WO2012120669A1 - 電気加熱式触媒 - Google Patents

電気加熱式触媒 Download PDF

Info

Publication number
WO2012120669A1
WO2012120669A1 PCT/JP2011/055542 JP2011055542W WO2012120669A1 WO 2012120669 A1 WO2012120669 A1 WO 2012120669A1 JP 2011055542 W JP2011055542 W JP 2011055542W WO 2012120669 A1 WO2012120669 A1 WO 2012120669A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
case
support member
insulating support
inner tube
Prior art date
Application number
PCT/JP2011/055542
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011554006A priority Critical patent/JP5354032B2/ja
Priority to PCT/JP2011/055542 priority patent/WO2012120669A1/ja
Priority to EP11797293.5A priority patent/EP2684596B1/en
Priority to US13/381,771 priority patent/US8763379B2/en
Priority to CN201180002568.1A priority patent/CN103442788B/zh
Publication of WO2012120669A1 publication Critical patent/WO2012120669A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2871Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets having an additional, e.g. non-insulating or non-cushioning layer, a metal foil or an adhesive layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/10Surface coverings for preventing carbon deposits, e.g. chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst provided in an exhaust passage of an internal combustion engine.
  • an electrically heated catalyst (hereinafter referred to as EHC) in which the catalyst is heated by a heating element that generates heat when energized has been developed.
  • an insulating support member that supports the heating element and insulates electricity is provided between a heating element that generates heat when energized and a case that accommodates the heating element.
  • Patent Document 1 discloses a technique for providing an insulating mat between a carrier that generates heat when energized and a case that houses the carrier in EHC.
  • EHC there is a case where an inner pipe is provided in order to suppress a short circuit between the heating element and the case due to condensed water that has entered (infiltrated) the insulating support member.
  • the inner tube is a tubular member that is sandwiched by insulating support members so as to be positioned between the heating element and the case. Further, the inner pipe is formed with an electric insulating layer on the entire surface or is formed of an electric insulating material.
  • the inner pipe When the inner pipe is provided in the EHC, the inner pipe is formed so as to protrude into the exhaust gas from the end face of the insulating support member.
  • the inner pipe suppresses that the condensed water that has flowed through the inner wall surface of the case and reached the insulating support member reaches the heating element through the end face of the insulating support member. The Therefore, it is possible to suppress a short circuit between the heating element and the case due to the condensed water not only inside the insulating support member but also on the end face of the insulating support member.
  • particulate matter (hereinafter referred to as PM) in the exhaust gas adheres to the protruding portion protruding from the end face of the insulating support member in the inner tube.
  • PM particulate matter
  • the present invention has been made in view of the above problems, and an object thereof is to suppress a short circuit between a heating element and a case in EHC.
  • the present invention provides a catalyst having an oxidation function, except for a predetermined range in which at least an outer peripheral surface of the protruding portion protruding into the exhaust from the end surface of the insulating support member in the inner pipe is in contact with the end surface of the insulating support member. It is something to cover.
  • the electrically heated catalyst (EHC) is A heating element that generates heat when energized and heats the catalyst by generating heat;
  • An insulating support member provided between the heating element and the case and supporting the heating element and insulating electricity;
  • a tubular member sandwiched between the insulating support members so as to be positioned between the heating element and the case, the end of which protrudes from the end surface of the insulating support member into the exhaust gas, and the entire surface
  • An inner tube formed of an electric insulating material or an electric insulating material;
  • a catalyst having an oxidation function that covers at least the outer peripheral surface of the protruding portion protruding into the exhaust gas from the end surface of the insulating support member in the inner pipe except for a predetermined range in contact with the end surface of the insulating support member; Is provided.
  • the portion covered with the catalyst becomes porous, so that condensed water tends to stay in the portion. Accordingly, when the entire protruding portion of the inner pipe is covered with the catalyst, the heat generating body and the case are easily short-circuited by the accumulated condensed water.
  • the flow rate of the exhaust is less on the outside of the inner tube than on the inside. Therefore, PM is less likely to deposit on the outer peripheral surface of the protruding portion of the inner tube than the inner peripheral surface of the protruding portion. Further, in the protruding portion of the inner tube, PM is less likely to deposit in a portion near the end surface of the insulating support member than in a portion away from the end surface of the insulating support member. Therefore, in the projecting portion of the inner tube, PM is hardly deposited in a portion near the end surface of the insulating support member on the outer peripheral surface.
  • the outer peripheral surface of the protruding portion of the inner tube is covered with a catalyst having an oxidation function except for a predetermined range in contact with the end surface of the insulating support member. That is, the catalyst is not provided in the portion where the PM is most difficult to deposit in the protruding portion of the inner tube. Condensed water is unlikely to stay in a portion where the catalyst is not provided.
  • the amount of the catalyst covering the downstream protruding portion of the inner pipe is set to the amount of the inner pipe.
  • the amount may be smaller than the amount of catalyst covering the upstream protrusion. In this case, only the upstream protruding portion of the inner tube may be covered with the catalyst.
  • the amount of PM in the exhaust gas flowing out from the EHC is smaller than the amount of PM in the exhaust gas flowing into the EHC. Therefore, the amount of PM adhering to the protrusion on the downstream side of the inner pipe is smaller than the amount of PM adhering to the protrusion on the upstream side of the inner pipe. Further, the temperature of the exhaust gas flowing out from the EHC is higher than the temperature of the exhaust gas flowing into the EHC. Therefore, the temperature of the protrusion on the downstream side of the inner pipe is higher than the temperature of the protrusion on the upstream side of the inner pipe. Accordingly, PM can be sufficiently oxidized at the protruding portion on the downstream side of the inner pipe, even if the amount of catalyst is less than the protruding portion on the upstream side of the inner pipe or no catalyst is provided. is there.
