WO2012118173A1 - リパーゼによる高度不飽和脂肪酸含有油脂の製造方法 - Google Patents

リパーゼによる高度不飽和脂肪酸含有油脂の製造方法 Download PDF

Info

Publication number
WO2012118173A1
WO2012118173A1 PCT/JP2012/055334 JP2012055334W WO2012118173A1 WO 2012118173 A1 WO2012118173 A1 WO 2012118173A1 JP 2012055334 W JP2012055334 W JP 2012055334W WO 2012118173 A1 WO2012118173 A1 WO 2012118173A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
unsaturated fatty
highly unsaturated
oil
lipase
Prior art date
Application number
PCT/JP2012/055334
Other languages
English (en)
French (fr)
Inventor
信滋 土居崎
英生 池本
秦 和彦
真司 常盤
一倫 松島
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46758099&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012118173(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Priority to EP12752142.5A priority Critical patent/EP2682453B2/en
Priority to JP2013502410A priority patent/JP5416861B2/ja
Priority to US14/002,806 priority patent/US9029584B2/en
Publication of WO2012118173A1 publication Critical patent/WO2012118173A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/003Refining fats or fatty oils by enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/12Refining fats or fatty oils by distillation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/025Pretreatment by enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/001Refining fats or fatty oils by a combination of two or more of the means hereafter
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/002Sources of fatty acids, e.g. natural glycerides, characterised by the nature, the quantities or the distribution of said acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/08Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Definitions

