WO2012119468A1 - 一种用于飞行器的超高压流体喷射动力变轨系统及方法 - Google Patents

一种用于飞行器的超高压流体喷射动力变轨系统及方法 Download PDF

Info

Publication number
WO2012119468A1
WO2012119468A1 PCT/CN2011/083309 CN2011083309W WO2012119468A1 WO 2012119468 A1 WO2012119468 A1 WO 2012119468A1 CN 2011083309 W CN2011083309 W CN 2011083309W WO 2012119468 A1 WO2012119468 A1 WO 2012119468A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
nozzle
combined
nozzles
wing
Prior art date
Application number
PCT/CN2011/083309
Other languages
English (en)
French (fr)
Inventor
洪瑞庆
Original Assignee
Hong Ruiqing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Ruiqing filed Critical Hong Ruiqing
Priority to US14/004,166 priority Critical patent/US20140001275A1/en
Publication of WO2012119468A1 publication Critical patent/WO2012119468A1/zh
Priority to US15/201,319 priority patent/US20170088254A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/14Attitude, flight direction, or altitude control by jet reaction the jets being other than main propulsion jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/38Jet flaps

Definitions

  • the present invention relates to the field of aerospace vehicles, and more particularly to an ultrahigh pressure fluid jet power rail system and method for an aircraft.
  • the aerodynamic shape of an aircraft will determine its aerodynamic characteristics under given gas flow conditions. Now the shape of space shuttles, space planes, and aerospace aircraft have inherent design flaws that cause them to need more auxiliary equipment. The device is equipped with it, so the design becomes more and more complicated, more and more difficult to operate, and more and more heavy, making the aircraft more and more energy-consuming, and there are a series of defects.
  • the shape design of the space shuttle is a big astronomical failure. Its shape is basically like a cigar-shaped metal rod. This aerodynamic shape can't help with the lifting force of air in flight. The space shuttle took off, so it can only be lifted off with the help of a large thrust rocket. This is because it requires huge energy to be consumed by it. This method is not enough for the aerospace industry and will be eliminated in the future.
  • the sky plane also mimics the shape of the space shuttle.
  • the take-off mode is similar to that of the space shuttle. It is only sent to the air by a large aircraft, and then the rocket engine is carried out to fly out of the atmosphere. The ills are also fully reflected in it, and will be eliminated in the future.
  • the take-off of the aircraft is mainly achieved by the force generated by the two wings and the air. Since the contact surface of the aircraft wing and the air is very limited, only the method of increasing the engine power can be used to make the aircraft start. The speed is increased to make up for the lack of aircraft lift capacity. This is the inherent deficiency of the aircraft's shape design, and the defects of the shape design, resulting in extra huge energy loss.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide an ultra-throated fluid jet power rail system (hereinafter referred to as an "orbital system”) and method for an aircraft.
  • an orbiting system for an aircraft including a gas pipeline, a nozzle, and a central automatic control system, characterized in that the rail changing system further comprises a combined orifice, the combination
  • the nozzle hole is composed of a plurality of nozzles arranged in a honeycomb geometry (hereinafter referred to as: combined nozzle hole), and the combined nozzle hole is installed at the leading edge and the trailing edge of the aircraft wing, or is mounted on the tail or pelvic fin or duck of the aircraft.
  • the symmetry plane of the wing or the fuselage, the rail changing system further comprises a pneumatic storage device (hereinafter referred to as: a storage device) or several reservoirs, the storage device is supplied by the engine, placed inside the aircraft, and the storage device
  • a pneumatic storage device hereinafter referred to as: a storage device
  • the combined orifices are connected by a gas pipeline, and a nozzle that is sprayed downward may be provided under the reservoir.
  • the invention relates to an orbiting system applied to an aircraft, characterized in that the nozzle of the combined orifice is injecting gas outward, the combined orifice comprises two types of nozzles, and one type is sprayed in a fixed direction.
  • a gas nozzle, another type is a nozzle that changes the direction of the injected gas.
  • the invention relates to a rail changing system for an aircraft, characterized in that the rail changing system is applied to a military or civilian tailed aircraft, and the front edge of the aircraft wing is symmetrically connected from the top to the bottom.
  • the combined orifices constitute a combined orifice arranged by the upper, middle and lower sides, and the rear edge of the wing (at the flap of the original wing, at the aileron, the following is similar) is symmetrical from the top to the bottom.
  • the nozzle hole constitutes a combined nozzle hole which is arranged in series by the upper, middle and lower sides.
  • the symmetrical side of the tail of the aircraft is provided with a combined nozzle hole, and the rear end of the aircraft is symmetrically arranged with a combined nozzle hole on the upper and lower sides, and the body is symmetric with a central axis.
  • the above-described rail changing system for an aircraft characterized in that the rail changing system is applied to a rear-end military aircraft correction page (Article 91)
  • the front edge of the military wing is symmetrically provided with a combined spray hole from the top to the bottom, forming a combined spray hole arranged in the upper, middle and lower sides, and the rear edge of the wing is symmetrically connected from the top to the bottom.
  • the combination is provided with a combined orifice, which also constitutes a combined orifice arranged by the upper, middle and lower sides.
  • the original vertical tail or ventral fin of the wing tail is symmetrically arranged above and below with a combined orifice, the belly of the fuselage or under the wing
  • the nozzle is symmetrical in the middle axis, and the air pressure reservoir is arranged in the fuselage or the wing.
  • the above-described rail changing system for an aircraft is characterized in that the rail changing system is applied to a helicopter, and a quadrilateral or hexagonal or octagonal shape is mounted on the top of the helicopter propeller bearing. Polygonal rotating disk with corners, polygon
  • the side of the rotating disc is provided with a combined orifice, and the inner part of the rotating disc and the central part of the bearing have a hollow structure, and the hollow shaft is supported by the combined nozzle hole on the polygonal rotating disc at the top of the bearing.
  • the above-described rail changing system for an aircraft is characterized in that the rail changing system is applied to a rocket or a missile, and a combined nozzle hole is provided in a surface layer of the casing of the rocket or the missile.
  • the aircraft has a circular dish shape, and the aircraft is divided into upper, middle and lower three-layer structures.
  • the central position of the middle layer of the aircraft and the upper part of the lower layer are provided with a reservoir, and the center point of the middle layer of the aircraft is at an angle of 90'C.
  • Four exhaust nozzle ports are arranged in four directions, and the upper and lower two nozzles are respectively arranged in the four exhaust nozzle ports, and the nozzle guiding tips are arranged in the middle of the upper and lower nozzles.
  • the bottom of the reservoir is provided with a row of circumferential downward spray nozzles, and the upper and lower surface layers of the aircraft are respectively provided with combined spray holes.
  • the above-mentioned variable rail system for an aircraft is characterized in that the nozzle and the combined orifice are configured to radiate outward in a center of a circle.
  • the above-mentioned rail changing system for an aircraft is characterized in that the upper and lower two nozzles of the middle nozzle wall of the aircraft are provided with a certain angle of inclination at the nozzle valve.
  • the method for an orbital system of an aircraft is characterized in that the application method is as follows: (A) Flight: When two nozzles adjacent to the middle of the dish are jetted, the flying saucer makes a horizontal flight forward.
  • the flying saucer When closing one nozzle on one side and opening the adjacent nozzle jet on the other side, the flying saucer will make a orbital movement in the 90'C direction.
  • the flying saucer When closing the two open nozzles, open the opposite two nozzles.
  • the flying saucer When flying, the flying saucer will act as a brake or reverse the horizontal direction of the flight;
  • the aircraft will be lifted off: Open the downwardly sprayed nozzle, and when the flying saucer is lifted vertically to a certain height, open the No. 3 No. 4 nozzle, so that the flying saucer is pushed horizontally.
  • crawling and lifting close the vertically lifted nozzle and open the combined nozzle of the designated part of the lower controller.
  • the horizontal airflow in the lower layer of the flying saucer is injected by the combined nozzle.
  • the vertical airflow resistance is blocked, the direction of the airflow movement is changed, and the head of the flying saucer is lifted upward to form an orbital flight in an upward oblique direction;
  • (D) Combination nozzle brake When the aircraft is doing any horizontal flight movement, it needs to brake and close the No. 3 and No. 4 nozzles. Due to the inertia, the flying saucer is still doing the forward flight. The combined nozzles of the designated parts of the upper and lower controllers of the flying saucer are simultaneously opened, and the horizontal airflow forms a vertical direction against the jet airflow, hindering the flying saucer from flying forward, and braking action; (E) left-handed orbital change, When the aircraft needs to rotate left-handed in horizontal direction, open the combined nozzle of the 45° angle from the left to the lower part of the upper and lower controllers. Since the horizontal airflow is blocked by the resistance of the jet curtain wall, the flying direction of the flying saucer will be left.
  • the angle is deflected, the orbit is formed, and after the requirement of the orbital angle is reached, the combined nozzle is closed, and the flying saucer flies in the direction after the orbital change;
  • the right-handed orbital when the aircraft needs to rotate the right-handed orbit in the horizontal direction Open the combined nozzle of the right 45 ⁇ angle of the designated part of the upper and lower controllers. Because the horizontal airflow is blocked by the resistance of the jet curtain wall, the flying saucer It will be deflected to the direction of flight of the right angle, forming orbit, to achieve the required orbit angle, close the combined nozzle holes, flying saucer in the direction of flight of the orbit.
  • the invention has the advantages of low equipment cost, simple operation and maintenance, greatly reduced the cost of aerospace and aviation, and does not require a large-scale, complex equipment space launching site or a large airport runway. Only one airport is needed.
  • the space plane completes a flight, it can take off again after maintenance. People can travel in the same way as a plane. Even if you don't go to space, it is convenient to take it to the other side of the ocean to visit friends. And in military value, it can also be converted into aerospace fighters, air-to-air bombers and air-to-air transport aircraft.
  • the space plane's strong penetration is able to easily break through the enemy's defense system and attack the enemy, destroying the enemy's living power.
  • FIG. 1 Schematic diagram of the combination of the honeycomb geometry of the present invention mounted on the sides of the aircraft tail or the empennage or ventral fin, for example: each square hole represents a honeycomb nozzle;
  • the controller specifies to open the 1-a group or the 1-b group, and the combined orifice forms a geometrical schematic diagram of two different parts:
  • the controller specifies to open the 1-a group and the 1-b group at the same time, and the combined orifice forms an integral L shape.
  • Schematic diagram of the geometric shape
  • Figure 2 Schematic diagram of the combined orifices of the combined orifices of the present invention mounted on the leading or trailing edge (former flap, aileron) or duck wing of the wing, such as: Represents a honeycomb nozzle;
  • the controller specifies to open the 2-a group, and the combined orifices form a schematic diagram of the geometry of the single row jet:
  • the controller specifies to open the 2-b group, and the combined orifice constitutes a geometrical schematic diagram of the plurality of rows of sprays;
  • Figure 3 is a cross-sectional view of the combined orifice of the present invention mounted on the leading and trailing edges of the wing;
  • FIG. 4 Schematic diagram of the layout of the military or civilian tail aircraft used in the present invention:
  • 4- a is a combination nozzle for the front edge of the aircraft
  • 4-d is a combination of spray holes on both sides of the symmetrical side of the aircraft
  • 4-e is a combination nozzle on the upper and lower sides of the symmetrical aircraft tail
  • the combined nozzle is installed at the front edge of the aircraft, icon 5 - a ;
  • the combined nozzle is installed at the rear edge of the aircraft, icon 5 - b;
  • the combined nozzle is installed on the left and right sides of the tail of the aircraft and the upper and lower parts, icon 5 - c;
  • a combination nozzle for vertical take-off and landing is installed in a symmetrical part of the center of the abdomen of the aircraft.
  • Figure 5 - Mountain Figure 6 Schematic diagram of the structure of the upper, middle and lower layers of the present invention applied to the dish;
  • the 6-1 icon is a combination nozzle
  • the icon is the gas pipe of the combined orifice
  • the 6-4 icon is a nozzle for vertical take-off and landing
  • 6-6 icon is the valve inside the power nozzle
  • Figure 7 Schematic diagram of the layout of the middle nozzle for the invention and the flying direction of the flying saucer when the nozzle is opened;
  • (F). is a sectional view of the flying saucer;
  • Figure 8 a bottom view of the nozzle opening with 8 downward jets at the bottom of the lower layer of the flying saucer;
  • Figure 9 The combined orifice of the present invention is mounted on the upper and lower layers of the flying saucer, Design layout map applied to the orbit;
  • Figure 10 The working state diagram when the dish is changed into a track when the controller is applied to the controller to open the part;
  • (B) is a working state diagram of the downward flight of the present invention applied to the downward direction of the dish, and when the upper layer of the designated working portion is sprayed upward, the aircraft is flying downward;
  • the invention is applied to the braking of the dish-shaped aircraft, and simultaneously opens the upper and lower layers of the designated working portion, and the working state diagram of the upper and lower jets simultaneously
  • (E) is a working state diagram when the present invention is applied to a right-handed orbit of a dish, and the designated working portion of the upper and lower layers is opened;
  • Figure 11 The invention is applied to a helicopter
  • 11-1 is a disk surface view of the rotating disk
  • 11-2 is a bearing view of the rotating disc and the chain
  • 11--3 is a hollow view of the bearing center
  • 11- 4 is a view showing one side of the octagonal rotating disk mounted with the present invention.
  • 11-- 5 is applied to the rotating disc on the top of the helicopter propeller bearing, the controller is designated to open the nozzle hole
  • FIG. 12-2 is the installation of the combined nozzle hole: Figure 13: (A).
  • the icon is applied to the rocket and missile on the invention, and the controller specifies the opening of the nozzle jet.
  • Figure 1 is an example: see the 1-a icon combination nozzle opening, the form of a shape of a jet shape is formed; see 1-b icon combination nozzle opening, forming an oblique rectangular shape; When the combined orifices of the 1-a and 1-b icons are simultaneously smashed, an L-shaped jet form is formed.
  • FIG. 5 See the 5-a, 5-b icons on the original flap, aileron or duck wing parts of the aircraft wing. Install the combined spray holes from the upper, middle and lower symmetry. See 3-a icon and 3. -b icon; each square hole represents a combined nozzle nozzle see 2-a, 2-b icon, after programming, can form a single row of injection or multiple rows of injection gas;
  • the flaps, ailerons, tail fins (the rear wing including the horizontal tail and the vertical tail), the duck wings, the pelvic fins, etc. installed on the existing aircraft are all taking off, landing, balancing, and orbiting the aircraft. Such as the role, or for the fighter to take the role of short takeoff and landing, rollover and so on.
  • the basic principle of these orbital devices is that when these devices are opened, the horizontal airflow encounters resistance, thereby causing the horizontal airflow to change the direction of motion, resulting in a orbital effect on the aircraft.
  • the system of the invention can help the aircraft to remove all complicated orbital auxiliary devices except the fuselage and the wing, greatly simplifying the internal and external structure of the aircraft, removing the quality of these devices, and adding more oil to the aircraft. Or materials, the economic benefits of flight have been greatly improved, and can play a positive role in some aspects of the design of aviation aircraft in the future.
  • the nozzles and combined nozzles installed in different parts of the aircraft can open vertical takeoff, vertical landing, hovering, balancing, turning and orbiting for the aircraft by opening different nozzles and combined nozzles during the orbital change. The role of rollover.
  • the invention is applied to a dished aircraft comprising the following units:
  • Engine According to the different requirements of the aircraft, choose to use different "rocket engines”, “aviation engines”, or other types of engines. You can use one or multiple engines to combine the power of the aircraft. .
  • Aircraft Cooling System Avoid excessive temperature build-up of the engine that prevents some parts of the engine or other equipment from functioning properly. Cooling can protect the engine's components and other equipment components from working properly.
  • High-temperature resistant, high-pressure energy storage (hereinafter referred to as: storage): Because the energy generated by the work of the engine is very high, the pressure is very high. To store these high-temperature and high-pressure energy, one must have a high resistance.
  • the storage of warm and high-pressure gas energy, the energy in the storage one of which: can provide the power source for the aircraft to fly at low speed in the atmosphere, and the second: it is the change of the "ultra-high pressure fluid-injected power rail system" Provide a source of power.
  • each storage unit is The gas pressure is relatively stable, and the pressure of the jets of each nozzle is eliminated when the gas is discharged, which has the function of voltage regulation.
  • High-temperature resistant, high-pressure gas pipeline It is designed according to the different use requirements of the aircraft.
  • the pipeline is laid, and the pressure storage is linked with the nozzle or the combined nozzle.
  • the pipeline mainly serves as the nozzle and nozzle. The role of conveying power gas.
  • High-temperature resistant, high-pressure variable nozzle It is designed according to the shape of the aircraft. One or more jet nozzles can be set at the required part of the aircraft to make vertical lift, horizontal flight, hover and change for the aircraft. Rails and the like provide energy power.
  • High temperature resistant, high pressure variable or fixed nozzle According to the design requirements of the aircraft, the honeycomb geometry nozzles can be arranged into different densities, different orifice sizes, nozzles fixed or rotated, arbitrary geometry.
  • the nozzle combination (hereinafter referred to as: combination nozzle) is installed in the surface level required by the aircraft, and is used in conjunction with the nozzle.
  • the aircraft performs vertical takeoff and landing, hovering, balancing, braking, and super maneuvering. This system can replace the various "tangible orbital" devices on modern aircraft.
  • Central automatic control system It is the central automatic control system of the aircraft. It is connected to all the equipment devices on the aircraft through the cable line. According to the set procedure, all the action instructions on the aircraft are automatically controlled, commanded and released.
  • the central control system controls the emissions to enable the aircraft to complete these actions.
  • the inventors designed to divide the structure of the aircraft into upper, middle and lower layers, and placed the reservoir at the center of the upper and lower upper portions of the aircraft. (See Figure 6)
  • a row of circumferential down-spray nozzles are laid under the air pressure storage.
  • the number of nozzles is determined as needed.
  • the nozzles mainly serve to provide vertical take-off and landing and suspension for the aircraft. effect. (See Figure 8)
  • the combined nozzles are installed in the upper and lower layers of the aircraft.
  • the nozzles are instructed by the controller to inject gas outward (see Figure 7-F).
  • the direction of the airflow passing through the horizontal direction of the surface of the aircraft forms a vertical direction of motion.
  • this jet of squirting gas blocks the passage of horizontal airflow like a wall, it forces the horizontally moving airflow to change its direction of motion. At that time, the force that moves in the other direction is formed.
  • the aircraft uses this force to make the maneuvering orbit.
  • the control system closes the injection hole and returns the aircraft to the level. Direction of movement.
  • the angle at which the fixed nozzle is sprayed can be set as needed, and the variable angle nozzle can change the jet angle of the jet.
  • the aircraft Since the aircraft is a circular dish-shaped object, the nozzle and the combined nozzle hole are laid, and the method of laying the core into the circumference is adopted. Therefore, the aircraft has no defined head or tail direction, and the four directions can be called As the head or tail, this direction is the head of the aircraft only when we artificially set a certain part of it as the head. (See Figure 9)
  • the aircraft can fly at low speed, it can also fly at super high speed, when the aircraft reaches a certain speed at high speed.
  • the above-mentioned left and right orbital method can be used to set the flight mode of the aircraft to a mode in which the center of the aircraft is rotated forward by centripetal force.
  • This flight mode can avoid the occurrence of shock phenomena (or sonic explosion). Because the force point of the outer surface of the flying object is solved by the centrifugal force when the object rotates at a high speed, the surface of the aircraft is greatly reduced, and the high temperature generated by the direct force and the friction of the air is on the aircraft. The surface plays a vital role in protection.
  • the aircraft can sail on the water:
  • variable orbits are all combined with the method of jet-jet change, and because of its disc shape and the outer edge of the arc with a 30-inch angle, the aircraft can be produced very well. Invisible effect. See Figure 7: Design and application of the four-way laying nozzle in the middle of the aircraft
  • the function of the nozzle is designed to cross the center of the aircraft. When the two forces intersect at the center point, a forward force is synthesized (see Figure 7-A).
  • the advantage of the square nozzle is that When the adjacent No. 3 and No. 4 nozzles are opened, the flight direction of the aircraft is to fly in a horizontal direction (see Figure 7-B); when the adjacent No. 1 and No. 2 nozzles are opened, the aircraft will start To the braking effect, or to fly in a direction opposite to the horizontal direction (see Figure 7-C); when opening No. 2, 3
  • the vertical vertical take-off and landing nozzle in the center of the inner ring of the lower part of the aircraft for the aircraft to make a downward jet when it is vertically hoisted and hovered. It can be matched with the combined nozzle and balanced by the jetting force of the combined nozzle.
  • the stability of the aircraft can also be selected as the vertical take-off and landing nozzle on the outer ring of the lower part of the aircraft.
  • the advantage of the vertical take-off and shoot nozzle of the outer ring is that the aircraft takes off and land.
  • the stability is better than in the middle, and the lack of space is large.
  • Hovering in the air can open the combined nozzle-based jet hovering mode, because the aircraft does not need to have a large thrust upwards, as long as the aircraft is secured in the air with the gravity and the aircraft The ascending lift balance is sufficient, and of course depends on whether the jet force of the combined orifice can reach the gravity of the supporting aircraft. See Figure 9: Combination of the array of aircraft arrangements:
  • the aircraft is a circular object.
  • the inventor designed the combined nozzle holes to be arranged in a circumferential shape.
  • the number of combined nozzle holes in the upper and lower surface layers is the same, and the mounting portions are symmetrical, so that the same amount of symmetrical arrangement, It is possible to ensure the synchronism of the jet change (see Figure 9).
  • the aircraft When opening the combined jet injection of the aircraft in the following form (see Figure 10), the aircraft is required to be lifted at an angle of 30 (see Figure 10-A) or landing. (See Figure 10-B)
  • the effect of the application, as well as the effect of the aircraft during in-flight braking see Figure 10-C).
  • FIG. 10-A for aircraft to take off: Open the vertical take-off and landing nozzle, and when the aircraft is lifted vertically to a certain degree, open the No. 3 and No. 4 nozzles to make the aircraft advance horizontally. Vertically lift the nozzle and open the lower combined nozzle at the same time. Because the lift of the horizontal airflow of the aircraft is blocked by the vertical airflow resistance of the nozzle, the direction of the airflow changes, and the head of the aircraft will rise upwards to form an upward oblique direction. Orbital flight. See Figure 10-B. Aircraft landing: When the aircraft is flying horizontally in the air and needs to land, close the No. 3 and No. 4 nozzles.
  • the aircraft uses the inertial flight of the flight speed to open the upper combined nozzle, due to the horizontal airflow of the upper surface layer of the aircraft. Blocked by the vertical airflow resistance of the nozzle, the direction of the airflow changes, and the head of the aircraft moves in a downward direction to form an orbital flight in a downward oblique direction.
  • a part of the vertical lift is provided to the helicopter by means of a nozzle mounted on the bottom of the helicopter.
  • a rotating disc with a quadrilateral or hexagonal or octagonal corner is mounted on the top of the helicopter's counterfeit bearing, the side of the polygonal rotating disc
  • a combined orifice is provided, and the inner portion of the rotating disc and the central portion of the bearing chain are hollow, and the hollow bearing is used to deliver gas to the combined orifice on the polygonal rotating disc at the top of the bearing.
  • the shaft is spinning at an idle speed
  • the combined orifice on the side of the top of the rotating disc injects gas outward. This gas is ejected in a shape similar to the shape of the propeller blade. This design will be the original "tangible propeller blade" of the helicopter. "Changed to "invisible propeller blades”.
  • the lift capacity may not reach the load capacity of the "tangible blade” bearing weight, so we can increase its lift capacity by increasing the engine power, increasing the air pressure and adding more invisible blades.
  • the actual situation of this idea is to be determined by experimentation.
  • Helicopter rotation effects and orbital problems can be solved by installing a "tracking system" at a suitable location on the fuselage. Since the propeller blade has a "tangible” shape and becomes an “invisible” object, the safety factor is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Description

一种用于飞行器的超高压流体喷射动力变轨系统及方法
[技术领域] 本发明涉及航空航天飞行器技术领域, 具体地说是一种用于飞行器的超高压流体喷射动 力变轨系统及方法。
[背景技术] 在运动的物体, 不管是在天空中飞说行的航天飞机、 航空飞机、 火箭、 导弹等运动物体, 还是在水上航行或者是在水下潜行的运动物体, 在飞行或航行的过程中, 都会与气流或与水 流的阻力相接触, 都需要改变其运动的方向, 我们书称之为 "方向变轨", 现有的变轨方法, 都 是采用借助机械装置的摆动, 来使水平气流或水平液流的运动方向发生变化, 形成另外一股 作用力, 借助这股作用力来使运动物体完成变轨的。 以下举例各种运动物体现有技术:
(一)航天飞机、 航空飞机类:
一个飞行器的气动外形, 在给定的气体流动状态下将决定其气动特性 , 现在航天飞机、 空天飞机、 航空飞机的外形, 存在着先天设计上的缺陷, 导致它们需要更多的辅助设备、 装 置来为其配套, 因此设计上变得越来越复杂、 越来越难以操作了、 越来越沉重, 使飞行器越 来越耗能, 存在着等等一系列的弊病。
1.航天飞机的外形设计, 是空气动力学上一个很大的败笔, 它的外形基本上就像一根雪茄形 的金属棒, 这种气动外形在飞行中根本无法借助空气的提升力来帮助航天飞机升空, 因此 只能借助大推力的火箭来实现升空, 这就是造成了需要巨大的能量来被其消耗, 这种方式 是航天业不足取的, 将来必将招到淘汰。
2.天空飞机也是模仿航天飞机的外形, 起飞模式与航天飞机也类似, 只是借助了一架大型飞 机将它送到髙空后脱离飞机, 然后打开自身携带的火箭发动机飞出大气层, 那么航天飞机 的弊病在它的身上也是充分地得到了体现, 将来也将遭到淘汰的命运。
3. 飞机起飞, 主要是靠两个机翼与空气产生的作用力来实现升空的, 由于飞机机翼与空气的 接触面十分有限, 因此只能采用提高发动机功率的方法, 使飞机起跑的速度加快来弥补飞 机升空力的不足, 这就是飞机外形设计上的先天不足, 外形设计的缺陷, 导致带来额外巨 大的能耗损失。
4. 飞行器在飞行过程中, 主要是在做直线运动, 起飞、 降落、 变轨的动作是在瞬间就要完成
1
更正页 (细则第 91条) 说 明 书 的,那么这些飞行装置多数时间对飞行器来说就是一个负担,就要消耗飞机上很多的能耗。
5.我们知道, 机械结构越复杂的东西相互间的负面干扰作用就多, 设备损坏的几率就高; 机 械结构越复杂的东西就意味着越难控制, 飞行器的安全系数就会下降, 这些复杂的设备, 不仅提高了飞行器的驾驶难度, 人员的培训、 维修的成本也就高。
6. 由于这些变轨装置还是无法满足人们对飞行器的需求, 人们开发了一种叫 "矢量发动机" 的, 尾部喷口可以带一定角度旋转的发动机, 来帮助飞行器提高机动性能, 但是效果还是 无法令人满意的。
7. 与飞行器的投入可比的成本, 要数机场的建设和人员、 装备等等一系列的配套设施了。 [发明内容]
本发明的目的克服现有技术不足, 提供一种用于飞行器的超髙压流体喷射动力变轨系统 (以下简称: 变轨系统)及方法。 为了改变现状, 发明人设计了一种用于飞行器的变轨系统, 包括输气管道、 喷管、 中央 自动控制系统, 其特征在于所述的变轨系统还包括组合喷孔, 所述的组合喷孔由若干个喷头 呈蜂窝几何形状排列构成(以下简称: 组合喷孔),所述的组合喷孔安装在飞行器机翼的前缘 和后缘部位, 或安装在飞机的尾翼或腹鳍或鸭翼或机身的对称面, 所述的变轨系统还包括一 个气压储存器(以下简称: 储存器)或几个储存器, 所述的储存器由发动机供气, 置于飞行 器内部, 储存器通过输气管道连接组合喷孔, 所述的储存器下方可设有向下喷射的喷管。 所述的一种应用于飞行器的变轨系统,其特征在于所述的组合喷孔的喷头向外喷射气体, 所述的组合喷孔包括两种类型的喷头, 一种类型是向固定方向喷射气体的喷头, 另一种类型 是可改变喷射气体方向的喷头。 所述的一种用于飞行器的变轨系统, 其特征在于所述的变轨系统应用于军用或民用有尾 翼的飞机上, 所述飞机机翼的前缘对称的上面至下面连贯地设有组合喷孔, 构成由上、 中、 下连贯排列的组合喷孔, 机翼的后缘(原机翼的襟翼、副翼部位处, 以下类同)对称的上面 至下面连贯地设有组合喷孔, 构成由上、 中、 下连贯排列的组合喷孔, 飞机尾部对称的两侧 设有组合喷孔, 飞机的尾部对称的上、 下面设有组合喷孔, 以中轴对称的机身两侧或机翼对 称的下方设有喷管, 机身或机翼内设有气压储存器。 所述的一种用于飞行器的变轨系统, 其特征在于所述的变轨系统应用于无尾翼军用飞机 更正页 (细则第 91条) 上, 所述的军用机机翼的前缘对称的上面至下面连贯地设有组合喷孔, 构成由上、 中、 下连 贯排列的组合喷孔,机翼的后缘对称的上面至下面连贯地设有组合喷孔, 同样构成由上、中、 下连贯排列的组合喷孔, 机翼尾部原垂直尾翼或腹鳍的部位对称的上、 下面设有组合喷孔, 机身腹部或机翼下面, 以中轴对称的部位设有喷管, 机身或机翼内设有气压储存器。 所述的一种用于飞行器的变轨系统, 其特征在于所述的变轨系统应用于直升飞机, 在直 升飞机嫘旋桨轴承的顶部安装一个带四边形或六边形或八边形边角的多边形旋转盘, 多边形
旋转盘的侧面设有组合喷孔, 旋转盘的内部与轴承的中心部位呈是空心的结构, 通过空心轴 承向轴承顶部多边形旋转盘上的组合喷孔输气。
所述的一种用于飞行器的变轨系统, 其特征在于所述的变轨系统应用于火箭或导弹, 所 述的火箭或导弹的壳体表面层里设有组合喷孔。 所述的飞行器呈圆碟形, 飞行器分为上、 中、 下三层结构, 所述飞行器中层和下层上部 的中心位置设有储存器, 飞行器中层的中心点以 90'C 交叉的角度, 向四个方向铺设四个排 气喷管口, 所述的四个排气喷管口内分别设有上、 下两层喷口, 上、 下两层喷口中间设有喷 管导向闽门, 所述的储存器底部设有一排圆周型的向下喷射的喷管, 所述的飞行器上、 下表 面层里分别设有组合喷孔。 所述的一种用于飞行器的变轨系统, 其特征在于所述的喷管、 组合喷孔采用以圆心向外 辐射成圆周型排列的结构。 所述的一种用于飞行器的变轨系统, 其特征在于所述的飞行器中层喷管壁的上、 下两层 喷口至喷口阀门处设有一定的倾角角度。 所述的一种用于飞行器的变轨系统的方法, 其特征在于应用方法如下: (A)飞行: 碟形飞 行器中层相邻的两个喷管喷气时, 飞碟就向前做水平飞行运动, 当关闭一边的一个喷管, 打 开另一边相邻的喷管喷气时, 飞碟就会做向 90'C 方向变轨飞行运动, 当关闭两个打开的喷 管,打开相对的另外两个喷管喷气时,对飞碟就会起到制动作用或做逆水平方向的飞行运动; (B)飞行器升空: 打开向下喷射的喷管, 使飞碟垂直升空到一定的高度时, 打开 3号、 4号喷 管, 使飞碟向水平方向推进, 爬行升空时, 关闭垂直升空的喷管, 同时打开下层控制器指定 部位的组合喷孔, 由于飞碟下表层的水平气流受到组合喷孔喷射的垂直气流阻力的阻挡, 气 流运动的方向发生改变, 飞碟的头部就会做向上仰起运动, 形成向上斜前方向的变轨飞行;
3
更正页 (细则第 91条) 说 明 书
(C)飞行器降落:关闭 3号、 4号喷管,此时飞碟利用飞行速度的惯性飞行, 打开上层控制器 指定部位的组合喷孔喷气, 由于飞碟上表层的水平气流受到组合喷孔喷射垂直气流阻力的阻 挡,气流运动方向发生改变, 飞碟的头部就会向下方向运动, 形成向下斜前方向的变轨飞行;
(D)采用组合喷孔制动: 飞行器在做任何水平飞行运动时, 需要制动, 关闭 3号、 4号喷管, 由于惯性作用, 飞碟此时仍然在做向前飞行的运动, 此时将飞碟的上、 下层控制器指定部位 的组合喷孔同时打开, 水平气流与喷射气流形成垂直方向的对抗作用, 阻碍飞碟向前飞行, 就会起到制动作用; (E)左旋变轨,飞行器在做水平方向飞行需要左旋变轨时,打开上、下层控 制器指定部位的左向 45Ό 角度的组合喷孔, 由于水平气流受到喷射气幕墙阻力的阻挡, 飞 碟的飞行方向就会向左向角度偏转, 形成变轨, 达到变轨角度的要求后, 关闭组合喷孔, 飞 碟就向变轨后的方向飞行;(F)右旋变轨:飞行器在做水平方向飞行需要右旋变轨时,打开上、 下层控制器指定部位的右向 45Ό 角度的组合喷孔, 由于水平气流受到喷射气幕墙阻力的阻 挡, 飞碟的飞行方向就会向右向角度偏转, 形成变轨, 达到变轨角度的要求后, 关闭组合喷 孔, 飞碟就向变轨后的方向飞行。 本发明与现有技术相比, 最大优点是设备成本低廉, 操作、 维护简便, 大幅度地降低了航 天、 航空的成本, 并且不需要规模庞大、 设备复杂的航天发射场或大型的机场跑道, 仅需要一 个机场就可以了。 当空天飞机完成一次飞行后, 经过维护就能再次起飞。 人们可以像坐飞机一 样进行宇宙旅行。 即使不上太空, 乘坐它去大洋彼岸去看望朋友也很方便。 并且在军事价值上 还可以改装为空天战斗机,空天轰炸机及空天运输机等类型的飞机。而且空天飞机的突防力强, 可以轻易突破敌人的防御系统并且进攻敌人, 摧毁敌人的有生力量。
[附图说明]
图 1: 为本发明蜂窝几何形状的组合喷孔安装在飞行器尾部两侧或尾翼或腹鳍的平面示意图, 比如: 每个方孔代表一个蜂窝状的喷头;
控制器指定打开 1- a组或 1- b组, 组合喷孔构成两个不同部位的几何形状示意图: 控制器指定同时打开 1- a组和 1- b组, 组合喷孔构成一个整体 L状的几何形状示意图; 图 2: 为本发明的组合喷孔安装在机翼的前缘或后缘(原襟翼、副翼部位)或鸭翼部位的组合 喷孔示意图, 比如: 每个方孔代表一个蜂窝状的喷头;
控制器指定打开 2- a组, 组合喷孔构成单排喷射的几何形状示意图:
控制器指定打开 2- b组, 组合喷孔构成多排喷射的几何形状示意图; 图 3: 为本发明的组合喷孔安装在机翼前缘和后缘上的剖面图;
4
更正页 (细则第 91条) 说 明 书
3- a剖面图为机翼前缘上连贯安装了组合喷孔;
3- b剖面图为机翼后缘上连贯安装了组合喷孔; 图 4:为本发明应用于军用或民用有尾翼飞机布局示意图:
4- a为航空飞机的前缘上安装组合喷孔;
^ 和 ^为航空飞机的后缘上安装组合喷孔;
4- d为航空飞机尾部对称的两侧面上安装组合喷孔;
4- e为航空飞机尾部对称的上、 下面上安装组合喷孔;
4- f为航空飞机机身两侧对称的下方安装垂直起降的组合喷管; 图 5: 为发明应用于军用无尾翼飞机布局示意图
组合喷孔安装在飞机的前缘部位, 图标 5 - a ;
组合喷孔安装在飞机的后缘部位, 图标 5 - b;
组合喷孔安装在飞机尾部中心对称的左右面及上下面的部位, 图标 5 - c;
在飞机的腹部中心对称的部位安装垂直起降的组合喷管, 图标 5 -山 图 6: 为本发明应用于碟形飞行器上、 中、 下三层结构示意图;
6-1 图标为组合喷孔;
6-2 图标为组合喷孔的输气管;
6-3 图标为气压储存器;
6-4图标为垂直起降的喷管;
6-5 图标为动力喷管;
6-6图标为动力喷管内阀门;
6-7 图标为上、 下层分割线; 图 7: 为发明应用于碟形飞行器中层喷管的布局, 及打开指定喷管时飞碟飞行方向的示意图;
(A) . 为标注的碟形飞行器中层采用交叉布局的 1至 4号喷管示意图;
(B) .为当控制器指定 3号、 4号喷管打开时, 飞碟顺水平方向飞行示意图;
(C) .为当控制器指定 1号、 2号喷管打开时, 飞碟逆水平方向飞行示意图;
(D) .为当控制器指定 2号、 3号喷管打幵时, 飞碟左向水平方向飞行示意图;
(E) . 为当控制器指定 1号、 4号喷管打开时, 飞碟右向水平方向飞行示意图;
5
更正页 (细则第 91条) 说 明 书
(F). 为飞碟剖面图; 图 8: 为飞碟下层底部设有 8个向下喷气的喷管口的仰视图; 图 9: 为本发明组合喷孔安装于碟形飞行器的上、 下层, 应用于变轨的设计布局图;
图 10: 为本发明应用于控制器指定打开该部位时, 碟形飞行器变轨时的工作状态图;
(A) . 为本发明应用于碟形飞行器的向上变轨,打开下层该指定工作部位喷孔向下喷气时, 飞行器向上飞行的工作状态图;
(B) .为本发明应用于碟形飞行器的向下变轨,打开上层该指定工作部位喷孔向上喷气时, 飞行器向下飞行的工作状态图;
(C) .为本发明应用于碟形飞行器的制动, 同时打开上、下层该指定工作部位的喷孔, 上、 下同时喷气时的工作状态图
(D) . 为本发明应用于碟形飞行器的左旋变轨, 打开上、 下层该指定工作部位时的工作状 态图;
(E) .为本发明应用于碟形飞行器的右旋变轨, 打开上、 下层该指定工作部位时的工作状 态图;
图 11: 为本发明应用于直升飞机上;
(A) .为八边形旋转盘仰视图
(B) .为八边形旋转盘侧面视图
11-1 为旋转盘的盘面视图;
11-2为旋转盘与链结的轴承视图;
11--3 为轴承中心是空心的视图;
11- 4为显示八边形旋转盘其中的一个侧面安装本发明的视图;
11-- 5 为本发明应用于直升机螺旋桨轴承顶部的旋转盘上, 控制器指定打开喷孔部
位的示意图; 图 12: 螺旋桨轴承与顶部旋转盘的剖面图:
6
更正页 (细则第 91条) 12-1 图标显示, 旋转盘与相连轴承的中心呈空心的结构, 起到输气的作用;
12-2为安装组合喷孔部位: 图 13: (A).图标为本发明应用于火箭、 导弹上, 控制器指定打开该部位喷孔喷气的示意图。
(B) (C) .为本发明应用于火箭、 导弹上变轨, 控制器指定打开该对称部位喷孔喷气 的示意图;
[具体实施方式] 以下结合附图对本发明创造作进一步详细说明书, 这种制造技术对本专业人员来说是非常 清楚的。 本发明应用于民用、 军用的航空、 空天领域。 应用到现代飞机上的效果:
(一)组合喷孔在作为有尾翼的军用或民用飞行器上的尾翼或腹鳍的喷气部件时,蜂窝几何形 状排列的喷气效果
参见图 4: 在飞行器尾部相对的两侧面图 4·(1, 在尾部上、 下的对称面图 4·β安装上组合 喷孔, 每个方孔代表一个组合喷孔的喷头, 经过编程后, 可以形成千变万化的喷射气体的 形式。
图 1举例: 见 1-a图标组合喷孔打开时, 形成的是一个一字形的喷气形状的形式; 见 1- b图标组合喷孔打开时, 形成的是一个斜向的矩形形状的形式; 见 1-a和 1-b图标的组合 喷孔同时打幵时, 形成的是 L形状的喷气形式。
(二)组合喷孔作为军用无尾翼飞行器的襟翼、副翼或鸭翼或尾翼、腹鳍部件时, 蜂窝几何形 状排列喷气的效果;
参见图 5:在飞行器机翼原襟翼、副翼或鸭翼部件的部位见 5-a、 5-b图标,安装由上、中、 下连贯对称的组合喷孔见 3-a图标和 3-b图标;每个方孔代表一个组合喷孔的喷头见 2-a、 2-b图标, 经过编程后, 可以形成单排喷射或多排喷射气体的形式;
在飞行器尾部中心对称或上下对称的部位安装组合喷孔见 5-c图标,每个方孔代表一个组 合喷孔的喷头见 l-a、 1-b图标, 经过编程后, 可以构成多种几何形状的喷气形式; 图 1举例: 见 1- a图标或 1- b图标, 分别是两个不同几何形状的喷气形式, 当 1- a图标 和 1- b图标的部位同时打开, 就构成一个新的喷气形式。 更正页 (细则第 91条) 说 明 书
~~图 2举例: 见 2-a图标灰色色块部分为单排喷气形式; 见 2-b图标黑色线条部分为多1 气形式; 根据需要还可以有四排或四排以上的组合喷孔排列方式。
(三)在现有飞行器上所安装的襟翼、 副翼、 尾翼(尾翼包括水平尾翼和垂直尾翼)、 鸭翼、 腹鳍等的部件, 都是为飞行器起到起飞、 降落、平衡、 变轨等作用, 或为战斗机起到短距 起降、 滚翻等作用的。 这些变轨装置的基本原理就是, 当这些装置被打开后使水平气 流 遇到阻力, 从而使水平气流改变运动的方向, 形成对飞机的变轨作用。 本发明的系统, 可以帮助飞机去掉除机身、 机翼之外所有复杂的变轨辅助装置, 大大简 化了飞机的内、 外部结构, 去除了这些装置的质量, 可以为飞机添加更多的油料或物资, 使飞行的经济效益得到了很大的提高, 可以为今后航空飞行器的设计在某些方面起到积极 的作用。 安装在飞机上不同部位的喷管和组合喷孔, 变轨时打开不同部位的喷管、 组 合 喷孔, 就能起到为飞机提供垂直起飞、 垂直降落、 悬停、 平衡、 转弯变轨和滚翻的作 用。 参见图 4: 4-a、 4-b、 4-c图标和图 5: 5-a、 5-b图标, 原本是机翼前缘或后缘安装襟翼和 副翼的部位, 现在改装组合喷孔, 根据控制器指令, 喷头可以向多个方向喷射气体, 阻 碍水平气流通过, 使水平气流 改变通过的方向见 3-a、 3-b图标。
见 4-a图标部位安装组合喷孔的作用, 可以取代战斗机全动鸭翼的功能。 本发明应用于碟形飞行器包括如下单元:
1.发动机: 根据飞行器不同的使用要求, 来选择使用不同的 "火箭发动机"、 "航空发动机"、 或者其它类型的发动机,可使用一台或选多台发动机组合使用的形式,为飞行器提供动力。
2. 飞行器冷却系统: 避免由于发动机产生的温度过高, 使发动机的一些部件或其它设备无法 正常地工作。 降温可以起到保护发动机的零部件和其它设备部件能够正常工作的作用。
3.耐超高温、 高压能量储存器(以下简称: 储存器): 由于发动机做功所产生的能量温度很 高, 压力很大, 要储存这些髙温、 高压的能量, 就必须有一个能耐超髙温、 高压气体能量 的储存器, 储存器里的能量, 其一: 是能为飞行器在大气层低速飞行时, 提供动力来源, 其二: 是为 "超高压流体喷射动力变轨系统"的变轨提供动力来源。
储存器选择的多与少, 是根据飞行器的设计要求而定的, 可以选择一个储存器或多个储存 器联合使用的方法, 使用多个储存器的好处是, 每个单体储存器内的气体压力比较稳定, 排除气体排放时各路喷头相互间喷气的压力干扰, 具有稳压的作用。
8
更正页 (细则第 91条) 4.耐超高温、 高压输气管道: 是根据飞行器不同的使用要求来设计的, 铺设管道, 将压力储 存器与喷管或组合喷孔相链接, 管道主要起到为各路喷管、 喷头输送动力气体的作用。
5.耐超高温、 高压可变喷管: 是根据飞行器外形设计的特点, 在飞行器的需要部位, 可设置 一个或多个喷气喷管, 为飞行器做垂直升空、 水平飞行、 悬停和变轨等提供能量动力。
6.耐超高温、 高压可变或固定喷头: 根据飞行器的设计要求, 可以将蜂窝几何形状的喷头, 排列组合成不同密度的、 不同喷孔孔径大小的、 喷头固定或旋转的、 任意几何形状的喷头 组合(以下简称: 组合喷孔), 安装在飞行器需要的表层面里, 与喷管配合使用后, 起到为
飞行器做垂直起降、 悬停、 平衡、 制动、 超机动变轨的作用。 这套系统可以替代现代飞行 器上的各种 "有形变轨"的设备装置。
7. 中央自动控制系统: 它是飞行器的中枢自动控制系统, 通过电缆线与飞行器上所有的设备 装置连接, 根据设置的程序, 自动控制、 指挥、 下达飞行器上所有的行动指令。
8.其它重要的辅助设备:耐超高温、 髙压气体稳压器; 耐超高温、 高压力阀门等等。 储存器的应用效果:
我们把储存起来的超髙温、高压缩空气能量作为飞行器的能量载体,结合本发明的系统, 来诠释解决飞行器的垂直起降、 低速水平飞行和悬停、 变轨的等等问题。
我们知道, 当飞行器在天空中低速飞行时, 是不需要 "第一宇宙速度"或 "第二宇宙 速度"能量的, 那么我们就控制 "火箭发动机"释放做功的能量源, 把它产生的能量先储 存在储存器里, 作为飞行器垂直起降、低速水平飞行、悬停和变轨等动作的动力能量来源, 根据飞行器的动作需要, 由中央控制系统来控制排放量来使飞行器完成这些动作。
当飞行器需要 "第一宇宙速度"或 "第二宇宙速度"穿越大气层时, 我们再释放大量 的能量或称加力, 直接让能量产生的推力排出喷管, 助推飞行器, 做到有的放矢, 按需排 放。 喷管的铺设方法与喷管在喷射时的应用效果:
其一:本发明人设计把飞行器的结构分为上、 中、下三层, 在以飞行器的中层和下层上 部的中心部位放置储存器。 (参见图 6)
其二: 在飞行器中层的中心点以 90'C 交叉的角度, 向四个方向铺设四个排气喷管口, 将四个喷管喷口分别标号为 1、 2、 3、 4号喷管口 (参见图 7-A), 以飞行器中心点交叉四 角设计喷管的作用是, 当两股作用力相交于中心点时, 就会合成一股向前的作用力, 当相 邻的两个喷管喷气时, 飞行器就向前做水平飞行(参见图 7-B), 当关闭一边的一个喷管,
9
更正页 (细则第 91条) 打开另一边相邻的喷管喷气时, 飞行器就会向 90'C 方向变轨飞行运动 (参见图 7-D、 图 7-E), 当关闭两个打开的喷管, 打开相对的另外两个喷管喷气时, 就会对飞行器起到制动 作用或飞行器会向逆水平的方向飞行(参见图 7-C)。每个喷管都由中央自动控制系统控制, 并且每个喷管都有独立打开, 关闭的系统装置, 每个喷管可以采用安装喷气阀门的方法来 调节喷气口喷力的大小, 安装喷口挡板可以改变气体喷射的方向 (参见图 6-B)。
其三:气压储存器的下面铺设一排圆周型的向下喷射的喷管,喷管的个数按需而定,该 组喷管主要起到为飞行器做垂直起降、 悬停提供动力的作用。 (参见图 8)
说 组合喷孔铺设的设计与应用效果:
组合喷孔安装铺设在飞行器的上、 下层的表层里, 当飞行器在水平飞行需要做变轨时, 喷头接受控制器指令向外喷射出气体(参见图 7-F), 此时喷射出的气体方向与飞行器表面 水平通过的气流方向形成的是一个垂直的运动方向, 当这股喷出的髙压气体像一堵墙一样 阻碍了水平气流的通过时, 迫使水平运动的气流改变其运动方向的时候, 就形成了向另外 一个方向运动的作用力, 飞行器就借助这股作用力来使实现机动变轨的, 当飞行器完成了 变轨后, 控制系统就关闭喷射孔, 使飞行器回到做水平方向的运动。
固定喷头喷射的角度可以根据需要去设置, 可变角喷头能改变喷气的喷射角度。 飞行器喷管、 组合喷孔配合应用的效果:
我们将排列成蜂窝几何形状的组合喷孔安装在飞行器的上、下层表层里,它与飞行器的 喷管装置配合起来使用后, 飞行器就会产生各种变化的飞行姿态, 这个就是我们期待的飞 碟飞行器式的机动变轨。
由于飞行器是圆碟形物体, 喷管、 组合喷孔的铺设, 采用了以圆心向外辐射成圆周型 的铺设方法, 所以飞行器是没有确定的头部或尾部方向的, 四个方向都可称作为头部或尾 部, 只有当我们人为的将其某一个部位设定为头部时,这个方向就是飞行器的头部。 (参见 图 9)
又由于该飞行器所具备的特点,结合下列图解,我们再来展示飞行器安装了 "超高压流 体喷射动力变轨系统"以后, 以组合喷孔为主, 喷管配合的模式, 是怎样使飞行器可以做 出向上下、 左右方向做出任意角度变轨飞行效果来的。 (图 10) 对飞行器表面的降温效果:
由于飞行器可以低速飞行, 也可以超高速飞行, 当飞行器在高速飞行达到一定速度的
10
更正页 (细则第 91条) 说 明 书 时候, 采用上述左右变轨的方法, 可以将飞行器的飞行模式设置为, 以飞行器的中心园为 向心力向前旋转飞行的模式, 这个飞行模式可以避免激波现象的产生(或称音爆), 因为飞 行物体外表层的受力点被物体高速旋转时的离心力所化解掉了的缘故, 这样就大大地降低 了飞行器的表面, 由于直接受力与空气的摩擦力所产生的高温, 对飞行器的表面起到一个 至关重要的保护作用。 飞行器可在水上航行:
由于飞行器所有的机动变轨动作, 都是在排气阔门开与关的情况下完成的, 而且排气 阀门只出不迸, 只有向外排放气体的动作, 所以当飞行器下层的排气阀处于全部关闭的状 态下, 它就可以漂浮在水面上, 当打开尾部喷管喷气时, 飞行器就成为水上运动器在水面 上航行了, 飞行器上、 下层面的组合喷孔配合喷气, 可以帮助飞行器完成在水面上航行时 的平衡、 变轨等动作。 飞行器可在水下潜行:
当飞行器关闭全部排气孔时, 它是一个密不透气的物体, 可以漂浮在水面上, 如果我 们在飞行器内部设计一个储水仓(类似潜艇的原理), 或释放出一个储水袋(类似气垫船外 缘的气袋原理) 向里面灌水, 飞行器就会下沉, 下沉到需要的深度时, 打开喷管喷气飞行 器就成为在水下潜行的运动器了, 水中平衡、 变轨的原理与在天空中飞行平衡、 变轨的原 理是相同的, 区别在于空中飞行时是空气对飞行器的阻力,现在换成了水对运动器的阻力, 由于飞行器安装了 "超高压流体喷射动力变轨系统",在水下需要变轨时就像在空中变轨一 样的容易。 飞行器的隐形作用:
由于飞行器的表面是没有任何的突出物体, 变轨全部采用组合喷孔喷气变轨的方法, 又 由于它的圆盘外形和戴 30Ό 角度的圆弧外缘设计, 都能使飞行器产生很好的隐形作用。 参见图 7: 飞行器中层四方向铺设喷管的设计与应用
以飞行器中心圆交叉设计喷管的作用是, 当两股作用力相交于中心点时, 就会合成一股 向前的作用力(参见图 7-A); 四方排列喷管的优点是,所以当打开相邻的 3号、 4号喷管时, 飞行器飞行的方向是顺水平方向飞行的 (参见图 7-B); 当打开相邻的 1号、 2号喷管时, 飞 行器就会起到制动作用, 或使飞行向逆水平方向的方向飞行(参见图 7-C); 当打开 2号、 3
11
更正页 (细则第 91条) 号喷管时, 飞行器飞行的方向是与图 7-B形成左向 90 角度方向水平飞行(参见图 7-D); 当打开 1号、 4号喷管时,飞行器飞行的方向是向右向 90'C角度方向水平飞行(参见图 7-E)。 参见图 8: 飞行器下层喷管的设计与应用
选择在飞行器下层内圈中心向下直排式垂直起降喷管, 供飞行器在垂直起降、 悬停时向 下喷气, 可以与组合喷孔配合, 借助组合喷孔喷射出的喷射力来平衡飞行器的稳定性, 也可 以选择在飞行器下层外圈的垂直起降喷管, 外圈的垂直起降喷管的优点是, 对飞行器起降的
稳定性比在中间的好, 缺的是占用空间很大。
空中悬停: 在空中悬停可以以打开组合喷孔为主的喷射悬停方式, 因为此时飞行器不需 要有向上直升的大推力, 只要在空中保证飞行器本书身向下的重力与飞行器上升的升力平衡就 可以了, 当然还要取决于组合喷孔的喷射力是否能够达到支撑飞行器的重力而定。 参见图 9: 飞行器的组合排列喷头排列设计:
飞行器是圆形物体, 发明人设计组合喷孔的排列方式为圆周型的,上、下表面层里的组合 喷孔排列的数量是相同的、安装部位是对称的,这样等量对称的设置,可以保证喷射变轨时的 同步性(参见图 9), 当打开飞行器如下形式的组合喷孔喷射时(参见图 10), 要求飞行器在成 30Ό的角度升空(参见图 10-A)或降落(参见图 10-B) 时的应用效果, 以及飞行器飞行中制 动(参见图 10-C) 时的效果。 参见图 10-A飞行器升空: 打开垂直起降喷管, 使飞行器垂直升空到一定的髙度时, 打开 3号、 4号喷管, 使飞行器向水平方向推进, 爬行升空时, 关闭垂直升空喷管, 同时打开下层 组合喷孔,由于飞行器水平气流的升力受到喷头喷射垂直气流阻力的阻挡,气流方向发生改变, 飞行器的头部就会向上仰起运动, 形成向上斜前方向的变轨飞行。 参见图 10-B飞行器降落: 飞行器在空中水平飞行需要降落时, 关闭 3号、 4号喷管, 此 时飞行器利用飞行速度的惯性飞行, 打开上层组合喷孔, 由于飞行器上表面层的水平气流受 到喷头喷射垂直气流阻力的阻挡, 气流方向发生改变, 飞行器的头部就会向下方向运动, 形 成向下斜前方向的变轨飞行。
参见图 10-C制动作用: 飞行器在做任何水平飞行运动时, 需要制动, 关闭 3号、 4号喷 管, 由于惯性作用, 飞行器此时仍然在做向前飞行的运动, 此时将飞行器的上、 下层组合喷
? L全部打开, 水平气流与喷射气流形成垂直方向的对抗作用, 像似一堵气幕墙的状况, 阻碍
12
更正页 (细则第 91条) 飞行器向前飞行, 起到制动的效果。 参见图 10-D、 图 10-E: 飞行器左、 右方向任意角度喷射旋转变轨飞行示意图: 组合喷孔 在飞行器上、 下表面层里的排列是相同的, 安装部位是对称的, 这样的对称排列、 安装, 可 以确保飞行器在喷射变轨时的同步性。 参见图 10-D左旋变轨: 当飞行器在做水平方向飞行需要左旋变轨时, 打开上、下层左向
45-C 角度的组合喷孔, 由于水平气流受到喷射气幕墙阻力的阻挡, 飞行器的飞行方向就会向 左向角度偏转, 形成变轨, 达到变轨角度的要求后, 关闭组合喷孔, 飞行器就向变轨后的方向 飞行。 书
参见图 10- E右旋变轨: 当飞行器在做水平方向飞行需要右旋变轨时, 打开上、 下层右向 45'C 角度的组合喷孔, 由于水平气流受到喷射气幕墙阻力的阻挡, 飞行器的飞行方向就会向 右向角度偏转, 形成变轨, 达到变轨角度的要求后, 关闭组合喷孔, 飞行器就向变轨后的方向 飞行。 参见图 11、 图 12本发明应用于直升飞机: 在将"流体喷射动力变轨系统"应用到直升机 上时, 必须将三栖运动器(既海、 陆、 空的运载工具)结合起来一起考虑, 作为低空、低速, 既能置空又能在陆地上跑, 还能在水面上航行的交通工具, 设计上主要考虑的是: 怎样将直 升机头顶上嫘旋桨的叶片去掉, "超高压流体喷射动力变轨系统"就可以实现这个目标。
首先借助安装在直升机底部的喷管, 为直升机提供一部分垂直升力, 在直升飞机嫘旋桨 轴承的顶部安装一个带四边形或六边形或八边形边角的旋转盘, 多边形旋转盘的侧面设有组 合喷孔, 旋转盘的内部与轴承链结的中心部分都是空心的, 通过空心轴承向轴承顶部多边形 旋转盘上的组合喷孔输气。 在轴心髙速旋转的同时, 顶部的旋转盘侧面的组合喷孔向外喷射 气体, 这个气体喷射出的形状类似于螺旋桨叶片的形状, 这样的设计就将直升飞机原来 "有 形的螺旋桨叶片"改成为了 "无形的螺旋桨叶片"了。
虽然有底部喷管喷射来助力, 可能升空力还达不到 "有形叶片"承载重量的负载力, 因 此我们可以通过提高发动机功率加大气压和加多无形叶片的方法来提升它的升空力, 这个设 想的实际情况是要经过试验才能来确定的。
直升飞机自转效应和变轨问题,可以在机身合适的位置安装 "变轨系统"来解决这些问题。 由于螺旋桨叶片有 "有形"变成一个 "无形"的物体, 安全系数大大地得到了提高, 在水面航
13
更正页 (细则第 91条) 说 明 书 行时, 关掉向上无形嫘旋桨阀门, 改为向后喷气的方式, 起到向前航行推力的作用。 参见图 13本发明应用于火箭、导弹:现在的导弹都带有智能化的控制系统,但是再智能 化的导弹, 变轨还是要靠沉重的弹翼来变轨, 怎样让导弹改变现状, 使导弹变得更轻、 结构 更简单、 机动变轨更灵活, 现在我们在导弹上安装上 "超髙压流体喷射动力变轨系统"的组 合喷孔, 这个目标就能够得到实现, 具体方法如下: 在导弹的压力仓里引出喷气导管, 供组 合喷孔的变轨使用, 在弹体的表层里, 根据需要在弹体需要的部位上安装组合喷头, 由中央 自动控制器控制喷气模式, 产生变轨的方式方法就会变得多种多样。
14
更正页 (细则第 91条)

Claims

权 利 要 求 书
1. 一种用于飞行器的超高压流体喷射动力变轨系统, 包括输气管道、 喷管、 中央自动控 制系统, 其特征在于所述的变轨系统还包括组合喷孔, 所述的组合喷孔由若干个喷头 呈蜂窝几何形状的排列构成, 所述的组合喷孔安装在飞行器机翼的前缘和后缘部位, 或安装在飞机的尾翼或腹鳍或鸭翼或机身两侧的对称面, 所述的变轨系统还包括一个 气压储存器或几个气压储存器, 所述的气压储存器由发动机供气, 气压储存器通过输 气管道连接组合喷孔, 所述的气压储存器下方可设有向下喷射的喷管。
2. 如权利要求 1所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的喷头有向固定方向喷射的喷头和可改变喷射方向的喷头, 可改变方向喷射的喷头 旋转喷头的角度向多个方向喷射。
3. 如权利要求 1所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的变轨系统应用于军用和民用有尾翼的飞机上, 所述飞机机翼的前缘对称的上面至 下面连贯地设有组合喷孔, 构成由上、 中、 下连贯排列的组合喷孔, 机翼的后缘对称 的上面至下面连贯地设有组合喷孔, 构成由上、 中、 下连贯排列的组合喷孔, 飞机尾 部对称的两侧设有组合喷孔, 飞机的尾部对称的上、 下面设有组合喷孔, 以中轴对称 的机身两侧的下方或机翼对称的下方设有喷管, 机身或机翼内设有气压储存器。
4. 如权利要求 1所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的变轨系统应用于无尾翼军用飞机上, 所述的军用无尾翼飞机的机翼前缘对称的上 面至下面连贯地设有组合喷孔, 构成由上、 中、 下连贯排列的组合喷孔, 机翼的后缘 对称的上面至下面连贯地设有组合喷孔, 同样构成由上、中、下连贯排列的组合喷孔, 机翼尾部原垂直尾翼或腹鳍的部位对称的上、 下面设有组合喷孔, 机身腹部或机翼下 面, 以中轴对称的部位设有喷管, 机身或机翼内设有气压储存器。
5. 如权利要求 1所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的变轨系统应用于直升飞机上, 直升飞机螺旋桨轴承的顶部安装一个带四边形或六 边形或八边形边角的多边形旋转盘, 多边形旋转盘的侧面设有组合喷孔, 旋转盘的内 部与轴承链结的中心部分呈空心结构, 通过空心轴承向轴承顶部多边形旋转盘上的组 合喷孔输气。
6. 如权利要求 1所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的变轨系统应用于火箭或导弹, 所述的火箭或导弹的壳体表面层里设有组合喷孔。 权 利 要 求 书
7.一种用于飞行器的超高压流体喷射动力变轨系统,其特征在于所述的飞行器呈圆碟形, 飞行器分为上、 中、 下三层结构, 所述飞行器中层和下层上部的中心位置设有储存器, 飞行器中层的中心点以 90°C 交叉的角度, 向四个方向铺设四个排气喷管口, 所述的四 个排气喷管口内分别设有上、 下两层喷口, 上、下两层喷口中间设有喷管导向阀门, 所 述的储存器底部设有一排圆周型的向下喷射的喷管,所述的飞行器上、下表面层里分别 设有组合喷孔。
8. 如权利要求 7所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的喷管、 组合喷孔采用以圆心向外辐射成圆周型的排列结构。
9. 如权利要求 7所述的一种用于飞行器的超高压流体喷射动力变轨系统, 其特征在于所 述的飞行器中层的上、 下两层喷口至喷口陶门处设有一定的倾角角度。
10. 如权利要求 7所述的一种用于飞行器的超高压流体喷射动力变轨系统的方法, 其特征 在于应用方法如下:(A)飞行: 碟形飞行器中层相邻的两个喷管喷气时, 飞碟就向前做水 平飞行运动,当关闭一边的一个喷管,打开另一边相邻的喷管喷气时,飞碟就会做向 90°C 方向变轨飞行运动, 当关闭两个打开的喷管, 打开相对的另外两个喷管喷气时, 对飞碟 就会起到制动作用或做逆水平方向的飞行运动; (B)飞行器升空: 打开向下喷射的喷管, 使飞碟垂直升空到一定的高度时, 打开 3号、 4号喷管, 使飞碟向水平方向推进, 爬行 升空时, 关闭垂直升空的喷管, 同时打开下层控制器指定部位的组合喷孔, 由于飞碟下 表层的水平气流受到组合喷孔喷射的垂直气流阻力的阻挡, 气流运动的方向发生改变, 飞碟的头部就会做向上仰起运动, 形成向上斜前方向的变轨飞行; (C) 飞行器降落: 关 闭 3号、 4号喷管, 此时飞碟利用飞行速度的惯性飞行, 打开上层控制器指定部位的组 合喷孔喷气, 由于飞碟上表层的水平气流受到组合喷孔喷射垂直气流阻力的阻挡, 气流 运动方向发生改变,飞碟的头部就会向下方向运动,形成向下斜前方向的变轨飞行; (D) 采用组合喷孔制动: 飞行器在做任何水平飞行运动需要制动时, 关闭 3号、 4号喷管, 由于惯性作用, 飞碟此时仍然在做向前飞行的运动, 此时将飞碟的上、 下层控制器指定 部位的组合喷孔同时打开, 水平气流与喷射气流形成垂直方向的对抗作用, 阻碍飞碟向 前飞行, 就会起到制动作用; (E)左旋变轨,飞行器在做水平方向飞行需要左旋变轨时, 打开上、 下层控制器指定部位的左向 45°C角度的组合喷孔, 由于水平气流受到喷射气 幕墙阻力的阻挡, 飞碟的飞行方向就会向左向角度偏转, 形成变轨, 达到变轨角度的要 求后, 关闭组合喷孔, 飞碟就向变轨后的方向飞行; (F)右旋变轨: 飞行器在做水平方向 权 利 要 求 书 飞行需要右旋变轨时, 打开上、 下层控制器指定部位的右向 45°C角度的组合喷孔, 由 于水平气流受到喷射气幕墙阻力的阻挡, 飞碟的飞行方向就会向右向角度偏转, 形成变 轨, 达到变轨角度的要求后, 关闭组合喷孔, 飞碟就向变轨后的方向飞行。
PCT/CN2011/083309 2011-03-10 2011-12-01 一种用于飞行器的超高压流体喷射动力变轨系统及方法 WO2012119468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/004,166 US20140001275A1 (en) 2011-03-10 2011-12-01 Ultra-High-Pressure Fluid Injection Dynamic Orbit-Transfer System and Method Used in Aircraft
US15/201,319 US20170088254A1 (en) 2011-03-10 2016-07-01 Ultra-High-Pressure Fluid Injection Dynamic Orbit-Transfer System and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110057190.7 2011-03-10
CN2011100571907A CN102167162A (zh) 2011-03-10 2011-03-10 一种用于飞行器的超高压流体喷射动力变轨系统及方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/004,166 A-371-Of-International US20140001275A1 (en) 2011-03-10 2011-12-01 Ultra-High-Pressure Fluid Injection Dynamic Orbit-Transfer System and Method Used in Aircraft
US15/201,319 Continuation-In-Part US20170088254A1 (en) 2011-03-10 2016-07-01 Ultra-High-Pressure Fluid Injection Dynamic Orbit-Transfer System and Method

Publications (1)

Publication Number Publication Date
WO2012119468A1 true WO2012119468A1 (zh) 2012-09-13

Family

ID=44488530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083309 WO2012119468A1 (zh) 2011-03-10 2011-12-01 一种用于飞行器的超高压流体喷射动力变轨系统及方法

Country Status (3)

