JP2011214025A - Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method - Google Patents

Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method Download PDF

Info

Publication number
JP2011214025A
JP2011214025A JP2010080840A JP2010080840A JP2011214025A JP 2011214025 A JP2011214025 A JP 2011214025A JP 2010080840 A JP2010080840 A JP 2010080840A JP 2010080840 A JP2010080840 A JP 2010080840A JP 2011214025 A JP2011214025 A JP 2011214025A
Authority
JP
Japan
Prior art keywords
thin film
film
film formation
thickness
formation target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080840A
Other languages
Japanese (ja)
Inventor
Toru Satake
徹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010080840A priority Critical patent/JP2011214025A/en
Publication of JP2011214025A publication Critical patent/JP2011214025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness measuring method capable of measuring the thickness of a deposited thin film over a wider range, and to provide a vacuum vapor deposition apparatus and a vacuum vapor deposition method for depositing a thin film of the uniform thickness.SOLUTION: A thin film material 60 is irradiated with electron beam so as to emit the vapor from the thin film material 60. When a thin film is deposited on the surface of an object 80 to be film-deposited while making the object 80 run with respect to the thin film material 60, the intensity of X-ray which is emitted from the thin film material 60 and transmitted through the thin film and the object 80 is detected by an X-ray detection device 20 on the object 80. The thickness of the thin film deposited on the object 80 is measured from the correspondence relationship between the stored intensity of the transmitted X-ray and the thickness of the thin film. By comparing the result of measurement with the reference value, the moving speed of the object 80 and the moving speed of the irradiation position of electron beam are changed based on the result of comparison, and the thickness of the thin film is increased or reduced so that the thickness of the thin film is made close to the reference value.

Description

本発明は、真空蒸着装置、膜厚測定方法、真空蒸着方法に係り、特に電子線の照射により薄膜材料を蒸発させて真空蒸着を行う分野に関する。   The present invention relates to a vacuum deposition apparatus, a film thickness measuring method, and a vacuum deposition method, and more particularly to the field of performing vacuum deposition by evaporating a thin film material by electron beam irradiation.

現在、高速の連続巻取式真空蒸着装置には、比較的エネルギーが大きく、照射対象物を溶解、蒸発、昇華等させることができるハイパワーの電子線を放出する電子銃が用いられている。
ここでハイパワーの電子線とは、エネルギーが数kV〜数十kV、電流がアンペアオーダー、出力が数kW〜千kW、さらにはそれ以上の出力を有する電子線のことである。
従来の真空蒸着装置は、容積が1m3以上の比較的大きな真空槽と、真空槽内を真空排気する真空排気装置と、真空槽内に電子線を放出する電子銃と、照射対象物を保持するための照射材料容器とを有している。照射材料容器はここでは水冷ハースであり、通常熱伝導の良い銅でできている。
照射対象物は、主にアルミニウム、チタン、銅等の金属である。
真空排気された真空槽内で、これらの照射対象物に電子銃から電子線を照射して、照射対象物から蒸気を放出させ、放出された蒸気を成膜対象物の表面に到達させて、成膜対象物の表面に薄膜を成膜する。
このように成膜した薄膜の膜厚測定方法としては、従来、可視光の透過吸収量を検出する方式が用いられていた。
しかしながら、可視光の透過吸収量を検出する方式では、装置一台あたり約600万円以上の大きなコストが必要であり、また可視光の透過力が弱いために測定可能な膜厚範囲が狭い(アルミニウムの薄膜で0.3μm程度以下)という問題があった。
Currently, an electron gun that emits a high-power electron beam capable of dissolving, evaporating, and sublimating an irradiation target is used in a high-speed continuous winding vacuum deposition apparatus that has a relatively large energy.
Here, the high-power electron beam is an electron beam having an energy of several kV to several tens of kV, a current of ampere order, an output of several kW to 1,000 kW, and even higher.
A conventional vacuum deposition apparatus holds a relatively large vacuum chamber having a volume of 1 m 3 or more, an evacuation device that evacuates the inside of the vacuum chamber, an electron gun that emits an electron beam into the vacuum chamber, and an object to be irradiated. And an irradiation material container. Here, the irradiation material container is a water-cooled hearth and is usually made of copper having good heat conduction.
The irradiation object is mainly a metal such as aluminum, titanium, or copper.
In an evacuated vacuum chamber, these irradiation objects are irradiated with an electron beam from an electron gun, vapor is released from the irradiation object, and the emitted vapor reaches the surface of the film formation object, A thin film is formed on the surface of the film formation target.
As a method for measuring the film thickness of the thin film thus formed, a method for detecting the amount of visible light transmitted and absorbed has been conventionally used.
However, the method of detecting the amount of visible light transmitted and absorbed requires a large cost of about 6 million yen or more per device, and the measurable film thickness range is narrow because the visible light transmission power is weak ( There was a problem of an aluminum thin film of about 0.3 μm or less.

特開平5−172532号公報JP-A-5-172532

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、成膜した薄膜の膜厚を従来より広い範囲で測定できる膜厚測定方法と、均一な膜厚の薄膜を成膜できる真空蒸着装置及び真空蒸着方法を提供することにある。   The present invention was created to solve the above-mentioned disadvantages of the prior art. The purpose of the present invention is to provide a film thickness measuring method capable of measuring a film thickness of a formed thin film in a wider range than before, and a uniform film thickness. An object of the present invention is to provide a vacuum deposition apparatus and a vacuum deposition method capable of forming a thin film.

上記課題を解決するために本発明は、真空槽と、前記真空槽内を真空排気する真空排気装置と、前記真空槽内に電子線を放出可能に構成された電子銃と、を有し、前記真空槽内に配置される薄膜材料に前記電子銃から電子線を照射して、前記薄膜材料から蒸気を放出させ、前記蒸気が入射する位置に配置される成膜対象物の表面に薄膜を成膜する真空蒸着装置であって、前記成膜対象物から見て前記薄膜材料の逆側に配置され、前記電子線を照射された前記薄膜材料から放出され、前記薄膜と前記成膜対象物とを順に透過した透過X線の強度を検出するX線検出装置と、前記透過X線の強度と前記薄膜の膜厚との対応関係があらかじめ記憶された記憶装置と、前記X線検出装置で検出された前記透過X線の強度と、前記記憶装置に記憶された前記対応関係とから、前記薄膜の膜厚を測定する測定装置と、を有する真空蒸着装置である。
本発明は真空蒸着装置であって、前記成膜対象物の表面に薄膜を成膜させながら、前記成膜対象物を前記薄膜材料に対して走行移動させる成膜対象物移動部を有する真空蒸着装置である。
本発明は真空蒸着装置であって、前記測定装置で測定された前記薄膜の膜厚と基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づけるように構成された制御装置を有する真空蒸着装置である。
本発明は真空蒸着装置であって、前記制御装置は、前記成膜対象物移動部を制御して、前記成膜対象物の移動速度を変化させて、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させるように構成された真空蒸着装置である。
本発明は、前記電子銃は前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させるように構成された真空蒸着装置であって、前記制御装置は、前記照射位置の移動速度を変更して、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させるように構成された真空蒸着装置である。
本発明は真空蒸着装置であって、前記測定装置で測定された前記薄膜の膜厚と基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を所定値に近づけるように構成された制御装置を有し、前記電子銃は前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させるように構成され、前記測定装置は、前記成膜対象物上で、前記成膜対象物の走行方向とは垂直な方向の複数の測定位置の膜厚を測定するように構成され、前記制御装置は、各前記測定位置での前記膜厚の測定値を前記基準値と比較し、前記薄膜材料上の各前記測定位置と対面する場所での前記照射位置の移動速度を前記照射位置毎に変更するように構成された真空蒸着装置である。
本発明は、前記成膜対象物は、帯状のフィルムである真空蒸着装置であって、前記成膜対象物移動部は、前記成膜対象物の移動方向に対して前記蒸気が入射する位置より終点側で、前記フィルムを巻き取るように構成された真空蒸着装置である。
本発明は、真空排気された真空槽内で薄膜材料に電子線を照射して、前記薄膜材料から蒸気を放出させ、前記蒸気が入射する位置に配置された成膜対象物の表面に薄膜を成膜する際に、前記薄膜の膜厚を測定する膜厚測定方法であって、前記成膜対象物の表面に薄膜を成膜する前に、前記薄膜材料から放出され、前記薄膜と前記成膜対象物とを順に透過した透過X線の強度と、前記薄膜の膜厚との対応関係を記憶しておき、前記成膜対象物の表面に薄膜を成膜する際に、前記透過X線の強度を検出し、検出した前記透過X線の強度と、記憶した前記対応関係とから、前記薄膜の膜厚を測定する膜厚測定方法である。
本発明は、真空排気された真空槽内で薄膜材料に電子線を照射して、前記薄膜材料から蒸気を放出させ、前記成膜対象物を前記薄膜材料に対して走行移動させながら、前記成膜対象物の表面に薄膜を成膜する真空蒸着方法であって、前記成膜対象物の表面に薄膜を成膜する前に、薄膜の膜厚の基準値を決めておき、前記成膜対象物の表面に薄膜を成膜する際に、前記膜厚測定方法で前記薄膜の膜厚を測定し、測定した前記薄膜の膜厚と前記基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づける真空蒸着方法である。
本発明は真空蒸着方法であって、測定した前記薄膜の膜厚と前記基準値とを比較した後、比較結果から、前記成膜対象物の移動速度を変化させて、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させる真空蒸着方法である。
本発明は、前記薄膜材料に前記電子線を照射する際に、前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させる真空蒸着方法であって、測定した前記薄膜の膜厚と前記基準値とを比較した後、比較結果から、前記照射位置の移動速度を変更して、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させる真空蒸着方法である。
本発明は、真空排気された真空槽内で前記薄膜材料に前記電子線を照射する際に、電子線の照射方向を変化させ、電子線の薄膜材料表面上の照射位置を移動させて、前記薄膜材料から蒸気を放出させ、前記成膜対象物を前記薄膜材料に対して走行移動させながら、前記成膜対象物の表面に薄膜を成膜する真空蒸着方法であって、前記成膜対象物の表面に薄膜を成膜する前に、薄膜の膜厚の基準値を決めておき、前記成膜対象物の表面に薄膜を成膜する際に、前記成膜対象物上で、前記成膜対象物の走行方向とは垂直な方向の複数の測定位置の膜厚を前記膜厚測定方法で測定し、各前記測定位置での前記膜厚の測定値を前記基準値と比較し、比較結果から、前記薄膜材料上の各前記測定位置と対面する場所での前記照射位置の移動速度を前記照射位置毎に変更して、前記成膜対象物に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づける真空蒸着方法である。
In order to solve the above problems, the present invention has a vacuum chamber, a vacuum exhaust device that evacuates the vacuum chamber, and an electron gun configured to emit an electron beam into the vacuum chamber, The thin film material disposed in the vacuum chamber is irradiated with an electron beam from the electron gun to release vapor from the thin film material, and the thin film is applied to the surface of the film formation target disposed at the position where the vapor is incident. A vacuum deposition apparatus for forming a film, which is disposed on the opposite side of the thin film material as viewed from the film formation target, and is emitted from the thin film material irradiated with the electron beam, and the thin film and the film formation target An X-ray detector that detects the intensity of transmitted X-rays that have passed through the storage device, a storage device that stores a correspondence relationship between the intensity of the transmitted X-rays and the film thickness of the thin film, and the X-ray detector. The intensity of the detected transmitted X-ray and the stored in the storage device And a serial relationship, is a vacuum vapor deposition apparatus having a measuring device for measuring the thickness of the thin film.
The present invention is a vacuum deposition apparatus, comprising: a deposition target moving unit that moves the deposition target relative to the thin film material while forming a thin film on the surface of the deposition target. Device.
The present invention is a vacuum vapor deposition apparatus, which compares the film thickness of the thin film measured by the measurement apparatus with a reference value, and from the comparison result, determines the film thickness of the thin film formed on the surface of the film formation target. It is a vacuum evaporation apparatus having a control device configured to increase or decrease the thickness of the thin film formed on the surface of the film formation target to be close to the reference value.
The present invention is a vacuum deposition apparatus, wherein the control device controls the film formation target moving unit to change a moving speed of the film formation target and is formed on the surface of the film formation target. A vacuum deposition apparatus configured to increase or decrease the thickness of the thin film.
The present invention is a vacuum deposition apparatus configured such that the electron gun changes the irradiation direction of the electron beam and moves the irradiation position of the electron beam on the surface of the thin film material, and the control device includes: The vacuum deposition apparatus is configured to change the moving speed of the irradiation position to increase or decrease the thickness of the thin film formed on the surface of the film formation target.
The present invention is a vacuum vapor deposition apparatus, which compares the film thickness of the thin film measured by the measurement apparatus with a reference value, and from the comparison result, determines the film thickness of the thin film formed on the surface of the film formation target. And a control device configured to increase or decrease the film thickness of the thin film formed on the surface of the film formation object close to a predetermined value, the electron gun changes an irradiation direction of the electron beam, and the electron The irradiation device is configured to move the irradiation position of the line on the surface of the thin film material, and the measuring device has a plurality of measurement positions in a direction perpendicular to the traveling direction of the film formation target on the film formation target. The controller is configured to measure a film thickness, and the control device compares the measured value of the film thickness at each of the measurement positions with the reference value, at a location facing each of the measurement positions on the thin film material. It is configured to change the moving speed of the irradiation position for each irradiation position. It was a vacuum vapor deposition apparatus.
The present invention is the vacuum deposition apparatus in which the film formation target is a belt-like film, wherein the film formation target moving unit is positioned from a position where the vapor is incident on the movement direction of the film formation target. A vacuum deposition apparatus configured to wind up the film on the end point side.
The present invention irradiates a thin film material with an electron beam in an evacuated vacuum chamber, releases vapor from the thin film material, and deposits the thin film on the surface of a film formation target disposed at the position where the vapor is incident. A film thickness measuring method for measuring a film thickness of the thin film when forming a film, wherein the thin film is released from the thin film material before forming the thin film on the surface of the film formation target, and A correspondence relationship between the intensity of transmitted X-rays that have been sequentially transmitted through the film object and the film thickness of the thin film is stored, and when the thin film is formed on the surface of the film formed object, the transmitted X-rays are stored. Is a film thickness measurement method for measuring the film thickness of the thin film from the detected intensity of the transmitted X-ray and the stored correspondence relationship.
In the present invention, the thin film material is irradiated with an electron beam in an evacuated vacuum chamber to release vapor from the thin film material, and the film formation target is moved and moved relative to the thin film material. A vacuum vapor deposition method for forming a thin film on the surface of a film object, wherein a reference value of the thickness of the thin film is determined before forming the thin film on the surface of the film object, When forming a thin film on the surface of an object, the film thickness of the thin film is measured by the film thickness measurement method, and the measured film thickness of the thin film is compared with the reference value. In this vacuum evaporation method, the film thickness of the thin film formed on the surface of the object is increased or decreased to bring the film thickness of the thin film formed on the surface of the film formation object close to the reference value.
The present invention is a vacuum deposition method, and after comparing the measured thickness of the thin film with the reference value, from the comparison result, the moving speed of the film formation object is changed to change the surface of the film formation object. It is a vacuum evaporation method which increases / decreases the film thickness of the said thin film formed in this.
The present invention is a vacuum deposition method in which when the electron beam is irradiated onto the thin film material, the irradiation direction of the electron beam is changed, and the irradiation position of the electron beam on the surface of the thin film material is moved. After comparing the film thickness of the thin film and the reference value, from the comparison result, the moving speed of the irradiation position is changed to increase or decrease the film thickness of the thin film formed on the surface of the film formation target. It is a vapor deposition method.
In the present invention, when the thin film material is irradiated with the electron beam in an evacuated vacuum chamber, the irradiation direction of the electron beam is changed, the irradiation position of the electron beam on the surface of the thin film material is moved, and A vacuum deposition method for depositing a thin film on a surface of the film formation target while discharging the vapor from the thin film material and moving the film formation target with respect to the thin film material, the film formation target Before forming a thin film on the surface of the film, a reference value of the film thickness of the thin film is determined, and when the thin film is formed on the surface of the film formation target, the film formation is performed on the film formation target. The film thickness measurement method measures the film thickness at a plurality of measurement positions in a direction perpendicular to the traveling direction of the object, compares the film thickness measurement value at each measurement position with the reference value, and compares the results. From the above, the moving speed of the irradiation position at the position facing each measurement position on the thin film material is referred to. By changing the position, the film thickness of the thin film formed on the film formation target is increased or decreased, and the film thickness of the thin film formed on the surface of the film formation target is brought close to the reference value. is there.

