aluminum (Al), copper (Cu), and the like. The TFT of the organic EL element substrate 80 can be configured as described above, but the present embodiment is not limited to these materials, structures, and formation methods.
アクティブ駆動型有機EL表示装置、有機EL表示装置に用いることが可能な層間絶縁膜は、公知の材料を用いて形成することができる。層間絶縁膜の材料としては、例えば、酸化シリコン(SiO)、窒化シリコン(SiNまたはSi)、酸化タンタル(TaOまたはTa)等の無機材料、または、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。
また、層間絶縁膜の形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じて、フォトリソグラフィー法等により、層間絶縁膜をパターニングすることもできる。
The interlayer insulating film that can be used in the active drive organic EL display device and the organic EL display device can be formed using a known material. As a material of the interlayer insulating film, for example, inorganic materials such as silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O 5 ), acrylic resin, resist material Organic materials, etc. are mentioned.
Examples of the method for forming the interlayer insulating film include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. If necessary, the interlayer insulating film can be patterned by a photolithography method or the like.
有機EL素子82からの発光を基板81とは反対側(第二電極85側)から取り出す場合には、外光が基板81の一方の面81aに形成されたTFTに入射して、TFTの特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を形成することが好ましい。また、上記の層間絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。遮光性絶縁膜の材料としては、例えば、フタロシアニン、キナクロドン等の顔料または染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。 When light emitted from the organic EL element 82 is extracted from the side opposite to the substrate 81 (second electrode 85 side), external light is incident on the TFT formed on the one surface 81a of the substrate 81, and the characteristics of the TFT. In order to prevent the change from occurring, it is preferable to form a light-shielding insulating film having light-shielding properties. Further, the interlayer insulating film and the light-shielding insulating film can be used in combination. Examples of the material of the light-shielding insulating film include, for example, pigments or dyes such as phthalocyanine and quinaclonone dispersed in a polymer resin such as polyimide, color resists, black matrix materials, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4 Although materials etc. are mentioned, this embodiment is not limited to these materials and a formation method.
アクティブ駆動型有機EL表示装置において、基板81の一方の面81aにTFT等を形成した場合には、その表面に凸凹が形成され、この凸凹によって有機EL素子82の欠陥(例えば、画素電極の欠損、有機EL層の欠損、第二電極の断線、第一電極と第二電極の短絡、耐圧の低下等)等が発生するおそれがある。これらの欠陥を防止するために、層間絶縁膜上に平坦化膜を設けてもよい。 In the active drive type organic EL display device, when a TFT or the like is formed on one surface 81a of the substrate 81, an unevenness is formed on the surface, and this unevenness causes a defect of the organic EL element 82 (for example, a defect of a pixel electrode). There is a risk that a defect of the organic EL layer, a disconnection of the second electrode, a short circuit between the first electrode and the second electrode, a decrease in breakdown voltage, or the like) may occur. In order to prevent these defects, a planarizing film may be provided on the interlayer insulating film.
このような平坦化膜は、公知の材料を用いて形成することができる。平坦化膜の材料としては、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、例えば、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセス等が挙げられるが、本実施形態はこれらの材料および形成方法に限定されるものではない。また、平坦化膜は、単層構造または多層構造のいずれであってもよい。 Such a planarization film can be formed using a known material. Examples of the material for the planarizing film include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarization film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method. However, the present embodiment is limited to these materials and the formation method. is not. Further, the planarization film may have either a single layer structure or a multilayer structure.
第一電極83および第二電極85は、有機EL素子82の陽極または陰極として対で機能する。つまり、第一電極83を陽極とした場合、第二電極85は陰極となり、第一電極83を陰極とした場合、第二電極85は陽極となる。 The first electrode 83 and the second electrode 85 function as a pair as an anode or a cathode of the organic EL element 82. That is, when the first electrode 83 is an anode, the second electrode 85 is a cathode, and when the first electrode 83 is a cathode, the second electrode 85 is an anode.
第一電極83および第二電極85を形成する電極材料としては、公知の電極材料を用いることができる。陽極を形成する電極材料としては、有機EL層84への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、および、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)、インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等の透明電極材料等が挙げられる。 As an electrode material for forming the first electrode 83 and the second electrode 85, a known electrode material can be used. As an electrode material for forming the anode, gold (Au), platinum (Pt), nickel (Ni) or the like having a work function of 4.5 eV or more from the viewpoint of more efficiently injecting holes into the organic EL layer 84. Metal, oxide (ITO) composed of indium (In) and tin (Sn), oxide (SnO 2 ) of tin (Sn), oxide (IZO) composed of indium (In) and zinc (Zn) Transparent electrode materials and the like.
また、陰極を形成する電極材料としては、有機EL層84への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、または、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 Moreover, as an electrode material for forming the cathode, lithium (Li), calcium (Ca), cerium (Ce) having a work function of 4.5 eV or less from the viewpoint of more efficiently injecting electrons into the organic EL layer 84. And metals such as barium (Ba) and aluminum (Al), or alloys such as Mg: Ag alloys and Li: Al alloys containing these metals.
第一電極83および第二電極85は、上記の材料を用いて、EB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフィー法、レーザー剥離法により形成した電極をパターニングすることもでき、シャドーマスクと組み合わせることで直接パターニングした電極を形成することもできる。
第一電極83および第二電極85の膜厚は、50nm以上であることが好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなり、駆動電圧が上昇するおそれがある。
The first electrode 83 and the second electrode 85 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. Moreover, the electrode formed by the photolithographic method and the laser peeling method can also be patterned as needed, and the electrode patterned directly by combining with a shadow mask can also be formed.
The film thickness of the first electrode 83 and the second electrode 85 is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
表示装置の色純度の向上、発光効率の向上、正面輝度の向上等の目的でマイクロキャビティ効果を用いる場合、有機EL層84からの発光を第一電極83または第二電極85側から取り出す場合には、第一電極83または第二電極85として半透明電極を用いることが好ましい。
半透明電極の材料としては、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料を組み合わせたものを用いることができる。特に、半透明電極の材料としては、反射率と透過率の観点から、銀が好ましい。
When the microcavity effect is used for the purpose of improving the color purity of the display device, the light emission efficiency, the front luminance, etc., or when the light emitted from the organic EL layer 84 is taken out from the first electrode 83 or the second electrode 85 side. It is preferable to use a translucent electrode as the first electrode 83 or the second electrode 85.
As a material for the semitransparent electrode, a metal semitransparent electrode alone or a combination of a metal translucent electrode and a transparent electrode material can be used. In particular, as a material for the semitransparent electrode, silver is preferable from the viewpoint of reflectance and transmittance.
半透明電極の膜厚は、5~30nmが好ましい。半透明電極の膜厚が5nm未満の場合には、光の反射が十分に行えず、干渉の効果を十分に得るとこができない。また、半透明電極の膜厚が30nmを超える場合には、光の透過率が急激に低下することから、表示装置の輝度および発光効率が低下するおそれがある。
また、第一電極83または第二電極85としては、光を反射する反射率の高い電極を用いることが好ましい。反射率の高い電極としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等からなる反射性金属電極(反射電極)、この反射性金属電極と透明電極を組み合わせた電極等が挙げられる。
The film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness of the translucent electrode is less than 5 nm, the light cannot be sufficiently reflected, and the interference effect cannot be obtained sufficiently. In addition, when the film thickness of the translucent electrode exceeds 30 nm, the light transmittance is rapidly decreased, so that the luminance and light emission efficiency of the display device may be decreased.
In addition, as the first electrode 83 or the second electrode 85, it is preferable to use an electrode with high reflectivity that reflects light. Examples of the electrode having high reflectivity include a reflective metal electrode (reflective electrode) made of, for example, aluminum, silver, gold, aluminum-lithium alloy, aluminum-neodymium alloy, aluminum-silicon alloy, and the like. The electrode etc. which combined are mentioned.
電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層86、電子注入層91)と電荷輸送層(正孔輸送層87、電子輸送層90)に分類され、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。 The charge injecting and transporting layer is a charge injecting layer (hole injecting layer 86, electron injecting layer 91) for the purpose of more efficiently injecting charges (holes and electrons) from the electrode and transporting (injecting) the light emitting layer. And a charge transport layer (a hole transport layer 87, an electron transport layer 90), and may be composed of only the charge injecting and transporting material exemplified below, optionally including additives (donor, acceptor, etc.) Alternatively, a structure in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be used.
電荷注入輸送材料としては、有機EL素子用、有機光導電体用の公知の電荷注入輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料および電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。 As the charge injecting and transporting material, known charge injecting and transporting materials for organic EL elements and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these compounds are given below, but this embodiment is not limited to these materials. .
正孔注入層86および正孔輸送層87の材料としては、公知のものが用いられ、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物や無機p型半導体材料;ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)、4,4’,4”-トリス(カルバゾール-9-イル)トリフェニルアミン(TCTA)、N,N-ジカルバゾリル-3,5-ベンゼン(m-CP)、4,4’-(シクロヘキサン-1,1-ジイル)ビス(N,N-ジ-p-トリルアニリン)(TAPC)、2,2’-ビス(N,N-ジフェニルアミン)-9,9’-スピロビフルオレン(DPAS)、N1,N1’-(ビフェニル-4,4’-ジイル)ビス(N1-フェニル-N4,N4-ジ-m-トリルベンゼン-1,4-ジアミン)(DNTPD)、N3,N3,N3”’, N3”’-テトラ-p-トリル-[1,1’:2’,1”:2”,1”’-クォーターフェニル]-3,3”’-ジアミン(BTPD)、4,4’-(ジフェニルシランジイル)ビス(N,N-ジ-p-トリルアニリン)(DTASi)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンティン(Ad-Cz)等の芳香族第三級アミン化合物;ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子含窒素化合物;ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子化合物;2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン(MADN)等の芳香族炭化水素化合物等が挙げられる。 As the material of the hole injection layer 86 and the hole transport layer 87, known materials are used. For example, oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), and inorganic p-type semiconductor materials are used. A porphyrin compound, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N ′ -Diphenyl-benzidine (α-NPD), 4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (TCTA), N, N-dicarbazolyl-3,5-benzene (m-CP), 4,4 ′-(cyclohexane-1,1-diyl) bis (N, N-di-p-tolylaniline) (TAPC), 2,2′-bis (N, N-diphenylamine) -9,9′- Spirobifluorene (DPAS) N1, N1 ′-(biphenyl-4,4′-diyl) bis (N1-phenyl-N4, N4-di-m-tolylbenzene-1,4-diamine) (DNTPD), N3, N3, N3 ″ ′ , N3 ″ ′-tetra-p-tolyl- [1,1 ′: 2 ′, 1 ″: 2 ″, 1 ″ ′-quarterphenyl] -3,3 ″ ′-diamine (BTPD), 4,4′- Aromatic tertiary compounds such as (diphenylsilanediyl) bis (N, N-di-p-tolylaniline) (DTASi), 2,2-bis (4-carbazol-9-ylphenyl) adamantine (Ad-Cz) Low molecular nitrogen compounds such as hydrazone compounds, quinacridone compounds, styrylamine compounds; polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / Polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) ( PNV) and the like; and aromatic hydrocarbon compounds such as 2-methyl-9,10-bis (naphthalen-2-yl) anthracene (MADN).
正孔注入層86の材料としては、陽極からの正孔の注入および輸送をより効率よく行う観点から、正孔輸送層87の材料よりも、最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましい。また、正孔輸送層87の材料としては、正孔注入層86の材料よりも、正孔の移動度が高い材料を用いることが好ましい。 As a material of the hole injection layer 86, the energy level of the highest occupied molecular orbital (HOMO) is higher than that of the material of the hole transport layer 87 from the viewpoint of more efficiently injecting and transporting holes from the anode. It is preferable to use a low material. Further, as the material of the hole transport layer 87, a material having higher hole mobility than the material of the hole injection layer 86 is preferably used.
正孔注入層86および正孔輸送層87は、任意に添加剤(ドナー、アクセプター等)を含んでいてもよい。
そして、正孔の注入性および輸送性をより向上させるためには、正孔注入層86および正孔輸送層87は、アクセプターを含むことが好ましい。アクセプターとしては、有機EL素子向けの公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
The hole injection layer 86 and the hole transport layer 87 may optionally contain an additive (donor, acceptor, etc.).
In order to further improve the hole injection property and the transport property, the hole injection layer 86 and the hole transport layer 87 preferably include an acceptor. As the acceptor, a known acceptor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
アクセプターは、無機材料または有機材料のいずれであってもよい。
無機材料としては、金(Au)、白金(Pt)、タングステン(W)、イリジウム(Ir)、オキシ塩化リン(POCl)、六フッ化ヒ酸イオン(AsF )、塩素(Cl)、臭素(Br)、ヨウ素(I)、酸化バナジウム(V)、酸化モリブデン(MoO)等が挙げられる。
The acceptor may be either an inorganic material or an organic material.
Examples of the inorganic material include gold (Au), platinum (Pt), tungsten (W), iridium (Ir), phosphorus oxychloride (POCl 3 ), hexafluoroarsenate ion (AsF 6 ), chlorine (Cl), Examples include bromine (Br), iodine (I), vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and the like.
有機材料としては、7,7,8,8,-テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(TCNQF)、テトラシアノエチレン(TCNE)、ヘキサシアノブタジエン(HCNB)、ジシクロジシアノベンゾキノン(DDQ)等のシアノ基を有する化合物;トリニトロフルオレノン(TNF)、ジニトロフルオレノン(DNF)等のニトロ基を有する化合物;フルオラニル;クロラニル;ブロマニル等が挙げられる。
これらの中でも、正孔濃度を増加させる効果がより高いことから、TCNQ、TCNQF、TCNE、HCNB、DDQ等のシアノ基を有する化合物が好ましい。
Examples of organic materials include 7,7,8,8, -tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (TCNQF 4 ), tetracyanoethylene (TCNE), hexacyanobutadiene (HCNB), and dicyclohexane. Compounds having a cyano group such as dicyanobenzoquinone (DDQ); compounds having a nitro group such as trinitrofluorenone (TNF) and dinitrofluorenone (DNF); fluoranil; chloranil; bromanyl and the like.
Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, and DDQ are preferable because the effect of increasing the hole concentration is higher.
正孔防止層89、電子輸送層90および電子注入層91の材料としては、公知のものが用いられ、低分子材料であれば、n型半導体である無機材料;1,3-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン(Bpy-OXD)、1,3-ビス(5-(4-(tert-ブチル)フェニル)-1,3,4-オキサジアゾールー2-イル)ベンゼン(OXD7)等のオキサジアゾール誘導体;3-(4-ビフェニル)-4-フェニル-5-tert-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;チオピラジンジオキシド誘導体;ベンゾキノン誘導体;ナフトキノン誘導体;アントラキノン誘導体;ジフェノキノン誘導体;フルオレノン誘導体;ベンゾジフラン誘導体;8-ヒドロキシキノリノラート-リチウム(Liq)等のキノリン誘導体;2,7-ビス[2-(2,2’-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン(Bpy-FOXD)等のフルオレン誘導体;1,3,5-トリ[(3-ピリジル)-フェン-3-イル]ベンゼン(TmPyPB)、1,3,5-トリ[(3-ピリジル)-フェン-3-イル]ベンゼン(TpPyPB)等のベンゼン誘導体;2,2’,2”-(1,3,5-ベンジントリイル)-トリス(1-フェニル-1-H-ベンゾイミダゾール)(TPBI)等のベンゾイミダゾール誘導体;3,5-ジ(ピレン-1-イル)ピリジン(PY1)等のピリジン誘導体;3,3’,5,5’-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル(BP4mPy)等のビフェニル誘導体;4,7-ジフェニル-1,10-フェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)等のフェナントロリン誘導体;トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン(3TPYMB)等のトリフェニルボラン誘導体;ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン(DPPS)等のテトラフェニルシラン誘導体;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等が挙げられる。特に、電子注入層91の材料としては、フッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物;酸化リチウム(LiO)等の酸化物等が挙げられる。 As materials for the hole blocking layer 89, the electron transporting layer 90, and the electron injecting layer 91, known materials are used. In the case of a low molecular material, an inorganic material that is an n-type semiconductor; 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene (Bpy-OXD), 1,3-bis (5- (4- (tert-butyl) phenyl) Oxadiazole derivatives such as -1,3,4-oxadiazol-2-yl) benzene (OXD7); 3- (4-biphenyl) -4-phenyl-5-tert-butylphenyl-1,2,4 -Triazole derivatives such as triazole (TAZ); thiopyrazine dioxide derivative; benzoquinone derivative; naphthoquinone derivative; anthraquinone derivative; diphenoquinone derivative; fluorenone derivative; Quinoline derivatives such as 8-hydroxyquinolinolato-lithium (Liq); 2,7-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5- Yl] -9,9-dimethylfluorene (Bpy-FOXD) and the like; 1,3,5-tri [(3-pyridyl) -phen-3-yl] benzene (TmPyPB), 1,3,5- Benzene derivatives such as tri [(3-pyridyl) -phen-3-yl] benzene (TpPyPB); 2,2 ′, 2 ″-(1,3,5-benzentriyl) -tris (1-phenyl-1 Benzimidazole derivatives such as —H-benzimidazole) (TPBI); pyridine derivatives such as 3,5-di (pyren-1-yl) pyridine (PY1); 3,3 ′, 5,5′-tetra [(m -Pyridyl)- Biphenyl derivatives such as phen-3-yl] biphenyl (BP4mPy); 4,7-diphenyl-1,10-phenanthroline (BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) Phenanthroline derivatives such as tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB); diphenylbis (4- (pyridin-3-yl) phenyl ) Tetraphenylsilane derivatives such as silane (DPPS), poly (oxadiazole) (Poly-OXZ), polystyrene derivatives (PSS), etc. In particular, the material of the electron injection layer 91 is lithium fluoride (LiF). ), Fluorides such as barium fluoride (BaF 2 ); lithium oxide (Li 2) And oxides such as O).
電子注入層91の材料としては、陰極からの電子の注入および輸送をより効率よく行う観点から、電子輸送層90の材料よりも最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましい。また、電子輸送層90の材料としては、電子注入層91の材料よりも、電子の移動度が高い材料を用いることが好ましい。 As a material for the electron injection layer 91, a material having a higher energy level of the lowest unoccupied molecular orbital (LUMO) than that of the material for the electron transport layer 90 is used from the viewpoint of more efficiently injecting and transporting electrons from the cathode. Is preferred. Further, as the material for the electron transport layer 90, a material having higher electron mobility than the material for the electron injection layer 91 is preferably used.
電子輸送層90および電子注入層91は、任意に添加剤(ドナー、アクセプター等)を含んでいてもよい。
そして、電子の輸送性および注入性をより向上させるためには、電子輸送層90および電子注入層91は、ドナーを含むことが好ましい。ドナーとしては、有機EL素子用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
The electron transport layer 90 and the electron injection layer 91 may optionally contain an additive (donor, acceptor, etc.).
In order to further improve the electron transport property and the injection property, the electron transport layer 90 and the electron injection layer 91 preferably include a donor. As a donor, the well-known donor material for organic EL elements can be used. Although these specific compounds are illustrated below, this embodiment is not limited to these materials.
ドナーは、無機材料または有機材料のいずれであってもよい。
無機材料としては、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等のアルカリ土類金属;希土類元素;アルミニウム(Al);銀(Ag);銅(Cu);インジウム(In)等が挙げられる。
有機材料としては、芳香族3級アミン骨格を有する化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の置換基を有していてもよい縮合多環化合物、テトラチアフルバレン(TTF)類、ジベンゾフラン、フェノチアジン、カルバゾール等が挙げられる。
The donor may be either an inorganic material or an organic material.
Examples of the inorganic material include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as magnesium and calcium; rare earth elements; aluminum (Al); silver (Ag); copper (Cu); It is done.
Examples of the organic material include a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent such as phenanthrene, pyrene, perylene, anthracene, tetracene and pentacene, tetrathiafulvalene (TTF), Examples include dibenzofuran, phenothiazine, and carbazole.
芳香族3級アミン骨格を有する化合物としては、アニリン類;フェニレンジアミン類;N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等のベンジジン類;トリフェニルアミン、4,4’4”-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4”-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4”-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等のトリフェニルアミン類;N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン等のトリフェニルジアミン類等が挙げられる。 Compounds having an aromatic tertiary amine skeleton include anilines; phenylenediamines; N, N, N ′, N′-tetraphenylbenzidine, N, N′-bis- (3-methylphenyl) -N, N Benzidines such as' -bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine; triphenylamine, 4,4'4 "-tris ( N, N-diphenyl-amino) -triphenylamine, 4,4'4 "-tris (N-3-methylphenyl-N-phenyl-amino) -triphenylamine, 4,4'4" -tris (N Triphenylamines such as-(1-naphthyl) -N-phenyl-amino) -triphenylamine; N, N'-di- (4-methyl-phenyl) -N, N'-diphenyl-1,4- Phenyle Triphenyldiamine such as diamines, and the like.
上記の縮合多環化合物が「置換基を有する」とは、縮合多環化合物中の1つ以上の水素原子が、水素原子以外の基(置換基)で置換されていることを指し、置換基の数は特に限定されず、全ての水素原子が置換基で置換されていてもよい。そして、置換基の位置も特に限定されない。
置換基としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~10のアルケニルオキシ基、炭素数6~15のアリール基、炭素数6~15のアリールオキシ基、水酸基、ハロゲン原子等が挙げられる。
The above-mentioned condensed polycyclic compound “has a substituent” means that one or more hydrogen atoms in the condensed polycyclic compound are substituted with a group (substituent) other than a hydrogen atom. The number of is not particularly limited, and all hydrogen atoms may be substituted with a substituent. The position of the substituent is not particularly limited.
Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. An aryloxy group having 6 to 15 carbon atoms, a hydroxyl group, a halogen atom, and the like.
アルキル基は、直鎖状、分岐鎖状または環状のいずれであってもよい。
直鎖状または分枝鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、ノニル基、デシル基等が挙げられる。
環状のアルキル基は、単環状または多環状のいずれであってもよく、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
The alkyl group may be linear, branched or cyclic.
Examples of the linear or branched alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and n-pentyl group. , Isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 3 -Ethylpentyl group, 2,2,3-trimethylbutyl group, n-octyl group, isooctyl group, nonyl group, decyl group and the like.
The cyclic alkyl group may be monocyclic or polycyclic, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group Group, 1-adamantyl group, 2-adamantyl group, tricyclodecyl group and the like.
アルコキシ基としては、アルキル基が酸素原子に結合した一価の基が挙げられる。
アルケニル基としては、炭素数が2~10のアルキル基において、炭素原子間の1つの単結合(C-C)が二重結合(C=C)に置換されたものが挙げられる。
アルケニルオキシ基としては、アルケニル基が酸素原子に結合した一価の基が挙げられる。
アリール基は、単環状または多環状のいずれであってもよく、環員数は特に限定されず、好ましいものとしては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
アリールオキシ基としては、アリール基が酸素原子に結合した一価の基が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Examples of the alkoxy group include monovalent groups in which an alkyl group is bonded to an oxygen atom.
Examples of the alkenyl group include an alkyl group having 2 to 10 carbon atoms in which one single bond (C—C) between carbon atoms is substituted with a double bond (C═C).
Examples of the alkenyloxy group include a monovalent group in which the alkenyl group is bonded to an oxygen atom.
The aryl group may be monocyclic or polycyclic, and the number of ring members is not particularly limited, and preferred examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like.
The aryloxy group includes a monovalent group in which an aryl group is bonded to an oxygen atom.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
これらの中でも、ドナーとしては、電子濃度を増加させる効果がより高いことから、芳香族3級アミン骨格を有する化合物、置換基を有していてもよい縮合多環化合物、アルカリ金属が好ましい。 Among these, as the donor, a compound having an aromatic tertiary amine skeleton, a condensed polycyclic compound which may have a substituent, and an alkali metal are preferable because the effect of increasing the electron concentration is higher.
有機発光層88は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよい。また、これらの各材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。発光効率および耐久性の観点からは、有機発光層88の材質は、ホスト材料中に発光性のドーパントが分散されたものが好ましい。 The organic light emitting layer 88 may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included. Moreover, the structure by which these each material was disperse | distributed in the polymeric material (binding resin) or the inorganic material may be sufficient. From the viewpoint of light emission efficiency and durability, the material of the organic light emitting layer 88 is preferably a material in which a light emitting dopant is dispersed in a host material.
有機発光材料としては、有機EL素子向けの公知の発光材料を用いることができる。
このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
As the organic light emitting material, a known light emitting material for an organic EL element can be used.
Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
有機発光層88に用いられる低分子発光材料(ホスト材料を含む)としては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体等の蛍光性有機材料;アゾメチン亜鉛錯体、(8-ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光発光有機金属錯体;BeBq(ビス(ベンゾキノリノラト)ベリリウム錯体);4,4’-ビス-(2,2-ジ-p-トリル-ビニル)-ビフェニル(DTVBi);トリス(1,3-ジフェニル-1,3-プロパンジオノ)(モノフェナントロリン)Eu(III)(Eu(DBM)(Phen));ジフェニルエチレン誘導体;トリス[4-(9-フェニルフルオレン-9-イル)フェニル]アミン(TFTPA)等のトリフェニルアミン誘導体;ジアミノカルバゾール誘導体;ビススチリル誘導体;芳香族ジアミン誘導体;キナクリドン系化合物;ペリレン系化合物;クマリン系化合物;ジスチリルアリーレン誘導体(DPVBi);オリゴチオフェン誘導体(BMA-3T);4,4’-ジ(トリフェニルシリル)-ビフェニル(BSB)、ジフェニル-ジ(o-トリル)シラン(UGH1)、1,4-ビストリフェニルシリルベンゼン(UGH2)、1,3-ビス(トリフェニルシリル)ベンゼン(UGH3)、トリフェニル-(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン(TPSi-F)等のシラン誘導体;9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル(CDBP)、N,N-ジカルバゾリル-3,5-ベンゼン(m-CP)、3-(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO1)、3,6-ジ(9-カルバゾリル)-9-(2-エチルヘキシル)カルバゾール(TCz1)、9,9’-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)(SimCP)、ビス(3,5-ジ(9H-カルバゾール-9-イル)フェニル)ジフェニルシラン(SimCP2)、3-(ジフェニルホスホリル)-9-(4-ジフェニルホスホリル)フェニル)-9H-カルバゾール(PPO21)、2,2-ビス(4-カルバゾリルフェニル)-1,1-ビフェニル(4CzPBP)、3,6-ビス(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO2)、9-(4-tert-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール(CzSi)、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニル-カルバゾール(CzTP)、9-(4-tert-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール(CzC)、9-(4-tert-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール(DFC)、2,2’-ビス(4-カルバゾール-9-イル)フェニル)-ビフェニル(BCBP)、9,9’-((2,6-ジフェニルベンゾ[1,2-b:4,5-b’]ジフラン-3,7-ジイル)ビス(4,1-フェニレン))ビス(9H-カルバゾール)(CZBDF)等のカルバゾール誘導体;4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体;1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン(DMFL-CBP)、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(BDAF)、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(BSBF)、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン(BPPF)、2,2’-ジピレニル-9,9-スピロビフルオレン(Spiro-Pye)、2,7-ジピレニル-9,9-スピロビフルオレン(2,2’-Spiro-Pye)、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(TDAF)、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(TSBF)、9,9-スピロビフルオレン-2-イル-ジフェニル-フォスフィンオキサイド(SPPO1)等のフルオレン誘導体;1,3-ジ(ピレン-1-イル)ベンゼン(m-Bpye)等のピレン誘導体;プロパン-2,2’-ジイルビス(4,1-フェニレン)ジベンゾエート(MMA1)等のベンゾエート誘導体;4,4’-ビス(ジフェニルフォスフィンオキサイド)ビフェニル(PO1)、2,8-ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン(PPT)等のフォスフィンオキサイド誘導体;4,4”-ジ(トリフェニルシリル)-p-ターフェニル(BST)等のターフェニル誘導体;2,4-ビス(フェノキシ)-6-(3-メチルジフェニルアミノ)-1,3,5-トリアジン(BPMT)等トリアジン誘導体等が挙げられる。 Low molecular light emitting materials (including host materials) used for the organic light emitting layer 88 include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl Oxadiazole compounds such as -2- [2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenyl) -4-phenyl-5-t- Triazole derivatives such as butylphenyl-1,2,4-triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives , Fluorescent organic materials such as diphenoquinone derivatives and fluorenone derivatives; azomethine zinc complexes, (8- Mud Kishiki glue isocyanatomethyl) aluminum complex (Alq 3) fluorescence emitting organic metal complex such as, BeBq (bis (benzoquinolinolato) beryllium complex); 4,4'-bis - (2,2-di -p- tolyl - Vinyl) -biphenyl (DTVBi); tris (1,3-diphenyl-1,3-propanediono) (monophenanthroline) Eu (III) (Eu (DBM) 3 (Phen)); diphenylethylene derivative; tris [4- Triphenylamine derivatives such as (9-phenylfluoren-9-yl) phenyl] amine (TTPPA); diaminocarbazole derivatives; bisstyryl derivatives; aromatic diamine derivatives; quinacridone compounds; perylene compounds; coumarin compounds; Derivative (DPVBi); oligothiophene derivative (BMA) 3T); 4,4′-di (triphenylsilyl) -biphenyl (BSB), diphenyl-di (o-tolyl) silane (UGH1), 1,4-bistriphenylsilylbenzene (UGH2), 1,3-bis Silane derivatives such as (triphenylsilyl) benzene (UGH3), triphenyl- (4- (9-phenyl-9H-fluoren-9-yl) phenyl) silane (TPSi-F); 9,9-di (4- Dicarbazole-benzyl) fluorene (CPF), 3,6-bis (triphenylsilyl) carbazole (mCP), 4,4′-bis (carbazol-9-yl) biphenyl (CBP), 4,4′-bis ( Carbazol-9-yl) -2,2′-dimethylbiphenyl (CDBP), N, N-dicarbazolyl-3,5-benzene (m-CP), 3- (diphenyl) Ruphosphoryl) -9-phenyl-9H-carbazole (PPO1), 3,6-di (9-carbazolyl) -9- (2-ethylhexyl) carbazole (TCz1), 9,9 ′-(5- (triphenylsilyl) -1,3-phenylene) bis (9H-carbazole) (SimCP), bis (3,5-di (9H-carbazol-9-yl) phenyl) diphenylsilane (SimCP2), 3- (diphenylphosphoryl) -9- (4-Diphenylphosphoryl) phenyl) -9H-carbazole (PPO21), 2,2-bis (4-carbazolylphenyl) -1,1-biphenyl (4CzPBP), 3,6-bis (diphenylphosphoryl) -9 -Phenyl-9H-carbazole (PPO2), 9- (4-tert-butylphenyl) -3,6-bis (tri Enylsilyl) -9H-carbazole (CzSi), 3,6-bis [(3,5-diphenyl) phenyl] -9-phenyl-carbazole (CzTP), 9- (4-tert-butylphenyl) -3,6- Ditrityl-9H-carbazole (CzC), 9- (4-tert-butylphenyl) -3,6-bis (9- (4-methoxyphenyl) -9H-fluoren-9-yl) -9H-carbazole (DFC) 2,2′-bis (4-carbazol-9-yl) phenyl) -biphenyl (BCBP), 9,9 ′-((2,6-diphenylbenzo [1,2-b: 4,5-b ′ Carbazole derivatives such as difuran-3,7-diyl) bis (4,1-phenylene)) bis (9H-carbazole) (CZBDF); 4- (diphenylphosphoyl) -N, -Aniline derivatives such as diphenylaniline (HM-A1); 1,3-bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB), 1,4-bis (9-phenyl-9H-fluorene- 9-yl) benzene (pDPFB), 2,7-bis (carbazol-9-yl) -9,9-dimethylfluorene (DMFL-CBP), 2- [9,9-di (4-methylphenyl) -fluorene -2-yl] -9,9-di (4-methylphenyl) fluorene (BDAF), 2- (9,9-spirobifluoren-2-yl) -9,9-spirobifluorene (BSBF), 9 , 9-bis [4- (pyrenyl) phenyl] -9H-fluorene (BPPF), 2,2′-dipyrenyl-9,9-spirobifluorene (Spiro-Pye), 2,7-dipyreth Ru-9,9-spirobifluorene (2,2'-Spiro-Pye), 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4-Methylphenyl) fluorene (TDAF), 2,7-bis (9,9-spirobifluoren-2-yl) -9,9-spirobifluorene (TSBF), 9,9-spirobifluorene-2 -Fluorene derivatives such as -yl-diphenyl-phosphine oxide (SPPO1); pyrene derivatives such as 1,3-di (pyren-1-yl) benzene (m-Bpye); propane-2,2'-diylbis (4 Benzoate derivatives such as 1-phenylene) dibenzoate (MMA1); 4,4′-bis (diphenylphosphine oxide) biphenyl (PO1), 2,8-bis (diphenylphosphine) Phosphine oxide derivatives such as (folyl) dibenzo [b, d] thiophene (PPT); Terphenyl derivatives such as 4,4 "-di (triphenylsilyl) -p-terphenyl (BST); 2,4-bis ( And triazine derivatives such as phenoxy) -6- (3-methyldiphenylamino) -1,3,5-triazine (BPMT).
有機発光層88に用いられる高分子発光材料としては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニルレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2’-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン](MPS-PPV)、ポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)](CN-PPV)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体;ポリ(N-ビニルカルバゾール)(PVK)等のカルバゾール誘導体等が挙げられる。 Polymer light emitting materials used for the organic light emitting layer 88 include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N— Triethylammonium) ethoxy] -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt 3+ ), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4- Phenylenevinylene] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) 1,4-phenylene- (1-cyanovinylene)] (CN-PPV) and other polyphenylene vinylene derivatives; poly (9,9-dioctylfluorene) (PDAF) and other polyphenylene vinylene derivatives Spiro derivatives; poly (N- vinylcarbazole) (PVK), etc. carbazole derivatives, and the like.
有機発光材料は、低分子発光材料が好ましく、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。 The organic light emitting material is preferably a low molecular light emitting material, and a phosphorescent material having high light emission efficiency is preferably used from the viewpoint of reducing power consumption.
有機発光層88に用いられる発光性のドーパントとしては、有機EL素子用の公知のドーパントを用いることができる。このようドーパントとしては、紫外発光材料であれば、p-クォーターフェニル、3,5,3,5-テトラ-tert-ブチルセクシフェニル、3,5,3,5-テトラ-tert-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。また、青色発光材料であれば、スチリル誘導体等の蛍光発光材料;ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)等の燐光発光有機金属錯体等が挙げられる。また、緑色発光材料であれば、トリス(2-フェニルピリジナート)イリジウム(Ir(ppy))等の燐光発光有機金属錯体等が挙げられる。 As a luminescent dopant used for the organic light emitting layer 88, a well-known dopant for organic EL elements can be used. As the dopant, in the case of an ultraviolet light emitting material, p-quaterphenyl, 3,5,3,5-tetra-tert-butylsecphenyl, 3,5,3,5-tetra-tert-butyl-p- Examples thereof include fluorescent light emitting materials such as quinckphenyl. In the case of a blue light emitting material, a fluorescent light emitting material such as a styryl derivative; bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6 And phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate iridium (III) (FIr6). Examples of the green light emitting material include phosphorescent organic metal complexes such as tris (2-phenylpyridinate) iridium (Ir (ppy) 3 ).
なお、有機EL層84を構成する各層の材料について説明したが、例えば、ホスト材料は正孔輸送材料または電子輸送材料としても使用でき、正孔輸送材料および電子輸送材料もホスト材料として使用できる。 In addition, although the material of each layer which comprises the organic EL layer 84 was demonstrated, for example, a host material can also be used as a hole transport material or an electron transport material, and a hole transport material and an electron transport material can also be used as a host material.
正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90および電子注入層91各層の形成方法としては、公知のウエットプロセス、ドライプロセス、レーザー転写法等が用いられる。
ウエットプロセスとしては、上記の各層を構成する材料を溶媒に溶解または分散させた液体を用いる、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法;インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等が挙げられる。
上記の塗布法や印刷法に用いられる液体は、レベリング剤、粘度調整剤等、液体の物性を調整するための添加剤を含んでいてもよい。
As a method for forming each of the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91, known wet processes, dry processes, and laser transfer methods are used. Etc. are used.
As the wet process, a coating method such as a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spray coating method, or the like using a liquid in which a material constituting each layer is dissolved or dispersed in a solvent; an inkjet method; Examples thereof include a printing method such as a relief printing method, an intaglio printing method, a screen printing method, and a micro gravure coating method.
The liquid used in the above coating method and printing method may contain additives for adjusting the physical properties of the liquid, such as a leveling agent and a viscosity modifier.
ドライプロセスとしては、上記の各層を構成する材料を用いる、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等が用いられる。
正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90および電子注入層91の各層の膜厚は、通常1nm~1000nm程度であるが、10nm~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)が得なれない。また、ゴミ等の異物による画素欠陥が生じるおそれがある。一方、膜厚が200nmを超えると、有機EL層84の抵抗成分によって駆動電圧が上昇し、結果として、消費電力が上昇する。
As the dry process, a resistance heating vapor deposition method, an electron beam (EB) vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor phase vapor deposition (OVPD) method, or the like, using the material constituting each of the above layers is used. It is done.
The thickness of each of the hole injection layer 86, the hole transport layer 87, the organic light emitting layer 88, the hole prevention layer 89, the electron transport layer 90, and the electron injection layer 91 is usually about 1 nm to 1000 nm, but 10 nm to 200 nm is preferred. If the film thickness is less than 10 nm, the properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required cannot be obtained. In addition, pixel defects due to foreign matters such as dust may occur. On the other hand, when the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic EL layer 84, resulting in an increase in power consumption.
エッジカバー92は、絶縁材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ法またはウエット法のフォトリソグラフィー法によりパターニングすることができるが、本実施形態はこれらの形成方法に限定されるものではない。
また、エッジカバー92を構成する絶縁材料としては、公知の材料が用いられるが、本実施形態では、絶縁材料が特に限定されるものではない。
エッジカバー92は光を透過する必要があるので、エッジカバー92を構成する絶縁材料としては、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。
The edge cover 92 can be formed using an insulating material by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like, by a known dry method or a wet photolithography method. Patterning can be performed, but the present embodiment is not limited to these forming methods.
Further, as the insulating material constituting the edge cover 92, a known material is used, but in this embodiment, the insulating material is not particularly limited.
Since the edge cover 92 needs to transmit light, examples of the insulating material constituting the edge cover 92 include SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, and LaO.
エッジカバー92の膜厚は、100nm~2000nmが好ましい。膜厚が100nm未満であると、絶縁性が十分ではなく、第一電極83と第二電極85の間でリークが起こり、消費電力の上昇、非発光の原因となる。一方、膜厚が2000nmを超えると、成膜プロセスに時間が掛り、生産効率の低下、エッジカバー92による第二電極85の断線の原因となる。 The film thickness of the edge cover 92 is preferably 100 nm to 2000 nm. If the film thickness is less than 100 nm, the insulation is not sufficient, and leakage occurs between the first electrode 83 and the second electrode 85, resulting in an increase in power consumption and non-light emission. On the other hand, if the film thickness exceeds 2000 nm, the film forming process takes time, which results in a decrease in production efficiency and disconnection of the second electrode 85 by the edge cover 92.
ここで、有機EL素子82は、第一電極83と第二電極85との干渉効果によるマイクロキャビティ構造(光微小共振器構造)、または、誘電体多層膜によるマイクロキャビティ構造(光微小共振器構造)を有することが好ましい。第一電極83と第二電極85により微小共振器構造が構成されると、第一電極83と第二電極85との干渉効果により、有機EL層84の発光を正面方向(光取り出し方向)に集光することができる。その際、有機EL層84の発光に指向性を持たせることができるため、周囲に逃げる発光損失を低減することができ、その発光効率を高めることができる。これにより、有機EL層84で生じる発光エネルギーをより効率よく、蛍光体層へ伝搬することが可能となり、表示装置の正面輝度を高めることができる。 Here, the organic EL element 82 has a microcavity structure (optical microresonator structure) due to an interference effect between the first electrode 83 and the second electrode 85, or a microcavity structure (optical microresonator structure) formed of a dielectric multilayer film. ). When the microresonator structure is configured by the first electrode 83 and the second electrode 85, the light emission of the organic EL layer 84 is caused in the front direction (light extraction direction) due to the interference effect between the first electrode 83 and the second electrode 85. It can be condensed. In that case, since the directivity can be given to the light emission of the organic EL layer 84, the light emission loss escaping to the periphery can be reduced, and the light emission efficiency can be increased. Thereby, it is possible to more efficiently propagate the emission energy generated in the organic EL layer 84 to the phosphor layer, and the front luminance of the display device can be increased.
また、第一電極83と第二電極85との干渉効果により、有機EL層84の発光スペクトルを調整することも可能となり、所望の発光ピーク波長および半値幅に調整することができる。これにより、赤色蛍光体および緑色蛍光体をより効果的に励起することが可能なスペクトルに制御することが可能となり、青色画素の色純度を向上させることができる。 In addition, due to the interference effect between the first electrode 83 and the second electrode 85, the emission spectrum of the organic EL layer 84 can be adjusted, and the desired emission peak wavelength and half width can be adjusted. Thereby, it is possible to control the red phosphor and the green phosphor to a spectrum that can be excited more effectively, and the color purity of the blue pixel can be improved.
また、本実施形態の表示装置は、外部駆動回路(走査線電極回路、データ信号電極回路、電源回路)に電気的に接続される。
ここで、有機EL素子基板80を構成する基板81としては、ガラス基板上に絶縁材料をコートした基板、より好ましくは金属基板上またはプラスチック基板上に絶縁材料をコートした基板、さらに好ましくは金属基板上またはプラスチック基板上に絶縁材料をコートした基板が用いられる。
Further, the display device of this embodiment is electrically connected to an external drive circuit (scanning line electrode circuit, data signal electrode circuit, power supply circuit).
Here, as the substrate 81 constituting the organic EL element substrate 80, a substrate coated with an insulating material on a glass substrate, more preferably a metal substrate or a substrate coated with an insulating material on a plastic substrate, more preferably a metal substrate. A substrate obtained by coating an insulating material on an upper or plastic substrate is used.
図7は、表示装置を構成するLED基板(光源)の一実施形態を示す概略断面図である。
LED基板100は、基板101と、基板101の一方の面101a上に順に積層された第一のバッファ層102、n型コンタクト層103、第二のn型クラッド層104、第一のn型クラッド層105、活性層106、第一のp型クラッド層107、第二のp型クラッド層108および第二のバッファ層109と、n型コンタクト層103上に形成された陰極110と、第二のバッファ層109上に形成された陽極111とから概略構成されている。
なお、LEDとしては、他の公知のLED、例えば、紫外発光無機LED、青色発光無機LED等を用いることができるが、具体的な構成は上記のものに限定されるものではない。
FIG. 7 is a schematic cross-sectional view showing an embodiment of an LED substrate (light source) constituting the display device.
The LED substrate 100 includes a substrate 101, a first buffer layer 102, an n-type contact layer 103, a second n-type cladding layer 104, and a first n-type cladding that are sequentially stacked on one surface 101a of the substrate 101. Layer 105, active layer 106, first p-type cladding layer 107, second p-type cladding layer 108 and second buffer layer 109, cathode 110 formed on n-type contact layer 103, second layer It is generally composed of an anode 111 formed on the buffer layer 109.
In addition, as LED, other well-known LED, for example, ultraviolet light emission inorganic LED, blue light emission inorganic LED, etc. can be used, However, A specific structure is not limited to said thing.
以下、LED基板100の各構成要素について詳細に説明する。
活性層106は、電子と正孔の再結合により発光を行う層であり、活性層材料としては、LED用の公知の活性層材料を用いることができる。このような活性層材料としては、例えば、紫外活性層材料として、AlGaN、InAlN、InAlGa1-a-bN(0≦a、0≦b、a+b≦1)、青色活性層材料としては、InGa1-zN(0<z<1)等が挙げられるが、本実施形態はこれらに限定されるものではない。
また、活性層106としては、単一量子井戸構造または多重量子井戸構造のものが用いられる。量子井戸構造の活性層はn型、p型のいずれでもよいが、特にノンドープ(不純物無添加)の活性層とすると、バンド間発光により発光波長の半値幅が狭くなり、色純度のよい発光が得られるため好ましい。
Hereinafter, each component of the LED substrate 100 will be described in detail.
The active layer 106 is a layer that emits light by recombination of electrons and holes, and a known active layer material for LED can be used as the active layer material. As such an active layer material, for example, as an ultraviolet active layer material, AlGaN, InAlN, In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1), blue active layer material Examples thereof include In z Ga 1-z N (0 <z <1), but the present embodiment is not limited to these.
As the active layer 106, a single quantum well structure or a multiple quantum well structure is used. The active layer of the quantum well structure may be either n-type or p-type. However, when it is a non-doped (no impurity added) active layer, the half-value width of the emission wavelength is narrowed due to interband emission, and light emission with good color purity is achieved. Since it is obtained, it is preferable.
また、活性層106にドナー不純物またはアクセプター不純物の少なくとも一方をドープしてもよい。不純物をドープした活性層の結晶性がノンドープのものと同じであれば、ドナー不純物をドープすることにより、ノンドープのものに比べてバンド間発光強度をさらに強くすることができる。アクセプター不純物をドープすると、バンド間発光のピーク波長よりも約0.5eVだけ低エネルギー側にピーク波長をシフトさせることができるが、半値幅は広くなる。アクセプター不純物とドナー不純物との両者をドープすると、アクセプター不純物のみをドープした活性層の発光強度に比べて、その発光強度をさらに大きくすることができる。特に、アクセプター不純物をドープした活性層を形成する場合、活性層の導電型はSi等のドナー不純物をもドープしてn型とすることが好ましい。 Further, the active layer 106 may be doped with at least one of a donor impurity and an acceptor impurity. If the crystallinity of the active layer doped with the impurity is the same as that of the non-doped layer, the emission intensity between bands can be further increased by doping the donor impurity as compared with the non-doped layer. When the acceptor impurity is doped, the peak wavelength can be shifted to the lower energy side by about 0.5 eV from the peak wavelength of interband light emission, but the full width at half maximum is widened. When both the acceptor impurity and the donor impurity are doped, the light emission intensity can be further increased as compared with the light emission intensity of the active layer doped only with the acceptor impurity. In particular, when an active layer doped with an acceptor impurity is formed, the conductivity type of the active layer is preferably doped with a donor impurity such as Si to be n-type.
第二のn型クラッド層104および第一のn型クラッド層105としては、LED用の公知のn型クラッド層材料を用いることができ、単層でも多層構成でもよい。活性層106よりもバンドギャップエネルギーが大きいn型半導体で、第二のn型クラッド層104および第一のn型クラッド層105を構成した場合、第二のn型クラッド層104および第一のn型クラッド層105と、活性層106との間には、正孔に対する電位障壁ができ、正孔を活性層106に閉じ込めることが可能となる。例えば、n型InGa1-xN(0≦x<1)により、第二のn型クラッド層104および第一のn型クラッド層105を形成することが可能であるが、本実施形態はこれらに限定されるものではない。 As the second n-type cladding layer 104 and the first n-type cladding layer 105, a known n-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used. When the second n-type cladding layer 104 and the first n-type cladding layer 105 are formed of an n-type semiconductor having a band gap energy larger than that of the active layer 106, the second n-type cladding layer 104 and the first n-type cladding layer 105 are formed. A potential barrier against holes is formed between the mold cladding layer 105 and the active layer 106, and holes can be confined in the active layer 106. For example, the second n-type cladding layer 104 and the first n-type cladding layer 105 can be formed from n-type In x Ga 1-x N (0 ≦ x <1). Is not limited to these.
第一のp型クラッド層107および第二のp型クラッド層108としては、LED用の公知のp型クラッド層材料を用いることができ、単層でも多層構成でもよい。活性層106よりもバンドギャップエネルギーが大きいp型半導体で、第一のp型クラッド層107および第二のp型クラッド層108を構成した場合、第一のp型クラッド層107および第二のp型クラッド層108と、活性層106との間には、電子に対する電位障壁ができ、電子を活性層106に閉じ込めることが可能となる。例えば、AlGa1-yN(0≦y≦1)により、第一のp型クラッド層107および第二のp型クラッド層108を形成することが可能であるが、本実施形態はこれらに限定されるものではない。 As the first p-type cladding layer 107 and the second p-type cladding layer 108, a known p-type cladding layer material for LED can be used, and a single layer or a multilayer structure may be used. When the first p-type cladding layer 107 and the second p-type cladding layer 108 are formed of a p-type semiconductor having a band gap energy larger than that of the active layer 106, the first p-type cladding layer 107 and the second p-type cladding layer 107 are formed. A potential barrier against electrons is formed between the mold cladding layer 108 and the active layer 106, and the electrons can be confined in the active layer 106. For example, the first p-type cladding layer 107 and the second p-type cladding layer 108 can be formed from Al y Ga 1-y N (0 ≦ y ≦ 1). It is not limited to.
n型コンタクト層103としては、LED用の公知のコンタクト層材料を用いることができ、例えば、第二のn型クラッド層104および第一のn型クラッド層105に接して電極を形成する層としてn型GaNからなるn型コンタクト層103を形成することが可能である。また、第一のp型クラッド層107および第二のp型クラッド層108に接して電極を形成する層として、p型GaNからなるp型コンタクト層を形成することも可能である。ただし、このp型コンタクト層は、第二のn型クラッド層104、第二のp型クラッド層108がGaNで形成されていれば、特に形成する必要はなく、第二のクラッド層(第二のn型クラッド層104、第二のp型クラッド層108)をコンタクト層とすることも可能である。 As the n-type contact layer 103, a known contact layer material for LED can be used. For example, as a layer for forming an electrode in contact with the second n-type cladding layer 104 and the first n-type cladding layer 105 An n-type contact layer 103 made of n-type GaN can be formed. It is also possible to form a p-type contact layer made of p-type GaN as a layer for forming an electrode in contact with the first p-type cladding layer 107 and the second p-type cladding layer 108. However, this p-type contact layer need not be formed if the second n-type cladding layer 104 and the second p-type cladding layer 108 are formed of GaN. The n-type cladding layer 104 and the second p-type cladding layer 108) may be used as contact layers.
本実施形態で用いられる上記の各層の形成方法としては、LED用の公知の成膜プロセスを用いることが可能であるが、本実施形態は特にこれらに限定されるものではない。例えば、MOVPE(有機金属気相成長法)、MBE(分子線気相成長法)、HDVPE(ハイドライド気相成長法)等の気相成長法を用いて、例えば、サファイア(C面、A面、R面を含む)、SiC(6H-SiC、4H-SiCも含む)、スピネル(MgAl、特にその(111)面)、ZnO、Si、GaAs、あるいは、他の酸化物単結晶基板(NGO等)等の基板上に形成することが可能である。 As a method for forming each of the layers used in the present embodiment, a known film forming process for LEDs can be used, but the present embodiment is not particularly limited thereto. For example, by using a vapor phase growth method such as MOVPE (metal organic vapor phase epitaxy), MBE (molecular beam vapor phase epitaxy), HDVPE (hydride vapor phase epitaxy), for example, sapphire (C plane, A plane, R plane), SiC (including 6H—SiC, 4H—SiC), spinel (MgAl 2 O 4 , especially its (111) plane), ZnO, Si, GaAs, or other oxide single crystal substrates ( It is possible to form on a substrate such as NGO.
図8は、表示装置を構成する無機EL素子基板(光源)の一実施形態を示す概略断面図である。
無機EL素子基板120は、基板121と、基板121の一方の面121a上に設けられた無機EL素子122とから概略構成されている。
無機EL素子122は、基板121の一方の面121aに順に積層された、第一電極123、第一誘電体層124、発光層125、第二誘電体層126および第二電極127から構成されている。
第一電極123および第二電極127は、無機EL素子122の陽極または陰極として対で機能する。
なお、無機EL素子122としては、公知の無機EL素子、例えば、紫外発光無機EL素子、青色発光無機EL素子等を用いることができるが、具体的な構成は前記のものに限定されるものではない。
FIG. 8 is a schematic cross-sectional view showing an embodiment of an inorganic EL element substrate (light source) constituting the display device.
The inorganic EL element substrate 120 includes a substrate 121 and an inorganic EL element 122 provided on one surface 121a of the substrate 121.
The inorganic EL element 122 includes a first electrode 123, a first dielectric layer 124, a light emitting layer 125, a second dielectric layer 126, and a second electrode 127, which are sequentially stacked on one surface 121a of the substrate 121. Yes.
The first electrode 123 and the second electrode 127 function as a pair as an anode or a cathode of the inorganic EL element 122.
