WO2012118129A1 - Vacuum processing device and vacuum processing method - Google Patents

Vacuum processing device and vacuum processing method Download PDF

Info

Publication number
WO2012118129A1
WO2012118129A1 PCT/JP2012/055123 JP2012055123W WO2012118129A1 WO 2012118129 A1 WO2012118129 A1 WO 2012118129A1 JP 2012055123 W JP2012055123 W JP 2012055123W WO 2012118129 A1 WO2012118129 A1 WO 2012118129A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
vacuum processing
irradiation object
electron beam
vacuum
Prior art date
Application number
PCT/JP2012/055123
Other languages
French (fr)
Japanese (ja)
Inventor
佐竹 徹
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2013502394A priority Critical patent/JPWO2012118129A1/en
Priority to CN2012800111376A priority patent/CN103392027A/en
Publication of WO2012118129A1 publication Critical patent/WO2012118129A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a vacuum processing apparatus and a vacuum processing method, and more particularly, to a technique for irradiating an irradiation object with an electron beam and heating it to vaporize a specific component contained in the irradiation object.
  • vacuum processing apparatuses that can irradiate and heat a relatively high energy electron beam on an irradiation object such as metal and vaporize (evaporate or sublimate) specific components contained in the irradiation object are mainly vacuum. It is used for vapor deposition and vacuum dissolution purification.
  • a conventional vacuum processing apparatus has a relatively large vacuum chamber having a volume of 1 m 3 or more, a vacuum exhaust device that evacuates the vacuum chamber, and an electron gun that emits an electron beam into the vacuum chamber.
  • the target metals in vacuum melting and refining are active metals such as titanium, vacuum materials such as stainless steel, and high melting point metals such as molybdenum and tantalum. Recently, vacuum melting and refining of silicon for solar cells has also been performed.
  • the target metals for vacuum deposition are aluminum, titanium, copper and the like.
  • these irradiation objects are irradiated with an electron beam from an electron gun and heated, and in the step of vaporizing a specific component from the irradiation object, knowing the purity of the dissolved irradiation object, That is, it is important to know the concentration of impurities contained in the irradiation object.
  • Patent Document 1 In the case of conventional vacuum dissolution purification, refer to Patent Document 1 and cut out a small piece from an irradiation object that has been cooled and solidified after stopping irradiation of an electron beam, and EPMA (electron probe X-ray microanalyzer), AES
  • the impurity concentration was measured using a surface analyzer such as an Auger electron spectrometer, an XRFS (fluorescent X-ray spectrometer), or an ICP-MASS (inductively coupled plasma mass spectrometer).
  • a surface analyzer such as an Auger electron spectrometer, an XRFS (fluorescent X-ray spectrometer), or an ICP-MASS (inductively coupled plasma mass spectrometer).
  • the present invention was created to solve the above-mentioned disadvantages of the prior art, and its purpose is to irradiate and heat an irradiation object with an electron beam while vaporizing a specific component contained in the irradiation object.
  • An object of the present invention is to provide a vacuum processing apparatus and a vacuum processing method capable of knowing the concentration of impurities contained in an irradiation object.
  • the present invention provides a vacuum chamber and an electron gun that irradiates and heats an irradiation object disposed in the vacuum chamber by evaporating a specific component contained in the irradiation object.
  • an X-ray measuring apparatus for measuring a relationship between the energy and intensity of X-rays within a predetermined energy range, and X emitted from the irradiation object by the electron beam irradiation. It is a vacuum processing apparatus having an attenuation filter that makes a line incident, attenuates the incident X-ray, passes it, and enters the X-ray measuring apparatus.
  • the present invention is a vacuum processing apparatus having a calculator for determining the concentration of impurities contained in the irradiation object based on the measurement result of the X-ray measurement apparatus.
  • This invention is a vacuum processing apparatus, Comprising: The vacuum in which the adhesion prevention filter which attenuate
  • This invention is a vacuum processing apparatus,
  • the said specific component is an impurity of the said irradiation target object,
  • the vacuum processing apparatus which reduces the density
  • the present invention is the vacuum processing apparatus, wherein the specific component is a main component of the irradiation object, a film formation object is disposed between the irradiation object and the attenuation filter, and the electron beam irradiation
  • the vacuum processing apparatus forms a thin film by releasing the vapor of the main component from the irradiation object and causing the vapor to reach the film formation object disposed in the vacuum chamber.
  • the present invention is a vacuum processing apparatus, comprising: a winding shaft disposed in the vacuum chamber; and a winding shaft rotating device that rotates the winding shaft around a central axis of the winding shaft;
  • the film formation target is a band-shaped film, and one end in the longitudinal direction of the film formation target is wound and fixed around the winding shaft, and the winding shaft is rotated by the winding shaft rotating device.
  • the film formation object is a vacuum processing apparatus wound on the winding shaft.
  • the present invention is a vacuum processing method in which an irradiation target disposed in the vacuum chamber is heated by irradiating an electron beam while evacuating the vacuum chamber to vaporize a specific component contained in the irradiation target.
  • the present invention is a vacuum processing method, wherein a vacuum is used to determine the concentration of impurities contained in the irradiation object based on the relationship between the measured X-ray energy and intensity while irradiating the irradiation object with an electron beam. It is a processing method.
  • the present invention is a vacuum processing method using a deposition filter that attenuates vapor that is emitted from the irradiation object and reaches the attenuation filter.
  • This invention is a vacuum processing method, Comprising: The said specific component is the impurity of the said irradiation target object, The vacuum which irradiates the electron beam to the said irradiation target object, and reduces the density
  • the present invention is a vacuum processing method, wherein the specific component is a main component of the irradiation object, and the irradiation object is irradiated with an electron beam to release the vapor of the main component from the film formation object.
  • the present invention is a vacuum processing method, wherein the film formation target is a band-shaped film, and the vapor is incident on the movement direction of the film formation target while irradiating the irradiation target with an electron beam. This is a vacuum processing method in which the film formation target is wound on the end point side from the position where the film is formed.
  • an element contained in the irradiation object in an amount of more than 50 mol% is referred to as “main component”, and an element other than the main component among the elements contained in the irradiation object is referred to as “impurity”.
  • the principle of elemental analysis by X-ray will be described.
  • braking X-rays also called white X-rays
  • Characteristic X-rays are orders of magnitude stronger than white X-rays and mainly have two types of energy. Those characteristic X-rays are called K ⁇ -rays and K ⁇ -rays from the lowest energy.
  • K ⁇ -rays and K ⁇ -rays are X-rays generated to excite and knock out K-shell electrons in the electron orbit of the element.
  • the energy required to excite K-shell electrons increases, and when the energy of the electron beam irradiated becomes lower than that energy, the electron beams cannot knock out K-shell electrons.
  • the electron beam excites and knocks out electrons in the L shell, which is an electron orbit outside the K shell, and the characteristic X-rays generated at this time are called L ⁇ rays and L ⁇ rays.
  • Tables 1 and 2 show the characteristic X-ray energy values of each element. Tables 1 and 2 are listed in the Ministry of the Environment, “Provisional Manual for Measuring Method of Atmospheric Fine Particulate Matter (PM2.5), Revised Edition”, July 2007, Chapter 5, “4”, p. Quoted from 6-7.
  • K ⁇ and K ⁇ rays have higher energy as the atomic number is larger, knowing the energy (or wavelength) of K ⁇ and K ⁇ rays makes it possible to identify the element of the substance with high sensitivity.
  • the impurity concentration in the dissolved material can be confirmed while irradiating the electron beam, so the timing for stopping the irradiation of the electron beam can be accurately determined, and a product with stable quality can be produced. it can. Further, when the present invention is used for vacuum deposition, the concentration of impurities in a film forming material can be confirmed while irradiating an electron beam, so that the film quality of a film to be formed can be kept constant and the yield of products can be improved.
  • FIG. 1 is an internal configuration diagram of the vacuum processing apparatus 10a of the first example.
  • the vacuum processing apparatus 10 a of the first example includes a vacuum chamber 11, a vacuum exhaust device 12 that evacuates the vacuum chamber 11, and an electron gun 20 that emits an electron beam into the vacuum chamber 11.
  • the material of the vacuum chamber 11 is stainless steel.
  • the vacuum exhaust device 12 is connected to an exhaust port provided in the vacuum chamber 11, and is configured so that the vacuum chamber 11 can be evacuated.
  • An electron gun power source 40 is electrically connected to the electron gun 20.
  • FIG. 2 is an internal configuration diagram of the electron gun 20 and the electron gun power source 40.
  • the electron gun 20 has a bottomed cylindrical casing 21 provided with a muzzle 22 at one end. Inside the casing 21, a gun chamber 23, a connection path 24, an intermediate chamber 25, and a discharge path 26 are lined up in this order from the bottom of the casing 21 toward the muzzle 22 on the central axis of the casing 21. Is provided.
  • the gun chamber 23 and the intermediate chamber 25 are connected by a connection path 24, and the intermediate chamber 25 and the muzzle 22 are connected by a discharge path 26.
  • the gun chamber 23 and the intermediate chamber 25 are connected to electron gun vacuum exhaust devices 27 1 and 27 2 , respectively, and the chambers 23 and 25 can be evacuated.
  • a partition valve 39 is provided in the connection path 24.
  • the gun chamber 23 side of the casing 21 is referred to as upstream, and the opposite muzzle 22 side is referred to as downstream.
  • the filament 31, the cathode electrode 32, the Wehnelt electrode 33, and the anode electrode 34 are arranged in a line in this order from the upstream side to the downstream side on the central axis of the casing 21. .
  • Both the Wehnelt electrode 33 and the anode electrode 34 have a bottomless cylindrical shape, and the respective central axes are oriented in a direction that coincides with the central axis of the casing 21.
  • the Wehnelt electrode 33 is electrically connected to the cathode electrode 32, and the anode electrode 34 is electrically connected to the housing 21.
  • the casing 21 is placed at the ground potential.
  • a first lens coil 36, a second lens coil 37, and a swing coil 38 are arranged in a line in this order along the central axis of the casing 21 on the downstream side of the anode electrode 34.
  • the first lens coil 36 is disposed so as to surround the outer periphery of the connection path 24
  • the second lens coil 37 is disposed so as to surround the outer periphery of the discharge path 26
  • the swing coil 38 is disposed around the outer periphery of the muzzle 22. It is arranged so as to surround it.
  • the electron gun power supply 40 includes a filament power supply 41, a cathode heating power supply 42, an extraction power supply 43, a lens power supply 44, and an oscillating coil power supply 45.
  • the filament power supply 41 is electrically connected to the filament 31 and can be heated by passing an electric current through the filament 31.
  • the cathode heating power source 42 is electrically connected to the cathode electrode 32 and the filament 31 via the Wehnelt electrode 33, so that the potential of the cathode electrode 32 is positive with respect to the filament 31. It is comprised so that a DC voltage can be applied to.
  • the extraction power supply 43 is electrically connected to the cathode electrode 32 and the casing 21 via the Wehnelt electrode 33 so that the potential of the cathode electrode 32 is negative with respect to the potential of the casing 21, that is, the potential of the anode electrode 34.
  • a DC voltage can be applied between the casing 21 and the cathode electrode 32.
  • the lens power supply 44 is electrically connected to the first and second lens coils 36 and 37, respectively, and a current is passed through the first and second lens coils 36 and 37, so that the inside of the connection path 24 and the discharge path 26.
  • a magnetic field can be formed respectively.
  • the oscillating coil power supply 45 is electrically connected to the oscillating coil 38, and allows a current to flow through the oscillating coil 38 to form a magnetic field inside the muzzle 22.
  • a magnetic field control device 46 is connected to the oscillating coil power supply 45.
  • the magnetic field controller 46 is configured to determine the direction and amount of current supplied from the oscillating coil power supply 45 to the oscillating coil 38 and to control the direction and magnitude of the magnetic field formed inside the muzzle 22. Has been.
  • the vacuum processing apparatus 10a of the first example includes a material container 13 that is disposed in the vacuum chamber 11 and holds the irradiation target object 50, and a material carry-in device 14 that loads the irradiation target object 50 into the vacuum tank 11. ing.
  • the material carry-in device 14 is provided airtightly through the tank wall of the vacuum tank 11, and carries the irradiation object 50 from the outside to the inside of the vacuum tank 11 while maintaining the vacuum atmosphere in the vacuum tank 11. It is comprised so that it can arrange
  • the irradiation object 50 in the material container 13 is irradiated with an electron beam from the electron gun 20 and heated, a specific component contained in the irradiation object 50 is vaporized. Further, X-rays are emitted from the irradiation object 50.
  • the vacuum processing apparatus 10a of the first example includes an X-ray measurement unit 60 that measures X-rays emitted from the irradiation object 50.
  • FIG. 3 is an internal configuration diagram of the X-ray measurement unit 60.
  • the X-ray measurement unit 60 receives an X-ray measurement device 62 that measures the relationship between the energy and intensity of X-rays within a predetermined energy range, and X-rays emitted from the irradiation object 50 by electron beam irradiation. And an attenuation filter 61 that attenuates the incident X-rays to pass through and makes them enter the X-ray measuring device 62.
  • the X-ray measurement apparatus 62 includes an X-ray detection unit 63 that generates an electrical signal according to the energy (or wavelength) of X-rays within a predetermined energy range, and an X-ray that supplies power to the X-ray detection unit 63.
  • storage device 68 which receives and memorize
  • the X-ray detection unit 63 is airtightly fixed to a detection unit container 63a formed of a material that blocks X-rays, a spectroscopic unit 63b disposed inside the detection unit container 63a, and an opening of the detection unit container 63a. Window member 63c.
  • the window member 63c is a member that transmits X-rays as much as possible.
  • a metal foil for example, Be foil
  • a metal mesh may be fixed as a reinforcing material.
  • the window member 63c is hermetically adhered to the detection unit container 63a so as to close the opening of the detection unit container 63a.
  • the detection unit container 63a is made of a material that blocks X-rays, and only the X-rays that have passed through the window member 63c reach the spectroscopic unit 63b.
  • the window member 63c is configured to be able to keep the inside of the detection unit container 63a airtight together with the detection unit container 63a, and when the X-ray detection unit 63 is disposed in the evacuated vacuum chamber 11, The spectroscopic unit 63 b is isolated from the vacuum atmosphere in the vacuum chamber 11.
  • spectroscopic unit 63b a commercially available spectroscopic device for X-ray elemental analysis can be used.
  • a lithium drift type semiconductor detector is used, but wavelength dispersion type X-ray detection using a diffraction grating is used.
  • a vessel may be used.
  • a lithium drift type semiconductor detector is a semiconductor having a pin junction in which Li is diffused into a Si crystal to form an intrinsic region (i layer). When X rays within a predetermined energy range enter the i layer, A number of electron-hole pairs proportional to energy are generated.
  • the power source 64 for the X-ray detection unit is electrically connected to the spectroscopic unit 63b.
  • the spectroscopic unit 63b When a positive voltage is applied to the n layer with respect to the p layer, the electron-hole pair generated in the i layer is moved by the electric field, and the spectroscopic unit An electric signal having a magnitude proportional to the energy of the X-ray is extracted from the unit 63b.
  • the storage device 68 is connected to the spectroscopic unit 63b, receives the electric signal extracted from the spectroscopic unit 63b, and stores the number of electric signals for each magnitude of the received electric signal, that is, for each X-ray energy. Has been. Accordingly, the relationship between the energy and intensity of X-rays within a predetermined energy range incident on the X-ray detection unit 63 can be understood from the stored contents of the storage device 68.
  • the vacuum processing apparatus 10a of the first example has a calculator 69 that calculates the concentration of impurities contained in the irradiation object 50 based on the measurement result of the X-ray measurement apparatus 62.
  • the computer 69 is connected to the storage device 68.
  • the computer 69 reads out the storage content of the storage device 68, subtracts the background such as white X-rays from the storage content, extracts the relationship between the energy and intensity of the characteristic X-ray, and then extracts the extracted characteristic X-ray. Associate energy with the corresponding element.
  • the calculator 69 obtains the sum of the intensity of characteristic X-rays corresponding to the elements other than the main component (referred to as impurity intensity), and the characteristic X The ratio of the intensity of the impurity to the intensity of the entire line is calculated, and the concentration of the impurity contained in the irradiation object 50 is obtained.
  • the attenuation filter 61 is a metal thin film, and here, a Ti foil with a thickness of 20 ⁇ m or an Al foil with a thickness of 1 mm is used.
  • a stainless steel mesh may be fixed to the attenuation filter 61 as a reinforcing material.
  • the attenuation filter 61 is not limited to the above configuration as long as incident X-rays can be attenuated, and may be a metal plate provided with pinholes penetrating in the thickness direction.
  • incident X-rays enter the attenuating filter 61, some of the incident X-rays pass through the inside of the pinhole, and other X-rays collide with the plate outside the pinhole and are blocked. Attenuated.
  • the attenuation factor of X-rays can be changed, and the attenuation factor of X-rays can be easily changed as compared with a metal thin film.
  • the attenuation filter 61 is disposed to face the window member 63 c of the X-ray detection unit 63. Therefore, the X-rays that have passed through the attenuation filter 61 are incident on the X-ray detection unit 63.
  • the X-ray detection unit 63 is disposed at a position facing the irradiation object 50 in a state where the window member 63 c is directed in the direction in which the irradiation object 50 is positioned in the material container 13.
  • the attenuation filter 61 is disposed between the X-ray detection unit 63 and the irradiation object 50.
  • the intensity of the X-rays emitted from the irradiation object 50 is two or more orders of magnitude greater than the intensity of the X-rays emitted from the irradiation object in the case of X-ray analysis.
  • the light directly enters the X-ray detection unit 63 without being attenuated, a pile-up phenomenon occurs in which two electric signals generated in succession overlap each other, and the relationship between the X-ray energy and intensity can be measured accurately. Can not.
  • the pile-up phenomenon does not occur and the relationship between the X-ray energy and intensity is accurately measured. It has become.
  • the X-ray measurement unit 60 includes an adhesion filter 65 that attenuates the vapor emitted from the irradiation object 50 and reaching the attenuation filter 61.
  • FIG. 4 is a plan view of the anti-adhesion filter 65.
  • the anti-adhesion filter 65 is made of a material that shields vapor particles, is formed in a disk shape whose radius is larger than the diameter of the attenuation filter, and a band-like opening 66 through which the vapor can pass radiates from the center of the anti-adhesion filter 65. It is provided to extend in the direction.
  • the anti-adhesion filter 65 is disposed between the attenuation filter 61 and the irradiation object 50 in the material container 13 with the opening 66 facing the attenuation filter 61.
  • a rotation shaft 67a is fixed at the center of the deposition filter 65 at a right angle to the surface of the deposition filter 65, and a rotation shaft rotating device 67b is connected to the rotation shaft 67a.
  • the rotating shaft rotating device 67b is a motor, and transmits power to the rotating shaft 67a so that the anti-adhesion filter 65 can be rotated around the central axis of the rotating shaft 67a together with the rotating shaft 67a.
  • the deposition filter 65 When the deposition filter 65 is rotated about the central axis of the rotation shaft 67a by the rotation shaft rotating device 67b, the X-ray and the vapor incident on the deposition filter 65 are blocked by the shielding portion other than the opening 66 of the deposition filter 65. When facing the attenuation filter 61, it is shielded by the shielding portion and does not reach the attenuation filter 61. When the opening 66 faces the attenuation filter 61, it passes through the opening 66 and reaches the attenuation filter 61. Yes. Therefore, the anti-adhesion filter 65 can attenuate the vapor reaching the attenuation filter 61 while allowing the X-rays to reach the attenuation filter 61.
  • a vacuum processing method using the vacuum processing apparatus 10a of the first example will be described by taking vacuum dissolution purification of a dissolved material mainly composed of silicon as an example.
  • the irradiation object 50 is a melting material mainly composed of silicon.
  • a threshold value of the impurity concentration in the dissolved material used when stopping the electron beam irradiation is determined in advance. Further, it is set in the computer 69 that the main element is silicon. Further, the range of X-ray energy (or wavelength) measured by the X-ray measuring device 62 is set in advance to a range equal to or lower than the energy of the electron beam.
  • the vacuum chamber 11 is evacuated by a vacuum evacuation device 12 to form a vacuum atmosphere. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained. While maintaining the vacuum atmosphere in the vacuum chamber 11, the irradiation object 50 is carried into the vacuum chamber 11 by the material carry-in device 14 and placed in the material container 13.
  • the anti-adhesion filter 65 is rotated around the central axis of the rotary shaft 67a by the rotary shaft rotating device 67b. Power is supplied from the X-ray detection unit power supply 64 to the spectroscopic unit 63b of the X-ray detection unit 63 in advance.
  • the vacuum chamber 11 and the material container 13 are placed at the ground potential. Referring to FIG. 2, when the inside of the vacuum chamber 11 is evacuated, the inside of the housing 21 of the electron gun 20 is also evacuated. When the pressure in the vacuum chamber 11 is lowered to the 10 ⁇ 2 Pa level, evacuation in the gun chamber 23 and the intermediate chamber 25 is started by the electron gun vacuum exhaust devices 27 1 and 27 2 .