  • the present invention relates to a method for producing a highly unsaturated fatty acid-containing fat using a lipase reaction. Specifically, the present invention relates to a method for producing highly unsaturated fatty acid-containing fats and oils having a low cholesterol content.
  • Polyunsaturated fatty acids are not only essential nutrients for the growth of vertebrates, including humans, but in recent years there have been many reports on their involvement in cardiovascular diseases and inflammatory diseases. In particular, it has been reported that the intake of n-3 highly unsaturated fatty acids such as docosahexaenoic acid and eicosapentaenoic acid is useful for human health. There are reports that the intake of n-3 highly unsaturated fatty acids and the intake and ratio of n-6 highly unsaturated fatty acids are important. In modern society, energy intake, cholesterol intake and n-6 polyunsaturated fatty acid intake tend to increase, and n-3 polyunsaturated fatty acid intake tends to decrease, which includes various adult diseases Has been thought to be related.
  • Fish oil is an oil rich in n-3 highly unsaturated fatty acids, and their intake is widely recommended, and in order to consume n-3 highly unsaturated fatty acids more efficiently, n-
  • the device which concentrates 3 type polyunsaturated fatty acid is done.
  • concentration of highly unsaturated fatty acids using lipase reactions is used.
  • Lipases are enzymes that catalyze the reaction of hydrolyzing fats and oils into free fatty acids and glycerin, and it is known that various animals and plants and microorganisms have lipases. Certain lipases do not act on all fatty acids in the same way, and their actions differ depending on the bonding position in the glyceride, the carbon chain length of the fatty acid, the number of double bonds, and the like. Therefore, it is possible to selectively hydrolyze fatty acids using such lipases, and as a result, it is possible to concentrate specific fatty acids in the glyceride fraction.
  • Patent Document 2 describes a method for removing free cholesterol from a highly unsaturated fatty acid-containing fat by distillation after adding a distillation working fluid.
  • the present invention includes sterols contained in highly unsaturated fatty acid concentrated fats and oils produced by lipase reaction, In particular, the invention focuses on cholesterol.
  • Oils and fats enriched with highly unsaturated fatty acids are docosahexaenoic acid (hereinafter also referred to as “DHA”), eicosapentaenoic acid (hereinafter also referred to as “EPA”), and arachidonic acid (hereinafter also referred to as “ARA”). It is used for the purpose of ingesting useful ingredients such as. In that case, it is considered that the smaller the content of cholesterol which is unrelated to the purpose or rather undesirable, the better.
  • An object of the present invention is to provide a highly unsaturated fatty acid-concentrated fat with a lower cholesterol content.
  • the gist of the present invention is the following methods (1) to (19) for producing highly unsaturated fatty acid-containing glycerides and highly unsaturated fatty acid-containing glycerides.
  • a highly unsaturated fatty acid concentration method using a lipase reaction free sterols are removed from a raw material oil containing a highly unsaturated fatty acid-containing glyceride before performing the lipase reaction, and then, for the highly unsaturated fatty acid.
  • a method for reducing the content of sterols in a highly unsaturated fatty acid-concentrated oil characterized in that a highly unsaturated fatty acid in a highly unsaturated fatty acid-containing glyceride is concentrated by acting a low-activity lipase.
  • a highly unsaturated fatty acid having a cholesterol content of 0.3% by weight or less and a highly unsaturated fatty acid content in the fatty acid of 40% by area or more characterized by using the method of (2) A method for producing glycerides.
  • the lipase reaction is performed at a temperature of 25 ° C. or less, the cholesterol content is 0.3% by weight or less, the highly unsaturated fatty acid content is 40% by area or more, and in the fatty acid (3)
  • lipase Candida Shirindorase Candida cylindracea
  • Alcaligenes sp Lipase Candida Shirindorase (Candida cylindracea), Alcaligenes sp.
  • area% refers to each component of a chart obtained by analyzing a mixture of glycerides containing various fatty acids as components using gas chromatography or thin layer chromatography / flame ionization detector (TLC / FID).
  • the ratio of the peak area to the total peak area indicates the content ratio of the peak component.
  • TLC / FID was used for the lipid composition by gas chromatography according to the method shown in the Examples. In the petrochemical field, area% is almost synonymous with weight%.
  • highly unsaturated fatty acids such as EPA and DHA can be concentrated and glycerides with low cholesterol content can be produced.
  • highly unsaturated fatty acids which are considered preferable for health, the intake of excess cholesterol can be reduced, and the intake of saturated fatty acid content can also be reduced.
  • FIG. 1 is a graph showing changes in cholesterol content when purified fish oil A was subjected to enzymatic reaction and distilled deoxidation in Example 1.
  • FIG. 2 is a graph showing changes in cholesterol content when purified fish oil B is subjected to enzymatic reaction and distillation deoxidation in Comparative Example 1.
  • 3 is a graph showing changes in the total cholesterol amount before and after distillation of each raw material oil of Example 2.
  • FIG. 4 is a view showing the ratio of saturated fatty acid and EPA + DHA contained in the glyceride fraction at the time of lipase treatment at each reaction temperature in Production Example 1 as 100, the result of the reaction at 40 ° C.
  • FIG. 1 is a graph showing changes in cholesterol content when purified fish oil A was subjected to enzymatic reaction and distilled deoxidation in Example 1.
  • FIG. 2 is a graph showing changes in cholesterol content when purified fish oil B is subjected to enzymatic reaction and distillation deoxidation in Comparative Example 1.
  • 3 is a
  • FIG. 5 is a view showing the ratio of saturated fatty acid and EPA + DHA contained in the glyceride fraction at the time of lipase treatment at each reaction temperature in Production Example 2 as a result of reaction at 40 ° C.
  • FIG. 6 is a graph showing changes over time in saturated fatty acid, EPA, and DHA amounts in the lipase reaction of Production Example 3 (20 ° C., 600 unit / mL oil).
  • FIG. 7 is a graph showing changes over time in the amount of saturated fatty acid, EPA, and DHA in the lipase reaction of Production Example 3 (20 ° C., 300 unit / mL oil).
  • FIG. 6 is a graph showing changes over time in saturated fatty acid, EPA, and DHA amounts in the lipase reaction of Production Example 3 (20 ° C., 600 unit / mL oil).
  • FIG. 7 is a graph showing changes over time in the amount of saturated fatty acid, EPA, and DHA in the lipase reaction of Production
  • FIG. 8 is a graph showing changes over time in saturated fatty acid, EPA, and DHA amounts in the lipase reaction of Comparative Example 2 (40 ° C., 600 unit / mL oil).
  • FIG. 9 is a diagram showing a comparison of saturated fatty acid, EPA, and DHA amounts in the lipase reaction of Production Example 4 (20 ° C.) and Comparative Example 3 (40 ° C.).
  • FIG. 10 is a diagram showing the results of Production Example 5 that reacted on a large scale.
  • the present invention removes free sterols from a raw material oil containing a highly unsaturated fatty acid-containing glyceride before performing the lipase reaction, Reduced sterol content in highly unsaturated fatty acid concentrated oil, characterized by concentrating highly unsaturated fatty acids in glycerides containing highly unsaturated fatty acids by acting on lipase having low activity on highly unsaturated fatty acids It is a method to make it.
  • the present invention will be described in detail.
  • the highly unsaturated fatty acid is a fatty acid having 18 or more carbon atoms and 3 or more double bonds, more preferably a fatty acid having 20 or more carbon atoms and 3 or 4 double bonds, particularly preferably carbon.
  • ⁇ -linolenic acid (18: 3, n-3), ⁇ -linolenic acid (18: 3, n-6), dihomo- ⁇ -linolenic acid (20: 3, n-6), arachidonic acid (20: 4, n-6), eicosapentaenoic acid (20: 5, n-3), docosapentaenoic acid (22: 5, n-6), docosahexaenoic acid (22: 6, n-3), etc. Illustrated. These are known to be contained in a large amount in certain microbial oils, vegetable oils, marine animal oils, and the like.
  • Cholesterol is a compound having a steroid skeleton represented by the molecular formula C 27 H 46 O, but exists as a free form or an ester form in natural products.
  • An ester is acylcholesterol in which a fatty acid is bonded to a hydroxy group (OH group).
  • polyunsaturated fatty acid-containing glycerides are triglycerides, diglycerides, and monoglycerides containing the above polyunsaturated fatty acids as constituent fatty acids.
  • the above microbial oils, vegetable oils and marine animal oils are mainly composed of triglycerides containing highly unsaturated fatty acids.
  • the lipase used in the present invention does not act on highly unsaturated fatty acids, and any lipase can be used as long as it has a property of concentrating highly unsaturated fatty acids in an undegraded glyceride fraction by hydrolysis or alcoholysis. good.
  • the lipase from Candida rugosa concentrates DHA, arachidonic acid and ⁇ -linolenic acid.
  • the lipase derived from Rhizomucor miehei also has DHA concentration ability.
  • the lipase derived from Pseudomonas sp. Has EPA concentration ability. These are all commercially available and can be easily obtained. These can be fixed and used as necessary.
  • a lipase derived from Candida cylindracea which is a lipase derived from the genus Candida, can be used.
  • An example of lipase derived from Candida cylindracea is lipase OF manufactured by Meikatsu Sangyo Co., Ltd.
  • the amount of lipase used is not particularly limited, but for powdered lipase, it is 10 units / g or more for fats and oils. It is preferable to use unit / g or more, and the immobilized lipase is preferably 0.01% (w / w) or more with respect to fats and oils.
  • the amount of lipase derived from Candida is normally 10 to 2000 units, preferably 200 to 700 units, based on 1 g of triglyceride. One unit is the amount of enzyme that liberates 1 micromole of fatty acid per minute. The hydrolysis reaction with lipase needs to be performed in the presence of a sufficient amount of water so that the lipase hydrolyzing activity is expressed.
  • the amount of water present is desirably 10 to 200 parts by weight, preferably 30 to 60 parts by weight per 1 part by weight of triglyceride.
  • the lipase reaction can be performed with reference to, for example, the method described in WO2007 / 119811.
  • Hydrolysis is preferably performed in an inert gas atmosphere such as dry nitrogen in order to suppress fatty acid degradation, enzyme deactivation, and the like. Further, an antioxidant such as tocopherol, ascorbic acid, t-butyl hydroquinone may be used in combination.
  • the hydrolysis reaction may be performed any number of times as long as it has lipase activity, but is preferably about 10 to 40 ° C. In order to suppress the content of saturated fatty acid, it is carried out at 25 ° C. or less, preferably 10 to 25 ° C., more preferably 15 to 20 ° C. The lower the temperature, the more preferable the saturated fatty acid content is decreased. However, when the temperature is 10 ° C.
  • the reaction phase may be set to an average of 15 to 20 ° C., and the reaction may be carried out while maintaining in the range of about ⁇ 5 ° C.
  • the hydrolysis reaction is carried out by stirring or flowing by blowing an inert gas or the like. In the hydrolysis, the reaction is performed until the ratio of highly unsaturated fatty acid (for example, docosahexaenoic acid) in the constituent fatty acid reaches a target concentration.
  • the conditions vary depending on the raw oil and fat.
  • the reaction time is preferably 7 hours or more, and usually by hydrolysis for 5 to 24 hours, one reaction of lipase
  • the ratio of docosahexaenoic acid is 40 area% or more, preferably 46 area% or more.
  • the acid value can also be used as an index indicating the degree of hydrolysis. When the acid value is usually 140 or more, the ratio of docosahexaenoic acid is 46 area% or more.
  • the aqueous layer containing lipase, glycerin, and the like is removed by centrifugation or the like to obtain an oil layer reaction solution, and then free fatty acids are removed.
  • a method for separating and removing free fatty acids known methods such as a method for removing as an alkali salt, a method using a liquid chromatography apparatus, a fractional distillation method, a crystal fractionation method and the like can be adopted, but molecular distillation and steam distillation are preferred.
  • a glyceride mixture of triglycerides and partial glycerides containing docosahexaenoic acid at high concentrations is obtained.
  • the present inventors do not remove cholesterol together with free fatty acids but leave it on the glyceride side. It was noticed that the content ratio of cholesterol would increase compared to. Therefore, an attempt was made to remove cholesterol after the lipase reaction, but cholesterol was esterified by the lipase reaction, and could not be removed unless it was a special method. In the method of the present invention, it is an essential step to remove cholesterol before carrying out the lipase reaction. This is because when the lipase reaction is carried out, free cholesterol contained in the raw material oil changes to an ester, making it difficult to separate from glycerides.
  • a DHA concentrated glyceride raw material oil for example, tuna oil having a high DHA content is used.
  • a refined oil obtained by deoxidizing and decolorizing an unrefined tuna oil can be used as a raw material of the present invention.