As the inorganic EL element 122, a known inorganic EL element such as an ultraviolet light emitting inorganic EL element, a blue light emitting inorganic EL element, or the like can be used, but the specific configuration is not limited to the above. Absent.
以下、無機EL素子基板120を構成する各構成部材およびその形成方法について具体的に説明するが、本実施形態はこれら構成部材および形成方法に限定されるものではない。 Hereinafter, although each structural member which comprises the inorganic EL element substrate 120, and its formation method are demonstrated concretely, this embodiment is not limited to these structural members and a formation method.
基板121としては、上記の有機EL素子基板80を構成する基板81と同様のものが用いられる。 As the substrate 121, a substrate similar to the substrate 81 constituting the organic EL element substrate 80 is used.
第一電極123および第二電極127は、無機EL素子122の陽極または陰極として対で機能する。つまり、第一電極123を陽極とした場合、第二電極127は陰極となり、第一電極123を陰極とした場合、第二電極127は陽極となる。 The first electrode 123 and the second electrode 127 function as a pair as an anode or a cathode of the inorganic EL element 122. That is, when the first electrode 123 is an anode, the second electrode 127 is a cathode, and when the first electrode 123 is a cathode, the second electrode 127 is an anode.
第一電極123および第二電極127としては、アルミニウム(Al)、金(Au)、白金(Pt)、ニッケル(Ni)等の金属、および、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)、インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が透明電極材料として挙げられるが、本実施形態はこれらの材料に限定されるものではない。光を取り出す側の電極には、ITO等の透明電極がよく、光を取り出す方向と反対側の電極には、アルミニウム等からなる反射電極を用いることが好ましい。 As the first electrode 123 and the second electrode 127, a metal such as aluminum (Al), gold (Au), platinum (Pt), nickel (Ni), and an oxide made of indium (In) and tin (Sn) (ITO), tin (Sn) oxide (SnO 2 ), oxide (IZO) made of indium (In) and zinc (Zn), and the like can be cited as transparent electrode materials. It is not limited. A transparent electrode such as ITO is good for the electrode on the light extraction side, and a reflective electrode made of aluminum or the like is preferably used for the electrode on the opposite side to the light extraction direction.
第一電極123および第二電極127は、上記の材料を用いて、EB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本実施形態はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフィー法、レーザー剥離法により形成した電極をパターニングすることもでき、シャドーマスクと組み合わせることでパターニングした電極を形成することもできる。
第一電極123および第二電極127の膜厚は、50nm以上であることが好ましい。
膜厚が50nm未満の場合には、配線抵抗が高くなり、駆動電圧が上昇するおそれがある。
The first electrode 123 and the second electrode 127 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. Is not limited to these forming methods. Moreover, the electrode formed by the photolithographic method and the laser peeling method can also be patterned as needed, and the electrode patterned by combining with a shadow mask can also be formed.
The film thicknesses of the first electrode 123 and the second electrode 127 are preferably 50 nm or more.
When the film thickness is less than 50 nm, the wiring resistance increases and the drive voltage may increase.
第一誘電体層124および第二誘電体層126としては、無機EL素子用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)、チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本実施形態はこれらの誘電体材料に限定されるものではない。
また、第一誘電体層124および第二誘電体層126は、上記の誘電体材料から選択された1種類からなる単層構造であってもよく、2種類以上を積層した多層構造であってもよい。
また、第一誘電体層124および第二誘電体層126の膜厚は、200nm~500nm程度が好ましい。
As the first dielectric layer 124 and the second dielectric layer 126, a known dielectric material for inorganic EL elements can be used. Examples of such a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ), barium titanate (BaTiO 3 ), and strontium titanate (SrTiO 3 ). However, the present embodiment is not limited to these dielectric materials.
Further, the first dielectric layer 124 and the second dielectric layer 126 may have a single layer structure made of one type selected from the above dielectric materials, or may have a multilayer structure in which two or more types are stacked. Also good.
The film thicknesses of the first dielectric layer 124 and the second dielectric layer 126 are preferably about 200 nm to 500 nm.
発光層125としては、無機EL素子用の公知の発光材料を用いることができる。このような発光材料としては、例えば、紫外発光材料として、ZnF:Gd、青色発光材料として、BaAl:Eu、CaAl:Eu、ZnAl:Eu、BaSiS:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba,Mg)Al:Eu等が挙げられるが、本実施形態はこれらの発光材料に限定されるものではない。
また、発光層125の膜厚は、300nm~1000nm程度が好ましい。
As the light emitting layer 125, a known light emitting material for an inorganic EL element can be used. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 SiS 4 as a blue light emitting material. : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, and the like, but this embodiment is not limited to these light emitting materials. Absent.
The thickness of the light emitting layer 125 is preferably about 300 nm to 1000 nm.
なお、光源73として、有機EL素子基板、LED基板、無機EL素子基板等を用いた場合、有機EL素子、LED、無機EL素子等の発光素子を封止する封止膜または封止基板を設けることが好ましい。
封止膜および封止基板は、公知の封止材料および封止方法により形成することができる。具体的には、光源を構成する基板と反対側の表面上にスピンコート法、ODF、ラミレート法等を用いて樹脂を塗布することによって封止膜を形成することもできる。あるいは、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタリング法等により、SiO、SiON、SiN等の無機膜を形成した後、さらに、スピンコート法、ODF、ラミレート法等を用いて樹脂を塗布することによって封止膜を形成するか、または、封止基板を貼り合わせることもできる。
In addition, when an organic EL element substrate, an LED substrate, an inorganic EL element substrate, or the like is used as the light source 73, a sealing film or a sealing substrate for sealing a light emitting element such as an organic EL element, an LED, or an inorganic EL element is provided. It is preferable.
The sealing film and the sealing substrate can be formed by a known sealing material and sealing method. Specifically, the sealing film can be formed by applying a resin on the surface opposite to the substrate constituting the light source by using a spin coat method, an ODF, a laminate method, or the like. Alternatively, after forming an inorganic film such as SiO, SiON, SiN, etc. by plasma CVD, ion plating, ion beam, sputtering, etc., resin is further added using spin coating, ODF, lamination, etc. A sealing film can be formed by coating, or a sealing substrate can be attached.
このような封止膜や封止基板により、外部からの発光素子内への酸素や水分の混入を防止することができ、光源の寿命が向上する。
また、光源73と発光層72とを接合するときは、一般の紫外線硬化樹脂、熱硬化樹脂等で接着させることもできる。
また、発光層72上に光源73を直接形成した場合には、例えば、窒素ガス、アルゴンガス等の不活性ガスをガラス板、金属板等で封止する方法が挙げられる。さらに、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入すると、水分による有機EL素子の劣化をより効果的に低減できるため好ましい。
ただし、本実施形態は、これらの部材や形成方法に限定されるものではない。また、第一基板71と反対側(第二基板74側)から光を取り出す場合、封止膜、封止基板ともに光透過性の材料を使用する必要がある。
Such a sealing film or a sealing substrate can prevent entry of oxygen and moisture from the outside into the light-emitting element, thereby improving the life of the light source.
Moreover, when joining the light source 73 and the light emitting layer 72, it can also be made to adhere | attach with general ultraviolet curable resin, thermosetting resin, etc.
Moreover, when the light source 73 is directly formed on the light emitting layer 72, the method of sealing inert gas, such as nitrogen gas and argon gas, with a glass plate, a metal plate, etc. is mentioned, for example. Furthermore, it is preferable to mix a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL element due to moisture can be more effectively reduced.
However, this embodiment is not limited to these members and forming methods. In addition, when light is extracted from the side opposite to the first substrate 71 (second substrate 74 side), it is necessary to use a light transmissive material for both the sealing film and the sealing substrate.
本実施形態の表示装置によれば、光の取り出し効率を向上させて変換効率を大幅に向上させ、視野角特性に優れ、かつ、低消費電力化が可能な優れた表示装置を実現できる。 According to the display device of the present embodiment, it is possible to realize an excellent display device that improves light extraction efficiency and greatly improves conversion efficiency, has excellent viewing angle characteristics, and can reduce power consumption.
(2)第二実施形態
図9は、表示装置の第二実施形態を示す概略断面図である。図9において、図5に示した表示装置70と同一の構成要素には同一符号を付して、その説明を省略する。
表示装置130は、第一基板71と、第一基板71の一方の面71a上に設けられた光源73と、光源73上に設けられた発光層72と、光源73および発光層72を介して第一基板71と対向するように設けられた第二基板(封止基板)74と、第一基板71および第二基板74の外縁部に設けられ、第一基板71と第二基板74を貼り合わせた状態で相互に固定する貼り合わせ部材75とから概略構成されている。
本実施形態の表示装置において、発光層72とは、上記の波長変換基板の第一実施形態における波長変換層積層体14や、波長変換基板の第二実施形態における波長変換層積層体52のことである。
(2) Second Embodiment FIG. 9 is a schematic sectional view showing a second embodiment of the display device. In FIG. 9, the same components as those of the display device 70 shown in FIG.
The display device 130 includes a first substrate 71, a light source 73 provided on one surface 71 a of the first substrate 71, a light emitting layer 72 provided on the light source 73, and the light source 73 and the light emitting layer 72. A second substrate (sealing substrate) 74 provided so as to face the first substrate 71, and provided on the outer edges of the first substrate 71 and the second substrate 74, and the first substrate 71 and the second substrate 74 are attached to each other. It is generally configured from a bonding member 75 that is fixed to each other in a combined state.
In the display device of the present embodiment, the light emitting layer 72 refers to the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate and the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate. It is.
(3)第三実施形態
図10は、表示装置の第三実施形態を示す概略断面図である。図10において、図5に示した表示装置70と同一の構成要素には同一符号を付して、その説明を省略する。
表示装置140は、第一基板71と、第一基板71の一方の面71a上に設けられた発光層72と、発光層72上に設けられた液晶素子141と、液晶素子141上に設けられた光源73と、発光層72、光源73および液晶素子141を介して第一基板71と対向するように設けられた第二基板(封止基板)74と、第一基板71および第二基板74の外縁部に設けられ、第一基板71と第二基板74を貼り合わせた状態で相互に固定する貼り合わせ部材75とから概略構成されている。
本実施形態の表示装置において、発光層72とは、上記の波長変換基板の第一実施形態における波長変換層積層体14や、波長変換基板の第二実施形態における波長変換層積層体52のことである。
(3) Third Embodiment FIG. 10 is a schematic sectional view showing a third embodiment of the display device. In FIG. 10, the same components as those of the display device 70 shown in FIG.
The display device 140 is provided on the first substrate 71, the light emitting layer 72 provided on one surface 71 a of the first substrate 71, the liquid crystal element 141 provided on the light emitting layer 72, and the liquid crystal element 141. A second substrate (sealing substrate) 74 provided to face the first substrate 71 via the light source 73, the light emitting layer 72, the light source 73, and the liquid crystal element 141, and the first substrate 71 and the second substrate 74. And a bonding member 75 that fixes the first substrate 71 and the second substrate 74 to each other in a state of being bonded together.
In the display device of the present embodiment, the light emitting layer 72 refers to the wavelength conversion layer laminate 14 in the first embodiment of the wavelength conversion substrate and the wavelength conversion layer laminate 52 in the second embodiment of the wavelength conversion substrate. It is.
液晶素子141としては、公知の液晶素子を用いることができる。液晶素子141は、例えば、一対の偏光板と、一対の透明電極と、一対の配向膜と、基板と、を備え、一対の配向膜の間に液晶層が挟持された構造をなしている。
液晶素子141は、一対の電極を用いて液晶層に印加する電圧を画素毎に制御可能な構成とされ、光源73の全面から射出された光の透過率を画素毎に制御する。すなわち、液晶素子141は、光源73からの光を画素毎に選択的に透過させる光シャッターとしての機能を有するようになっている。また、液晶素子141と光源73とを両方共ON/OFFをコントロールすることもできる。
As the liquid crystal element 141, a known liquid crystal element can be used. The liquid crystal element 141 includes, for example, a pair of polarizing plates, a pair of transparent electrodes, a pair of alignment films, and a substrate, and has a structure in which a liquid crystal layer is sandwiched between the pair of alignment films.
The liquid crystal element 141 is configured to be able to control the voltage applied to the liquid crystal layer for each pixel using a pair of electrodes, and controls the transmittance of light emitted from the entire surface of the light source 73 for each pixel. In other words, the liquid crystal element 141 has a function as an optical shutter that selectively transmits light from the light source 73 for each pixel. Further, both the liquid crystal element 141 and the light source 73 can be controlled to be turned ON / OFF.
光源73は、液晶素子141のようなシャッター機能を有する層を有しない場合は、パッシブ駆動、アクティブ素子で駆動することにより画素毎に発光のON/OFFを行うことで、低消費電力で、ピーク輝度が表示可能となり、鮮やかな画像を提供することができる。さらに、アクティブ素子で駆動する場合は、パッシブ駆動に対し、発光時間を長くとることができ、比較的低輝度の光源の最も効率の良い領域での発光を利用することができ、駆動電圧、駆動電流を低減させることができ、より低消費電力化することができる。
また、液晶素子141のようなシャッター機能を有する層を有する場合は、画素毎に発光のON/OFFを行うことも、また一定のエリア毎に発光のON/OFFを行うこともできる。これにより、消費電力を低減することができる。さらに、これにより、ピーク輝度が表示可能となり、鮮やかな画像を提供することができる。
In the case where the light source 73 does not have a layer having a shutter function like the liquid crystal element 141, the light source 73 is driven by a passive drive or an active element to turn on / off light emission for each pixel. Brightness can be displayed and a vivid image can be provided. Furthermore, when driven by an active element, the light emission time can be increased compared to passive drive, and light emission in the most efficient region of a light source with relatively low brightness can be used. The current can be reduced and the power consumption can be further reduced.
In addition, in the case where the liquid crystal element 141 has a layer having a shutter function, light emission can be turned on / off for each pixel, and light emission can be turned on / off for each fixed area. Thereby, power consumption can be reduced. Further, this makes it possible to display the peak luminance and provide a vivid image.
(4)第四実施形態
図11は、表示装置の第四実施形態を示す概略断面図である。図11において、図1に示した波長変換基板10、図5に示した表示装置70、および、図6に示した有機EL素子基板80と同一の構成要素には同一符号を付して、その説明を省略する。
表示装置150は、第一基板71と、第一基板71の一方の面71a上に設けられた光源73と、光源73上に設けられた発光層72と、光源73および発光層72を介して第一基板71と対向するように設けられた第二基板(封止基板)74とから概略構成されている。
発光層72は、第二基板74の一方の面74a上に設けられ、第二基板74側から順に積層された第一波長変換層12および第二波長変換層13からなる波長変換層積層体14から構成されている。
また、光源73は、第一基板71の一方の面71a上に設けられた有機EL素子82から構成されている。
(4) Fourth Embodiment FIG. 11 is a schematic sectional view showing a fourth embodiment of the display device. In FIG. 11, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, and the organic EL element substrate 80 shown in FIG. Description is omitted.
The display device 150 includes a first substrate 71, a light source 73 provided on one surface 71 a of the first substrate 71, a light emitting layer 72 provided on the light source 73, and the light source 73 and the light emitting layer 72. A second substrate (sealing substrate) 74 provided so as to face the first substrate 71 is schematically configured.
The light emitting layer 72 is provided on one surface 74a of the second substrate 74, and the wavelength conversion layer laminate 14 including the first wavelength conversion layer 12 and the second wavelength conversion layer 13 stacked in order from the second substrate 74 side. It is composed of
The light source 73 includes an organic EL element 82 provided on one surface 71 a of the first substrate 71.
また、発光層72を覆うように無機封止膜151が設けられ、光源73を覆うように無機封止膜152が設けられている。さらに、第一基板71側に設けられた無機封止膜152と、第二基板74側に設けられた無機封止膜151との間に充填剤153が充填され、この充填剤153を介して、接着層154により、第一基板71と第二基板74が接着されている。 An inorganic sealing film 151 is provided so as to cover the light emitting layer 72, and an inorganic sealing film 152 is provided so as to cover the light source 73. Further, a filler 153 is filled between the inorganic sealing film 152 provided on the first substrate 71 side and the inorganic sealing film 151 provided on the second substrate 74 side. The first substrate 71 and the second substrate 74 are bonded by the adhesive layer 154.
また、第一基板71の一方の面71a上に、TFT(駆動素子)160が形成されている。すなわち、第一基板71の一方の面71aに、ゲート電極161が形成され、このゲート電極161を覆うように第一基板71の一方の面71a上に、ゲート絶縁膜162が形成されている。ゲート絶縁膜162上には、活性層(図示略)が形成され、活性層上にソース電極163、ドレイン電極164および配線165が形成され、これらソース電極163、ドレイン電極164および配線165を覆うように平坦化膜166が形成されている。なお、平坦化膜166は、単層構造でなくてもよく、他の層間絶縁膜と平坦化膜を組み合わせた構成としてもよい。また、平坦化膜もしくは層間絶縁膜を貫通してドレイン電極164に達するコンタクトホール167が形成され、平坦化膜166上にコンタクトホール167を介してドレイン電極164と電気的に接続された光源73の第一電極83が形成されている。第一電極83は、第一基板71側から順に積層された、反射電極168と透明電極169から構成されている。 A TFT (driving element) 160 is formed on one surface 71 a of the first substrate 71. That is, the gate electrode 161 is formed on one surface 71 a of the first substrate 71, and the gate insulating film 162 is formed on the one surface 71 a of the first substrate 71 so as to cover the gate electrode 161. An active layer (not shown) is formed on the gate insulating film 162, and a source electrode 163, a drain electrode 164, and a wiring 165 are formed on the active layer so as to cover the source electrode 163, the drain electrode 164, and the wiring 165. A planarizing film 166 is formed. Note that the planarization film 166 may not have a single-layer structure, and may have a structure in which another interlayer insulating film and a planarization film are combined. In addition, a contact hole 167 that penetrates the planarization film or the interlayer insulating film and reaches the drain electrode 164 is formed, and the light source 73 that is electrically connected to the drain electrode 164 through the contact hole 167 is formed on the planarization film 166. A first electrode 83 is formed. The first electrode 83 includes a reflective electrode 168 and a transparent electrode 169 that are sequentially stacked from the first substrate 71 side.
無機封止膜151、152は、発光層72または光源73を覆うように、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタリング法等により、SiO、SiON、SiN等からなる無機膜を形成した後、さらに、その無機膜を覆うように、スピンコート法、ODF、ラミレート法等を用いて樹脂を塗布するか、または、無機膜を覆うように樹脂膜を貼り合わせることによって形成することもできる。
無機封止膜151、152により、外部から発光層72や光源73内へ酸素や水分が混入するのを防止することができ、ひいては、発光層72や光源73の寿命を向上することができる。
As the inorganic sealing films 151 and 152, an inorganic film made of SiO, SiON, SiN or the like is formed by a plasma CVD method, an ion plating method, an ion beam method, a sputtering method or the like so as to cover the light emitting layer 72 or the light source 73. After that, the resin may be further applied by spin coating, ODF, lamination, or the like so as to cover the inorganic film, or may be formed by bonding the resin film so as to cover the inorganic film. it can.
The inorganic sealing films 151 and 152 can prevent oxygen and moisture from being mixed into the light emitting layer 72 and the light source 73 from the outside, and thus the lifetime of the light emitting layer 72 and the light source 73 can be improved.
また、第二基板74の一方の面74a上に、赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18、ブラックマトリックス19および隔壁15を覆うように光散乱層155が設けられている。
また、第二基板74の他方の面74bに、円偏光板156が設けられている。
A light scattering layer 155 is provided on one surface 74 a of the second substrate 74 so as to cover the red color filter 16, the green color filter 17, the blue color filter 18, the black matrix 19, and the partition wall 15.
A circularly polarizing plate 156 is provided on the other surface 74 b of the second substrate 74.
光散乱層155の材料としては、樹脂中に光散乱性粒子を分散したものを用いることが好ましい。光散乱性粒子は、有機材料または無機材料から構成されるが、無機材料から構成されることが好ましい。
これにより、外部(例えば、発光素子)からの指向性を有する光を、より等方的かつ効果的に拡散または散乱させることができる。また、無機材料を使用することにより、光および熱に安定な光散乱層155を形成することができる。また、光散乱性粒子としては、透明度が高いものが好ましい。また、光散乱性粒子としては、低屈折率の母材中に、母材よりも高屈折率の微粒子を分散したものが好ましい。
As a material for the light scattering layer 155, a material in which light scattering particles are dispersed in a resin is preferably used. The light scattering particles are composed of an organic material or an inorganic material, but are preferably composed of an inorganic material.
Thereby, light having directivity from the outside (for example, a light emitting element) can be diffused or scattered more isotropically and effectively. Further, by using an inorganic material, the light scattering layer 155 that is stable to light and heat can be formed. Moreover, as a light-scattering particle, a thing with high transparency is preferable. The light scattering particles are preferably particles in which fine particles having a higher refractive index than the base material are dispersed in a low refractive index base material.
光散乱性粒子として、無機材料を用いる場合、その無機材料としては、例えば、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、およびアンチモンからなる群より選ばれる少なくとも1種の金属の酸化物を主成分とした粒子(微粒子)等が挙げられる。
また、光散乱性粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合、その無機微粒子としては、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型:2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。
When an inorganic material is used as the light scattering particle, the inorganic material is, for example, an oxide of at least one metal selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony And the like (particles) containing as a main component.
When particles (inorganic fine particles) made of an inorganic material are used as the light scattering particles, examples of the inorganic fine particles include silica beads (refractive index: 1.44) and alumina beads (refractive index: 1 .. 63), titanium oxide beads (refractive index anatase type: 2.50, rutile type: 2.70), zirconia oxide beads (refractive index: 2.05), zinc oxide beads (refractive index: 2.00), titanic acid barium (BaTiO 3) (refractive index: 2.4), and the like.
光散乱性粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合、その有機微粒子としては、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)、架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアナミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, examples of the organic fine particles include polymethyl methacrylate beads (refractive index: 1.49) and acrylic beads (refractive index: 1.. 50), acrylic-styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57), styrene beads (refractive index: 1.60), crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), silicone beads (refractive index: 1.50) and the like.
光散乱性粒子と混合して用いられる樹脂材料は、透光性の樹脂材料であることが好ましい。樹脂材料としては、例えば、アクリル樹脂(屈折率:1.49)、メラミン樹脂(屈折率:1.57)、ナイロン(屈折率:1.53)、ポリスチレン(屈折率:1.60)、メラミンビーズ(屈折率:1.57)、ポリカーボネート(屈折率:1.57)、ポリ塩化ビニル(屈折率:1.60)、ポリ塩化ビニリデン(屈折率:1.61)、ポリ酢酸ビニル(屈折率:1.46)、ポリエチレン(屈折率:1.53)、ポリメタクリル酸メチル(屈折率:1.49)、ポリMBS(屈折率:1.54)、中密度ポリエチレン(屈折率:1.53)、高密度ポリエチレン(屈折率:1.54)、テトラフルオロエチレン(屈折率:1.35)、ポリ三フッ化塩化エチレン(屈折率:1.42)、ポリテトラフルオロエチレン(屈折率:1.35)等が挙げられる。 The resin material used by mixing with the light-scattering particles is preferably a translucent resin material. Examples of the resin material include acrylic resin (refractive index: 1.49), melamine resin (refractive index: 1.57), nylon (refractive index: 1.53), polystyrene (refractive index: 1.60), melamine. Beads (refractive index: 1.57), polycarbonate (refractive index: 1.57), polyvinyl chloride (refractive index: 1.60), polyvinylidene chloride (refractive index: 1.61), polyvinyl acetate (refractive index) : 1.46), polyethylene (refractive index: 1.53), polymethyl methacrylate (refractive index: 1.49), poly MBS (refractive index: 1.54), medium density polyethylene (refractive index: 1.53). ), High density polyethylene (refractive index: 1.54), tetrafluoroethylene (refractive index: 1.35), poly (ethylene trifluoride) chloride (refractive index: 1.42), polytetrafluoroethylene (refractive index: 1). .3 ), And the like.
円偏光板156としては、従来の直線偏光板とλ/4板を組み合わせたものが好ましい。円偏光板156を設けることによって、表示装置150の表示のコントラストを向上することができる。 The circularly polarizing plate 156 is preferably a combination of a conventional linearly polarizing plate and a λ / 4 plate. By providing the circularly polarizing plate 156, the display contrast of the display device 150 can be improved.
(5)第五実施形態
図12は、表示装置の第五実施形態を示す概略断面図である。図12において、図3に示した波長変換基板50、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置170が、上記の第四実施形態の表示装置150と異なる点は、発光層72が、第二基板74の一方の面74a上に設けられ、第二基板74側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51からなる波長変換層積層体52から構成されている点である。
(5) Fifth Embodiment FIG. 12 is a schematic sectional view showing a fifth embodiment of the display device. 12, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 170 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side. It is a point comprised from the wavelength conversion layer laminated body 52 which consists of the laminated | stacked 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51. FIG.
(6)第六実施形態
図13は、表示装置の第六実施形態を示す概略断面図である。図13において、図1に示した波長変換基板10、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置180が、上記の第四実施形態の表示装置150と異なる点は、光源73が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一電極83、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90、電荷発生層181、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90を有する有機EL素子82から構成されている点である。
また、表示装置180が、上記の第四実施形態の表示装置150と異なる点は、第一基板71の一方の面71a上に、光散乱層155を覆うように、無機封止膜182が設けられている点である。
(6) Sixth Embodiment FIG. 13 is a schematic cross-sectional view showing a sixth embodiment of the display device. 13, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 180 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side. First electrode 83, hole injection layer 86, hole transport layer 87, organic light emitting layer 88, hole prevention layer 89, electron transport layer 90, charge generation layer 181, hole injection layer 86, hole transport layer 87, an organic EL element 82 having an organic light emitting layer 88, a hole blocking layer 89, and an electron transport layer 90.
The display device 180 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 182 is provided on the one surface 71a of the first substrate 71 so as to cover the light scattering layer 155. This is the point.
(7)第七実施形態
図14は、表示装置の第七実施形態を示す概略断面図である。図14において、図3に示した波長変換基板50、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置190が、上記の第四実施形態の表示装置150と異なる点は、発光層72が、第二基板74の一方の面74a上に設けられ、第二基板74側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51からなる波長変換層積層体52から構成されている点である。
また、表示装置190が、上記の第四実施形態の表示装置150と異なる点は、光源73が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一電極83、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90、電荷発生層181、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90を有する有機EL素子82から構成されている点である。
(7) Seventh Embodiment FIG. 14 is a schematic sectional view showing a seventh embodiment of the display device. 14, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and description thereof is omitted.