  • the intermediate chamber 25 is provided and has an operating exhaust structure. Thereafter, even if the pressure in the vacuum chamber 11 rises to about 1 ⁇ 10 ⁇ 1 Pa by electron beam irradiation or the like, the pressure in the gun chamber 23 is reduced to 5 ⁇ . It can be kept at 10-3 Pa or less. Thereby, abnormal discharge in the gun chamber 23 can be prevented, and burning of the filament 31 and the cathode electrode 32 can be prevented.
  • the casing 21 and the anode electrode 34 are placed at the ground potential.
  • a DC voltage is applied between the filament 31 and the cathode electrode 32 so that the cathode electrode 32 has a positive potential with respect to the filament 31.
  • a DC voltage is applied between the cathode electrode 32 and the anode electrode 34 so that the cathode electrode 32 becomes a negative potential ( ⁇ 40 kV in this case) with respect to the anode electrode 34.
  • a current is passed through the first and second lens coils 36 and 37 to form magnetic fields inside the connection path 24 and the discharge path 26, respectively, and a current is passed through the rocking coil 38 and the inside of the muzzle 22.
  • a magnetic field is formed in
  • thermoelectrons are emitted from the filament 31.
  • thermoelectrons are accelerated toward the cathode electrode 32 and collide with the cathode electrode 32 to heat the cathode electrode 32.
  • thermoelectrons are emitted from the cathode electrode 32.
  • the temperature of the cathode electrode 32 is controlled by the cathode heating power source 42, and thus the amount of thermoelectrons generated is controlled by the cathode heating power source 42.
  • the Wehnelt electrode 33 has the same potential as the cathode electrode 32, and serves to suppress the divergence of electrons from the cathode electrode 32 and lead it to the anode electrode 34.
  • the electrons that have passed through the anode electrode 34 are converged by the magnetic field formed by the first lens coil 36, pass through the opening of the partition valve 39, pass through the intermediate chamber 25, and then formed by the second lens coil 37. Then, the light is converged again by the magnetic field, and then the trajectory is corrected by the magnetic field formed by the oscillating coil 38 and is released from the muzzle 22 into the vacuum chamber 11.
  • the electrons generated from the cathode electrode 32 are linearly shaped and transported inside the casing 21 of the electron gun 20 and are therefore usually called electron beams.
  • the casing 21, the anode electrode 34, the vacuum chamber 11 and the material container 13 of the electron gun 20 are all placed at the ground potential, and the irradiation object 50 is also placed at the ground potential via the material container 13. ing.
  • the electron beam is first accelerated by the difference (40 kV) between the potential of the cathode electrode 32 (here, 40 kV) and the potential of the anode electrode 34 (0 V), and obtains 40 keV energy. Thereafter, it passes through a ground potential space (that is, an electric field free space), and with reference to FIG. 1, the irradiation object 50 placed at the ground potential is irradiated with energy of 40 keV, and the irradiation object 50 is heated.
  • a ground potential space that is, an electric field free space
  • the power of the electron beam is determined by the current of the electron beam.
  • the current is 1 A
  • 40 kV ⁇ 1 A 40 kW.
  • X-rays having energy lower than that of the electron beam are emitted from the irradiation object 50 irradiated with the electron beam.
  • the power of the electron beam irradiated to the irradiation object 50 is larger than the power of the electron beam normally used in the field of X-ray analysis, and the intensity of the X-ray emitted from the irradiation object 50 is normal in the field of X-ray analysis. Two or more orders of magnitude greater than the intensity of the X-ray to be measured.
  • the anti-adhesion filter 65 is rotated about the central axis of the rotation shaft 67a by the rotation shaft rotating device 67b.
  • the opening 66 faces the attenuation filter 61, the X-rays that have passed through the opening 66 are attenuated filter 61. Is incident on.
  • the X-rays incident on the attenuation filter 61 are absorbed or reflected inside the attenuation filter 61 and attenuated.
  • the X-rays that have passed through the attenuation filter 61 enter the spectroscopic unit 63b through the window member 63c of the X-ray detection unit 63.
  • the spectroscopic unit 63b generates an electric signal corresponding to the energy (or wavelength) of the incident X-ray
  • the storage device 68 receives the electric signal generated by the spectroscopic unit 63b and generates an electric signal for each X-ray energy (or wavelength). Stores the number of signals.
  • the X-ray measurement device 62 measures the relationship between the energy and intensity of X-rays that have passed through the attenuation filter 61.
  • the computer 69 reads the stored contents of the storage device 68 and obtains the concentration of an element (that is, impurity) other than the main component (silicon) contained in the irradiation object 50 based on the stored contents.
  • the concentration of impurities contained in the irradiation object 50 can be known. Therefore, in order to know the concentration of impurities, the irradiation of the electron beam is stopped as in the prior art. There is no need to open the vacuum chamber 11 to the atmosphere, and production time can be greatly reduced.
  • the irradiation object 50 irradiated with the electron beam and heated is melted, the impurities contained in the irradiation object 50 are evaporated, and the concentration of the impurities contained in the irradiation object 50 is reduced.
  • An anti-adhesion filter 65 is disposed between the irradiation object 50 and the attenuation filter 61.
  • the shielding part other than the opening 66 of the attenuation filter 61 and the anti-adhesion filter 65 faces each other, the vapor is shielded by the shielding part.
  • the vapor does not reach the attenuation filter 61 and the vapor that has passed through the opening 66 reaches the attenuation filter 61 when the attenuation filter 61 and the opening 66 face each other.
  • the vapor adheres to and accumulates on the attenuation filter 61, the X-ray attenuation rate of the attenuation filter 61 increases, leading to a decrease in measurement accuracy in the X-ray measuring device 62.
  • the vapor reaching the pressure is attenuated, and the vapor is prevented from adhering to and depositing on the attenuation filter 61.
  • the vacuum chamber 11 is evacuated, and the impurity vapor is evacuated by the vacuum evacuation device 12 and removed from the vacuum chamber 11.
  • a controller 17 is connected to the computer 69. When the impurity concentration obtained by the computer 69 becomes a predetermined threshold value or less, the control device 17 sends a control signal to the electron gun power supply 40 to stop the irradiation of the electron beam from the electron gun 20.
  • the concentration of impurities contained in the irradiation object 50 can be confirmed while irradiating the irradiation object 50 with an electron beam, and the irradiation of the electron beam can be stopped at an appropriate timing. Therefore, products with stable quality can be produced.
  • a mold container 19 is disposed in the vacuum chamber 11, and an inclination mechanism 18 for inclining the material container 13 is provided in the material container 13.
  • the material container 13 After stopping the irradiation of the electron beam, the material container 13 is tilted by the tilt mechanism 18, and the purified irradiation object 50 in the material container 13 is put into the mold container 19. Next, the orientation of the material container 13 is returned to the original by the tilt mechanism 18, the unpurified irradiation object 50 is arranged in the material container 13 by the material carry-in device 14, and the above-described vacuum dissolution and purification process is repeated.
  • the inside of the vacuum chamber 11 is opened to the atmosphere, the purified irradiation object is taken out from the mold container 19, and the vacuum chamber 11 is evacuated. A vacuum atmosphere is formed and the vacuum dissolution purification process is resumed.
  • the irradiation object 50 has been described using a melting material containing silicon as a main component.
  • the irradiation object 50 is not limited to this as long as the main component is a dissolving material, and titanium is not limited thereto.
  • a melting material mainly composed of stainless steel, tantalum, tungsten, or the like may be used for the irradiation object 50.
  • the power of the electron beam is adjusted according to the type of the irradiation object 50. Compared to silicon, titanium, and stainless steel, it is necessary to irradiate a higher power electron beam in order to dissolve a melting material mainly composed of tantalum or tungsten which is a high melting point metal.
  • FIG. 5 is an internal configuration diagram of the vacuum processing apparatus 10b of the second example.
  • the same parts as those of the structure of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals and description thereof is omitted.
  • the vacuum processing apparatus 10b of the second example has an anti-adhesion filter 65 ′ having another structure instead of the anti-adhesion filter 65 of the vacuum processing apparatus 10a of the first example.
  • the anti-adhesion filter 65 ′ is a substance that shields vapor particles and transmits X-rays.
  • a plastic film having a thickness of 1 ⁇ m to 10 ⁇ m is used.
  • the anti-adhesion filter 65 ′ is formed in a band shape whose width is larger than the diameter of the attenuation filter 61, and is wound around in a roll shape around one end in the longitudinal direction.
  • a driven shaft 68b is inserted into the center of the roll of the anti-adhesion filter 65 ', and a drive shaft 68a is fixed to the longitudinal end of the anti-adhesion filter 65' drawn out from the outer periphery of the roll.
  • the drive shaft 68a and the driven shaft 68b are arranged opposite to each other in parallel with each other across the position facing the attenuation filter 61.
  • the drive shaft 68a is connected to the drive shaft 68a and the central axis of the drive shaft 68a.
  • a drive shaft rotating device 68c that rotates around is connected.
  • the anti-adhesion filter 65 ' is pulled by the drive shaft 68a and taken up, and the driven shaft 68b is rotated by the force and the anti-adhesion filter 65' is fed out from the roll. It is. At this time, a force opposite to the rotational force of the pulling force generated by the drive shaft 68a is generated on the driven shaft 68b, and the anti-adhesion filter 65 ′ between the drive shaft 68a and the driven shaft 68b is generated by the two forces. It is designed to be stretched flat.
  • the vapor incident on the deposition preventing filter 65 ′ is attached to and shielded by the deposition preventing filter 65 ′, and the damping filter 61 Is not to reach.
  • the X-rays incident on the deposition prevention filter 65 ′ pass through the deposition prevention filter 65 ′ and reach the attenuation filter 61. More X-rays can reach the attenuation filter 61 than the deposition filter 65 of the vacuum processing apparatus 10a of the first example, and X-ray detection with higher sensitivity is possible.
  • the vacuum processing method using the vacuum processing apparatus 10b of the second example is the same as the vacuum processing method using the vacuum processing apparatus 10a of the first example, and description thereof is omitted.
  • FIG. 6 is an internal configuration diagram of the vacuum processing apparatus 10c of the third example.
  • the same parts as those of the structure of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals and description thereof is omitted.
  • the deposition prevention filter 65 of the vacuum processing apparatus 10a of the first example is omitted, and the attenuation filter 61 and the X-ray detection unit 63 are made of material in the lateral direction (horizontal direction) of the material container 13. It is arranged as far as possible from the container 13.
  • the amount of vapor reached is inversely proportional to the square of the distance from the irradiation object 50.
  • attains the wall surface of the vacuum chamber 11 adheres to a wall surface and accumulates, it hardly reflects on a wall surface. Therefore, in the vacuum processing apparatus 10c of the third example, the vapor hardly reaches the attenuation filter 61 without using the deposition prevention filter 65.
  • X-rays are emitted from the irradiation object 50 because the ratio of reflection on the walls of the vacuum chamber 11 and other structural members (that is, the casing 21 of the electron gun 20, the material carry-in device 14, and the material container 13) is large.
  • the X-rays thus made enter the attenuation filter 61, and the X-rays that have passed through the attenuation filter 61 are measured by the X-ray measuring device 62.
  • the deposition preventing filter 65 can be omitted as compared with the vacuum processing apparatus 10a of the first example, so that the cost is reduced.
  • the vacuum processing method using the vacuum processing apparatus 10c of the third example is the same as the vacuum processing method using the vacuum processing apparatus 10a of the first example, and description thereof is omitted.
  • FIG. 7 is an internal configuration diagram of the vacuum processing apparatus 10d of the fourth example.
  • the same parts as those of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals, and description thereof is omitted.
  • a film formation target holding unit 70 that holds the film formation target 55 is added as compared with the vacuum processing apparatus 10a of the first example.
  • the film formation target 55 is a band-shaped film, and is configured to be wound in a roll shape around one end in the longitudinal direction.
  • films such as PET, PP, and polyimide having a width of 600 to 1200 mm, a thickness of 2 to 3 ⁇ m, and a roll length of about 1600 m are used.
  • the film formation target holding unit 70 includes a winding shaft 71 disposed in the vacuum chamber 11 and a winding shaft rotating device 73 that rotates the winding shaft 71 about the central axis of the winding shaft 71. ing.
  • a roll made of the film formation target 55 is disposed in the vacuum chamber 11, and a roll holding shaft 72 is inserted in the center of the roll.
  • the winding shaft 71 and the roll holding shaft 72 are arranged opposite to each other in parallel and facing each other across the flight path of the steam emitted from the irradiation object 50.
  • the longitudinal end of the film formation target 55 drawn from the outer periphery of the roll held by the roll holding shaft 72 is wound around and fixed to the take-up shaft 71 in a state of crossing the flight path of the steam. .
  • the take-up shaft 71 When the take-up shaft 71 is rotated by the take-up shaft rotating device 73, the film formation target 55 is pulled and taken up by the take-up shaft 71, and the roll holding shaft 72 is rotated by the force and the film formation target is removed from the roll. Object 55 is paid out. At this time, a force opposite to the rotational force of the pulling force generated by the take-up shaft 71 is generated on the roll holding shaft 72, and the film is formed between the take-up shaft 71 and the roll holding shaft 72 by the two forces. The object 55 is stretched flat.
  • a deposition preventing plate 75 that shields vapor is disposed so as to cover the surface of the film formation target 55 exposed on the material container 13 side.
  • the material of the deposition preventive plate 75 is molybdenum here, and an opening 76 that allows X-rays and steam to pass therethrough is provided at a position of the deposition preventive plate 75 that faces the irradiation target 50 in the material container 13. A part of the vapor released from the irradiation object 50 in the material container 13 passes through the opening 76 of the deposition preventing plate 75 and reaches and adheres to the part of the film formation object 55 exposed from the opening 76.
  • the X-ray measurement apparatus 62 is configured so that the window member 63c faces the irradiation object 50 in the material container 13 and the irradiation object 50 as viewed from the portion facing the opening 76 in the film formation object 55. Is disposed on the opposite side, and the attenuation filter 61 is disposed between the X-ray measurement apparatus 62 and the film formation target 55 so as to face the window member 63c.
  • the attenuation filter 61 is disposed on the side opposite to the irradiation object 50 when viewed from the film formation object 55.
  • the film formation target 55 is disposed between the irradiation target 50 and the attenuation filter 61. Therefore, the vapor that has passed through the opening 76 of the deposition preventing plate 75 adheres to the film formation target 55 and is blocked, and the vapor does not reach the attenuation filter 61. Therefore, in this embodiment, the anti-adhesion filter 65 is omitted as compared with the vacuum processing apparatus 10a of the first example.
  • the film formation target 55 is not limited to a belt-shaped film but may be a plate.
  • the anti-adhesion filters 65 and 65 ′ may be added similarly to the vacuum processing apparatuses 10a and 10b of the first example and the second example.
  • the attenuation filter 61 and the X-ray detection unit 63 may be arranged as far as possible from the material container 13 in the lateral direction (horizontal direction) of the material container 13.
  • a vacuum processing method using the vacuum processing apparatus 10d of the fourth example will be described taking aluminum vacuum deposition as an example.
  • a film forming material mainly composed of aluminum is used for the irradiation object 50.
  • the concentration of impurities contained in the irradiation object 50 before irradiation with an electron beam is known in advance.
  • a threshold value of the impurity concentration in the film forming material used when stopping the electron beam irradiation is determined in advance. Further, it is set in the computer 69 that the main element is aluminum. Further, the range of X-ray energy (or wavelength) measured by the X-ray measuring device 62 is set in advance to a range equal to or lower than the energy of the electron beam.
  • the vacuum chamber 11 is evacuated by the evacuation device 12 to form a vacuum atmosphere. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained. While maintaining the vacuum atmosphere in the vacuum chamber 11, the irradiation object 50 is carried into the vacuum chamber 11 by the material carry-in device 14 and placed in the material container 13. Power is supplied from the X-ray detection unit power supply 64 to the spectroscopic unit 63b of the X-ray detection unit 63 in advance.
  • An electron beam is emitted from the electron gun 20.
  • the method of emitting the electron beam from the electron gun 20 is the same as the method of emitting the electron beam from the electron gun in the vacuum processing method using the vacuum processing apparatus 10a of the first example, and the description thereof is omitted.
  • X-rays are emitted from the irradiation object 50 irradiated with the electron beam.
  • the power of the electron beam irradiated to the irradiation object 50 is larger than the power of the electron beam normally used in the field of X-ray analysis, and the intensity of the X-ray emitted from the irradiation object 50 is normal in the field of X-ray analysis. Two or more orders of magnitude greater than the intensity of the X-ray to be measured.
  • the X-rays incident on the attenuation filter 61 are absorbed or reflected inside the attenuation filter 61 and attenuated.
  • the X-rays that have passed through the attenuation filter 61 enter the spectroscopic unit 63b through the window member 63c of the X-ray detection unit 63.
  • the spectroscopic unit 63b generates an electric signal corresponding to the energy (or wavelength) of the incident X-ray
  • the storage device 68 receives the electric signal generated by the spectroscopic unit 63b and generates an electric signal for each X-ray energy (or wavelength). Stores the number of signals.
  • the X-ray measurement device 62 measures the relationship between the energy and intensity of X-rays that have passed through the attenuation filter 61.
  • the computer 69 reads the stored contents of the storage device 68 and obtains the concentration of an element (ie, impurity) other than the main component (aluminum) contained in the irradiation object 50 based on the stored contents.
  • the concentration of impurities contained in the irradiation object 50 can be known. Therefore, in order to know the concentration of impurities, the irradiation of the electron beam is stopped as in the prior art. There is no need to open the vacuum chamber 11 to the atmosphere, and production time can be greatly reduced.
  • the irradiation object 50 irradiated with the electron beam and heated is melted, the main component vapor is released from the irradiation object 50, and a part of the vapor passes through the opening 76 of the deposition preventing plate 75.
  • the take-up shaft 71 is rotated by the take-up shaft rotating device 73 so that the film formation target 55 travels at a predetermined speed (350 m / min in this case) so as to cross the steam flight path.
  • the vapor that has passed through the opening 76 reaches and adheres to the portion of the film formation target 55 exposed from the opening 76, and a thin film is formed on the surface of the film formation target 55.
  • the film formation target 55 is wound around the winding shaft 71 on the end point side from the position where the vapor enters in the moving direction of the film formation target 55. In this manner, an aluminum thin film having a predetermined film thickness (here, several 100 nm (film resistance is 1.6 ⁇ )) is continuously formed on the film formation target 55. Since the vapor is shielded by the film formation target 55 and does not reach the attenuation filter 61, the X-ray attenuation rate of the attenuation filter 61 does not increase, and the measurement accuracy of the X-ray measurement device 62 does not decrease.
  • the vacuum exhaust device 12 is stopped, the inside of the vacuum chamber 11 is released to the atmosphere, and the roll formed of the film formation target 55 is vacuumed. It is carried out to the outside of the tank 11.
  • the vacuum chamber 11 is evacuated to create a vacuum atmosphere. Form and restart the vacuum deposition process.
  • the main component evaporates from the irradiation object 50, so that impurities contained in the irradiation object 50 are concentrated and the impurity concentration increases. Further, a part of the vapor emitted from the irradiation object 50 is deposited on the surface of the deposition plate 75 and the inner wall surface of the vacuum chamber 11, but the vapor is deposited on the surface of the deposition plate 75 and the vacuum chamber 11.
  • the deposited adhesion film peels off and reaches the irradiation object 50, and molybdenum, which is the material of the deposition preventing plate 75, and stainless steel, which is the material of the vacuum chamber 11, enter the irradiation object 50.
  • molybdenum which is the material of the deposition preventing plate 75
  • stainless steel which is the material of the vacuum chamber 11
  • the control device 17 is connected to the computer 69.
  • the control device 17 sends a control signal to the electron gun power supply 40 to stop the irradiation of the electron beam from the electron gun 20.
  • the vacuum chamber 11 After the inside of the vacuum chamber 11 is opened to the atmosphere and the irradiation object 50 mixed with impurities is replaced with a new irradiation object 50, the vacuum chamber 11 is evacuated to form a vacuum atmosphere, and a vacuum deposition process is performed. Resume. In this way, the concentration of impurities contained in the irradiation object 50 can be confirmed while irradiating the irradiation object 50 with an electron beam, and the film quality of the film to be formed can be kept constant. Therefore, the product yield can be improved.
  • the irradiation object 50 has been described using a film forming material mainly composed of aluminum, but the irradiation object 50 is not limited to this as long as the film forming material has a known main component.
  • a film-forming material mainly composed of titanium, copper, or the like may be used for the irradiation object 50.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