前記電子線の前記薄膜材料表面上の照射位置を移動させる際には、前記照射位置を前記成膜対象物の移動方向に対して垂直な成分を有する移動速度で移動させる。   When the irradiation position of the electron beam on the surface of the thin film material is moved, the irradiation position is moved at a moving speed having a component perpendicular to the moving direction of the film formation target.

蒸着した薄膜の膜厚測定を、従来の可視光の透過吸収量を検出する方式に比べて、半分程度のコストで実行できる。また、従来の水晶膜厚計方式に比べて、運転コストがかからない。
測定できる薄膜の膜厚範囲(ダイナミックレンジ)を従来の可視光の透過吸収量を検出する方式に比べて、成膜材料の光透過性やX線透過性といった条件に依存するが条件が悪くても10倍以上、条件が良ければ100倍以上拡大できる。
膜厚が均一で品質の良い薄膜製品を生産することが可能となる。例えば、フィルムコンデンサー、磁気テープ等の高記憶メディア、熱線遮断膜等の光応用フィルム等の品質向上に貢献できる。
The film thickness of the deposited thin film can be measured at about half the cost compared to the conventional method of detecting the amount of visible light transmitted and absorbed. Moreover, operation cost is not required as compared with the conventional quartz film thickness meter method.
The film thickness range (dynamic range) of the thin film that can be measured is dependent on conditions such as the light transmittance and X-ray transmittance of the film forming material compared to the conventional method of detecting the amount of visible light transmitted and absorbed. Can be magnified 10 times or more, and can be enlarged 100 times or more if the conditions are good.
It is possible to produce a thin film product having a uniform film thickness and good quality. For example, it can contribute to quality improvement of high storage media such as film capacitors and magnetic tapes, and optical application films such as heat ray blocking films.

本発明である真空蒸着装置の内部構成図Internal configuration diagram of the vacuum deposition apparatus according to the present invention X線検出装置の周辺を立体的に示した模式図Schematic diagram showing the periphery of the X-ray detection device in three dimensions 電子銃の構造を説明するための概略構成図Schematic configuration diagram for explaining the structure of the electron gun X線検出装置の構造を説明するための概略構成図Schematic configuration diagram for explaining the structure of the X-ray detection apparatus

本発明である真空蒸着装置の構造を説明する。
図1は真空蒸着装置10の内部構成図を示している。
真空蒸着装置10は、真空槽11と、真空排気装置13と、薄膜材料容器50と、電子銃30と、成膜対象物保持部70と、X線検出装置20とを有している。
真空排気装置13は真空槽11に接続され、真空槽11内を真空排気するように構成されている。
薄膜材料容器50は、ここではボート状の水冷銅ハースであり、平面形状が細長の凹部を有している。凹部の長手方向の長さは後述する成膜対象物80の成膜領域の幅よりも1割〜2割長くされている。
薄膜材料容器50は、凹部の開口を上方に向けた状態で、真空槽11内の底部に配置され、凹部の内側に薄膜材料60を保持できるように構成されている。
真空槽11の側壁には薄膜材料追加装置12が、側壁を気密に貫通するように設けられている。薄膜材料追加装置12は、真空槽11内の真空雰囲気を維持したまま、真空槽11の外側から内側に薄膜材料60を搬入し、薄膜材料60を薄膜材料容器50の凹部に装填するように構成されている。
The structure of the vacuum deposition apparatus according to the present invention will be described.
FIG. 1 shows an internal configuration diagram of the vacuum deposition apparatus 10.
The vacuum evaporation apparatus 10 includes a vacuum chamber 11, an evacuation apparatus 13, a thin film material container 50, an electron gun 30, a film formation target holding unit 70, and an X-ray detection apparatus 20.
The vacuum exhaust device 13 is connected to the vacuum chamber 11 and configured to evacuate the vacuum chamber 11.
Here, the thin film material container 50 is a boat-shaped water-cooled copper hearth, and has a narrow recess in a planar shape. The length of the concave portion in the longitudinal direction is 10 to 20% longer than the width of the film formation region of the film formation target 80 to be described later.
The thin film material container 50 is disposed at the bottom of the vacuum chamber 11 with the opening of the recess facing upward, and is configured to hold the thin film material 60 inside the recess.
A thin film material adding device 12 is provided on the side wall of the vacuum chamber 11 so as to penetrate the side wall in an airtight manner. The thin film material adding device 12 is configured to carry in the thin film material 60 from the outside to the inside of the vacuum chamber 11 while maintaining the vacuum atmosphere in the vacuum chamber 11 and to load the thin film material 60 into the recess of the thin film material container 50. Has been.

図3は電子銃30の概略構成図を示している。
電子銃30は一端に銃口114が設けられた有底筒状の筐体31を有している。
筐体31の内側には中心軸線上にガン室110と接続路111と中間室112と放出路113とが、筐体31の底部から銃口114に向かってこの順に並んで設けられている。
ガン室110と中間室112にはそれぞれ不図示の真空排気部が接続され、真空排気部は各室内110、112をそれぞれ真空排気可能に構成されている。接続路111は内周がガン室110や中間室112よりも小さく形成され、ガン室110内と中間室112内を接続するように構成され、従って、ガン室110と中間室112と接続路111とで差動排気構造を成している。接続路111の内側には仕切バルブ39が配置されている。
中間室112内は放出路113を介して銃口114に接続されている。
以下、筐体31のガン室110側を上流、その逆の銃口114側を下流と呼ぶ。
FIG. 3 shows a schematic configuration diagram of the electron gun 30.
The electron gun 30 has a bottomed cylindrical casing 31 provided with a muzzle 114 at one end.
Inside the casing 31, a gun chamber 110, a connection path 111, an intermediate chamber 112, and a discharge path 113 are provided in this order from the bottom of the casing 31 toward the muzzle 114 on the central axis.
A vacuum exhaust unit (not shown) is connected to each of the gun chamber 110 and the intermediate chamber 112, and the vacuum exhaust unit is configured so that each chamber 110, 112 can be evacuated. The connection path 111 is formed so that the inner periphery is smaller than the gun chamber 110 and the intermediate chamber 112, and is configured to connect the inside of the gun chamber 110 and the inside of the intermediate chamber 112. Therefore, the connection path 111 between the gun chamber 110 and the intermediate chamber 112 is connected. And has a differential exhaust structure. A partition valve 39 is disposed inside the connection path 111.
The interior of the intermediate chamber 112 is connected to the muzzle 114 via the discharge path 113.
Hereinafter, the gun chamber 110 side of the casing 31 is referred to as upstream, and the opposite muzzle 114 side is referred to as downstream.

ガン室110内には、筐体31の中心軸線上にフィラメント32とカソード33とウェーネルト34とアノード35とが、上流から下流に向かってこの順に並んで配置されている。
フィラメント32にはフィラメント電源41が電気的に接続されている。フィラメント電源41はフィラメント32に電流を流してフィラメント32を加熱できるように構成されている。
フィラメント32とカソード33にはカソード加熱電源42が電気的に接続されている。カソード加熱電源42はフィラメント32に対してカソード33の電位が正になるように、フィラメント32とカソード33との間に電圧を印加可能に構成されている。
ウェーネルト34はカソード33よりも内周の大きい無底の円筒形状に形成され、自身の中心軸線が筐体31の中心軸線と一致するように向けられている。ウェーネルト34はカソード33に電気的に接続されている。
アノード35は無底の円筒形状に形成され、自身の中心軸線が筐体31の中心軸線と一致するように向けられている。アノード35は筐体31に電気的に接続されている。
In the gun chamber 110, the filament 32, the cathode 33, the Wehnelt 34, and the anode 35 are arranged in this order from upstream to downstream on the central axis of the casing 31.
A filament power supply 41 is electrically connected to the filament 32. The filament power source 41 is configured to heat the filament 32 by passing a current through the filament 32.
A cathode heating power source 42 is electrically connected to the filament 32 and the cathode 33. The cathode heating power source 42 is configured to be able to apply a voltage between the filament 32 and the cathode 33 so that the potential of the cathode 33 becomes positive with respect to the filament 32.
The Wehnelt 34 is formed in a bottomless cylindrical shape having a larger inner circumference than the cathode 33, and is directed so that its own central axis coincides with the central axis of the casing 31. The Wehnelt 34 is electrically connected to the cathode 33.
The anode 35 is formed in a bottomless cylindrical shape, and is directed so that its center axis coincides with the center axis of the housing 31. The anode 35 is electrically connected to the housing 31.