Country Link
US (1) US20140001275A1 (zh)
CN (1) CN102167162A (zh)
WO (1) WO2012119468A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167162A (zh) * 2011-03-10 2011-08-31 洪瑞庆 一种用于飞行器的超高压流体喷射动力变轨系统及方法
CN103204238B (zh) * 2013-04-18 2015-06-24 包绍宸 喷流舵面控制系统、使用此系统的飞行器及控制方法
CN103253369A (zh) * 2013-05-14 2013-08-21 张红艳 一种便于转向的碟状飞行器
US9741049B2 (en) * 2013-09-18 2017-08-22 Honeywell International Inc. Generation of cost-per-braking event values
CN105730682A (zh) * 2016-02-02 2016-07-06 毕国伟 多点矢量推力分布的主动式气动布局的飞机
CN107416187A (zh) * 2016-07-01 2017-12-01 洪瑞庆 一种采用超高压流体喷射动力学轨道转移的飞行物
CN106828885A (zh) * 2016-12-30 2017-06-13 上海牧羽航空科技有限公司 一种采用喷气形式控制偏航和俯仰的倾转旋翼机
CN107176297A (zh) * 2017-06-20 2017-09-19 北京迪鸥航空科技有限公司 一种飞行器
CN109502037B (zh) * 2018-11-14 2021-11-09 三亚哈尔滨工程大学南海创新发展基地 一种反向喷气通气空泡航空飞行器水面迫降机构
CN109677608A (zh) * 2018-11-27 2019-04-26 西华大学 无尾飞翼耦合动力飞行器
CN109579637B (zh) * 2018-12-07 2023-04-18 中国人民解放军国防科技大学 一种无舵面导弹姿态控制机构
CN110155371B (zh) * 2019-06-03 2021-06-01 北京航空航天大学 一种充气喷射起飞滑翔回收的火星飞行器及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2440751Y (zh) * 2000-08-04 2001-08-01 于树林 飞机空中防碰撞灵活急转弯装置
CN2584512Y (zh) * 2002-11-11 2003-11-05 金洪奎 飞行器的外形结构
CN1498821A (zh) * 2002-11-11 2004-05-26 陶杰杰 飞盘飞行器
US7104499B1 (en) * 2002-09-25 2006-09-12 Northrop Grumman Corporation Rechargeable compressed air system and method for supplemental aircraft thrust
CN102167162A (zh) * 2011-03-10 2011-08-31 洪瑞庆 一种用于飞行器的超高压流体喷射动力变轨系统及方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885162A (en) * 1956-02-08 1959-05-05 Elizabeth M Griswold Integrated jet-wing
US3055614A (en) * 1960-05-12 1962-09-25 Wendell J Thompson Air-ejector aircraft
US3465988A (en) * 1966-08-02 1969-09-09 Anthony Hugh Orr Aerodynamic lift producing devices
DE3612175C1 (de) * 1986-04-11 1987-10-08 Messerschmitt Boelkow Blohm Schnellfliegender Flugkoerper
US5156353A (en) * 1987-04-13 1992-10-20 General Electric Company Aircraft pylon
US5050819A (en) * 1990-08-10 1991-09-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotatable non-circular forebody flow controller
US5366177A (en) * 1992-10-05 1994-11-22 Rockwell International Corporation Laminar flow control apparatus for aerodynamic surfaces
US5590854A (en) * 1994-11-02 1997-01-07 Shatz; Solomon Movable sheet for laminar flow and deicing
US6142425A (en) * 1995-08-22 2000-11-07 Georgia Institute Of Technology Apparatus and method for aerodynamic blowing control using smart materials
US5794887A (en) * 1995-11-17 1998-08-18 Komerath; Narayanan M. Stagnation point vortex controller
US5779196A (en) * 1995-12-08 1998-07-14 The Boeing Company Ram air drive laminar flow control system
US5853143A (en) * 1996-12-23 1998-12-29 Boeing North American, Inc. Airbreathing propulsion assisted flight vehicle
DE19820097C2 (de) * 1998-05-06 2003-02-13 Airbus Gmbh Anordnung zur Grenzschichtabsaugung und Stoßgrenzschichtkontrolle für ein Flugzeug
US6622963B1 (en) * 2002-04-16 2003-09-23 Honeywell International Inc. System and method for controlling the movement of an aircraft engine cowl door
AU2003230975A1 (en) * 2002-04-18 2003-11-03 Airbus Deutschland Gmbh Perforated skin structure for laminar-flow systems
US6907724B2 (en) * 2002-09-13 2005-06-21 The Boeing Company Combined cycle engines incorporating swirl augmented combustion for reduced volume and weight and improved performance
CN1405063A (zh) * 2002-11-11 2003-03-26 金洪奎 飞行器的控制其飞行姿态的结构
US7661629B2 (en) * 2004-02-20 2010-02-16 The Boeing Company Systems and methods for destabilizing an airfoil vortex
DE602005002144D1 (de) * 2004-05-13 2007-10-04 Airbus Gmbh Flugzeugbauteil, insbesondere flügel
US7213788B1 (en) * 2004-06-01 2007-05-08 Florida State University Research Foundation Microjet-based control system for cavity flows
US7150432B2 (en) * 2004-06-18 2006-12-19 The Boeing Company Horizontal augmented thrust system and method for creating augmented thrust
US20060202082A1 (en) * 2005-01-21 2006-09-14 Alvi Farrukh S Microjet actuators for the control of flow separation and distortion
US20090261206A1 (en) * 2005-01-21 2009-10-22 Alvi Farrukh S Method of using microjet actuators for the control of flow separation and distortion
DE102005039043A1 (de) * 2005-08-18 2007-03-15 Affeldt, Ralf, Dipl.-Ing. Antriebssystem bestehend aus einer Anordnung von Luftleitkanälen und Luftschrauben zur Erzeugung eines richtungsgesteuerten Schubs
US7874525B2 (en) * 2006-05-04 2011-01-25 Lockheed Martin Corporation Method and system for fully fixed vehicle control surfaces
US7966826B2 (en) * 2007-02-14 2011-06-28 The Boeing Company Systems and methods for reducing noise from jet engine exhaust
US8794567B2 (en) * 2007-05-08 2014-08-05 Yigal Adir Control and safety system for an airplane
US7866609B2 (en) * 2007-06-15 2011-01-11 The Boeing Company Passive removal of suction air for laminar flow control, and associated systems and methods
US8359825B2 (en) * 2008-05-21 2013-01-29 Florida State University Research Foundation Microjet creation and control of shock waves
US9239039B2 (en) * 2008-10-27 2016-01-19 General Electric Company Active circulation control of aerodynamic structures
GB0904875D0 (en) * 2009-03-20 2009-05-06 Geola Technologies Ltd Electric vtol aircraft
DE102009026457A1 (de) * 2009-05-25 2010-12-09 Eads Deutschland Gmbh Aerodynamisches Bauteil mit verformbarer Außenhaut
CN101602404B (zh) * 2009-07-03 2013-12-25 朱晓义 一种新型结构的飞行器
US8303024B2 (en) * 2010-02-22 2012-11-06 Florida State University Research Foundation Microjet control for flow and noise reduction in automotive applications
CN101857085B (zh) * 2010-06-03 2013-06-12 刘春� 一种飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2440751Y (zh) * 2000-08-04 2001-08-01 于树林 飞机空中防碰撞灵活急转弯装置
US7104499B1 (en) * 2002-09-25 2006-09-12 Northrop Grumman Corporation Rechargeable compressed air system and method for supplemental aircraft thrust
CN2584512Y (zh) * 2002-11-11 2003-11-05 金洪奎 飞行器的外形结构
CN1498821A (zh) * 2002-11-11 2004-05-26 陶杰杰 飞盘飞行器
CN102167162A (zh) * 2011-03-10 2011-08-31 洪瑞庆 一种用于飞行器的超高压流体喷射动力变轨系统及方法

Also Published As

Publication number Publication date
CN102167162A (zh) 2011-08-31
US20140001275A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
WO2012119468A1 (zh) 一种用于飞行器的超高压流体喷射动力变轨系统及方法
US20220048620A1 (en) Universal vehicle with improved stability for safe operation in air, water and terrain environments
EP2991897B1 (en) Vertical takeoff and landing (vtol) air vehicle
CN101857085B (zh) 一种飞行器
US6918244B2 (en) Vertical takeoff and landing aircraft propulsion systems
WO2022068022A1 (zh) 一种尾座式垂直起降无人机及其控制方法
CN105882959A (zh) 能够垂直起降的飞行设备
HRP20230986T1 (hr) Zrakoplov s okomitim uzlijetanjem i slijetanjem i postupak upravljanja istim
WO2018163156A1 (en) A free wing multirotor with vertical and horizontal rotors
US20070018034A1 (en) Thrust vectoring
CN108698690A (zh) 具有提供有效的竖直起飞和着陆能力的翼板组件的uav
CN106585948A (zh) 一种水空两栖无人飞行器
CN106184741B (zh) 一种飞翼式涵道风扇垂直起降无人机
KR101828924B1 (ko) 내연 엔진과 전기 모터를 구비한 항공기
WO2018059244A1 (zh) 飞行器
CN103921931A (zh) 涵道机翼系统以及运用该系统的飞行器
CN102826227A (zh) 无人空天战机
CN105383681A (zh) Zql型喷气式超短距垂直起降固定翼飞机
CN106956555A (zh) 基于共形半环翼的水空两用变体跨越航行器
RU2442727C1 (ru) Многоразовый ракетно-авиационный модуль и способ его возвращения на космодром
CN102730179A (zh) 复合升力变形飞艇
CN106005371B (zh) 差分直驱全动三舵面无人机
RU2317220C1 (ru) Способ создания системы сил летательного аппарата и летательный аппарат - наземно-воздушная амфибия для его осуществления
JP3231509U (ja) 空飛ぶ円盤型航空機
RU2321526C1 (ru) Многоразовый ускоритель ракеты-носителя

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14004166

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/01/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11860135

Country of ref document: EP

Kind code of ref document: A1