[Problem] To provide a vacuum processing device and a vacuum processing method which are capable of knowing the concentration of impurities contained in an object to be irradiated while heating the object to be irradiated by irradiating the object to be irradiated with an electron beam to thereby vaporize a specific constituent contained in the object to be irradiated. [Solution] A vacuum processing device comprising a vacuum chamber (11), and an electron gun (20) which heats an object to be irradiated that is disposed in the vacuum chamber (11) by irradiating the object to be irradiated with an electron beam to thereby vaporize a specific constituent contained in the object to be irradiated, said vacuum processing device comprising an X-ray measurement unit (62) which measures the relationship between the energy and the intensity of X-rays within a predetermined energy range, and an attenuation filter (61) on which X-rays emitted from the object to be irradiated (50) by the irradiation with the electron beam are incident, and which causes the incident X-rays to be attenuated, pass therethrough, and be incident on the X-ray measurement unit (62).

Description

真空処理装置及び真空処理方法Vacuum processing apparatus and vacuum processing method
 本発明は、真空処理装置及び真空処理方法に係り、特に電子線を照射対象物に照射して加熱し、照射対象物に含まれる特定成分を気化させる技術に関する。 The present invention relates to a vacuum processing apparatus and a vacuum processing method, and more particularly, to a technique for irradiating an irradiation object with an electron beam and heating it to vaporize a specific component contained in the irradiation object.
 現在、金属等の照射対象物に比較的エネルギーが大きい電子線を照射して加熱し、照射対象物に含まれる特定成分を気化(蒸発又は昇華)させることができる真空処理装置は、主に真空蒸着や真空溶解精製の用途に用いられている。 Currently, vacuum processing apparatuses that can irradiate and heat a relatively high energy electron beam on an irradiation object such as metal and vaporize (evaporate or sublimate) specific components contained in the irradiation object are mainly vacuum. It is used for vapor deposition and vacuum dissolution purification.
 従来の真空処理装置は、容積が1m3以上の比較的大きな真空槽と、真空槽内を真空排気する真空排気装置と、真空槽内に電子線を放出する電子銃とを有している。
 真空溶解精製で対象とする金属はチタン等の活性な金属、ステンレス等の真空材料、モリブデンやタンタル等の高融点金属であり、最近は太陽電池用にシリコンの真空溶解精製も行われている。真空蒸着で対象とする金属はアルミニウム、チタン、銅等である。
A conventional vacuum processing apparatus has a relatively large vacuum chamber having a volume of 1 m 3 or more, a vacuum exhaust device that evacuates the vacuum chamber, and an electron gun that emits an electron beam into the vacuum chamber.
The target metals in vacuum melting and refining are active metals such as titanium, vacuum materials such as stainless steel, and high melting point metals such as molybdenum and tantalum. Recently, vacuum melting and refining of silicon for solar cells has also been performed. The target metals for vacuum deposition are aluminum, titanium, copper and the like.
 真空排気された真空槽内で、これらの照射対象物に電子銃から電子線を照射して加熱し、照射対象物から特定成分を気化させる工程では、溶解した照射対象物の純度を知ること、すなわち照射対象物に含まれる不純物濃度を知ることが重要である。 In the evacuated vacuum chamber, these irradiation objects are irradiated with an electron beam from an electron gun and heated, and in the step of vaporizing a specific component from the irradiation object, knowing the purity of the dissolved irradiation object, That is, it is important to know the concentration of impurities contained in the irradiation object.
 従来の真空溶解精製の場合は、特許文献1を参照し、電子線の照射停止後に冷えて固体状になった照射対象物から小片を切り出してEPMA(電子線プローブX線マイクロ分析装置)、AES(オージェ電子分光装置)、XRFS(蛍光X線分光装置)等の表面分析装置、あるいはICP-MASS(誘導結合プラズマ質量分光装置)等を用いて不純物濃度の測定を行っていた。 In the case of conventional vacuum dissolution purification, refer to Patent Document 1 and cut out a small piece from an irradiation object that has been cooled and solidified after stopping irradiation of an electron beam, and EPMA (electron probe X-ray microanalyzer), AES The impurity concentration was measured using a surface analyzer such as an Auger electron spectrometer, an XRFS (fluorescent X-ray spectrometer), or an ICP-MASS (inductively coupled plasma mass spectrometer).
 しかしながら、不純物濃度の測定を電子線の照射停止後に行うために時間がかかり、照射対象物の純度が仕様を満たしていない場合は、改めて電子線の照射を繰り返す必要があった。また、電子線の照射時間の設定には予め何度もサンプリングを行って決める必要がある等、多大な時間を必要としてきた。 However, it takes time to measure the impurity concentration after stopping the irradiation of the electron beam, and if the purity of the irradiation object does not satisfy the specification, it is necessary to repeat the irradiation of the electron beam again. Further, setting the electron beam irradiation time has required a lot of time, for example, it is necessary to determine by performing sampling many times in advance.
 また、従来の真空蒸着の場合は、初めから純度のわかっている成膜材料を照射対象物に使用していたが、電子線の照射前には純度が仕様を満たしている成膜材料でも電子線の照射中に主成分が蒸発することで不純物濃度の濃縮が生じたり、真空槽の壁面に堆積した付着膜が剥離して蒸発源へ混入する等により成膜製品に含まれる不純物濃度が増加して、膜の性能が劣化するという問題があった。たとえば光学材料ではその透過特性、反射特性、分光特性に異常が生じることがあった。被服材料では膜の密着力の低下、硬度の劣化、装飾性の劣化が生じることがあった。 In addition, in the case of conventional vacuum deposition, a film-forming material whose purity is known from the beginning has been used for the object to be irradiated. Concentration of impurity concentration occurs due to evaporation of the main component during irradiation of the line, or adhesion film deposited on the wall surface of the vacuum chamber peels off and mixes into the evaporation source. As a result, there is a problem that the performance of the film deteriorates. For example, optical materials sometimes have abnormalities in transmission characteristics, reflection characteristics, and spectral characteristics. In the case of clothing materials, the film adhesion may decrease, the hardness may deteriorate, and the decorativeness may deteriorate.
特開平11-209195号公報JP-A-11-209195
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、照射対象物に電子線を照射して加熱し、照射対象物に含まれる特定成分を気化させながら、照射対象物に含まれる不純物の濃度を知ることができる真空処理装置及び真空処理方法を提供することにある。 The present invention was created to solve the above-mentioned disadvantages of the prior art, and its purpose is to irradiate and heat an irradiation object with an electron beam while vaporizing a specific component contained in the irradiation object. An object of the present invention is to provide a vacuum processing apparatus and a vacuum processing method capable of knowing the concentration of impurities contained in an irradiation object.
 上記課題を解決するために本発明は、真空槽と、前記真空槽内に配置された照射対象物に電子線を照射して加熱し、前記照射対象物に含まれる特定成分を気化させる電子銃と、を有する真空処理装置であって、所定のエネルギー範囲内のX線のエネルギーと強度との関係を測定するX線測定装置と、前記電子線の照射によって前記照射対象物から放出されたX線が入射し、入射したX線を減衰させて通過させ、前記X線測定装置に入射させる減衰フィルタとを有する真空処理装置である。
 本発明は真空処理装置であって、前記X線測定装置の測定結果に基づいて、前記照射対象物に含まれる不純物の濃度を求める計算機と、を有する真空処理装置である。
 本発明は真空処理装置であって、前記照射対象物と前記減衰フィルタとの間には、前記照射対象物から放出されて前記減衰フィルタに到達する蒸気を減衰させる防着フィルタが配置された真空処理装置である。
 本発明は真空処理装置であって、前記特定成分は前記照射対象物の不純物であり、前記電子線の照射によって前記照射対象物に含まれる前記不純物の濃度を減少させる真空処理装置である。
 本発明は真空処理装置であって、前記特定成分は前記照射対象物の主成分であり、前記照射対象物と前記減衰フィルタとの間には成膜対象物が配置され、前記電子線の照射によって前記照射対象物から前記主成分の蒸気を放出させ、前記真空槽内に配置された前記成膜対象物に前記蒸気を到達させて薄膜を形成する真空処理装置である。
 本発明は真空処理装置であって、前記真空槽内に配置された巻取軸と、前記巻取軸を前記巻取軸の中心軸線を中心に回転させる巻取軸回転装置とを有し、前記成膜対象物は帯形状のフィルムであり、前記成膜対象物の長手方向の一端は前記巻取軸に巻き付けられて固定され、前記巻取軸回転装置により前記巻取軸を回転させると、前記成膜対象物は前記巻取軸に巻き取られる真空処理装置である。
 本発明は、真空槽内を真空排気しながら、前記真空槽内に配置された照射対象物に電子線を照射して加熱し、前記照射対象物に含まれる特定成分を気化させる真空処理方法であって、電子線の照射によって前記照射対象物から放出されたX線が入射し、入射したX線を減衰させて通過させる減衰フィルタを用いて、前記照射対象物に電子線を照射しながら、前記減衰フィルタを通過したX線のうち所定のエネルギー範囲内のX線のエネルギーと強度との関係を測定する真空処理方法である。
 本発明は真空処理方法であって、前記照射対象物に電子線を照射しながら、測定したX線のエネルギーと強度との関係に基づいて、前記照射対象物に含まれる不純物の濃度を求める真空処理方法である。
 本発明は真空処理方法であって、前記照射対象物から放出されて前記減衰フィルタに到達する蒸気を減衰させる防着フィルタを用いる真空処理方法である。
 本発明は真空処理方法であって、前記特定成分は前記照射対象物の不純物であり、前記照射対象物に電子線を照射して、前記照射対象物に含まれる前記不純物の濃度を減少させる真空処理方法である。
 本発明は真空処理方法であって、前記特定成分は前記照射対象物の主成分であり、前記照射対象物に電子線を照射して、前記成膜対象物から前記主成分の蒸気を放出させ、前記照射対象物と前記減衰フィルタとの間に配置された成膜対象物に前記蒸気を到達させて薄膜を形成する真空処理方法である。
 本発明は真空処理方法であって、前記成膜対象物は帯形状のフィルムであり、前記照射対象物に電子線を照射しながら、前記成膜対象物の移動方向に対して前記蒸気が入射する位置より終点側で、前記成膜対象物を巻き取る真空処理方法である。
In order to solve the above-described problems, the present invention provides a vacuum chamber and an electron gun that irradiates and heats an irradiation object disposed in the vacuum chamber by evaporating a specific component contained in the irradiation object. And an X-ray measuring apparatus for measuring a relationship between the energy and intensity of X-rays within a predetermined energy range, and X emitted from the irradiation object by the electron beam irradiation. It is a vacuum processing apparatus having an attenuation filter that makes a line incident, attenuates the incident X-ray, passes it, and enters the X-ray measuring apparatus.
The present invention is a vacuum processing apparatus having a calculator for determining the concentration of impurities contained in the irradiation object based on the measurement result of the X-ray measurement apparatus.
This invention is a vacuum processing apparatus, Comprising: The vacuum in which the adhesion prevention filter which attenuate | damps the vapor | steam discharged | emitted from the said irradiation target object and reaching | attains the said attenuation filter is arrange | positioned between the said irradiation target object and the said attenuation filter. It is a processing device.
This invention is a vacuum processing apparatus, The said specific component is an impurity of the said irradiation target object, The vacuum processing apparatus which reduces the density | concentration of the said impurity contained in the said irradiation target object by irradiation of the said electron beam.
The present invention is the vacuum processing apparatus, wherein the specific component is a main component of the irradiation object, a film formation object is disposed between the irradiation object and the attenuation filter, and the electron beam irradiation The vacuum processing apparatus forms a thin film by releasing the vapor of the main component from the irradiation object and causing the vapor to reach the film formation object disposed in the vacuum chamber.
The present invention is a vacuum processing apparatus, comprising: a winding shaft disposed in the vacuum chamber; and a winding shaft rotating device that rotates the winding shaft around a central axis of the winding shaft; The film formation target is a band-shaped film, and one end in the longitudinal direction of the film formation target is wound and fixed around the winding shaft, and the winding shaft is rotated by the winding shaft rotating device. The film formation object is a vacuum processing apparatus wound on the winding shaft.
The present invention is a vacuum processing method in which an irradiation target disposed in the vacuum chamber is heated by irradiating an electron beam while evacuating the vacuum chamber to vaporize a specific component contained in the irradiation target. Then, X-rays emitted from the irradiation object by the irradiation of the electron beam enter, using an attenuation filter that attenuates and passes the incident X-ray, while irradiating the irradiation object with the electron beam, In this vacuum processing method, the relationship between the intensity and intensity of X-rays within a predetermined energy range among the X-rays that have passed through the attenuation filter is measured.
The present invention is a vacuum processing method, wherein a vacuum is used to determine the concentration of impurities contained in the irradiation object based on the relationship between the measured X-ray energy and intensity while irradiating the irradiation object with an electron beam. It is a processing method.
The present invention is a vacuum processing method using a deposition filter that attenuates vapor that is emitted from the irradiation object and reaches the attenuation filter.
This invention is a vacuum processing method, Comprising: The said specific component is the impurity of the said irradiation target object, The vacuum which irradiates the electron beam to the said irradiation target object, and reduces the density | concentration of the said impurity contained in the said irradiation target object It is a processing method.
The present invention is a vacuum processing method, wherein the specific component is a main component of the irradiation object, and the irradiation object is irradiated with an electron beam to release the vapor of the main component from the film formation object. A vacuum processing method for forming a thin film by causing the vapor to reach a film formation object disposed between the irradiation object and the attenuation filter.
The present invention is a vacuum processing method, wherein the film formation target is a band-shaped film, and the vapor is incident on the movement direction of the film formation target while irradiating the irradiation target with an electron beam. This is a vacuum processing method in which the film formation target is wound on the end point side from the position where the film is formed.
 本発明では、照射対象物中に50モル%より多く含まれる元素を「主成分」と呼び、照射対象物中に含まれる元素のうち主成分以外の元素を「不純物」と呼ぶ。
 X線による元素分析の原理について説明する。
 電子線を物質に照射すると、電子線のエネルギーとほぼ同じ値を最大値とする連続した範囲のエネルギーを持つ制動X線(白色X線とも呼ばれる)と、物質の元素に特有の特性X線とが発生する。
 特性X線は白色X線に比べて桁違いに強度が強く、主に二種類のエネルギーを持つ。それらの特性X線はエネルギーの低い方からKα線、Kβ線と呼ばれる。
In the present invention, an element contained in the irradiation object in an amount of more than 50 mol% is referred to as “main component”, and an element other than the main component among the elements contained in the irradiation object is referred to as “impurity”.
The principle of elemental analysis by X-ray will be described.
When a material is irradiated with an electron beam, braking X-rays (also called white X-rays) having a continuous range of energy having a value almost the same as the energy of the electron beam, and characteristic X-rays peculiar to the elements of the material Occurs.
Characteristic X-rays are orders of magnitude stronger than white X-rays and mainly have two types of energy. Those characteristic X-rays are called Kα-rays and Kβ-rays from the lowest energy.
 Kα線、Kβ線は、元素の電子軌道におけるK殻電子を励起してたたき出すために生じるX線である。重い元素ではK殻電子を励起するのに必要なエネルギーが大きくなり、そのエネルギーより照射する電子線のエネルギーが低くなると電子線はK殻電子をたたき出すことができなくなる。その場合は、電子線はK殻の外側の電子軌道であるL殻の電子を励起してたたき出すことになり、このとき生じる特性X線はLα線、Lβ線と呼ばれる。表1、2に各元素の特性X線のエネルギー値を示す。なお、表1、2は、環境省、「大気中微小粒子状物質(PM2.5)測定方法暫定マニュアル 改定版」、平成19年7月、第5章「4」、p.6-7、からの引用である。 Kα-rays and Kβ-rays are X-rays generated to excite and knock out K-shell electrons in the electron orbit of the element. In a heavy element, the energy required to excite K-shell electrons increases, and when the energy of the electron beam irradiated becomes lower than that energy, the electron beams cannot knock out K-shell electrons. In this case, the electron beam excites and knocks out electrons in the L shell, which is an electron orbit outside the K shell, and the characteristic X-rays generated at this time are called Lα rays and Lβ rays. Tables 1 and 2 show the characteristic X-ray energy values of each element. Tables 1 and 2 are listed in the Ministry of the Environment, “Provisional Manual for Measuring Method of Atmospheric Fine Particulate Matter (PM2.5), Revised Edition”, July 2007, Chapter 5, “4”, p. Quoted from 6-7.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Kα線、Kβ線は原子番号の大きいものほどエネルギーが大きいため、Kα線、Kβ線のエネルギー(又は波長)を知ることにより、物質の元素を高感度に同定できる。 Since Kα and Kβ rays have higher energy as the atomic number is larger, knowing the energy (or wavelength) of Kα and Kβ rays makes it possible to identify the element of the substance with high sensitivity.
 照射対象物に電子線を照射して加熱しながら、照射対象物に含まれる不純物の濃度を知ることができるので、不純物の濃度を知るために従来のように電子線の照射を停止し、真空槽内を大気に開放する必要がなく、生産時間を大幅に短縮できる。 While irradiating an object with an electron beam and heating it, it is possible to know the concentration of impurities contained in the object to be irradiated. There is no need to open the tank to the atmosphere, and production time can be greatly reduced.
 本発明を真空溶解精製に用いると、電子線を照射しながら溶解材料中の不純物濃度を確認できるので、電子線の照射を停止するタイミングを的確に定めることができ、品質の安定した製品を生産できる。