  • Cholesterol contained in the unrefined tuna oil is about 0.5% by weight, but it is about 0.18% by deoxidation with alkali.
  • free fatty acids are removed after the lipase reaction, not only unsaturated fatty acids but also cholesterol is concentrated. In fact, when concentrated to 40% by area or more of DHA, cholesterol is also concentrated about 2 to 3 times. According to the method of the present invention, a concentrated oil of 0.3% by weight or less, further 0.2% by weight or less can be obtained by removing cholesterol before the lipase reaction.
  • cholesterol is removed by subjecting the deacidified and decolored raw material oil to a distillation step. Thereafter, it is subjected to the lipase reaction described above.
  • cholesterol is removed by a distillation process.
  • the distillation step is performed by any one of thin film distillation, molecular distillation, short path distillation (SPD) or a combination thereof. These methods are suitable for the distillation of fats and oils containing highly unsaturated fatty acids because the oil is exposed to high temperatures for a short time.
  • the distillation step is preferably performed at a flow rate of 20-200 (kg / h) / m 2 , a temperature of 200-270 ° C., and a pressure of 5 Pa or less.
  • the flow rate is 20-200 (kg / h) / m 2 and the pressure is 220-260 ° C. and 2 Pa or less. If the flow rate is too low, the productivity is lowered. Therefore, it is preferable to flow the maximum amount within a range that can be removed while confirming that cholesterol is removed. Distillation performed by placing a condenser within a distance shorter than the mean free path of vapor molecules evaporated from the heating surface at a constant pressure under high vacuum ( ⁇ 0.1 Pa) is called molecular distillation. Short stroke distillation was developed to increase the distillation capability of molecular distillation.
  • Short-path distillation is performed at a pressure in the middle vacuum range higher than 0.1 Pa, and the condenser is placed at the same distance as the mean free path of the evaporated molecules. Method. In particular, short path distillation is suitable as an apparatus on an actual production scale.
  • a highly unsaturated fatty acid-containing glyceride having a cholesterol content of 0.3% by weight or less, or even 0.2% by weight or less, and a highly unsaturated fatty acid content of 40% by area or more is obtained.
  • docosahexaenoic acid is concentrated to 40 area% or more by the low temperature lipase reaction, and the total amount of saturated fatty acids is 12 area% or less, preferably 10 area% or less.
  • the content of palmitic acid (16 carbon atoms) having a large content among saturated fatty acids is 8 area% or less, preferably 6 area% or less.
  • a lipid composition having a high triglyceride ratio can be obtained.
  • oil and fat containing a large amount of docosahexaenoic acid such as tuna refined fish oil and bonito refined fish oil shown in the production examples are used as raw materials, they are about 70% by area at 40 ° C. Obtained.
  • a glyceride in which the proportion of triglyceride in the glyceride is 80 area% or more can be obtained.
  • glycerides in which highly unsaturated fatty acids are concentrated and cholesterol content is reduced can be obtained.
  • Deoxidation, decolorization, and deodorization may be performed by any method.
  • Deoxidation treatment is exemplified by distillation treatment
  • decolorization treatment is exemplified by activated clay, activated carbon, silica gel, and the like
  • deodorization treatment is exemplified by steam distillation.
  • monoglyceride is also removed at the same time, so that the triglyceride ratio of the obtained fat can be further increased.
  • a triglyceride ratio in the glyceride can be 85 area% or more, preferably 90 area% or more.
  • the method of the present invention is a sterol other than cholesterol, and can also be used as a method for reducing sterols in which both free and ester forms exist.
  • free sterols are removed from the feed oil containing the highly unsaturated fatty acid-containing glyceride before performing the lipase reaction, and then the activity to the highly unsaturated fatty acid is low.
  • the sterol content is 1% by weight or less, preferably 0.3% by weight or less, characterized in that lipase is allowed to act to concentrate the highly unsaturated fatty acid in the highly unsaturated fatty acid-containing glyceride.
  • a fatty acid content 40 area% or more, preferably 60 area% or more.
  • sterols peculiar to microorganisms such as desmosterol, 24,25-methylenecholest-5-en-3 ⁇ -ol are included So it is suitable to remove them.
  • cholesterol, fatty acid composition, and acid value were measured by the following methods.
  • Measurement of Cholesterol The total amount of cholesterol (free cholesterol + cholesterol ester), the amount of free cholesterol, and the amount of cholesterol ester in the oil were measured by gas chromatography. Measurement of the total cholesterol amount was performed as follows. About 0.1 g of oil was added 1 mL of 0.1 g / L 5 ⁇ -cholestane as an internal standard substance, and 1 mL of 2 mol / L potassium hydroxide / aqueous ethanol solution was added, followed by heating at 100 ° C. for 10 minutes.
  • a silica gel cartridge Waters, registered trademark Sep-pack Plus Silica Cartridge 55-105 ⁇ m
  • Fatty acid composition measurement Fish oil used as a raw material and the fatty acid composition of oil after deoxidation treatment by short-path distillation were measured by gas chromatography after the fish oil was ethyl esterified. That is, 1 mL of 1N sodium ethylate / ethanol solution was added to 40 ⁇ L of fish oil and stirred for about 30 seconds. Thereafter, 1 mL of 1N hydrochloric acid was added for neutralization, 2 mL of hexane and 3 mL of saturated aqueous ammonium sulfate solution were added, and after stirring and standing, the upper layer was measured by gas chromatography.
  • the fatty acid composition of the glyceride fraction of the oil subjected to the enzyme reaction was measured by gas chromatography after removing the free fatty acid as a by-product of the enzyme reaction after ethylation of the glyceride fraction. That is, 1 mL of a 1N sodium ethylate / ethanol solution was added to 100 (70) ⁇ L of the reaction oil and stirred for about 30 seconds.
  • Example 1 Sterols and fatty acids were removed from the washed tuna crude oil by short-path distillation.
  • Short-path distillation uses a short-path distillation apparatus (SPD) KD450 (manufactured by UIC GmbH, evaporation surface area 4.5 m 2 ), the degree of vacuum is 0.6 to 1.5 Pa, the temperature is 250-260 ° C, and the feed rate is 200 kg / h. (The flow rate was 44.4 (kg / h) / m 2 ).
  • SPD short-path distillation apparatus
  • Short-stroke distilled tuna oil (refined fish oil A, manufactured by Nippon Suisan Co., Ltd.) 330 mL, distilled water 165 mL, lipase OF 275 mg (Meito Sangyo Co., Ltd., 300 unit / mL oil) are mixed and mixed at 20 ° C for 30 hours The mixture was stirred with a stirring blade until later. The reaction mixture was sampled 10 hours, 23 hours, and 30 hours after the start of the reaction, heated at 80 ° C. for 10 minutes to deactivate the lipase, and then separated into an oil layer and an aqueous layer with a centrifuge (40 The enzyme reaction oil was recovered at 1800 ⁇ g for 10 minutes.
  • the oil sampled after 30 hours was further deoxidized by short-path distillation.
  • the apparatus was a short path distillation apparatus KDL5 type (UIC GmbH, evaporation surface area 0.05 m 2 ) under the conditions of a vacuum degree of 0.1 Pa, a body temperature of 200 ° C., and a feed amount of 0.60 L / h.
  • Example 1 The cholesterol contents in the fats and oils of Example 1 and Comparative Example 1 are shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 1). Since free fatty acids are removed after the deoxidation treatment, the cholesterol content is relatively increased in both Example 1 and Comparative Example 1.
  • Example 1 using purified fish oil A that has been distilled and deoxidized as a raw material remains most of the cholesterol ester in the final distillation and deoxidation treatment, but free cholesterol is low at the time of the raw material before the reaction.
  • the production of cholesterol ester by the enzymatic reaction is small, and as a result, the total amount of remaining sterol is also small.
  • Comparative Example 1 using purified fish oil B which has been subjected to a general purification method that is not distillation deoxidation, has a large amount of free cholesterol at the time of the raw material before the reaction, which becomes a cholesterol ester by an enzymatic reaction. It can be seen that a large amount of cholesterol ester remains in the oil even after the last distillation deoxidation because most of the cholesterol ester remains in the acid treatment.
  • Example 2 Short-path distillation was performed using sardine crude oil of various qualities as raw material oil and varying the distillation temperature.
  • the apparatus used was a short-path distillation apparatus (SPD) KD10 (manufactured by UIC GmbH, evaporation surface area 0.1 m 2 ), with a vacuum degree of 1.0 to 1.4 Pa, a feed rate of 10 kg / h, and the temperature as shown in Table 3.
  • the test was conducted at 181 to 250 ° C.
  • Table 3 and FIG. 3 show the content (% by weight) of cholesterol in the raw oil and the fat after distillation.
  • the quality of the raw sardine crude used was expressed by acid value. All quality crude oils were able to reduce cholesterol as the distillation temperature increased.
  • Cholesterol concentration is relatively increased in the deoxidation step after lipase treatment, but if it is reduced to about 0.15% by weight or less by distillation, the cholesterol content is almost 0.3% by weight or less even after deoxidation. It is possible to produce unsaturated fatty acid concentrated oils. In particular, by distilling at 250 ° C., it is possible to produce a highly unsaturated fatty acid concentrated oil having a cholesterol content of 0.2% by weight or less.
  • Example 3 Using sardine crude oil as raw material, short-distillation was performed by changing the distillation temperature.
  • Table 4 shows the content (% by weight) of cholesterol in the raw oil and the fat after distillation. Even under these conditions, the cholesterol content could be reduced.
  • Example 4 The same processing as in Example 1 and Comparative Example 1 was performed on an actual production scale. That is, using the tuna fish oil as a raw material oil, the method of the present invention in which purification is performed in the order of water washing ⁇ short-path distillation ⁇ enzymatic reaction ⁇ molecular distillation ⁇ decolorization ⁇ deodorization, and the same raw oil is degummed / deoxidized / decolorized ⁇ Comparison was made with a conventional purification method in the order of enzyme reaction ⁇ molecular distillation ⁇ wintering ⁇ decoloration ⁇ deodorization. In each method, production was carried out using three different lots of raw materials, and the cholesterol content of these products is shown in Table 5.
  • the cholesterol content of tuna oil crude oil is about 0.3 to 0.5% by weight, and when the DHA concentrated oil was produced by the conventional method, the content of total cholesterol was relatively increased compared to the raw material oil. According to the method of the present invention, it was confirmed that the cholesterol content can be stably reduced as compared with the raw material oil.
  • the following production examples are lipase reaction production examples capable of reducing the ratio of saturated fatty acids.
  • a concentrated oil of highly unsaturated fatty acids having a low cholesterol content and a low saturated fatty acid content can be produced.
  • Table 6 shows the fatty acid composition (area%) and the acid value of the glyceride fraction of the obtained reaction oil and the fatty acid composition (area%) of the purified fish oil 1.
  • the sum of myristic acid (C14: 0), palmitic acid (C16: 0) and stearic acid (C18: 0) contents (area%) in the glyceride fraction obtained by gas chromatography is shown as the saturated fatty acid content.
  • saturated fatty acid content in the production examples is used in the same meaning.
  • the saturated fatty acid content is about 15% at a reaction temperature of 30 to 60 ° C, whereas it is 11.40% at 25 ° C, 9.36% at 20 ° C, 7.74% at 15 ° C, and 8.42% at 10 ° C.
  • the reaction decreased significantly when reacted at low temperatures.
  • the saturated fatty acid content was greatly reduced at 10-25 ° C. Further, at 10 ° C., the reaction rate was inferior to other temperature conditions and the acid value (AV) was as low as 113.9. However, even under such conditions, the saturated fatty acid content was as low as 8.42%,
  • the value (AV) was 125.1, which was significantly lower than the 40 ° C. condition where the hydrolysis reaction proceeded more.
  • the glyceride content was calculated by subtracting the free fatty acid content from the acid value as equivalent to oleic acid and subtracting from the whole reaction oil.
  • the sum of myristic acid (C14: 0), palmitic acid (C16: 0) and stearic acid (C18: 0) contents (area%) in the glyceride fraction obtained by gas chromatography is shown as the saturated fatty acid content. It was. Compared to 35 and 40 ° C., the saturated fatty acid content was greatly reduced at 10 to 25 ° C.
  • One of the purposes of ingesting physiologically active fatty acids such as EPA and DHA is to prevent heart and vascular diseases such as hypercholesterolemia.
  • Cholesterol is important as an energy source, but in the modern diet, it tends to be overdose especially in middle-aged and elderly people, and it is not preferable to take it actively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】よりコレステロールの含有率の低い高度不飽和脂肪酸含有油脂を提供すること。 【解決手段】 高度不飽和脂肪酸濃縮方法において、リパーゼ反応を行う前に高度不飽和脂肪酸含有グリセリドを含む原料油からフリー体のステロールを除去し、その後、高度不飽和脂肪酸に対して作用性の低いリパーゼを作用させて高度不飽和脂肪酸含有グリセリド中の高度不飽和脂肪酸を濃縮することを特徴とするステロール類の含有量が0.3重量%以下であり、かつ、高度不飽和脂肪酸含有量が40面積%以上である高度不飽和脂肪酸含有グリセリドの製造方法である。

Description

リパーゼによる高度不飽和脂肪酸含有油脂の製造方法
 本発明はリパーゼ反応を利用した高度不飽和脂肪酸含有油脂の製造方法に関する。詳細には、コレステロール含有量の少ない高度不飽和脂肪酸含有油脂の製造方法に関する。
 高度不飽和脂肪酸はヒトを含む脊椎動物の成長に必須の栄養素であるばかりでなく、近年、心血管系疾患、炎症性疾患への関与について多く報告されている。特にドコサヘキサエン酸、エイコサペンタエン酸のようなn-3系の高度不飽和脂肪酸の摂取はヒトの健康に有用であるとの知見が多く報告されている。n-3系の高度不飽和脂肪酸の摂取量とn-6系高度不飽和脂肪酸の摂取量と比率が重要であるという報告もある。現代社会では、エネルギー摂取量、コレステロール摂取量及びn-6系高度不飽和脂肪酸摂取量の増加傾向とn-3系高度不飽和脂肪酸摂取量の減少傾向という特徴があり、それが各種成人病などと関係していると考えられてきた。
 魚油はn-3系高度不飽和脂肪酸を豊富に含む油脂であり、それらの摂取が広く推奨されるとともに、より効率よくn-3系高度不飽和脂肪酸を摂取するために、魚油中のn-3系高度不飽和脂肪酸を濃縮する工夫がされている。リパーゼ反応を用いる高度不飽和脂肪酸の濃縮はそのひとつである。
 リパーゼは油脂を遊離脂肪酸とグリセリンに加水分解する反応を触媒する酵素で、種々の動植物や微生物がリパーゼを有していることが知られている。ある種のリパーゼは全ての脂肪酸に同じように作用するわけではなく、グリセリド中の結合位置や脂肪酸の炭素鎖長、二重結合数などによって作用性が異なる。したがって、このようなリパーゼを用いて脂肪酸を選択的に加水分解することが可能で、その結果、グリセリド画分中に特定の脂肪酸を濃縮することが可能である。例えばある種のカンディダ(Candida)属が産生するリパーゼを用いると、魚油の加水分解反応によってドコサヘキサエン酸などの高度不飽和脂肪酸が未分解のグリセリド画分中に濃縮されることが知られている(特許文献1)。
 このようにリパーゼによる加水分解反応は高度不飽和脂肪酸の濃縮に有効な方法である。目的の高度不飽和脂肪酸以外の脂肪酸に対する加水分解が進行するほどグリセリド画分中の高度不飽和脂肪酸の濃縮も進行する。
 油脂の摂取においてトリグリセリドと並んで注目されるのがコレステロールの含有量である。コレステロールの過剰摂取は動脈硬化、心筋梗塞の原因になりうるため好ましくないと考えられている。高度不飽和脂肪酸を含有する魚油や微生物油の原油にはトリグリセリド以外にコレステロールも含まれている。
 特許文献2には、蒸留作業流体を添加したうえで、蒸留によって高度不飽和脂肪酸含有油脂からフリー体のコレステロールを除去する方法が記載されている。
特公平4‐16519号 US7678930
 上述のとおり、リパーゼ反応を用いて高度不飽和脂肪酸を含有する油脂を製造する方法は種々に検討されているが、本発明はリパーゼ反応により製造する高度不飽和脂肪酸濃縮油脂に含まれるステロール類、特にコレステロールに着目した発明である。高度不飽和脂肪酸が濃縮された油脂は、ドコサヘキサエン酸(以下、「DHA」とも記す。)やエイコサペンタエン酸(以下、「EPA」とも記す。)、アラキドン酸(以下、「ARA」とも記す。)などの有用成分を摂取する目的で使用される。その際、その目的に無関係、あるいはむしろ好ましくないコレステロールの含有量は少ないほど好ましいと考えられる。本発明は、よりコレステロールの含有率の低い高度不飽和脂肪酸濃縮油脂を提供することを課題とする。
 本発明者らは、リパーゼ反応により製造する高度不飽和脂肪酸濃縮油脂についてさらに改良を図る余地がないか検討するなかで、リパーゼ反応により高度不飽和脂肪酸を濃縮した油脂に含まれるコレステロールを低下させることが予想外に困難であることを見出し本発明を完成させた。
 本発明は、下記(1)~(19)の高度不飽和脂肪酸含有グリセリドの製造方法、及び高度不飽和脂肪酸含有グリセリドを要旨とする。
(1)リパーゼ反応を用いる高度不飽和脂肪酸濃縮方法において、リパーゼ反応を行う前に高度不飽和脂肪酸含有グリセリドを含む原料油からフリー体のステロール類を除去し、その後、高度不飽和脂肪酸に対して作用性の低いリパーゼを作用させて高度不飽和脂肪酸含有グリセリド中の高度不飽和脂肪酸を濃縮することを特徴とする高度不飽和脂肪酸濃縮油中のステロール類含有量を低下させる方法。
(2)ステロール類がコレステロールである(1)の方法。
(3)(2)の方法を用いることを特徴とする、コレステロール含有量が0.3重量%以下であり、かつ、脂肪酸中の高度不飽和脂肪酸量が40面積%以上である高度不飽和脂肪酸含有グリセリドの製造方法。
(4)リパーゼ反応を25℃以下の温度で行うことを特徴とする、コレステロール含有量が0.3重量%以下であり、高度不飽和脂肪酸含有量が40面積%以上であり、かつ、脂肪酸中の飽和脂肪酸の割合が12面積%以下である(3)の高度不飽和脂肪酸含有グリセリドの製造方法。
(5)リパーゼがカンディダ シリンドラセ(Candida cylindracea)、アルカリゲネス エスピー(Alcaligenes sp.)、バークホリデリア セパシア(Burkholderia cepacia)、シュードモナス フルオレセンス(Pseudomonas fluorescens)、サーモマイセス ラヌギノサス(Thermomyces lanuginosa)、リゾムコール ミエヘイ(Rhizomucor miehei)、シュードモナス エスピー(Pseudomonas sp.)のいずれか由来のリパーゼである(3)又は(4)の製造方法。
(6)コレステロールを除去する方法が蒸留工程によるものである(3)ないし(5)いずれかの製造方法。
(7)蒸留工程を200~270℃の温度で行う(6)の製造方法。
(8)蒸留工程を220~260℃の温度で行う(6)の製造方法。
(9)蒸留工程を5Pa以下の圧力で行う(6)の製造方法。
(10)蒸留工程を2Pa以下の圧力で行う(6)の製造方法。
(11)蒸留工程の流速が20-200(kg/h)/m2である(6)の製造方法。
(12)蒸留工程の流速が20-150(kg/h)/m2である(6)の製造方法。
(13)蒸留工程が薄膜蒸留、分子蒸留、短行程蒸留のいずれかまたはこれらの組み合わせである(6)ないし(12)いずれかの製造方法。
(14)高度不飽和脂肪酸がドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)、アラキドン酸(ARA)又はジホモ-γ-リノレン酸(DGLA)である(3)ないし(13)いずれかの製造方法。
(15)原料油が魚油又は微生物油である(14)の製造方法。
(16)ステロール類の含有量が0.3重量%以下であり、かつ、高度不飽和脂肪酸含有量が40面積%以上の高度不飽和脂肪酸含有グリセリド。
(17)ステロール類がコレステロールである(16)のグリセリド。
(18)さらに脂肪酸中の飽和脂肪酸の割合が12面積%以下である(16)又は(17)のグリセリド。
(19)グリセリド中のトリグリセリドの割合が80面積%以上である(16)ないし(18)いずれかのグリセリド。
(20)高度不飽和脂肪酸がドコサヘキサエン酸(DHA)及び/又はエイコサペンタエン酸(EPA)、アラキドン酸(ARA)又はジホモ-γ-リノレン酸(DGLA)である(16)ないし(19)いずれかのグリセリド。
 本発明において、面積%とは、各種脂肪酸を構成成分とするグリセリドの混合物をガスクロマトグラフィーや薄層クロマトグラフィー/水素炎イオン化検出器(TLC/FID)を用いて分析したチャートのそれぞれの成分のピーク面積の全ピーク面積に対する割合で、そのピークの成分の含有比率を示すものである。脂肪酸組成については実施例に示す方法によるガスクロマトグラフィーにより、脂質組成については、TLC/FIDを用いた。油化学分野では面積%を重量%とほぼ同義のものとして用いられている。
 本発明の方法によれば、EPAやDHAなどの高度不飽和脂肪酸が濃縮され、かつ、コレステロール含有率が少ないグリセリドを製造することができる。健康に好ましいとされる高度不飽和脂肪酸を摂取する際に、余分なコレステロールの摂取量を低減することができ、さらに、飽和脂肪酸の含有量の摂取量も低減することができる。
図1は実施例1において精製魚油Aを酵素反応、蒸留脱酸した時のコレステロールの含量の変化を示す図である。 図2は比較例1において精製魚油Bを酵素反応、蒸留脱酸した時のコレステロールの含量の変化を示す図である。 図3は実施例2のそれぞれの原料油の蒸留前後の総コレステロール量の変化を示す図である。 図4は製造例1において各反応温度でリパーゼ処理した際のグリセリド画分に含まれる飽和脂肪酸とEPA+DHAの比率を40℃での反応の結果を100として表した図である。 図5は製造例2において各反応温度でリパーゼ処理した際のグリセリド画分に含まれる飽和脂肪酸とEPA+DHAの比率を40℃での反応の結果を100として表した図である。 図6は製造例3のリパーゼ反応における飽和脂肪酸、EPA、DHA量の経時変化を示す図である(20℃、600unit/mL油)。 図7は製造例3のリパーゼ反応における飽和脂肪酸、EPA、DHA量の経時変化を示す図である(20℃、300unit/mL油)。 図8は比較例2のリパーゼ反応における飽和脂肪酸、EPA、DHA量の経時変化を示す図である(40℃、600unit/mL油)。 図9は製造例4(20℃)、比較例3(40℃)のリパーゼ反応における飽和脂肪酸、EPA、DHA量の比較を示す図である。 図10は大きいスケールで反応した製造例5の結果を示す図である。
 本発明は、リパーゼ反応を用いて、高度不飽和脂肪酸濃縮油を製造する方法において、リパーゼ反応を行う前に高度不飽和脂肪酸含有グリセリドを含む原料油からフリー体のステロール類を除去し、その後、高度不飽和脂肪酸に対して作用性の低いリパーゼを作用させて高度不飽和脂肪酸含有グリセリド中の高度不飽和脂肪酸を濃縮することを特徴とする高度不飽和脂肪酸濃縮油中のステロール類含有量を低下させる方法である。
 以下、本発明を詳細に説明する。本発明において、高度不飽和脂肪酸とは、炭素数18以上、二重結合数3以上の脂肪酸であり、より好ましくは炭素数20以上、二重結合数3又は4以上の脂肪酸、特に好ましくは炭素数20以上、二重結合数5以上の脂肪酸である。具体的にはα‐リノレン酸(18:3,n‐3)、γ‐リノレン酸(18:3,n‐6)、ジホモ-γ-リノレン酸(20:3、n-6)、アラキドン酸(20:4,n‐6)、エイコサペンタエン酸(20:5,n‐3)、ドコサペンタエン酸(22:5,n‐6)、ドコサヘキサエン酸(22:6,n‐3)などが例示される。これらはある種の微生物油、植物油や海産動物油などに多く含まれることが知られている。具体的には、イワシ、マグロ、カツオなどの魚類やオキアミなどの甲殻類の海産動物油、エゴマ、アマ、大豆、菜種などの植物油、モルティエレラ(Mortierella)属、ペニシリューム(Penicillium)属、アスペルギルス(Aspergillus)属、ロードトルラ(Rhodotorula)属、フザリューム(Fusarium)属に属する微生物が産生する油脂などが例示される。
 コレステロールは、分子式C27H46Oで表されるステロイド骨格を有する化合物であるが、天然物中では、フリー体又はエステル体として存在している。エステル体とは、ヒドロキシ基(OH基)の部分に脂肪酸が結合したアシルコレステロールである。
 本発明において、高度不飽和脂肪酸含有グリセリドとは、上記の高度不飽和脂肪酸を構成脂肪酸として含有するトリグリセリド、ジグリセリド、およびモノグリセリドである。上記の微生物油、植物油、海産動物油は高度不飽和脂肪酸を含有するトリグリセリドを主成分とする。
 本発明において用いるリパーゼは、高度不飽和脂肪酸に対して作用しにくく、加水分解反応又はアルコリシス反応で未分解のグリセリド画分中に高度不飽和脂肪酸を濃縮する性質を持てば、どのようなリパーゼでも良い。例えば、アルカリゲネス エスピー(Alcaligenes sp.)に属する微生物から得られるリパーゼ(リパーゼQLM、リパーゼQLC、リパーゼPL、いずれも名糖産業(株)製)、バークホリデリア セパシア(Burkholderia cepacia)に属する微生物から得られるリパーゼ(リパーゼPS、天野エンザイム(株)製)、シュードモナス フルオレセンス(Pseudomonas fluorescens)に属する微生物から得られるリパーゼ(リパーゼAK、天野エンザイム(株)製)、サーモマイセス ラヌギノサス(Thermomyces lanuginosa)に属する微生物から得られるリパーゼ(リポザイムTLIM、ノボザイム社製)などが例示される。Candida rugosa由来のリパーゼはDHA、アラキドン酸、γリノレン酸を濃縮する。Rhizomucor miehei由来のリパーゼもDHA濃縮能を有する。Pseudomonas sp.由来のリパーゼはEPA濃縮能を有する。これらはいずれも市販されており容易に入手できる。これらは必要に応じて固定化して使用することもできる。好ましくは、カンディダ属由来のリパーゼである、カンディダ シリンドラセ(Candida cylindracea)由来のリパーゼを用いることができる。カンディダ シリンドラセ(Candida cylindracea)由来のリパーゼとしては、名糖産業株式会社製リパーゼOFが例示される。
 リパーゼの使用量については特に限定されないが、粉末のリパーゼについては油脂に対して10 unit/g以上、反応速度を考えた実用性を考えると30