The display device 190 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side. It is a point comprised from the wavelength conversion layer laminated body 52 which consists of the laminated | stacked 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51. FIG.
Further, the display device 190 is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and is sequentially stacked from the first substrate 71 side. First electrode 83, hole injection layer 86, hole transport layer 87, organic light emitting layer 88, hole prevention layer 89, electron transport layer 90, charge generation layer 181, hole injection layer 86, hole transport layer 87, The organic EL element 82 includes an organic light emitting layer 88, a hole blocking layer 89, and an electron transport layer 90.
(8)第八実施形態
図15は、表示装置の第八実施形態を示す概略断面図である。図15において、図1に示した波長変換基板10、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置200が、上記の第四実施形態の表示装置150と異なる点は、第二基板74の一方の面74a上に、光散乱層155を覆うように低屈折率層201が設けられている点である。さらに、表示装置200が、上記の第四実施形態の表示装置150と異なる点は、低屈折率層201を覆うように無機封止膜202が設けられている点である。
(8) Eighth Embodiment FIG. 15 is a schematic sectional view showing an eighth embodiment of the display device. 15, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The difference between the display device 200 of the present embodiment and the display device 150 of the fourth embodiment is that the low refractive index layer 201 is formed on one surface 74a of the second substrate 74 so as to cover the light scattering layer 155. It is a point provided. Furthermore, the display device 200 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
(9)第九実施形態
図16は、表示装置の第九実施形態を示す概略断面図である。図16において、図1に示した波長変換基板10、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置210が、上記の第四実施形態の表示装置150と異なる点は、光源73が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一電極83、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90、電荷発生層181、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、電子輸送層90を有する有機EL素子82から構成されている点である。
また、表示装置210が、上記の第四実施形態の表示装置150と異なる点は、第二基板74の一方の面74a上に、光散乱層155を覆うように低屈折率層201が設けられている点である。さらに、表示装置210が、上記の第四実施形態の表示装置150と異なる点は、低屈折率層201を覆うように無機封止膜202が設けられている点である。
(9) Ninth Embodiment FIG. 16 is a schematic sectional view showing a ninth embodiment of the display device. 16, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 210 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side. First electrode 83, hole injection layer 86, hole transport layer 87, organic light emitting layer 88, hole prevention layer 89, electron transport layer 90, charge generation layer 181, hole injection layer 86, hole transport layer 87, an organic EL element 82 having an organic light emitting layer 88, a hole blocking layer 89, and an electron transport layer 90.
The display device 210 is different from the display device 150 of the fourth embodiment in that a low refractive index layer 201 is provided on one surface 74 a of the second substrate 74 so as to cover the light scattering layer 155. It is a point. Furthermore, the display device 210 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
(10)第十実施形態
図17は、表示装置の第十実施形態を示す概略断面図である。図17において、図3に示した波長変換基板50、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置220が、上記の第四実施形態の表示装置150と異なる点は、発光層72が、第二基板74の一方の面74a上に設けられ、第二基板74側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51からなる波長変換層積層体52から構成されている点である。
また、表示装置220が、上記の第四実施形態の表示装置150と異なる点は、第二基板74の一方の面74a上に、赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18、ブラックマトリックス19および隔壁15を覆うように低屈折率層201が設けられている点である。さらに、表示装置220が、上記の第四実施形態の表示装置150と異なる点は、低屈折率層201を覆うように無機封止膜202が設けられている点である。
(10) Tenth Embodiment FIG. 17 is a schematic sectional view showing a tenth embodiment of the display device. 17, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 220 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side. It is a point comprised from the wavelength conversion layer laminated body 52 which consists of the laminated | stacked 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51. FIG.
The display device 220 is different from the display device 150 of the fourth embodiment in that the red color filter 16, the green color filter 17, the blue color filter 18, and the black color are formed on one surface 74 a of the second substrate 74. The low refractive index layer 201 is provided so as to cover the matrix 19 and the partition wall 15. Furthermore, the display device 220 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
(11)第十一実施形態
図18は、表示装置の第十一実施形態を示す概略断面図である。図18において、図3に示した波長変換基板50、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置230が、上記の第四実施形態の表示装置150と異なる点は、発光層72が、第二基板74の一方の面74a上に設けられ、第二基板74側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51からなる波長変換層積層体52から構成されている点である。
また、表示装置230が、上記の第四実施形態の表示装置150と異なる点は、第二基板74の一方の面74a上に、赤色カラーフィルター16、緑色カラーフィルター17、青色カラーフィルター18、ブラックマトリックス19および隔壁15を覆うように低屈折率層201が設けられている点である。さらに、表示装置230が、上記の第四実施形態の表示装置150と異なる点は、低屈折率層201を覆うように無機封止膜202が設けられている点である。
また、表示装置230が、上記の第四実施形態の表示装置150と異なる点は、光源73が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一電極83、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、誘電体層231、電子輸送層90、電荷発生層181、正孔注入層86、正孔輸送層87、有機発光層88、正孔防止層89、誘電体層231、電子輸送層90を有する有機EL素子82から構成されている点である。
(11) Eleventh Embodiment FIG. 18 is a schematic sectional view showing an eleventh embodiment of the display device. 18, the same components as those of the wavelength conversion substrate 50 shown in FIG. 3, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 230 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light emitting layer 72 is provided on one surface 74a of the second substrate 74 and sequentially from the second substrate 74 side. It is a point comprised from the wavelength conversion layer laminated body 52 which consists of the laminated | stacked 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51. FIG.
The display device 230 is different from the display device 150 of the fourth embodiment in that the red color filter 16, the green color filter 17, the blue color filter 18, and black are formed on one surface 74 a of the second substrate 74. The low refractive index layer 201 is provided so as to cover the matrix 19 and the partition wall 15. Further, the display device 230 is different from the display device 150 of the fourth embodiment in that an inorganic sealing film 202 is provided so as to cover the low refractive index layer 201.
Further, the display device 230 is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and is laminated in order from the first substrate 71 side. First electrode 83, hole injection layer 86, hole transport layer 87, organic light emitting layer 88, hole prevention layer 89, dielectric layer 231, electron transport layer 90, charge generation layer 181, hole injection layer 86, positive The organic EL element 82 includes a hole transport layer 87, an organic light emitting layer 88, a hole blocking layer 89, a dielectric layer 231, and an electron transport layer 90.
誘電体層231としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本発明はこれらに限定されるものではない。 As the dielectric layer 231, a known dielectric material for inorganic EL can be used. Examples of such a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but the present invention is not limited thereto.
(12)第十二実施形態
図19は、表示装置の第十二実施形態を示す概略断面図である。図19において、図1に示した波長変換基板10、図5に示した表示装置70、図6に示した有機EL素子基板80、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
表示装置240は、第一基板71と、第一基板71の一方の面71a上に設けられた発光層72と、発光層72上に設けられた光源73と、発光層72および光源73を介して第一基板71と対向するように設けられた第二基板(封止基板)74とから概略構成されている。
発光層72は、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一波長変換層12および第二波長変換層13からなる波長変換層積層体14から構成されている。
また、光源73は、発光層72上に設けられた有機EL素子82から構成されている。
(12) Twelfth Embodiment FIG. 19 is a schematic sectional view showing a twelfth embodiment of the display device. 19, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 240 includes a first substrate 71, a light emitting layer 72 provided on one surface 71 a of the first substrate 71, a light source 73 provided on the light emitting layer 72, and the light emitting layer 72 and the light source 73. And a second substrate (sealing substrate) 74 provided so as to face the first substrate 71.
The light emitting layer 72 is provided on the one surface 71a of the first substrate 71, and the wavelength conversion layer laminate 14 including the first wavelength conversion layer 12 and the second wavelength conversion layer 13 stacked in order from the first substrate 71 side. It is composed of
The light source 73 includes an organic EL element 82 provided on the light emitting layer 72.
また、発光層72を覆うように無機封止膜151が設けられ、無機封止膜151を覆うように平坦化膜241が設けられ、発光層72と光源73の間に無機封止膜151および平坦化膜241が介在している。さらに、光源73と第二基板74との間に充填剤153が充填され、この充填剤153を介して、接着層154により、第一基板71と第二基板74が接着されている。 Further, an inorganic sealing film 151 is provided so as to cover the light emitting layer 72, a planarization film 241 is provided so as to cover the inorganic sealing film 151, and the inorganic sealing film 151 and the light source 73 are provided between the light emitting layer 72 and the light source 73. A planarizing film 241 is interposed. Further, a filler 153 is filled between the light source 73 and the second substrate 74, and the first substrate 71 and the second substrate 74 are bonded by the adhesive layer 154 through the filler 153.
また、第一基板71の一方の面71a上に、TFT(駆動素子)160が形成されている。すなわち、第一基板71の一方の面71aに、ゲート電極161が形成され、このゲート電極161を覆うように第一基板71の一方の面71a上に、ゲート絶縁膜162が形成されている。ゲート絶縁膜162上には、活性層(図示略)が形成され、活性層上にソース電極163、ドレイン電極164および配線165が形成され、これらソース電極163、ドレイン電極164および配線165を覆うように平坦化膜166が形成されている。なお、平坦化膜166は、単層構造でなくてもよく、他の層間絶縁膜と平坦化膜を組み合わせた構成としてもよい。また、平坦化膜もしくは層間絶縁膜を貫通してドレイン電極164に達するコンタクトホール167が形成され、平坦化膜166上にコンタクトホール167を介してドレイン電極164と電気的に接続された光源73の第一電極83が形成されている。第一電極83は、第一基板71側から順に積層された、反射電極168と透明電極169から構成されている。 A TFT (driving element) 160 is formed on one surface 71 a of the first substrate 71. That is, the gate electrode 161 is formed on one surface 71 a of the first substrate 71, and the gate insulating film 162 is formed on the one surface 71 a of the first substrate 71 so as to cover the gate electrode 161. An active layer (not shown) is formed on the gate insulating film 162, and a source electrode 163, a drain electrode 164, and a wiring 165 are formed on the active layer so as to cover the source electrode 163, the drain electrode 164, and the wiring 165. A planarizing film 166 is formed. Note that the planarization film 166 may not have a single-layer structure, and may have a structure in which another interlayer insulating film and a planarization film are combined. In addition, a contact hole 167 that penetrates the planarization film or the interlayer insulating film and reaches the drain electrode 164 is formed, and the light source 73 that is electrically connected to the drain electrode 164 through the contact hole 167 is formed on the planarization film 166. A first electrode 83 is formed. The first electrode 83 includes a reflective electrode 168 and a transparent electrode 169 that are sequentially stacked from the first substrate 71 side.
また、第一基板71の一方の面71a上に設けられた平坦化膜166と波長変換層積層体14との間において、赤色カラーフィルター16、緑色カラーフィルター17および青色カラーフィルター18が設けられている。
また、表示装置240の厚さ方向において、第一基板71の一方の面71a上に設けられた平坦化膜166と隔壁15との間、かつ、表示装置240の厚さ方向と垂直な方向において、赤色カラーフィルター16と緑色カラーフィルター17との間、緑色カラーフィルター17と青色カラーフィルター18との間、および、青色カラーフィルター18と赤色カラーフィルター16との間に、ブラックマトリックス19が設けられている。
In addition, a red color filter 16, a green color filter 17, and a blue color filter 18 are provided between the planarization film 166 provided on the one surface 71 a of the first substrate 71 and the wavelength conversion layer stacked body 14. Yes.
Further, in the thickness direction of the display device 240, between the planarization film 166 provided on the one surface 71 a of the first substrate 71 and the partition wall 15 and in a direction perpendicular to the thickness direction of the display device 240. A black matrix 19 is provided between the red color filter 16 and the green color filter 17, between the green color filter 17 and the blue color filter 18, and between the blue color filter 18 and the red color filter 16. Yes.
また、第一基板71の他方の面71bに、円偏光板156が設けられている。 A circularly polarizing plate 156 is provided on the other surface 71 b of the first substrate 71.
(13)第十三実施形態
図20は、表示装置の第十三実施形態を示す概略断面図である。図20において、図1に示した波長変換基板10、図5に示した表示装置70、図6に示した有機EL素子基板80、図11に示した表示装置150、および、図19に示した表示装置240と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置250が、上記の第十二実施形態の表示装置240と異なる点は、発光層72が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一波長変換層12、第二波長変換層13および第三波長変換層51からなる波長変換層積層体52から構成されている点である。
(13) Thirteenth Embodiment FIG. 20 is a schematic sectional view showing a thirteenth embodiment of the display device. 20, the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the organic EL element substrate 80 shown in FIG. 6, the display device 150 shown in FIG. 11, and the display device shown in FIG. The same components as those of the display device 240 are denoted by the same reference numerals, and the description thereof is omitted.
The display device 250 of the present embodiment is different from the display device 240 of the twelfth embodiment in that the light emitting layer 72 is provided on one surface 71a of the first substrate 71 and from the first substrate 71 side. It is the point comprised from the wavelength conversion layer laminated body 52 which consists of the 1st wavelength conversion layer 12, the 2nd wavelength conversion layer 13, and the 3rd wavelength conversion layer 51 laminated | stacked in order.
(14)第十四実施形態
図21は、表示装置の第十四実施形態を示す概略断面図である。図21において、図1に示した波長変換基板10、図5に示した表示装置70、図8に示した無機EL素子基板120、および、図11に示した表示装置150と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置260が、上記の第四実施形態の表示装置150と異なる点は、光源73が、第一基板71の一方の面71a上に設けられ、第一基板71側から順に積層された第一電極123、第一誘電体層124、発光層125、第二誘電体層126および第二電極127を有する無機EL素子122から構成されている点である。
(14) Fourteenth Embodiment FIG. 21 is a schematic sectional view showing a fourteenth embodiment of the display device. 21, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1, the display device 70 shown in FIG. 5, the inorganic EL element substrate 120 shown in FIG. 8, and the display device 150 shown in FIG. Are denoted by the same reference numerals, and the description thereof is omitted.
The display device 260 of the present embodiment is different from the display device 150 of the fourth embodiment described above in that the light source 73 is provided on one surface 71a of the first substrate 71 and stacked in order from the first substrate 71 side. The inorganic EL element 122 includes the first electrode 123, the first dielectric layer 124, the light emitting layer 125, the second dielectric layer 126, and the second electrode 127.
(15)第十五実施形態
図22は、表示装置の第十五実施形態を示す概略断面図である。図22において、図1に示した波長変換基板10と同一の構成要素には同一符号を付して、その説明を省略する。
表示装置270は、波長変換基板271と、波長変換基板271の波長変換積層体14側に順に積層された液晶セル272およびバックライトユニット273とから概略構成されている。
表示装置270において、波長変換基板271とは、例えば、上記の波長変換基板の第一実施形態における波長変換層積層体14や、波長変換基板の第二実施形態における波長変換層積層体52のことである。ここでは、波長変換基板271としては、波長変換層積層体14と同様の構造のものを例示する。
(15) Fifteenth Embodiment FIG. 22 is a schematic sectional view showing the fifteenth embodiment of the display device. In FIG. 22, the same components as those of the wavelength conversion substrate 10 shown in FIG.
The display device 270 is schematically configured by a wavelength conversion substrate 271 and a liquid crystal cell 272 and a backlight unit 273 that are sequentially stacked on the wavelength conversion laminate 14 side of the wavelength conversion substrate 271.
In the display device 270, the wavelength conversion substrate 271 is, for example, the wavelength conversion layer stack 14 in the first embodiment of the wavelength conversion substrate or the wavelength conversion layer stack 52 in the second embodiment of the wavelength conversion substrate. It is. Here, as the wavelength conversion substrate 271, a substrate having the same structure as that of the wavelength conversion layer laminate 14 is illustrated.
波長変換基板271では、第一基板71の一方の面71a上に、赤色カラーフィルター16、緑色カラーフィルター17および青色カラーフィルター18を覆うように低屈折率層274が設けられている。さらに、青色カラーフィルター18上に設けられた低屈折率層274を覆うように光散乱層275が設けられている。
また、第二波長変換層13を覆うように平坦化膜276が設けられている。
In the wavelength conversion substrate 271, a low refractive index layer 274 is provided on one surface 71 a of the first substrate 71 so as to cover the red color filter 16, the green color filter 17, and the blue color filter 18. Further, a light scattering layer 275 is provided so as to cover the low refractive index layer 274 provided on the blue color filter 18.
Further, a planarization film 276 is provided so as to cover the second wavelength conversion layer 13.
液晶セル272は、バックライト側ガラス基板277と、バックライト側ガラス基板277の一方の面277a上に設けられたバックライト側透明電極278およびバックライト側配向膜279と、バックライト側配向膜279上に順に設けられた液晶層280、光取出し側配向膜281、光取出し側透明電極282および光取出し側ガラス基板283とから概略構成されている。
バックライト側ガラス基板277のバックライトユニット273と対向する側の面(他方の面)277bには、バックライト側偏光板284が設けられている。バックライト側偏光板284は、例えば、バックライト側第二透明保護フィルム、バックライト側偏光子およびバックライト側第一透明保護フィルムから構成されている。
The liquid crystal cell 272 includes a backlight side glass substrate 277, a backlight side transparent electrode 278 and a backlight side alignment film 279 provided on one surface 277a of the backlight side glass substrate 277, and a backlight side alignment film 279. A liquid crystal layer 280, a light extraction side alignment film 281, a light extraction side transparent electrode 282, and a light extraction side glass substrate 283, which are provided in this order, are roughly configured.
A backlight side polarizing plate 284 is provided on the surface (the other surface) 277 b of the backlight side glass substrate 277 facing the backlight unit 273. The backlight side polarizing plate 284 is composed of, for example, a backlight side second transparent protective film, a backlight side polarizer, and a backlight side first transparent protective film.
光取出し側ガラス基板283の波長変換基板271と対向する側の面283aには、光取出し側偏光板285が設けられている。光取出し側偏光板285は、光取出し側第一透明保護フィルム、光取出し側偏光子および光取出し側第二透明保護フィルムから構成されている。
さらに、波長変換基板271(波長変換層積層体14)と液晶セル272の間には、励起光を透過し、波長変換層積層体14からの発光を反射し、発光を効率よく、外部に取出すために波長選択透過膜286が設けられている。
A light extraction side polarizing plate 285 is provided on the surface 283 a of the light extraction side glass substrate 283 facing the wavelength conversion substrate 271. The light extraction side polarizing plate 285 includes a light extraction side first transparent protective film, a light extraction side polarizer, and a light extraction side second transparent protective film.
Further, the excitation light is transmitted between the wavelength conversion substrate 271 (wavelength conversion layer stack 14) and the liquid crystal cell 272, the light emitted from the wavelength conversion layer stack 14 is reflected, and the light emission is efficiently extracted outside. Therefore, a wavelength selective transmission film 286 is provided.
バックライトユニット273では、液晶セル272の背面(波長変換基板271とは反対側)または側面に光源が配置される。液晶セル272の側面に光源が配置される場合、バックライトユニット273は、例えば、反射シート、励起光源、反射板、導光板、第一拡散シート、プリズムシートおよび第二拡散シートから構成される。また、バックライトユニット273とバックライト側偏光板284との間に、拡散板や輝度向上フィルムを配置してもよい。
ここでは、バックライトユニット273としては、液晶セル272の側面に配置された光源287と、光源287からの励起光を液晶セル272の面方向(バックライト側ガラス基板277の他方の面277b方向)に導光するとともに、バックライト側ガラス基板277の他方の面277bから液晶セル272に励起光を入射する導光板288とから概略構成されるものを例示した。
In the backlight unit 273, a light source is disposed on the back surface (the side opposite to the wavelength conversion substrate 271) or the side surface of the liquid crystal cell 272. When the light source is disposed on the side surface of the liquid crystal cell 272, the backlight unit 273 is constituted by, for example, a reflection sheet, an excitation light source, a reflection plate, a light guide plate, a first diffusion sheet, a prism sheet, and a second diffusion sheet. Further, a diffusion plate or a brightness enhancement film may be disposed between the backlight unit 273 and the backlight side polarizing plate 284.
Here, as the backlight unit 273, the light source 287 disposed on the side surface of the liquid crystal cell 272 and the excitation light from the light source 287 in the surface direction of the liquid crystal cell 272 (in the direction of the other surface 277 b of the backlight side glass substrate 277). And a light guide plate 288 that is guided by the other surface 277b of the backlight side glass substrate 277 and that makes the excitation light incident on the liquid crystal cell 272.
(16)第十六実施形態
図23は、表示装置の第十六実施形態を示す概略断面図である。図23において、図1に示した波長変換基板10および図22に示した表示装置280と同一の構成要素には同一符号を付して、その説明を省略する。
本実施形態の表示装置290が、上記の第十五実施形態の表示装置270と異なる点は、液晶セル272が、バックライト側ガラス基板277と、バックライト側ガラス基板277の一方の面277a上に設けられたバックライト側透明電極278およびバックライト側配向膜279と、バックライト側配向膜279上に順に設けられた液晶層280、光取出し側配向膜281および光取出し側透明電極282とから概略構成されている点である。
(16) Sixteenth Embodiment FIG. 23 is a schematic cross-sectional view showing a sixteenth embodiment of the display device. In FIG. 23, the same components as those of the wavelength conversion substrate 10 shown in FIG. 1 and the display device 280 shown in FIG.
The display device 290 of the present embodiment is different from the display device 270 of the fifteenth embodiment in that the liquid crystal cell 272 is on the backlight side glass substrate 277 and one surface 277a of the backlight side glass substrate 277. The backlight-side transparent electrode 278 and the backlight-side alignment film 279 provided on the liquid crystal layer 280, the light extraction-side alignment film 281 and the light-extraction-side transparent electrode 282 sequentially provided on the backlight-side alignment film 279. It is a point that is roughly configured.
「表示装置の回路構成」
図24は、第一~第十六実施形態の表示装置の回路構成を示すブロック図である。
第一~第十六実施形態の表示装置は、図24に示すように、回路構成としてAD変換回路301と、画像処理回路302と、制御回路303と、走査線駆動回路304と、信号線駆動回路305と、電源回路306と、を備えている。
また、液晶セルの画素部307には複数の走査線308と、複数の信号線309と、複数の電源線310と、が備えられている。
さらに、各走査線308、各信号線309および各電源線310に対応する各画素にスイッチングトランジスタ311と、駆動トランジスタ312と、有機EL素子313と、キャパシタ314と、が備えられている。
"Circuit configuration of display device"
FIG. 24 is a block diagram showing a circuit configuration of the display device according to the first to sixteenth embodiments.
As shown in FIG. 24, the display device according to the first to sixteenth embodiments includes an AD conversion circuit 301, an image processing circuit 302, a control circuit 303, a scanning line driving circuit 304, and a signal line driving circuit. A circuit 305 and a power supply circuit 306 are provided.
In addition, the pixel portion 307 of the liquid crystal cell includes a plurality of scanning lines 308, a plurality of signal lines 309, and a plurality of power supply lines 310.
Further, each pixel corresponding to each scanning line 308, each signal line 309, and each power supply line 310 is provided with a switching transistor 311, a driving transistor 312, an organic EL element 313, and a capacitor 314.
有機EL素子313を駆動する電源回路306は、走査線駆動回路304により画素部307の走査線308を順次選択し、選択されている走査線308に沿って配置されている各画素に対し、信号線駆動回路305により画素データを書き込む。すなわち、走査線駆動回路304が走査線308を順次駆動し、信号線駆動回路305が信号線309に画素データを出力することで、駆動された走査線308とデータが出力された信号線309との交差する位置に配置された画素が駆動される。 The power supply circuit 306 that drives the organic EL element 313 sequentially selects the scanning line 308 of the pixel portion 307 by the scanning line driving circuit 304, and outputs a signal to each pixel arranged along the selected scanning line 308. Pixel data is written by the line driver circuit 305. That is, the scanning line driving circuit 304 sequentially drives the scanning lines 308, and the signal line driving circuit 305 outputs pixel data to the signal lines 309, so that the driven scanning lines 308 and the signal lines 309 to which the data is output are output. Pixels arranged at the intersecting positions are driven.
さらに、バックライトユニットを駆動する電源回路306は、画像を表示する間、バックライトユニットを一定の輝度で点灯するために一定の電圧、電流を供給する。さらに、画像と同期してバックライトユニットの輝度をコントロールすることで、低消費電力化が可能となる。 Further, the power supply circuit 306 that drives the backlight unit supplies a constant voltage and current to light the backlight unit with a constant luminance while displaying an image. Furthermore, the power consumption can be reduced by controlling the brightness of the backlight unit in synchronization with the image.
「照明装置」
また、上記の第一~第十六実施形態の表示装置は、えば、図25に示すシーリングライト(照明装置)320にも適用できる。
図25に示すシーリングライト320は、発光部321と、吊下線322と、電源コード323とを備えてなる照明装置である。
シーリングライト320において、発光部321は、上記の第一~第十六実施形態の表示装置のいずれかから構成されている。
"Lighting device"
Further, the display devices of the first to sixteenth embodiments can be applied to, for example, the ceiling light (illumination device) 320 shown in FIG.
A ceiling light 320 illustrated in FIG. 25 is a lighting device including a light emitting unit 321, a hanging line 322, and a power cord 323.
In the ceiling light 320, the light emitting unit 321 includes any of the display devices of the first to sixteenth embodiments.
本実施形態のシーリングライト320は、上記の第一~第十六実施形態の表示装置を発光部321として備えることにより、発光効率に優れる照明装置となる。 The ceiling light 320 according to the present embodiment includes the display device according to any of the first to sixteenth embodiments as the light emitting unit 321, thereby providing a lighting device with excellent luminous efficiency.
また、上記の第一~第十六実施形態の表示装置は、えば、図26に示す照明スタンド(照明装置)330にも適用できる。
図26に示す照明スタンド330は、発光部331と、スタンド332と、メインスイッチ333と、電源コード334とを備えてなる照明装置である。
照明スタンド330において、発光部331は、上記の第一~第十六実施形態の表示装置のいずれかから構成されている。
Further, the display devices of the first to sixteenth embodiments can be applied to, for example, the illumination stand (illumination device) 330 shown in FIG.
An illumination stand 330 illustrated in FIG. 26 is an illumination device including a light emitting unit 331, a stand 332, a main switch 333, and a power cord 334.