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 1.
  • FIG. 3 is an enlarged view of a protruding portion of an inner tube of an electrically heated catalyst according to Example 1.
  • FIG. 3 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 2.
  • 6 is a diagram illustrating a schematic configuration of an electrically heated catalyst according to a modification of Example 2.
  • FIG. 1 and 2 are diagrams showing a schematic configuration of an electrically heated catalyst (EHC) according to the present embodiment.
  • FIG. 1 is a cross-sectional view of the EHC cut along its central axis.
  • FIG. 2 is an enlarged view of a protruding portion that protrudes into the exhaust gas from the end face of the catalyst carrier in the inner pipe described later.
  • the EHC 1 according to the present embodiment is provided in an exhaust pipe of an internal combustion engine mounted on a vehicle.
  • the internal combustion engine may be a diesel engine or a gasoline engine.
  • the EHC 1 according to the present embodiment can also be used in a vehicle that employs a hybrid system including an electric motor.
  • the EHC 1 includes a catalyst carrier 3, a case 4, a mat 5, an inner tube 6, and an electrode 7.
  • the catalyst carrier 3 is formed in a columnar shape, and is installed so that its central axis is coaxial with the central axis A of the exhaust pipe 2.
  • An exhaust purification catalyst 13 is supported on the catalyst carrier 3. Examples of the exhaust purification catalyst 13 include an oxidation catalyst, a NOx storage reduction catalyst, a selective reduction NOx catalyst, and a three-way catalyst.
  • the catalyst carrier 3 is formed of a material that generates electric resistance when heated.
  • An example of the material of the catalyst carrier 3 is SiC.
  • the catalyst carrier 3 has a plurality of passages extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows in a honeycomb shape. Exhaust gas flows through this passage.
  • the cross-sectional shape of the catalyst carrier 3 in the direction orthogonal to the central axis A may be an ellipse or the like.
  • the central axis A is a central axis common to the exhaust pipe 2, the catalyst carrier 3, the inner pipe 6, and the case 4.
  • the catalyst carrier 3 is accommodated in the case 4.
  • An electrode chamber 9 is formed in the case 4. The details of the electrode chamber 9 will be described later.
  • a pair of electrodes 7 are connected to the catalyst carrier 3 from the left and right directions through the electrode chamber 9. Electricity is supplied to the electrode 7 from a battery (not shown). When electricity is supplied to the electrode 7, the catalyst carrier 3 is energized. When the catalyst carrier 3 generates heat by energization, the exhaust purification catalyst 13 carried on the catalyst carrier 3 is heated, and its activation is promoted.
  • Case 4 is made of metal.
  • a stainless steel material can be exemplified.
  • the case 4 includes an accommodating portion 4a including a curved surface parallel to the central axis A, and a tapered portion 4b that connects the accommodating portion 4a and the exhaust pipe 2 on the upstream side and the downstream side of the accommodating portion 4a. 4c.
  • the passage cross-sectional area of the accommodating portion 4a is larger than the passage cross-sectional area of the exhaust pipe 2, and the catalyst carrier 3, the mat 5, and the inner pipe 6 are accommodated therein.
  • the tapered portions 4b and 4c have a tapered shape in which the passage cross-sectional area decreases as the distance from the accommodating portion 4a increases.
  • a mat 5 is sandwiched between the inner wall surface of the accommodating portion 4 a of the case 4 and the outer peripheral surface of the catalyst carrier 3. That is, the catalyst carrier 3 is supported by the mat 5 in the case 4.
  • An inner tube 6 is sandwiched between the mats 5.
  • the inner tube 6 is a tubular member centered on the central axis A.
  • the mat 5 is divided into the case 4 side and the catalyst carrier 3 side by the inner tube 6 by sandwiching the inner tube 6.
  • the mat 5 is made of an electrical insulating material. Examples of the material for forming the mat 5 include ceramic fibers mainly composed of alumina.
  • the mat 5 is wound around the outer peripheral surface of the catalyst carrier 3 and the outer peripheral surface of the inner tube 6.
  • the mat 5 is divided into an upstream portion 5a and a downstream portion 5b, and a space is formed between the upstream portion 5a and the downstream portion 5b. Since the mat 5 is sandwiched between the catalyst carrier 3 and the case 4, electricity is suppressed from flowing to the case 4 when the catalyst carrier 3 is energized.
  • the inner tube 6 is made of stainless steel. Further, as shown in FIG. 2, an electrical insulating layer 61 is formed on the entire surface of the inner tube 6. Examples of a material for forming the electrical insulating layer 61 include ceramic or glass.
  • the main body of the inner tube 6 may be formed of an electrical insulating material such as alumina.
  • the inner tube 6 is longer than the mat 5 in the direction of the central axis A. Therefore, the upstream and downstream ends of the inner tube 6 protrude from the upstream and downstream end surfaces of the mat 5.
  • the portions 6a and 6b protruding from the end face of the mat 5 in the inner pipe 6 into the exhaust are referred to as “projections”.
  • An electrode chamber 9 is formed by a space in the case 4 between the upstream portion 5 a and the downstream portion 5 b of the mat 5. That is, in this embodiment, the electrode chamber 9 is formed over the entire outer peripheral surface of the catalyst carrier 3 between the upstream portion 5a and the downstream portion 5b of the mat 5.
  • a space serving as an electrode chamber may be formed by forming a through hole only in a portion through which the electrode 7 of the mat 5 passes.
  • An electrode support member 8 that supports the electrode 7 is provided in the through hole 4d opened in the case 4.
  • the electrode support member 8 is made of an electrical insulating material, and is provided between the case 4 and the electrode 7 without a gap.
  • the protrusions 6 a and 6 b of the inner pipe 6 are covered with an oxidation catalyst 10.
  • the oxidation catalyst 10 further covers the electric insulating layer 61 that covers the surface of the inner tube 6. Further, the oxidation catalyst 10 does not cover the entire surface of the projecting portions 6 a and 6 b of the inner tube 6. That is, the outer peripheral surfaces of the projecting portions 6 a and 6 b of the inner tube 6 are covered with the oxidation catalyst 10 except for a predetermined range in contact with the end surface of the mat 5.
  • the catalyst carrier 3 corresponds to the heating element according to the present invention.