筐体31とカソード33には高電圧電源43が電気的に接続されている。高電圧電源43は筐体31の電位、すなわちアノード35の電位に対してカソード33の電位が負になるように筐体31とカソード33との間に電圧を印加可能に構成されている。
アノード35よりも下流には筐体31の中心軸線に沿って第一のレンズ36と第二のレンズ37と揺動コイル38とがこの順に並んで配置されている。
ここでは第一のレンズ36は接続路111の外側に接続路111を囲むように配置され、第二のレンズ37は放出路113の外側に放出路113を囲むように配置されている。
第一、第二のレンズ36、37にはそれぞれレンズ電源44が電気的に接続されている。レンズ電源44は、第一のレンズ36に電流を流して接続路111内に磁界を形成させ、かつ第二のレンズ37に電流を流して放出路113内に磁界を形成させるように構成されている。
A high voltage power supply 43 is electrically connected to the casing 31 and the cathode 33. The high voltage power supply 43 is configured to be able to apply a voltage between the casing 31 and the cathode 33 so that the potential of the cathode 33 is negative with respect to the potential of the casing 31, that is, the potential of the anode 35.
Downstream of the anode 35, a first lens 36, a second lens 37, and a swing coil 38 are arranged in this order along the central axis of the housing 31.
Here, the first lens 36 is disposed outside the connection path 111 so as to surround the connection path 111, and the second lens 37 is disposed outside the discharge path 113 so as to surround the discharge path 113.
A lens power supply 44 is electrically connected to each of the first and second lenses 36 and 37. The lens power supply 44 is configured to cause a current to flow through the first lens 36 to form a magnetic field in the connection path 111 and to cause a current to flow through the second lens 37 to form a magnetic field in the emission path 113. Yes.

揺動コイル38は放出路113の外側で銃口114を囲むように配置されている。揺動コイル38にはコイル電源45が電気的に接続されている。コイル電源45は揺動コイル38に電流を流して、銃口114の内側に位置する電子線の軌道に磁界を形成させるように構成されている。
コイル電源45には不図示の磁界制御装置が接続されている。磁界制御装置はコイル電源45から揺動コイル38に供給される電流の向きと量とを決定して、電子線の軌道に形成する磁界の向きと大きさを制御するように構成されている。
電子銃30の電源装置を電子銃電源40と呼ぶと、電子銃電源40はフィラメント電源41とカソード加熱電源42と高電圧電源43とレンズ電源44とコイル電源45とで構成されている。
The swing coil 38 is disposed so as to surround the muzzle 114 outside the discharge path 113. A coil power supply 45 is electrically connected to the swing coil 38. The coil power supply 45 is configured to cause a current to flow through the oscillating coil 38 and form a magnetic field in the trajectory of the electron beam located inside the muzzle 114.
A magnetic field controller (not shown) is connected to the coil power supply 45. The magnetic field control device is configured to determine the direction and amount of current supplied from the coil power supply 45 to the oscillating coil 38 and to control the direction and magnitude of the magnetic field formed in the trajectory of the electron beam.
When the power supply device of the electron gun 30 is referred to as an electron gun power supply 40, the electron gun power supply 40 includes a filament power supply 41, a cathode heating power supply 42, a high voltage power supply 43, a lens power supply 44, and a coil power supply 45.

図1を参照し、ここでは電子銃30は銃口114を薄膜材料容器50内の薄膜材料60に向けた状態で真空槽11の側壁に気密に挿設されている。
電子銃電源40から電子銃30に電力が供給されると、電子銃30は銃口114から真空槽11内に電子線を放出して、薄膜材料容器50内の薄膜材料60に電子線を照射するように構成されている。
さらに電子銃電源40から電子銃30の揺動コイル38に流れる電流を制御することで、電子銃30から放出される電子線の照射方向を変化させ、電子線の薄膜材料60表面上の照射位置を、少なくとも薄膜材料60の長手方向に平行な成分を有する移動方向に、移動させるように構成されている。
薄膜材料60に電子線が照射されて、加熱されると、薄膜材料60から蒸気が放出される。
成膜対象物保持部70は、薄膜材料容器50の上方に配置されている。薄膜材料容器50内の薄膜材料60から蒸気を放出させると、蒸気は成膜対象物保持部70に保持される成膜対象物80の表面に到達し、付着して、成膜対象物80の表面に薄膜が成膜される。
ここでは成膜対象物80は帯状のフィルムであり、成膜前にはロール状に巻き回されて形成されている。
Referring to FIG. 1, here, the electron gun 30 is hermetically inserted into the side wall of the vacuum chamber 11 with the muzzle 114 facing the thin film material 60 in the thin film material container 50.
When electric power is supplied from the electron gun power source 40 to the electron gun 30, the electron gun 30 emits an electron beam from the muzzle 114 into the vacuum chamber 11 and irradiates the thin film material 60 in the thin film material container 50 with the electron beam. It is configured as follows.
Further, by controlling the current flowing from the electron gun power supply 40 to the oscillation coil 38 of the electron gun 30, the irradiation direction of the electron beam emitted from the electron gun 30 is changed, and the irradiation position of the electron beam on the surface of the thin film material 60 is changed. Are moved in a moving direction having a component parallel to at least the longitudinal direction of the thin film material 60.
When the thin film material 60 is irradiated with an electron beam and heated, vapor is released from the thin film material 60.
The film formation target holding unit 70 is disposed above the thin film material container 50. When the vapor is released from the thin film material 60 in the thin film material container 50, the vapor reaches the surface of the film formation target 80 held by the film formation target holding unit 70 and adheres to the film formation target 80. A thin film is formed on the surface.
Here, the film formation target 80 is a belt-like film, and is formed by being wound into a roll before film formation.

成膜対象物保持部70は、ここでは駆動軸71と、従動軸72と、駆動軸回転装置73とを有している。
駆動軸71と、従動軸72は、薄膜材料容器50の上方に、薄膜材料容器50の凹部の幅方向に沿って互いに離間して配置され、それぞれ薄膜材料容器50の凹部の長手方向に平行に向けられている。
従動軸72は成膜対象物80のロールの中心に挿入され、駆動軸71にはロールの外周から引き出された成膜対象物80の端部が巻き付けられている。従って、成膜対象物保持部70に取り付けられた成膜対象物80の幅方向は、薄膜材料容器50の凹部の長手方向に平行にされている。
駆動軸回転装置73は駆動軸71に接続され、駆動軸71を駆動軸71の中心軸線の周りに回転可能に構成されている。
駆動軸回転装置73によって、駆動軸71を回転させると、駆動軸71に巻き付けられた成膜対象物80が引っ張られ、その力によって従動軸72が回転して成膜対象物80がロールから繰り出される。
このとき従動軸72には、ロールに加えられる引っ張りの力による回転力とは逆向きの力が発生しており、その二力によって、成膜対象物80は駆動軸71と従動軸72との間で平面状に張られるようになっている。
The film formation target holding unit 70 includes a drive shaft 71, a driven shaft 72, and a drive shaft rotating device 73 here.
The drive shaft 71 and the driven shaft 72 are disposed above the thin film material container 50 and spaced apart from each other along the width direction of the concave portion of the thin film material container 50, and are respectively parallel to the longitudinal direction of the concave portion of the thin film material container 50. Is directed.
The driven shaft 72 is inserted into the center of the roll of the film formation target 80, and the end of the film formation target 80 drawn from the outer periphery of the roll is wound around the drive shaft 71. Therefore, the width direction of the film formation target 80 attached to the film formation target holding unit 70 is parallel to the longitudinal direction of the concave portion of the thin film material container 50.
The drive shaft rotating device 73 is connected to the drive shaft 71 and configured to be able to rotate the drive shaft 71 around the central axis of the drive shaft 71.
When the drive shaft 71 is rotated by the drive shaft rotating device 73, the film formation target 80 wound around the drive shaft 71 is pulled, and the driven shaft 72 is rotated by the force, and the film formation target 80 is fed out of the roll. It is.
At this time, a force opposite to the rotational force due to the pulling force applied to the roll is generated on the driven shaft 72, and the film forming object 80 is caused to move between the drive shaft 71 and the driven shaft 72 by the two forces. It is designed to be stretched between the two.

駆動軸71を更に回転させると、成膜対象物80は、駆動軸71と従動軸72との間で平面性を維持したまま、従動軸72から駆動軸71に向かって走行移動し、駆動軸71にロール状に巻き取られるようになっている。符号5は成膜対象物80の移動方向を示している。
成膜対象物80を、薄膜材料60に対して走行移動させる装置を成膜対象物移動部と呼ぶと、ここでは成膜対象物移動部は駆動軸71と従動軸72と、駆動軸回転装置73とで構成されている。
ここで従動軸72と駆動軸71は薄膜材料容器50の凹部の幅方向に沿って互いに離間して配置されているので、成膜対象物保持部70に取り付けられた成膜対象物80の移動方向は、薄膜材料容器50の凹部の幅方向に平行である。
成膜対象物保持部70に保持される成膜対象物80と、薄膜材料容器50内の薄膜材料60との間には、蒸気の粒子を遮蔽する防着板75が成膜対象物80の下方を覆うように配置されている。
When the drive shaft 71 is further rotated, the film formation target 80 travels from the driven shaft 72 toward the drive shaft 71 while maintaining planarity between the drive shaft 71 and the driven shaft 72, and the drive shaft 71 71 is wound into a roll shape. Reference numeral 5 indicates a moving direction of the film formation target 80.
A device that moves the film formation target 80 relative to the thin film material 60 is called a film formation target moving unit. Here, the film formation target moving unit includes a drive shaft 71, a driven shaft 72, and a drive shaft rotating device. 73.
Here, since the driven shaft 72 and the drive shaft 71 are spaced apart from each other along the width direction of the concave portion of the thin film material container 50, the movement of the film formation target 80 attached to the film formation target holding unit 70. The direction is parallel to the width direction of the concave portion of the thin film material container 50.
Between the film formation object 80 held by the film formation object holding unit 70 and the thin film material 60 in the thin film material container 50, an adhesion preventing plate 75 that shields vapor particles is formed on the film formation object 80. It is arranged to cover the bottom.

防着板75のうち薄膜材料容器50と対面する位置には、X線と蒸気とを通過させる細長の開口が設けられている。防着板75の開口の長手方向は、薄膜材料容器50の凹部の長手方向と平行にされ、成膜対象物80の成膜領域の幅より1割〜2割長く形成されている。
薄膜材料60から蒸気を放出させると、防着板75の開口に入射する蒸気は防着板75の開口を通過して、防着板75の開口と対面する成膜対象物80に到達し、防着板75の開口の外側の遮蔽部に入射する蒸気は防着板75で遮蔽されるため遮蔽部と対面する成膜対象物80に到達しないようになっている。
駆動軸71を回転させながら、薄膜材料60から蒸気を放出させると、成膜対象物80は従動軸72側から駆動軸71側に向かって移動するので、防着板75の開口と対面を開始する前は成膜対象物80に薄膜は成膜されず、防着板75の開口と対面を開始した後、駆動軸71側に近づくにつれて、成膜対象物80に形成される薄膜の膜厚は厚くなり、防着板75の開口と対面を終えた後は、成膜対象物80に形成された薄膜の膜厚は変わらず、一定になる。
ここでは薄膜材料容器50の凹部と、防着板75の開口の長手方向の長さは、成膜対象物80の成膜領域の幅よりも1割〜2割長くされているので、成膜対象物80の成膜領域の幅方向(移動方向に垂直な方向)の両端付近で蒸気の到達量が減って膜厚が減少することが防止されている。
A long and narrow opening through which X-rays and steam pass is provided at a position facing the thin film material container 50 in the deposition preventing plate 75. The longitudinal direction of the opening of the deposition preventing plate 75 is parallel to the longitudinal direction of the concave portion of the thin film material container 50, and is formed 10 to 20% longer than the width of the film formation region of the film formation target 80.
When the vapor is released from the thin film material 60, the vapor incident on the opening of the deposition preventing plate 75 passes through the opening of the deposition preventing plate 75 and reaches the film formation target 80 facing the opening of the deposition preventing plate 75. The vapor incident on the shielding portion outside the opening of the deposition preventing plate 75 is shielded by the deposition preventing plate 75, so that it does not reach the film formation target 80 facing the shielding portion.
When vapor is released from the thin film material 60 while rotating the drive shaft 71, the film formation target 80 moves from the driven shaft 72 side toward the drive shaft 71, so that it starts to face the opening of the deposition preventing plate 75. The thin film is not formed on the film formation target 80 before the opening, and the film thickness of the thin film formed on the film formation target 80 is closer to the drive shaft 71 side after starting to face the opening of the deposition preventing plate 75. The thickness of the thin film formed on the film formation target 80 does not change and becomes constant after the opening of the deposition preventing plate 75 and the facing are finished.
Here, the length in the longitudinal direction of the concave portion of the thin film material container 50 and the opening of the deposition preventing plate 75 is set to be 10% to 20% longer than the width of the film forming region of the film forming target 80. In the vicinity of both ends of the film formation region of the object 80 in the width direction (direction perpendicular to the moving direction), it is prevented that the amount of vapor reached decreases and the film thickness decreases.

薄膜材料60に本実施形態のようにkeVオーダーのエネルギーを有する電子線が照射されると、薄膜材料60からはX線(特性X線及び白色X線)が放出される。ここで特性X線とは電子線を照射されて励起した薄膜材料60表面の原子から放出されるX線であり、白色X線とは薄膜材料60の表面で制動された電子線の電子から放出されるX線である。
薄膜材料60から放出されたX線の少なくとも一部は、防着板75の開口を通過して、防着板75の開口と対面する成膜対象物80に入射するようになっている。本発明では防着板75の開口以外の遮蔽部は、入射する蒸気を遮蔽する材質で形成されているならば、入射するX線を遮蔽する材質で形成されていてもよいし、透過する材質で形成されていてもよい。
When the thin film material 60 is irradiated with an electron beam having keV order energy as in this embodiment, X-rays (characteristic X-rays and white X-rays) are emitted from the thin film material 60. Here, characteristic X-rays are X-rays emitted from atoms on the surface of the thin film material 60 excited by irradiation with an electron beam, and white X-rays are emitted from electrons of an electron beam damped on the surface of the thin film material 60. X-rays.
At least a part of the X-rays emitted from the thin film material 60 passes through the opening of the deposition preventing plate 75 and enters the film formation target 80 facing the opening of the deposition preventing plate 75. In the present invention, the shielding portion other than the opening of the deposition preventing plate 75 may be formed of a material that shields incident X-rays as long as it is formed of a material that shields incident vapor. May be formed.

図4はX線検出装置20の概略構成図を示している。X線検出装置20はここでは複数のX線検知器20a〜20dを有している。各X線検知器20a〜20dの構造は同じなので、符号20aのX線検知器を例に構造を説明する。
X線検知器20aはX線を遮断する材質で形成された検知部容器21を有している。検知部容器21の内側にはX線検知部24が配置されている。
本実施形態での電子線のエネルギーは後述するように数keV〜40keV程度であるので、電子線を照射された薄膜材料60から放出されるX線のエネルギーも同様の範囲となる。X線検知部24はこの範囲のエネルギーのX線に感度を持つX線検知部が使用される。
X線検知部24は上記要件を満たすならば、市販されているX線検知部の中から特徴を選んで様々なタイプのものを使用することができる。
例えば、ガスの電離を利用するタイプの検知器にはGMカウンタ(ガイガーミュラーカウンタ)や比例計数管が代表的なものとしてある。しかしながら、これらのガス検知器は原理的にサイズが大きくなるので、ガス検知器よりも半導体ダイオード検出器に代表される固体検知器を使用する方が望ましい。
FIG. 4 shows a schematic configuration diagram of the X-ray detection apparatus 20. Here, the X-ray detection apparatus 20 includes a plurality of X-ray detectors 20a to 20d. Since the structures of the X-ray detectors 20a to 20d are the same, the structure will be described by taking the X-ray detector 20a as an example.
The X-ray detector 20a has a detector container 21 made of a material that blocks X-rays. An X-ray detection unit 24 is disposed inside the detection unit container 21.
Since the energy of the electron beam in this embodiment is about several keV to 40 keV as will be described later, the energy of the X-ray emitted from the thin film material 60 irradiated with the electron beam is in the same range. As the X-ray detector 24, an X-ray detector having sensitivity to X-rays having energy in this range is used.
As long as the X-ray detection unit 24 satisfies the above requirements, various types of X-ray detection units can be used by selecting features from commercially available X-ray detection units.
For example, GM counters (Geiger-Muller counters) and proportional counters are typical examples of detectors that use gas ionization. However, since these gas detectors increase in size in principle, it is preferable to use a solid state detector typified by a semiconductor diode detector rather than a gas detector.

X線検知部としてX線によって引き起こされる閃光(シンチレーション:scintillation)を利用するシンチレーションカウンタも使用できる。この方式はX線により発生した閃光を光電子増倍管で検出するものである。光を発生させる材料(シンチレータ)としては気体、液体、固体を問わず数多く存在するが、よく使用されるのは微量のヨウ化タリウムを添加したヨウ化ナトリウム(NaI(Tl))結晶である。
X線検知部24にはX線検知部電源25が電気的に接続され、X線検知部電源25はX線検知部24に電圧を印加可能に構成されている。
X線検知部24と検知部容器21の開口との間には、検知窓23が配置されている。
検知窓23には上述した市販の検知器に付けられている物がそのまま使用できる。一般に、検知窓23には広いエネルギー範囲を持つX線を透過できる材料を選ぶ必要があるが、高いエネルギーのX線ほど透過する力が大きいので、低いエネルギーのX線も透過できる材料を選べばよく、従って、検知窓23の材料には低原子番号の元素で構成された材料が一般に選ばれる。たとえば、金属ではBe材が用いられ、非金属ではガラス類やプラスチック材料が用いられる。
A scintillation counter using a scintillation caused by X-rays can also be used as the X-ray detection unit. In this method, flash light generated by X-rays is detected by a photomultiplier tube. There are many materials (scintillators) that generate light regardless of whether they are gases, liquids, or solids, but sodium iodide (NaI (Tl)) crystals to which a small amount of thallium iodide is added are often used.
An X-ray detector power source 25 is electrically connected to the X-ray detector 24, and the X-ray detector power source 25 is configured to be able to apply a voltage to the X-ray detector 24.
A detection window 23 is disposed between the X-ray detection unit 24 and the opening of the detection unit container 21.
A thing attached to the above-mentioned commercially available detector can be used for the detection window 23 as it is. In general, it is necessary to select a material that can transmit X-rays having a wide energy range for the detection window 23. However, since the power to transmit X-rays with higher energy is larger, if a material that can transmit X-rays with lower energy is selected. Therefore, a material composed of an element having a low atomic number is generally selected as the material of the detection window 23. For example, Be material is used for metal, and glass or plastic material is used for non-metal.

検知窓23を中央にしてX線検知部24の反対側には、検知部容器21の開口を覆うように窓部22が配置され、窓部22は検知部容器21の開口に気密に固定されている。窓部22はX線が透過できるように薄く、かつ真空壁として検知部容器21の内側を気密に保つための強度を持つように形成されている。
窓部22には、低原子番号の金属(Be、Al、Si、Ti等)やガラスやプラスチックを使用することができる。さらに、これらの材料にステンレス等の金属メッシュで補強したものはより安全に使用できる。
検知部容器21はX線を遮断する材質で形成されているので、X線がX線検知器20aに入射する場合には、窓部22を通過するX線だけがX線検知部24に到達するようになっている。
また窓部22は検知部容器21と共に検知部容器21の内側を気密に保つように構成され、X線検知器20aを真空排気された真空槽11内に配置したとき、検知窓23及びX線検知部24を真空雰囲気から隔離する役割を果たしている。
A window 22 is disposed on the opposite side of the X-ray detection unit 24 with the detection window 23 in the center so as to cover the opening of the detection unit container 21, and the window 22 is airtightly fixed to the opening of the detection unit container 21. ing. The window portion 22 is thin so that X-rays can pass therethrough, and is formed to have a strength to keep the inside of the detection portion container 21 airtight as a vacuum wall.
The window portion 22 can be made of a low atomic number metal (Be, Al, Si, Ti, etc.), glass or plastic. Further, these materials reinforced with a metal mesh such as stainless steel can be used more safely.
Since the detection unit container 21 is made of a material that blocks X-rays, only the X-rays that pass through the window 22 reach the X-ray detection unit 24 when the X-rays enter the X-ray detector 20a. It is supposed to be.
The window 22 is configured to keep the inside of the detection unit container 21 airtight together with the detection unit container 21. When the X-ray detector 20a is disposed in the evacuated vacuum chamber 11, the detection window 23 and the X-rays are arranged. It plays the role which isolate | separates the detection part 24 from a vacuum atmosphere.

図1を参照し、各X線検知器20a〜20dは成膜対象物80から見て薄膜材料60の逆側に配置され、それぞれ窓部22が成膜対象物80の裏面と対面するように向けられている。
成膜対象物80に入射する蒸気の粒子は成膜対象物80を透過しないので、各X線検知器20a〜20dには蒸気は到達せず、各X線検知器20a〜20dに蒸気が付着することによるX線検知性能の低下は生じないようになっている。
各X線検知器20a〜20dと成膜対象物80との間には、X線を遮蔽する遮蔽板76が配置され、遮蔽板76の各X線検知器20a〜20dの窓部22と対面する部分には、X線を通過させる開口部が設けられている。
成膜対象物80にX線を入射させると、成膜対象物80が少なくとも一部のX線を透過させる材質で形成されている場合には、成膜対象物80を透過した透過X線は、遮蔽板76に入射する。遮蔽板76の開口部に入射する透過X線は開口部を通過して開口部と対面する各X線検知器20a〜20dの窓部22に入射し、遮蔽板76の開口部の外側の遮蔽部に入射するX線は遮蔽部で遮蔽されて各X線検知器20a〜20dに入射しないようになっている。
成膜対象物80の各X線検知器20a〜20dと対面する位置を測定位置と呼ぶと、各X線検知器20a〜20dは成膜対象物80のそれぞれ対面する測定位置を透過する透過X線の強度を検出することができる。
Referring to FIG. 1, each of the X-ray detectors 20 a to 20 d is arranged on the opposite side of the thin film material 60 as viewed from the film formation target 80, so that the window 22 faces the back surface of the film formation target 80. Is directed.
Since the vapor particles incident on the film formation target 80 do not pass through the film formation target 80, the vapor does not reach the X-ray detectors 20a to 20d, and the vapor adheres to the X-ray detectors 20a to 20d. As a result, the X-ray detection performance does not deteriorate.
Between each X-ray detector 20a-20d and the film-forming target 80, the shielding board 76 which shields X-rays is arrange | positioned, and the window part 22 of each X-ray detector 20a-20d of the shielding board 76 faces. An opening for allowing X-rays to pass therethrough is provided in the portion.
When X-rays are incident on the film formation target 80, when the film formation target 80 is formed of a material that transmits at least a part of the X-rays, the transmitted X-rays transmitted through the film formation target 80 are , Enters the shielding plate 76. The transmitted X-rays that enter the opening of the shielding plate 76 pass through the opening and enter the windows 22 of the X-ray detectors 20a to 20d that face the opening, and are shielded outside the opening of the shielding plate 76. The X-rays incident on the part are shielded by the shielding part and do not enter the X-ray detectors 20a to 20d.
When the positions of the film formation target 80 facing the X-ray detectors 20a to 20d are referred to as measurement positions, the X-ray detectors 20a to 20d transmit X through the measurement positions of the film formation target 80 facing each other. The intensity of the line can be detected.

図2は、X線検知器20a〜20dの周辺を立体的に示した模式図である。
X線検知器20a〜20dはここでは成膜対象物80の走行方向とは垂直な幅方向に沿って等間隔に並んで配置されている。従って、各X線検知器20a〜20dは、成膜対象物80の幅方向に沿って等間隔に位置する複数の測定位置の透過X線の強度をそれぞれ検出するように構成されている。
ここでは各X線検知器20a〜20dはいずれも、防着板75の開口のうち、成膜対象物80の移動方向の終点側の端部に近い所定の位置の真上に配置されている。
成膜対象物80が各X線検知器20a〜20dと対面する位置から防着板75の開口と対面を終了する位置まで移動する間に成膜対象物80に形成される薄膜の膜厚の増加量は無視できるほど少なくされており、薄膜が膜厚に応じて入射するX線の強度を減衰させる場合、各X線検知器20a〜20dに入射する透過X線の強度は、成膜終了後と同じ厚みの薄膜を透過した透過X線の強度とみなすことができる。
FIG. 2 is a schematic diagram three-dimensionally showing the periphery of the X-ray detectors 20a to 20d.
Here, the X-ray detectors 20a to 20d are arranged at equal intervals along the width direction perpendicular to the traveling direction of the film formation target 80. Accordingly, each of the X-ray detectors 20 a to 20 d is configured to detect the intensity of transmitted X-rays at a plurality of measurement positions located at equal intervals along the width direction of the film formation target 80.
Here, each of the X-ray detectors 20a to 20d is disposed directly above a predetermined position near the end of the deposition target 80 in the moving direction of the opening of the deposition preventing plate 75. .
The film thickness of the thin film formed on the film formation target 80 is moved while the film formation target 80 moves from the position facing each of the X-ray detectors 20a to 20d to the position where the opening of the deposition preventive plate 75 ends. The increase amount is negligibly small, and when the thin film attenuates the intensity of incident X-rays according to the film thickness, the intensity of transmitted X-rays incident on the X-ray detectors 20a to 20d is the end of film formation. It can be regarded as the intensity of transmitted X-rays transmitted through a thin film having the same thickness as that later.