In the illumination stand 330, the light emitting unit 331 is configured from any of the display devices of the first to sixteenth embodiments.
本実施形態の照明スタンド330は、上記の第一~第十六実施形態の表示装置を発光部331として備えることにより、発光効率に優れる照明装置となる。 The illumination stand 330 according to the present embodiment includes the display device according to any of the first to sixteenth embodiments as the light emitting unit 331, so that the illumination stand 330 has excellent luminous efficiency.
「電子機器」
上記の第一~第十六実施形態の表示装置は、各種電子機器に適用することができる。
以下、上記の第一~第十六実施形態の表示装置を備えた電子機器について、図27~31を用いて説明する。
上記の第一~第十六実施形態の表示装置は、例えば、図27に示す携帯電話に適用できる。
図27に示す携帯電話340は、音声入力部341、音声出力部342、アンテナ343、操作スイッチ344、表示部345および筐体346等を備えている。
そして、表示部345として上記の第一~第十六実施形態の表示装置を好適に適用できる。上記の第一~第十六実施形態の表示装置を携帯電話340の表示部345に適用することによって、良好な発光効率で映像を表示することができる。
"Electronics"
The display devices of the first to sixteenth embodiments can be applied to various electronic devices.
Hereinafter, electronic devices including the display devices according to the first to sixteenth embodiments will be described with reference to FIGS.
The display devices of the first to sixteenth embodiments can be applied to, for example, the mobile phone shown in FIG.
A cellular phone 340 illustrated in FIG. 27 includes a voice input portion 341, a voice output portion 342, an antenna 343, an operation switch 344, a display portion 345, a housing 346, and the like.
The display devices of the first to sixteenth embodiments can be suitably applied as the display unit 345. By applying the display devices of the first to sixteenth embodiments to the display unit 345 of the mobile phone 340, an image can be displayed with good luminous efficiency.
また、上記の第一~第十六実施形態の表示装置は、例えば、図28に示す薄型テレビに適用できる。
図28に示す薄型テレビ350は、表示部351、スピーカ352、キャビネット353およびスタンド354等を備えている。
そして、表示部351として上記の第一~第十六実施形態の表示装置を好適に適用できる。上記の第一~第十六実施形態の表示装置を薄型テレビ350の表示部351に適用することによって、良好な発光効率で映像を表示することができる。
In addition, the display devices of the first to sixteenth embodiments can be applied to, for example, a thin television shown in FIG.
A thin television 350 shown in FIG. 28 includes a display portion 351, speakers 352, a cabinet 353, a stand 354, and the like.
The display devices of the first to sixteenth embodiments can be suitably applied as the display unit 351. By applying the display devices of the first to sixteenth embodiments to the display unit 351 of the flat-screen television 350, an image can be displayed with good luminous efficiency.
また、上記の第一~第十六実施形態の表示装置は、例えば、図29に示す携帯型ゲーム機に適用できる。
図29に示す携帯型ゲーム機360は、操作ボタン361、362、外部接続端子363、表示部364および筐体365等を備えている。
そして、表示部364として上記の第一~第十六実施形態の表示装置を好適に適用できる。上記の第一~第十六実施形態の表示装置を携帯型ゲーム機360の表示部364に適用することによって、良好な発光効率で映像を表示することができる。
In addition, the display devices of the first to sixteenth embodiments can be applied to, for example, the portable game machine shown in FIG.
A portable game machine 360 illustrated in FIG. 29 includes operation buttons 361 and 362, an external connection terminal 363, a display portion 364, a housing 365, and the like.
The display devices of the first to sixteenth embodiments can be suitably applied as the display unit 364. By applying the display device of the first to sixteenth embodiments to the display unit 364 of the portable game machine 360, an image can be displayed with good luminous efficiency.
また、上記の第一~第十六実施形態の表示装置は、例えば、図30に示すノートパソコンに適用できる。
図30に示すノートパソコン370は、表示部371、キーボード372、タッチパッド373、メインスイッチ374、カメラ375、記録媒体スロット376および筐体377等を備えている。
そして、表示部371として上記の第一~第十六実施形態の表示装置を好適に適用できる。上記の第一~第十六実施形態の表示装置をノートパソコン370の表示部371に適用することによって、良好な発光効率で映像を表示することができる。
The display devices of the first to sixteenth embodiments can be applied to, for example, a notebook computer shown in FIG.
A notebook computer 370 illustrated in FIG. 30 includes a display portion 371, a keyboard 372, a touch pad 373, a main switch 374, a camera 375, a recording medium slot 376, a housing 377, and the like.
The display devices of the first to sixteenth embodiments can be suitably applied as the display unit 371. By applying the display devices of the first to sixteenth embodiments to the display unit 371 of the notebook computer 370, an image can be displayed with good light emission efficiency.
さらに、上記の第一~第十六実施形態の表示装置は、例えば、図31に示すタブレット端末に適用できる。
図31に示すタブレット端末380は、表示部(タッチパネル)381、カメラ382および筐体383等を備えている。
そして、表示部381として上記の第一~第十六実施形態の表示装置を好適に適用できる。上記の第一~第十六実施形態の表示装置をタブレット端末380の表示部381に適用することによって、良好な発光効率で映像を表示することができる。
Furthermore, the display devices of the first to sixteenth embodiments can be applied to, for example, the tablet terminal shown in FIG.
A tablet terminal 380 illustrated in FIG. 31 includes a display unit (touch panel) 381, a camera 382, a housing 383, and the like.
The display device of the first to sixteenth embodiments can be suitably applied as the display unit 381. By applying the display devices of the first to sixteenth embodiments to the display unit 381 of the tablet terminal 380, an image can be displayed with good light emission efficiency.
以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記の実施形態に限定されないことは言うまでもない。上記の実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
その他、表示装置、照明装置の各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である。
As mentioned above, although preferred embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above embodiment are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
In addition, specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the display device and the lighting device are not limited to the above-described embodiment, and can be changed as appropriate.
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
[実施例1]
図2A~図2Hを参照して、実施例1を説明する。
基板として、厚さ0.7mmの無アルカリガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、基板上に、スピンコート法により、このポジ型レジストを塗布し、フォトリソグラフィー法により、画素ピッチ1mm、線幅100μmでパターン形成し、基板上に、膜厚5μmの光反射性バンクを形成した(図2A)。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンレッド(0.1g)とを溶解し、赤色波長変換層形成用塗液を調製した。
次に、基板上に、スピンコート法により、赤色波長変換層形成用塗液を塗布し、膜厚1μmの赤色波長変換層を形成した(図2B)。
[Example 1]
Embodiment 1 will be described with reference to FIGS. 2A to 2H.
A non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
Next, this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 μm. A light reflective bank with a film thickness of 5 μm is formed on the substrate. Formed (FIG. 2A).
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a red wavelength conversion layer.
Next, a red wavelength conversion layer forming coating solution was applied on the substrate by spin coating to form a red wavelength conversion layer having a thickness of 1 μm (FIG. 2B).
次に、赤色波長変換層上に、前記のバンクで挟まれた画素の1/3の領域(赤色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、赤色波長変換層における赤色画素に対応する領域を遮光した(図2C)。
次に、メタルハライドランプにより、基板の赤色波長変換層が設けられている側から、赤色波長変換層に光を照射した(図2D)。これにより、遮光されていない領域においては、励起光の吸光度を低減させるとともに、赤色の波長変換能力(発光能力)を低減させる。そして、赤色波長変換層における遮光されていない領域において、赤色の波長域の光を非発光に変性させ、励起光をそのまま効率よく透過させ、かつ、赤色の波長域の光が混ざることによる色純度の低下を防止することができる。
Next, on the red wavelength conversion layer, a photomask designed so as to shield one-third of the pixels sandwiched between the banks (region corresponding to the red pixels) is disposed, and the red wavelength conversion layer The region corresponding to the red pixel in Fig. 2 was shielded from light (Fig. 2C).
Next, the red wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer was provided with a metal halide lamp (FIG. 2D). Thereby, in the area | region which is not light-shielded, while reducing the light absorbency of excitation light, the red wavelength conversion capability (light emission capability) is reduced. And in the non-shielded region of the red wavelength conversion layer, the color purity is obtained by modifying the light in the red wavelength region to non-emission, transmitting the excitation light as it is, and mixing the light in the red wavelength region. Can be prevented.
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンイエロー(0.1g)とを溶解し、緑色波長変換層形成用塗液を調製した。
次に、赤色波長変換層上に、スピンコート法により、緑色波長変換層形成用塗液を塗布し、膜厚2μmの緑色波長変換層を形成した(図2E)。
次に、緑色波長変換層上に、前記のフォトマスクで遮光した画素を含む、前記のバンクで挟まれた画素の2/3の領域(赤色画素に対応する領域および緑色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、緑色波長変換層における赤色画素に対応する領域および緑色画素に対応する領域を遮光した(図2F)。
次に、メタルハライドランプにより、基板の赤色波長変換層および緑色波長変換層が設けられている側から、緑色波長変換層に光を照射した(図2G)。これにより、緑色波長変換層における遮光されていない領域においては、励起光の吸光度を低減させるとともに、緑色の波長変換能力(発光能力)を低減させる。そして、緑色波長変換層における遮光されていない領域において、緑色の波長域の光を非発光に変性させ、励起光をそのまま効率よく透過させ、かつ、緑色の波長域の光が混ざることによる色純度の低下を防止することができる。
次に、フォトマスクを除去することにより、実施例1の波長変換基板を得た(図2H)。
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
Next, a green wavelength conversion layer forming coating solution was applied on the red wavelength conversion layer by spin coating to form a green wavelength conversion layer having a thickness of 2 μm (FIG. 2E).
Next, on the green wavelength conversion layer, 2/3 of the pixels sandwiched between the banks including the pixels shielded by the photomask (regions corresponding to red pixels and regions corresponding to green pixels) A photomask designed to shield the light was placed, and the region corresponding to the red pixel and the region corresponding to the green pixel in the green wavelength conversion layer were shielded (FIG. 2F).
Next, the green wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided (FIG. 2G). Thereby, in the area | region which is not light-shielded in the green wavelength conversion layer, while reducing the light absorbency of excitation light, the green wavelength conversion capability (light emission capability) is reduced. And in the unshielded area of the green wavelength conversion layer, the color purity is obtained by modifying the light in the green wavelength range to non-emission, allowing the excitation light to pass efficiently as it is, and mixing the light in the green wavelength range. Can be prevented.
Next, the photomask was removed to obtain the wavelength conversion substrate of Example 1 (FIG. 2H).
得られた波長変換基板について、市販の紫外可視分光光度計(商品名:UV-2450、島津製作所社製)と量子収率測定システム(商品名:QE-1000、大塚電子社製)を用いて、基板の波長変換層が設けられていない側から、発光スペクトル(励起光波長:460nm)を測定した。結果を、図32A乃至図32Cに示す。
図32A中、「0mJ」は、赤色波長変換層の露光量が0mJであるときの発光スペクトルを示す。「12mJ」は、赤色波長変換層の露光量が12mJであるときの発光スペクトルを示す。「108mJ」は、赤色波長変換層の露光量が108mJであるときの発光スペクトルを示す。「356mJ」は、赤色波長変換層の露光量が356mJであるときの発光スペクトルを示す。「852mJ」は、赤色波長変換層の露光量が852mJであるときの発光スペクトルを示す。「1846mJ」は、赤色波長変換層の露光量が0mJであるときの発光スペクトルを示す。「2840mJ」は、赤色波長変換層の露光量が2840mJであるときの発光スペクトルを示す。
また、図32B中、「0mJ」は、緑色波長変換層の露光量が0mJであるときの発光スペクトルを示す。「12mJ」は、緑色波長変換層の露光量が12mJであるときの発光スペクトルを示す。「108mJ」は、緑色波長変換層の露光量が108mJであるときの発光スペクトルを示す。「356mJ」は、緑色波長変換層の露光量が356mJであるときの発光スペクトルを示す。「852mJ」は、緑色波長変換層の露光量が852mJであるときの発光スペクトルを示す。「1846mJ」は、緑色波長変換層の露光量が1846mJであるときの発光スペクトルを示す。「2840mJ」は、緑色波長変換層の露光量が2840mJであるときの発光スペクトルを示す。
図32Cにおいて、実線は、赤色波長変換層及び緑色波長変換層が非露光である場合の発光スペクトルを示す。破線は、赤色波長変換層が露光され、緑色波長変換層が非露光である場合の発光スペクトルを示す。
図32Cの結果から、赤色波長変換層における光を照射した部分(緑色画素に対応する領域および青色画素に対応する領域)からは、赤色の波長域の光が観測されず、励起光により励起されたルモーゲンイエローからの緑色の波長域の光が観測されることがわかった。
また図32Cの結果から、赤色波長変換層における光を照射していない部分(遮光した部分、赤色画素に対応する領域)からは、励起光により励起されて発光する緑色波長変換層からの緑色の波長域の光と緑色波長変換層により吸収されず透過した励起光により励起されたルモーゲンレッドからの赤色の波長域の光が観測されることがわかった。これにより、光を照射することにより、赤色画素と緑色画素のパターニングができることが確認された。さらに、紫外の波長域から青色の波長域の励起光を発光する光源と組み合わせることによって、赤色波長変換層と緑色波長変換層のうち、光を照射した部分を青色画素に用いることができ、フルカラー表示に必要な赤色画素、緑色画素、青色画素をパターニングできることが確認された。
About the obtained wavelength conversion board | substrate, using a commercially available ultraviolet visible spectrophotometer (trade name: UV-2450, manufactured by Shimadzu Corporation) and a quantum yield measurement system (trade name: QE-1000, manufactured by Otsuka Electronics Co., Ltd.) The emission spectrum (excitation light wavelength: 460 nm) was measured from the side where the wavelength conversion layer of the substrate was not provided. The results are shown in FIGS. 32A to 32C.
In FIG. 32A, “0 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 0 mJ. “12 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 12 mJ. “108 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 108 mJ. “356 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 356 mJ. “852 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 852 mJ. “1846 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 0 mJ. “2840 mJ” indicates an emission spectrum when the exposure amount of the red wavelength conversion layer is 2840 mJ.
In FIG. 32B, “0 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 0 mJ. “12 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 12 mJ. “108 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 108 mJ. “356 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 356 mJ. “852 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 852 mJ. “1846 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 1846 mJ. “2840 mJ” indicates an emission spectrum when the exposure amount of the green wavelength conversion layer is 2840 mJ.
In FIG. 32C, the solid line shows the emission spectrum when the red wavelength conversion layer and the green wavelength conversion layer are not exposed. A broken line shows an emission spectrum when the red wavelength conversion layer is exposed and the green wavelength conversion layer is not exposed.
From the result of FIG. 32C, the light in the red wavelength conversion layer (the region corresponding to the green pixel and the region corresponding to the blue pixel) is not observed, and is excited by the excitation light. It was found that light in the green wavelength range from Lumorgen Yellow was observed.
Further, from the result of FIG. 32C, the green wavelength from the green wavelength conversion layer that is excited by the excitation light and emits light from the portion not irradiated with light in the red wavelength conversion layer (the portion corresponding to the red pixel). It was found that light in the wavelength region and light in the red wavelength region from Lummogen Red excited by excitation light that was transmitted without being absorbed by the green wavelength conversion layer were observed. Thus, it was confirmed that red pixels and green pixels can be patterned by irradiating light. Furthermore, when combined with a light source that emits excitation light in the ultraviolet wavelength region to the blue wavelength region, the light-irradiated portion of the red wavelength conversion layer and the green wavelength conversion layer can be used for blue pixels. It was confirmed that red, green, and blue pixels necessary for display can be patterned.
[実施例2]
図4A~図4Hを参照して、実施例2を説明する。
基板として、厚さ0.7mmの無アルカリガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、基板上に、スピンコート法により、このポジ型レジストを塗布し、フォトリソグラフィー法により、画素ピッチ1mm、線幅100μmでパターン形成し、基板上に、膜厚10μmの光反射性バンクを形成した(図4A)。
次に、トルエンに、ポリスチレン樹脂(10g)と、ルモーゲンレッド(0.1g)とを溶解し、赤色波長変換層形成用塗液を調製した。
次に、基板上に、スピンコート法により、赤色波長変換層形成用塗液を塗布し、膜厚1μmの赤色波長変換層を形成した(図4B)。
[Example 2]
A second embodiment will be described with reference to FIGS. 4A to 4H.
A non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
Next, this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 μm. A light reflective bank having a thickness of 10 μm is formed on the substrate. Formed (FIG. 4A).
Next, polystyrene resin (10 g) and rumogen red (0.1 g) were dissolved in toluene to prepare a red wavelength conversion layer forming coating solution.
Next, a red wavelength conversion layer forming coating solution was applied on the substrate by spin coating to form a red wavelength conversion layer having a thickness of 1 μm (FIG. 4B).
次に、赤色波長変換層上に、前記のバンクで挟まれた画素の1/3の領域(赤色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、赤色波長変換層における赤色画素に対応する領域を遮光した(図4C)。
次に、メタルハライドランプにより、基板の赤色波長変換層が設けられている側から、赤色波長変換層に光を照射した(図4D)。これにより、遮光されていない領域においては、励起光の吸光度を低減させるとともに、赤色の波長変換能力(発光能力)を低減させる。そして、赤色波長変換層における遮光されていない領域において、赤色の波長域の光を非発光に変性させ、励起光をそのまま効率よく透過させ、かつ、赤色の波長域の光が混ざることによる色純度の低下を防止することができる。
Next, on the red wavelength conversion layer, a photomask designed to shield one-third of the pixels sandwiched between the banks (the region corresponding to the red pixels) is disposed, and the red wavelength conversion layer The area corresponding to the red pixel in Fig. 4 was shielded from light (Fig. 4C).
Next, the red wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer was provided (FIG. 4D). Thereby, in the area | region which is not light-shielded, while reducing the light absorbency of excitation light, the red wavelength conversion capability (light emission capability) is reduced. And in the non-shielded region of the red wavelength conversion layer, the color purity is obtained by modifying the light in the red wavelength region to non-emission, transmitting the excitation light as it is, and mixing the light in the red wavelength region. Can be prevented.
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(0.1g)とを溶解し、緑色波長変換層形成用塗液を調製した。
次に、赤色波長変換層上に、スピンコート法により、緑色波長変換層形成用塗液を塗布し、膜厚2μmの緑色波長変換層を形成した(図4E)。
次に、緑色波長変換層上に、前記のフォトマスクで遮光した画素を含む、前記のバンクで挟まれた画素の2/3の領域(赤色画素に対応する領域および緑色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、緑色波長変換層における赤色画素に対応する領域および緑色画素に対応する領域を遮光した(図4F)。
次に、メタルハライドランプにより、基板の赤色波長変換層および緑色波長変換層が設けられている側から、緑色波長変換層に光を照射した(図4G)。これにより、緑色波長変換層における遮光されていない領域においては、励起光の吸光度を低減させるとともに、緑色の波長変換能力(発光能力)を低減させる。そして、緑色波長変換層における遮光されていない領域において、緑色の波長域の光を非発光に変性させ、励起光をそのまま効率よく透過させ、かつ、緑色の波長域の光が混ざることによる色純度の低下を防止することができる。
次に、トルエンに、ポリスチレン樹脂(10g)と、1,4-ビス-[2-(4-フルオロ-フェニル)-ビニル]-2,5-ビス-オクチルオキシ-ベンゼン(0.1g)とを溶解し、青色波長変換層形成用塗液を調製した。
次に、緑色波長変換層上に、スピンコート法により、青色波長変換層形成用塗液を塗布し、膜厚4μmの青色波長変換層を形成し、実施例2の波長変換基板を得た(図4H)。
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (0.1 g) was dissolved to prepare a coating solution for forming a green wavelength conversion layer.
Next, a green wavelength conversion layer forming coating solution was applied on the red wavelength conversion layer by spin coating to form a green wavelength conversion layer having a thickness of 2 μm (FIG. 4E).
Next, on the green wavelength conversion layer, 2/3 of the pixels sandwiched between the banks including the pixels shielded by the photomask (regions corresponding to red pixels and regions corresponding to green pixels) A photomask designed to shield the light was placed, and the region corresponding to the red pixel and the region corresponding to the green pixel in the green wavelength conversion layer were shielded (FIG. 4F).
Next, the green wavelength conversion layer was irradiated with light from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided (FIG. 4G). Thereby, in the area | region which is not light-shielded in the green wavelength conversion layer, while reducing the light absorbency of excitation light, the green wavelength conversion capability (light emission capability) is reduced. And in the unshielded area of the green wavelength conversion layer, the color purity is obtained by modifying the light in the green wavelength range to non-emission, allowing the excitation light to pass efficiently as it is, and mixing the light in the green wavelength range. Can be prevented.
Next, a polystyrene resin (10 g) and 1,4-bis- [2- (4-fluoro-phenyl) -vinyl] -2,5-bis-octyloxy-benzene (0.1 g) are added to toluene. It melt | dissolved and the coating liquid for blue wavelength conversion layer formation was prepared.
Next, a blue wavelength conversion layer-forming coating solution was applied onto the green wavelength conversion layer by a spin coating method to form a blue wavelength conversion layer having a thickness of 4 μm, thereby obtaining the wavelength conversion substrate of Example 2 ( FIG. 4H).
得られた波長変換基板について、市販の紫外可視分光光度計(商品名:UV-2450、島津製作所社製)と量子収率測定システム(商品名:QE-1000、大塚電子社製)を用いて、基板の波長変換層が設けられていない側から、発光スペクトル(励起光波長:460nm)を測定した。結果を、図33に示す。
図33の結果から、赤色波長変換層に光を照射した部分(緑色画素に対応する領域および青色画素に対応する領域)からは、赤色の波長域の光が観測されず、励起光により励起された青色波長変換層からの青色の波長域の光と、青色波長変換層により吸収されず透過した励起光により励起された9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワンからの緑色の波長域の光とが観測されることがわかった。
また、赤色波長変換層に光を照射していない部分(遮光した部分、赤色画素に対応する領域)からは、励起光により励起されて発光する青色波長変換層からの青色の波長域の光により励起され発光する緑色波長変換層からの緑色の波長域の光、励起光により励起されて発光する青色波長変換層からの青色の波長域の光、青色波長変換層、緑色波長変換層により吸収されず透過した励起光により励起されたルモーゲンレッドからの赤色の波長域の光が観測され、赤色波長変換層と緑色波長変換層のうち、光を照射した部分を青色画素に用いることができ、フルカラー表示に必要な赤色画素、緑色画素、青色画素をパターニングできることが確認された。
About the obtained wavelength conversion board | substrate, using a commercially available ultraviolet visible spectrophotometer (trade name: UV-2450, manufactured by Shimadzu Corporation) and a quantum yield measurement system (trade name: QE-1000, manufactured by Otsuka Electronics Co., Ltd.) The emission spectrum (excitation light wavelength: 460 nm) was measured from the side where the wavelength conversion layer of the substrate was not provided. The results are shown in FIG.
From the result of FIG. 33, light in the red wavelength region is not observed from the portion irradiated with light to the red wavelength conversion layer (region corresponding to the green pixel and region corresponding to the blue pixel), and is excited by the excitation light. 9- (1H-benzoimidazol-2-yl) -1,1,6 excited by light in the blue wavelength region from the blue wavelength conversion layer and excitation light that was transmitted without being absorbed by the blue wavelength conversion layer It was found that light in the green wavelength range from 6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H-11-oxa-aza-benzoanthracene-10-one was observed.
In addition, from the portion where the red wavelength conversion layer is not irradiated with light (the portion shielded from light, the region corresponding to the red pixel), the light in the blue wavelength region from the blue wavelength conversion layer that emits light when excited by the excitation light is emitted. Light in the green wavelength range from the green wavelength conversion layer that emits light when excited, light in the blue wavelength range from the blue wavelength conversion layer that emits light when excited by the excitation light, absorbed by the blue wavelength conversion layer and the green wavelength conversion layer The light in the red wavelength range from the rumogen red excited by the transmitted excitation light is observed, and the portion irradiated with light in the red wavelength conversion layer and the green wavelength conversion layer can be used for the blue pixel, It was confirmed that red, green and blue pixels required for full color display can be patterned.
[実施例3]
基板として、厚さ0.7mmの無アルカリガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、トルエンに、ポリスチレン樹脂(10g)と、クマリン6(0.1g)とを溶解し、緑色波長変換層形成用塗液を調製した。
次に、基板上に、スピンコート法により、緑色波長変換層形成用塗液を塗布し、膜厚1μmの緑色波長変換層を形成し、基板上に緑色波長変換層が形成された、実施例3の波長変換基板を得た。
次に、緑色波長変換層上に、幅5000μmの開口部と、幅5000μmの遮光部とを交互に有するフォトマスクを配置した後、メタルハライドランプにより、基板の緑色波長変換層が設けられている側から、緑色波長変換層に光を照射し、開口部で露出している緑色波長変換層を露光し、緑色波長変換層をパターニングした。そして、緑色波長変換層における光を照射した部分の幅(実測値)と、フォトマスクの開口部の幅(設計値)とを比較して、パターニングの精度を求めた。結果を、表1に示す。
[Example 3]
A non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, polystyrene resin (10 g) and coumarin 6 (0.1 g) were dissolved in toluene to prepare a coating solution for forming a green wavelength conversion layer.
Next, a green wavelength conversion layer forming coating solution was applied on a substrate by a spin coating method to form a green wavelength conversion layer having a thickness of 1 μm, and the green wavelength conversion layer was formed on the substrate. 3 wavelength conversion substrates were obtained.
Next, a photomask having alternating openings having a width of 5000 μm and light-shielding portions having a width of 5000 μm is disposed on the green wavelength conversion layer, and then the side on which the green wavelength conversion layer of the substrate is provided by a metal halide lamp Then, the green wavelength conversion layer was irradiated with light, the green wavelength conversion layer exposed at the opening was exposed, and the green wavelength conversion layer was patterned. Then, the accuracy of patterning was obtained by comparing the width (measured value) of the portion irradiated with light in the green wavelength conversion layer with the width (design value) of the opening of the photomask. The results are shown in Table 1.
[実施例4]
幅1000μmの開口部と、幅1000μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例4の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 4]
A wavelength conversion substrate of Example 4 was produced in the same manner as Example 3 except that a photomask having alternating openings having a width of 1000 μm and light-shielding parts having a width of 1000 μm was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例5]
幅500μmの開口部と、幅500μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例5の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 5]
A wavelength conversion substrate of Example 5 was produced in the same manner as in Example 3 except that a photomask having alternately 500 μm wide openings and 500 μm wide light shielding parts was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例6]
幅100μmの開口部と、幅100μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例6の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 6]
A wavelength conversion substrate of Example 6 was produced in the same manner as in Example 3 except that a photomask having alternating openings with a width of 100 μm and light shielding parts with a width of 100 μm was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例7]
幅50μmの開口部と、幅50μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例7の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 7]
A wavelength conversion substrate of Example 7 was produced in the same manner as Example 3 except that a photomask having alternately 50 μm wide openings and 50 μm wide light shielding parts was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例8]
幅20μmの開口部と、幅20μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例8の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 8]
A wavelength conversion substrate of Example 8 was produced in the same manner as in Example 3 except that a photomask having alternating openings having a width of 20 μm and light-shielding portions having a width of 20 μm was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例9]
幅10μmの開口部と、幅10μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例9の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 9]
A wavelength conversion substrate of Example 9 was produced in the same manner as in Example 3 except that a photomask having alternating openings with a width of 10 μm and light-shielding portions with a width of 10 μm was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例10]
幅5μmの開口部と、幅5μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例10の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 10]
A wavelength conversion substrate of Example 10 was produced in the same manner as in Example 3 except that a photomask having alternately 5 μm wide openings and 5 μm wide light shielding parts was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
[実施例11]
幅1μmの開口部と、幅1μmの遮光部とを交互に有するフォトマスクを用いたこと以外は実施例3と同様にして、実施例11の波長変換基板を作製した。
得られた波長変換基板について、実施例3と同様にして、パターニングの精度を求めた。結果を、表1に示す。
[Example 11]
A wavelength conversion substrate of Example 11 was produced in the same manner as in Example 3 except that a photomask having alternating openings having a width of 1 μm and light-shielding portions having a width of 1 μm was used.
About the obtained wavelength conversion board | substrate, it carried out similarly to Example 3, and calculated | required the precision of patterning. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
表1の結果から、実施例3~11によって、波長変換層を、超高精細にパターニングできることが実証された。 From the results in Table 1, it was proved that the wavelength conversion layer can be patterned with ultrahigh definition in Examples 3 to 11.
[実施例12]
「波長変換基板の作製」
基板として、厚さ0.7mm、20mm×20mm角の無アルカリガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、基板上に、スピンコート法により、このポジ型レジストを塗布し、フォトリソグラフィー法により、画素ピッチ1mm、線幅100μmでパターン形成し、基板上に、膜厚5μmの光反射性バンクを形成した。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンレッド(0.1g)とを溶解し、赤色波長変換層形成用塗液を調製した。
次に、基板上に、スピンコート法により、赤色波長変換層形成用塗液を塗布し、膜厚1μmの赤色波長変換層を形成した。
次に、赤色波長変換層上に、前記のバンクで挟まれた画素の2/3の領域(赤色画素に対応する領域および緑色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、赤色波長変換層における赤色画素に対応する領域および緑色画素に対応する領域を遮光した。
次に、メタルハライドランプにより、基板の赤色波長変換層が設けられている側から、赤色波長変換層に光(3000mJ/cm)を照射した。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンイエロー(0.1g)とを溶解し、緑色波長変換層形成用塗液を調製した。
次に、赤色波長変換層上に、スピンコート法により、緑色波長変換層形成用塗液を塗布し、膜厚2μmの緑色波長変換層を形成した。
次に、緑色波長変換層上に、前記のフォトマスクで遮光した画素を含む、前記のバンクで挟まれた画素の1/3の領域(赤色画素に対応する領域)を遮光するように設計されたフォトマスクを配置し、赤色波長変換層における赤色画素に対応する領域を遮光した。
次に、メタルハライドランプにより、基板の赤色波長変換層および緑色波長変換層が設けられている側から、緑色波長変換層に光(3000mJ/cm)を照射した。
[Example 12]
"Production of wavelength conversion substrate"
A non-alkali glass substrate having a thickness of 0.7 mm and a 20 mm × 20 mm square was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
Next, this positive resist is applied to the substrate by spin coating, and a pattern is formed by a photolithography method with a pixel pitch of 1 mm and a line width of 100 μm. A light reflective bank with a film thickness of 5 μm is formed on the substrate. Formed.
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a red wavelength conversion layer.
Next, a red wavelength conversion layer forming coating solution was applied on the substrate by a spin coating method to form a red wavelength conversion layer having a thickness of 1 μm.
Next, on the red wavelength conversion layer, a photomask designed to shield 2/3 of the region sandwiched between the banks (region corresponding to the red pixel and region corresponding to the green pixel). The region corresponding to the red pixel and the region corresponding to the green pixel in the red wavelength conversion layer were shielded from light.
Next, the red wavelength conversion layer was irradiated with light (3000 mJ / cm 2 ) from the side of the substrate on which the red wavelength conversion layer was provided with a metal halide lamp.
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
Next, a green wavelength conversion layer-forming coating solution was applied onto the red wavelength conversion layer by a spin coating method to form a green wavelength conversion layer having a thickness of 2 μm.
Next, on the green wavelength conversion layer, it is designed to shield one third of the pixels sandwiched between the banks (the region corresponding to red pixels) including the pixels shielded by the photomask. A photomask was placed to shield the area corresponding to the red pixel in the red wavelength conversion layer.
Next, the green wavelength conversion layer was irradiated with light (3000 mJ / cm 2 ) from the side of the substrate on which the red wavelength conversion layer and the green wavelength conversion layer were provided using a metal halide lamp.
「青色発光有機EL素子の作製」
基板として、厚さ0.7mmの無アルカリガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を90nmの膜厚で積層して形成し、幅2mmのストライプを、フォトリソグラフィー法によりパターン形成し、第一電極を形成した。
次に、前記のアクティブ基板を洗浄した。アクティブ基板の洗浄法としては、例えば、アセトン、イソプロピルアルコール(IPA)等を用いて、超音波洗浄を10分間行い、続いて、UV-オゾン洗浄を30分間行う方法を用いた。
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用いて、抵抗加熱蒸着法により、第一電極上に、膜厚20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、膜厚20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート 
イリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて、厚さ10nmの電子輸送層を形成した。
次に、電子輸送層上に、フッ化リチウム(LiF)を用いて、厚さ5nmの電子注入層を形成した。
次に、第二電極として、半透明電極を形成した。
まず、金属蒸着用チャンバー内の基板ホルダーに、前記の基板を固定した。
次に、真空蒸着法により、マグネシウムと銀を、それぞれの蒸着速度を0.1Å/sec、0.9Å/secとし、共蒸着することにより、電子注入層上に、厚さ1nmのマグネシウム銀を、所望のパターンで形成した。
さらに、干渉効果を強調する目的、および、第二電極での配線抵抗による電圧降下を防止する目的で、真空蒸着法により、銀を、蒸着速度を1Å/secとし、蒸着することにより、マグネシウム銀上に、厚さ19nmの銀を、所望のパターンで形成した。
"Production of blue light-emitting organic EL devices"
A non-alkali glass substrate having a thickness of 0.7 mm was used as the substrate. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, a reflective electrode Al (aluminum) 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm are formed by sputtering, and a stripe with a width of 2 mm is formed by photolithography. The first electrode was formed.
Next, the active substrate was cleaned. As an active substrate cleaning method, for example, acetone, isopropyl alcohol (IPA) or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
Next, this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less to form each layer constituting the organic layer.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used, and a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
Next, as a hole transport material, N, N′-di-l-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) Was used to form a 20 nm-thick hole transport layer by resistance heating vapor deposition.
Next, a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer. Here, 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 Å / sec and 0.2 Å / sec, respectively.
Next, a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer having a thickness of 5 nm was formed on the electron transport layer by using lithium fluoride (LiF).
Next, a semitransparent electrode was formed as the second electrode.
First, the said board | substrate was fixed to the board | substrate holder in the chamber for metal vapor deposition.
Next, magnesium and silver are vapor-deposited at a rate of 0.1 、 / sec and 0.9 、 / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern.
Further, for the purpose of emphasizing the interference effect and preventing the voltage drop due to the wiring resistance at the second electrode, silver is deposited by vacuum deposition at a deposition rate of 1 Å / sec. On top, 19 nm thick silver was formed in the desired pattern.
次に、波長変換基板と青色発光有機EL素子を、貼り合わせ用のグローブボックス(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
波長変換基板を、グローブボックス中で90℃にて1時間加熱することにより、波長変換層中の水分を除去した。
次に、波長変換基板の外周部に紫外線硬化型樹脂を塗布し、波長変換基板と青色発光有機EL素子を、表示部の外に形成されている位置合わせマーカーにより位置合わせを行って貼り合せ、紫外線硬化型樹脂硬化装置で露光し、実施例12の波長変換方式有機EL素子を得た。
Next, the wavelength conversion substrate and the blue light-emitting organic EL element were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
The wavelength conversion substrate was heated in a glove box at 90 ° C. for 1 hour to remove moisture in the wavelength conversion layer.
Next, an ultraviolet curable resin is applied to the outer peripheral portion of the wavelength conversion substrate, and the wavelength conversion substrate and the blue light emitting organic EL element are aligned by alignment with an alignment marker formed outside the display unit, It exposed with the ultraviolet curing resin curing apparatus, and obtained the wavelength conversion system organic EL element of Example 12.
得られた波長変換方式有機EL素子に対して、アルミニウムとIZOからなる電極を陽極とし、銀を陰極として、5Vの直流電圧を印加し、各領域での発光特性を測定した。
その結果、赤色波長変換層および緑色波長変換層を露光していない部分からは、赤色波長変換層からの赤色の波長域の光が観測され、赤色波長変換層を露光し、緑色波長変換層を露光していない部分からは、緑色波長変換層からの緑色の波長域の光が観測され、赤色波長変換層および緑色波長変換層を露光した部分からは、青色発光有機EL素子からの青色の波長域の光が観測された。
With respect to the obtained wavelength conversion type organic EL device, a direct current voltage of 5 V was applied using an electrode made of aluminum and IZO as an anode and silver as a cathode, and the emission characteristics in each region were measured.
As a result, from the part where the red wavelength conversion layer and the green wavelength conversion layer are not exposed, light in the red wavelength range from the red wavelength conversion layer is observed, the red wavelength conversion layer is exposed, and the green wavelength conversion layer is exposed. Light in the green wavelength region from the green wavelength conversion layer is observed from the unexposed portion, and the blue wavelength from the blue light emitting organic EL element is observed from the portion exposed to the red wavelength conversion layer and the green wavelength conversion layer. Area light was observed.
[実施例13]
図11~14を参照して、実施例13を説明する。
「波長変換基板の作製」
基板として、厚さ0.7mm、100mm×100mm角のガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、基板上に、黒色隔壁材料として、スピンコーターを用いて、BKレジスト(東京応化社製)を塗布した。
その後、70℃にて15分間プリベークして、膜厚1μmの塗膜を形成した。この塗膜に所望の画像パターンが形成できるようなマスク(画素ピッチ200μm、線幅20μm)を被せて、i線(100mJ/cm)を照射し、露光した。
次いで、現像液として、炭酸ナトリウム水溶液を用いて現像し、純水でリンス処理を行い、光吸収層(低反射層)を形成した。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、基板上に、スピンコート法により、このポジ型レジストを塗布し、フォトリソグラフィー法により、画素ピッチ200μm、線幅20μmでパターニングし、低反射層上に、膜厚10μmの光反射性バンクを形成した。
次に、バンクによって区画された領域に、赤色カラーフィルター、緑色カラーフィルター、青色カラーフィルターをパターニングした。
次に、赤色カラーフィルター、緑色カラーフィルターおよび青色カラーフィルター上に、光散乱層を形成した。ここで、光散乱層を形成するには、まず、平均粒径1.5μmのシリカ粒子(屈折率:1.65)20gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)に溶解されたポリビニルアルコール30gを加え、分散機により攪拌して、光散乱層形成用塗液を調製した。
次に、前記のガラス基板上の光吸収層が形成されていない領域に、スクリーン印刷法により、その光散乱層形成用塗液を塗布した。引き続き、真空オーブンにより、200℃、10mmHgの条件で4時間加熱乾燥し、光散乱層を形成した。
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンレッド(0.1g)とを溶解し、赤色波長変換層形成用塗液を調製した。
次に、前記のガラス基板のカラーフィルター上に、スピンコート法により、赤色波長変換層形成用塗液を塗布し、膜厚2μmの赤色波長変換層を形成した。
次に、青色画素、緑色画素に対応する部分は、光を透過し、赤色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、赤色波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより、青色画素、緑色画素においては、赤色波長変換層の青色の波長域の光の吸光度を低減させ、かつ、赤色の波長変換能力(発光能力)を低減させ、赤色の波長域の光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率よく透過させ、かつ、赤色の波長域の光が混ざることによる色純度の低下を防止することができた。
[Example 13]
A thirteenth embodiment will be described with reference to FIGS.
"Production of wavelength conversion substrate"
As the substrate, a glass substrate having a thickness of 0.7 mm and a size of 100 mm × 100 mm was used. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, a BK resist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied as a black partition material on the substrate using a spin coater.
Then, it prebaked at 70 degreeC for 15 minutes, and formed the coating film with a film thickness of 1 micrometer. This coating film was covered with a mask (pixel pitch 200 μm, line width 20 μm) so that a desired image pattern can be formed, irradiated with i-line (100 mJ / cm 2 ) and exposed.
Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, rinsed with the pure water, and formed the light absorption layer (low reflection layer).
Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
Next, this positive resist is coated on the substrate by spin coating, patterned by a photolithography method with a pixel pitch of 200 μm and a line width of 20 μm, and a 10 μm thick light reflective bank on the low reflective layer. Formed.
Next, a red color filter, a green color filter, and a blue color filter were patterned in the area partitioned by the bank.
Next, a light scattering layer was formed on the red color filter, the green color filter, and the blue color filter. Here, in order to form the light scattering layer, first, 20 g of silica particles (refractive index: 1.65) having an average particle diameter of 1.5 μm are dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1. 30 g of the polyvinyl alcohol thus prepared was added and stirred with a disperser to prepare a coating solution for forming a light scattering layer.
Next, the light scattering layer forming coating liquid was applied to the region where the light absorption layer on the glass substrate was not formed by a screen printing method. Then, it heat-dried on 200 degreeC and 10 mmHg conditions for 4 hours with the vacuum oven, and formed the light-scattering layer.
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzoimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen red (0.1 g) were dissolved to prepare a coating solution for forming a red wavelength conversion layer.
Next, a red wavelength conversion layer-forming coating solution was applied onto the color filter of the glass substrate by a spin coating method to form a red wavelength conversion layer having a thickness of 2 μm.
Next, using a photomask designed so that the portions corresponding to the blue and green pixels transmit light and the portions corresponding to the red pixels are shielded, the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side. As a result, in the blue pixel and the green pixel, the absorbance of light in the blue wavelength range of the red wavelength conversion layer is reduced, and the red wavelength conversion capability (light emission capability) is reduced, and light in the red wavelength range is reduced. Modified to non-luminescence. As a result, the light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the red wavelength region can be prevented.
次に、トルエンに、ポリスチレン樹脂(10g)と、9-(1H-ベンゾイミダゾール-2-イル)-1,1,6,6-テトラメチル-2,3,5,6-テトラヒドロ-1H,4H-11-オキサ-アザ-ベンゾアントラセン-10-ワン(1g)と、ルモーゲンイエロー(0.1g)とを溶解し、緑色波長変換層形成用塗液を調製した。
次に、赤色波長変換層上に、スピンコート法により、緑色波長変換層形成用塗液を塗布し、膜厚3μmの緑色波長変換層を形成した。
次に、青色画素に対応する部分は、光を透過し、赤色画素と緑色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、緑色波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより、青色画素においては、緑色波長変換層の青色の波長域の光の吸光度を低減させ、かつ、緑色の波長変換能力(発光能力)を低減させ、緑色の波長域の光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率よく透過させ、かつ、緑色の波長域の光が混ざることによる色純度の低下を防止することができる。
上記プロセスは、ドライエアー中で行った。
次に、上記の波長変換層が形成された基板を、グローブボックス(水分濃度:1ppm以下、酸素濃度:1ppm以下)に移し、80℃にて1時間加熱し、波長変換層中の水分、酸素を除去した。
次に、波長変換層上に、スパッタリング法により、膜厚2μmのSiON膜からなるガスバリア層を形成した。
さらに、緑色波長変換層をパターニングした後、緑色波長変換層上に青色波長変換層を形成した。ここで、青色波長変換層を形成するには、まず、トルエンに、ポリスチレン樹脂(10g)と、4,4 ’- ビス(2,2 ’-ジフェニルビニル)ビフェニル(DPVBi)(0.1g)とを溶解し、青色波長変換層形成用塗液を調製した。次に、緑色波長変換層上に、スピンコート法により、青色波長変換層形成用塗液を塗布し、膜厚4μmの青色波長変換層を形成し、波長変換基板を得た。
Next, in toluene, polystyrene resin (10 g) and 9- (1H-benzimidazol-2-yl) -1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H, 4H -11-oxa-aza-benzoanthracene-10-one (1 g) and lumogen yellow (0.1 g) were dissolved to prepare a coating solution for forming a green wavelength conversion layer.
Next, a green wavelength conversion layer forming coating solution was applied onto the red wavelength conversion layer by a spin coating method to form a green wavelength conversion layer having a thickness of 3 μm.
Next, a portion corresponding to the blue pixel transmits light, and a portion corresponding to the red pixel and the green pixel is shielded against the green wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side. As a result, in the blue pixel, the absorbance of light in the blue wavelength region of the green wavelength conversion layer is reduced, and the green wavelength conversion capability (light emission capability) is reduced, so that light in the green wavelength region is not emitted. Denatured. Thereby, light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the green wavelength region can be prevented.
The above process was performed in dry air.
Next, the substrate on which the wavelength conversion layer is formed is transferred to a glove box (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less) and heated at 80 ° C. for 1 hour. Was removed.
Next, a gas barrier layer made of a SiON film having a thickness of 2 μm was formed on the wavelength conversion layer by sputtering.
Furthermore, after patterning the green wavelength conversion layer, a blue wavelength conversion layer was formed on the green wavelength conversion layer. Here, in order to form the blue wavelength conversion layer, first, toluene, polystyrene resin (10 g), 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi) (0.1 g), and Was dissolved to prepare a coating solution for forming a blue wavelength conversion layer. Next, a blue wavelength conversion layer-forming coating solution was applied onto the green wavelength conversion layer by a spin coating method to form a blue wavelength conversion layer having a thickness of 4 μm to obtain a wavelength conversion substrate.
「青色発光有機EL素子の作製」
基板として、厚さ0.7mm、100mm×100mm角のガラス基板を用い、このガラス基板上に、PECVD法により、アモルファスシリコン半導体膜を形成した。
次に、アモルファスシリコン半導体膜の結晶化処理を施すことにより、多結晶シリコン半導体膜を形成した。
次に、フォトリソグラフィー法により、多結晶シリコン半導体膜を複数の島状にパターニングした。続いて、パターニングした多結晶シリコン半導体層上に、ゲート絶縁膜およびゲート電極層をこの順番で形成し、フォトリソグラフィー法により、パターニングを行った。
その後、パターニングした多結晶シリコン半導体膜に、リン等の不純物元素をドーピングすることにより、ソースおよびドレイン領域を形成し、TFT素子を作製した。
その後、平坦化膜を形成した。平坦化膜としては、PECVD法により形成した窒化シリコン膜、スピンコート法により形成したアクリル系樹脂層を、この順で積層し、形成した。
まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることにより、ソースおよび/またはドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成することにより、アクティブマトリクス基板を得た。
平坦化膜としての機能は、アクリル系樹脂層で実現される。
なお、TFT素子のゲート電位を定電位にするためのコンデンサーは、スイッチング用TFT素子のドレインと、駆動用TFT素子のソースとの間に、層間絶縁膜等の絶縁膜を介することで形成した。
アクティブマトリクス基板上に、平坦化膜を貫通して駆動用TFT素子と、第一電極とをそれぞれ電気的に接続するコンタクトホールを設けた。
"Production of blue light-emitting organic EL devices"
A glass substrate having a thickness of 0.7 mm and a size of 100 mm × 100 mm was used as a substrate, and an amorphous silicon semiconductor film was formed on the glass substrate by PECVD.
Next, the amorphous silicon semiconductor film was crystallized to form a polycrystalline silicon semiconductor film.
Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by photolithography. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed by a photolithography method.
Thereafter, the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was produced.
Thereafter, a planarizing film was formed. As the planarizing film, a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order.
First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source and / or drain region, and then a source wiring was formed. Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, thereby obtaining an active matrix substrate.
The function as a planarizing film is realized by an acrylic resin layer.
The capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
On the active matrix substrate, contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
次に、各画素を駆動するためのTFT素子と接続した平坦化膜を貫通して設けられたコンタクトホールに電気的に接続するように、スパッタリング法により、各画素の第一電極(陽極)を形成した。
第一電極は、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を90nmの膜厚で積層して形成し、各画素に対応した形状に、従来のフォトリソグラフィー法により、パターニングを行った。
ここでは、第一電極の面積を、180μm×540μmとした。また、画素が形成される表示部の上下左右に幅2mmの封止エリアを設け、さらに、短辺側における封止エリアの外に、長さ2mmの端子取出し部を設け、長辺側における折り曲げを行う方に、長さ2mm端子取出し部を設けた。
次に、第一電極上に、スピンコート法により、前記のバンク材料と同様にルチル型酸化チタンを含有する感光性樹脂を、厚さ200nmとなるように積層した後、従来のフォトリソグラフィー法により、第一電極のエッジ部を覆うように感光性樹脂をパターニングした。ここでは、第一電極の端から10μm分だけ4辺を覆う構造としてエッジカバーを形成した。
次に、前記のアクティブ基板を洗浄した。アクティブ基板の洗浄方法としては、例えば、アセトン、イソプロピルアルコール(IPA)などを用いて、超音波洗浄を10分間行い、続いて、UV-オゾン洗浄を30分間行う方法を用いた。
Next, the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
The first electrode is formed by laminating a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by a sputtering method. Patterning was performed by photolithography.
Here, the area of the first electrode was 180 μm × 540 μm. In addition, a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
Next, a photosensitive resin containing rutile-type titanium oxide is laminated to a thickness of 200 nm on the first electrode in the same manner as the bank material by spin coating, and then by conventional photolithography. The photosensitive resin was patterned so as to cover the edge portion of the first electrode. Here, the edge cover is formed as a structure that covers four sides by 10 μm from the end of the first electrode.
Next, the active substrate was cleaned. As an active substrate cleaning method, for example, acetone, isopropyl alcohol (IPA), or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用いて、抵抗加熱蒸着法により、第一電極上に、膜厚20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、正孔注入層上に、膜厚20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート 
イリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、厚さ10nmの正孔防止層を形成した。
次に、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて、厚さ10nmの電子輸送層を形成した。
次に、電子輸送層の上に、フッ化リチウム(LiF)を用いて、厚さ0.5nmの電子注入層を形成した。
Next, this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less to form each layer constituting the organic layer.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used, and a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
Next, as a hole transport material, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
Next, a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer. Here, 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 Å / sec and 0.2 Å / sec, respectively.
Next, a hole blocking layer having a thickness of 10 nm was formed on the blue organic light emitting layer by using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
Next, an electron transport layer having a thickness of 10 nm was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer having a thickness of 0.5 nm was formed on the electron transport layer using lithium fluoride (LiF).
この後、電子注入層上に、第二電極を形成した。
まず、金属蒸着用チャンバーに、前記の各部位が形成されたガラス基板を固定した。
次に、真空蒸着法により、マグネシウムと銀を、それぞれの蒸着速度を0.1Å/sec、0.9Å/secとし、共蒸着することにより、電子注入層上に、厚さ1nmのマグネシウム銀を、所望のパターンで形成した。
さらに、干渉効果を強調する目的、および、第二電極での配線抵抗による電圧降下を防止する目的で、真空蒸着法により、銀を、蒸着速度を1Å/secとし、蒸着することにより、マグネシウム銀上に、厚さ19nmの銀を、所望のパターンで形成した。これにより、第二電極を形成した。
Thereafter, a second electrode was formed on the electron injection layer.
First, the glass substrate on which each of the above parts was formed was fixed in a metal vapor deposition chamber.
Next, magnesium and silver are vapor-deposited at a rate of 0.1 、 / sec and 0.9 、 / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern.
Further, for the purpose of emphasizing the interference effect and preventing the voltage drop due to the wiring resistance at the second electrode, silver is deposited by vacuum deposition at a deposition rate of 1 Å / sec. On top, 19 nm thick silver was formed in the desired pattern. Thereby, the second electrode was formed.
次に、プラズマCVD法により、膜厚3μmのSiOからなる無機保護層を形成した後、シャドーマスクを用いて、表示部の端から上下左右2mmの封止エリアまで、無機保護層をパターニングし、図11に示すアクティブ駆動型青色発光有機EL基板を得た。
また、ホスト材料として、UGH-2の代わりに、9,9-スピロビフルオレン-2-イル-ビフェニル-リン酸(SPPO1)を用い、発光ドーパントとして、FIrpicの代わりに、トリス(1-フェニル-3-メチルベンゾイミダゾリン-2-イリジン-C,C2’)イリジウム(III)(Ir(Pmb)))を用いて、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着した。さらに、陰極を形成した後、膜厚2nmの酸化タングステン(WO)を蒸着することにより電荷発生層を形成し、この電荷発生層を介して、前記と同様にして、正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層および陰極を形成し、図12に示すアクティブ駆動型青色発光有機EL基板を得た。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、貼り合わせ用のグローブボックス内(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
次に、波長変換基板の外周部に、ディスペンサーを用いて、20μmのスペーサーを分散させた紫外線硬化型接着剤(商品名:30Y-437、スリーボンド社製)を塗布し、外周封止材とした。さらに、その外周封止材の中に、ディスペンサーを用いて、充填剤として、透明シリコーン樹脂(商品名:TSE3051、東芝シリコーン社製)を塗布した。
次に、アクティブ駆動型有機EL基板と、波長変換基板とを、真空チャンバー内に移送し、真空チャンバー内を1Paまで減圧した。そして、アライメントマーカーを用いて、一次アライメントを行いながら、アクティブ駆動型有機EL基板と波長変換基板を仮接着し、固定した。
次に、仮接着したアクティブ駆動型有機EL基板と波長変換基板をグローブボックスに移送し、CCDを用いて二次アライメントを行った。
次に、外周封止材に、UVランプを用いて紫外線を照射し、外周封止材を硬化させて、外周封止層を形成した。
次に、80℃にて1時間加熱し、前記の透明シリコーン樹脂をゲル化させた。
次に、光取り出し側の基板に、偏光板を貼り合わせ、アクティブ駆動型有機EL表示装置を得た。
最後に、短辺側に形成した端子を、ソースドライバを介して電源回路に、長辺側に形成した端子を、ゲートドライバを介して外部電源に接続し、80mm×80mm角の表示部を持つアクティブ駆動型有機EL表示装置を得た。
Next, after forming an inorganic protective layer made of SiO 2 having a film thickness of 3 μm by plasma CVD, the inorganic protective layer is patterned from the edge of the display portion to a sealing area of 2 mm vertically and horizontally using a shadow mask. Thus, an active drive type blue light-emitting organic EL substrate shown in FIG. 11 was obtained.