  • the heating element according to the present invention is not limited to the carrier supporting the catalyst.
  • the heating element may be a structure installed on the upstream side of the catalyst.
  • the case 4 corresponds to the case according to the present invention
  • the mat 5 corresponds to the insulating support member according to the present invention
  • the inner tube 6 corresponds to the inner tube according to the present invention.
  • the oxidation catalyst 10 corresponds to a catalyst having an oxidation function according to the present invention.
  • the catalyst having an oxidation function according to the present invention is not limited to an oxidation catalyst.
  • the inner tube 6 whose entire surface is covered with the electrical insulating layer 61 is sandwiched between the mats 5.
  • the protrusions 6 a and 6 b of the inner pipe 6 can suppress the condensed water from reaching the catalyst carrier along the end surface of the mat 5. Therefore, a short circuit between the catalyst carrier 3 and the case 4 due to condensed water at the end face of the mat 5 can also be suppressed.
  • the inner pipe 6 does not necessarily protrude from both the upstream side and the downstream side of the mat 5.
  • the oxidation catalyst 10 is provided on the surfaces of the protruding portions 6a and 6b of the inner tube 6.
  • the oxidation catalyst 10 promotes the oxidation of PM adhering to the protrusions 6a and 6b. Thereby, it is possible to suppress a short circuit between the catalyst carrier 3 and the case 4 due to PM.
  • the portion covered with the oxidation catalyst 10 becomes porous. Therefore, the condensed water tends to stay in the portion. Therefore, if the entire protrusions 6a and 6b of the inner pipe 6 are covered with the oxidation catalyst 10, the catalyst carrier 3 and the case 4 are easily short-circuited by the accumulated condensed water.
  • the outer peripheral surfaces of the protruding portions 6 a and 6 b of the inner tube 6 are covered with the oxidation catalyst 10 except for a predetermined range in contact with the end surface of the mat 5. That is, the oxidation catalyst 10 is not provided in a predetermined range in contact with the end surface of the mat 5 on the outer peripheral surfaces of the protruding portions 6a and 6b of the inner tube 6. In the predetermined range, the electrical insulating layer 61 is exposed to the exhaust gas. The electrical insulating layer 61 has a water repellent effect. Therefore, the condensed water hardly stays in the predetermined range.
  • the outside of the inner pipe 6 has a smaller exhaust flow rate than the inside. Therefore, PM hardly deposits on the outer peripheral surfaces of the protruding portions 6a and 6b of the inner tube 6 as compared with the inner peripheral surfaces of the protruding portions 6a and 6b. Further, in the projecting portions 6 a and 6 b of the inner pipe 6, PM is less likely to deposit in a portion near the end surface of the mat 5 than in a portion away from the end surface of the mat 5. Therefore, in the protrusions 6a and 6b of the inner tube 6, PM is most difficult to deposit in a portion near the end surface of the mat 5 on the outer peripheral surface. That is, PM does not easily accumulate within the predetermined range in the protrusions 6a and 6b of the inner pipe 6 even if the oxidation catalyst 10 is not provided.
  • FIG. 3 is a diagram showing a schematic configuration of an electrically heated catalyst (EHC) according to the present embodiment.
  • FIG. 3 is a cross-sectional view of the EHC cut along its central axis.
  • the upstream and downstream ends of the inner pipe 6 protrude from the upstream and downstream end surfaces of the mat 5.
  • the protruding portion 6 a on the upstream side of the inner tube 6 is covered with the oxidation catalyst 10, and the oxidizing catalyst 10 is not provided on the protruding portion 6 b on the downstream side of the inner tube 6.
  • the configuration other than this point is the same as the configuration of the EHC according to the first embodiment. Therefore, also in the present embodiment, as in the first embodiment, the outer peripheral surface of the upstream protruding portion 6a of the inner pipe 6 is covered with the oxidation catalyst 10 except for a predetermined range in contact with the end surface of the mat 5. Yes.
  • the exhaust gas passing through the EHC 1 is heated by heat generated by a chemical reaction in the exhaust purification catalyst 13 supported on the catalyst carrier 3.
  • the temperature of the exhaust gas flowing out from the EHC 1 becomes higher than the temperature of the exhaust gas flowing into the EHC 1. Therefore, the temperature of the protruding portion 6 b on the downstream side of the inner tube 6 is higher than the temperature of the protruding portion 6 a on the upstream side of the inner tube 6. Even when the operating state of the internal combustion engine is reduced and the fuel cut control is executed, the temperature of the exhaust gas flowing into the EHC 1 is lowered. The temperature of the protruding portion 6b is unlikely to decrease.
  • the protruding portion 6b on the downstream side of the inner tube 6 has a smaller amount of PM deposition and facilitates the oxidation of PM than the protruding portion 6a on the upstream side of the inner tube 6. Therefore, PM can be sufficiently oxidized in the protruding portion 6b on the downstream side of the inner pipe 6 without providing the oxidation catalyst 10. That is, it is possible to prevent PM from being deposited as the catalyst carrier 3 and the case 4 are short-circuited.
  • the amount of the oxidation catalyst 10 that covers the protruding portion 6b on the downstream side of the inner pipe 6 does not necessarily have to be zero, and the oxidation catalyst 10 that covers the protruding portion 6a on the upstream side of the inner pipe 6 is not necessarily used. It may be less than the amount. Even in this case, the amount of the oxidation catalyst 10 used can be suppressed.
  • PM is less likely to adhere to the outer peripheral surface of the protruding portion 6a on the upstream side of the inner tube 6 than the inner peripheral surface of the protruding portion 6a. If PM accumulation on the outer peripheral surface of the protrusion 6a can be suppressed, a short circuit due to PM between the catalyst carrier 3 and the case 4 on the upstream side of the EHC 1 can be suppressed.
  • the oxidation catalyst 10 may not be provided on the inner peripheral surface of the protruding portion 6a on the upstream side of the inner pipe 6. According to such a configuration, the use of the oxidation catalyst 10 can be suppressed as much as possible.
  • Electric heating catalyst (EHC) 3 Electric heating catalyst 4 .
  • Catalyst carrier 4 Case 5 .
  • Mat 6 Inner tube 6a, 6b .
  • Projection 7 Electrode 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、電気加熱式触媒における、発熱体とケースとの間の短絡を抑制することを目的とする。本発明に係る電気加熱式触媒(1)は、発熱体(3)と、ケース(4)と、前記発熱体(3)と前記ケース(4)との間に設けられた絶縁支持部材(5)と、前記絶縁支持部材(5)に挟み込まれ、その端部が前記絶縁支持部材(5)の端面から排気中にした内管(6)と、前記内管(6)における前記絶縁支持部材(5)の端面から排気中に突出している突出部(6a,6b)の少なくとも外周面を、前記絶縁支持部材(5)の端面と接する所定の範囲を除いて覆う酸化機能を有する触媒(10)と、を備える。