各X線検知器20a〜20dには測定装置17が接続され、測定装置17には記憶装置18が接続されている。
記憶装置18には、後述するように予め決められたパワーの電子線を薄膜材料60に照射したときに、成膜対象物80の表面の薄膜と成膜対象物80とを順に透過した透過X線の強度と、薄膜の膜厚との対応関係が記憶されている。
測定装置17は、各X線検知器20a〜20dで検出された透過X線の強度と、記憶装置18に記憶された対応関係とから、成膜対象物80の走行方向に垂直な複数の測定位置の薄膜の膜厚を測定するように構成されている。
測定装置17で薄膜の膜厚を測定した後、例えば手動で、測定値を基準値と比較して、比較結果から、成膜対象物80の表面に形成される薄膜の膜厚を増減させることで、成膜対象物80に形成される薄膜の膜厚を基準値に近づけることができる。
A measuring device 17 is connected to each of the X-ray detectors 20a to 20d, and a storage device 18 is connected to the measuring device 17.
The storage device 18 sequentially transmits the thin film on the surface of the film formation target 80 and the film formation target 80 when the thin film material 60 is irradiated with an electron beam having a predetermined power as will be described later. The correspondence between the line intensity and the film thickness of the thin film is stored.
The measuring device 17 performs a plurality of measurements perpendicular to the traveling direction of the film formation target 80 based on the intensity of the transmitted X-rays detected by the X-ray detectors 20a to 20d and the correspondence relationship stored in the storage device 18. The thickness of the thin film at the position is measured.
After measuring the film thickness of the thin film with the measuring device 17, for example, manually compare the measured value with the reference value, and increase or decrease the film thickness of the thin film formed on the surface of the film formation target 80 from the comparison result. Thus, the film thickness of the thin film formed on the film formation target 80 can be brought close to the reference value.

ここでは測定装置17と記憶装置18には制御装置19が接続されている。制御装置19には、薄膜の膜厚の目標とする基準値と、各X線検知器20a〜20dの設置位置とが記憶され、測定装置17で測定された各測定位置の薄膜の膜厚を、基準値と比較し、比較結果から、成膜対象物80の表面に形成される薄膜の膜厚を増減させ、成膜対象物80表面に形成される薄膜の膜厚を基準値に近づけるように構成されている。
ここでは制御装置19は電子銃電源40と成膜対象物移動部にそれぞれ接続されている。
Here, a control device 19 is connected to the measuring device 17 and the storage device 18. The control device 19 stores a target reference value for the film thickness of the thin film and the installation positions of the X-ray detectors 20a to 20d. The film thickness of the thin film at each measurement position measured by the measurement device 17 is stored. The film thickness of the thin film formed on the surface of the film formation target 80 is increased or decreased from the comparison result so that the film thickness of the thin film formed on the surface of the film formation target 80 approaches the reference value. It is configured.
Here, the control device 19 is connected to the electron gun power source 40 and the film formation target moving unit.

制御装置19は、電子銃電源40に制御信号を送って、電子銃30から放出される電子線の照射方向を変化させ、薄膜材料60上の照射位置の移動速度を変更して、成膜対象物80表面に形成される薄膜の膜厚を増減させることができるように構成され、かつ成膜対象物移動部に制御信号を送って、成膜対象物80の移動速度を変化させ、成膜対象物80表面に形成される薄膜の膜厚を増減させることができるように構成されている。   The control device 19 sends a control signal to the electron gun power source 40, changes the irradiation direction of the electron beam emitted from the electron gun 30, changes the moving speed of the irradiation position on the thin film material 60, and forms the film formation target. The film thickness of the thin film formed on the surface of the object 80 can be increased or decreased, and a control signal is sent to the film formation object moving unit to change the moving speed of the film formation object 80 to form a film. The thickness of the thin film formed on the surface of the object 80 can be increased or decreased.

次に上述の真空蒸着装置10を用いた真空蒸着方法を、フィルム状の成膜対象物80にアルミニウムの薄膜を成膜する場合を例に説明する。
成膜対象物80は入射するX線の少なくとも一部を透過させる材質で形成されている必要があり、ここでは成膜対象物80として幅が600〜1200mm、厚さが2〜3μm、1ロールの長さが1600mであるPET、PP、ポリイミド等のフィルムを使用する。
また薄膜材料60にはアルミニウム(Al)を使用する。アルミニウム膜は膜厚に応じて入射するX線の強度を減衰させるが、目標とする膜厚(数100nm)のアルミニウム膜は入射するX線の少なくとも一部を透過させることができる。
Next, a vacuum vapor deposition method using the above-described vacuum vapor deposition apparatus 10 will be described by taking as an example a case where an aluminum thin film is formed on a film-shaped film formation target 80.
The film formation target 80 needs to be formed of a material that transmits at least a part of incident X-rays. Here, the film formation target 80 has a width of 600 to 1200 mm, a thickness of 2 to 3 μm, and one roll. A film of PET, PP, polyimide or the like having a length of 1600 m is used.
The thin film material 60 is made of aluminum (Al). An aluminum film attenuates the intensity of incident X-rays according to the film thickness, but an aluminum film having a target film thickness (several hundred nm) can transmit at least part of incident X-rays.

図1を参照し、先ず試験工程として、試験用の成膜対象物80からなるロールを真空槽11内に搬入し、成膜対象物保持部70に取り付ける。
真空槽11内を真空排気装置13で真空排気する。以後、真空排気を継続して、真空槽11内の真空雰囲気を維持しておく。
薄膜材料追加装置12により、真空槽11内に細長形状に整形された薄膜材料60であるアルミニウムを搬入し、薄膜材料容器50の凹部に装填する。
Referring to FIG. 1, first, as a test process, a roll made of a test film formation target 80 is carried into the vacuum chamber 11 and attached to the film formation target holding unit 70.
The inside of the vacuum chamber 11 is evacuated by the evacuation device 13. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained.
The thin film material adding device 12 loads aluminum, which is the thin film material 60 shaped into an elongated shape, into the vacuum chamber 11 and loads the aluminum into the concave portion of the thin film material container 50.

図3を参照し、真空槽11内を真空排気すると、電子銃30の筐体31内も真空排気される。
真空槽11内の圧力が10-2Pa台に入ったら、不図示の排気系により電子銃30のガン室110と中間室112内を真空排気し、仕切バルブ39を開く。
中間室112を設けて作動排気構造にしているため、以後、真空槽11内の圧力が電子線照射等により上昇し、1×10-1Pa程度になってもガン室110内の圧力を5×10-3Pa以下に保つことができる。このことにより、ガン室110内での異常放電を防ぎ、フィラメント32及びカソード33の焼損を防ぐことができる。
電子銃30の筐体31とアノード35と真空槽11と薄膜材料容器50とをいずれも電気的に接地しておく。
フィラメント32の電位に対してカソード33の電位が正になるようにフィラメント32とカソード33との間に電圧を印加しておく。さらに、アノード35の接地電位(0V)に対してカソード33の電位が負(ここでは−40kV)になるようにカソード33とアノード35との間に電圧を印加しておく。また、第一、第二のレンズ36、37に電流を流して、接続路111と放出路113の内側にそれぞれ磁界を形成しておき、揺動コイル38に電流を流して銃口114の内側に磁界を形成しておく。
Referring to FIG. 3, when the inside of the vacuum chamber 11 is evacuated, the inside of the housing 31 of the electron gun 30 is also evacuated.
When the pressure in the vacuum chamber 11 enters the 10 −2 Pa range, the inside of the gun chamber 110 and the intermediate chamber 112 of the electron gun 30 is evacuated by an exhaust system (not shown), and the partition valve 39 is opened.
Since the intermediate chamber 112 is provided and the working exhaust structure is provided, the pressure in the vacuum chamber 11 is increased by electron beam irradiation and the like, and the pressure in the gun chamber 110 is reduced to about 1 × 10 −1 Pa. It can be kept at 10-3 Pa or less. Thereby, abnormal discharge in the gun chamber 110 can be prevented, and burning of the filament 32 and the cathode 33 can be prevented.
The casing 31, the anode 35, the vacuum chamber 11 and the thin film material container 50 of the electron gun 30 are all electrically grounded.
A voltage is applied between the filament 32 and the cathode 33 so that the potential of the cathode 33 becomes positive with respect to the potential of the filament 32. Further, a voltage is applied between the cathode 33 and the anode 35 so that the potential of the cathode 33 is negative (in this case, −40 kV) with respect to the ground potential (0 V) of the anode 35. Further, a current is passed through the first and second lenses 36 and 37 to form magnetic fields inside the connection path 111 and the discharge path 113, respectively, and a current is passed through the oscillating coil 38 to the inside of the muzzle 114. A magnetic field is formed.

中間室112内が10-3Pa台、ガン室110内が10-4Pa台に入ったら、フィラメント電源41からフィラメント32に電流を流し、フィラメント32を加熱する。フィラメント32が高温になると(ここでは2800K)、フィラメント32から熱電子が発生する。
熱電子はカソード33に向かって加速され、カソード33に衝突し、カソード33を加熱する。
加熱されたカソード33から熱電子が発生する。熱電子の発生量はカソード33の温度が高いほど多くなる。カソード33の温度はカソード加熱電源42により制御され、従って、熱電子発生量はカソード加熱電源42により制御される。
ウェーネルト34はカソード33と同電位であり、カソード33からの電子の発散を抑え、アノード35へ導く役割を果たす。
アノード35の円筒形の内側を通過した電子は第一のレンズ36の磁界で収束され、仕切弁39の開口を通り、中間室112を通過した後、第二のレンズ37の磁界で再度収束される。さらに、電子は揺動コイル38の磁界で軌道補正を加えられ、真空槽11内に放出される。
このようにカソード33から生成した電子は電子銃30の筐体31内部で線状に整形されて輸送されるので、通常電子線と呼ばれる。
When the intermediate chamber 112 enters the 10 −3 Pa level and the gun chamber 110 enters the 10 −4 Pa level, current is supplied from the filament power supply 41 to the filament 32 to heat the filament 32. When the filament 32 reaches a high temperature (here, 2800 K), thermoelectrons are generated from the filament 32.
The thermoelectrons are accelerated toward the cathode 33, collide with the cathode 33, and heat the cathode 33.
Thermoelectrons are generated from the heated cathode 33. The amount of generated thermoelectrons increases as the temperature of the cathode 33 increases. The temperature of the cathode 33 is controlled by the cathode heating power source 42, and accordingly, the amount of thermoelectrons generated is controlled by the cathode heating power source 42.
The Wehnelt 34 has the same potential as that of the cathode 33 and serves to suppress the divergence of electrons from the cathode 33 and lead it to the anode 35.
Electrons that have passed through the inside of the cylindrical shape of the anode 35 are converged by the magnetic field of the first lens 36, pass through the opening of the gate valve 39, pass through the intermediate chamber 112, and then converged again by the magnetic field of the second lens 37. The Further, the electrons are subjected to trajectory correction by the magnetic field of the oscillating coil 38 and are emitted into the vacuum chamber 11.
The electrons generated from the cathode 33 in this manner are linearly shaped and transported inside the casing 31 of the electron gun 30 and are therefore usually called electron beams.

上述のように電子銃30の筐体31とアノード35と真空槽11と薄膜材料容器50とはいずれも電気的に接地されており、薄膜材料容器50を介して薄膜材料60も電気的に接地されている。
電子線は最初にカソード33の電位(ここでは−40kV)とアノード35の接地電位(0V)との差(40kV)で加速され、40keVのエネルギーを獲得する。その後は接地電位の空間(すなわち電界フリーの空間)を通り、40keVのエネルギーで接地電位にある薄膜材料60に照射される(図1参照)。
As described above, the casing 31, the anode 35, the vacuum chamber 11, and the thin film material container 50 of the electron gun 30 are all electrically grounded, and the thin film material 60 is also electrically grounded via the thin film material container 50. Has been.
The electron beam is first accelerated by the difference (40 kV) between the potential of the cathode 33 (here, −40 kV) and the ground potential (0 V) of the anode 35 to acquire 40 keV energy. Thereafter, the thin film material 60 at the ground potential is irradiated with the energy of 40 keV through the ground potential space (that is, the electric field free space) (see FIG. 1).

本実施形態においては、電子線のパワーは電子線の電流で決まる。電流が1Aの場合は、40kV×1A=40kWとなる。
電子線を照射された薄膜材料60であるアルミニウムは、加熱されて、溶解し、アルミニウムの蒸気を放出する。
電子銃電源40を制御して、電子線の照射方向を変化させ、電子線の照射位置を薄膜材料60の長手方向に沿って一定の速度で往復移動させる。
薄膜材料60は長手方向に沿って均一に加熱され、長手方向に沿って均一の蒸発速度で蒸気が放出される。
薄膜材料60から放出され、防着板75の開口を通過した蒸気は、防着板75の開口と対面する成膜対象物80の表面に到達し、付着する。
In the present embodiment, the power of the electron beam is determined by the current of the electron beam. When the current is 1 A, 40 kV × 1 A = 40 kW.
Aluminum, which is the thin film material 60 irradiated with the electron beam, is heated and melted to release aluminum vapor.
The electron gun power supply 40 is controlled to change the irradiation direction of the electron beam, and the irradiation position of the electron beam is reciprocated at a constant speed along the longitudinal direction of the thin film material 60.
The thin film material 60 is heated uniformly along the longitudinal direction, and vapor is released at a uniform evaporation rate along the longitudinal direction.
The vapor released from the thin film material 60 and passing through the opening of the deposition preventing plate 75 reaches the surface of the film formation target 80 facing the opening of the deposition preventing plate 75 and adheres thereto.

試験用の成膜対象物80を防着板75の開口と対面する位置に静止させたまま、電子線の照射を継続し、成膜対象物80の表面に蒸気の粒子を堆積させる。その間に各X線検出装置20a〜20dで成膜対象物80を透過した透過X線の強度を検出し、検出した透過X線の強度を電子線照射の経過時間と共に記憶しておく。
電子線照射を所定の時間継続した後、電子銃電源40に制御信号を送信して電子銃30からの電子線の放出を停止させる。次いで、試験用の成膜対象物80を真空槽11から取り出した後、不図示の膜厚計で試験用の成膜対象物80表面に成膜された薄膜の膜厚を測定する。
測定した薄膜の膜厚を電子線照射時間で割って、薄膜材料60の成膜速度を求め、検出した透過X線の強度とそのときの薄膜の膜厚とを対応付けて記憶しておく。
While the test film formation target 80 is kept stationary at the position facing the opening of the deposition preventive plate 75, the electron beam irradiation is continued, and vapor particles are deposited on the surface of the film formation target 80. In the meantime, the intensity of the transmitted X-ray transmitted through the film formation target 80 is detected by each of the X-ray detection devices 20a to 20d, and the detected intensity of the transmitted X-ray is stored together with the elapsed time of the electron beam irradiation.
After the electron beam irradiation is continued for a predetermined time, a control signal is transmitted to the electron gun power source 40 to stop the emission of the electron beam from the electron gun 30. Next, after the test film formation target 80 is taken out from the vacuum chamber 11, the film thickness of the thin film formed on the surface of the test film formation target 80 is measured with a film thickness meter (not shown).
The measured film thickness is divided by the electron beam irradiation time to determine the film forming speed of the thin film material 60, and the detected transmitted X-ray intensity and the film thickness at that time are stored in association with each other.

次いで、生産工程として、真空槽11内に生産用の成膜対象物80からなるロールを搬入し、成膜対象物保持部70に取り付ける。
試験工程で求めた薄膜材料60の成膜速度と、成膜対象物80の移動距離(すなわち成膜対象物80の移動方向に対する防着板75の開口の長さ)と、目標とする薄膜の膜厚(基準値)とから、生産用の成膜対象物80の移動速度を決定し、決定した移動速度で成膜対象物80を駆動軸71と従動軸72との間で走行移動させる。ここでは約350m/minの速度で成膜対象物80を走行移動させる。
電子銃30から試験工程と同じパワーの電子線を放出させ、かつ薄膜材料60の照射面上で電子線の照射位置を試験工程と同じ移動速度で移動させて、薄膜材料60を加熱し、蒸発させる。
試験工程と同じ照射条件で電子線を照射しているので、試験工程と同じ成膜速度で薄膜材料60から蒸気が放出される。
放出された蒸気は、遮蔽板76の開口と対面する位置を走行移動する生産用の成膜対象物80に到達し、生産用の成膜対象物80の表面に薄膜が形成される。
Next, as a production process, a roll made of a production film formation target 80 is carried into the vacuum chamber 11 and attached to the film formation target holding unit 70.
The film forming speed of the thin film material 60 obtained in the test process, the moving distance of the film forming object 80 (that is, the length of the opening of the deposition preventing plate 75 with respect to the moving direction of the film forming object 80), and the target thin film From the film thickness (reference value), the moving speed of the film-forming object 80 for production is determined, and the film-forming object 80 is moved between the drive shaft 71 and the driven shaft 72 at the determined moving speed. Here, the film-forming target 80 is moved and moved at a speed of about 350 m / min.
An electron beam having the same power as that in the test process is emitted from the electron gun 30 and the irradiation position of the electron beam is moved on the irradiation surface of the thin film material 60 at the same moving speed as in the test process so that the thin film material 60 is heated and evaporated. Let
Since the electron beam is irradiated under the same irradiation conditions as in the test process, vapor is released from the thin film material 60 at the same film formation rate as in the test process.
The emitted vapor reaches the production film forming object 80 that travels and moves in a position facing the opening of the shielding plate 76, and a thin film is formed on the surface of the production film forming object 80.

薄膜材料60に電子線を照射しながら、各X線検知器20a〜20dで、薄膜材料60から放出され、生産用の成膜対象物80に形成された薄膜と、生産用の成膜対象物80とを順に透過した透過X線の強度を検出する。
検出した透過X線の強度と、試験工程で記憶した対応関係とから、生産用の成膜対象物80に形成された薄膜の膜厚を測定する。
ここでは試験工程と同じパワーで電子線を照射しているので、薄膜材料60からは試験工程と同じ強度でX線が放出される。従って、試験工程で記憶した対応関係をそのまま使用することができる。
While irradiating the thin film material 60 with an electron beam, the X-ray detectors 20a to 20d emit the thin film material 60 and form the thin film material 60 on the production target 80, and the production target. The intensity of transmitted X-rays that have passed through 80 in order is detected.
Based on the detected transmitted X-ray intensity and the correspondence stored in the test process, the film thickness of the thin film formed on the production target 80 is measured.
Here, since the electron beam is irradiated with the same power as in the test process, X-rays are emitted from the thin film material 60 with the same intensity as in the test process. Therefore, the correspondence stored in the test process can be used as it is.

このようにして、生産用の成膜対象物80の表面に連続的に薄膜を成膜しながら、成膜した薄膜の膜厚を測定することができる。
本発明の膜厚測定方法では、可視光よりも透過力の大きいX線の透過量を検出するので、0.3μm以上の厚みのアルミニウム膜でも膜厚を測定できる。
ここでは、試験工程と同じ条件で薄膜材料60に電子線を照射し、薄膜材料60の成膜速度から計算で求めた移動速度で生産用の成膜対象物80を移動させているので、生産用の成膜対象物80には目標とする膜厚で薄膜が連続的に成膜される。
In this manner, the film thickness of the formed thin film can be measured while continuously forming the thin film on the surface of the film formation target 80 for production.
In the film thickness measurement method of the present invention, since the amount of X-ray transmission having a greater transmission power than visible light is detected, the film thickness can be measured even with an aluminum film having a thickness of 0.3 μm or more.
Here, the thin film material 60 is irradiated with an electron beam under the same conditions as in the test process, and the film formation target 80 for production is moved at a moving speed calculated from the film forming speed of the thin film material 60. A thin film having a target film thickness is continuously formed on the target film formation object 80.

しかしながら、電子線の照射中に、例えば時間の経過に伴って薄膜材料容器50内の薄膜材料60の量が減少すると、薄膜材料60の単位時間当たりの蒸発量が減少し、成膜速度が減少して、成膜対象物80の表面に形成される薄膜の膜厚が減少する。
このとき、各X線検知器20a〜20dが検出する透過X線の強度はいずれも同じ大きさで増加する。測定装置17は各測定位置での透過X線の強度から各測定位置の薄膜の膜厚を測定する。測定した薄膜の膜厚が、制御装置19に設定された基準値よりも許容範囲を超えて小さい場合には、制御装置19は測定した薄膜の膜厚と、成膜対象物80の移動速度と移動距離(成膜対象物80の移動方向に対する遮蔽板76の開口の長さ)とから、成膜対象物80の移動速度の変更量を計算し、計算結果に基づいて、成膜対象物80の移動速度を遅くさせる。成膜対象物80の成膜面が蒸気に曝される時間が増加し、成膜面に到達する蒸気の量が増加するので、薄膜の膜厚は増加して基準値に近づく。
However, for example, when the amount of the thin film material 60 in the thin film material container 50 decreases with time during the electron beam irradiation, the evaporation amount of the thin film material 60 per unit time decreases, and the film formation rate decreases. Thus, the film thickness of the thin film formed on the surface of the film formation target 80 is reduced.
At this time, the transmitted X-ray intensities detected by the X-ray detectors 20a to 20d all increase with the same magnitude. The measuring device 17 measures the film thickness of the thin film at each measurement position from the intensity of transmitted X-rays at each measurement position. When the measured thickness of the thin film is smaller than the allowable value than the reference value set in the control device 19, the control device 19 determines the measured thin film thickness and the moving speed of the film formation target 80. Based on the movement distance (the length of the opening of the shielding plate 76 with respect to the movement direction of the film formation target 80), the amount of change in the movement speed of the film formation target 80 is calculated, and based on the calculation result, the film formation target 80 is obtained. Slow down the movement speed. Since the time during which the film formation surface of the film formation target 80 is exposed to vapor increases and the amount of vapor reaching the film formation surface increases, the film thickness of the thin film increases and approaches the reference value.

逆に成膜対象物80に形成される薄膜の膜厚が増加したときは、各X線検知器20a〜20dが検出する透過X線の強度はいずれも同じ大きさで減少する。測定装置17は各測定位置での透過X線の強度から各測定位置の薄膜の膜厚を測定する。測定した薄膜の膜厚が基準値よりも許容範囲を超えて大きい場合には、制御装置19は測定した薄膜の膜厚と、成膜対象物80の移動速度と移動距離とから、成膜対象物80の移動速度の変更量を計算し、計算結果に基づいて、成膜対象物80の移動速度を速くさせる。成膜対象物80の成膜面が蒸気に曝される時間が減少し、成膜面に到達する蒸気の量が減少するので、薄膜の膜厚は減少して基準値に近づく。   Conversely, when the film thickness of the thin film formed on the film formation target 80 increases, the intensity of the transmitted X-rays detected by the X-ray detectors 20a to 20d decreases with the same magnitude. The measuring device 17 measures the film thickness of the thin film at each measurement position from the intensity of transmitted X-rays at each measurement position. When the measured thickness of the thin film exceeds the reference value and exceeds the allowable range, the control device 19 determines the film formation target from the measured thickness of the thin film, the moving speed and the moving distance of the film forming object 80. The amount of change in the moving speed of the object 80 is calculated, and the moving speed of the film forming object 80 is increased based on the calculation result. Since the time during which the film formation surface of the film formation target 80 is exposed to vapor is reduced and the amount of vapor reaching the film formation surface is reduced, the film thickness of the thin film is reduced and approaches the reference value.

上記説明では、各X線検知器20a〜20dが検出する透過X線の強度がいずれも同じ大きさで増減したときに、成膜対象物80の移動速度を変更して成膜対象物80に形成される薄膜の膜厚を基準値に近づけたが、本発明はこの方法に限定されず、後述するように電子線の照射方向を変更して、薄膜材料60上の照射位置の移動速度を変化させ、薄膜の膜厚を基準値に近づけてもよい。
なお、薄膜の膜厚を増減させるには、電子線のパワーを変化させる方法も考えられるが、電子線のパワーを変化させると薄膜材料60から放出されるX線の強度が変化し、試験工程で記憶した対応関係が使用できなくなるので、本発明では電子線のパワーは変化させず、一定のパワーで照射を行う。
このようにして、成膜対象物80の表面には許容範囲内で一定とみなすことができる膜厚(ここでは数100nm(膜抵抗が1.6Ω))で連続的にアルミニウムの薄膜が成膜される。
In the above description, when the transmitted X-ray intensities detected by the X-ray detectors 20a to 20d are all increased or decreased by the same magnitude, the moving speed of the film formation target 80 is changed so that the film formation target 80 is changed. Although the film thickness of the thin film to be formed is brought close to the reference value, the present invention is not limited to this method, and the moving speed of the irradiation position on the thin film material 60 is changed by changing the electron beam irradiation direction as described later. By changing the thickness, the thickness of the thin film may be brought close to the reference value.
In order to increase or decrease the thickness of the thin film, a method of changing the power of the electron beam is also conceivable. However, when the power of the electron beam is changed, the intensity of the X-rays emitted from the thin film material 60 changes, and the test process. Since the correspondence relationship stored in (1) cannot be used, the power of the electron beam is not changed in the present invention, and irradiation is performed with a constant power.
In this manner, an aluminum thin film is continuously formed on the surface of the film formation target 80 with a film thickness (here, several hundred nm (film resistance is 1.6Ω)) that can be regarded as constant within an allowable range. Is done.

さらに、電子線の照射中に、例えば時間の経過に伴って薄膜材料60の温度が特定の照射領域で局所的に増加すると、当該照射領域からの蒸気の単位時間当たりの蒸発量が増加し、成膜対象物80の表面に形成される薄膜の膜厚が当該照射領域と対面する測定位置で増加する。
このとき、成膜対象物80を介して当該測定位置と対面するX線検知器(例えば符号20a)が検出する透過X線の強度は減少し、他のX線検知器(20b〜20d)が検出する透過X線の強度は変わらない。測定装置17は各測定位置の透過X線の強度から各測定位置の薄膜の膜厚を測定する。測定した薄膜の膜厚が制御装置19に設定された基準値よりも許容範囲を超えて大きい場合には、制御装置19は当該測定位置の薄膜の膜厚と、成膜対象物80の移動速度と移動距離と、薄膜材料60上の当該照射領域を通過するときの照射位置の移動速度とから、電子線の照射方向の変更量を計算し、計算結果に基づいて、電子線の照射方向を変更し、薄膜材料60上の照射位置が当該照射領域を通過するときの移動速度を速くさせる。当該照射領域が電子線に曝される時間が減少し、当該照射領域の加熱量が減少して成膜速度が減少するので、当該照射領域と対面する測定位置に形成される薄膜の膜厚は減少して基準値に近づく。
Furthermore, when the temperature of the thin film material 60 is locally increased in a specific irradiation region with the passage of time, for example, during the electron beam irradiation, the amount of vapor per unit time of vapor from the irradiation region increases, The film thickness of the thin film formed on the surface of the film formation target 80 increases at the measurement position facing the irradiation region.
At this time, the intensity of transmitted X-rays detected by the X-ray detector (for example, reference numeral 20a) facing the measurement position via the film formation target 80 decreases, and the other X-ray detectors (20b to 20d) The intensity of the transmitted X-ray to be detected does not change. The measuring device 17 measures the film thickness of the thin film at each measurement position from the intensity of transmitted X-rays at each measurement position. When the measured thickness of the thin film is larger than the allowable value than the reference value set in the control device 19, the control device 19 determines the thickness of the thin film at the measurement position and the moving speed of the film formation target 80. The amount of change in the irradiation direction of the electron beam is calculated from the movement distance and the moving speed of the irradiation position when passing through the irradiation region on the thin film material 60, and the irradiation direction of the electron beam is determined based on the calculation result. The moving speed when the irradiation position on the thin film material 60 passes through the irradiation region is changed. Since the time during which the irradiated region is exposed to the electron beam decreases, the amount of heating in the irradiated region decreases, and the film formation speed decreases, the film thickness of the thin film formed at the measurement position facing the irradiated region is Decrease and approach the reference value.

逆に成膜対象物80の表面に蒸着する薄膜の膜厚が特定の測定位置で減少したときは、成膜対象物80を介して当該測定位置と対面するX線検知器が検出する透過X線の強度が増加し、他のX線検知器が検出する透過X線の強度は変わらない。測定装置17は各測定位置の透過X線の強度から各測定位置の薄膜の膜厚を測定する。測定した薄膜の膜厚が制御装置19に設定された基準値よりも許容範囲を超えて小さい場合には、制御装置19は当該測定位置の薄膜の膜厚と、成膜対象物80の移動速度と移動距離と、薄膜材料60上の当該照射領域を通過するときの照射位置の移動速度とから、電子線の照射方向の変更量を計算し、計算結果に基づいて、電子線の照射方向を変更し、照射位置が薄膜材料60の当該照射領域を通過するときの移動速度を遅くさせる。当該照射領域が電子線に曝される時間が増加し、当該照射領域の加熱量が増加して当該照射領域の成膜速度が増加するので、当該照射領域と対面する測定位置に形成される薄膜の膜厚は増加して基準値に近づく。   Conversely, when the film thickness of the thin film deposited on the surface of the film formation target 80 is reduced at a specific measurement position, the transmission X detected by the X-ray detector facing the measurement position through the film formation target 80. The intensity of the line increases, and the intensity of transmitted X-rays detected by other X-ray detectors does not change. The measuring device 17 measures the film thickness of the thin film at each measurement position from the intensity of transmitted X-rays at each measurement position. When the measured thickness of the thin film is smaller than the allowable value than the reference value set in the control device 19, the control device 19 determines the thickness of the thin film at the measurement position and the moving speed of the film formation target 80. The amount of change in the irradiation direction of the electron beam is calculated from the movement distance and the moving speed of the irradiation position when passing through the irradiation region on the thin film material 60. It changes, and the moving speed when an irradiation position passes the said irradiation area | region of the thin film material 60 is made slow. Since the time during which the irradiated area is exposed to the electron beam increases, the heating amount of the irradiated area increases, and the film formation speed of the irradiated area increases, so the thin film formed at the measurement position facing the irradiated area The film thickness increases and approaches the reference value.

このようにして、成膜対象物80の幅方向に対して薄膜の膜厚が変化することを防止できる。
成膜された成膜対象物80は駆動軸71にロール状に巻き取られる。
1ロールの成膜を終了した後、電子銃30からの電子線の放出を停止させ、真空排気装置13を停止して真空槽11内を大気に解放し、未成膜の成膜対象物80からなる新しいロールを成膜対象物保持部70に装填して、次の成膜サイクルを行う。
In this way, the film thickness of the thin film can be prevented from changing with respect to the width direction of the film formation target 80.
The film formation target 80 is wound around the drive shaft 71 in a roll shape.
After the film formation for one roll is completed, the emission of the electron beam from the electron gun 30 is stopped, the vacuum evacuation device 13 is stopped, and the inside of the vacuum chamber 11 is released to the atmosphere. A new roll to be formed is loaded into the film formation object holding unit 70, and the next film formation cycle is performed.

上記説明では薄膜材料60としてアルミニウムを使用する場合を例に説明したが、本発明の薄膜材料はこれに限定されず、薄膜材料としてチタン、銅等も使用できる。
上記説明ではX線検出装置20は複数のX線検知器20a〜20dを有していたが、本発明はX線検知器を一個有している場合も含まれる。ただし、X線検知器の数が一個の場合には、成膜対象物80の幅方向に対して薄膜の膜厚の変化を検知できないので、X線検知器を複数個使用する方が望ましい。
In the above description, the case where aluminum is used as the thin film material 60 has been described as an example. However, the thin film material of the present invention is not limited to this, and titanium, copper, or the like can be used as the thin film material.
In the above description, the X-ray detection apparatus 20 has a plurality of X-ray detectors 20a to 20d. However, the present invention includes a case in which one X-ray detector is provided. However, when the number of X-ray detectors is one, a change in the film thickness of the thin film cannot be detected in the width direction of the film formation target 80, so it is preferable to use a plurality of X-ray detectors.

上記説明では複数のX線検知器20a〜20dはいずれも防着板75の開口のうち、成膜対象物80の移動方向の終点側の端部に近い所定の位置の真上に配置されていたが、本発明のX線検知器20a〜20dの位置は、防着板75の開口の真上であれば上記の位置に限定されない。X線検知器20a〜20dを防着板75の開口のうち、成膜対象物80の移動方向の終点側の端部から離れた位置に配置した場合には、検出した透過X線の強度と、記憶された対応関係とから、当該検出位置の薄膜の膜厚を測定し、測定した薄膜の膜厚と、成膜対象物80の移動速度と移動距離と、成膜対象物80の移動方向の終点側の端部と当該測定位置との間の距離とから、成膜終了後の薄膜の膜厚を計算で求めればよい。   In the above description, all of the plurality of X-ray detectors 20a to 20d are disposed directly above a predetermined position near the end of the deposition target 80 in the moving direction of the opening of the deposition preventing plate 75. However, the position of the X-ray detectors 20a to 20d of the present invention is not limited to the above position as long as it is directly above the opening of the deposition preventing plate 75. When the X-ray detectors 20a to 20d are arranged at positions away from the end on the end side in the moving direction of the film formation target 80 in the opening of the deposition preventing plate 75, the detected transmitted X-ray intensity and Then, the film thickness of the thin film at the detection position is measured from the stored correspondence relationship, the measured film thickness of the thin film, the moving speed and moving distance of the film forming object 80, and the moving direction of the film forming object 80 The film thickness of the thin film after film formation may be obtained by calculation from the distance between the end of the film and the measurement position.

10 ……真空蒸着装置
11……真空槽
13……真空排気装置
17……測定装置
18……記憶装置
19……制御装置
20a〜20d……X線検出装置
30……電子銃
60……薄膜材料
70……成膜対象物移動部
80……成膜対象物
DESCRIPTION OF SYMBOLS 10 ... Vacuum evaporation apparatus 11 ... Vacuum tank 13 ... Vacuum exhaust apparatus 17 ... Measuring apparatus 18 ... Memory | storage device 19 ... Control apparatus 20a-20d ... X-ray detection apparatus 30 ... Electron gun 60 ... Thin film Material 70 ... Deposition target moving part 80 ... Deposition target

Claims (12)

真空槽と、
前記真空槽内を真空排気する真空排気装置と、
前記真空槽内に電子線を放出可能に構成された電子銃と、
を有し、
前記真空槽内に配置される薄膜材料に前記電子銃から電子線を照射して、前記薄膜材料から蒸気を放出させ、前記蒸気が入射する位置に配置される成膜対象物の表面に薄膜を成膜する真空蒸着装置であって、
前記成膜対象物から見て前記薄膜材料の逆側に配置され、前記電子線を照射された前記薄膜材料から放出され、前記薄膜と前記成膜対象物とを順に透過した透過X線の強度を検出するX線検出装置と、
前記透過X線の強度と前記薄膜の膜厚との対応関係があらかじめ記憶された記憶装置と、
前記X線検出装置で検出された前記透過X線の強度と、前記記憶装置に記憶された前記対応関係とから、前記薄膜の膜厚を測定する測定装置と、
を有する真空蒸着装置。
A vacuum chamber;
An evacuation device for evacuating the vacuum chamber;
An electron gun configured to emit an electron beam into the vacuum chamber;
Have
The thin film material disposed in the vacuum chamber is irradiated with an electron beam from the electron gun to release vapor from the thin film material, and the thin film is applied to the surface of the film formation target disposed at the position where the vapor is incident. A vacuum evaporation apparatus for forming a film,
Intensity of transmitted X-rays disposed on the opposite side of the thin film material as viewed from the film formation target, emitted from the thin film material irradiated with the electron beam, and sequentially transmitted through the thin film and the film formation target An X-ray detection device for detecting
A storage device in which the correspondence between the intensity of the transmitted X-rays and the film thickness of the thin film is stored in advance;
A measuring device for measuring the film thickness of the thin film from the intensity of the transmitted X-ray detected by the X-ray detection device and the correspondence stored in the storage device;
A vacuum deposition apparatus having:
前記成膜対象物の表面に薄膜を成膜させながら、前記成膜対象物を前記薄膜材料に対して走行移動させる成膜対象物移動部を有する請求項1記載の真空蒸着装置。   The vacuum deposition apparatus according to claim 1, further comprising a film formation object moving unit that moves the film formation object relative to the thin film material while forming a thin film on the surface of the film formation object. 前記測定装置で測定された前記薄膜の膜厚と基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づけるように構成された制御装置を有する請求項1又は2のいずれか1項記載の真空蒸着装置。   The film thickness of the thin film measured by the measuring device is compared with a reference value, and from the comparison result, the film thickness of the thin film formed on the surface of the film formation target is increased or decreased, and the surface of the film formation target is The vacuum evaporation apparatus of any one of Claim 1 or 2 which has a control apparatus comprised so that the film thickness of the said thin film formed may approximate the said reference value. 前記制御装置は、前記成膜対象物移動部を制御して、前記成膜対象物の移動速度を変化させて、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させるように構成された請求項3記載の真空蒸着装置。   The control device controls the film formation object moving unit to change the moving speed of the film formation object so as to increase or decrease the film thickness of the thin film formed on the surface of the film formation object. The vacuum evaporation apparatus according to claim 3, which is configured. 前記電子銃は前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させるように構成された請求項3記載の真空蒸着装置であって、
前記制御装置は、前記照射位置の移動速度を変更して、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させるように構成された真空蒸着装置。
The vacuum deposition apparatus according to claim 3, wherein the electron gun is configured to change an irradiation direction of the electron beam and move an irradiation position of the electron beam on a surface of the thin film material,
The said control apparatus is a vacuum evaporation apparatus comprised so that the movement speed of the said irradiation position may be changed and the film thickness of the said thin film formed in the said film-forming target object may be increased / decreased.
前記測定装置で測定された前記薄膜の膜厚と基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を所定値に近づけるように構成された制御装置を有し、
前記電子銃は前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させるように構成され、
前記測定装置は、前記成膜対象物上で、前記成膜対象物の走行方向とは垂直な方向の複数の測定位置の膜厚を測定するように構成され、
前記制御装置は、各前記測定位置での前記膜厚の測定値を前記基準値と比較し、前記薄膜材料上の各前記測定位置と対面する場所での前記照射位置の移動速度を前記照射位置毎に変更するように構成された請求項2記載の真空蒸着装置。
The film thickness of the thin film measured by the measuring device is compared with a reference value, and from the comparison result, the film thickness of the thin film formed on the surface of the film formation target is increased or decreased, and the surface of the film formation target is A control device configured to bring the thickness of the thin film to be formed closer to a predetermined value;
The electron gun is configured to change an irradiation direction of the electron beam and move an irradiation position on the surface of the thin film material of the electron beam,
The measuring apparatus is configured to measure film thicknesses at a plurality of measurement positions in a direction perpendicular to a traveling direction of the film formation target on the film formation target;
The control device compares the measured value of the film thickness at each of the measurement positions with the reference value, and determines the movement speed of the irradiation position at a location facing each of the measurement positions on the thin film material. The vacuum deposition apparatus according to claim 2, which is configured to change every time.
前記成膜対象物は、帯状のフィルムである請求項2乃至請求項6のいずれか1項記載の真空蒸着装置であって、
前記成膜対象物移動部は、前記成膜対象物の移動方向に対して前記蒸気が入射する位置より終点側で、前記フィルムを巻き取るように構成された真空蒸着装置。
The vacuum deposition apparatus according to any one of claims 2 to 6, wherein the film formation target is a belt-like film.
The film deposition target moving unit is a vacuum deposition apparatus configured to wind up the film on the end point side from the position where the vapor is incident with respect to the moving direction of the film formation target.
真空排気された真空槽内で薄膜材料に電子線を照射して、前記薄膜材料から蒸気を放出させ、前記蒸気が入射する位置に配置された成膜対象物の表面に薄膜を成膜する際に、前記薄膜の膜厚を測定する膜厚測定方法であって、
前記成膜対象物の表面に薄膜を成膜する前に、前記薄膜材料から放出され、前記薄膜と前記成膜対象物とを順に透過した透過X線の強度と、前記薄膜の膜厚との対応関係を記憶しておき、
前記成膜対象物の表面に薄膜を成膜する際に、前記透過X線の強度を検出し、検出した前記透過X線の強度と、記憶した前記対応関係とから、前記薄膜の膜厚を測定する膜厚測定方法。
When the thin film material is irradiated with an electron beam in an evacuated vacuum chamber, the vapor is released from the thin film material, and the thin film is formed on the surface of the film formation target disposed at the position where the vapor is incident And a film thickness measuring method for measuring the film thickness of the thin film,
Before forming a thin film on the surface of the film formation target, the intensity of transmitted X-rays emitted from the thin film material and sequentially transmitted through the thin film and the film formation target, and the film thickness of the thin film Remember the correspondence,
When forming a thin film on the surface of the film formation target, the intensity of the transmitted X-ray is detected, and the film thickness of the thin film is determined from the detected intensity of the transmitted X-ray and the stored correspondence relationship. Film thickness measurement method to be measured.
真空排気された真空槽内で薄膜材料に電子線を照射して、前記薄膜材料から蒸気を放出させ、前記成膜対象物を前記薄膜材料に対して走行移動させながら、前記成膜対象物の表面に薄膜を成膜する真空蒸着方法であって、
前記成膜対象物の表面に薄膜を成膜する前に、薄膜の膜厚の基準値を決めておき、
前記成膜対象物の表面に薄膜を成膜する際に、請求項8記載の膜厚測定方法で前記薄膜の膜厚を測定し、測定した前記薄膜の膜厚と前記基準値とを比較し、比較結果から、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づける真空蒸着方法。
The thin film material is irradiated with an electron beam in an evacuated vacuum chamber, vapor is released from the thin film material, and the film formation target is moved and moved relative to the thin film material. A vacuum deposition method for forming a thin film on a surface,
Before forming a thin film on the surface of the film formation target, determine a reference value for the thickness of the thin film,
When forming a thin film on the surface of the film formation target, the film thickness of the thin film is measured by the film thickness measurement method according to claim 8, and the measured film thickness of the thin film is compared with the reference value. The vacuum deposition method of increasing or decreasing the film thickness of the thin film formed on the surface of the film formation object from the comparison result to bring the film thickness of the thin film formed on the surface of the film formation object close to the reference value.
測定した前記薄膜の膜厚と前記基準値とを比較した後、比較結果から、前記成膜対象物の移動速度を変化させて、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させる請求項9記載の真空蒸着方法。   After comparing the measured film thickness of the thin film with the reference value, from the comparison result, the moving speed of the film formation target is changed to determine the film thickness of the thin film formed on the surface of the film formation target. The vacuum deposition method according to claim 9, wherein the number is increased or decreased. 前記薄膜材料に前記電子線を照射する際に、前記電子線の照射方向を変化させ、前記電子線の前記薄膜材料表面上の照射位置を移動させる請求項9記載の真空蒸着方法であって、
測定した前記薄膜の膜厚と前記基準値とを比較した後、比較結果から、前記照射位置の移動速度を変更して、前記成膜対象物表面に形成される前記薄膜の膜厚を増減させる真空蒸着方法。
The vacuum deposition method according to claim 9, wherein when irradiating the electron beam to the thin film material, the irradiation direction of the electron beam is changed, and the irradiation position on the surface of the thin film material of the electron beam is moved.
After comparing the measured thickness of the thin film with the reference value, from the comparison result, the moving speed of the irradiation position is changed to increase or decrease the thickness of the thin film formed on the surface of the film formation target. Vacuum deposition method.
真空排気された真空槽内で前記薄膜材料に前記電子線を照射する際に、電子線の照射方向を変化させ、電子線の薄膜材料表面上の照射位置を移動させて、前記薄膜材料から蒸気を放出させ、前記成膜対象物を前記薄膜材料に対して走行移動させながら、前記成膜対象物の表面に薄膜を成膜する真空蒸着方法であって、
前記成膜対象物の表面に薄膜を成膜する前に、薄膜の膜厚の基準値を決めておき、
前記成膜対象物の表面に薄膜を成膜する際に、前記成膜対象物上で、前記成膜対象物の走行方向とは垂直な方向の複数の測定位置の膜厚を請求項8記載の膜厚測定方法で測定し、各前記測定位置での前記膜厚の測定値を前記基準値と比較し、比較結果から、前記薄膜材料上の各前記測定位置と対面する場所での前記照射位置の移動速度を前記照射位置毎に変更して、前記成膜対象物に形成される前記薄膜の膜厚を増減させ、前記成膜対象物表面に形成される前記薄膜の膜厚を前記基準値に近づける真空蒸着方法。
When irradiating the thin film material with the electron beam in an evacuated vacuum chamber, the electron beam irradiation direction is changed, the irradiation position of the electron beam on the thin film material surface is moved, and the thin film material is vaporized. A vacuum vapor deposition method for forming a thin film on the surface of the film formation target while moving the film formation target with respect to the thin film material.
Before forming a thin film on the surface of the film formation target, determine a reference value for the thickness of the thin film,
9. The film thicknesses at a plurality of measurement positions in a direction perpendicular to the traveling direction of the film forming object on the film forming object when forming a thin film on the surface of the film forming object. The film thickness measurement method is used to measure the film thickness measurement value at each measurement position with the reference value. From the comparison result, the irradiation at the location facing each measurement position on the thin film material The position moving speed is changed for each irradiation position to increase or decrease the film thickness of the thin film formed on the film formation target, and the film thickness of the thin film formed on the film formation target surface is the reference. Vacuum deposition method that approaches the value.
JP2010080840A 2010-03-31 2010-03-31 Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method Pending JP2011214025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080840A JP2011214025A (en) 2010-03-31 2010-03-31 Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080840A JP2011214025A (en) 2010-03-31 2010-03-31 Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method

Publications (1)

Publication Number Publication Date
JP2011214025A true JP2011214025A (en) 2011-10-27

Family

ID=44944080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080840A Pending JP2011214025A (en) 2010-03-31 2010-03-31 Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method

Country Status (1)

Country Link
JP (1) JP2011214025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072420A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Vapor-deposited flux measuring device
KR102109286B1 (en) * 2018-11-30 2020-05-11 주식회사 포스코 Apparatus and method for measuring insulation coating layer thickness of electrical steel sheet
CN112553581A (en) * 2019-09-10 2021-03-26 株式会社斯库林集团 Film forming apparatus and film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106028A (en) * 1991-10-14 1993-04-27 Sumitomo Metal Ind Ltd Vapor deposition method by energy beam
JPH0674910U (en) * 1993-03-30 1994-10-21 三菱重工業株式会社 Deposition film thickness measuring device
JP2000234166A (en) * 1999-02-09 2000-08-29 Toyobo Co Ltd Vacuum deposition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106028A (en) * 1991-10-14 1993-04-27 Sumitomo Metal Ind Ltd Vapor deposition method by energy beam
JPH0674910U (en) * 1993-03-30 1994-10-21 三菱重工業株式会社 Deposition film thickness measuring device
JP2000234166A (en) * 1999-02-09 2000-08-29 Toyobo Co Ltd Vacuum deposition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072420A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Vapor-deposited flux measuring device
KR102109286B1 (en) * 2018-11-30 2020-05-11 주식회사 포스코 Apparatus and method for measuring insulation coating layer thickness of electrical steel sheet
CN112553581A (en) * 2019-09-10 2021-03-26 株式会社斯库林集团 Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
JP4888793B2 (en) Method and apparatus for controlling electron beam focusing of piercing electron gun
US3612859A (en) Method for measuring and controlling the density of a metallic vapor
Dunning et al. Secondary electron ejection from metal surfaces by metastable atoms. I. Measurement of secondary emission coefficients using a crossed beam method
US4523327A (en) Multi-color X-ray line source
JP2011214025A (en) Vacuum vapor deposition apparatus, film thickness measuring method, and vacuum vapor deposition method
WO2012118129A1 (en) Vacuum processing device and vacuum processing method
TWM491672U (en) Electron beam evaporation apparatus
Dudnikov et al. Positronium negative ions for monitoring work functions of surface plasma source
US3609378A (en) Monitoring of vapor density in vapor deposition furnance by emission spectroscopy
JP2007262478A (en) Heating evaporation apparatus, and multi-component vapor deposition method
WO2011102320A1 (en) Electron beam irradiation device and electron beam irradiation method
US11350512B2 (en) Method for controlling an x-ray source
JP5514595B2 (en) Electron beam irradiation device
Sartori et al. Diagnostics of caesium emission from SPIDER caesium oven prototype
JP2017088976A (en) Multicomponent film formation apparatus and multicomponent film formation method
JP5778465B2 (en) Reflection high-speed electron diffraction device
JPH10267869A (en) Device for measuring work function or ionization potential
JP2012133897A (en) X-ray emitting device
JP6189198B2 (en) Laser ion source, ion accelerator and heavy ion beam therapy system
JP5742059B2 (en) Electron generation method
Huang et al. Luminescence of NaOH, KBr: OH−, and KBr: Tl+ under slow electron impact
JPH05117843A (en) Thin film forming method
CN117916585A (en) Apparatus for analyzing surfaces using fast atomic diffraction in high pressure environments
JP2012013653A (en) Thin film deposition amount measuring device
Granger 1139. A circuit for monitoring the thickness of films during vacuum deposition.(India)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304