In addition, 9,9-spirobifluoren-2-yl-biphenyl-phosphate (SPPO1) is used as the host material instead of UGH-2, and tris (1-phenyl-) is used as the luminescent dopant instead of FIrpic. 3-methylbenzimidazoline-2-iridine-C, C2 ′) iridium (III) (Ir (Pmb) 3 )) and the respective deposition rates were 1.5 Å / sec and 0.2 Å / sec. Vapor deposited. Further, after forming the cathode, a 2 nm-thick tungsten oxide (WO 3 ) is deposited to form a charge generation layer, and through this charge generation layer, a hole injection layer, a positive electrode is formed in the same manner as described above. A hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer and a cathode were formed to obtain an active drive type blue light emitting organic EL substrate shown in FIG.
Next, the active drive type organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (water concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
Next, an ultraviolet curable adhesive (trade name: 30Y-437, manufactured by ThreeBond Co., Ltd.) in which a spacer of 20 μm was dispersed was applied to the outer peripheral portion of the wavelength conversion substrate using a dispenser to obtain an outer peripheral sealing material. . Further, a transparent silicone resin (trade name: TSE3051, manufactured by Toshiba Silicone Co., Ltd.) was applied as a filler to the outer peripheral sealing material using a dispenser.
Next, the active drive type organic EL substrate and the wavelength conversion substrate were transferred into a vacuum chamber, and the pressure in the vacuum chamber was reduced to 1 Pa. Then, while performing primary alignment using an alignment marker, the active drive type organic EL substrate and the wavelength conversion substrate were temporarily bonded and fixed.
Next, the temporarily bonded active drive type organic EL substrate and the wavelength conversion substrate were transferred to a glove box, and secondary alignment was performed using a CCD.
Next, the outer peripheral sealing material was irradiated with ultraviolet rays using a UV lamp, and the outer peripheral sealing material was cured to form an outer peripheral sealing layer.
Next, it heated at 80 degreeC for 1 hour, and the said transparent silicone resin was gelatinized.
Next, a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
Finally, the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and the display unit has an 80 mm × 80 mm square. An active drive organic EL display device was obtained.
[実施例14]
図15~18を参照して、実施例14を説明する。
「カラーフィルター基板の作製」
基板として、厚さ0.7mm、100mm×100mm角のガラス基板を用いた。これを水洗した後、純水超音波洗浄を10分、アセトン超音波洗浄を10分、イソプロピルアルコール蒸気洗浄を5分行い、100℃にて1時間乾燥させた。
次に、基板上に、黒色隔壁材料として、スピンコーターを用いて、BKレジスト(東京応化社製)を塗布した。
その後、70℃にて15分間プリベークして、膜厚1μmの塗膜を形成した。この塗膜に所望の画像パターンが形成できるようなマスク(画素ピッチ200μm、線幅20μm)を被せて、i線(100mJ/cm)を照射し、露光した。
次いで、現像液として、炭酸ナトリウム水溶液を用いて現像し、純水でリンス処理を行い、光吸収層(低反射層)を形成した。
次に、バンク材料として、エポキシ系樹脂(屈折率:1.59)、アクリル系樹脂(屈折率:1.49)、ルチル型酸化チタン(屈折率:2.71、粒径250nm)、光重合開始剤および芳香族系溶剤からなる白色感光性組成物を攪拌混合して、ポジ型レジストを調製した。
次に、基板上に、スピンコート法により、このポジ型レジストを塗布し、フォトリソグラフィー法により、画素ピッチ200μm、線幅20μmでパターニングし、低反射層上に、膜厚5μmの光反射性バンクを形成した。
次に、バンクによって区画された領域に、赤色カラーフィルター、緑色カラーフィルター、青色カラーフィルターをパターニングした。
次に、赤色カラーフィルター、緑色カラーフィルターおよび青色カラーフィルター上に、光散乱層を形成した。ここで、光散乱層を形成するには、まず、平均粒径1.5μmのシリカ粒子(屈折率:1.65)20gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)に溶解されたポリビニルアルコール30gを加え、分散機により攪拌して、光散乱層形成用塗液を調製した。
次に、前記のガラス基板上の光吸収層が形成されていない領域に、スクリーン印刷法により、その光散乱層形成用塗液を塗布した。引き続き、真空オーブンにより、200℃、10mmHgの条件で4時間加熱乾燥し、光散乱層を形成した。
以上の方法により、図15,16に示すカラーフィルター基板を作製した。また、図15,16に示す、光散乱層が形成されていないカラーフィルター基板を作製した。
[Example 14]
A fourteenth embodiment will be described with reference to FIGS.
"Production of color filter substrate"
As the substrate, a glass substrate having a thickness of 0.7 mm and a size of 100 mm × 100 mm was used. After washing with water, pure water ultrasonic cleaning was performed for 10 minutes, acetone ultrasonic cleaning was performed for 10 minutes, and isopropyl alcohol vapor cleaning was performed for 5 minutes, followed by drying at 100 ° C. for 1 hour.
Next, a BK resist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied as a black partition material on the substrate using a spin coater.
Then, it prebaked at 70 degreeC for 15 minutes, and formed the coating film with a film thickness of 1 micrometer. This coating film was covered with a mask (pixel pitch 200 μm, line width 20 μm) so that a desired image pattern can be formed, irradiated with i-line (100 mJ / cm 2 ) and exposed.
Subsequently, it developed using the sodium carbonate aqueous solution as a developing solution, rinsed with the pure water, and formed the light absorption layer (low reflection layer).
Next, as a bank material, epoxy resin (refractive index: 1.59), acrylic resin (refractive index: 1.49), rutile titanium oxide (refractive index: 2.71, particle size 250 nm), photopolymerization A positive photosensitive resist was prepared by stirring and mixing a white photosensitive composition comprising an initiator and an aromatic solvent.
Next, this positive resist is applied onto the substrate by spin coating, patterned by a photolithography method with a pixel pitch of 200 μm and a line width of 20 μm, and a light reflective bank having a thickness of 5 μm on the low reflective layer. Formed.
Next, a red color filter, a green color filter, and a blue color filter were patterned in the area partitioned by the bank.
Next, a light scattering layer was formed on the red color filter, the green color filter, and the blue color filter. Here, in order to form the light scattering layer, first, 20 g of silica particles (refractive index: 1.65) having an average particle diameter of 1.5 μm are dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1. 30 g of the polyvinyl alcohol thus prepared was added and stirred with a disperser to prepare a coating solution for forming a light scattering layer.
Next, the light scattering layer forming coating liquid was applied to the region where the light absorption layer on the glass substrate was not formed by a screen printing method. Then, it heat-dried on 200 degreeC and 10 mmHg conditions for 4 hours with the vacuum oven, and formed the light-scattering layer.
The color filter substrate shown in FIGS. 15 and 16 was produced by the above method. Further, a color filter substrate having no light scattering layer shown in FIGS. 15 and 16 was produced.
「有機EL/波長変換基板の作製」
基板として、厚さ0.7mm、100mm×100mm角のガラス基板を用い、このガラス基板上に、PECVD法により、アモルファスシリコン半導体膜を形成した。
次に、アモルファスシリコン半導体膜の結晶化処理を施すことにより、多結晶シリコン半導体膜を形成した。
次に、フォトリソグラフィー法により、多結晶シリコン半導体膜を複数の島状にパターニングした。続いて、パターニングした多結晶シリコン半導体層上に、ゲート絶縁膜およびゲート電極層をこの順番で形成し、フォトリソグラフィー法により、パターニングを行った。
その後、パターニングした多結晶シリコン半導体膜に、リン等の不純物元素をドーピングすることにより、ソース領域およびドレイン領域を形成し、TFT素子を作製した。
その後、平坦化膜を形成した。平坦化膜としては、PECVD法により形成した窒化シリコン膜、スピンコート法により形成したアクリル系樹脂層を、この順で積層し、形成した。
まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることにより、ソース領域および/またはドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。
その後、アクリル系樹脂層を形成し、ゲート絶縁膜および窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成し、アクティブマトリクス基板を得た。
平坦化膜としての機能は、アクリル系樹脂層で実現される。
なお、TFT素子のゲート電位を定電位にするためのコンデンサーは、スイッチング用TFT素子のドレインと、駆動用TFT素子のソースとの間に、層間絶縁膜等の絶縁膜を介することで形成した。
アクティブマトリクス基板上に、平坦化膜を貫通して駆動用TFT素子と、第一電極とをそれぞれ電気的に接続するコンタクトホールを設けた。
"Production of organic EL / wavelength conversion substrate"
A glass substrate having a thickness of 0.7 mm and a size of 100 mm × 100 mm was used as a substrate, and an amorphous silicon semiconductor film was formed on the glass substrate by PECVD.
Next, the amorphous silicon semiconductor film was crystallized to form a polycrystalline silicon semiconductor film.
Next, the polycrystalline silicon semiconductor film was patterned into a plurality of islands by photolithography. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed by a photolithography method.
Thereafter, a doped polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form a source region and a drain region, and a TFT element was manufactured.
Thereafter, a planarizing film was formed. As the planarizing film, a silicon nitride film formed by PECVD and an acrylic resin layer formed by spin coating were laminated in this order.
First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film are etched together to form a contact hole that leads to the source region and / or the drain region, and then a source wiring is formed. . Thereafter, an acrylic resin layer was formed, and a contact hole leading to the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film, and then a source wiring was formed.
Thereafter, an acrylic resin layer was formed, and a contact hole communicating with the drain region was formed at the same position as the contact hole of the drain region drilled in the gate insulating film and the silicon nitride film to obtain an active matrix substrate.
The function as a planarizing film is realized by an acrylic resin layer.
The capacitor for setting the gate potential of the TFT element to a constant potential was formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT element and the source of the driving TFT element.
On the active matrix substrate, contact holes that penetrate the planarization film and electrically connect the driving TFT element and the first electrode were provided.
次に、各画素を駆動するためのTFT素子と接続した平坦化膜を貫通して設けられたコンタクトホールに電気的に接続するように、スパッタリング法により、各画素の第一電極(陽極)を形成した。
第一電極は、スパッタリング法により、反射電極Al(アルミニウム)を150nmと透明電極IZO(酸化インジウム-酸化亜鉛)を90nmの膜厚で積層して形成し、各画素に対応した形状に、従来のフォトリソグラフィー法により、パターニングを行った。これにより、反射電極と半透明電極の間における干渉(マイクロキャビティー)効果による色純度の強調を行うことができる。
ここでは、第一電極の面積を、180μm×540μmとした。また、画素が形成される表示部の上下左右に幅2mmの封止エリアを設け、さらに、短辺側における封止エリアの外に、長さ2mmの端子取出し部を設け、長辺側における折り曲げを行う方に、長さ2mm端子取出し部を設けた。
次に、第一電極上に、スピンコート法により、前記のバンク材料と同様にルチル型酸化チタンを含有する感光性樹脂を、厚さ10μmとなるように積層した後、従来のフォトリソグラフィー法により、第一電極のエッジ部を覆うように感光性樹脂をパターニングした。ここでは、第一電極の端から10μm分だけ4辺を覆う構造としてエッジカバーを形成した。
次に、前記のアクティブ基板を洗浄した。アクティブ基板の洗浄方法としては、例えば、アセトン、イソプロピルアルコール(IPA)などを用いて、超音波洗浄を10分間行い、続いて、UV-オゾン洗浄を30分間行う方法を用いた。
Next, the first electrode (anode) of each pixel is formed by sputtering so as to be electrically connected to the contact hole provided through the planarization film connected to the TFT element for driving each pixel. Formed.
The first electrode is formed by laminating a reflective electrode Al (aluminum) with a thickness of 150 nm and a transparent electrode IZO (indium oxide-zinc oxide) with a thickness of 90 nm by a sputtering method. Patterning was performed by photolithography. Thereby, the color purity can be enhanced by the interference (microcavity) effect between the reflective electrode and the translucent electrode.
Here, the area of the first electrode was 180 μm × 540 μm. In addition, a sealing area having a width of 2 mm is provided on the top, bottom, left, and right of the display portion on which the pixel is formed, and a terminal lead-out portion having a length of 2 mm is provided outside the sealing area on the short side, so A 2 mm long terminal lead-out part was provided on the person performing the above.
Next, a photosensitive resin containing rutile-type titanium oxide is laminated on the first electrode so as to have a thickness of 10 μm by spin coating as with the bank material described above, and then by a conventional photolithography method. The photosensitive resin was patterned so as to cover the edge portion of the first electrode. Here, the edge cover is formed as a structure that covers four sides by 10 μm from the end of the first electrode.
Next, the active substrate was cleaned. As an active substrate cleaning method, for example, acetone, isopropyl alcohol (IPA), or the like was used for ultrasonic cleaning for 10 minutes, followed by UV-ozone cleaning for 30 minutes.
次に、インライン型抵抗加熱蒸着装置内の基板ホルダーに、この基板を固定し、1×10-4Pa以下の真空まで減圧し、有機層を構成する各層を成膜した。
まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用いて、抵抗加熱蒸着法により、第一電極上に、膜厚20nmの正孔注入層を形成した。
次に、正孔輸送材料として、N,N’-di-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用いて、抵抗加熱蒸着法により、正孔注入層上に、膜厚20nmの正孔輸送層を形成した。
次に、正孔輸送層上に、厚さ20nmの青色有機発光層を形成した。ここでは、真空蒸着法により、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート 
イリジウム(III)(FIrpic)(青色燐光発光ドーパント)を、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着することにより、この青色有機発光層を形成した。
次に、青色有機発光層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて、厚さ10nmの電子輸送層を形成した。
次に、電子輸送層の上に、フッ化リチウム(LiF)を用いて、厚さ0.5nmの電子注入層を形成した。
この後、電子注入層上に、半透明電極からなる第二電極を形成した。
まず、金属蒸着用チャンバーに、前記の各部位が形成されたガラス基板を固定した。
次に、真空蒸着法により、マグネシウムと銀を、それぞれの蒸着速度を0.1Å/sec、0.9Å/secとし、共蒸着することにより、電子注入層上に、厚さ1nmのマグネシウム銀を、所望のパターンで形成した。
さらに、干渉効果を強調する目的、および、第二電極での配線抵抗による電圧降下を防止する目的で、真空蒸着法により、銀を、蒸着速度を1Å/secとし、蒸着することにより、マグネシウム銀上に、厚さ19nmの銀を、所望のパターンで形成した。これにより、第二電極を形成した。
ここで、有機EL素子としては、反射電極(第一電極)と半透過電極(第二電極)間でマイクロキャビティ効果(干渉効果)が発現し、正面輝度を高めることが可能となり、有機EL素子からの発光エネルギーをより効率よく、波長変換層および光散乱層に伝搬させることができる。
Next, this substrate was fixed to a substrate holder in an in-line resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less to form each layer constituting the organic layer.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) is used, and a 20 nm-thick hole injection layer is formed on the first electrode by resistance heating vapor deposition. Formed.
Next, as a hole transport material, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) A hole transport layer having a thickness of 20 nm was formed on the hole injection layer by resistance heating vapor deposition.
Next, a blue organic light emitting layer having a thickness of 20 nm was formed on the hole transport layer. Here, 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate are formed by vacuum deposition.
This blue organic light-emitting layer was formed by co-evaporating iridium (III) (FIrpic) (blue phosphorescent light emitting dopant) at a deposition rate of 1.5 Å / sec and 0.2 Å / sec, respectively.
Next, an electron transport layer having a thickness of 10 nm was formed on the blue organic light-emitting layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer having a thickness of 0.5 nm was formed on the electron transport layer using lithium fluoride (LiF).
Thereafter, a second electrode made of a translucent electrode was formed on the electron injection layer.
First, the glass substrate on which each of the above parts was formed was fixed in a metal vapor deposition chamber.
Next, magnesium and silver are vapor-deposited at a rate of 0.1 、 / sec and 0.9 、 / sec by vacuum vapor deposition, so that magnesium silver having a thickness of 1 nm is deposited on the electron injection layer. , Formed in a desired pattern.
Further, for the purpose of emphasizing the interference effect and preventing the voltage drop due to the wiring resistance at the second electrode, silver is deposited by vacuum deposition at a deposition rate of 1 Å / sec. On top, 19 nm thick silver was formed in the desired pattern. Thereby, the second electrode was formed.
Here, as the organic EL element, a microcavity effect (interference effect) appears between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and the front luminance can be increased. Can be more efficiently propagated to the wavelength conversion layer and the light scattering layer.
次に、表示部全体に、抵抗加熱蒸着法により、トリス[4-[フェニル(3-メチルフェニル)アミノ]フェニル]アミン(m-MTDATA)と3-(2’-ベンゾチアゾリル)-7-ジエチルアミノ-クマリン(クマリン6)を、それぞれの蒸着速度を10nm/sec、0.5nm/secとし、共蒸着することにより、膜厚600nmの緑色波長変換層を形成した。
次に、青色画素に対応する部分は、光を透過し、赤色画素と緑色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、緑色波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより、青色画素においては、緑色波長変換層の青色の波長域の光の吸光度を低減させ、かつ、緑色の波長変換能力(発光能力)を低減させ、緑色の波長域の光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率よく透過させ、かつ、緑色の波長域の光が混ざることによる色純度の低下を防止することができる。なお、遮光してある緑色画素と赤色画素に対応する緑色波長変換層の波長変換能力は変化していない。
次に、表示部全体に、抵抗加熱蒸着法により、クマリン6と4-(ジシアノメチレン)-2-ターシャリーブチル-6-(1,1,7,7-テトラメチルジュノリジン)(DCJTB)を、共蒸着することにより、膜厚400nmの赤色波長変換層を形成した。
次に、青色画素と緑色画素に対応する部分は、光を透過し、赤色画素に対応する部分は遮光するように設計されたフォトマスクを用いて、赤色波長変換層に対して、ガラス基板と逆側から超高圧UVランプを照射した。これにより、青色画素と緑色画素においては、赤色波長変換層の青色の波長域の光および緑色の波長域の光吸光度を低減させ、かつ、赤色の波長変換能力(発光能力)を低減させ、赤色の波長域の光を非発光に変性させた。これにより、有機EL部からの発光をそのまま効率よく透過させ、かつ、赤色の波長域の光が混ざることによる色純度の低下を防止することができる。
Next, tris [4- [phenyl (3-methylphenyl) amino] phenyl] amine (m-MTDATA) and 3- (2′-benzothiazolyl) -7-diethylamino- were formed on the entire display portion by resistance heating vapor deposition. By co-depositing coumarin (coumarin 6) at respective vapor deposition rates of 10 nm / sec and 0.5 nm / sec, a green wavelength conversion layer having a thickness of 600 nm was formed.
Next, a portion corresponding to the blue pixel transmits light, and a portion corresponding to the red pixel and the green pixel is shielded against the green wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side. As a result, in the blue pixel, the absorbance of light in the blue wavelength region of the green wavelength conversion layer is reduced, and the green wavelength conversion capability (light emission capability) is reduced, so that light in the green wavelength region is not emitted. Denatured. Thereby, light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the green wavelength region can be prevented. Note that the wavelength conversion capability of the green wavelength conversion layer corresponding to the shaded green and red pixels is not changed.
Next, coumarin 6 and 4- (dicyanomethylene) -2-tertiarybutyl-6- (1,1,7,7-tetramethyljunolidine) (DCJTB) are applied to the entire display portion by resistance heating vapor deposition. The red wavelength conversion layer having a film thickness of 400 nm was formed by co-evaporation.
Next, a portion corresponding to the blue pixel and the green pixel transmits light, and a portion corresponding to the red pixel is shielded against a red wavelength conversion layer using a photomask designed to shield the glass substrate and Ultra-high pressure UV lamp was irradiated from the opposite side. As a result, in the blue pixel and the green pixel, the light in the blue wavelength region and the light absorbance in the green wavelength region of the red wavelength conversion layer are reduced, and the red wavelength conversion capability (light emission capability) is reduced. The light in the wavelength region was denatured to non-light emission. Thereby, light emitted from the organic EL part can be efficiently transmitted as it is, and a decrease in color purity due to mixing of light in the red wavelength region can be prevented.
次に、プラズマCVD法により、膜厚3μmのSiOからなる無機保護層を形成した後、シャドーマスクを用いて、表示部の端から上下左右2mmの封止エリアまで、無機保護層をパターン形成した。
以上の方法により、図15,16に示すカラーフィルター基板を得た。
また、ホスト材料として、UGH-2の代わりに9,9-スピロビフルオレン-2-イル-ビフェニル-リン酸(SPPO1)を用い、発光ドーパントとして、FIrpicの代わりにトリス(1-フェニル-3-メチルベンゾイミダゾリン-2-イリジン-C、C2’)イリジウム(III)(Ir(Pmb)))を用いて、それぞれの蒸着速度を1.5Å/sec、0.2Å/secとし、共蒸着した。さらに、陰極を形成した後、膜厚2nmの酸化タングステン(WO)を蒸着することにより電荷発生層を形成し、この電荷発生層を介して、前記と同様にして、正孔注入層、正孔輸送層、有機発光層、電子輸送層、電子注入層および陰極を形成し、図17,18に示すアクティブ駆動型青色発光有機EL基板を得た。
また、緑色波長変換層をパターニングした後、緑色波長変換層上に、青色波長変換層を形成した。青色波長変換層を形成するには、抵抗加熱蒸着法により、ポリスチレン樹脂(10g)に分散した4,4 ’- ビス(2,2 ’-ジフェニルビニル)ビフェニル(DPVBi)(0.1g)とペリレンを、それぞれ蒸着速度を10nm/sec、0.5nm/secとし、共蒸着することにより、厚さ600nmの青色波長変換層を形成した。
これにより、図17,19,20に示す赤色・緑色・青色波長変換基板を得た。
次に、アクティブ駆動型青色発光有機EL基板と、波長変換基板とを、貼り合わせ用のグローブボックス内(水分濃度:1ppm以下、酸素濃度:1ppm以下)に搬入した。
次に、アクティブ駆動型青色発光有機EL基板と、波長変換基板とを、表示部の外に形成されているアライメントマーカーにより位置合わせを行った。
なお、アクティブ駆動型青色発光有機EL基板の外周部には、予め熱硬化性樹脂が塗布されており、その熱硬化性樹脂を介して両基板を密着し、90℃にて2時間加熱することにより、熱硬化性樹脂を硬化させた。また、前記の貼り合わせ工程は、有機ELの水分による劣化を防止するために、ドライエアー環境下(水分量:-80℃)で行った。
次に、光取り出し側の基板に、偏光板を貼り合わせ、アクティブ駆動型有機EL表示装置を得た。
最後に、短辺側に形成した端子を、ソースドライバを介して電源回路に、長辺側に形成した端子を、ゲートドライバを介して外部電源に接続し、80mm×80mm角の表示部を持つアクティブ駆動型有機EL表示装置を得た。
Next, after forming an inorganic protective layer made of SiO 2 with a film thickness of 3 μm by plasma CVD, pattern formation of the inorganic protective layer from the edge of the display unit to the sealing area of 2 mm vertically and horizontally using a shadow mask did.
The color filter substrate shown in FIGS. 15 and 16 was obtained by the above method.
In addition, 9,9-spirobifluoren-2-yl-biphenyl-phosphate (SPPO1) is used as the host material instead of UGH-2, and tris (1-phenyl-3-methyl) is used as the luminescent dopant instead of FIrpic. Methylbenzimidazoline-2-iridine-C, C2 ′) iridium (III) (Ir (Pmb) 3 )) was used for co-evaporation at 1.5 Å / sec and 0.2 Å / sec, respectively. . Further, after forming the cathode, a 2 nm-thick tungsten oxide (WO 3 ) is deposited to form a charge generation layer, and through this charge generation layer, a hole injection layer, a positive electrode is formed in the same manner as described above. A hole transport layer, an organic light emitting layer, an electron transport layer, an electron injection layer, and a cathode were formed to obtain an active drive type blue light emitting organic EL substrate shown in FIGS.
Moreover, after patterning the green wavelength conversion layer, the blue wavelength conversion layer was formed on the green wavelength conversion layer. In order to form the blue wavelength conversion layer, 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi) (0.1 g) dispersed in polystyrene resin (10 g) and perylene were formed by resistance heating vapor deposition. Were vapor-deposited at a deposition rate of 10 nm / sec and 0.5 nm / sec, respectively, to form a blue wavelength conversion layer having a thickness of 600 nm.
As a result, red, green, and blue wavelength conversion substrates shown in FIGS.
Next, the active drive type blue light emitting organic EL substrate and the wavelength conversion substrate were carried into a glove box for bonding (moisture concentration: 1 ppm or less, oxygen concentration: 1 ppm or less).
Next, the active drive type blue light emitting organic EL substrate and the wavelength conversion substrate were aligned with an alignment marker formed outside the display unit.
In addition, a thermosetting resin is applied in advance to the outer peripheral portion of the active drive type blue light emitting organic EL substrate, and both substrates are brought into close contact with each other through the thermosetting resin and heated at 90 ° C. for 2 hours. Thus, the thermosetting resin was cured. The bonding step was performed in a dry air environment (water content: −80 ° C.) in order to prevent deterioration of the organic EL due to water.
Next, a polarizing plate was bonded to the light extraction side substrate to obtain an active drive organic EL display device.
Finally, the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, and the display unit has an 80 mm × 80 mm square. An active drive organic EL display device was obtained.