Description

電気加熱式触媒
 本発明は、内燃機関の排気通路に設けられる電気加熱式触媒に関する。
 従来、内燃機関の排気通路に設けられる排気浄化触媒として、通電されることで発熱する発熱体によって触媒が加熱される電気加熱式触媒(Electric Heating Catalyst:以下、EHCと称する)が開発されている。
 EHCにおいては、通電によって発熱する発熱体と、該発熱体の収容するケースとの間に、該発熱体を支持すると共に電気を絶縁する絶縁支持部材が設けられる。例えば、特許文献1には、EHCにおいて、通電により発熱する担体と、該担体を収容するケースとの間に、絶縁体のマットを設ける技術が開示されている。
特開平05-269387号公報
 EHCにおいては、絶縁支持部材内に浸入(浸潤)した凝縮水によって発熱体とケースとの間が短絡することを抑制するために、内管を設ける場合がある。該内管は、発熱体とケースとの間に位置するように絶縁支持部材によって挟み込まれた管状の部材である。また、該内管は、表面全体に電気絶縁層が形成されているか或いは電気絶縁材によって形成されている。
 EHCに内管を設ける場合、該内管は、絶縁支持部材の端面から排気中に突出するように形成される。内管をこのように形成することで、ケースの内壁面を流れて絶縁支持部材に到達した凝縮水が、該絶縁支持部材の端面を伝って発熱体にまで至ることが該内管によって抑制される。従って、絶縁支持部材の内部のみならず、絶縁支持部材の端面において、発熱体とケースとの間が凝縮水によって短絡することを抑制することができる。
 ところが、内管を上記のような構成とすると、内管における絶縁支持部材の端面から突出した突出部に排気中の粒子状物質(Particulate Matter:以下、PMと称する)が付着する。その結果、内管の突出部にPMが堆積すると、発熱体とケースとの間が該PMによって短絡する虞がある。
 本発明は、上記のような問題に鑑みてなされたものであって、EHCにおける、発熱体とケースとの間の短絡を抑制することを目的とする。
 本発明は、EHCにおいて、内管における絶縁支持部材の端面から排気中に突出している突出部の少なくとも外周面を、絶縁支持部材の端面と接する所定の範囲を除いて、酸化機能を有する触媒によって覆うものである。
 より詳しくは、本発明に係る電気加熱式触媒(EHC)は、
 通電により発熱し、発熱することで触媒を加熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられ、前記発熱体を支持すると共に電気を絶縁する絶縁支持部材と、
 前記発熱体とケースとの間に位置するように前記絶縁支持部材に挟み込まれた管状の部材であって、その端部が前記絶縁支持部材の端面から排気中に突出しており、且つ、表面全体に電気絶縁層が形成されているか或いは電気絶縁材によって形成された内管と、
 前記内管における前記絶縁支持部材の端面から排気中に突出している突出部の少なくとも外周面を、前記絶縁支持部材の端面と接する所定の範囲を除いて覆う酸化機能を有する触媒と、
 を備える。
 酸化機能を有する触媒によって内管の突出部を覆うことで、該突出部に付着したPMの酸化を促進させることができる。そのため、該突出部の該触媒によって覆われた部分におけるPMの堆積を抑制することができる。その結果、発熱体とケースとの間のPMによる短絡を抑制することができる。
 ただし、内管の突出部を触媒で覆った場合、該触媒によって覆った部分が多孔質化するために、該部分に凝縮水が滞留し易くなる。従って、内管の突出部全体を触媒で覆うと、滞留した凝縮水によって発熱体とケースとの間が短絡し易くなる。
 ここで、内管の外側はその内側に比べて排気の流量が少ない。そのため、内管の突出部の外周面には、該突出部の内周面に比べてPMが堆積し難い。また、内管の突出部において、絶縁支持部材の端面に近い部分は、絶縁支持部材の端面から離れた部分に比べてPMが堆積し難い。そのため、内管の突出部においては、外周面の絶縁支持部材の端面に近い部分が、PMが最も堆積し難い。
 そこで、本発明では、内管の突出部の外周面を、絶縁支持部材の端面と接する所定の範囲を除いて、酸化機能を有する触媒で覆う。即ち、内管の突出部におけるPMが最も堆積し難い部分は触媒が設けられていない。該触媒が設けられていない部分には凝縮水が滞留し難い。
 従って、本発明によれば、EHCにおける、発熱体とケースとの間の、PMに起因する短絡及び凝縮水に起因する短絡のいずれも抑制することができる。
 本発明において、内管が、絶縁支持部材の上流側及び下流側の両方の端面から排気中に突出している場合、該内管の下流側の突出部を覆う触媒の量を、該内管の上流側の突出部を覆う触媒の量に比べて少なくしてもよい。また、この場合、内管の上流側の突出部のみを触媒によって覆ってもよい。
 EHCから流出する排気中のPM量は、EHCに流入する排気中のPM量に比べて少ない。そのため、内管の下流側の突出部に付着するPM量は、内管の上流側の突出部に付着するPM量よりも少ない。また、EHCから流出する排気の温度は、EHCに流入する排気の温度に比べて高い。そのため、内管の下流側の突出部の温度は、内管の上流側の突出部の温度に比べて高い。従って、内管の下流側の突出部においては、触媒の量を内管の上流側の突出部より少なくしても、或いは、触媒を設けなくても、PMを十分に酸化することが可能である。
 従って、上記によれば、触媒の使用量を抑制しつつ、発熱体とケースとの間の短絡を抑制することができる。
 上述したように、内管の突出部の外周面には、該突出部の内周面に比べてPMが付着し難い。そして、該突出部の外周面おけるPMの堆積を抑制できれば、発熱体とケースとの間のPMによる短絡を抑制することができる。そこで、内管の突出部の外周面のみを、絶縁支持部材の端面と接する所定の範囲を除いて、触媒によって覆ってもよい。つまり、内管の突出部の内周面には触媒を設けなくてもよい。
 本発明によれば、EHCにおける、発熱体とケースとの間の短絡を抑制することができる。
実施例1に係る電気加熱式触媒の概略構成を示す図である。 実施例1に係る、電気加熱式触媒の内管の突出部の拡大図である。 実施例2に係る電気加熱式触媒の概略構成を示す図である。 実施例2の変形例に係る電気加熱式触媒の概略構成を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 [EHCの概略構成]
 図1及び2は、本実施例に係る電気加熱式触媒(EHC)の概略構成を示す図である。図1は、EHCをその中心軸に沿って切断した断面図である。図2は、後述する内管における触媒担体の端面から排気中に突出した突出部の拡大図である。
 本実施例に係るEHC1は、車両に搭載される内燃機関の排気管に設けられる。内燃機関は、ディーゼル機関であっても、ガソリン機関であってもよい。また、電気モータを備えたハイブリッドシステムを採用した車両においても本実施例に係るEHC1を用いることができる。
 本実施例に係るEHC1は、触媒担体3、ケース4、マット5、内管6、及び電極7を備えている。触媒担体3は、円柱状に形成されており、その中心軸が排気管2の中心軸Aと同軸となるように設置されている。触媒担体3には排気浄化触媒13が担持されている。排気浄化触媒13としては、酸化触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒及び三元触媒等を例示することができる。
 触媒担体3は、通電されると電気抵抗となって発熱する材料によって形成されている。触媒担体3の材料としては、SiCを例示することができる。触媒担体3は、排気の流れる方向(すなわち、中心軸Aの方向)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流通する。尚、中心軸Aと直交する方向の触媒担体3の断面形状は楕円形等であっても良い。中心軸Aは、排気管2、触媒担体3、内管6、及びケース4で共通の中心軸である。
 触媒担体3はケース4に収容されている。ケース4内には電極室9が形成されている。尚、電極室9の詳細については後述する。触媒担体3には、該電極室9を通して左右方向から一対の電極7が接続されている。電極7にはバッテリ(図示せず)から電気が供給される。電極7に電気が供給されると、触媒担体3に通電される。通電によって触媒担体3が発熱すると、触媒担体3に担持された排気浄化触媒13が加熱され、その活性化が促進される。
 ケース4は、金属によって形成されている。ケース4を形成する材料としては、ステンレス鋼材を例示することができる。ケース4は、中心軸Aと平行な曲面を含んで構成される収容部4aと、該収容部4aよりも上流側及び下流側で該収容部4aと排気管2とを接続するテーパ部4b,4cと、を有している。収容部4aの通路断面積は排気管2の通路断面積よりも大きくなっており、その内側に、触媒担体3、マット5、及び内管6が収容されている。テーパ部4b,4cは、収容部4aから離れるに従って通路断面積が縮小するテーパ形状をしている。
 ケース4の収容部4aの内壁面と触媒担体3の外周面との間にはマット5が挟み込まれている。つまり、ケース4内において、触媒担体3がマット5によって支持されている。また、マット5には内管6が挟み込まれている。内管6は、中心軸Aを中心とした管状の部材である。マット5が、内管6を挟み込むことで、該内管6によってケース4側と触媒担体3側とに分割されている。
 マット5は、電気絶縁材によって形成されている。マット5を形成する材料としては、アルミナを主成分とするセラミックファイバーを例示することができる。マット5は、触媒担体3の外周面及び内管6の外周面に巻きつけられている。また、マット5は、上流側部分5aと下流側部分5bとに分割されており、該上流側部分5aと下流側部分5bとの間には空間が形成されている。マット5が、触媒担体3とケース4との間に挟み込まれていることで、触媒担体3に通電したときに、ケース4へ電気が流れることが抑制される。
 内管6はステンレス鋼材によって形成されている。また、図2に示すように、内管6の表面全体には電気絶縁層61が形成されている。電気絶縁層61を形成する材料としては、セラミック又はガラスを例示することができる。尚、内管6の本体をアルミナ等の電気絶縁材によって形成してもよい。
 また、図1に示すように、内管6は、中心軸A方向の長さがマット5より長い。そのため、内管6の上流側及び下流側の端部は、マット5の上流側及び下流側の端面から突出している。以下、内管6におけるマット5の端面から排気中に突出している部分6a、6bを、「突出部」と称する。
 ケース4及び内管6には、電極7を通すために、貫通孔4d,6cが開けられている。そして、ケース4内における、マット5の上流側部分5aと下流側部分5bとの間の空間によって、電極室9が形成されている。つまり、本実施例においては、マット5の上流側部分5aと下流側部分5bとの間における触媒担体3の外周面全周にわたって電極室9が形成される。尚、マット5を上流側部分5aと下流側部分5bとに分割することなく、マット5の電極7が通る部分にのみ貫通孔を空けることで、電極室となる空間を形成してもよい。
 ケース4に開けられている貫通孔4dには、電極7を支持する電極支持部材8が設けられている。この電極支持部材8は電気絶縁材によって形成されており、ケース4と電極7との間に隙間なく設けられている。
 内管6の突出部6a,6bは酸化触媒10によって覆われている。該酸化触媒10は、内管6の表面を覆う電気絶縁層61の上をさらに覆っている。また、該酸化触媒10は、内管6の突出部6a,6bの表面全体を覆っているわけではない。即ち、内管6の突出部6a,6bの外周面は、マット5の端面と接する所定の範囲を除いた部分が酸化触媒10によって覆われている。
 尚、本実施例においては、触媒担体3が本発明に係る発熱体に相当する。ただし、本発明に係る発熱体は触媒を担持する担体に限られるものではなく、例えば、発熱体は触媒の上流側に設置された構造体であってもよい。また、本実施例においては、ケース4が本発明に係るケースに相当し、マット5が本発明に係る絶縁支持部材に相当し、内管6が本発明に係る内管に相当する。また、本実施例においては、酸化触媒10が本発明に係る酸化機能を有する触媒に相当する。ただし、本発明に係る酸化機能を有する触媒は酸化触媒に限られるものではない。
 [本実施例に係るEHCの構成の作用効果]
 排気管2内又はEHC1のケース4内においては、内燃機関の冷間始動時等に、排気中の水分が凝縮することで、凝縮水が発生する。排気管2内又はケース4内で発生した凝縮水がケース4の内壁面を伝って流れマット5まで到達すると、該凝縮水がマット5内に浸入(浸潤)する場合がある。また、マット5内に水蒸気の状態で浸入した水分が該マット5内で凝縮する場合もある。
 そこで、本実施例に係るEHC1では、表面全体が電気絶縁層61で覆われた内管6をマット5に挟み込んでいる。このような構成により、マット5内の凝縮水によって触媒担体3とケース4との間が短絡するのを抑制することができる。また、内管6の突出部6a,6bによって、マット5の端面を伝って凝縮水が触媒担体にまで至ることを抑制することができる。従って、マット5の端面での凝縮水による触媒担体3とケース4との間の短絡も抑制することができる。
 尚、本実施例においては、必ずしもマット5の上流側及び下流側の両方から内管6が突出していなくともよい。例えば、凝縮水の発生量がより多い上流側のみに内管6の突出部が形成された構成としてもよい。
 しかし、内管6を上記のような構成とすると、内管6の突出部6a、6bに排気中のPMが付着する。PMは導電性を有している。そのため、マット5の端面及び内管6の突出部6a(又は6b)の表面の全面にわたってPMが堆積すると、触媒担体3とケース4との間が該PMによって短絡する。
 そこで、本実施例では、内管6の突出部6a,6bの表面に酸化触媒10を設けている。該酸化触媒10によって、突出部6a,6bに付着したPMの酸化が促進される。これによって、触媒担体3とケース4との間がPMによって短絡することを抑制することができる。
 ただし、内管6の突出部6a、6bを酸化触媒10で覆うと、該酸化触媒10によって覆った部分が多孔質化する。そのため、該部分に凝縮水が滞留し易くなる。従って、内管6の突出部6a,6b全体を酸化触媒10で覆うと、滞留した凝縮水によって触媒担体3とケース4との間が短絡し易くなる。
 そこで、本実施例に係るEHC1では、内管6の突出部6a,6bの外周面を、マット5の端面と接する所定の範囲を除いた部分を、酸化触媒10で覆っている。つまり、内管6の突出部6a,6bの外周面における、マット5の端面と接する所定の範囲には、酸化触媒10が設けられていない。該所定の範囲の部分では、電気絶縁層61が排気に晒されている。電気絶縁層61は撥水効果を有する。そのため、該所定の範囲の部分には凝縮水が滞留し難い。
 また、内管6の外側はその内側に比べて排気の流量が少ない。そのため、内管6の突出部6a,6bの外周面には、該突出部6a,6bの内周面に比べてPMが堆積し難い。また、内管6の突出部6a,6bにおいて、マット5の端面に近い部分は、マット5の端面から離れた部分に比べてPMが堆積し難い。そのため、内管6の突出部6a,6bにおいては、外周面のマット5の端面に近い部分が、PMが最も堆積し難い。つまり、内管6の突出部6a,6bにおける上記所定の範囲では、酸化触媒10が設けられていなくても、PMが堆積し難い。
 従って、内管6の突出部6a,6bに、上記のように酸化触媒10を設けることで、触媒担体3とケース4との間の、PMに起因する短絡及び凝縮水に起因する短絡のいずれも抑制することができる。
 <実施例2>
 [EHCの概略構成]
 図3は、本実施例に係る電気加熱式触媒(EHC)の概略構成を示す図である。図3は、EHCをその中心軸に沿って切断した断面図である。本実施例に係るEHC1においても、内管6の上流側及び下流側の端部は、マット5の上流側及び下流側の端面から突出している。そして、本実施例では、内管6の上流側の突出部6aのみが酸化触媒10によって覆われており、内管6の下流側の突出部6bには酸化触媒10が設けられていない。この点以外の構成は、実施例1に係るEHCの構成と同様である。従って、本実施例においても、実施例1と同様、内管6の上流側の突出部6aにおける外周面は、マット5の端面と接する所定の範囲を除いた部分が酸化触媒10によって覆われている。
 [本実施例に係るEHCの構成の作用効果]
 EHC1における触媒担体3に流入した排気中のPMは、該触媒担体3にトラップされる。そのため、EHC1から流出する排気中のPM量は、EHC1に流入する排気中のPM量に比べて少ない。従って、内管6の下流側の突出部6bに付着するPM量は、内管6の上流側の突出部6aに付着するPM量よりも少ない。
 また、EHC1を通過する排気は、触媒担体3に担持された排気浄化触媒13での化学反応によって生じた熱によって加熱される。その結果、EHC1から流出する排気の温度は、EHC1に流入する排気の温度に比べて高くなる。そのため、内管6の下流側の突出部6bの温度は、内管6の上流側の突出部6aの温度に比べて高い。また、内燃機関の運転状態が減速運転となり、フューエルカット制御が実行されることで、EHC1に流入する排気の温度が低下した場合も、触媒担体3の熱容量が大きいため、内管6の下流側の突出部6bの温度は低下し難い。
 これらのことから、内管6の下流側の突出部6bでは、内管6の上流側の突出部6aに比べて、PM堆積量が少なく且つPMの酸化が促進され易い。そのため、内管6の下流側の突出部6bにおいては、酸化触媒10を設けなくても、PMを十分に酸化することが可能である。即ち、触媒担体3とケース4との間が短絡するほどPMが堆積することを抑制することができる。
 そこで、本実施例では、内管6の上流側の突出部6aのみを酸化触媒10によって覆い、内管6の下流側の突出部6bには酸化触媒10を設けない。これによれば、酸化触媒10の使用量を抑制しつつ、触媒担体3とケース4との間の短絡を抑制することができる。
 [変形例]
 尚、本実施例においては、内管6の下流側の突出部6bを覆う酸化触媒10の量を、必ずしも零としなくてもよく、内管6の上流側の突出部6aを覆う酸化触媒10の量よりも少なくしてもよい。この場合でも、酸化触媒10の使用量を抑制することができる。
 また、上述したように、内管6の上流側の突出部6aの外周面には、該突出部6aの内周面に比べてPMが付着し難い。そして、該突出部6aの外周面おけるPMの堆積を抑制できれば、EHC1の上流側における触媒担体3とケース4との間のPMによる短絡を抑制することができる。
 そこで、本実施例においては、図4に示すように、内管6の突出部6aの外周面のみを、マット5の端面と接する所定の範囲を除いて、酸化触媒10によって覆ってもよい。つまり、内管6の上流側の突出部6aの内周面には酸化触媒10を設けなくてもよい。このような構成によれば、酸化触媒10の使用を可及的に抑制することができる。
1・・・電気加熱式触媒(EHC)
3・・・触媒担体
4・・・ケース
5・・・マット
6・・・内管
6a,6b・・突出部
7・・・電極
10・・酸化触媒