 また本発明を真空蒸着に用いると、電子線を照射しながら成膜材料中の不純物の濃度を確認できるので、形成する膜の膜質を一定に保つことができ、製品の歩留まりを向上できる。
When the present invention is used for vacuum melting and purification, the impurity concentration in the dissolved material can be confirmed while irradiating the electron beam, so the timing for stopping the irradiation of the electron beam can be accurately determined, and a product with stable quality can be produced. it can.
Further, when the present invention is used for vacuum deposition, the concentration of impurities in a film forming material can be confirmed while irradiating an electron beam, so that the film quality of a film to be formed can be kept constant and the yield of products can be improved.
第一例の真空処理装置の内部構成図Internal configuration diagram of the vacuum processing apparatus of the first example 電子銃の内部構成図Internal structure of electron gun X線測定部の内部構成図Internal configuration diagram of X-ray measurement unit 防着フィルタの平面図Top view of anti-adhesion filter 第二例の真空処理装置の内部構成図Internal configuration diagram of the vacuum processing apparatus of the second example 第三例の真空処理装置の内部構成図Internal configuration diagram of the vacuum processing apparatus of the third example 第四例の真空処理装置の内部構成図Internal configuration diagram of the vacuum processing apparatus of the fourth example
<第一例の真空処理装置の構造>
 本発明の第一例の真空処理装置の構造を説明する。図1は第一例の真空処理装置10aの内部構成図である。
 第一例の真空処理装置10aは、真空槽11と、真空槽11内を真空排気する真空排気装置12と、真空槽11内に電子線を放出する電子銃20とを有している。
<Structure of vacuum processing apparatus of first example>
The structure of the vacuum processing apparatus of the first example of the present invention will be described. FIG. 1 is an internal configuration diagram of the vacuum processing apparatus 10a of the first example.
The vacuum processing apparatus 10 a of the first example includes a vacuum chamber 11, a vacuum exhaust device 12 that evacuates the vacuum chamber 11, and an electron gun 20 that emits an electron beam into the vacuum chamber 11.
 真空槽11の材質はここではステンレス鋼である。真空排気装置12は真空槽11に設けられた排気口に接続され、真空槽11内を真空排気できるように構成されている。
 電子銃20には電子銃電源40が電気的に接続されている。
Here, the material of the vacuum chamber 11 is stainless steel. The vacuum exhaust device 12 is connected to an exhaust port provided in the vacuum chamber 11, and is configured so that the vacuum chamber 11 can be evacuated.
An electron gun power source 40 is electrically connected to the electron gun 20.
 図2は電子銃20と電子銃電源40の内部構成図である。
 電子銃20は一端に銃口22が設けられた有底筒状の筐体21を有している。
 筐体21の内側には筐体21の中心軸線上にガン室23と接続路24と中間室25と放出路26とが、筐体21の底部から銃口22側に向かってこの順に一列に並んで設けられている。ガン室23と中間室25とは接続路24により接続され、中間室25と銃口22とは放出路26により接続されている。
FIG. 2 is an internal configuration diagram of the electron gun 20 and the electron gun power source 40.
The electron gun 20 has a bottomed cylindrical casing 21 provided with a muzzle 22 at one end.
Inside the casing 21, a gun chamber 23, a connection path 24, an intermediate chamber 25, and a discharge path 26 are lined up in this order from the bottom of the casing 21 toward the muzzle 22 on the central axis of the casing 21. Is provided. The gun chamber 23 and the intermediate chamber 25 are connected by a connection path 24, and the intermediate chamber 25 and the muzzle 22 are connected by a discharge path 26.
 ガン室23と中間室25には電子銃用真空排気装置271、272がそれぞれ接続され、各室23、25内はそれぞれ真空排気できるようになっている。接続路24には仕切バルブ39が設けられている。 The gun chamber 23 and the intermediate chamber 25 are connected to electron gun vacuum exhaust devices 27 1 and 27 2 , respectively, and the chambers 23 and 25 can be evacuated. A partition valve 39 is provided in the connection path 24.
 以下では、筐体21のガン室23側を上流、その逆の銃口22側を下流と呼ぶ。
 ガン室23内には、筐体21の中心軸線上にフィラメント31とカソード電極32とウェーネルト電極33とアノード電極34とが、上流側から下流側に向かってこの順に一列に並んで配置されている。
Hereinafter, the gun chamber 23 side of the casing 21 is referred to as upstream, and the opposite muzzle 22 side is referred to as downstream.
In the gun chamber 23, the filament 31, the cathode electrode 32, the Wehnelt electrode 33, and the anode electrode 34 are arranged in a line in this order from the upstream side to the downstream side on the central axis of the casing 21. .
 ウェーネルト電極33とアノード電極34はどちらも無底の円筒形状であり、それぞれの中心軸線は筐体21の中心軸線と一致する向きに向けられている。
 ウェーネルト電極33はカソード電極32に電気的に接続され、アノード電極34は筐体21に電気的に接続されている。筐体21は接地電位に置かれている。
Both the Wehnelt electrode 33 and the anode electrode 34 have a bottomless cylindrical shape, and the respective central axes are oriented in a direction that coincides with the central axis of the casing 21.
The Wehnelt electrode 33 is electrically connected to the cathode electrode 32, and the anode electrode 34 is electrically connected to the housing 21. The casing 21 is placed at the ground potential.
 アノード電極34よりも下流側には筐体21の中心軸線に沿って第一のレンズコイル36と第二のレンズコイル37と揺動コイル38とがこの順に一列に並んで配置されている。
 ここでは第一のレンズコイル36は接続路24の外周を取り囲むように配置され、第二のレンズコイル37は放出路26の外周を取り囲むように配置され、揺動コイル38は銃口22の外周を取り囲むように配置されている。
A first lens coil 36, a second lens coil 37, and a swing coil 38 are arranged in a line in this order along the central axis of the casing 21 on the downstream side of the anode electrode 34.
Here, the first lens coil 36 is disposed so as to surround the outer periphery of the connection path 24, the second lens coil 37 is disposed so as to surround the outer periphery of the discharge path 26, and the swing coil 38 is disposed around the outer periphery of the muzzle 22. It is arranged so as to surround it.
 電子銃電源40は、フィラメント電源41と、カソード加熱電源42と、引出電源43と、レンズ電源44と、揺動コイル電源45とを有している。
 フィラメント電源41はフィラメント31に電気的に接続され、フィラメント31に電流を流して加熱できるようになっている。
The electron gun power supply 40 includes a filament power supply 41, a cathode heating power supply 42, an extraction power supply 43, a lens power supply 44, and an oscillating coil power supply 45.
The filament power supply 41 is electrically connected to the filament 31 and can be heated by passing an electric current through the filament 31.
 カソード加熱電源42はウェーネルト電極33を介してカソード電極32とフィラメント31に電気的に接続され、フィラメント31に対してカソード電極32の電位が正になるように、フィラメント31とカソード電極32との間に直流電圧を印加できるように構成されている。 The cathode heating power source 42 is electrically connected to the cathode electrode 32 and the filament 31 via the Wehnelt electrode 33, so that the potential of the cathode electrode 32 is positive with respect to the filament 31. It is comprised so that a DC voltage can be applied to.
 引出電源43は、ウェーネルト電極33を介してカソード電極32と筐体21に電気的に接続され、筐体21の電位、すなわちアノード電極34の電位に対してカソード電極32の電位が負になるように、筐体21とカソード電極32との間に直流電圧を印加できるように構成されている。 The extraction power supply 43 is electrically connected to the cathode electrode 32 and the casing 21 via the Wehnelt electrode 33 so that the potential of the cathode electrode 32 is negative with respect to the potential of the casing 21, that is, the potential of the anode electrode 34. In addition, a DC voltage can be applied between the casing 21 and the cathode electrode 32.
 レンズ電源44は、第一、第二のレンズコイル36、37にそれぞれ電気的に接続され、第一、第二のレンズコイル36、37に電流を流して、接続路24と放出路26の内側にそれぞれ磁界を形成できるようになっている。 The lens power supply 44 is electrically connected to the first and second lens coils 36 and 37, respectively, and a current is passed through the first and second lens coils 36 and 37, so that the inside of the connection path 24 and the discharge path 26. A magnetic field can be formed respectively.
 揺動コイル電源45は揺動コイル38に電気的に接続され、揺動コイル38に電流を流して、銃口22の内側に磁界を形成できるようになっている。
 揺動コイル電源45には磁界制御装置46が接続されている。磁界制御装置46は揺動コイル電源45から揺動コイル38に供給される電流の向きと量とを決定して、銃口22の内側に形成される磁界の向きと大きさを制御できるように構成されている。
The oscillating coil power supply 45 is electrically connected to the oscillating coil 38, and allows a current to flow through the oscillating coil 38 to form a magnetic field inside the muzzle 22.
A magnetic field control device 46 is connected to the oscillating coil power supply 45. The magnetic field controller 46 is configured to determine the direction and amount of current supplied from the oscillating coil power supply 45 to the oscillating coil 38 and to control the direction and magnitude of the magnetic field formed inside the muzzle 22. Has been.
 図1を参照し、電子銃20の筐体21は真空槽11内に気密に挿入され、銃口22は真空槽11内に露出されている。
 第一例の真空処理装置10aは、真空槽11内に配置され、照射対象物50を保持する材料容器13と、真空槽11内に照射対象物50を搬入する材料搬入装置14とを有している。
With reference to FIG. 1, the casing 21 of the electron gun 20 is inserted in an airtight manner in the vacuum chamber 11, and the muzzle 22 is exposed in the vacuum chamber 11.
The vacuum processing apparatus 10a of the first example includes a material container 13 that is disposed in the vacuum chamber 11 and holds the irradiation target object 50, and a material carry-in device 14 that loads the irradiation target object 50 into the vacuum tank 11. ing.
 材料搬入装置14は真空槽11の槽壁を気密に貫通して設けられ、真空槽11内の真空雰囲気を維持しながら、真空槽11の外側から内側に照射対象物50を搬入し、材料容器13内に配置できるように構成されている。 The material carry-in device 14 is provided airtightly through the tank wall of the vacuum tank 11, and carries the irradiation object 50 from the outside to the inside of the vacuum tank 11 while maintaining the vacuum atmosphere in the vacuum tank 11. It is comprised so that it can arrange | position in 13th.
 後述するように電子銃20から材料容器13内の照射対象物50に電子線を照射して加熱すると、照射対象物50に含まれる特定成分が気化する。また、照射対象物50からX線が放出される。 As will be described later, when the irradiation object 50 in the material container 13 is irradiated with an electron beam from the electron gun 20 and heated, a specific component contained in the irradiation object 50 is vaporized. Further, X-rays are emitted from the irradiation object 50.
 第一例の真空処理装置10aは、照射対象物50から放出されたX線を測定するX線測定部60を有している。
 図3はX線測定部60の内部構成図である。
The vacuum processing apparatus 10a of the first example includes an X-ray measurement unit 60 that measures X-rays emitted from the irradiation object 50.
FIG. 3 is an internal configuration diagram of the X-ray measurement unit 60.
 X線測定部60は、所定のエネルギー範囲内のX線のエネルギーと強度との関係を測定するX線測定装置62と、電子線の照射によって照射対象物50から放出されたX線が入射し、入射したX線を減衰させて通過させ、X線測定装置62に入射させる減衰フィルタ61とを有している。 The X-ray measurement unit 60 receives an X-ray measurement device 62 that measures the relationship between the energy and intensity of X-rays within a predetermined energy range, and X-rays emitted from the irradiation object 50 by electron beam irradiation. And an attenuation filter 61 that attenuates the incident X-rays to pass through and makes them enter the X-ray measuring device 62.
 X線測定装置62は、入射した所定のエネルギー範囲内のX線のエネルギー(又は波長)に応じて電気信号を生成するX線検知部63と、X線検知部63に電力を供給するX線検知部用電源64と、X線検知部63が生成した電気信号を受け取って記憶する記憶装置68とを有している。 The X-ray measurement apparatus 62 includes an X-ray detection unit 63 that generates an electrical signal according to the energy (or wavelength) of X-rays within a predetermined energy range, and an X-ray that supplies power to the X-ray detection unit 63. The power supply 64 for a detection part and the memory | storage device 68 which receives and memorize | stores the electric signal which the X-ray detection part 63 produced | generated are provided.
 X線検知部63は、X線を遮断する材質で形成された検知部容器63aと、検知部容器63aの内側に配置された分光部63bと、検知部容器63aの開口部に気密に固定された窓部材63cとを有している。 The X-ray detection unit 63 is airtightly fixed to a detection unit container 63a formed of a material that blocks X-rays, a spectroscopic unit 63b disposed inside the detection unit container 63a, and an opening of the detection unit container 63a. Window member 63c.
 窓部材63cはX線をできるだけ透過させる部材であり、ここでは膜厚が10μm~50μmのできるだけ低Z(低原子番号)の金属箔(たとえばBe箔)やプラスチックフィルムが用いられる。窓部材63cには、真空壁としての強度を持たせるために、補強材として金属のメッシュを固定してもよい。 The window member 63c is a member that transmits X-rays as much as possible. Here, a metal foil (for example, Be foil) with a film thickness of 10 μm to 50 μm and a low Z (low atomic number) as much as possible is used. In order to give the window member 63c strength as a vacuum wall, a metal mesh may be fixed as a reinforcing material.
 窓部材63cは検知部容器63aの開口部を塞ぐように検知部容器63aに気密に密着されている。
 検知部容器63aはX線を遮断する材質で形成されており、窓部材63cを通過したX線だけが分光部63bに到達するようになっている。
The window member 63c is hermetically adhered to the detection unit container 63a so as to close the opening of the detection unit container 63a.
The detection unit container 63a is made of a material that blocks X-rays, and only the X-rays that have passed through the window member 63c reach the spectroscopic unit 63b.
 また、窓部材63cは検知部容器63aと共に検知部容器63aの内側を気密に保つことができるように構成され、X線検知部63が真空排気された真空槽11内に配置されたときに、分光部63bは真空槽11内の真空雰囲気から隔離されるようになっている。 Further, the window member 63c is configured to be able to keep the inside of the detection unit container 63a airtight together with the detection unit container 63a, and when the X-ray detection unit 63 is disposed in the evacuated vacuum chamber 11, The spectroscopic unit 63 b is isolated from the vacuum atmosphere in the vacuum chamber 11.
 分光部63bには市販されているX線元素分析用の分光装置を使用することができ、本実施例ではリチウムドリフト型半導体検出器が用いられるが、回折格子を使用した波長分散型X線検出器を用いてもよい。 As the spectroscopic unit 63b, a commercially available spectroscopic device for X-ray elemental analysis can be used. In this embodiment, a lithium drift type semiconductor detector is used, but wavelength dispersion type X-ray detection using a diffraction grating is used. A vessel may be used.
 リチウムドリフト型半導体検出器は、Si結晶にLiが拡散されて真性領域(i層)とされたpin接合を有する半導体であり、所定のエネルギー範囲内のX線がi層に入射するとX線のエネルギーに比例した数の電子と正孔の対が生成されるようになっている。 A lithium drift type semiconductor detector is a semiconductor having a pin junction in which Li is diffused into a Si crystal to form an intrinsic region (i layer). When X rays within a predetermined energy range enter the i layer, A number of electron-hole pairs proportional to energy are generated.
 X線検知部用電源64は分光部63bに電気的に接続され、p層に対してn層に正電圧を印加すると、i層で生成された電子正孔対が電場により移動して、分光部63bからX線のエネルギーに比例した大きさの電気信号が取り出される。 The power source 64 for the X-ray detection unit is electrically connected to the spectroscopic unit 63b. When a positive voltage is applied to the n layer with respect to the p layer, the electron-hole pair generated in the i layer is moved by the electric field, and the spectroscopic unit An electric signal having a magnitude proportional to the energy of the X-ray is extracted from the unit 63b.
 記憶装置68は分光部63bに接続され、分光部63bから取り出された電気信号を受け取って、受け取った電気信号の大きさ、すなわちX線のエネルギー毎に、電気信号の回数を記憶するように構成されている。従って、記憶装置68の記憶内容からX線検知部63に入射した所定のエネルギー範囲内のX線のエネルギーと強度との関係が分かるようになっている。 The storage device 68 is connected to the spectroscopic unit 63b, receives the electric signal extracted from the spectroscopic unit 63b, and stores the number of electric signals for each magnitude of the received electric signal, that is, for each X-ray energy. Has been. Accordingly, the relationship between the energy and intensity of X-rays within a predetermined energy range incident on the X-ray detection unit 63 can be understood from the stored contents of the storage device 68.
 第一例の真空処理装置10aは、X線測定装置62の測定結果に基づいて、照射対象物50に含まれる不純物の濃度を求める計算機69を有している。計算機69は記憶装置68に接続されている。
 ここでは計算機69は、記憶装置68の記憶内容を読み出し、記憶内容から白色X線等のバックグラウンドを差し引いて、特性X線のエネルギーと強度との関係を抽出した後、抽出した特性X線のエネルギーを対応する元素と関係づける。照射対象物50の主成分の元素が計算機69に予め設定されていれば、計算機69は主成分以外の元素に対応する特性X線の強度の和(不純物の強度と呼ぶ)を求め、特性X線全体の強度に対する不純物の強度の割合を計算して、照射対象物50に含まれる不純物の濃度を求めるように構成されている。
The vacuum processing apparatus 10a of the first example has a calculator 69 that calculates the concentration of impurities contained in the irradiation object 50 based on the measurement result of the X-ray measurement apparatus 62. The computer 69 is connected to the storage device 68.
Here, the computer 69 reads out the storage content of the storage device 68, subtracts the background such as white X-rays from the storage content, extracts the relationship between the energy and intensity of the characteristic X-ray, and then extracts the extracted characteristic X-ray. Associate energy with the corresponding element. If the main component element of the irradiation object 50 is preset in the calculator 69, the calculator 69 obtains the sum of the intensity of characteristic X-rays corresponding to the elements other than the main component (referred to as impurity intensity), and the characteristic X The ratio of the intensity of the impurity to the intensity of the entire line is calculated, and the concentration of the impurity contained in the irradiation object 50 is obtained.
 減衰フィルタ61は金属の薄膜であり、ここでは膜厚が20μmのTi箔又は膜厚が1mmのAl箔が用いられる。減衰フィルタ61の膜厚が重力等の外力に対抗して形状を維持できないほど薄い場合には、補強材としてステンレスのメッシュ(網)を減衰フィルタ61に固定してもよい。 The attenuation filter 61 is a metal thin film, and here, a Ti foil with a thickness of 20 μm or an Al foil with a thickness of 1 mm is used. When the thickness of the attenuation filter 61 is so thin that it cannot maintain the shape against an external force such as gravity, a stainless steel mesh may be fixed to the attenuation filter 61 as a reinforcing material.
 減衰フィルタ61にX線が入射すると、入射したX線の一部は減衰フィルタ61の内部で吸収又は反射され、すなわち入射したX線は減衰される。
 減衰フィルタ61は、入射したX線を減衰できるならば上記構成に限定されず、厚み方向に貫通するピンホールが設けられた金属の板でもよい。減衰フィルタ61にX線が入射すると、入射したX線の一部はピンホールの内側を通過し、他のX線はピンホールの外側の板に衝突して遮断され、すなわち入射したX線は減衰される。ピンホールの直径を変更することでX線の減衰率を変更でき、金属の薄膜に比べてX線の減衰率を容易に変更できる。
When X-rays enter the attenuation filter 61, a part of the incident X-rays is absorbed or reflected inside the attenuation filter 61, that is, the incident X-rays are attenuated.
The attenuation filter 61 is not limited to the above configuration as long as incident X-rays can be attenuated, and may be a metal plate provided with pinholes penetrating in the thickness direction. When X-rays enter the attenuating filter 61, some of the incident X-rays pass through the inside of the pinhole, and other X-rays collide with the plate outside the pinhole and are blocked. Attenuated. By changing the diameter of the pinhole, the attenuation factor of X-rays can be changed, and the attenuation factor of X-rays can be easily changed as compared with a metal thin film.
 減衰フィルタ61は、X線検知部63の窓部材63cと対向して配置されている。従って、減衰フィルタ61を通過したX線がX線検知部63に入射するようになっている。
 本実施例では、図1を参照し、X線検知部63は窓部材63cを材料容器13内の照射対象物50の位置する方向に向けた状態で照射対象物50と対面する位置に配置され、減衰フィルタ61はX線検知部63と照射対象物50との間に配置されている。
The attenuation filter 61 is disposed to face the window member 63 c of the X-ray detection unit 63. Therefore, the X-rays that have passed through the attenuation filter 61 are incident on the X-ray detection unit 63.
In the present embodiment, referring to FIG. 1, the X-ray detection unit 63 is disposed at a position facing the irradiation object 50 in a state where the window member 63 c is directed in the direction in which the irradiation object 50 is positioned in the material container 13. The attenuation filter 61 is disposed between the X-ray detection unit 63 and the irradiation object 50.
  後述するように、照射対象物50から放出されたX線の強度は、X線分析の場合に照射対象物から放出されるX線の強度よりも二桁以上大きく、仮にX線が減衰フィルタ61で減衰されずにX線検知部63に直接入射すると、連続して生成された二つの電気信号が重なるパイルアップ現象が起きて、X線のエネルギーと強度との関係を正確に測定することができない。一方、本発明では減衰フィルタ61で減衰されたX線がX線検知部63に入射するため、パイルアップ現象は起きずに、X線のエネルギーと強度との関係が正確に測定されるようになっている。 As will be described later, the intensity of the X-rays emitted from the irradiation object 50 is two or more orders of magnitude greater than the intensity of the X-rays emitted from the irradiation object in the case of X-ray analysis. When the light directly enters the X-ray detection unit 63 without being attenuated, a pile-up phenomenon occurs in which two electric signals generated in succession overlap each other, and the relationship between the X-ray energy and intensity can be measured accurately. Can not. On the other hand, in the present invention, since the X-ray attenuated by the attenuation filter 61 is incident on the X-ray detection unit 63, the pile-up phenomenon does not occur and the relationship between the X-ray energy and intensity is accurately measured. It has become.
 X線測定部60は、照射対象物50から放出されて減衰フィルタ61に到達する蒸気を減衰させる防着フィルタ65を有している。
 図4は防着フィルタ65の平面図である。
The X-ray measurement unit 60 includes an adhesion filter 65 that attenuates the vapor emitted from the irradiation object 50 and reaching the attenuation filter 61.
FIG. 4 is a plan view of the anti-adhesion filter 65.
 防着フィルタ65はここでは蒸気の粒子を遮蔽する材質であり、半径が減衰フィルタの直径より大きい円板状に形成され、蒸気が通過できる帯状の開口部66が防着フィルタ65の中心から放射方向に延びるように設けられている。
 図1を参照し、防着フィルタ65は、開口部66が減衰フィルタ61と対向された状態で、減衰フィルタ61と材料容器13内の照射対象物50との間に配置されている。
Here, the anti-adhesion filter 65 is made of a material that shields vapor particles, is formed in a disk shape whose radius is larger than the diameter of the attenuation filter, and a band-like opening 66 through which the vapor can pass radiates from the center of the anti-adhesion filter 65. It is provided to extend in the direction.
With reference to FIG. 1, the anti-adhesion filter 65 is disposed between the attenuation filter 61 and the irradiation object 50 in the material container 13 with the opening 66 facing the attenuation filter 61.
 図3を参照し、防着フィルタ65の中心には防着フィルタ65の表面に対して直角に回転軸67aが固定され、回転軸67aには回転軸回転装置67bが接続されている。回転軸回転装置67bはモーターであり、回転軸67aに動力を伝達して、防着フィルタ65を回転軸67aと一緒に回転軸67aの中心軸線を中心に回転できるようになっている。 Referring to FIG. 3, a rotation shaft 67a is fixed at the center of the deposition filter 65 at a right angle to the surface of the deposition filter 65, and a rotation shaft rotating device 67b is connected to the rotation shaft 67a. The rotating shaft rotating device 67b is a motor, and transmits power to the rotating shaft 67a so that the anti-adhesion filter 65 can be rotated around the central axis of the rotating shaft 67a together with the rotating shaft 67a.
 回転軸回転装置67bにより防着フィルタ65を回転軸67aの中心軸線を中心に回転させると、防着フィルタ65に入射するX線と蒸気は、防着フィルタ65の開口部66以外の遮蔽部分が減衰フィルタ61と対面するときには遮蔽部分で遮蔽されて減衰フィルタ61に到達せず、開口部66が減衰フィルタ61と対面するときに開口部66を通過して減衰フィルタ61に到達するようになっている。従って防着フィルタ65は、減衰フィルタ61にX線を到達させながら、減衰フィルタ61に到達する蒸気を減衰させることができる。 When the deposition filter 65 is rotated about the central axis of the rotation shaft 67a by the rotation shaft rotating device 67b, the X-ray and the vapor incident on the deposition filter 65 are blocked by the shielding portion other than the opening 66 of the deposition filter 65. When facing the attenuation filter 61, it is shielded by the shielding portion and does not reach the attenuation filter 61. When the opening 66 faces the attenuation filter 61, it passes through the opening 66 and reaches the attenuation filter 61. Yes. Therefore, the anti-adhesion filter 65 can attenuate the vapor reaching the attenuation filter 61 while allowing the X-rays to reach the attenuation filter 61.
<第一例の真空処理装置を用いた真空処理方法>
 第一例の真空処理装置10aを用いた真空処理方法を、シリコンを主成分とする溶解材料の真空溶解精製を例に説明する。
<Vacuum processing method using the vacuum processing apparatus of the first example>
A vacuum processing method using the vacuum processing apparatus 10a of the first example will be described by taking vacuum dissolution purification of a dissolved material mainly composed of silicon as an example.
(準備工程)
 照射対象物50はシリコンを主成分とする溶解材料である。電子線照射を停止する際に用いる溶解材料中の不純物濃度のしきい値をあらかじめ定めておく。また、計算機69に主成分の元素がシリコンであることを設定しておく。
 また、X線測定装置62が測定するX線のエネルギー(又は波長)の範囲を、電子線のエネルギー以下の範囲にあらかじめ定めておく。
(Preparation process)
The irradiation object 50 is a melting material mainly composed of silicon. A threshold value of the impurity concentration in the dissolved material used when stopping the electron beam irradiation is determined in advance. Further, it is set in the computer 69 that the main element is silicon.
Further, the range of X-ray energy (or wavelength) measured by the X-ray measuring device 62 is set in advance to a range equal to or lower than the energy of the electron beam.
  図1を参照し、真空排気装置12により真空槽11内を真空排気して真空雰囲気を形成する。以後、真空排気を継続して、真空槽11内の真空雰囲気を維持する。
 真空槽11内の真空雰囲気を維持しながら、材料搬入装置14により真空槽11内に照射対象物50を搬入し、材料容器13内に配置する。
Referring to FIG. 1, the vacuum chamber 11 is evacuated by a vacuum evacuation device 12 to form a vacuum atmosphere. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained.
While maintaining the vacuum atmosphere in the vacuum chamber 11, the irradiation object 50 is carried into the vacuum chamber 11 by the material carry-in device 14 and placed in the material container 13.
 回転軸回転装置67bにより防着フィルタ65を回転軸67aの中心軸線を中心に回転させておく。X線検知部用電源64からX線検知部63の分光部63bに電力を供給しておく。 The anti-adhesion filter 65 is rotated around the central axis of the rotary shaft 67a by the rotary shaft rotating device 67b. Power is supplied from the X-ray detection unit power supply 64 to the spectroscopic unit 63b of the X-ray detection unit 63 in advance.
(真空溶解精製工程)
 真空槽11と材料容器13とを接地電位に置いておく。
 図2を参照し、真空槽11内が真空排気されると、電子銃20の筐体21の内側も真空排気される。
 真空槽11内の圧力が10-2Pa台まで下がったら、電子銃用真空排気装置271、272によりガン室23内と中間室25内の真空排気を開始する。
(Vacuum dissolution purification process)
The vacuum chamber 11 and the material container 13 are placed at the ground potential.
Referring to FIG. 2, when the inside of the vacuum chamber 11 is evacuated, the inside of the housing 21 of the electron gun 20 is also evacuated.
When the pressure in the vacuum chamber 11 is lowered to the 10 −2 Pa level, evacuation in the gun chamber 23 and the intermediate chamber 25 is started by the electron gun vacuum exhaust devices 27 1 and 27 2 .
 次いで、仕切バルブ39を開く。中間室25が設けられて作動排気構造になっており、以後、真空槽11内の圧力が電子線照射等により1×10-1Pa程度まで上昇しても、ガン室23内の圧力を5×10-3Pa以下に保つことができる。このことにより、ガン室23内での異常放電を防ぎ、フィラメント31とカソード電極32の焼損を防ぐことができる。 Next, the gate valve 39 is opened. The intermediate chamber 25 is provided and has an operating exhaust structure. Thereafter, even if the pressure in the vacuum chamber 11 rises to about 1 × 10 −1 Pa by electron beam irradiation or the like, the pressure in the gun chamber 23 is reduced to 5 ×. It can be kept at 10-3 Pa or less. Thereby, abnormal discharge in the gun chamber 23 can be prevented, and burning of the filament 31 and the cathode electrode 32 can be prevented.
 筐体21とアノード電極34を接地電位に置いておく。
 フィラメント31に対してカソード電極32が正電位になるようにフィラメント31とカソード電極32との間に直流電圧を印加しておく。さらに、アノード電極34に対してカソード電極32が負電位(ここでは-40kV)になるようにカソード電極32とアノード電極34の間に直流電圧を印加しておく。また、第一、第二のレンズコイル36、37に電流を流して、接続路24と放出路26の内側にそれぞれ磁界を形成しておき、揺動コイル38に電流を流して銃口22の内側に磁界を形成しておく。
The casing 21 and the anode electrode 34 are placed at the ground potential.
A DC voltage is applied between the filament 31 and the cathode electrode 32 so that the cathode electrode 32 has a positive potential with respect to the filament 31. Further, a DC voltage is applied between the cathode electrode 32 and the anode electrode 34 so that the cathode electrode 32 becomes a negative potential (−40 kV in this case) with respect to the anode electrode 34. Further, a current is passed through the first and second lens coils 36 and 37 to form magnetic fields inside the connection path 24 and the discharge path 26, respectively, and a current is passed through the rocking coil 38 and the inside of the muzzle 22. A magnetic field is formed in
 中間室25内の圧力が10-3Pa台、ガン室23内の圧力が10-4Pa台になったら、フィラメント電源41から電流を流してフィラメント31を加熱する。フィラメント31が高温(ここでは2800K)になると、フィラメント31から熱電子が放出される。 When the pressure in the intermediate chamber 25 reaches the 10 −3 Pa level and the pressure in the gun chamber 23 reaches the 10 −4 Pa level, a current is supplied from the filament power source 41 to heat the filament 31. When the filament 31 reaches a high temperature (here, 2800 K), thermoelectrons are emitted from the filament 31.
 放出された熱電子はカソード電極32に向かって加速され、カソード電極32に衝突して、カソード電極32を加熱する。
 カソード電極32が加熱されると、カソード電極32から熱電子が放出される。カソード電極32の温度が高いほど熱電子の発生量は多くなる。カソード電極32の温度はカソード加熱電源42により制御され、従って、熱電子発生量はカソード加熱電源42により制御される。
 ウェーネルト電極33はカソード電極32と同電位であり、カソード電極32からの電子の発散を抑え、アノード電極34へ導く役割を果たす。
The emitted thermoelectrons are accelerated toward the cathode electrode 32 and collide with the cathode electrode 32 to heat the cathode electrode 32.
When the cathode electrode 32 is heated, thermoelectrons are emitted from the cathode electrode 32. The higher the temperature of the cathode electrode 32, the greater the amount of thermoelectrons generated. The temperature of the cathode electrode 32 is controlled by the cathode heating power source 42, and thus the amount of thermoelectrons generated is controlled by the cathode heating power source 42.
The Wehnelt electrode 33 has the same potential as the cathode electrode 32, and serves to suppress the divergence of electrons from the cathode electrode 32 and lead it to the anode electrode 34.
 アノード電極34の内側を通過した電子は、第一のレンズコイル36が形成した磁界で収束されて、仕切バルブ39の開口を通り、中間室25を通過した後、第二のレンズコイル37が形成した磁界で再度収束され、次いで、揺動コイル38が形成した磁界で軌道補正を加えられて、銃口22から真空槽11内に放出される。 The electrons that have passed through the anode electrode 34 are converged by the magnetic field formed by the first lens coil 36, pass through the opening of the partition valve 39, pass through the intermediate chamber 25, and then formed by the second lens coil 37. Then, the light is converged again by the magnetic field, and then the trajectory is corrected by the magnetic field formed by the oscillating coil 38 and is released from the muzzle 22 into the vacuum chamber 11.
 このようにカソード電極32から生成された電子は電子銃20の筐体21内部で線状に整形されて輸送されるので、通常電子線と呼ばれる。
 上述のように電子銃20の筐体21とアノード電極34と真空槽11と材料容器13はいずれも接地電位に置かれており、材料容器13を介して照射対象物50も接地電位に置かれている。
Thus, the electrons generated from the cathode electrode 32 are linearly shaped and transported inside the casing 21 of the electron gun 20 and are therefore usually called electron beams.
As described above, the casing 21, the anode electrode 34, the vacuum chamber 11 and the material container 13 of the electron gun 20 are all placed at the ground potential, and the irradiation object 50 is also placed at the ground potential via the material container 13. ing.
 電子線は最初にカソード電極32の電位(ここでは40kV)とアノード電極34の電位(0V)との差(40kV)で加速され、40keVのエネルギーを獲得する。その後は接地電位の空間(すなわち電界フリーの空間)を通り、図1を参照し、40keVのエネルギーで接地電位に置かれた照射対象物50に照射され、照射対象物50は加熱される。 The electron beam is first accelerated by the difference (40 kV) between the potential of the cathode electrode 32 (here, 40 kV) and the potential of the anode electrode 34 (0 V), and obtains 40 keV energy. Thereafter, it passes through a ground potential space (that is, an electric field free space), and with reference to FIG. 1, the irradiation object 50 placed at the ground potential is irradiated with energy of 40 keV, and the irradiation object 50 is heated.
 本実施形態においては、電子線のパワーは電子線の電流で決まる。電流が1Aの場合は、40kV×1A=40kWとなる。
 電子線を照射された照射対象物50からは電子線のエネルギー以下のエネルギーのX線が放出される。照射対象物50に照射される電子線のパワーは、X線分析の分野で通常用いられる電子線のパワーより大きく、照射対象物50から放出されるX線の強度はX線分析の分野で通常測定するX線の強度よりも二桁以上大きい。
In the present embodiment, the power of the electron beam is determined by the current of the electron beam. When the current is 1 A, 40 kV × 1 A = 40 kW.
X-rays having energy lower than that of the electron beam are emitted from the irradiation object 50 irradiated with the electron beam. The power of the electron beam irradiated to the irradiation object 50 is larger than the power of the electron beam normally used in the field of X-ray analysis, and the intensity of the X-ray emitted from the irradiation object 50 is normal in the field of X-ray analysis. Two or more orders of magnitude greater than the intensity of the X-ray to be measured.
 照射対象物50から放出されたX線は防着フィルタ65に入射する。防着フィルタ65は回転軸回転装置67bにより回転軸67aの中心軸線を中心に回転されており、開口部66が減衰フィルタ61と対面するときに、開口部66を通過したX線が減衰フィルタ61に入射する。
 減衰フィルタ61に入射したX線は、減衰フィルタ61の内部で吸収又は反射されて、減衰される。
X-rays emitted from the irradiation object 50 enter the deposition prevention filter 65. The anti-adhesion filter 65 is rotated about the central axis of the rotation shaft 67a by the rotation shaft rotating device 67b. When the opening 66 faces the attenuation filter 61, the X-rays that have passed through the opening 66 are attenuated filter 61. Is incident on.
The X-rays incident on the attenuation filter 61 are absorbed or reflected inside the attenuation filter 61 and attenuated.
 減衰フィルタ61を通過したX線は、X線検知部63の窓部材63cを通って分光部63bに入射する。分光部63bは入射したX線のエネルギー(又は波長)に応じた電気信号を生成し、記憶装置68は分光部63bが生成した電気信号を受け取って、X線のエネルギー(又は波長)毎に電気信号の回数を記憶する。このようにして、X線測定装置62では、減衰フィルタ61を通過したX線のエネルギーと強度との関係が測定される。
 計算機69は、記憶装置68の記憶内容を読み出し、記憶内容に基づいて、照射対象物50に含まれる主成分(シリコン)以外の元素(すなわち不純物)の濃度を求める。
The X-rays that have passed through the attenuation filter 61 enter the spectroscopic unit 63b through the window member 63c of the X-ray detection unit 63. The spectroscopic unit 63b generates an electric signal corresponding to the energy (or wavelength) of the incident X-ray, and the storage device 68 receives the electric signal generated by the spectroscopic unit 63b and generates an electric signal for each X-ray energy (or wavelength). Stores the number of signals. In this way, the X-ray measurement device 62 measures the relationship between the energy and intensity of X-rays that have passed through the attenuation filter 61.
The computer 69 reads the stored contents of the storage device 68 and obtains the concentration of an element (that is, impurity) other than the main component (silicon) contained in the irradiation object 50 based on the stored contents.
 照射対象物50に電子線を照射して加熱しながら、照射対象物50に含まれる不純物の濃度を知ることができるので、不純物の濃度を知るために従来のように電子線の照射を停止し、真空槽11内を大気に開放する必要がなく、生産時間を大幅に短縮できる。 While the irradiation object 50 is irradiated with an electron beam and heated, the concentration of impurities contained in the irradiation object 50 can be known. Therefore, in order to know the concentration of impurities, the irradiation of the electron beam is stopped as in the prior art. There is no need to open the vacuum chamber 11 to the atmosphere, and production time can be greatly reduced.
 電子線が照射されて加熱された照射対象物50は、溶解し、照射対象物50に含有された不純物が蒸発して、照射対象物50に含まれる不純物の濃度が減少する。
 照射対象物50と減衰フィルタ61との間には防着フィルタ65が配置されており、減衰フィルタ61と防着フィルタ65のうち開口部66以外の遮蔽部分が対面するときには蒸気は遮蔽部分で遮蔽されて減衰フィルタ61に到達せず、減衰フィルタ61と開口部66が対面するときに開口部66を通過した蒸気が減衰フィルタ61に到達する。
The irradiation object 50 irradiated with the electron beam and heated is melted, the impurities contained in the irradiation object 50 are evaporated, and the concentration of the impurities contained in the irradiation object 50 is reduced.
An anti-adhesion filter 65 is disposed between the irradiation object 50 and the attenuation filter 61. When the shielding part other than the opening 66 of the attenuation filter 61 and the anti-adhesion filter 65 faces each other, the vapor is shielded by the shielding part. Thus, the vapor does not reach the attenuation filter 61 and the vapor that has passed through the opening 66 reaches the attenuation filter 61 when the attenuation filter 61 and the opening 66 face each other.
 蒸気が減衰フィルタ61に付着して堆積すると、減衰フィルタ61のX線減衰率が増加し、X線測定装置62での測定精度の低下に繋がるのだが、ここでは防着フィルタ65により減衰フィルタ61に到達する蒸気は減衰されており、減衰フィルタ61に蒸気が付着堆積することが抑制されている。 If the vapor adheres to and accumulates on the attenuation filter 61, the X-ray attenuation rate of the attenuation filter 61 increases, leading to a decrease in measurement accuracy in the X-ray measuring device 62. The vapor reaching the pressure is attenuated, and the vapor is prevented from adhering to and depositing on the attenuation filter 61.
 真空槽11内は真空排気されており、不純物の蒸気は真空排気装置12により真空排気されて、真空槽11内から除去される。
 計算機69には制御装置17が接続されている。制御装置17は、計算機69で求められた不純物濃度が所定のしきい値以下になったら、電子銃電源40に制御信号を送って、電子銃20からの電子線の照射を停止させる。
The vacuum chamber 11 is evacuated, and the impurity vapor is evacuated by the vacuum evacuation device 12 and removed from the vacuum chamber 11.
A controller 17 is connected to the computer 69. When the impurity concentration obtained by the computer 69 becomes a predetermined threshold value or less, the control device 17 sends a control signal to the electron gun power supply 40 to stop the irradiation of the electron beam from the electron gun 20.
 このようにして、照射対象物50に電子線を照射しながら照射対象物50に含まれる不純物の濃度を確認でき、的確なタイミングで電子線の照射を停止することができる。そのため、品質の安定した製品を生産できる。 In this manner, the concentration of impurities contained in the irradiation object 50 can be confirmed while irradiating the irradiation object 50 with an electron beam, and the irradiation of the electron beam can be stopped at an appropriate timing. Therefore, products with stable quality can be produced.
(溶解材料回収工程)
 真空槽11内には鋳型容器19が配置されており、材料容器13には材料容器13を傾斜させる傾斜機構18が設けられている。
(Dissolved material recovery process)
A mold container 19 is disposed in the vacuum chamber 11, and an inclination mechanism 18 for inclining the material container 13 is provided in the material container 13.
 電子線の照射を停止した後、傾斜機構18により材料容器13を傾斜させて、材料容器13内の精製済みの照射対象物50を鋳型容器19に入れる。
 次いで、傾斜機構18により材料容器13の向きを元に戻して、材料搬入装置14により材料容器13内に未精製の照射対象物50を配置し、上述の真空溶解精製工程を繰り返す。
After stopping the irradiation of the electron beam, the material container 13 is tilted by the tilt mechanism 18, and the purified irradiation object 50 in the material container 13 is put into the mold container 19.
Next, the orientation of the material container 13 is returned to the original by the tilt mechanism 18, the unpurified irradiation object 50 is arranged in the material container 13 by the material carry-in device 14, and the above-described vacuum dissolution and purification process is repeated.
 真空溶解精製工程と溶解材料回収工程とを所定回数繰り返したら、真空槽11内を大気に開放し、鋳型容器19から精製済みの照射対象物を取り出した後、真空槽11内を真空排気して真空雰囲気を形成し、真空溶解精製工程を再開する。 After the vacuum dissolution and purification step and the dissolved material recovery step are repeated a predetermined number of times, the inside of the vacuum chamber 11 is opened to the atmosphere, the purified irradiation object is taken out from the mold container 19, and the vacuum chamber 11 is evacuated. A vacuum atmosphere is formed and the vacuum dissolution purification process is resumed.
 上述の真空溶解精製では、照射対象物50にシリコンを主成分とする溶解材料を用いて説明したが、主成分が分かっている溶解材料であれば照射対象物50はこれに限定されず、チタン、ステンレス鋼、タンタル、タングステンなどを主成分とする溶解材料を照射対象物50に用いてもよい。 In the above-described vacuum melting and refining, the irradiation object 50 has been described using a melting material containing silicon as a main component. However, the irradiation object 50 is not limited to this as long as the main component is a dissolving material, and titanium is not limited thereto. Alternatively, a melting material mainly composed of stainless steel, tantalum, tungsten, or the like may be used for the irradiation object 50.
 なお、照射対象物50の種類によって電子線のパワーを調整する。シリコン、チタン、ステンレス鋼に比べて高融点金属であるタンタルやタングステンを主成分とする溶解材料を溶解するためには、より大きなパワーの電子線を照射する必要がある。 Note that the power of the electron beam is adjusted according to the type of the irradiation object 50. Compared to silicon, titanium, and stainless steel, it is necessary to irradiate a higher power electron beam in order to dissolve a melting material mainly composed of tantalum or tungsten which is a high melting point metal.
<第二例の真空処理装置の構造>
 本発明の第二例の真空処理装置の構造を説明する。
 図5は第二例の真空処理装置10bの内部構成図である。第二例の真空処理装置10bの構造のうち、第一例の真空処理装置10aの構造と同じ部分には同じ符号を付して示し、説明を省略する。
<Structure of vacuum processing apparatus of second example>
The structure of the vacuum processing apparatus of the second example of the present invention will be described.
FIG. 5 is an internal configuration diagram of the vacuum processing apparatus 10b of the second example. Of the structure of the vacuum processing apparatus 10b of the second example, the same parts as those of the structure of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals and description thereof is omitted.
 第二例の真空処理装置10bでは、第一例の真空処理装置10aの防着フィルタ65の代わりに、別構造の防着フィルタ65’を有している。
 防着フィルタ65’は蒸気の粒子を遮蔽し、かつX線を透過する物質であり、ここでは膜厚が1μm~10μmのプラスチックフィルムが用いられる。防着フィルタ65’は幅が減衰フィルタ61の直径より大きい帯形状に形成され、長手方向の一端を中心にロール状に巻き回されて構成されている。
The vacuum processing apparatus 10b of the second example has an anti-adhesion filter 65 ′ having another structure instead of the anti-adhesion filter 65 of the vacuum processing apparatus 10a of the first example.
The anti-adhesion filter 65 ′ is a substance that shields vapor particles and transmits X-rays. Here, a plastic film having a thickness of 1 μm to 10 μm is used. The anti-adhesion filter 65 ′ is formed in a band shape whose width is larger than the diameter of the attenuation filter 61, and is wound around in a roll shape around one end in the longitudinal direction.
 防着フィルタ65’のロールの中心には従動軸68bが挿入され、ロールの外周から引き出された防着フィルタ65’の長手方向の端部には駆動軸68aが固定されている。
 駆動軸68aと従動軸68bは、減衰フィルタ61と対面する位置を間に挟んで互いに逆側に、互いに平行に対向して配置され、駆動軸68aには駆動軸68aを駆動軸68aの中心軸線を中心に回転させる駆動軸回転装置68cが接続されている。
A driven shaft 68b is inserted into the center of the roll of the anti-adhesion filter 65 ', and a drive shaft 68a is fixed to the longitudinal end of the anti-adhesion filter 65' drawn out from the outer periphery of the roll.
The drive shaft 68a and the driven shaft 68b are arranged opposite to each other in parallel with each other across the position facing the attenuation filter 61. The drive shaft 68a is connected to the drive shaft 68a and the central axis of the drive shaft 68a. A drive shaft rotating device 68c that rotates around is connected.
 駆動軸回転装置68cにより駆動軸68aを回転させると、防着フィルタ65’は駆動軸68aに引っ張られて巻き取られ、その力によって従動軸68bが回転してロールから防着フィルタ65’が繰り出される。このとき従動軸68bには駆動軸68aによる引っ張りの力の回転力とは逆向きの力が発生しており、その二力によって駆動軸68aと従動軸68bとの間の防着フィルタ65’は平面状に張られるようになっている。 When the drive shaft 68a is rotated by the drive shaft rotating device 68c, the anti-adhesion filter 65 'is pulled by the drive shaft 68a and taken up, and the driven shaft 68b is rotated by the force and the anti-adhesion filter 65' is fed out from the roll. It is. At this time, a force opposite to the rotational force of the pulling force generated by the drive shaft 68a is generated on the driven shaft 68b, and the anti-adhesion filter 65 ′ between the drive shaft 68a and the driven shaft 68b is generated by the two forces. It is designed to be stretched flat.
 第二例の真空処理装置10bでは、第一例の真空処理装置10aとは異なり、防着フィルタ65’に入射する蒸気は防着フィルタ65’に付着して遮蔽され、減衰フィルタ61には蒸気が到達しないようになっている。 In the vacuum processing apparatus 10b of the second example, unlike the vacuum processing apparatus 10a of the first example, the vapor incident on the deposition preventing filter 65 ′ is attached to and shielded by the deposition preventing filter 65 ′, and the damping filter 61 Is not to reach.
 一方、防着フィルタ65’に入射するX線は防着フィルタ65’を透過して減衰フィルタ61に到達する。第一例の真空処理装置10aの防着フィルタ65に比べて多くのX線を減衰フィルタ61に到達させることができ、より高感度なX線検出が可能となる。 On the other hand, the X-rays incident on the deposition prevention filter 65 ′ pass through the deposition prevention filter 65 ′ and reach the attenuation filter 61. More X-rays can reach the attenuation filter 61 than the deposition filter 65 of the vacuum processing apparatus 10a of the first example, and X-ray detection with higher sensitivity is possible.
 防着フィルタ65’のうち減衰フィルタ61と対面する部分に蒸気が付着して堆積すると、X線は付着膜で減衰されることになるが、蒸気が付着した部分は駆動軸68aに巻き取られるので、減衰フィルタ61と対面する部分に蒸気が付着堆積し続けることはなく、電子線照射を継続しても防着フィルタ65’は一定の割合でX線を透過して減衰フィルタ61に到達させることができる。
 第二例の真空処理装置10bを用いた真空処理方法は、第一例の真空処理装置10aを用いた真空処理方法と同様であり、説明を省略する。
When vapor adheres to and accumulates on the portion of the anti-adhesion filter 65 'facing the attenuation filter 61, the X-rays are attenuated by the adhesion film, but the portion to which the vapor adheres is wound around the drive shaft 68a. Therefore, vapor does not continue to adhere to and accumulate on the part facing the attenuation filter 61, and even if the electron beam irradiation is continued, the deposition prevention filter 65 ′ transmits X-rays at a constant rate and reaches the attenuation filter 61. be able to.
The vacuum processing method using the vacuum processing apparatus 10b of the second example is the same as the vacuum processing method using the vacuum processing apparatus 10a of the first example, and description thereof is omitted.
<第三例の真空処理装置の構造>
 本発明の第三例の真空処理装置の構造を説明する。
 図6は第三例の真空処理装置10cの内部構成図である。第三例の真空処理装置10cの構造のうち、第一例の真空処理装置10aの構造と同じ部分には同じ符号を付して示し、説明を省略する。
<Structure of the vacuum processing apparatus of the third example>
The structure of the vacuum processing apparatus of the third example of the present invention will be described.
FIG. 6 is an internal configuration diagram of the vacuum processing apparatus 10c of the third example. Of the structure of the vacuum processing apparatus 10c of the third example, the same parts as those of the structure of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals and description thereof is omitted.
 第三例の真空処理装置10cでは、第一例の真空処理装置10aの防着フィルタ65が省略され、減衰フィルタ61とX線検知部63は、材料容器13の横方向(水平方向)に材料容器13からできるだけ離れて配置されている。 In the vacuum processing apparatus 10c of the third example, the deposition prevention filter 65 of the vacuum processing apparatus 10a of the first example is omitted, and the attenuation filter 61 and the X-ray detection unit 63 are made of material in the lateral direction (horizontal direction) of the material container 13. It is arranged as far as possible from the container 13.
 一般に蒸気が到達する量は、照射対象物50からの距離の二乗に反比例する。また蒸気の角度分布は照射対象物50の真上方向を0度とし、そこからの角度をΦとすると、cosnΦに比例する(nは4~8の値を取る)。従って、蒸気が横方向へ放出される量はcosn90°=0となる。また、真空槽11の壁面に到達する蒸気は、壁面に付着して堆積するので、壁面で反射することはほとんど無い。
 従って、第三例の真空処理装置10cでは、防着フィルタ65を用いなくても、減衰フィルタ61に蒸気はほとんど到達しないようになっている。
In general, the amount of vapor reached is inversely proportional to the square of the distance from the irradiation object 50. Further, the vapor angle distribution is proportional to cos n Φ where the direction directly above the irradiation object 50 is 0 degree and the angle from the angle is Φ (n takes a value of 4 to 8). Therefore, the amount of steam released in the lateral direction is cos n 90 ° = 0. Moreover, since the vapor | steam which reaches | attains the wall surface of the vacuum chamber 11 adheres to a wall surface and accumulates, it hardly reflects on a wall surface.
Therefore, in the vacuum processing apparatus 10c of the third example, the vapor hardly reaches the attenuation filter 61 without using the deposition prevention filter 65.
 一方、X線は真空槽11の壁面や他の構造部材(すなわち電子銃20の筐体21、材料搬入装置14、材料容器13)の表面で反射する割合が大きいので、照射対象物50から放出されたX線は減衰フィルタ61に入射し、減衰フィルタ61を通過したX線はX線測定装置62で測定される。 On the other hand, X-rays are emitted from the irradiation object 50 because the ratio of reflection on the walls of the vacuum chamber 11 and other structural members (that is, the casing 21 of the electron gun 20, the material carry-in device 14, and the material container 13) is large. The X-rays thus made enter the attenuation filter 61, and the X-rays that have passed through the attenuation filter 61 are measured by the X-ray measuring device 62.
 第三例の真空処理装置10cでは、第一例の真空処理装置10aに比べて防着フィルタ65を省略できるので、コストダウンになる。
 第三例の真空処理装置10cを用いた真空処理方法は、第一例の真空処理装置10aを用いた真空処理方法と同様であり、説明を省略する。
In the vacuum processing apparatus 10c of the third example, the deposition preventing filter 65 can be omitted as compared with the vacuum processing apparatus 10a of the first example, so that the cost is reduced.
The vacuum processing method using the vacuum processing apparatus 10c of the third example is the same as the vacuum processing method using the vacuum processing apparatus 10a of the first example, and description thereof is omitted.
<第四例の真空処理装置の構造>
 本発明の第四例の真空処理装置の構造を説明する。
 図7は第四例の真空処理装置10dの内部構成図である。第四例の真空処理装置10dの構造のうち、第一例の真空処理装置10aの構造と同じ部分には同じ符号を付して示し、説明を省略する。
<Structure of the vacuum processing apparatus of the fourth example>
The structure of the vacuum processing apparatus of the fourth example of the present invention will be described.
FIG. 7 is an internal configuration diagram of the vacuum processing apparatus 10d of the fourth example. Of the structure of the vacuum processing apparatus 10d of the fourth example, the same parts as those of the vacuum processing apparatus 10a of the first example are denoted by the same reference numerals, and description thereof is omitted.
 第四例の真空処理装置10dでは、第一例の真空処理装置10aと比べて、成膜対象物55を保持する成膜対象物保持部70が追加されている。
 本実施例では成膜対象物55は帯形状のフィルムであり、長手方向の一端を中心にロール状に巻き回されて構成されている。ここでは幅が600~1200mm、厚さが2~3μm、1ロールの長さが約1600mであるPET、PP、ポリミド等のフィルムが用いられる。
In the vacuum processing apparatus 10d of the fourth example, a film formation target holding unit 70 that holds the film formation target 55 is added as compared with the vacuum processing apparatus 10a of the first example.
In this embodiment, the film formation target 55 is a band-shaped film, and is configured to be wound in a roll shape around one end in the longitudinal direction. Here, films such as PET, PP, and polyimide having a width of 600 to 1200 mm, a thickness of 2 to 3 μm, and a roll length of about 1600 m are used.
 成膜対象物55に入射する蒸気は成膜対象物55に付着して薄膜を形成し、成膜対象物55に入射するX線は成膜対象物55を透過するようになっている。
 成膜対象物保持部70は、真空槽11内に配置された巻取軸71と、巻取軸71を巻取軸71の中心軸線を中心に回転させる巻取軸回転装置73とを有している。
The vapor incident on the film formation target 55 adheres to the film formation target 55 to form a thin film, and X-rays incident on the film formation target 55 are transmitted through the film formation target 55.
The film formation target holding unit 70 includes a winding shaft 71 disposed in the vacuum chamber 11 and a winding shaft rotating device 73 that rotates the winding shaft 71 about the central axis of the winding shaft 71. ing.
 成膜対象物55からなるロールは真空槽11内に配置され、ロールの中心にはロール保持軸72が挿入されている。
 巻取軸71とロール保持軸72は、照射対象物50から放出された蒸気の飛行経路を間に挟んで互いに逆側に、互いに平行に対面して配置されている。ロール保持軸72に保持されたロールの外周から引き出された成膜対象物55の長手方向の端部は、蒸気の飛行経路を横断した状態で、巻取軸71に巻き付けられて固定されている。
A roll made of the film formation target 55 is disposed in the vacuum chamber 11, and a roll holding shaft 72 is inserted in the center of the roll.
The winding shaft 71 and the roll holding shaft 72 are arranged opposite to each other in parallel and facing each other across the flight path of the steam emitted from the irradiation object 50. The longitudinal end of the film formation target 55 drawn from the outer periphery of the roll held by the roll holding shaft 72 is wound around and fixed to the take-up shaft 71 in a state of crossing the flight path of the steam. .
 巻取軸回転装置73により巻取軸71を回転させると、成膜対象物55は巻取軸71に引っ張られて巻き取られ、その力によってロール保持軸72が回転してロールから成膜対象物55が繰り出される。このときロール保持軸72には巻取軸71による引っ張りの力の回転力とは逆向きの力が発生しており、その二力によって巻取軸71とロール保持軸72との間の成膜対象物55は平面状に張られるようになっている。 When the take-up shaft 71 is rotated by the take-up shaft rotating device 73, the film formation target 55 is pulled and taken up by the take-up shaft 71, and the roll holding shaft 72 is rotated by the force and the film formation target is removed from the roll. Object 55 is paid out. At this time, a force opposite to the rotational force of the pulling force generated by the take-up shaft 71 is generated on the roll holding shaft 72, and the film is formed between the take-up shaft 71 and the roll holding shaft 72 by the two forces. The object 55 is stretched flat.
 成膜対象物55と材料容器13との間には、蒸気を遮蔽する防着板75が成膜対象物55のうち材料容器13側に露出した表面を覆うように配置されている。防着板75の材質はここではモリブデンであり、防着板75のうち材料容器13内の照射対象物50と対面する位置にはX線と蒸気とを通過させる開口76が設けられている。
 材料容器13内の照射対象物50から放出された蒸気の一部は防着板75の開口76を通過して、成膜対象物55のうち開口76から露出する部分に到達して付着する。
Between the film formation target 55 and the material container 13, a deposition preventing plate 75 that shields vapor is disposed so as to cover the surface of the film formation target 55 exposed on the material container 13 side. The material of the deposition preventive plate 75 is molybdenum here, and an opening 76 that allows X-rays and steam to pass therethrough is provided at a position of the deposition preventive plate 75 that faces the irradiation target 50 in the material container 13.
A part of the vapor released from the irradiation object 50 in the material container 13 passes through the opening 76 of the deposition preventing plate 75 and reaches and adheres to the part of the film formation object 55 exposed from the opening 76.
 X線測定装置62は、窓部材63cを材料容器13内の照射対象物50の方向に向けた状態で、成膜対象物55のうち開口76と対面する部分から見て、照射対象物50とは逆側に配置されており、減衰フィルタ61はX線測定装置62と成膜対象物55との間に窓部材63cと対向して配置されている。 The X-ray measurement apparatus 62 is configured so that the window member 63c faces the irradiation object 50 in the material container 13 and the irradiation object 50 as viewed from the portion facing the opening 76 in the film formation object 55. Is disposed on the opposite side, and the attenuation filter 61 is disposed between the X-ray measurement apparatus 62 and the film formation target 55 so as to face the window member 63c.
 すなわち、減衰フィルタ61は成膜対象物55から見て照射対象物50とは逆側に配置されている。言い換えると、成膜対象物55は照射対象物50と減衰フィルタ61との間に配置されている。従って、防着板75の開口76を通過した蒸気は成膜対象物55に付着して遮蔽され、減衰フィルタ61に蒸気は到達しないようになっている。
 従って、本実施例では、第一例の真空処理装置10aと比べて、防着フィルタ65が省略されている。
That is, the attenuation filter 61 is disposed on the side opposite to the irradiation object 50 when viewed from the film formation object 55. In other words, the film formation target 55 is disposed between the irradiation target 50 and the attenuation filter 61. Therefore, the vapor that has passed through the opening 76 of the deposition preventing plate 75 adheres to the film formation target 55 and is blocked, and the vapor does not reach the attenuation filter 61.
Therefore, in this embodiment, the anti-adhesion filter 65 is omitted as compared with the vacuum processing apparatus 10a of the first example.
 なお、成膜対象物55は帯形状のフィルムに限定されず板でもよい。減衰フィルタ61に蒸気が到達する可能性がある場合には、第一例、第二例の真空処理装置10a、10bと同様に防着フィルタ65、65’を追加してもよいし、第三例の真空処理装置と同様に減衰フィルタ61とX線検知部63を材料容器13の横方向(水平方向)に材料容器13からできるだけ離して配置してもよい。 The film formation target 55 is not limited to a belt-shaped film but may be a plate. When there is a possibility that the vapor reaches the attenuation filter 61, the anti-adhesion filters 65 and 65 ′ may be added similarly to the vacuum processing apparatuses 10a and 10b of the first example and the second example. Similarly to the vacuum processing apparatus of the example, the attenuation filter 61 and the X-ray detection unit 63 may be arranged as far as possible from the material container 13 in the lateral direction (horizontal direction) of the material container 13.
<第四例の真空処理装置を用いた真空処理方法>
 第四例の真空処理装置10dを用いた真空処理方法を、アルミニウムの真空蒸着を例に説明する。
<Vacuum processing method using the vacuum processing apparatus of the fourth example>
A vacuum processing method using the vacuum processing apparatus 10d of the fourth example will be described taking aluminum vacuum deposition as an example.
(準備工程)
 本実施例では、照射対象物50にはアルミニウムを主成分とする成膜材料を用いる。電子線を照射する前の照射対象物50に含まれる不純物の濃度はあらかじめ分かっている。
(Preparation process)
In this embodiment, a film forming material mainly composed of aluminum is used for the irradiation object 50. The concentration of impurities contained in the irradiation object 50 before irradiation with an electron beam is known in advance.
 電子線の照射を停止する際に用いる成膜材料中の不純物濃度のしきい値をあらかじめ定めておく。また、計算機69に主成分の元素がアルミニウムであることを設定しておく。
 また、X線測定装置62が測定するX線のエネルギー(又は波長)の範囲を、電子線のエネルギー以下の範囲にあらかじめ定めておく。
A threshold value of the impurity concentration in the film forming material used when stopping the electron beam irradiation is determined in advance. Further, it is set in the computer 69 that the main element is aluminum.
Further, the range of X-ray energy (or wavelength) measured by the X-ray measuring device 62 is set in advance to a range equal to or lower than the energy of the electron beam.
  図7を参照し、真空排気装置12により真空槽11内を真空排気して真空雰囲気を形成する。以後、真空排気を継続して、真空槽11内の真空雰囲気を維持する。
 真空槽11内の真空雰囲気を維持しながら、材料搬入装置14により真空槽11内に照射対象物50を搬入し、材料容器13内に配置する。X線検知部用電源64からX線検知部63の分光部63bに電力を供給しておく。
Referring to FIG. 7, the vacuum chamber 11 is evacuated by the evacuation device 12 to form a vacuum atmosphere. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained.
While maintaining the vacuum atmosphere in the vacuum chamber 11, the irradiation object 50 is carried into the vacuum chamber 11 by the material carry-in device 14 and placed in the material container 13. Power is supplied from the X-ray detection unit power supply 64 to the spectroscopic unit 63b of the X-ray detection unit 63 in advance.
(真空蒸着工程)
 電子銃20から電子線を放出させる。電子銃20から電子線を放出させる方法は、第一例の真空処理装置10aを用いた真空処理方法において電子銃から電子線を放出させる方法と同様であり、説明を省略する。
(Vacuum deposition process)
An electron beam is emitted from the electron gun 20. The method of emitting the electron beam from the electron gun 20 is the same as the method of emitting the electron beam from the electron gun in the vacuum processing method using the vacuum processing apparatus 10a of the first example, and the description thereof is omitted.
 電子線を照射された照射対象物50からはX線が放出される。照射対象物50に照射される電子線のパワーは、X線分析の分野で通常用いられる電子線のパワーより大きく、照射対象物50から放出されるX線の強度はX線分析の分野で通常測定するX線の強度よりも二桁以上大きい。 X-rays are emitted from the irradiation object 50 irradiated with the electron beam. The power of the electron beam irradiated to the irradiation object 50 is larger than the power of the electron beam normally used in the field of X-ray analysis, and the intensity of the X-ray emitted from the irradiation object 50 is normal in the field of X-ray analysis. Two or more orders of magnitude greater than the intensity of the X-ray to be measured.
 照射対象物50から放出されたX線の一部は防着板75の開口76を通って成膜対象物55に入射する。成膜対象物55に入射したX線はほとんど減衰されずに透過して減衰フィルタ61に入射する。
 減衰フィルタ61に入射したX線は、減衰フィルタ61の内部で吸収又は反射されて、減衰される。
Part of the X-rays emitted from the irradiation object 50 enters the film formation object 55 through the opening 76 of the deposition preventing plate 75. The X-rays incident on the film formation target 55 pass through the attenuation filter 61 without being attenuated.
The X-rays incident on the attenuation filter 61 are absorbed or reflected inside the attenuation filter 61 and attenuated.
 減衰フィルタ61を透過したX線は、X線検知部63の窓部材63cを通って分光部63bに入射する。分光部63bは入射したX線のエネルギー(又は波長)に応じた電気信号を生成し、記憶装置68は分光部63bが生成した電気信号を受け取って、X線のエネルギー(又は波長)毎に電気信号の回数を記憶する。このようにして、X線測定装置62では、減衰フィルタ61を通過したX線のエネルギーと強度との関係が測定される。
 計算機69は、記憶装置68の記憶内容を読み出し、記憶内容に基づいて、照射対象物50に含まれる主成分(アルミニウム)以外の元素(すなわち不純物)の濃度を求める。
The X-rays that have passed through the attenuation filter 61 enter the spectroscopic unit 63b through the window member 63c of the X-ray detection unit 63. The spectroscopic unit 63b generates an electric signal corresponding to the energy (or wavelength) of the incident X-ray, and the storage device 68 receives the electric signal generated by the spectroscopic unit 63b and generates an electric signal for each X-ray energy (or wavelength). Stores the number of signals. In this way, the X-ray measurement device 62 measures the relationship between the energy and intensity of X-rays that have passed through the attenuation filter 61.
The computer 69 reads the stored contents of the storage device 68 and obtains the concentration of an element (ie, impurity) other than the main component (aluminum) contained in the irradiation object 50 based on the stored contents.
 照射対象物50に電子線を照射して加熱しながら、照射対象物50に含まれる不純物の濃度を知ることができるので、不純物の濃度を知るために従来のように電子線の照射を停止し、真空槽11内を大気に開放する必要がなく、生産時間を大幅に短縮できる。
 電子線が照射されて加熱された照射対象物50は、溶解し、照射対象物50から主成分の蒸気が放出され、蒸気の一部は防着板75の開口76を通過する。
While the irradiation object 50 is irradiated with an electron beam and heated, the concentration of impurities contained in the irradiation object 50 can be known. Therefore, in order to know the concentration of impurities, the irradiation of the electron beam is stopped as in the prior art. There is no need to open the vacuum chamber 11 to the atmosphere, and production time can be greatly reduced.
The irradiation object 50 irradiated with the electron beam and heated is melted, the main component vapor is released from the irradiation object 50, and a part of the vapor passes through the opening 76 of the deposition preventing plate 75.
 巻取軸回転装置73により巻取軸71を回転させて、成膜対象物55を蒸気の飛行経路を横断するように所定速度(ここでは350m/min)で走行させる。
 開口76を通過した蒸気は成膜対象物55のうち開口76から露出する部分に到達して付着し、成膜対象物55の表面に薄膜が形成される。
The take-up shaft 71 is rotated by the take-up shaft rotating device 73 so that the film formation target 55 travels at a predetermined speed (350 m / min in this case) so as to cross the steam flight path.
The vapor that has passed through the opening 76 reaches and adheres to the portion of the film formation target 55 exposed from the opening 76, and a thin film is formed on the surface of the film formation target 55.
 成膜対象物55は成膜対象物55の移動方向に対して蒸気が入射する位置より終点側で巻取軸71に巻き取られる。
 このようにして、成膜対象物55には所定の膜厚(ここでは数100nm(膜抵抗が1.6Ω))のアルミニウムの薄膜が連続的に形成される。
 蒸気は成膜対象物55で遮蔽されて減衰フィルタ61には到達しないので、減衰フィルタ61のX線減衰率は増加せず、X線測定装置62での測定精度は低下しない。
The film formation target 55 is wound around the winding shaft 71 on the end point side from the position where the vapor enters in the moving direction of the film formation target 55.
In this manner, an aluminum thin film having a predetermined film thickness (here, several 100 nm (film resistance is 1.6Ω)) is continuously formed on the film formation target 55.
Since the vapor is shielded by the film formation target 55 and does not reach the attenuation filter 61, the X-ray attenuation rate of the attenuation filter 61 does not increase, and the measurement accuracy of the X-ray measurement device 62 does not decrease.
 1ロールの成膜を終了した後、電子線の照射を停止させ、真空排気装置12を停止して真空槽11内を大気に解放し、成膜済みの成膜対象物55からなるロールを真空槽11の外側に搬出する。次いで、未成膜の成膜対象物55からなる新しいロールを真空槽11内に搬入し、ロール保持軸72と巻取軸71とに装着した後、真空槽11内を真空排気して真空雰囲気を形成し、真空蒸着工程を再開する。 After the film formation for one roll is completed, the irradiation of the electron beam is stopped, the vacuum exhaust device 12 is stopped, the inside of the vacuum chamber 11 is released to the atmosphere, and the roll formed of the film formation target 55 is vacuumed. It is carried out to the outside of the tank 11. Next, after a new roll made of an undeposited film formation target 55 is carried into the vacuum chamber 11 and mounted on the roll holding shaft 72 and the take-up shaft 71, the vacuum chamber 11 is evacuated to create a vacuum atmosphere. Form and restart the vacuum deposition process.
 照射対象物50に電子線を照射し続けると、照射対象物50から主成分が蒸発することにより、照射対象物50に含まれる不純物が濃縮され、不純物の濃度が増加する。
 また、照射対象物50から放出された蒸気の一部は防着板75の表面や真空槽11の内壁面に付着して堆積するのだが、蒸気が防着板75の表面や真空槽11の内壁面に堆積し続けると、堆積した付着膜が剥離して照射対象物50に到達し、照射対象物50に防着板75の材料であるモリブデンや真空槽11の材料であるステンレス鋼が混入して、照射対象物50の不純物濃度が増加する。
When the irradiation object 50 is continuously irradiated with the electron beam, the main component evaporates from the irradiation object 50, so that impurities contained in the irradiation object 50 are concentrated and the impurity concentration increases.
Further, a part of the vapor emitted from the irradiation object 50 is deposited on the surface of the deposition plate 75 and the inner wall surface of the vacuum chamber 11, but the vapor is deposited on the surface of the deposition plate 75 and the vacuum chamber 11. If it continues to deposit on the inner wall surface, the deposited adhesion film peels off and reaches the irradiation object 50, and molybdenum, which is the material of the deposition preventing plate 75, and stainless steel, which is the material of the vacuum chamber 11, enter the irradiation object 50. As a result, the impurity concentration of the irradiation object 50 increases.
 計算機69には制御装置17が接続されている。制御装置17は、計算機69で求められた不純物濃度が所定のしきい値以上になったら、電子銃電源40に制御信号を送って、電子銃20からの電子線の照射を停止させる。 The control device 17 is connected to the computer 69. When the impurity concentration obtained by the computer 69 exceeds a predetermined threshold value, the control device 17 sends a control signal to the electron gun power supply 40 to stop the irradiation of the electron beam from the electron gun 20.
 真空槽11内を大気に開放し、不純物が混入した照射対象物50を、新たな照射対象物50と交換した後、真空槽11内を真空排気して真空雰囲気を形成し、真空蒸着工程を再開する。
 このようして、照射対象物50に電子線を照射しながら照射対象物50に含まれる不純物の濃度を確認でき、形成する膜の膜質を一定に保つことができる。そのため、製品の歩留まりを向上することができる。
After the inside of the vacuum chamber 11 is opened to the atmosphere and the irradiation object 50 mixed with impurities is replaced with a new irradiation object 50, the vacuum chamber 11 is evacuated to form a vacuum atmosphere, and a vacuum deposition process is performed. Resume.
In this way, the concentration of impurities contained in the irradiation object 50 can be confirmed while irradiating the irradiation object 50 with an electron beam, and the film quality of the film to be formed can be kept constant. Therefore, the product yield can be improved.
 上述の真空蒸着では、照射対象物50としてアルミニウムを主成分とする成膜材料を用いて説明したが、主成分が分かっている成膜材料であれば照射対象物50はこれに限定されず、チタン、銅等を主成分とする成膜材料を照射対象物50に用いてもよい。 In the above-described vacuum deposition, the irradiation object 50 has been described using a film forming material mainly composed of aluminum, but the irradiation object 50 is not limited to this as long as the film forming material has a known main component. A film-forming material mainly composed of titanium, copper, or the like may be used for the irradiation object 50.
 10a~10d……真空処理装置
 11……真空槽
 12……真空排気装置
 20……電子銃
 50……照射対象物
 55……成膜対象物
 61……減衰フィルタ
 62……X線測定装置
 65……防着フィルタ
 69……計算機
 71……巻取軸
 73……巻取軸回転装置
 
10a to 10d …… Vacuum processing device 11 …… Vacuum chamber 12 …… Vacuum exhaust device 20 …… Electron gun 50 …… Irradiation target 55 …… Film formation target 61 …… Attenuation filter 62 …… X-ray measurement device 65 …… Anti-adhesion filter 69 …… Computer 71 …… Take-up shaft 73 …… Take-up shaft rotating device

Claims (12)

  1.  真空槽と、
     前記真空槽内に配置された照射対象物に電子線を照射して加熱し、前記照射対象物に含まれる特定成分を気化させる電子銃と、
     を有する真空処理装置であって、
     所定のエネルギー範囲内のX線のエネルギーと強度との関係を測定するX線測定装置と、
     前記電子線の照射によって前記照射対象物から放出されたX線が入射し、入射したX線を減衰させて通過させ、前記X線測定装置に入射させる減衰フィルタとを有する真空処理装置。
    A vacuum chamber;
    An electron gun that irradiates and heats an irradiation object disposed in the vacuum chamber and vaporizes a specific component contained in the irradiation object;
    A vacuum processing apparatus comprising:
    An X-ray measurement device that measures the relationship between the energy and intensity of X-rays within a predetermined energy range;
    A vacuum processing apparatus comprising: an attenuation filter that makes X-rays emitted from the irradiation object incident by irradiation of the electron beam, attenuates and passes the incident X-rays, and enters the X-ray measurement apparatus.
  2.  前記X線測定装置の測定結果に基づいて、前記照射対象物に含まれる不純物の濃度を求める計算機と、
     を有する請求項1記載の真空処理装置。
    A calculator for determining the concentration of impurities contained in the irradiation object based on the measurement result of the X-ray measurement apparatus;
    The vacuum processing apparatus according to claim 1.
  3.  前記照射対象物と前記減衰フィルタとの間には、前記照射対象物から放出されて前記減衰フィルタに到達する蒸気を減衰させる防着フィルタが配置された請求項1又は請求項2のいずれか1項記載の真空処理装置。 The adhesion prevention filter which attenuate | damps the vapor | steam discharged | emitted from the said irradiation target object and reaching | attains the said attenuation filter between the said irradiation target object and the said attenuation filter is arrange | positioned. The vacuum processing apparatus according to item.
  4.  前記特定成分は前記照射対象物の不純物であり、前記電子線の照射によって前記照射対象物に含まれる前記不純物の濃度を減少させる請求項1乃至請求項3のいずれか1項記載の真空処理装置。 The vacuum processing apparatus according to any one of claims 1 to 3, wherein the specific component is an impurity of the irradiation object, and the concentration of the impurity contained in the irradiation object is reduced by irradiation with the electron beam. .
  5.  前記特定成分は前記照射対象物の主成分であり、
     前記照射対象物と前記減衰フィルタとの間には成膜対象物が配置され、
     前記電子線の照射によって前記照射対象物から前記主成分の蒸気を放出させ、前記真空槽内に配置された前記成膜対象物に前記蒸気を到達させて薄膜を形成する請求項1乃至請求項3のいずれか1項記載の真空処理装置。
    The specific component is a main component of the irradiation object,
    A film formation object is disposed between the irradiation object and the attenuation filter,
    The thin film is formed by releasing the vapor of the main component from the irradiation object by the irradiation of the electron beam, and allowing the vapor to reach the film formation object disposed in the vacuum chamber. 4. The vacuum processing apparatus according to any one of 3 above.
  6.  前記真空槽内に配置された巻取軸と、
     前記巻取軸を前記巻取軸の中心軸線を中心に回転させる巻取軸回転装置とを有し、
     前記成膜対象物は帯形状のフィルムであり、
     前記成膜対象物の長手方向の一端は前記巻取軸に巻き付けられて固定され、
     前記巻取軸回転装置により前記巻取軸を回転させると、前記成膜対象物は前記巻取軸に巻き取られる請求項5記載の真空処理装置。
    A winding shaft disposed in the vacuum chamber;
    A winding shaft rotating device that rotates the winding shaft around a central axis of the winding shaft;
    The film formation target is a band-shaped film,
    One end in the longitudinal direction of the film formation object is wound around the winding shaft and fixed,
    The vacuum processing apparatus according to claim 5, wherein the film formation target is wound on the winding shaft when the winding shaft is rotated by the winding shaft rotating device.
  7.  真空槽内を真空排気しながら、前記真空槽内に配置された照射対象物に電子線を照射して加熱し、前記照射対象物に含まれる特定成分を気化させる真空処理方法であって、
     電子線の照射によって前記照射対象物から放出されたX線が入射し、入射したX線を減衰させて通過させる減衰フィルタを用いて、
     前記照射対象物に電子線を照射しながら、前記減衰フィルタを通過したX線のうち所定のエネルギー範囲内のX線のエネルギーと強度との関係を測定する真空処理方法。
    While evacuating the inside of the vacuum chamber, the irradiation target placed in the vacuum chamber is irradiated with an electron beam and heated to vaporize a specific component contained in the irradiation target,
    Using an attenuation filter that allows X-rays emitted from the irradiation object to be incident upon irradiation with an electron beam and attenuates and passes the incident X-rays.
    A vacuum processing method for measuring a relationship between energy and intensity of X-rays within a predetermined energy range among X-rays passing through the attenuation filter while irradiating the irradiation object with an electron beam.
  8.  前記照射対象物に電子線を照射しながら、測定したX線のエネルギーと強度との関係に基づいて、前記照射対象物に含まれる不純物の濃度を求める請求項7記載の真空処理方法。 The vacuum processing method according to claim 7, wherein the concentration of impurities contained in the irradiation object is determined based on the relationship between the measured X-ray energy and intensity while irradiating the irradiation object with an electron beam.
  9.  前記照射対象物から放出されて前記減衰フィルタに到達する蒸気を減衰させる防着フィルタを用いる請求項7又は請求項8のいずれか1項記載の真空処理方法。 The vacuum processing method according to any one of claims 7 and 8, wherein an anti-adhesion filter that attenuates vapor that is emitted from the irradiation object and reaches the attenuation filter is used.
  10.  前記特定成分は前記照射対象物の不純物であり、前記照射対象物に電子線を照射して、前記照射対象物に含まれる前記不純物の濃度を減少させる請求項7乃至請求項9のいずれか1項記載の真空処理方法。 The specific component is an impurity of the irradiation object, and the irradiation object is irradiated with an electron beam to reduce the concentration of the impurity contained in the irradiation object. The vacuum processing method according to item.
  11.  前記特定成分は前記照射対象物の主成分であり、前記照射対象物に電子線を照射して、前記成膜対象物から前記主成分の蒸気を放出させ、前記照射対象物と前記減衰フィルタとの間に配置された成膜対象物に前記蒸気を到達させて薄膜を形成する請求項7乃至請求項9のいずれか1項記載の真空処理方法。 The specific component is a main component of the irradiation object, and the irradiation object is irradiated with an electron beam to release the vapor of the main component from the film formation object, and the irradiation object, the attenuation filter, The vacuum processing method according to claim 7, wherein the vapor is made to reach a film formation target disposed between the layers to form a thin film.
  12.  前記成膜対象物は帯形状のフィルムであり、
     前記照射対象物に電子線を照射しながら、前記成膜対象物の移動方向に対して前記蒸気が入射する位置より終点側で、前記成膜対象物を巻き取る請求項11記載の真空処理方法。
    The film formation target is a band-shaped film,
    The vacuum processing method according to claim 11, wherein the film formation target is wound up on the end point side from the position where the vapor is incident with respect to the moving direction of the film formation target while irradiating the irradiation target with an electron beam. .
PCT/JP2012/055123 2011-03-01 2012-02-29 Vacuum processing device and vacuum processing method WO2012118129A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013502394A JPWO2012118129A1 (en) 2011-03-01 2012-02-29 Vacuum processing apparatus and vacuum processing method
CN2012800111376A CN103392027A (en) 2011-03-01 2012-02-29 Vacuum processing device and vacuum processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011043667 2011-03-01
JP2011-043667 2011-03-01

Publications (1)

Publication Number Publication Date
WO2012118129A1 true WO2012118129A1 (en) 2012-09-07

Family

ID=46758057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055123 WO2012118129A1 (en) 2011-03-01 2012-02-29 Vacuum processing device and vacuum processing method

Country Status (3)

Country Link
JP (1) JPWO2012118129A1 (en)
CN (1) CN103392027A (en)
WO (1) WO2012118129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772558A (en) * 2015-04-08 2015-07-15 桂林实创真空数控设备有限公司 Built-in type three-dimensional dynamic gun numerical control vacuum electron beam welding machine
CN113373413A (en) * 2021-06-10 2021-09-10 京东方科技集团股份有限公司 Evaporation source assembly, evaporation source system and evaporator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746259B (en) * 2020-12-30 2023-06-23 尚越光电科技股份有限公司 Method for controlling impurity content of magnetron sputtering coating through plasma glow spectrum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283338A (en) * 1990-03-30 1991-12-13 Hitachi Ltd Electron gun heated type steam generator
JPH04345796A (en) * 1991-05-24 1992-12-01 Mitsubishi Heavy Ind Ltd Electron beam detecting device
JPH0681135A (en) * 1992-09-02 1994-03-22 Ishikawajima Harima Heavy Ind Co Ltd Device for detecting abnormal irradiation with electron beam
JP2001318063A (en) * 2001-04-23 2001-11-16 Hitachi Ltd X-ray reflectance analytical device
JP2006028560A (en) * 2004-07-14 2006-02-02 Toho Titanium Co Ltd Melting apparatus for metal titanium
JP2006277956A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Manufacturing method of negative electrode for lithium secondary battery and lithium secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479327A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Electron beam melting method
JPS6479326A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Electron beam melting method for producing active metal alloy
JP2584598Y2 (en) * 1993-03-30 1998-11-05 三菱重工業株式会社 Deposition film thickness measuring device
JP5157935B2 (en) * 2009-01-22 2013-03-06 住友金属鉱山株式会社 Film forming method by roll-to-roll vacuum film forming apparatus and roll cleaning method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283338A (en) * 1990-03-30 1991-12-13 Hitachi Ltd Electron gun heated type steam generator
JPH04345796A (en) * 1991-05-24 1992-12-01 Mitsubishi Heavy Ind Ltd Electron beam detecting device
JPH0681135A (en) * 1992-09-02 1994-03-22 Ishikawajima Harima Heavy Ind Co Ltd Device for detecting abnormal irradiation with electron beam
JP2001318063A (en) * 2001-04-23 2001-11-16 Hitachi Ltd X-ray reflectance analytical device
JP2006028560A (en) * 2004-07-14 2006-02-02 Toho Titanium Co Ltd Melting apparatus for metal titanium
JP2006277956A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Manufacturing method of negative electrode for lithium secondary battery and lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772558A (en) * 2015-04-08 2015-07-15 桂林实创真空数控设备有限公司 Built-in type three-dimensional dynamic gun numerical control vacuum electron beam welding machine
CN113373413A (en) * 2021-06-10 2021-09-10 京东方科技集团股份有限公司 Evaporation source assembly, evaporation source system and evaporator
CN113373413B (en) * 2021-06-10 2022-09-09 京东方科技集团股份有限公司 Evaporation source assembly, evaporation source system and evaporator

Also Published As

Publication number Publication date
CN103392027A (en) 2013-11-13
JPWO2012118129A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
TWI421898B (en) Method and apparatus for controlling convergence of electron beam of pierce typr electron gun
Dunning et al. Secondary electron ejection from metal surfaces by metastable atoms. I. Measurement of secondary emission coefficients using a crossed beam method
WO2012118129A1 (en) Vacuum processing device and vacuum processing method
JP2008248362A (en) Selenium vapor depositing apparatus
WO2021075385A1 (en) Film forming method and film forming apparatus
JP4210261B2 (en) Method and apparatus for in situ deposition of neutral cesium under ultra-high vacuum for analytical purposes
JP2000017430A (en) ITO FILM FORMING METHOD AND SIOx FILM FORMING METHOD
TWM491672U (en) Electron beam evaporation apparatus
JP2011214025A (en) Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method
Lackner et al. Construction and evaluation of an ultrahigh-vacuum-compatible sputter deposition source
WO2011102320A1 (en) Electron beam irradiation device and electron beam irradiation method
CN114892139A (en) Method and device for controlling moisture and impurities of evaporation source material
JP5514595B2 (en) Electron beam irradiation device
KR102579090B1 (en) Ion Beam Sputtering Apparatus for Manufacturing a Wire Grid Polarizer
JP4916472B2 (en) Crucible and vacuum deposition equipment
JP2007154310A (en) Vacuum deposition method for forming alloy film on surface of piece by vapor deposition
Arora et al. Fabrication of enriched 170Yb2O3 thin targets for studying asymmetric fission in sub-lead mass region
JPH05117843A (en) Thin film forming method
US20120021126A1 (en) Vacuum Vapor Coating Device for Coating a Substrate
JPS6176665A (en) Device for forming film deposited by evaporation
WO2022113443A1 (en) Rotary foil trap and light source device
JP2017088976A (en) Multicomponent film formation apparatus and multicomponent film formation method
Liu Investigations on the influence of oxygen non-stoichiometry on structure, stability and properties of hafnium oxide thin films
Ibano et al. Sputtering studies of lithiated ATJ graphite by lithium ion bombardment
Xu et al. The preparation of self-supporting boron targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752631

Country of ref document: EP

Kind code of ref document: A1