[実施例15][青色LED基板+波長変換基板]
TMG(トリメチルガリウム)とNHとを用い、反応容器にセットしたサファイア基板のC面に550℃でGaNからなるバッファ層を、膜厚60nmで成長させた。
次に、温度を1050℃まで上げ、TMG、NHに加えてSiHガスを用い、Siドープn型GaNよりなるn型コンタクト層を、膜厚5μmで成長させた。
続いて、原料ガスにTMA(トリメチルアルミニウム)を加え、同じく1050℃でSiドープn型Al0.3Ga0.7N層からなる第2のクラッド層を、膜厚0.2μmで成長させた。
次に、温度を850℃に下げ、TMG、TMI(トリメチルインジウム)、NHおよびSiHを用い、Siドープn型In0.01Ga0.99Nからなる第一のn型クラッド層を、膜厚60nmで成長させた。
続いて、TMG、TMIおよびNHを用い、850℃でノンドープIn0.05Ga0.95Nからなる活性層を、膜厚5nmで成長させた。
さらに、TMG、TMI、NHに加えて、新たにCPMg(シクロペンタジエニルマグネシウム)を用い、850℃でMgドープp型In0.01Ga0.99Nからなる第一のp型クラッド層を、膜厚60nmで成長させた。
次に、温度を1100℃に上げ、TMG、TMA、NH、CPMgを用い、Mgドープp型Al0.3Ga0.7Nからなる第二のp型クラッド層を、膜厚150nmで成長させた。
続いて、1100℃でTMG、NHおよびCPMgを用い、Mgドープp型GaNからなるp型コンタクト層を、膜厚600nmで成長させた。
以上の操作終了後、温度を室温まで下げて、反応容器からウェーハを取り出し、720℃でウェーハのアニーリングを行い、p型層を低抵抗化した。
次に、最上層のp型コンタクト層の表面に所定の形状のマスクを形成し、n型コンタクト層の表面が露出するまでエッチングした。
エッチング後、n型コンタクト層の表面にチタン(Ti)とアルミニウム(Al)からなる負電極、p型コンタクト層の表面に、ニッケル(Ni)と金(Au)からなる正電極を形成した。
電極形成後、ウェーハを350μm角のチップに分離した後、別に用意してある外部回路に接続するための配線が形成されている基板上に、作製したLEDチップをUV硬化樹脂で固定して、LEDチップと基板上の配線を電気的に接続し、青色LEDからなる光源基板を作製した。
次に、以上のようにして作製した光源基板と波長変換基板を、表示部の外に形成されているアライメントマーカーにより位置合わせを行った。
なお、波長変換基板には、予め熱硬化性樹脂が塗布されており、熱硬化性樹脂を介して両基板を密着し、80℃にて2時間加熱することにより、熱硬化性樹脂を硬化させた。また、前記の貼り合わせ工程は、ドライエアー環境下(水分量:-80℃)で行った。
最後に、周辺に形成されている端子を外部電源に接続することにより、LED表示装置を得た。
[Example 15] [Blue LED substrate + wavelength conversion substrate]
Using TMG (trimethylgallium) and NH 3 , a buffer layer made of GaN was grown at a film thickness of 60 nm on the C surface of the sapphire substrate set in the reaction vessel at 550 ° C.
Next, the temperature was increased to 1050 ° C., and an n-type contact layer made of Si-doped n-type GaN was grown to a thickness of 5 μm using SiH 4 gas in addition to TMG and NH 3 .
Subsequently, TMA (trimethylaluminum) was added to the source gas, and a second cladding layer composed of a Si-doped n-type Al 0.3 Ga 0.7 N layer was grown at a thickness of 0.2 μm at 1050 ° C. .
Next, the temperature is lowered to 850 ° C., and a first n-type cladding layer made of Si-doped n-type In 0.01 Ga 0.99 N is used using TMG, TMI (trimethylindium), NH 3 and SiH 4 . The film was grown at a film thickness of 60 nm.
Subsequently, an active layer made of non-doped In 0.05 Ga 0.95 N was grown at a thickness of 5 nm at 850 ° C. using TMG, TMI and NH 3 .
Furthermore, in addition to TMG, TMI, and NH 3 , a first p-type cladding layer made of Mg-doped p-type In 0.01 Ga 0.99 N at 850 ° C. newly using CPMg (cyclopentadienyl magnesium) Was grown at a film thickness of 60 nm.
Next, the temperature is raised to 1100 ° C., and a second p-type cladding layer made of Mg-doped p-type Al 0.3 Ga 0.7 N is grown at a thickness of 150 nm using TMG, TMA, NH 3 , and CPMg. I let you.
Subsequently, a p-type contact layer made of Mg-doped p-type GaN was grown at a film thickness of 600 nm using TMG, NH 3 and CPMg at 1100 ° C.
After the above operation was completed, the temperature was lowered to room temperature, the wafer was taken out from the reaction vessel, and the wafer was annealed at 720 ° C. to reduce the resistance of the p-type layer.
Next, a mask having a predetermined shape was formed on the surface of the uppermost p-type contact layer, and etching was performed until the surface of the n-type contact layer was exposed.
After the etching, a negative electrode made of titanium (Ti) and aluminum (Al) was formed on the surface of the n-type contact layer, and a positive electrode made of nickel (Ni) and gold (Au) was formed on the surface of the p-type contact layer.
After electrode formation, after separating the wafer into 350 μm square chips, the prepared LED chip is fixed with a UV curable resin on a substrate on which wiring for connecting to an external circuit prepared separately is formed, The LED chip and the wiring on the substrate were electrically connected to produce a light source substrate made of a blue LED.
Next, the light source substrate and the wavelength conversion substrate manufactured as described above were aligned using an alignment marker formed outside the display unit.
The wavelength conversion substrate is pre-coated with a thermosetting resin, and the two substrates are brought into close contact with each other via the thermosetting resin and heated at 80 ° C. for 2 hours to cure the thermosetting resin. It was. The bonding process was performed in a dry air environment (water content: −80 ° C.).
Finally, an LED display device was obtained by connecting terminals formed in the periphery to an external power source.
本発明は、表示装置に適用することができる。 The present invention can be applied to a display device.
10 波長変換基板
11 基板
12 第一波長変換層
13 第二波長変換層
14 波長変換層積層体
15 隔壁
16 赤色カラーフィルター
17 緑色カラーフィルター
18 青色カラーフィルター
21 赤色画素
22 緑色画素
23 青色画素
31 フォトマスク
32 フォトマスク
50 波長変換基板
51 第三波長変換層
52 波長変換層積層体
61 赤色画素
62 緑色画素
63 青色画素
70 表示装置
71 第一基板
72 発光層
73 光源
74 第二基板
75 貼り合わせ部材
80 有機EL素子基板
81 基板
82 有機EL素子
83 第一電極
84 有機EL層
85 第二電極
86 正孔注入層
87 正孔輸送層
88 有機発光層
89 正孔防止層
90 電子輸送層
91 電子注入層
100 LED基板
101 基板
102 第一のバッファ層
103 n型コンタクト層
104 第二のn型クラッド層
105 第一のn型クラッド層
106 活性層
107 第一のp型クラッド層
108 第二のp型クラッド層
109 第二のバッファ層
110 陰極
111 陽極
120 無機EL素子基板
121 基板
122 無機EL素子
123 第一電極
124 第一誘電体層
125 発光層
126 第二誘電体層
127 第二電極
130 表示装置
140 表示装置
141 液晶素子
150 表示装置
151,152 無機封止膜
153 充填剤
154 接着層
155 光散乱層
156 円偏光板
170 表示装置
180 表示装置
181 電荷発生層
182 無機封止膜
190 表示装置
200 表示装置
201 低屈折率層
202 無機封止膜
210 表示装置
220 表示装置
230 表示装置
231 誘電体層
240 表示装置
241 平坦化膜
250 表示装置
260 表示装置
270 表示装置
271 波長変換基板
272 液晶セル
273 バックライトユニット
274 低屈折率層
275 光散乱層
276 平坦化膜
277 バックライト側ガラス基板
278 バックライト側透明電極
279 バックライト側配向膜
280 液晶層
281 光取出し側配向膜
282 光取出し側透明電極
283 光取出し側ガラス基板
284 バックライト側偏光板
285 光取出し側偏光板
286 波長選択透過膜
287 光源
288 導光板
290 表示装置
301 AD変換回路
302 画像処理回路
303 制御回路
304 走査線駆動回路
305 信号線駆動回路
306 電源回路
307 画素部
308 走査線
309 信号線
310 電源線
311 スイッチングトランジスタ
312 駆動トランジスタ
313 有機EL素子
314 キャパシタ
320 シーリングライト(照明装置)
321 発光部
322 吊下線
323 電源コード
330 照明スタンド(照明装置)
331 発光部
332 スタンド
333 メインスイッチ
334 電源コード
340 携帯電話
341 音声入力部
342 音声出力部
343 アンテナ
344 操作スイッチ
345 表示部
346 筐体
350 薄型テレビ
351 表示部
352 スピーカ
353 キャビネット
354 スタンド
360 携帯型ゲーム機
361,362 操作ボタン
363 外部接続端子
364 表示部
365 筐体
370 ノートパソコン
371 表示部
372 キーボード
373 タッチパッド
374 メインスイッチ
375 カメラ
376 記録媒体スロット
377 筐体
380 タブレット端末
381 表示部(タッチパネル)
382 カメラ
383 筐体
10 wavelength conversion substrate 11 substrate 12 first wavelength conversion layer 13 second wavelength conversion layer 14 wavelength conversion layer stack 15 partition 16 red color filter 17 green color filter 18 blue color filter 21 red pixel 22 green pixel 23 blue pixel 31 photomask 32 Photomask 50 Wavelength conversion substrate 51 Third wavelength conversion layer 52 Wavelength conversion layer laminate 61 Red pixel 62 Green pixel 63 Blue pixel 70 Display device 71 First substrate 72 Light emitting layer 73 Light source 74 Second substrate 75 Bonding member 80 Organic EL element substrate 81 Substrate 82 Organic EL element 83 First electrode 84 Organic EL layer 85 Second electrode 86 Hole injection layer 87 Hole transport layer 88 Organic light emitting layer 89 Hole prevention layer 90 Electron transport layer 91 Electron injection layer 100 LED Substrate 101 Substrate 102 First buffer layer 103 n-type contact layer 104 Second n-type cladding layer 105 first n-type cladding layer 106 active layer 107 first p-type cladding layer 108 second p-type cladding layer 109 second buffer layer 110 cathode 111 anode 120 inorganic EL element substrate 121 substrate 122 inorganic EL element 123 First electrode 124 First dielectric layer 125 Light emitting layer 126 Second dielectric layer 127 Second electrode 130 Display device 140 Display device 141 Liquid crystal element 150 Display devices 151 and 152 Inorganic sealing film 153 Filler 154 Adhesive layer 155 Light scattering layer 156 Circularly polarizing plate 170 Display device 180 Display device 181 Charge generation layer 182 Inorganic sealing film 190 Display device 200 Display device 201 Low refractive index layer 202 Inorganic sealing film 210 Display device 220 Display device 230 Display device 231 Dielectric Body layer 240 Display device 241 Flattening film 250 Display device 260 Display device 27 0 Display device 271 Wavelength conversion substrate 272 Liquid crystal cell 273 Backlight unit 274 Low refractive index layer 275 Light scattering layer 276 Flattening film 277 Backlight side glass substrate 278 Backlight side transparent electrode 279 Backlight side alignment film 280 Liquid crystal layer 281 Light Extraction side alignment film 282 Light extraction side transparent electrode 283 Light extraction side glass substrate 284 Backlight side polarizing plate 285 Light extraction side polarizing plate 286 Wavelength selective transmission film 287 Light source 288 Light guide plate 290 Display device 301 AD conversion circuit 302 Image processing circuit 303 Control circuit 304 Scan line drive circuit 305 Signal line drive circuit 306 Power supply circuit 307 Pixel unit 308 Scan line 309 Signal line 310 Power supply line 311 Switching transistor 312 Drive transistor 313 Organic EL element 314 Capacitor 320 Sealing line (Lighting device)
321 Light emitting unit 322 Hanging line 323 Power cord 330 Lighting stand (lighting device)
331 Light-emitting unit 332 Stand 333 Main switch 334 Power cord 340 Mobile phone 341 Audio input unit 342 Audio output unit 343 Antenna 344 Operation switch 345 Display unit 346 Case 350 Flat-screen TV 351 Display unit 352 Speaker 353 Cabinet 354 Stand 360 Portable game machine 361, 362 Operation buttons 363 External connection terminal 364 Display unit 365 Case 370 Notebook computer 371 Display unit 372 Keyboard 373 Touch pad 374 Main switch 375 Camera 376 Recording medium slot 377 Case 380 Tablet terminal 381 Display unit (touch panel)
382 Camera 383 Case

Claims (20)

  1. 基板と、前記基板上に設けられた波長変換層積層体とを少なくとも備え、
    前記波長変換層積層体が、光を吸収し、吸収した光と異なる波長の光を発光する波長変換層の2層以上の積層体で構成されていることを特徴とする波長変換基板。
    Comprising at least a substrate and a wavelength conversion layer laminate provided on the substrate,
    The wavelength conversion substrate, wherein the wavelength conversion layer laminate is composed of a laminate of two or more wavelength conversion layers that absorb light and emit light having a wavelength different from that of the absorbed light.
  2. 前記波長変換層積層体は、少なくとも波長変換層の全て、または、一部の領域の波長変換能力が低減された波長変換層を少なくとも1つ有することを特徴とする請求項1に記載の波長変換基板。 2. The wavelength conversion according to claim 1, wherein the wavelength conversion layer stack includes at least one wavelength conversion layer in which the wavelength conversion capability of at least all of the wavelength conversion layer or a partial region is reduced. substrate.
  3. 前記波長変換層積層体を構成する波長変換層のぞれぞれは、異なる波長の光を発光することを特徴とする請求項1または2に記載の波長変換基板。 The wavelength conversion substrate according to claim 1 or 2, wherein each of the wavelength conversion layers constituting the wavelength conversion layer laminate emits light having a different wavelength.
  4. 前記波長変換層積層体は、励起光限側に設けられた第1波長変換層と、前記基板側に設けられ、前記第1波長変換層の発光を吸収して発光する第2波長変換層と、を有することを特徴とする請求項1~3のいずれか1項に記載の波長変換基板。 The wavelength conversion layer laminate includes a first wavelength conversion layer provided on the excitation light limit side, a second wavelength conversion layer provided on the substrate side, which absorbs light emitted from the first wavelength conversion layer and emits light. The wavelength conversion substrate according to any one of claims 1 to 3, wherein
  5. 前記波長変換層積層体は、前記基板側から順に長波長側の光を発光する波長変換層が積層されたことを特徴とする請求項1~4のいずれか1項に記載の波長変換基板。 The wavelength conversion substrate according to any one of claims 1 to 4, wherein the wavelength conversion layer laminate is formed by laminating a wavelength conversion layer that emits light of a long wavelength side in order from the substrate side.
  6. 前記波長変換層積層体は、前記基板側から順に赤色の波長域の光を発光する赤色波長変換層と緑色の波長域の光を発光する緑色波長変換層が積層され、かつ、緑色の波長域の光を発光する領域と赤色の波長域の光を発光する領域を有することを特徴とする請求項1~5のいずれか1項に記載の波長変換基板。 The wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in a red wavelength range and a green wavelength conversion layer that emits light in a green wavelength range in order from the substrate side, and a green wavelength range. The wavelength conversion substrate according to any one of claims 1 to 5, wherein the wavelength conversion substrate has a region that emits light of a wavelength and a region that emits light in a red wavelength region.
  7. 前記波長変換層積層体は、前記基板側から順に赤色の波長域の光を発光する赤色波長変換層と、緑色の波長域の光を発光する緑色波長変換層と、青色の波長域の光を発光する青色波長変換層とが積層され、かつ、緑色の波長域の光を発光する領域と、赤色の波長域の光を発光する領域と、青色の波長域の光を発光する領域とを有することを特徴とする請求項1~5のいずれか1項に記載の波長変換基板。 The wavelength conversion layer laminate includes a red wavelength conversion layer that emits light in the red wavelength range in order from the substrate side, a green wavelength conversion layer that emits light in the green wavelength range, and light in the blue wavelength range. A blue wavelength conversion layer that emits light is laminated, and has a region that emits light in the green wavelength region, a region that emits light in the red wavelength region, and a region that emits light in the blue wavelength region. The wavelength conversion substrate according to any one of claims 1 to 5, wherein:
  8. 前記基板と前記波長変換層積層体との間に、カラーフィルターが設けられたことを特徴とする請求項1~7のいずれか1項に記載の波長変換基板。 The wavelength conversion substrate according to any one of claims 1 to 7, wherein a color filter is provided between the substrate and the wavelength conversion layer laminate.
  9. 前記基板と前記波長変換層積層体との間、または、前記カラーフィルターと前記波長変換層積層体との間に、前記基板の屈折率と前記波長変換層の屈折率のうち、低い方よりも屈折率が低い低屈折率層が設けられたことを特徴とする請求項1~8のいずれか1項に記載の波長変換基板。 Between the substrate and the wavelength conversion layer stack, or between the color filter and the wavelength conversion layer stack, the lower of the refractive index of the substrate and the refractive index of the wavelength conversion layer. The wavelength conversion substrate according to any one of claims 1 to 8, wherein a low refractive index layer having a low refractive index is provided.
  10. 前記波長変換層積層体は、画素を形成し、各画素間に対応した位置に、光吸収性の隔壁が設けられたことを特徴とする請求項1~9のいずれか1項に記載の波長変換基板。 The wavelength according to any one of claims 1 to 9, wherein the wavelength conversion layer stack includes pixels, and a light-absorbing partition wall is provided at a position corresponding to each pixel. Conversion board.
  11. 前記隔壁は、少なくとも前記基板側から光吸収層と、光反射性または光散乱性のバンクの積層構造をなしていることを特徴とする請求項10に記載の波長変換基板。 The wavelength conversion substrate according to claim 10, wherein the partition wall has a laminated structure of a light absorption layer and a light reflective or light scattering bank from at least the substrate side.
  12. 請求項1~11のいずれか1項に記載の波長変換基板と、励起光源と、を備えたことを特徴とする表示装置。 A display device comprising the wavelength conversion substrate according to any one of claims 1 to 11 and an excitation light source.
  13. 前記励起光源は、紫外の波長域から青緑色の波長域の光を発光する光源であることを特徴とする請求項12に記載の表示装置。 The display device according to claim 12, wherein the excitation light source is a light source that emits light in an ultraviolet wavelength region to a blue-green wavelength region.
  14. 前記励起光源は、発光ダイオード、有機エレクトロルミネセンス素子または無機エレクトロルミネセンス素子のいずれかであることを特徴とする請求項12または13に記載の表示装置。 The display device according to claim 12 or 13, wherein the excitation light source is any one of a light emitting diode, an organic electroluminescence element, and an inorganic electroluminescence element.
  15. 前記励起光源を駆動させるアクティブマトリックス駆動素子が設けられたことを特徴とする請求項14に記載の表示装置。 The display device according to claim 14, further comprising an active matrix driving element that drives the excitation light source.
  16. 前記アクティブマトリックス駆動素子が設けられた基板とは反対側から光を取り出すことを特徴とする請求項15に記載の表示装置。 The display device according to claim 15, wherein light is extracted from a side opposite to the substrate on which the active matrix driving element is provided.
  17. 電圧によりスイッチングを行う液晶素子を備えたことを特徴とする請求項12~14のいずれか1項に記載の表示装置。 The display device according to any one of claims 12 to 14, further comprising a liquid crystal element that performs switching by voltage.
  18. 請求項12~17のいずれか1項に記載の表示装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the display device according to any one of claims 12 to 17.
  19. 基板上に波長変換材料を含む波長変換層を形成し、前記波長変換材料が吸収する光を用いて、所望の部分を露光する工程を行うことを特徴とする波長変換基板の製造方法。 A method for producing a wavelength conversion substrate, comprising: forming a wavelength conversion layer including a wavelength conversion material on a substrate; and exposing a desired portion using light absorbed by the wavelength conversion material.
  20. 基板上に波長変換材料を含む波長変換層を形成し、露光しない部分にマスクを形成した後、前記波長変換材料が吸収する光を用いて、前記波長変換層のうち前記マスクが形成されていない部分を露光する工程を行うことを特徴とする波長変換基板の製造方法。 A wavelength conversion layer including a wavelength conversion material is formed on a substrate, a mask is formed on a portion that is not exposed, and then the mask of the wavelength conversion layer is not formed using light absorbed by the wavelength conversion material. The manufacturing method of the wavelength conversion board | substrate characterized by performing the process of exposing a part.
PCT/JP2013/055560 2012-03-07 2013-02-28 Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method WO2013133139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050766A JP2015099633A (en) 2012-03-07 2012-03-07 Wavelength conversion substrate and display device using the same, electronic apparatus, and method of manufacturing wavelength conversion substrate
JP2012-050766 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133139A1 true WO2013133139A1 (en) 2013-09-12

Family

ID=49116620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055560 WO2013133139A1 (en) 2012-03-07 2013-02-28 Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method

Country Status (2)

Country Link
JP (1) JP2015099633A (en)
WO (1) WO2013133139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174464A1 (en) * 2014-05-14 2015-11-19 シャープ株式会社 Organic electroluminescence display device
JP2018506060A (en) * 2015-01-31 2018-03-01 エルジー・ケム・リミテッド Light conversion element and display device including the same
GB2600977A (en) * 2020-11-13 2022-05-18 Plessey Semiconductors Ltd Process of making monolithic RGB array

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102169915B1 (en) * 2015-08-11 2020-10-26 한국전자기술연구원 Color Insulating Coating for Cut-off Infrared Rays
EP3435124A4 (en) * 2016-03-25 2019-11-20 Toray Industries, Inc. Light source unit, lamination member, and display and illumination device in which same is used
TWI591405B (en) * 2016-05-30 2017-07-11 行家光電股份有限公司 Photoluminescent display device and method for manufacturing the same
US10620478B2 (en) 2016-05-30 2020-04-14 Maven Optronics Co., Ltd. Photoluminescent display device and method for manufacturing the same
KR102129862B1 (en) * 2018-12-11 2020-07-03 포항공과대학교 산학협력단 Metalens, manufacturing method thereof and optical device having the same
CN112133718B (en) * 2019-06-25 2024-02-20 成都辰显光电有限公司 Display panel, display device and preparation method of display panel
JP7413791B2 (en) 2020-01-22 2024-01-16 Toppanホールディングス株式会社 Color filter substrate and display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202827A (en) * 1999-11-10 2001-07-27 Matsushita Electric Works Ltd Method of manufacturing transparent conductive substrate, light emission device, plane light emission plate and manufacturing method of plane light emission plate, plane fluorescent lamp, and plasma display
WO2002011209A2 (en) * 2000-08-01 2002-02-07 Emagin Corporation Method of patterning color changing media for organic light emitting diode display devices
JP2002236209A (en) * 2000-12-08 2002-08-23 Hitachi Ltd Color filter and liquid crystal display device using the same
JP2004319471A (en) * 2003-04-01 2004-11-11 Fuji Electric Holdings Co Ltd Method of manufacturing color conversion filter, and color filter with color converting function
JP2005026186A (en) * 2003-07-02 2005-01-27 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display
JP2010182597A (en) * 2009-02-09 2010-08-19 Fuji Electric Holdings Co Ltd Organic el device and method of manufacturing the same
JP2010199273A (en) * 2009-02-25 2010-09-09 Kyocera Corp Light-emitting device and lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202827A (en) * 1999-11-10 2001-07-27 Matsushita Electric Works Ltd Method of manufacturing transparent conductive substrate, light emission device, plane light emission plate and manufacturing method of plane light emission plate, plane fluorescent lamp, and plasma display
WO2002011209A2 (en) * 2000-08-01 2002-02-07 Emagin Corporation Method of patterning color changing media for organic light emitting diode display devices
JP2002236209A (en) * 2000-12-08 2002-08-23 Hitachi Ltd Color filter and liquid crystal display device using the same
JP2004319471A (en) * 2003-04-01 2004-11-11 Fuji Electric Holdings Co Ltd Method of manufacturing color conversion filter, and color filter with color converting function
JP2005026186A (en) * 2003-07-02 2005-01-27 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display
JP2010182597A (en) * 2009-02-09 2010-08-19 Fuji Electric Holdings Co Ltd Organic el device and method of manufacturing the same
JP2010199273A (en) * 2009-02-25 2010-09-09 Kyocera Corp Light-emitting device and lighting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174464A1 (en) * 2014-05-14 2015-11-19 シャープ株式会社 Organic electroluminescence display device
JP2018506060A (en) * 2015-01-31 2018-03-01 エルジー・ケム・リミテッド Light conversion element and display device including the same
US10193029B2 (en) 2015-01-31 2019-01-29 Lg Chem, Ltd. Light conversion device and display device comprising same
GB2600977A (en) * 2020-11-13 2022-05-18 Plessey Semiconductors Ltd Process of making monolithic RGB array
WO2022101611A1 (en) * 2020-11-13 2022-05-19 Plessey Semiconductors Ltd Process of making monolithic rgb array
GB2600977B (en) * 2020-11-13 2023-07-19 Plessey Semiconductors Ltd Process of making monolithic RGB array

Also Published As

Publication number Publication date
JP2015099633A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US9091415B2 (en) Light-emitting device, and display apparatus, which can efficiently emit, to outside, fluorescence generated in fluorescent layer and can realize high-luminance light emission and in which generation of blurriness and fuzziness of display is suppressed
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
US9512976B2 (en) Light-emitting device, display device and illumination device
WO2014084012A1 (en) Scatterer substrate
WO2013133139A1 (en) Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
WO2013183751A1 (en) Fluorescent substrate, light-emitting device, display device, and lighting device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
US9117977B2 (en) Light emitting device, display apparatus, and illuminating apparatus
WO2013183696A1 (en) Fluorescent material substrate, display apparatus, and illuminating apparatus
JP2014052606A (en) Phosphor substrate, light-emitting device, display device and luminaire
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
JP2014038702A (en) Wavelength conversion substrate and display device using the same, and electronic apparatus
JP2014199267A (en) Phosphor substrate, display unit, and electronic apparatus
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
JP2013109907A (en) Phosphor substrate and display device
WO2013065649A1 (en) Organic light-emitting element
JP2016143658A (en) Light emitting element and display device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
WO2013094645A1 (en) Optical substrate and method for manufacturing same, light-emitting element, liquid crystal element, display device, liquid crystal device, and illumination device
WO2012144426A1 (en) Fluorescent light body substrate and display device
WO2012121287A1 (en) Phosphor substrate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP