WO2012117825A1 - Solar cell and process of manufacturing solar cell - Google Patents

Solar cell and process of manufacturing solar cell Download PDF

Info

Publication number
WO2012117825A1
WO2012117825A1 PCT/JP2012/052939 JP2012052939W WO2012117825A1 WO 2012117825 A1 WO2012117825 A1 WO 2012117825A1 JP 2012052939 W JP2012052939 W JP 2012052939W WO 2012117825 A1 WO2012117825 A1 WO 2012117825A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
solar cell
semiconductor layer
side electrode
main surface
Prior art date
Application number
PCT/JP2012/052939
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 森
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012117825A1 publication Critical patent/WO2012117825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a back junction solar cell and a method for manufacturing a back junction solar cell.
  • Patent Document 1 a so-called back junction type solar cell in which p-type and n-type semiconductor regions are formed on the back side of the solar cell has been proposed.
  • this back junction solar cell it is not necessary to provide an electrode on the light receiving surface side. For this reason, in the back junction solar cell, the light receiving efficiency can be increased. Therefore, higher power generation efficiency can be realized.
  • the present invention has been made in view of such a point, and an object thereof is to provide a solar cell having improved conversion efficiency and reliability with high yield.
  • the solar cell according to the present invention includes a solar cell substrate, an n-side electrode, a p-side electrode, and a semiconductor layer.
  • the solar cell substrate has a first main surface and a second main surface.
  • the first main surface includes an n-type surface and a p-type surface.
  • the n-side electrode is connected to the n-type surface.
  • the p-side electrode is connected to the p-type surface.
  • the semiconductor layer is disposed on the second main surface.
  • the semiconductor layer has a surface layer containing a p-type impurity.
  • a method for manufacturing a solar cell according to the present invention includes a solar cell substrate having a first main surface including an n-type surface and a p-type surface, and a second main surface, and an n-side electrode connected to the n-type surface. And a p-side electrode connected to the p-type surface, and a method for manufacturing a solar cell having a second main surface as a light-receiving surface.
  • the n-type surface, the p-type surface, the n-side electrode, and the p-side electrode are formed in a state where the second main surface of the semiconductor substrate is protected by the semiconductor layer containing the p-type impurity.
  • a solar cell having favorable reliability and photoelectric conversion efficiency can be provided with a good yield.
  • FIG. 1 is a schematic plan view of the solar cell according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart showing the manufacturing process of the solar cell in the first embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment.
  • FIG. 5 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view for explaining the manufacturing process of the solar cell in the first embodiment.
  • FIG. 8 is a schematic cross-sectional view for explaining the manufacturing process of the solar cell in the first embodiment.
  • FIG. 9 is a schematic cross-sectional view of a solar cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
  • FIG. 11 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
  • FIG. 1 is a schematic plan view of a solar cell 1 according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • the solar cell 1 is a back junction solar cell.
  • the solar cell 1 includes a solar cell substrate 20.
  • the solar cell substrate 20 has a back surface 20a and a light receiving surface 20b.
  • the solar cell substrate 20 generates carriers (electrons and holes) by receiving light on the light receiving surface 20b.
  • the solar cell substrate 20 has a semiconductor substrate 10 having one conductivity type.
  • the semiconductor substrate 10 is configured by a substrate made of an n-type crystal semiconductor.
  • a specific example of the substrate made of an n-type crystal semiconductor is, for example, an n-type single crystal silicon substrate.
  • the semiconductor substrate 10 has first and second main surfaces 10a and 10b.
  • the first main surface 10 a of the semiconductor substrate 10 constitutes the light receiving surface 20 b of the solar cell substrate 20.
  • the light receiving surface 20b formed by the first main surface 10a has a texture structure.
  • the “texture structure” refers to a concavo-convex structure formed to suppress surface reflection and increase the light absorption amount of the photoelectric conversion unit.
  • Specific examples of the texture structure include a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the surface of a single crystal silicon substrate having a (100) plane,
  • An example is a concavo-convex structure obtained by subjecting the surface of a crystalline silicon substrate or polycrystalline silicon substrate to isotropic etching by a method such as acid etching or dry etching.
  • An n-type semiconductor layer 12n is disposed on the first region of the second main surface 10b of the semiconductor substrate 10.
  • the n-type semiconductor layer 12n constitutes an n-type front surface 20an that constitutes a part of the back surface 20a.
  • the n-type semiconductor layer 12n is composed of an n-type amorphous semiconductor layer. More specifically, the n-type semiconductor layer 12n is composed of an n-type amorphous silicon layer containing hydrogen.
  • the thickness of the n-type semiconductor layer 12n can be, for example, about 20 to 500 mm.
  • a p-type semiconductor layer 13p is disposed on the second region of the second main surface 10b of the semiconductor substrate 10.
  • the p-type semiconductor layer 13p constitutes a p-type front surface 20ap that constitutes a part of the back surface 20a.
  • the p-type semiconductor layer 13p is composed of a p-type amorphous semiconductor layer. More specifically, the p-type semiconductor layer 13p is composed of a p-type amorphous silicon layer containing hydrogen.
  • the thickness of the p-type semiconductor layer 13p can be about 20 to 500 mm, for example.
  • an i-type semiconductor having a thickness that does not substantially contribute to power generation for example, about several to 250 inches, between each of the n-type semiconductor layer 12n and the p-type semiconductor layer 13p and the second main surface 10b.
  • Layers may be arranged.
  • the i-type semiconductor layer can be made of, for example, i-type amorphous silicon containing hydrogen.
  • a p-type semiconductor layer 13p is disposed on both end portions in the x direction of the n-type semiconductor layer 12n.
  • An insulating layer 18 is disposed between the overlapping portions in the z direction (thickness direction) of the n-type semiconductor layer 12n and the p-type semiconductor layer 13p.
  • the material of the insulating layer 18 is not particularly limited.
  • the insulating layer 18 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. Especially, it is preferable that the insulating layer 18 is comprised by the silicon nitride film.
  • the insulating layer 18 preferably contains hydrogen.
  • the n-side electrode 14 is disposed on the n-type surface 20an constituted by the n-type semiconductor layer 12n.
  • the n-side electrode 14 is electrically connected to the n-type surface 20an.
  • a p-side electrode 15 is disposed on the p-type surface 20ap constituted by the p-type semiconductor layer 13p.
  • the p-side electrode 15 is electrically connected to the p-type surface 20ap.
  • the n-side electrode 14 and the p-side electrode 15 collect electrons and holes, respectively.
  • the n-side electrode 14 and the p-side electrode 15 are electrically separated on the surface of the insulating layer 18.
  • each of the n-side electrode 14 and the p-side electrode 15 has a comb shape, and the n-side electrode 14 and the p-side electrode 15 are interleaved with each other.
  • the present invention is not limited to this configuration.
  • At least one of the n-side electrode and the p-side electrode may be a so-called bus bar-less electrode that does not include the bus bar portion and includes a plurality of finger portions.
  • Each of the n-side electrode 14 and the p-side electrode 15 is, for example, a transparent conductive oxide (TCO), a metal such as Ag, Cu, Sn, Pt, or Au, or one or more of these metals It can be formed of a conductive material such as an alloy containing
  • each of the n-side electrode 14 and the p-side electrode 15 may be configured by a stacked body of a plurality of conductive layers, for example.
  • each of the n-side electrode 14 and the p-side electrode 15 includes a TCO layer formed on the n-type or p-type semiconductor layers 12n and 13p, and at least one metal or alloy formed thereon. It is preferable that it is comprised by the laminated body with a layer.
  • each of the n-side electrode 14 and the p-side electrode 15 is not particularly limited.
  • Each of the n-side electrode 14 and the p-side electrode 15 can be formed by, for example, a thin film forming method such as a sputtering method, a CVD method, or a vapor deposition method, a plating method, or a combination thereof.
  • a semiconductor layer 17 having a surface layer containing a p-type impurity is disposed on the first main surface 10b.
  • the “p-type impurity” refers to a substance that can make a semiconductor layer have a p-type conductivity by being contained in a predetermined amount in the semiconductor layer.
  • Specific examples of p-type impurities include trivalent elements such as boron and aluminum when the semiconductor layer is made of a tetravalent semiconductor material such as silicon.
  • the surface layer containing a p-type impurity may be a p-type conductivity layer or an i-type conductivity layer. That is, the surface layer containing the p-type impurity may contain the p-type impurity to the extent that the p-type is expressed, or may contain the p-type impurity to the extent that the p-type is not expressed.
  • the semiconductor layer 17 is composed of an amorphous semiconductor layer. More specifically, in the present embodiment, the semiconductor layer 17 includes an i-type amorphous semiconductor layer 17i, an n-type amorphous semiconductor layer 17n, and an amorphous semiconductor layer 17p.
  • the i-type amorphous semiconductor layer 17i is disposed on the light receiving surface 20b.
  • the i-type amorphous semiconductor layer 17i can be made of, for example, i-type amorphous silicon containing hydrogen.
  • the thickness of the i-type amorphous semiconductor layer 17i is not particularly limited as long as the thickness does not substantially contribute to power generation.
  • the thickness of the i-type amorphous semiconductor layer 17i can be, for example, about several to 250 inches.
  • the n-type amorphous semiconductor layer 17 n is a semiconductor layer having the same conductivity type as the semiconductor substrate 10.
  • the n-type amorphous semiconductor layer 17n is disposed on the i-type amorphous semiconductor layer 17i.
  • the n-type amorphous semiconductor layer 17n can be composed of, for example, n-type amorphous silicon containing hydrogen.
  • the thickness of the n-type amorphous semiconductor layer 17n is not particularly limited. The thickness of the n-type amorphous semiconductor layer 17n can be, for example, about 20 to 500 mm.
  • An amorphous semiconductor layer 17p is disposed on the n-type amorphous semiconductor layer 17n.
  • the amorphous semiconductor layer 17p contains p-type impurities and constitutes a surface layer containing the p-type impurities.
  • the amorphous semiconductor layer 17p can be made of, for example, amorphous silicon containing p-type impurities and hydrogen.
  • the thickness of the amorphous semiconductor layer 17p is preferably 10 mm or more, and more preferably 20 mm or more.
  • the upper limit of the thickness of the amorphous semiconductor layer 17p is not particularly limited, but is preferably 500 mm, for example. This is because if the thickness of the amorphous semiconductor layer 17p exceeds 500 mm, light absorption by the amorphous semiconductor layer 17p becomes too large, and the photoelectric conversion characteristics may be deteriorated.
  • a protective film 16 is disposed on the semiconductor layer 17.
  • the protective film 16 also has a function as a reflection suppressing film.
  • the protective film 16 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like. Especially, it is preferable that the protective film 16 is comprised by the silicon nitride film.
  • the thickness of the protective film 16 can be set to, for example, about 80 nm to 1 ⁇ m.
  • the solar cell 1 of the present embodiment can receive light over the entire light receiving surface 20b.
  • FIG. 3 is a flowchart showing the manufacturing process of the solar cell of this embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining steps S1 and S2.
  • FIG. 5 is a schematic cross-sectional view for explaining step S3.
  • FIG. 6 is a schematic cross-sectional view for explaining step S4.
  • FIG. 7 is a schematic cross-sectional view for explaining step S5.
  • FIG. 8 is a schematic cross-sectional view for explaining step S6.
  • a semiconductor substrate 10 having a first main surface 10a having a texture structure is prepared.
  • the semiconductor layer 17 and the protective film 16 are formed on substantially the entire surface or the entire first main surface 10a of the semiconductor substrate 10 (first forming process).
  • Each of the i-type amorphous semiconductor layer 17i, the n-type amorphous semiconductor layer 17n, the amorphous semiconductor layer 17p, and the protective film 16 is formed by, for example, a CVD (Chemical Vapor Deposition) method typified by a plasma CVD method. It can be formed by a thin film forming method.
  • step S1 which is the first formation process
  • a second formation process for forming the semiconductor layers 12n and 13p, the insulating layer 18, and the electrodes 14 and 15 is performed.
  • Step S2 to Step S7 are performed in the second formation process.
  • an n-type amorphous semiconductor film 21 and an insulating film 22 are formed in this order on substantially the entire surface or the entire second main surface 10b of the semiconductor substrate 10.
  • the n-type amorphous semiconductor layer 21 can be formed, for example, by a thin film forming method such as a CVD (Chemical Vapor Deposition) method typified by a plasma CVD method.
  • the insulating film 22 can be formed by, for example, a thin film forming method such as a sputtering method or a CVD method.
  • step S3 the n-type amorphous semiconductor film 21 and the insulating film 22 are etched.
  • the etchant suitably used for etching the n-type amorphous semiconductor film 21 include a hydrofluoric acid aqueous solution.
  • etching agent that is preferably used for etching the insulating film 22 include, for example, an HF aqueous solution. That is, in step S3, the step of etching the insulating film 22 is preferably an etching step using an alkaline etchant.
  • the “etching agent” includes an etching solution, an etching paste, an etching ink, and the like.
  • a p-type semiconductor film 23 is formed on substantially the entire surface of the second main surface 10b including the surface of the insulating film 22 or on the entire surface.
  • the method for forming the p-type semiconductor film 23 is not particularly limited.
  • the p-type semiconductor film 23 can be formed by a thin film forming method such as a CVD method, for example.
  • step S5 a part of the portion located on the insulating film 22 of the p-type semiconductor layer 23 is removed by etching or the like.
  • the p-type semiconductor layer 13p is formed from the p-type semiconductor film 23.
  • the etchant preferably used for etching the p-type semiconductor film 23 include an alkaline aqueous solution such as a NaOH aqueous solution containing NaOH, a hydrofluoric acid aqueous solution, and the like. That is, the etching process of the p-type semiconductor layer 23 in step S5 is preferably an etching process using an alkaline etchant.
  • step S6 a part of the surface of the n-type semiconductor layer 12n is exposed by removing the exposed portion of the insulating film 22 by etching with an etchant using the p-type semiconductor layer 13p as a mask.
  • the insulating layer 18 is formed from the insulating film 22, and a part of the n-type semiconductor layer 12n is exposed.
  • the etchant preferably used for etching the insulating film 22 include, for example, an HF aqueous solution.
  • step S7 the solar cell 1 is completed by performing an electrode forming step of forming the n-side electrode 14 and the p-side electrode 15 on the n-type semiconductor layer 12n and the p-type semiconductor layer 13p, respectively. Can do.
  • the formation method of the n-side electrode 14 and the p-side electrode 15 can be appropriately selected according to the material of the electrode.
  • the n-side electrode 14 and the p-side electrode 15 are formed by, for example, a thin film forming method such as sputtering, CVD, or vapor deposition, plating, a method of applying a conductive paste, or a method combining these methods. Can do.
  • the n-side electrode 14 and the p-side electrode 15 may be formed, for example, by dividing a conductive film formed so as to cover the n-type semiconductor layer 12n and the p-type semiconductor layer 13p on the insulating layer 18. . In this case, the n-side electrode 14 and the p-side electrode 15 can be formed with a narrow pitch and high shape accuracy.
  • a plurality of layers such as patterned n-type and p-type semiconductor layers must be formed on the back surface.
  • the formation process of the patterned n-type and p-type semiconductor layers and the like usually involves an etching process.
  • an etching process of a semiconductor layer such as an amorphous silicon layer is performed using an alkaline etchant.
  • the reliability of the manufactured solar cell may be lowered, or the initial photoelectric conversion efficiency may be lowered. In addition, this may reduce the manufacturing yield.
  • a silicon nitride film as a protective film may be formed in advance on the light receiving surface, and then an n-side and p-type semiconductor layer may be formed on the back surface.
  • a protective film such as a silicon nitride film without any pinholes.
  • there are some pinholes in the protective film even if the protective film is previously formed on the light receiving surface, it is difficult to reliably suppress damage to the light receiving surface due to the etching agent. Therefore, even when a protective film is formed on the light receiving surface in advance, it is difficult to manufacture a solar cell having favorable reliability and photoelectric conversion efficiency with a good yield.
  • the semiconductor layer 17 having a surface layer containing a p-type impurity is disposed on the light receiving surface 20b.
  • the semiconductor layer having a surface layer containing p-type impurities is denser than a silicon nitride film or the like and has few pinholes.
  • a semiconductor layer having a surface layer containing a p-type impurity has low solubility in an alkaline etchant. Therefore, the solar cell 1 of this embodiment can be manufactured in a state where damage to the light receiving surface 20b is suppressed by forming the semiconductor layer 17 in advance prior to the second forming step. Therefore, in the solar cell 1 of the present embodiment, preferable reliability and photoelectric conversion efficiency can be realized with improved yield.
  • a p-type hydrogenated amorphous silicon layer can be preferably used.
  • a protective film 16 made of a silicon nitride film is further formed on the semiconductor layer 17. For this reason, damage to the light receiving surface 20b due to the etching agent can be more suitably suppressed. Therefore, more preferable reliability and photoelectric conversion efficiency can be realized with an improved yield.
  • the etching agent can be prevented from reaching the semiconductor layer 17 as compared with the case where the protective film is not formed. Therefore, even when a protective film other than the silicon nitride film is formed, preferable reliability and photoelectric conversion efficiency can be realized with improved yield.
  • Such an effect is obtained regardless of the properties of the light receiving surface 20b, but is particularly prominent when the light receiving surface 20b has a texture structure. This is because when the light receiving surface 20b has a texture structure, pinholes are more easily formed in the protective film.
  • FIG. 9 is a schematic cross-sectional view of a solar cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
  • FIG. 11 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
  • the present invention is not limited to this configuration.
  • the solar cell substrate 20 is constituted by the semiconductor substrate 10.
  • the semiconductor substrate 10 is provided with an n-type dopant diffusion region 31n and a p-type dopant diffusion region 31p.
  • the n-type dopant diffusion region 31n is provided so as to be exposed to the second main surface 10b constituting the back surface 20a.
  • the n-type dopant diffusion region 31n constitutes the n-type surface 20an.
  • the p-type dopant diffusion region 31p is provided so as to be exposed on the second main surface 10b.
  • the p-type dopant diffusion region 31p constitutes the p-type surface 20ap.
  • the solar cell includes the insulating layer 18 disposed on the back surface 20a. This insulating layer 18 isolates the p-side electrode 15 and the n-side electrode 14.
  • the solar cell of this embodiment can be manufactured, for example, in the following manner.
  • a p-type dopant is diffused from a part of the second main surface 10b of the semiconductor substrate 10, and an n-type dopant is diffused from at least a part of the remaining part.
  • the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n are formed in the semiconductor substrate 10, and the solar cell substrate 20 is obtained.
  • the semiconductor layer 17 and the protective film 16 are formed.
  • the semiconductor layer 17 and the protective film 16 can be formed in the same manner as in the first embodiment.
  • the semiconductor layer 17 and the protective film 16 may be performed prior to the production of the solar cell substrate 20.
  • an insulating film 22 is formed on the second main surface 10 b of the semiconductor substrate 10.
  • At least a portion of the insulating film 22 located on the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n is removed by etching, and the p-type dopant diffusion region 31p and The n-type dopant diffusion region 31n is exposed.
  • a solar cell can be completed by forming the n-side electrode 14 and the p-side electrode 15 on the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n.
  • Example 1 Two samples 1 in which an i-type amorphous silicon layer having a thickness of 5.4 nm and an n-type amorphous silicon layer having a thickness of 8.5 nm were formed in this order on a substrate were produced.
  • the sample 1 was immersed in a 0.4% by mass NaOH aqueous solution at 25 ° C., and the time required until the i-type and n-type amorphous silicon layers disappeared was measured. As a result, the time required until the i-type and n-type amorphous silicon layers disappeared was 5 minutes.
  • the sample 2 was immersed in a 4 mass% NaOH aqueous solution at 50 ° C., and the time required until the i-type and p-type amorphous silicon layers disappeared was measured. As a result, the time required until the i-type and p-type amorphous silicon layers disappeared was 10 minutes.
  • the amorphous silicon layer was used in spite of using an etching solution in which the thicknesses of the p-type and i-type amorphous silicon layers were thinner than those of the experimental example 1 and higher than the experimental example 1. It took a long time to disappear. From this result, it can be seen that p-type amorphous silicon is less likely to be etched by an alkaline etchant than n-type amorphous silicon.
  • the present invention includes various embodiments that are not described here.
  • the example in which the semiconductor layer 17 includes the i-type amorphous semiconductor layer 17i, the n-type amorphous semiconductor layer 17n, and the amorphous semiconductor layer 17p has been described. Not limited to this.
  • the semiconductor layer 17 may be a stacked structure of the i-type amorphous semiconductor layer 17i and the amorphous semiconductor layer 17p, or may be a single layer of the amorphous semiconductor layer 17p.

Abstract

The purpose of the present invention is to provide a solar cell having improved conversion efficiency and reliability with high yield. A solar cell (1) comprises a solar cell substrate (20), an n-side electrode (14), a p-side electrode (15), and a semiconductor layer (17). The solar cell substrate (20) has a first main surface (20a) and a second main surface (20b). The first main surface (20a) contains an n-type surface (20an) and a p-type surface (20ap). The n-side electrode (14) is connected to the n-type surface (20an). The p-side electrode (15) is connected to the p-type surface (20ap). The semiconductor layer (17) is arranged on the second main surface (20b). The semiconductor layer (17) has a surface layer containing a p-type impurity.

Description

太陽電池及び太陽電池の製造方法Solar cell and method for manufacturing solar cell
 本発明は、裏面接合型の太陽電池及び裏面接合型の太陽電池の製造方法に関する。 The present invention relates to a back junction solar cell and a method for manufacturing a back junction solar cell.
 従来、例えば下記の特許文献1などにおいて、太陽電池の裏面側にp型及びn型の半導体領域が形成されている所謂裏面接合型の太陽電池が提案されている。この裏面接合型の太陽電池では、受光面側に電極を設ける必要がない。このため、裏面接合型の太陽電池では、光の受光効率を高めることができる。従って、より高い発電効率を実現し得る。 Conventionally, for example, in the following Patent Document 1, a so-called back junction type solar cell in which p-type and n-type semiconductor regions are formed on the back side of the solar cell has been proposed. In this back junction solar cell, it is not necessary to provide an electrode on the light receiving surface side. For this reason, in the back junction solar cell, the light receiving efficiency can be increased. Therefore, higher power generation efficiency can be realized.
特開2010-80887号公報JP 2010-80887 A
 ところで、近年、改善された変換効率や信頼性を有する太陽電池の要望が高まってきている。 Incidentally, in recent years, there has been a growing demand for solar cells having improved conversion efficiency and reliability.
 本発明は、斯かる点に鑑みて成されたものであり、その目的は、改善された変換効率や信頼性を有する太陽電池を歩留り良く提供することにある。 The present invention has been made in view of such a point, and an object thereof is to provide a solar cell having improved conversion efficiency and reliability with high yield.
 本発明に係る太陽電池は、太陽電池基板と、n側電極と、p側電極と、半導体層とを備えている。太陽電池基板は、第1の主面と第2の主面とを有する。第1の主面は、n型表面及びp型表面を含む。n側電極は、n型表面に接続されている。p側電極は、p型表面に接続されている。半導体層は、第2の主面の上に配されている。半導体層は、p型不純物を含有している表層を有する。 The solar cell according to the present invention includes a solar cell substrate, an n-side electrode, a p-side electrode, and a semiconductor layer. The solar cell substrate has a first main surface and a second main surface. The first main surface includes an n-type surface and a p-type surface. The n-side electrode is connected to the n-type surface. The p-side electrode is connected to the p-type surface. The semiconductor layer is disposed on the second main surface. The semiconductor layer has a surface layer containing a p-type impurity.
 本発明に係る太陽電池の製造方法は、n型表面及びp型表面を含む第1の主面と、第2の主面とを有する太陽電池基板と、n型表面に接続されたn側電極と、p型表面に接続されたp側電極とを備え、第2の主面を受光面とする太陽電池の製造方法に関する。本発明に係る太陽電池の製造方法では、半導体基板の第2の主面を、p型不純物を含む半導体層により保護した状態で、n型表面、p型表面、n側電極及びp側電極を形成する。 A method for manufacturing a solar cell according to the present invention includes a solar cell substrate having a first main surface including an n-type surface and a p-type surface, and a second main surface, and an n-side electrode connected to the n-type surface. And a p-side electrode connected to the p-type surface, and a method for manufacturing a solar cell having a second main surface as a light-receiving surface. In the method for manufacturing a solar cell according to the present invention, the n-type surface, the p-type surface, the n-side electrode, and the p-side electrode are formed in a state where the second main surface of the semiconductor substrate is protected by the semiconductor layer containing the p-type impurity. Form.
 本発明によれば、好ましい信頼性や光電変換効率を有する太陽電池を良好な歩留りで提供することができる。 According to the present invention, a solar cell having favorable reliability and photoelectric conversion efficiency can be provided with a good yield.
図1は、第1の実施形態に係る太陽電池の略図的平面図である。FIG. 1 is a schematic plan view of the solar cell according to the first embodiment. 図2は、図1の線II-IIにおける略図的断面図である。FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 図3は、第1の実施形態における太陽電池の製造工程を表すフローチャートである。FIG. 3 is a flowchart showing the manufacturing process of the solar cell in the first embodiment. 図4は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 4 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment. 図5は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 5 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment. 図6は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 6 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the first embodiment. 図7は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 7 is a schematic cross-sectional view for explaining the manufacturing process of the solar cell in the first embodiment. 図8は、第1の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 8 is a schematic cross-sectional view for explaining the manufacturing process of the solar cell in the first embodiment. 図9は、第2の実施形態に係る太陽電池の略図的断面図である。FIG. 9 is a schematic cross-sectional view of a solar cell according to the second embodiment. 図10は、第2の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 10 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment. 図11は、第2の実施形態における太陽電池の製造工程を説明するための略図的断面図である。FIG. 11 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
 以下、本発明の好ましい実施形態の一例について説明する。但し、下記の実施形態は、単なる一例である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferred embodiment of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 《第1の実施形態》
 (太陽電池1の構成)
 図1は、第1の実施形態に係る太陽電池1の略図的平面図である。図2は、図1の線II-IIにおける略図的断面図である。
<< First Embodiment >>
(Configuration of solar cell 1)
FIG. 1 is a schematic plan view of a solar cell 1 according to the first embodiment. FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
 太陽電池1は、裏面接合型の太陽電池である。太陽電池1は、太陽電池基板20を備えている。太陽電池基板20は、裏面20aと、受光面20bとを有する。太陽電池基板20は、受光面20bにおいて受光することにより、キャリア(電子及び正孔)を生成するものである。 The solar cell 1 is a back junction solar cell. The solar cell 1 includes a solar cell substrate 20. The solar cell substrate 20 has a back surface 20a and a light receiving surface 20b. The solar cell substrate 20 generates carriers (electrons and holes) by receiving light on the light receiving surface 20b.
 太陽電池基板20は、一の導電型を有する半導体基板10を有する。具体的には、本実施形態では、半導体基板10は、n型の結晶半導体からなる基板により構成されている。n型の結晶半導体からなる基板の具体例としては、例えば、n型の単結晶シリコン基板が挙げられる。 The solar cell substrate 20 has a semiconductor substrate 10 having one conductivity type. Specifically, in this embodiment, the semiconductor substrate 10 is configured by a substrate made of an n-type crystal semiconductor. A specific example of the substrate made of an n-type crystal semiconductor is, for example, an n-type single crystal silicon substrate.
 半導体基板10は、第1及び第2の主面10a、10bを有する。この半導体基板10の第1の主面10aによって、太陽電池基板20の受光面20bが構成されている。この第1の主面10aによって構成された受光面20bは、テクスチャ構造を有する。 The semiconductor substrate 10 has first and second main surfaces 10a and 10b. The first main surface 10 a of the semiconductor substrate 10 constitutes the light receiving surface 20 b of the solar cell substrate 20. The light receiving surface 20b formed by the first main surface 10a has a texture structure.
 ここで、「テクスチャ構造」とは、表面反射を抑制し、光電変換部の光吸収量を増大させるために形成されている凹凸構造のことをいう。テクスチャ構造の具体例としては、(100)面を有する単結晶シリコン基板の表面に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や、四角錐台状)の凹凸構造や、単結晶シリコン基板や多結晶シリコン基板の表面に、酸エッチングやドライエッチング等の方法で等方性エッチングを施すことによって得られる凹凸構造等が挙げられる。 Here, the “texture structure” refers to a concavo-convex structure formed to suppress surface reflection and increase the light absorption amount of the photoelectric conversion unit. Specific examples of the texture structure include a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the surface of a single crystal silicon substrate having a (100) plane, An example is a concavo-convex structure obtained by subjecting the surface of a crystalline silicon substrate or polycrystalline silicon substrate to isotropic etching by a method such as acid etching or dry etching.
 半導体基板10の第2の主面10bの第1の領域の上には、n型半導体層12nが配されている。このn型半導体層12nによって、裏面20aの一部を構成しているn型表面20anが構成されている。 An n-type semiconductor layer 12n is disposed on the first region of the second main surface 10b of the semiconductor substrate 10. The n-type semiconductor layer 12n constitutes an n-type front surface 20an that constitutes a part of the back surface 20a.
 本実施形態では、n型半導体層12nは、n型非晶質半導体層により構成されている。より具体的には、n型半導体層12nは、水素を含むn型アモルファスシリコン層により構成されている。n型半導体層12nの厚みは、例えば、20Å~500Å程度とすることができる。 In the present embodiment, the n-type semiconductor layer 12n is composed of an n-type amorphous semiconductor layer. More specifically, the n-type semiconductor layer 12n is composed of an n-type amorphous silicon layer containing hydrogen. The thickness of the n-type semiconductor layer 12n can be, for example, about 20 to 500 mm.
 半導体基板10の第2の主面10bの第2の領域の上には、p型半導体層13pが配されている。このp型半導体層13pによって、裏面20aの一部を構成しているp型表面20apが構成されている。 A p-type semiconductor layer 13p is disposed on the second region of the second main surface 10b of the semiconductor substrate 10. The p-type semiconductor layer 13p constitutes a p-type front surface 20ap that constitutes a part of the back surface 20a.
 本実施形態では、p型半導体層13pは、p型非晶質半導体層により構成されている。より具体的には、p型半導体層13pは、水素を含むp型アモルファスシリコン層により構成されている。p型半導体層13pの厚みは、例えば、20Å~500Å程度とすることができる。 In the present embodiment, the p-type semiconductor layer 13p is composed of a p-type amorphous semiconductor layer. More specifically, the p-type semiconductor layer 13p is composed of a p-type amorphous silicon layer containing hydrogen. The thickness of the p-type semiconductor layer 13p can be about 20 to 500 mm, for example.
 なお、n型半導体層12nとp型半導体層13pとのそれぞれと、第2の主面10bとの間に、例えば、数Å~250Å程度の実質的に発電に寄与しない厚みを有するi型半導体層を配してもよい。i型半導体層は、例えば、水素を含有するi型のアモルファスシリコンにより構成することができる。このような構成とすることで、n型半導体層12nとp型半導体層13pとのそれぞれと、第2の主面10bとの間の界面特性をより改善することができる。従って、より改善された光電変換効率が得られる。 Note that an i-type semiconductor having a thickness that does not substantially contribute to power generation, for example, about several to 250 inches, between each of the n-type semiconductor layer 12n and the p-type semiconductor layer 13p and the second main surface 10b. Layers may be arranged. The i-type semiconductor layer can be made of, for example, i-type amorphous silicon containing hydrogen. With such a configuration, the interface characteristics between each of the n-type semiconductor layer 12n and the p-type semiconductor layer 13p and the second main surface 10b can be further improved. Therefore, more improved photoelectric conversion efficiency can be obtained.
 n型半導体層12nのx方向における両端部の上には、p型半導体層13pが配されている。n型半導体層12nとp型半導体層13pとのz方向(厚み方向)において重畳している部分の間には、絶縁層18が配されている。 A p-type semiconductor layer 13p is disposed on both end portions in the x direction of the n-type semiconductor layer 12n. An insulating layer 18 is disposed between the overlapping portions in the z direction (thickness direction) of the n-type semiconductor layer 12n and the p-type semiconductor layer 13p.
 絶縁層18の材質は、特に限定されない。絶縁層18は、例えば、酸化ケイ素膜、窒化ケイ素膜または酸窒化ケイ素膜により構成することができる。なかでも、絶縁層18は、窒化ケイ素膜により構成されていることが好ましい。また、絶縁層18は、水素を含んでいることが好ましい。 The material of the insulating layer 18 is not particularly limited. The insulating layer 18 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. Especially, it is preferable that the insulating layer 18 is comprised by the silicon nitride film. The insulating layer 18 preferably contains hydrogen.
 n型半導体層12nにより構成されたn型表面20anの上には、n側電極14が配されている。n側電極14は、n型表面20anに電気的に接続されている。p型半導体層13pにより構成されたp型表面20apの上には、p側電極15が配されている。p側電極15は、p型表面20apに電気的に接続されている。n側電極14およびp側電極15は、それぞれ電子およびホールを収集する。n側電極14及びp側電極15は、絶縁層18の表面上で電気的に分離されている。 The n-side electrode 14 is disposed on the n-type surface 20an constituted by the n-type semiconductor layer 12n. The n-side electrode 14 is electrically connected to the n-type surface 20an. A p-side electrode 15 is disposed on the p-type surface 20ap constituted by the p-type semiconductor layer 13p. The p-side electrode 15 is electrically connected to the p-type surface 20ap. The n-side electrode 14 and the p-side electrode 15 collect electrons and holes, respectively. The n-side electrode 14 and the p-side electrode 15 are electrically separated on the surface of the insulating layer 18.
 本実施形態では、n側電極14及びp側電極15のそれぞれはくし歯状であり、n側電極14とp側電極15とが互いに間挿し合っている。但し、本発明は、この構成に限定されない。n側電極及びp側電極の少なくとも一方が、バスバー部を含まず、複数のフィンガー部によって構成された所謂バスバーレスの電極であってもよい。 In this embodiment, each of the n-side electrode 14 and the p-side electrode 15 has a comb shape, and the n-side electrode 14 and the p-side electrode 15 are interleaved with each other. However, the present invention is not limited to this configuration. At least one of the n-side electrode and the p-side electrode may be a so-called bus bar-less electrode that does not include the bus bar portion and includes a plurality of finger portions.
 n側電極14及びp側電極15のそれぞれは、例えば、透明導電性酸化物(TCO:Transparent Conductive Oxide)や、Ag,Cu,Sn,Pt,Auなどの金属、それらの金属のうちの一種以上を含む合金等の導電性材料により形成することができる。また、n側電極14及びp側電極15のそれぞれは、例えば、複数の導電層の積層体により構成されていてもよい。その場合、n側電極14及びp側電極15のそれぞれは、n型またはp型半導体層12n、13pの上に形成されているTCO層と、その上に形成されている少なくともひとつの金属または合金層との積層体により構成されていることが好ましい。 Each of the n-side electrode 14 and the p-side electrode 15 is, for example, a transparent conductive oxide (TCO), a metal such as Ag, Cu, Sn, Pt, or Au, or one or more of these metals It can be formed of a conductive material such as an alloy containing In addition, each of the n-side electrode 14 and the p-side electrode 15 may be configured by a stacked body of a plurality of conductive layers, for example. In that case, each of the n-side electrode 14 and the p-side electrode 15 includes a TCO layer formed on the n-type or p- type semiconductor layers 12n and 13p, and at least one metal or alloy formed thereon. It is preferable that it is comprised by the laminated body with a layer.
 n側電極14及びp側電極15のそれぞれの形成方法も特に限定されない。n側電極14及びp側電極15のそれぞれは、例えば、スパッタリング法やCVD法あるいは蒸着法などの薄膜形成方法やめっき法、またはそれらの組み合わせにより形成することができる。 The formation method of each of the n-side electrode 14 and the p-side electrode 15 is not particularly limited. Each of the n-side electrode 14 and the p-side electrode 15 can be formed by, for example, a thin film forming method such as a sputtering method, a CVD method, or a vapor deposition method, a plating method, or a combination thereof.
 第1の主面10bの上には、p型不純物を含有している表層を有する半導体層17が配されている。ここで、「p型不純物」とは、半導体層に所定量含ませることによって、半導体層の導電型をp型にし得る物質のことをいう。p型不純物の具体例としては、例えば、半導体層をシリコン等の4価の半導体材料から構成する場合、ホウ素やアルミニウムなどの3価元素などが挙げられる。 A semiconductor layer 17 having a surface layer containing a p-type impurity is disposed on the first main surface 10b. Here, the “p-type impurity” refers to a substance that can make a semiconductor layer have a p-type conductivity by being contained in a predetermined amount in the semiconductor layer. Specific examples of p-type impurities include trivalent elements such as boron and aluminum when the semiconductor layer is made of a tetravalent semiconductor material such as silicon.
 p型不純物を含有している表層は、導電型がp型である層であってもよいが、導電型がi型である層であってもよい。すなわち、p型不純物を含有している表層は、p型が発現する程度にp型不純物を含んでいてもよいし、p型が発現しない程度にp型不純物を含んでいてもよい。 The surface layer containing a p-type impurity may be a p-type conductivity layer or an i-type conductivity layer. That is, the surface layer containing the p-type impurity may contain the p-type impurity to the extent that the p-type is expressed, or may contain the p-type impurity to the extent that the p-type is not expressed.
 本実施形態では、半導体層17は、非晶質半導体層により構成されている。より具体的には、本実施形態では、半導体層17は、i型非晶質半導体層17i、n型非晶質半導体層17n及び非晶質半導体層17pを有する。 In this embodiment, the semiconductor layer 17 is composed of an amorphous semiconductor layer. More specifically, in the present embodiment, the semiconductor layer 17 includes an i-type amorphous semiconductor layer 17i, an n-type amorphous semiconductor layer 17n, and an amorphous semiconductor layer 17p.
 i型非晶質半導体層17iは、受光面20bの上に配されている。i型非晶質半導体層17iは、例えば、水素を含有するi型のアモルファスシリコンなどにより構成することができる。i型非晶質半導体層17iの厚みは、発電に実質的に寄与しない程度の厚みである限りにおいて特に限定されない。i型非晶質半導体層17iの厚みは、例えば、数Å~250Å程度とすることができる。 The i-type amorphous semiconductor layer 17i is disposed on the light receiving surface 20b. The i-type amorphous semiconductor layer 17i can be made of, for example, i-type amorphous silicon containing hydrogen. The thickness of the i-type amorphous semiconductor layer 17i is not particularly limited as long as the thickness does not substantially contribute to power generation. The thickness of the i-type amorphous semiconductor layer 17i can be, for example, about several to 250 inches.
 n型非晶質半導体層17nは、半導体基板10と同じ導電型を有する半導体層である。n型非晶質半導体層17nは、i型非晶質半導体層17iの上に配されている。n型非晶質半導体層17nは、例えば、水素を含有するn型アモルファスシリコンなどにより構成することができる。n型非晶質半導体層17nの厚みは、特に限定されない。n型非晶質半導体層17nの厚みは、例えば、20Å~500Å程度とすることができる。 The n-type amorphous semiconductor layer 17 n is a semiconductor layer having the same conductivity type as the semiconductor substrate 10. The n-type amorphous semiconductor layer 17n is disposed on the i-type amorphous semiconductor layer 17i. The n-type amorphous semiconductor layer 17n can be composed of, for example, n-type amorphous silicon containing hydrogen. The thickness of the n-type amorphous semiconductor layer 17n is not particularly limited. The thickness of the n-type amorphous semiconductor layer 17n can be, for example, about 20 to 500 mm.
 n型非晶質半導体層17nの上には、非晶質半導体層17pが配されている。非晶質半導体層17pは、p型不純物を含有しており、上記p型不純物を含有している表層を構成している。この非晶質半導体層17pは、例えば、p型不純物と水素とを含むアモルファスシリコンなどにより構成することができる。非晶質半導体層17pの厚みは、10Å以上であることが好ましく、20Å以上であることがより好ましい。非晶質半導体層17pの厚みの上限は、特に限定されないが、例えば、500Åであることが好ましい。非晶質半導体層17pの厚みが500Åを超えると、非晶質半導体層17pでの光の吸収が大きくなりすぎ、光電変換特性が低下してしまう場合があるためである。 An amorphous semiconductor layer 17p is disposed on the n-type amorphous semiconductor layer 17n. The amorphous semiconductor layer 17p contains p-type impurities and constitutes a surface layer containing the p-type impurities. The amorphous semiconductor layer 17p can be made of, for example, amorphous silicon containing p-type impurities and hydrogen. The thickness of the amorphous semiconductor layer 17p is preferably 10 mm or more, and more preferably 20 mm or more. The upper limit of the thickness of the amorphous semiconductor layer 17p is not particularly limited, but is preferably 500 mm, for example. This is because if the thickness of the amorphous semiconductor layer 17p exceeds 500 mm, light absorption by the amorphous semiconductor layer 17p becomes too large, and the photoelectric conversion characteristics may be deteriorated.
 半導体層17の上には、保護膜16が配されている。本実施形態においては、この保護膜16は、反射抑制膜としての機能も兼ね備えている。保護膜16は、例えば、酸化ケイ素膜、窒化ケイ素膜、酸窒化ケイ素膜等により構成することができる。なかでも、保護膜16は、窒化ケイ素膜により構成されていることが好ましい。保護膜16の厚みは、例えば80nm~1μm程度とすることができる。 A protective film 16 is disposed on the semiconductor layer 17. In the present embodiment, the protective film 16 also has a function as a reflection suppressing film. The protective film 16 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like. Especially, it is preferable that the protective film 16 is comprised by the silicon nitride film. The thickness of the protective film 16 can be set to, for example, about 80 nm to 1 μm.
 また、受光面20bの上には、金属電極等の光を遮光する構成物が設けられていない。従って、本実施形態の太陽電池1は、受光面20bの全面で受光可能である。 Further, no component for shielding light such as a metal electrode is provided on the light receiving surface 20b. Therefore, the solar cell 1 of the present embodiment can receive light over the entire light receiving surface 20b.
 (太陽電池1の製造方法)
 次に、図3~図8を主として参照しながら、本実施形態の太陽電池1の製造工程を説明する。具体的には、図3は、本実施形態の太陽電池の製造工程を表すフローチャートである。図4は、ステップS1,S2を説明するための略図的断面図である。図5は、ステップS3を説明するための略図的断面図である。図6は、ステップS4を説明するための略図的断面図である。図7は、ステップS5を説明するための略図的断面図である。図8は、ステップS6を説明するための略図的断面図である。
(Manufacturing method of solar cell 1)
Next, a manufacturing process of the solar cell 1 of the present embodiment will be described with reference mainly to FIGS. Specifically, FIG. 3 is a flowchart showing the manufacturing process of the solar cell of this embodiment. FIG. 4 is a schematic cross-sectional view for explaining steps S1 and S2. FIG. 5 is a schematic cross-sectional view for explaining step S3. FIG. 6 is a schematic cross-sectional view for explaining step S4. FIG. 7 is a schematic cross-sectional view for explaining step S5. FIG. 8 is a schematic cross-sectional view for explaining step S6.
 まず、テクスチャ構造を有する第1の主面10aを有する半導体基板10を用意する。そして、ステップS1において、半導体基板10の第1の主面10aの略全面または全面の上に、半導体層17及び保護膜16を形成する(第1の形成工程)。i型非晶質半導体層17i、n型非晶質半導体層17n、非晶質半導体層17p及び保護膜16のそれぞれは、例えば、プラズマCVD法に代表されるCVD(Chemical Vapor Deposition)法等の薄膜形成法により形成することができる。 First, a semiconductor substrate 10 having a first main surface 10a having a texture structure is prepared. In step S1, the semiconductor layer 17 and the protective film 16 are formed on substantially the entire surface or the entire first main surface 10a of the semiconductor substrate 10 (first forming process). Each of the i-type amorphous semiconductor layer 17i, the n-type amorphous semiconductor layer 17n, the amorphous semiconductor layer 17p, and the protective film 16 is formed by, for example, a CVD (Chemical Vapor Deposition) method typified by a plasma CVD method. It can be formed by a thin film forming method.
 第1の形成工程であるステップS1に続いて、半導体層12n、13p、絶縁層18及び電極14,15を形成する第2の形成工程を行う。具体的には、本実施形態では、第2の形成工程においては、ステップS2~ステップS7を行う。 Subsequent to step S1, which is the first formation process, a second formation process for forming the semiconductor layers 12n and 13p, the insulating layer 18, and the electrodes 14 and 15 is performed. Specifically, in the present embodiment, Step S2 to Step S7 are performed in the second formation process.
 まず、ステップS2では、半導体基板10の第2の主面10bの略全面または全面の上にn型非晶質半導体膜21と、絶縁膜22とをこの順に形成する。n型非晶質半導体層21は、例えば、プラズマCVD法に代表されるCVD(Chemical Vapor Deposition)法等の薄膜形成法により形成することができる。絶縁膜22は、例えば、スパッタリング法やCVD法等の薄膜形成法などにより形成することができる。 First, in step S2, an n-type amorphous semiconductor film 21 and an insulating film 22 are formed in this order on substantially the entire surface or the entire second main surface 10b of the semiconductor substrate 10. The n-type amorphous semiconductor layer 21 can be formed, for example, by a thin film forming method such as a CVD (Chemical Vapor Deposition) method typified by a plasma CVD method. The insulating film 22 can be formed by, for example, a thin film forming method such as a sputtering method or a CVD method.
 次に、ステップS3において、n型非晶質半導体膜21と絶縁膜22とをエッチングする。n型非晶質半導体膜21のエッチングに好適に用いられるエッチング剤の具体例としては、フッ硝酸水溶液等が挙げられる。 Next, in step S3, the n-type amorphous semiconductor film 21 and the insulating film 22 are etched. Specific examples of the etchant suitably used for etching the n-type amorphous semiconductor film 21 include a hydrofluoric acid aqueous solution.
 絶縁膜22のエッチングに好適に用いられるエッチング剤の具体例としては、例えば、HF水溶液などが挙げられる。すなわち、ステップS3のうち、絶縁膜22のエッチングを行う工程は、アルカリ性のエッチング剤を用いたエッチング工程であることが好ましい。 Specific examples of the etching agent that is preferably used for etching the insulating film 22 include, for example, an HF aqueous solution. That is, in step S3, the step of etching the insulating film 22 is preferably an etching step using an alkaline etchant.
 なお、本発明において、「エッチング剤」には、エッチング液、エッチングペースト、エッチングインクなどが含まれるものとする。 In the present invention, the “etching agent” includes an etching solution, an etching paste, an etching ink, and the like.
 次に、ステップS4において、絶縁膜22の表面を含んで第2の主面10bの略全面または全面の上に、p型半導体膜23を形成する。p型半導体膜23の形成方法は特に限定されない。p型半導体膜23は、例えば、CVD法などの薄膜形成法により形成することができる。 Next, in step S4, a p-type semiconductor film 23 is formed on substantially the entire surface of the second main surface 10b including the surface of the insulating film 22 or on the entire surface. The method for forming the p-type semiconductor film 23 is not particularly limited. The p-type semiconductor film 23 can be formed by a thin film forming method such as a CVD method, for example.
 次に、ステップS5において、p型半導体層23の絶縁膜22の上に位置している部分の一部分をエッチング等により除去する。これにより、p型半導体膜23からp型半導体層13pを形成する。p型半導体膜23のエッチングに好ましく用いられるエッチング剤としては、例えば、NaOHを含むNaOH水溶液などのアルカリ性水溶液やフッ硝酸水溶液等が挙げられる。すなわち、ステップS5のp型半導体層23のエッチング工程は、アルカリ性のエッチング剤を用いたエッチング工程であることが好ましい。 Next, in step S5, a part of the portion located on the insulating film 22 of the p-type semiconductor layer 23 is removed by etching or the like. Thereby, the p-type semiconductor layer 13p is formed from the p-type semiconductor film 23. Examples of the etchant preferably used for etching the p-type semiconductor film 23 include an alkaline aqueous solution such as a NaOH aqueous solution containing NaOH, a hydrofluoric acid aqueous solution, and the like. That is, the etching process of the p-type semiconductor layer 23 in step S5 is preferably an etching process using an alkaline etchant.
 次に、ステップS6において、p型半導体層13pをマスクとして、エッチング剤により、絶縁膜22の露出部をエッチングにより除去することによってn型半導体層12nの表面の一部を露出させる。そうすることにより、絶縁膜22から絶縁層18を形成し、n型半導体層12nの一部分を露出させる。この絶縁膜22のエッチングに好ましく用いられるエッチング剤の具体例としては、例えば、HF水溶液などが挙げられる。 Next, in step S6, a part of the surface of the n-type semiconductor layer 12n is exposed by removing the exposed portion of the insulating film 22 by etching with an etchant using the p-type semiconductor layer 13p as a mask. By doing so, the insulating layer 18 is formed from the insulating film 22, and a part of the n-type semiconductor layer 12n is exposed. Specific examples of the etchant preferably used for etching the insulating film 22 include, for example, an HF aqueous solution.
 次に、ステップS7において、n型半導体層12n及びp型半導体層13pのそれぞれの上にn側電極14及びp側電極15を形成する電極形成工程を行うことにより、太陽電池1を完成させることができる。 Next, in step S7, the solar cell 1 is completed by performing an electrode forming step of forming the n-side electrode 14 and the p-side electrode 15 on the n-type semiconductor layer 12n and the p-type semiconductor layer 13p, respectively. Can do.
 n側電極14及びp側電極15の形成方法は、電極の材質に応じて適宜選択することができる。n側電極14及びp側電極15は、例えば、スパッタリング法、CVD法、蒸着法などの薄膜形成法や、めっき法、導電性ペーストを塗布する方法、それらの方法を組み合わせた方法により形成することができる。また、n側電極14及びp側電極15は、例えば、n型半導体層12n及びp型半導体層13pを覆うように形成した導電膜を絶縁層18の上で分断することにより形成してもよい。この場合、n側電極14及びp側電極15を狭ピッチで高い形状精度で形成することができる。 The formation method of the n-side electrode 14 and the p-side electrode 15 can be appropriately selected according to the material of the electrode. The n-side electrode 14 and the p-side electrode 15 are formed by, for example, a thin film forming method such as sputtering, CVD, or vapor deposition, plating, a method of applying a conductive paste, or a method combining these methods. Can do. In addition, the n-side electrode 14 and the p-side electrode 15 may be formed, for example, by dividing a conductive film formed so as to cover the n-type semiconductor layer 12n and the p-type semiconductor layer 13p on the insulating layer 18. . In this case, the n-side electrode 14 and the p-side electrode 15 can be formed with a narrow pitch and high shape accuracy.
 本実施形態のように、裏面接合型の太陽電池においては、パターニングされたn型及びp型半導体層等の複数の層を裏面上に形成しなければならない。このパターニングされたn型及びp型半導体層等の形成工程は、通常、エッチング工程を伴う。一般的に、アモルファスシリコン層等の半導体層のエッチング工程は、アルカリ性のエッチング剤を用いて行われる。このエッチング工程において、半導体基板の受光面が損傷すると、製造された太陽電池の信頼性が低下したり、初期光電変換効率が低くなったりする場合がある。また、このために製造歩留りが低下する場合もある。 As in this embodiment, in a back junction solar cell, a plurality of layers such as patterned n-type and p-type semiconductor layers must be formed on the back surface. The formation process of the patterned n-type and p-type semiconductor layers and the like usually involves an etching process. In general, an etching process of a semiconductor layer such as an amorphous silicon layer is performed using an alkaline etchant. In this etching process, if the light receiving surface of the semiconductor substrate is damaged, the reliability of the manufactured solar cell may be lowered, or the initial photoelectric conversion efficiency may be lowered. In addition, this may reduce the manufacturing yield.
 これに鑑み、例えば、保護膜としての窒化ケイ素膜を受光面上に予め形成しておき、その後、裏面上にn側及びp型半導体層等を形成することも考えられる。このようにすることにより、エッチング剤による受光面の損傷を抑制し得る。しかしながら、窒化ケイ素膜等の保護膜を、ピンホールが全くない状態で形成することは極めて難しい。このため、保護膜には多少なりともピンホールが存在する。このため、保護膜を受光面上に予め形成しておいた場合であっても、エッチング剤による受光面の損傷を確実に抑制することは困難である。従って、受光面上に保護膜を予め形成した場合であっても、好ましい信頼性や光電変換効率を有する太陽電池を良好な歩留りで製造することは困難である。 In view of this, for example, a silicon nitride film as a protective film may be formed in advance on the light receiving surface, and then an n-side and p-type semiconductor layer may be formed on the back surface. By doing in this way, the damage of the light-receiving surface by an etching agent can be suppressed. However, it is extremely difficult to form a protective film such as a silicon nitride film without any pinholes. For this reason, there are some pinholes in the protective film. For this reason, even if the protective film is previously formed on the light receiving surface, it is difficult to reliably suppress damage to the light receiving surface due to the etching agent. Therefore, even when a protective film is formed on the light receiving surface in advance, it is difficult to manufacture a solar cell having favorable reliability and photoelectric conversion efficiency with a good yield.
 ここで、本実施形態では、p型不純物を含有している表層を有する半導体層17が受光面20bの上に配されている。このp型不純物を含有している表層を有する半導体層は、窒化ケイ素膜等よりも緻密であり、ピンホールが少ない。また、p型不純物を含有している表層を有する半導体層は、アルカリ性のエッチング剤に対する溶解度が低い。従って、本実施形態の太陽電池1は、第2の形成工程に先立って半導体層17を予め形成しておくことにより、受光面20bの損傷が抑制された状態で製造可能である。よって、本実施形態の太陽電池1では、好ましい信頼性及び光電変換効率を改善された歩留りで実現することができる。このような半導体層としては、p型を呈する水素化非晶質シリコン層を好適に用いることができる。 Here, in the present embodiment, the semiconductor layer 17 having a surface layer containing a p-type impurity is disposed on the light receiving surface 20b. The semiconductor layer having a surface layer containing p-type impurities is denser than a silicon nitride film or the like and has few pinholes. In addition, a semiconductor layer having a surface layer containing a p-type impurity has low solubility in an alkaline etchant. Therefore, the solar cell 1 of this embodiment can be manufactured in a state where damage to the light receiving surface 20b is suppressed by forming the semiconductor layer 17 in advance prior to the second forming step. Therefore, in the solar cell 1 of the present embodiment, preferable reliability and photoelectric conversion efficiency can be realized with improved yield. As such a semiconductor layer, a p-type hydrogenated amorphous silicon layer can be preferably used.
 また、本実施形態では、半導体層17の上に、窒化ケイ素膜からなる保護膜16がさらに形成されている。このため、エッチング剤による受光面20bの損傷をより好適に抑制することができる。従って、さらに好ましい信頼性及び光電変換効率を改善された歩留りで実現することができる。 In this embodiment, a protective film 16 made of a silicon nitride film is further formed on the semiconductor layer 17. For this reason, damage to the light receiving surface 20b due to the etching agent can be more suitably suppressed. Therefore, more preferable reliability and photoelectric conversion efficiency can be realized with an improved yield.
 なお、窒化ケイ素膜以外の保護膜を形成した場合であっても、保護膜を形成しない場合と比較して、半導体層17へのエッチング剤の到達を抑制できる。従って、窒化ケイ素膜以外の保護膜を形成した場合であっても、好ましい信頼性及び光電変換効率を改善された歩留りで実現することができる。 Note that even when a protective film other than the silicon nitride film is formed, the etching agent can be prevented from reaching the semiconductor layer 17 as compared with the case where the protective film is not formed. Therefore, even when a protective film other than the silicon nitride film is formed, preferable reliability and photoelectric conversion efficiency can be realized with improved yield.
 このような効果は、受光面20bの性状に関わらず、得られるものであるが、受光面20bがテクスチャ構造を有する場合に特に顕著に奏される。受光面20bがテクスチャ構造を有する場合、保護膜にピンホールがより形成されやすいためである。 Such an effect is obtained regardless of the properties of the light receiving surface 20b, but is particularly prominent when the light receiving surface 20b has a texture structure. This is because when the light receiving surface 20b has a texture structure, pinholes are more easily formed in the protective film.
 また、このような効果は、第2の形成工程に先立って第1の形成工程を行ったときのみならず、第2の形成工程のうち、最後に行うアルカリエッチング剤を用いたエッチング工程の前に第1の形成工程を行った場合にも奏されるものである。 Further, such an effect is obtained not only when the first forming process is performed prior to the second forming process but also before the etching process using the alkaline etchant that is performed last in the second forming process. This is also achieved when the first forming step is performed.
 以下、本発明を実施した好ましい形態の他の例について説明する。但し、以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. However, in the following description, members having substantially the same functions as those of the first embodiment are referred to by common reference numerals, and description thereof is omitted.
 《第2の実施形態》
 図9は、第2の実施形態に係る太陽電池の略図的断面図である。図10は、第2の実施形態における太陽電池の製造工程を説明するための略図的断面図である。図11は、第2の実施形態における太陽電池の製造工程を説明するための略図的断面図である。
<< Second Embodiment >>
FIG. 9 is a schematic cross-sectional view of a solar cell according to the second embodiment. FIG. 10 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment. FIG. 11 is a schematic cross-sectional view for explaining a manufacturing process of the solar cell in the second embodiment.
 上記第1の実施形態では、半導体基板10と、半導体層12n、13pとによって太陽電池基板20が構成されている例について説明した。但し、本発明は、この構成に限定されない。 In the first embodiment, the example in which the solar cell substrate 20 is configured by the semiconductor substrate 10 and the semiconductor layers 12n and 13p has been described. However, the present invention is not limited to this configuration.
 本実施形態の太陽電池では、太陽電池基板20は、半導体基板10により構成されている。本実施形態では、半導体基板10には、n型ドーパント拡散領域31nと、p型ドーパント拡散領域31pとが設けられている。n型ドーパント拡散領域31nは、裏面20aを構成している第2の主面10bに露出するように設けられている。n型ドーパント拡散領域31nは、n型表面20anを構成している。p型ドーパント拡散領域31pは、第2の主面10bに露出するように設けられている。p型ドーパント拡散領域31pは、p型表面20apを構成している。 In the solar cell of this embodiment, the solar cell substrate 20 is constituted by the semiconductor substrate 10. In the present embodiment, the semiconductor substrate 10 is provided with an n-type dopant diffusion region 31n and a p-type dopant diffusion region 31p. The n-type dopant diffusion region 31n is provided so as to be exposed to the second main surface 10b constituting the back surface 20a. The n-type dopant diffusion region 31n constitutes the n-type surface 20an. The p-type dopant diffusion region 31p is provided so as to be exposed on the second main surface 10b. The p-type dopant diffusion region 31p constitutes the p-type surface 20ap.
 また、本実施形態では、太陽電池は、裏面20aの上に配された絶縁層18を備えている。この絶縁層18は、p側電極15とn側電極14とを隔離している。 Further, in the present embodiment, the solar cell includes the insulating layer 18 disposed on the back surface 20a. This insulating layer 18 isolates the p-side electrode 15 and the n-side electrode 14.
 本実施形態の太陽電池は、例えば、以下の要領で製造することができる。 The solar cell of this embodiment can be manufactured, for example, in the following manner.
 まず、p型またはn型の拡散ペーストを用いて、半導体基板10の第2の主面10bの一部からp型ドーパントを拡散させると共に、残りの少なくとも一部からn型のドーパントを拡散させる。そうすることにより、半導体基板10にp型ドーパント拡散領域31pとn型ドーパント拡散領域31nとを形成し、太陽電池基板20を得る。 First, using a p-type or n-type diffusion paste, a p-type dopant is diffused from a part of the second main surface 10b of the semiconductor substrate 10, and an n-type dopant is diffused from at least a part of the remaining part. By doing so, the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n are formed in the semiconductor substrate 10, and the solar cell substrate 20 is obtained.
 次に、半導体層17と保護膜16とを形成する。半導体層17及び保護膜16の形成は、上記第1の実施形態と同様に行うことができる。なお、半導体層17及び保護膜16を太陽電池基板20の作製に先立って行ってもよい。 Next, the semiconductor layer 17 and the protective film 16 are formed. The semiconductor layer 17 and the protective film 16 can be formed in the same manner as in the first embodiment. The semiconductor layer 17 and the protective film 16 may be performed prior to the production of the solar cell substrate 20.
 次に、図10に示すように、半導体基板10の第2の主面10bの上に、絶縁膜22を形成する。 Next, as shown in FIG. 10, an insulating film 22 is formed on the second main surface 10 b of the semiconductor substrate 10.
 次に、図11に示すように、絶縁膜22のp型ドーパント拡散領域31p及びn型ドーパント拡散領域31nの上に位置する部分の少なくとも一部をエッチングにより除去し、p型ドーパント拡散領域31pとn型ドーパント拡散領域31nとを露出させる。 Next, as shown in FIG. 11, at least a portion of the insulating film 22 located on the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n is removed by etching, and the p-type dopant diffusion region 31p and The n-type dopant diffusion region 31n is exposed.
 次に、p型ドーパント拡散領域31pとn型ドーパント拡散領域31nとの上に、n側電極14及びp側電極15を形成することにより、太陽電池を完成させることができる。 Next, a solar cell can be completed by forming the n-side electrode 14 and the p-side electrode 15 on the p-type dopant diffusion region 31p and the n-type dopant diffusion region 31n.
 本実施形態においても、上記第1の実施形態と同様に、好ましい信頼性及び光電変換効率を改善された歩留りで実現することができる。 Also in the present embodiment, like the first embodiment, preferable reliability and photoelectric conversion efficiency can be realized with improved yield.
 《実験例》
 (実験例1)
 基板の上に、厚み5.4nmのi型アモルファスシリコン層と、厚み8.5nmのn型アモルファスシリコン層とをこの順番で形成したサンプル1を2個作製した。
《Experimental example》
(Experimental example 1)
Two samples 1 in which an i-type amorphous silicon layer having a thickness of 5.4 nm and an n-type amorphous silicon layer having a thickness of 8.5 nm were formed in this order on a substrate were produced.
 このサンプル1を、25℃、0.4質量%のNaOH水溶液に浸漬し、i型及びn型アモルファスシリコン層が消失するまでに要した時間を測定した。その結果、i型及びn型アモルファスシリコン層が消失するまでに要した時間は、5分であった。 The sample 1 was immersed in a 0.4% by mass NaOH aqueous solution at 25 ° C., and the time required until the i-type and n-type amorphous silicon layers disappeared was measured. As a result, the time required until the i-type and n-type amorphous silicon layers disappeared was 5 minutes.
 (実験例2)
 基板の上に、厚み5.1nmのi型アモルファスシリコン層と、厚み4.2nmのp型アモルファスシリコン層とをこの順番で形成したサンプル2を2個作製した。
(Experimental example 2)
Two samples 2 in which an i-type amorphous silicon layer having a thickness of 5.1 nm and a p-type amorphous silicon layer having a thickness of 4.2 nm were formed in this order on a substrate were produced.
 このサンプル2を、50℃、4質量%のNaOH水溶液に浸漬し、i型及びp型アモルファスシリコン層が消失するまでに要した時間を測定した。その結果、i型及びp型アモルファスシリコン層が消失するまでに要した時間は、10分であった。 The sample 2 was immersed in a 4 mass% NaOH aqueous solution at 50 ° C., and the time required until the i-type and p-type amorphous silicon layers disappeared was measured. As a result, the time required until the i-type and p-type amorphous silicon layers disappeared was 10 minutes.
 上記実験例2では、p型及びi型アモルファスシリコン層の厚みが実験例1よりも薄く、かつ、実験例1よりもエッチング性が高い状態のエッチング液を用いたにも関わらず、アモルファスシリコン層の消失に要した時間が長かった。この結果から、p型アモルファスシリコンは、n型アモルファスシリコンよりもアルカリ性のエッチング剤によりエッチングされにくいことが分かる。 In the experimental example 2, the amorphous silicon layer was used in spite of using an etching solution in which the thicknesses of the p-type and i-type amorphous silicon layers were thinner than those of the experimental example 1 and higher than the experimental example 1. It took a long time to disappear. From this result, it can be seen that p-type amorphous silicon is less likely to be etched by an alkaline etchant than n-type amorphous silicon.
 尚、本発明はここでは記載していない様々な実施形態を含む。例えば、上述した実施形態では、半導体層17がi型非晶質半導体層17i、n型非晶質半導体層17nおよび非晶質半導体層17pを有する例について説明したが、半導体層17の構成はこれに限らない。半導体層17は、i型非晶質半導体層17iおよび非晶質半導体層17pの積層構成であっても良いし、非晶質半導体層17pの単層であっても良い。 The present invention includes various embodiments that are not described here. For example, in the above-described embodiment, the example in which the semiconductor layer 17 includes the i-type amorphous semiconductor layer 17i, the n-type amorphous semiconductor layer 17n, and the amorphous semiconductor layer 17p has been described. Not limited to this. The semiconductor layer 17 may be a stacked structure of the i-type amorphous semiconductor layer 17i and the amorphous semiconductor layer 17p, or may be a single layer of the amorphous semiconductor layer 17p.
 以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention includes various embodiments not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1…太陽電池
10…半導体基板
10a…第1の主面
10b…第2の主面
12n…n型半導体層
13p…p型半導体層
14…n側電極
15…p側電極
16…保護膜
17…半導体層
17i…i型非晶質半導体層
17n…n型非晶質半導体層
17p…非晶質半導体層
18…絶縁層
20…太陽電池基板
20a…裏面
20an…n型表面
20ap…p型表面
20b…受光面
31n…n型ドーパント拡散領域
31p…p型ドーパント拡散領域
DESCRIPTION OF SYMBOLS 1 ... Solar cell 10 ... Semiconductor substrate 10a ... 1st main surface 10b ... 2nd main surface 12n ... n-type semiconductor layer 13p ... p-type semiconductor layer 14 ... n-side electrode 15 ... p-side electrode 16 ... protective film 17 ... Semiconductor layer 17i ... i-type amorphous semiconductor layer 17n ... n-type amorphous semiconductor layer 17p ... amorphous semiconductor layer 18 ... insulating layer 20 ... solar cell substrate 20a ... back surface 20an ... n-type surface 20ap ... p-type surface 20b ... Light-receiving surface 31n ... n-type dopant diffusion region 31p ... p-type dopant diffusion region

Claims (11)

  1.  n型表面及びp型表面を含む第1の主面と、第2の主面とを有する太陽電池基板と、
     前記n型表面に接続されたn側電極と、
     前記p型表面に接続されたp側電極と、
     前記第2の主面の上に配されており、p型不純物を含有している表層を有する半導体層と、
    を備える、太陽電池。
    a solar cell substrate having a first main surface including an n-type surface and a p-type surface, and a second main surface;
    An n-side electrode connected to the n-type surface;
    A p-side electrode connected to the p-type surface;
    A semiconductor layer disposed on the second main surface and having a surface layer containing a p-type impurity;
    A solar cell comprising:
  2.  前記第2の主面は、テクスチャ構造を有する、請求項1に記載の太陽電池。 The solar cell according to claim 1, wherein the second main surface has a texture structure.
  3.  前記半導体層の上に配された保護膜をさらに備える、請求項1または2に記載の太陽電池。 The solar cell according to claim 1, further comprising a protective film disposed on the semiconductor layer.
  4.  前記保護膜は、窒化ケイ素膜により構成されている、請求項3に記載の太陽電池。 The solar cell according to claim 3, wherein the protective film is formed of a silicon nitride film.
  5.  前記太陽電池基板は、n型の半導体基板を含む、請求項1~4のいずれか一項に記載の太陽電池。 The solar cell according to any one of claims 1 to 4, wherein the solar cell substrate includes an n-type semiconductor substrate.
  6.  前記太陽電池基板は、
     半導体基板と、
     前記半導体基板の一主面の上に配されており、前記n型表面を構成しているn型半導体層と、
     前記半導体基板の一主面の上に配されており、前記p型表面を構成しているp型半導体層と、
    を有する、請求項1~5のいずれか一項に記載の太陽電池。
    The solar cell substrate is
    A semiconductor substrate;
    An n-type semiconductor layer disposed on one main surface of the semiconductor substrate and constituting the n-type surface;
    A p-type semiconductor layer disposed on one main surface of the semiconductor substrate and constituting the p-type surface;
    The solar cell according to any one of claims 1 to 5, wherein
  7.  前記太陽電池基板は、
     半導体基板と、
     前記半導体基板の一主面に露出するように設けられており、前記n側表面を構成しているn型ドーパント拡散領域と、
     前記半導体基板の一主面に露出するように設けられており、前記p側表面を構成しているp型ドーパント拡散領域と、
    を含む、請求項1~5のいずれか一項に記載の太陽電池。
    The solar cell substrate is
    A semiconductor substrate;
    An n-type dopant diffusion region provided to be exposed on one main surface of the semiconductor substrate and constituting the n-side surface;
    A p-type dopant diffusion region provided to be exposed on one main surface of the semiconductor substrate and constituting the p-side surface;
    The solar cell according to any one of claims 1 to 5, comprising
  8.  前記半導体層は、
     前記第2の主面の上に配されたi型半導体層と、
     前記i型半導体層の上に配されたn型半導体層と、
     前記n型半導体層の上に配されており、p型不純物を含有している半導体層と、
    を含む、請求項6または7に記載の太陽電池。
    The semiconductor layer is
    An i-type semiconductor layer disposed on the second main surface;
    An n-type semiconductor layer disposed on the i-type semiconductor layer;
    A semiconductor layer disposed on the n-type semiconductor layer and containing a p-type impurity;
    The solar cell of Claim 6 or 7 containing these.
  9.  n型表面及びp型表面を含む第1の主面と、第2の主面とを有する太陽電池基板と、
     前記n型表面に接続されたn側電極と、
     前記p型表面に接続されたp側電極と、
    を備え、前記第2の主面を受光面とする太陽電池の製造方法であって、
     前記半導体基板の第2の主面を、p型不純物を含む半導体層により保護した状態で、前記n型表面、前記p型表面、前記n側電極及び前記p側電極を形成する、太陽電池の製造方法。
    a solar cell substrate having a first main surface including an n-type surface and a p-type surface, and a second main surface;
    An n-side electrode connected to the n-type surface;
    A p-side electrode connected to the p-type surface;
    A method of manufacturing a solar cell using the second main surface as a light receiving surface,
    Forming the n-type surface, the p-type surface, the n-side electrode, and the p-side electrode in a state in which the second main surface of the semiconductor substrate is protected by a semiconductor layer containing a p-type impurity. Production method.
  10.  前記太陽電池基板は、n型の半導体基板を含む、請求項9に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 9, wherein the solar cell substrate includes an n-type semiconductor substrate.
  11.  アルカリ性のエッチング剤を用いたエッチング工程を含む、請求項9または10に記載の太陽電池の製造方法。  The method for producing a solar cell according to claim 9 or 10, comprising an etching step using an alkaline etchant. *
PCT/JP2012/052939 2011-02-28 2012-02-09 Solar cell and process of manufacturing solar cell WO2012117825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-042124 2011-02-28
JP2011042124A JP2012182167A (en) 2011-02-28 2011-02-28 Solar battery, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012117825A1 true WO2012117825A1 (en) 2012-09-07

Family

ID=46757764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052939 WO2012117825A1 (en) 2011-02-28 2012-02-09 Solar cell and process of manufacturing solar cell

Country Status (2)

Country Link
JP (1) JP2012182167A (en)
WO (1) WO2012117825A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149128A1 (en) * 2019-01-18 2020-07-23 株式会社カネカ Method for producing solar cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2003298078A (en) * 2002-03-29 2003-10-17 Ebara Corp Photoelectromotive element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2003298078A (en) * 2002-03-29 2003-10-17 Ebara Corp Photoelectromotive element

Also Published As

Publication number Publication date
JP2012182167A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5879515B2 (en) Manufacturing method of solar cell
JP5485060B2 (en) Manufacturing method of solar cell
JP5388970B2 (en) Manufacturing method of solar cell
JP6350858B2 (en) Solar cell manufacturing method and solar cell
JP5174635B2 (en) Solar cell element
JP6817764B2 (en) Solar cell and manufacturing method of solar cell
US8865510B2 (en) Method of manufacturing solar cell
JP2013219065A (en) Solar cell and method for manufacturing the same
JPWO2016158226A1 (en) Solar cell and manufacturing method thereof
JP6141670B2 (en) Manufacturing method of solar cell
WO2012132835A1 (en) Solar cell
JP5820987B2 (en) Solar cell
WO2012117825A1 (en) Solar cell and process of manufacturing solar cell
JP5645734B2 (en) Solar cell element
JP6143520B2 (en) Crystalline silicon solar cell and manufacturing method thereof
WO2012132834A1 (en) Solar cell and method for producing solar cell
JP5029921B2 (en) Method for manufacturing solar battery cell
WO2018055847A1 (en) Solar cell and method for manufacturing same, and solar cell module
WO2012132932A1 (en) Solar cell and method for producing solar cell
JP5494511B2 (en) Manufacturing method of solar cell
JP5275415B2 (en) Crystal solar cell and method for manufacturing crystal solar cell
JP2008159997A (en) Manufacturing method for solar cell element, and conductive paste
TW201336101A (en) Solar battery and method for making a solar battery
JP2014154619A (en) Method for manufacturing photoelectric conversion element
JP5677404B2 (en) Crystal solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752410

Country of ref document: EP

Kind code of ref document: A1