unit/g以上用いるのが好ましく、固定化リパーゼについては油脂に対し0.01%(w/w)以上が好ましい。カンディダ属由来のリパーゼの使用量は、通常トリグリセリド1gに対して10~2000ユニット、好ましくは200~700ユニットとするのが望ましい。なお1ユニットは1分間に1マイクロモルの脂肪酸を遊離する酵素量である。リパーゼによる加水分解反応は、リパーゼの加水分解活性が発現するのに十分な量の水の存在下に行う必要がある。水の存在量としては、トリグリセリド1重量部に対して10~200重量部、好ましくは30~60重量部とするのが望ましい。
 リパーゼ反応は、例えば、WO2007/119811に記載の方法などを参照して行うことができる。
 また加水分解は、脂肪酸の劣化、酵素の失活などを抑制するため、乾燥窒素等の不活性ガス雰囲気下で行うことが好ましい。またトコフェロール、アスコルビン酸、t-ブチルハイドロキノンなどの抗酸化剤を併用しても良い。
 加水分解反応はリパーゼの活性がある温度であれば何度でもよいが、10~40℃程度が好ましい。飽和脂肪酸の含量を抑えるためには25℃以下、好ましくは10~25℃、さらに好ましくは15~20℃で行う。低温であるほど、飽和脂肪酸の含有率を低下させるのには好ましいが、10℃以下では酵素反応の速度自体が遅くなりすぎる点や油脂の粘度が高くなる点に配慮すると、15~20℃前後が最も好ましい。大量反応の場合、反応相を平均15~20℃になるよう設定し、±5℃程度の範囲に保持しながら反応を行えばよい。加水分解反応は撹拌や不活性ガス等の吹込による流動などによって行う。
 加水分解は、構成脂肪酸中に占める高度不飽和脂肪酸(例えば、ドコサヘキサエン酸)の割合が目的濃度になるまで反応を行う。条件は原料油脂により異なるが、例えばマグロ油(DHA23%程度含有)などを原料とする場合、反応時間は7時間以上が好ましく、通常5~24時間加水分解することにより、1回のリパーゼ反応で、ドコサヘキサエン酸の割合は40面積%以上、好ましくは46面積%以上になる。また酸価を加水分解の程度を示す指標とすることもでき、通常酸価が140以上になればドコサヘキサエン酸の割合は46面積%以上になる。
 このようにして加水分解を行うことにより、未反応のトリグリセリドおよび加水分解物の混合物が反応液として得られる。カンディダ属由来のリパーゼはグリセリンとドコサヘキサエン酸とのエステル結合を加水分解しにくいので、加水分解が進行するに従って、反応液中の未反応のトリグリセリドおよび部分グリセリドにおける構成脂肪酸中に占めるドコサヘキサエン酸の割合は高くなり、加水分解終了時にはこの値が40面積%以上、好ましくは46面積%以上になるまで濃縮される。一方、遊離脂肪酸は大部分がドコサヘキサエン酸以外の脂肪酸で占められる。
 加水分解終了後は、遠心分離などによりリパーゼおよびグリセリンなどを含む水層を除去して油層の反応液を得た後、遊離脂肪酸を除去する。遊離脂肪酸の分離除去方法としては、アルカリ塩として除去する方法、液体クロマトグラフィー装置を用いる方法、分別留分法、結晶分別法など、公知の方法が採用できるが、分子蒸留、水蒸気蒸留が好ましい。
遊離脂肪酸を除去することにより、高濃度でドコサヘキサエン酸を含有するトリグリセリドおよび部分グリセリドのグリセリド混合物が得られる。
 本発明者らは、上述のとおりリパーゼ反応により高度不飽和脂肪酸濃縮油を製造した場合、コレステロールは遊離脂肪酸とともに除かれるのではなく、グリセリド側に残ること、すなわち、高度不飽和脂肪酸濃縮油では原油に比べてコレステロールの含有比率が高まってしまうことに気づいた。そこで、リパーゼ反応後にコレステロールを除去することを試みたが、リパーゼ反応によりコレステロールがエステル化しており、特殊な方法でなければ除去できなかった。
 本発明の方法は、リパーゼ反応を行う前にコレステロール除去を行うことを必須工程とする。これはリパーゼ反応を行うと原料油に含まれるフリー体のコレステロールがエステル体に変化してしまい、グリセリドと分別することが難しくなるからである。
 DHA濃縮グリセリドの原料油としては例えば、DHA含有量の多いマグロ油などが用いられる。マグロ油の未精製油を脱酸、脱色した精製油などを本発明の原料として用いることができる。マグロ油の未精製油に含まれるコレステロールは0.5重量%前後であるが、アルカリによる脱酸で0.18重量%程度になる。しかし、リパーゼ反応後遊離脂肪酸を除去すると不飽和脂肪酸だけでなく、コレステロールも濃縮されることとなる。事実上、DHA40面積%以上に濃縮するとコレステロールも2~3倍程度に濃縮されることとなる。
 本発明の方法により、リパーゼ反応前にコレステロールを除去することにより0.3重量%以下、さらに0.2重量%以下の濃縮油を得ることができる。
 本発明では、脱酸、脱色した原料油を蒸留工程にかけてコレステロールを除去する。その後、上述のリパーゼ反応にかける。
 本発明において、コレステロールの除去は蒸留工程によって行う。蒸留工程は、薄膜蒸留、分子蒸留、短行程蒸留(SPD:Short Path Distillation)のいずれかまたはこれらの組み合わせによって行う。これらの方法は油が高温に晒される時間が短いので、高度不飽和脂肪酸を含有する油脂の蒸留に適している。
 蒸留工程は、20-200(kg/h)/m2の流量で、200-270℃の温度、5Pa以下の圧力で行うのが好ましい。より好ましくは、20-200(kg/h)/m2の流量で、220-260℃、2Pa以下である。流量は少なすぎると生産性が低下するので、コレステロールが除去されることを確認しながら、除去できる範囲で最大量流すのが好ましい。
 高真空(<0.1Pa)下の一定圧力において加熱面から蒸発したベーパー分子の平均自由行程よりも短い距離内に凝縮器を配置させて行われる蒸留を分子蒸留と呼ばれる。分子蒸留の蒸留能力を高めるために開発されたのが、短行程蒸留である。短行程蒸留は、0.1Paより高い中真空領域の圧力で行われ、凝縮器も蒸発分子の平均自由行程と等距離前後に配置されるため、分子蒸留と比べ蒸留能力が格段に改善され実用的な方法である。
 特に短行程蒸留は、実生産規模での装置として適している。
 本発明の製造方法により、コレステロール含有量が0.3重量%以下、あるいはさらに0.2重量%以下であり、かつ、高度不飽和脂肪酸含有量が40面積%以上の高度不飽和脂肪酸含有グリセリドを得ることができる。
 さらに低温リパーゼ反応によりドコサヘキサエン酸が40面積%以上に濃縮され、かつ、飽和脂肪酸量の合計が12面積%以下、好ましくは、10面積%以下のグリセリドを得ることができる。特に飽和脂肪酸の中でも含有量が多いパルミチン酸(炭素数16)の含有量が8面積%以下、好ましくは6面積%以下であるものが好ましい。低温でリパーゼ反応すると、得られる反応油中のグリセリドの脂質組成がトリグリセリドの比率の高いものを得ることができる。製造例に示したマグロ精製魚油やカツオ精製魚油のようなドコサヘキサエン酸を多く含有する油脂を原料とした場合、40℃では70面積%代程度であるが、低温反応では80面積%以上のものが得られた。本発明によりグリセリド中のトリグリセリドの割合が80面積%以上であるグリセリドを得ることができる。
 本発明のリパーゼ反応油脂について、脱酸、脱色、脱臭処理を行うことによって、高度不飽和脂肪酸が濃縮され、かつ、コレステロール含有量が低減されたグリセリドを得ることができる。脱酸、脱色、脱臭はどのような方法で行ってもよいが、脱酸処理は蒸留処理により、脱色処理は活性白土、活性炭、シリカゲルなどにより、脱臭処理は水蒸気蒸留などが例示される。
 脱酸処理を蒸留で行うと、同時にモノグリセリドも除去されるので、得られる油脂のトリグリセリド比率をさらに高めることができる。グリセリド中に占めるトリグリセリドの割合が85面積%以上、好ましくは90面積%以上のものを得ることもできる。
 本発明の方法はコレステロール以外のステロールであって、フリー体とエステル体の両方が存在するステロール類の低減方法としても利用できる。その場合、高度不飽和脂肪酸濃縮方法において、リパーゼ反応を行う前に高度不飽和脂肪酸含有グリセリドを含む原料油からフリー体のステロール類を除去し、その後、高度不飽和脂肪酸に対して作用性の低いリパーゼを作用させて高度不飽和脂肪酸含有グリセリド中の高度不飽和脂肪酸を濃縮することを特徴とするステロール含有量が1重量%以下、好ましくは0.3重量%以下であり、かつ、高度不飽和脂肪酸含有量が40面積%以上、好ましくは60面積%以上である高度不飽和脂肪酸含有グリセリドの製造方法である。微生物から生産されるアラキドン酸、ジホモ-γ-リノレン酸などの場合、デスモステロール、24,25-メチレンコレスト-5-エン-3β-オールなどのような微生物特有のステロール類が含まれているのでそれらを除去するのに適している。
 以下に本発明の実施例を記載するが、本発明はこれらに何ら限定されるものではない。
 各実施例において、コレステロール、脂肪酸組成、酸価の測定は以下の方法で行った。
コレステロールの測定
 油の総コレステロール量(遊離コレステロール+コレステロールエステル)、遊離コレステロール量、コレステロールエステル量はガスクロマトグラフィーにて測定した。
 総コレステロール量の測定については、以下の通りに行った。
 油約0.1gに内標準物質として1mLの0.1g/L 5α-コレスタンを加え、2mol/L 水酸化カリウム/含水エタノール溶液を1mL加えてから100℃で10分間加熱した。冷却後、石油エーテル3mL、飽和硫酸アンモニウム3mLを加え攪拌、静置後に上層を回収してガスクロマトグラフィーにて測定した。5α-コレスタンと遊離コレステロールの相対感度を求めるために、5α-コレスタンおよびコレステロールを25mgずつ溶解したヘキサン溶液をガスクロマトグラフィーにて測定し総コレステロール量を算出した。
 遊離コレステロール量およびコレステロールエステル量の測定については以下の通りに行った。
 油約1.0gをヘキサンで10mLに溶解し、0.5mLをサンプリングした。シリカゲルカートリッジ(Waters社、登録商標Sep-pack Plus Silica Cartridge 55-105μm)に負荷し、ヘキサン:ジエチルエーテル=9:1(容量比)、5mLを流してコレステロールエステル画分とした。さらにジエチルエーテルを5mL流して遊離コレステロール画分とした。その後、溶媒を留去してから総コレステロール量測定と同様の操作を行い、コレステロールエステルと遊離コレステロールの比率を求め、総コレステロールからそれぞれの量を算出した。
ガスクロマトグラフィー分析条件
機種;Agilent 6890 GC system (Agilent社) 
カラム;DB-WAX J&W 123-1012
カラム温度;270℃  
注入温度               ;300℃
注入方法               ;スプリット
スプリット比;50:1
検出器温度:300℃
検出器:FID
キャリアーガス:ヘリウム (39.3kPa、コンスタントプレッシャ)
脂肪酸組成の測定
 原料に用いた魚油及び短行程蒸留による脱酸処理をした後の油の脂肪酸組成は、魚油をエチルエステル化してガスクロマトグラフィーにて測定した。すなわち、魚油40μLに1Nナトリウムエチラート/エタノール溶液1mLを加え、約30秒間撹拌した。その後、1N塩酸を1mL加えて中和し、ヘキサン2mL、飽和硫酸アンモニア水溶液3mLを加え、撹拌、静置後、上層をガスクロマトグラフィーにて測定した。
 酵素反応を行った油のグリセリド画分脂肪酸組成はグリセリド画分をエチルエステル化してから、酵素反応の副生成物である遊離脂肪酸を除去し、ガスクロマトグラフィーにて測定した。すなわち、反応油100(70)μLに1Nナトリウムエチラート/エタノール溶液1mLを加え、約30秒間撹拌した。その後、1N塩酸を1mL加えて中和後、ヘキサン1(0.7)mLおよび飽和硫酸アンモニア水溶液3mLを加え撹拌、静置後、エチルエステルと遊離脂肪酸を含有する上層を回収した。得られた上層から遊離脂肪酸を除去するために、上層250(700)μLにトリエチルアミンを1~2滴加えてから、シリカゲルカラム(Varian社、BOND ELUT SI、100mg、1mL)に負荷し、ヘキサンと酢酸エチルの混合溶液(ヘキサン:酢酸エチル=50:1容積比)750(1000)μLにてエチルエステルを溶出させ、ガスクロマトグラフィーにて測定した。(本実施例中、製造例では上記の文中の( )内の分量を用いて測定した。)
ガスクロマトグラフィー分析条件
機種;Agilent 6850 GC system (Agilent社) 
カラム;DB-WAX J&W 122-7032
カラム温度;200℃  
注入温度;300℃
注入方法;スプリット
スプリット比;30:1(製造例では、スプリット比  ;50:1で行った)
検出器温度:300℃
検出器:FID
キャリアーガス:ヘリウム (2.9mL/min、コンスタントフロー)
酸価(AV)の測定
原料に用いた魚油および短行程蒸留脱酸処理により遊離脂肪酸を分離した後の油では以下の通りに行った。
油約1.5gをエタノール、ジエチルエーテル混合溶媒(1:1、容量比)に溶解し、フェノールフタレイン1滴を加え、0.1N水酸化ナトリウム/エタノール溶液で中和滴定を行い、下式により算出した。
AV=滴定量(mL)×5.611/サンプル重量(g)
 酵素反応を行った油では以下の通りに行った。
 油約0.5gをエタノールに溶解し、フェノールフタレイン1滴を加え、1N水酸化ナトリウム水溶液で中和滴定を行い、下式により算出した。
AV=滴定量(mL)×56.11/サンプル重量(g)
脂質組成の測定
 脂質組成は薄層クロマトグラフィー/水素炎イオン化検出器(TLC/FID,イアトロスキャン、三菱化学ヤトロン株式会社)にて行った。油20μLをヘキサン1mLに溶解し、クロマロッドに0.5μLを負荷した。ヘキサン、ジエチルエーテル、酢酸の混合溶液(ヘキサン:ジエチルエーテル:酢酸=70:30:0.1容積比)を展開溶媒として用い、35分間展開した。これをイアトロスキャンにて分析した。
[実施例1]
 水洗したマグロ原油から短行程蒸留によりステロール類および脂肪酸を除去した。短行程蒸留は、短行程蒸留装置(SPD)KD450(UIC GmbH社製、蒸発面面積4.5m2)を用いて、真空度は0.6~1.5Pa、温度は250-260℃、フィード量200kg/h(流速44.4(kg/h)/m2)で行った。
 短行程蒸留処理をしたマグロ油(精製魚油A、日本水産株式会社製) 330mL、蒸留水 165mL、リパーゼOF 275mg(名糖産業株式会社、300unit/mL 油)を混合し、20℃下で30時間後まで撹拌羽にて攪拌した。反応開始、10時間後、23時間後、30時間後において反応混合物をサンプリングし、80℃で10分加熱してリパーゼを失活させ、その後に遠心分離機にて油層と水層を分離(40℃、1800×g、10分)して酵素反応油を回収した。
30時間後にサンプリングした油については、さらに短行程蒸留による脱酸処理を行った。装置は短行程蒸留装置KDL5型 (UIC GmbH社、蒸発面面積0.05m2)、を用いて、真空度0. 1Pa、本体温度200℃、フィード量0.60L/hの条件で行った。
精製魚油A(反応前原料)、得られた酵素反応油、さらに蒸留脱酸処理した油のグリセリド中脂肪酸組成(面積%)、酸価(AV)、総コレステロール量(重量%)、コレステロールエステル量(重量%)、遊離コレステロール量(重量%)と蒸留脱酸処理における油の歩留(重量%)を表1に示した。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 リン酸、水酸化ナトリウム、活性白土を用いた一般的な精製方法(脱ガム、脱酸、脱色処理、ステロール類は除去されずに残存する精製方法)にて精製したマグロ油(精製魚油B、日本水産株式会社製)を使用し、実施例1と同様にして、反応10時間後、反応23時間後、反応30時間後、脱酸処理後の油を調製した。
 精製魚油B(反応前原料)、得られた酵素反応油、さらに蒸留脱酸処理した後の油のグリセリド中の脂肪酸組成(面積%)と酸価、蒸留脱酸処理における油の回収率(重量%)を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 上記の実施例1、比較例1の油脂中のコレステロール含有量を、図1(実施例1)および図2(比較例1)に示した。脱酸処理後は遊離脂肪酸が除去されるため、実施例1、比較例1のいずれにおいても相対的にコレステロール含有量は増加している。
 両者を比較すると、蒸留脱酸した精製魚油Aを原料とした実施例1は、最後の蒸留脱酸処理でコレステロールエステルのほとんどが残存するが、遊離コレステロールが反応前原料の時点で少ないことから、酵素反応によるコレステロールエステルの生成が少なく、結果、残存する総ステロール量も少ない。一方、蒸留脱酸ではない一般的な精製方法を行った精製魚油Bを原料とした比較例1は、反応前原料の時点で遊離コレステロールが多く、それが酵素反応によってコレステロールエステルとなり、さらに蒸留脱酸処理でコレステロールエステルのほとんどが残存するため、最後の蒸留脱酸の後でも大量のコレステロールエステルが油中に残存するということが分かる。
[実施例2]
 種々の品質のイワシ原油を原料油として、蒸留温度を変化させて短行程蒸留を行った。使用した装置は、短行程蒸留装置(SPD)KD10(UIC GmbH社製、蒸発面面積0.1m)であり、真空度1.0~1.4Pa、フィード量10kg/hで、温度は表3に示すように181~250℃の条件で行った。
 原料油及び、蒸留後の油脂中のコレステロールの含有量(重量%)を表3及び図3に示す。用いた原料のイワシ原油の品質を酸価で表した。いずれの品質の原油も蒸留温度を上昇させるほど、コレステロールを低減させることができた。220℃以上であれば、確実に0.2以下まで低減させることができる。リパーゼ処理後の脱酸工程でコレステロール濃度が相対的に増加するが、蒸留により、0.15重量%程度以下に低下させておくと、ほぼ、脱酸後にもコレステロール含有量0.3重量%以下の高度不飽和脂肪酸濃縮油を生産することが可能である。特に250℃で蒸留することにより、コレステロール含有量0.2重量%以下の高度不飽和脂肪酸濃縮油を生産することが可能である
Figure JPOXMLDOC01-appb-T000003
[実施例3]
 イワシ原油を原料油として、蒸留温度を変化させて短行程蒸留を行った。使用した装置は、短行程蒸留装置(SPD)KDL5(UIC GmbH社製、蒸発面面積0.05m)であり、真空度0. 006mbar(=0.6Pa)、温度270℃、フィード量1.2kg/hの条件で行った。
 原料油及び、蒸留後の油脂中のコレステロールの含有量(重量%)を表4に示す。これらの条件でもコレステロール含有量を低減させることができた。
Figure JPOXMLDOC01-appb-T000004
[実施例4]
 実施例1、比較例1と同様の処理を実生産スケールで行った。すなわち、マグロの魚油を原料油として、水洗→短行程蒸留→酵素反応→分子蒸留→脱色→脱臭という順序で精製を行う本願発明の方法、及び、同じ原料油を脱ガム・脱酸・脱色→酵素反応→分子蒸留→ウィンタリング→脱色→脱臭という順序で行う従来の精製方法とを比較した。
 それぞれの方法で、異なる3ロットの原料を用いて生産を行い、それら製造物のコレステロール含量を表5に示した。
 マグロ油原油のコレステロール含量は0.3~0.5重量%程度であり、従来法でDHA濃縮油を製造すると原料油と比較して相対的に総コレステロールの含有量が増加していたが、本発明の方法によれば、安定して原料油よりもコレステロール含有量を低下させることができることが確認された。
Figure JPOXMLDOC01-appb-T000005
 以下の製造例は飽和脂肪酸の割合を少なくさせることができるリパーゼ反応の製造例である。コレステロールを除去した後の油を原料として、これらの方法でリパーゼ反応を行うことにより、コレステロールの含有量及び飽和脂肪酸の含有量の少ない高度不飽和脂肪酸の濃縮油を製造することができる。
[製造例1]
 精製魚油1(脱酸マグロ油、日本水産株式会社)3mLに水1.5mLとリパーゼOF5mg(名糖産業株式会社、600unit/mL油)を加えて、10~60℃の恒温槽内でマグネチックスターラーにて14時間撹拌した。14時間撹拌後、反応油約2mLをサンプリングし、80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
 得られた反応油のグリセリド画分の脂肪酸組成(面積%)及び酸価と精製魚油1の脂肪酸組成(面積%)を表6に示した。また、ガスクロマトグラフィーで得られたグリセリド画分中のミリスチン酸(C14:0)、パルミチン酸(C16:0)、ステアリン酸(C18:0)含量(面積%)の合計を飽和脂肪酸含量として示した(以下、製造例中で「飽和脂肪酸含量」と記載するときは同じ意味で用いる)。
 反応温度30~60℃では飽和脂肪酸含量が15%程度なのに対して、25℃では11.40%、20℃では9.36%、15℃では7.74%、10℃では8.42%と低温で反応すると大幅に減少した。10~25℃で飽和脂肪酸含量が大幅に減少した。また、10℃では他の温度条件より反応速度が劣り、酸価(AV)が113.9と低い結果であったが、そのような条件においても飽和脂肪酸含量は8.42%と低く、酸価(AV)が125.1と加水分解反応がより進行した40℃条件よりも大幅に低減された。
Figure JPOXMLDOC01-appb-T000006
 リパーゼ加水分解反応で一般的に実施される温度帯(40℃付近)と飽和脂肪酸低減効果を比較するために、40℃でのDHAとEPA含量の合計、及び飽和脂肪酸含量を100としたときのそれぞれの温度での該当脂肪酸含量の割合をプロットし図4に示した。この図から、10~25℃の条件でEPA、DHA含量は高いままで飽和脂肪酸含量が大幅に低減していることが分かる。
[製造例2]
 精製魚油2(脱酸マグロ油、日本水産株式会社)200gに水100gとリパーゼOF320mg(名糖産業株式会社、640unit/ml油)を加えて、10~40℃にて撹拌羽にて20時間撹拌した。20時間撹拌後、反応油を80℃で15分間加熱してリパーゼを失活させ、その後上層の反応油を得た。
 得られた反応油のグリセリド画分の脂肪酸組成(面積%)及び酸価と精製魚油2の脂肪酸組成(面積%)を表7に示した(脂肪酸組成については代表的な脂肪酸のみ)。ここでグリセリド含量は酸価からオレイン酸相当として遊離脂肪酸含量を算出し、反応油全体から差し引いて算出した。また、ガスクロマトグラフィーで得られたグリセリド画分中のミリスチン酸(C14:0)、パルミチン酸(C16:0)、ステアリン酸(C18:0)含量(面積%)の合計を飽和脂肪酸含量として示した。
 35、40℃に比べ10~25℃では飽和脂肪酸含量が大幅に低減された。
Figure JPOXMLDOC01-appb-T000007
 上記結果を、40℃反応油の結果を100としたときの各温度条件でのグリセリド画分中EPAとDHA含量、飽和脂肪酸含量として図5に示した。この図から、10~25℃の条件でEPA、DHAは高いままで飽和脂肪酸が大幅に低減していることが分かる。
[製造例3]
 8mLの精製魚油1に水4mLとリパーゼOF13.3mg(600unit/mL油)または6.7mg(300unit/mL油)を加えて、撹拌羽で撹拌した。反応温度は20℃とした。2、5、8、14、20時間後に約1~2gをサンプリングし、80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
 時間ごとの飽和脂肪酸含量(重量%)、EPAとDHA含量(面積%)を図6、7に示した。反応時間とともに飽和脂肪酸含量は大幅に低減し、EPAとDHA含量は増加した。
[比較例2]
 反応温度を40℃にする以外は、製造例3のリパーゼを600unit/mL用いた場合と同じ条件、操作で反応を行った。
 時間ごとの飽和脂肪酸含量(重量%)、EPAとDHA含量(面積%)を図8に示した。飽和脂肪酸含量は反応2時間で15.0%まで減少したが、反応時間が長くなっても更なる減少は認められず、15%程度の高い含量で推移した。
[製造例4、比較例3]
 精製魚油3(脱酸マグロ油、日本水産株式会社)3mLに水1.5mLとリパーゼOF5mg(600unit/mL油)を加えて、20℃の恒温槽内でマグネチックスターラーにて14時間撹拌した。14時間撹拌後、反応油約2mLをサンプリングし、80℃で10分間加熱してリパーゼを失活させ、その後遠心分離機(40℃、1800g、10分)にて油層と水層とを分離し反応油を得た。
 比較例3として、上記製造例4の条件を温度だけ変化させて40℃にて反応を行った。温度以外はすべて同じ条件、操作である。
 製造例4と比較例3の飽和脂肪酸含量(重量%)、EPAとDHA含量(面積%)を図9に示した。この図から20℃条件の場合、40℃条件と比較して飽和脂肪酸含量が大幅に減少し、EPA、DHA含量は若干増加することが分かった。
[製造例5]
 精製魚油4(脱酸マグロ油、日本水産株式会社)6,000L、水3,000L、リパーゼOFを5kg(300unit/mL油)反応タンクに仕込み、20~25℃に保ちながら21時間撹拌して反応を行った。21時間後に反応油約50gをサンプリングし、80℃で10分間加熱してリパーゼを失活させ、上層の反応油を得た。
 精製魚油の飽和脂肪酸含量(重量%)とEPAとDHA含量(面積%)、反応油グリセリド画分中の飽和脂肪酸含量(重量%)、EPA、DHA含量(面積%)を図10に示した。大きいスケールで反応を行っても、EPAとDHAが濃縮されるとともに飽和脂肪酸含量が10%以下と大幅に低減されることが確認された。
[製造例6]
 製造例1の10、20、40、50℃条件での反応油に関してグリセリド画分中の脂質組成(面積%)を測定した。表8に示すように、10、20℃で反応するとトリグリセリドの比率が80面積%以上のものを得ることができた。一方、40、50℃で反応した場合は72.8%、59.9%程度であった。低温でリパーゼ反応を行うことにより、飽和脂肪酸含有量を低下させることができるだけでなく、トリグリセリドの比率を高めることができることが示された。
Figure JPOXMLDOC01-appb-T000008
 EPAやDHAなどの生理活性を有する脂肪酸を摂取する目的のひとつは、高コレステロール血症など、心、血管系の疾病予防である。コレステロールはエネルギー源として重要ではあるが、現代の食生活では、特に中高年においては摂取過多になりがちであり、積極的に摂取するのは好ましくない。特に心、血管系疾患の予防が必要な層においては、折角、高度不飽和脂肪酸を摂取するときに、一緒に摂取することになるコレステロールは少ないほうが好ましい。本発明の発明により製造された油脂は、高度不飽和脂肪酸が濃縮され、コレステロールはより低減されたものであるから、n-3系高度不飽和脂肪酸を供給するための健康食品やサプリメントとして用いるのに適している。

Claims (20)

  1.  リパーゼ反応を用いる高度不飽和脂肪酸濃縮方法において、リパーゼ反応を行う前に高度不飽和脂肪酸含有グリセリドを含む原料油からフリー体のステロール類を除去し、その後、高度不飽和脂肪酸に対して作用性の低いリパーゼを作用させて高度不飽和脂肪酸含有グリセリド中の高度不飽和脂肪酸を濃縮することを特徴とする高度不飽和脂肪酸濃縮油中のステロール類含有量を低下させる方法。
  2.  ステロール類がコレステロールである請求項1の方法。
  3.  請求項2の方法を用いることを特徴とする、コレステロール含有量が0.3重量%以下であり、かつ、脂肪酸中の高度不飽和脂肪酸量が40面積%以上である高度不飽和脂肪酸含有グリセリドの製造方法。
  4.  リパーゼ反応を25℃以下の温度で行うことを特徴とする、コレステロール含有量が0.3重量%以下であり、高度不飽和脂肪酸含有量が40面積%以上であり、かつ、脂肪酸中の飽和脂肪酸の割合が12面積%以下である請求項3の高度不飽和脂肪酸含有グリセリドの製造方法。
  5.  リパーゼがカンディダ シリンドラセ(Candida cylindracea)、アルカリゲネス エスピー(Alcaligenes sp.)、バークホリデリア セパシア(Burkholderia cepacia)、シュードモナス フルオレセンス(Pseudomonas fluorescens)、サーモマイセス ラヌギノサス(Thermomyces lanuginosa)、リゾムコール ミエヘイ(Rhizomucor miehei)、シュードモナス エスピー(Pseudomonas sp.)のいずれか由来のリパーゼである請求項3又は4の製造方法。
  6.  コレステロールを除去する方法が蒸留工程によるものである請求項3ないし5いずれかの製造方法。
  7.  蒸留工程を200~270℃の温度で行う請求項6の製造方法。
  8.  蒸留工程を220~260℃の温度で行う請求項6の製造方法。
  9.  蒸留工程を5Pa以下の圧力で行う請求項6の製造方法。
  10.  蒸留工程を2Pa以下の圧力で行う請求項6の製造方法。
  11.  蒸留工程の流速が20-200(kg/h)/m2である請求項6の製造方法。
  12.  蒸留工程の流速が20-150(kg/h)/m2である請求項6の製造方法。
  13.  蒸留工程が薄膜蒸留、分子蒸留、短行程蒸留のいずれかまたはこれらの組み合わせである請求項6ないし12いずれかの製造方法。
  14.  高度不飽和脂肪酸がドコサヘキサエン酸(DHA)及び/又はエイコサペンタエン酸(EPA)、アラキドン酸(ARA)又はジホモ-γ-リノレン酸(DGLA)である請求項3ないし13いずれかの製造方法。
  15.  原料油が魚油又は微生物油である請求項14の製造方法。
  16.  ステロール類の含有量が0.3重量%以下であり、かつ、高度不飽和脂肪酸含有量が40面積%以上の高度不飽和脂肪酸含有グリセリド。
  17.  ステロール類がコレステロールである請求項16のグリセリド。
  18.  さらに脂肪酸中の飽和脂肪酸の割合が12面積%以下である請求項16又は17のグリセリド。
  19.  グリセリド中のトリグリセリドの割合が80面積%以上である請求項16ないし18いずれかのグリセリド。
  20.  高度不飽和脂肪酸がドコサヘキサエン酸(DHA)及び/又はエイコサペンタエン酸(EPA)、アラキドン酸(ARA)又はジホモ-γ-リノレン酸(DGLA)である請求項16ないし19いずれかのグリセリド。
PCT/JP2012/055334 2011-03-03 2012-03-02 リパーゼによる高度不飽和脂肪酸含有油脂の製造方法 WO2012118173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12752142.5A EP2682453B2 (en) 2011-03-03 2012-03-02 Method of producing oil/fat comprising highly-unsaturated fatty acids by means of lipase
JP2013502410A JP5416861B2 (ja) 2011-03-03 2012-03-02 リパーゼによる高度不飽和脂肪酸含有油脂の製造方法
US14/002,806 US9029584B2 (en) 2011-03-03 2012-03-02 Method for producing oil containing highly unsaturated fatty acid using lipase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046621 2011-03-03
JP2011-046621 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012118173A1 true WO2012118173A1 (ja) 2012-09-07

Family

ID=46758099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055334 WO2012118173A1 (ja) 2011-03-03 2012-03-02 リパーゼによる高度不飽和脂肪酸含有油脂の製造方法

Country Status (4)

Country Link
US (1) US9029584B2 (ja)
EP (1) EP2682453B2 (ja)
JP (1) JP5416861B2 (ja)
WO (1) WO2012118173A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050304A1 (ja) * 2018-09-04 2020-03-12 日本水産株式会社 リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
EP3666082A1 (en) 2018-12-12 2020-06-17 Nippon Suisan Kaisha, Ltd. A composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
US11840714B2 (en) 2018-09-04 2023-12-12 Nissui Corporation Enriching DHA in glyceride fractions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182046A (ja) * 2015-03-25 2016-10-20 キユーピー株式会社 低級アルコール脂肪酸エステル化物含有組成物の製造方法
US10190074B1 (en) * 2018-02-14 2019-01-29 Golden Omega S.A. Composition comprising cholesterol
CN108977471B (zh) * 2018-08-27 2021-07-02 潘志杰 天然甘油酯型深海鱼油非乙酯型途径转化为浓缩型甘油酯的方法
CN110699178B (zh) * 2019-10-17 2022-10-25 贵州长顺八妹农副产品开发有限公司 一种菜籽油中不饱和脂肪酸的提取方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500054A (ja) * 1986-10-21 1991-01-10 ゼネラル・ミルズ・インコーポレーテッド 油脂の脱臭とコレステロール除去を同時に行う物理的方法
JPH03259999A (ja) * 1990-03-01 1991-11-20 Campbell Soup Co 短路蒸留による低コレステロール動物性脂肪の製造
JPH0416519B2 (ja) 1982-03-26 1992-03-24 Asahi Denka Kogyo Kk
JP2000510513A (ja) * 1996-05-15 2000-08-15 ヒスト―ブロカデス・ベスローテン・フェンノートシャップ 低ステロール且つ高トリグリセライドの微生物性油を得るための極性溶媒によるステロール抽出
JP2006501840A (ja) * 2002-10-11 2006-01-19 サントリー株式会社 不ケン化物の含量を低下させた微生物油脂の製造法並びに該油脂
WO2007119811A1 (ja) 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. 高度不飽和脂肪酸濃縮油の製造方法
US7678930B2 (en) 2002-07-11 2010-03-16 Pronova Biopharma Norge As Process for decreasing the amount of cholesterol in a marine oil using a volatile working fluid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487984A (en) 1984-02-28 1984-12-11 Uop Inc. Synthesis of alkylaromatic compounds
DE3722540A1 (de) 1987-07-08 1989-01-19 Fresenius Ag Fettemulsion, verfahren zu ihrer herstellung und ihre verwendung
US4874629A (en) 1988-05-02 1989-10-17 Chang Stephen S Purification of fish oil
JPH0686299B2 (ja) 1990-05-11 1994-11-02 株式会社コロイドリサーチ シリカ系ガラスの製造方法
US5658767A (en) * 1991-01-24 1997-08-19 Martek Corporation Arachidonic acid and methods for the production and use thereof
WO1994025552A1 (en) 1993-04-29 1994-11-10 Norsk Hydro A.S Processes for chromatographic fractionation of fatty acids and their derivatives
GB9404483D0 (en) 1994-03-08 1994-04-20 Norsk Hydro As Refining marine oil compositions
JP3792309B2 (ja) * 1996-08-30 2006-07-05 サントリー株式会社 不飽和脂肪酸含有油脂の製造方法
SE0202188D0 (sv) 2002-07-11 2002-07-11 Pronova Biocare As A process for decreasing environmental pollutants in an oil or a fat, a volatile fat or oil environmental pollutants decreasing working fluid, a health supplement, and an animal feed product
NO319194B1 (no) 2002-11-14 2005-06-27 Pronova Biocare As Lipase-katalysert forestringsfremgangsmate av marine oljer
US9556401B2 (en) * 2007-07-30 2017-01-31 Nippon Suisan Kaisha, Ltd. Method for producing EPA-enriched oil and DHA-enriched oil
JP5946833B2 (ja) 2010-09-24 2016-07-06 プロノヴァ・バイオファーマ・ノルゲ・アーエスPronova BioPharma Norge AS ω3脂肪酸を濃縮する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416519B2 (ja) 1982-03-26 1992-03-24 Asahi Denka Kogyo Kk
JPH03500054A (ja) * 1986-10-21 1991-01-10 ゼネラル・ミルズ・インコーポレーテッド 油脂の脱臭とコレステロール除去を同時に行う物理的方法
JPH03259999A (ja) * 1990-03-01 1991-11-20 Campbell Soup Co 短路蒸留による低コレステロール動物性脂肪の製造
JP2000510513A (ja) * 1996-05-15 2000-08-15 ヒスト―ブロカデス・ベスローテン・フェンノートシャップ 低ステロール且つ高トリグリセライドの微生物性油を得るための極性溶媒によるステロール抽出
US7678930B2 (en) 2002-07-11 2010-03-16 Pronova Biopharma Norge As Process for decreasing the amount of cholesterol in a marine oil using a volatile working fluid
JP2006501840A (ja) * 2002-10-11 2006-01-19 サントリー株式会社 不ケン化物の含量を低下させた微生物油脂の製造法並びに該油脂
WO2007119811A1 (ja) 2006-04-13 2007-10-25 Nippon Suisan Kaisha, Ltd. 高度不飽和脂肪酸濃縮油の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682453A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050304A1 (ja) * 2018-09-04 2020-03-12 日本水産株式会社 リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
JPWO2020050304A1 (ja) * 2018-09-04 2021-09-30 日本水産株式会社 リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
JP7382942B2 (ja) 2018-09-04 2023-11-17 株式会社ニッスイ リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
US11840714B2 (en) 2018-09-04 2023-12-12 Nissui Corporation Enriching DHA in glyceride fractions
EP3666082A1 (en) 2018-12-12 2020-06-17 Nippon Suisan Kaisha, Ltd. A composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
EP4049537A1 (en) 2018-12-12 2022-08-31 Nippon Suisan Kaisha, Ltd. A composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same

Also Published As

Publication number Publication date
US20140066644A1 (en) 2014-03-06
EP2682453B1 (en) 2017-06-21
EP2682453A4 (en) 2014-08-13
JP5416861B2 (ja) 2014-02-12
EP2682453A1 (en) 2014-01-08
US9029584B2 (en) 2015-05-12
JPWO2012118173A1 (ja) 2014-07-07
EP2682453B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP5905821B2 (ja) リパーゼによる高度不飽和脂肪酸含有油脂の製造方法
KR100684642B1 (ko) 어유 유래 글리세라이드 유지 조성물 및 이의 제조방법
JP5416861B2 (ja) リパーゼによる高度不飽和脂肪酸含有油脂の製造方法
JP5111363B2 (ja) 高度不飽和脂肪酸濃縮油の製造方法
JP7365346B2 (ja) リパーゼ加水分解反応を用いる高度不飽和脂肪酸含有グリセリドの製造方法
JP6175198B2 (ja) Dha含有グリセリド含有組成物の製造方法
Choi et al. Preparation of phytosteryl ester and simultaneous enrichment of stearidonic acid via lipase-catalyzed esterification
WO2017038860A1 (ja) 遊離多価不飽和脂肪酸含有組成物及びその製造方法
JP5836025B2 (ja) 高度不飽和脂肪酸濃縮油の製造方法
JP6645804B2 (ja) 構造油脂の製造方法
Lumor et al. Incorporation of γ‐linolenic and linoleic acids into a palm kernel oil/palm olein blend
JP7382942B2 (ja) リパーゼ加水分解反応を用いるドコサヘキサエン酸含有グリセリドの製造方法
JP3544247B2 (ja) 血小板凝集能抑制用薬剤組成物
JP2004168985A (ja) ω−3系高度不飽和脂肪酸含有部分グリセリド組成物及びその製造方法
JP2007089522A (ja) 特定の高度不飽和脂肪酸が濃縮された脂肪酸組成物の製造方法
NO20220910A1 (en) Cetoleic acid composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012752142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14002806

Country of ref document: US