Claims (3)

  1.  通電により発熱し、発熱することで触媒を加熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられ、前記発熱体を支持すると共に電気を絶縁する絶縁支持部材と、
     前記発熱体とケースとの間に位置するように前記絶縁支持部材に挟み込まれた管状の部材であって、その端部が前記絶縁支持部材の端面から排気中に突出しており、且つ、表面全体に電気絶縁層が形成されているか或いは電気絶縁材によって形成された内管と、
     前記内管における前記絶縁支持部材の端面から排気中に突出している突出部の少なくとも外周面を、前記絶縁支持部材の端面と接する所定の範囲を除いて覆う酸化機能を有する触媒と、
     を備える電気加熱式触媒。
  2.  前記内管が、前記絶縁支持部材の上流側及び下流側の両方の端面から排気中に突出しており、
     該内管の下流側の突出部を覆う前記触媒の量が、該内管の上流側の突出部を覆う前記触媒の量に比べて少ない請求項1に記載の電気加熱式触媒。
  3.  前記内管の上流側の突出部のみが前記触媒によって覆われている請求項2に記載の電気加熱式触媒。
PCT/JP2011/055542 2011-03-09 2011-03-09 電気加熱式触媒 WO2012120669A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011554006A JP5354032B2 (ja) 2011-03-09 2011-03-09 電気加熱式触媒
PCT/JP2011/055542 WO2012120669A1 (ja) 2011-03-09 2011-03-09 電気加熱式触媒
EP11797293.5A EP2684596B1 (en) 2011-03-09 2011-03-09 Electrically heated catalyst
US13/381,771 US8763379B2 (en) 2011-03-09 2011-03-09 Electrically heated catalyst
CN201180002568.1A CN103442788B (zh) 2011-03-09 2011-03-09 电加热催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055542 WO2012120669A1 (ja) 2011-03-09 2011-03-09 電気加熱式触媒

Publications (1)

Publication Number Publication Date
WO2012120669A1 true WO2012120669A1 (ja) 2012-09-13

Family

ID=46797668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055542 WO2012120669A1 (ja) 2011-03-09 2011-03-09 電気加熱式触媒

Country Status (5)

Country Link
US (1) US8763379B2 (ja)
EP (1) EP2684596B1 (ja)
JP (1) JP5354032B2 (ja)
CN (1) CN103442788B (ja)
WO (1) WO2012120669A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051695B2 (ja) * 2016-03-02 2022-04-11 ワットロー・エレクトリック・マニュファクチャリング・カンパニー 流体の流れを加熱するための露出した加熱体
CN112684832B (zh) * 2019-10-17 2022-01-28 中国石油化工股份有限公司 克服碳化硅环状载体温度反应滞后的方法及设备
LU502910B1 (en) * 2022-10-17 2024-04-17 Katcon Global Sa Heat-radiating assembly with heat shield

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0655080A (ja) * 1992-05-20 1994-03-01 W R Grace & Co 触媒的変換装置用コア要素
JPH08193513A (ja) * 1995-01-13 1996-07-30 Calsonic Corp 電気加熱触媒コンバータおよびその制御方法
JPH08266909A (ja) * 1995-03-29 1996-10-15 Showa Aircraft Ind Co Ltd 電気加熱式触媒装置用メタル担体およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070694A (en) * 1990-10-31 1991-12-10 W. R. Grace & Co. -Conn. Structure for electrically heatable catalytic core
US5846495A (en) * 1995-07-12 1998-12-08 Engelhard Corporation Structure for converter body
JP3216545B2 (ja) * 1996-01-26 2001-10-09 トヨタ自動車株式会社 内燃機関の排気浄化用触媒装置
JP3181219B2 (ja) * 1996-02-06 2001-07-03 トヨタ自動車株式会社 電気加熱式触媒装置
CN1680689A (zh) * 2004-04-08 2005-10-12 中国环境科学研究院 用于内燃机排气净化装置的电加热器
GB0507326D0 (en) * 2005-04-12 2005-05-18 Delphi Tech Inc Catalytic converter apparatus and method
US7818960B2 (en) * 2007-03-14 2010-10-26 Gm Global Technology Operations, Inc. SCR cold start heating system for a diesel exhaust
JP2010265862A (ja) * 2009-05-18 2010-11-25 Toyota Industries Corp 排気ガス浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0655080A (ja) * 1992-05-20 1994-03-01 W R Grace & Co 触媒的変換装置用コア要素
JPH08193513A (ja) * 1995-01-13 1996-07-30 Calsonic Corp 電気加熱触媒コンバータおよびその制御方法
JPH08266909A (ja) * 1995-03-29 1996-10-15 Showa Aircraft Ind Co Ltd 電気加熱式触媒装置用メタル担体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2684596A4

Also Published As

Publication number Publication date
JPWO2012120669A1 (ja) 2014-07-07
CN103442788B (zh) 2015-08-19
US20140033688A1 (en) 2014-02-06
EP2684596B1 (en) 2017-08-23
CN103442788A (zh) 2013-12-11
US8763379B2 (en) 2014-07-01
EP2684596A1 (en) 2014-01-15
EP2684596A4 (en) 2014-10-08
JP5354032B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5590127B2 (ja) 電気加熱式触媒
JP5725187B2 (ja) 電気加熱式触媒
WO2013065157A1 (ja) 電気加熱式触媒の制御装置
JP2015132256A (ja) 内燃機関の触媒装置
JP5263456B2 (ja) 電気加熱式触媒
WO2012025993A1 (ja) 電気加熱式触媒
JP5354032B2 (ja) 電気加熱式触媒
JP5387777B2 (ja) 電気加熱式触媒
JPWO2012107997A1 (ja) 電気加熱式触媒
US20130306623A1 (en) Electric heating catalyst
JP5472457B2 (ja) 電気加熱式触媒
JP6717280B2 (ja) 内燃機関の排気浄化装置
JP5626375B2 (ja) 電気加熱式触媒
JP5397550B2 (ja) 電気加熱式触媒
JP2011220323A (ja) 電気加熱式触媒
JP5601240B2 (ja) 触媒コンバータ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011554006

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011797293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011797293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13381771

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE