WO2012117520A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012117520A1
WO2012117520A1 PCT/JP2011/054624 JP2011054624W WO2012117520A1 WO 2012117520 A1 WO2012117520 A1 WO 2012117520A1 JP 2011054624 W JP2011054624 W JP 2011054624W WO 2012117520 A1 WO2012117520 A1 WO 2012117520A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
fuel
purge
target
Prior art date
Application number
PCT/JP2011/054624
Other languages
English (en)
French (fr)
Inventor
木村 光壱
鈴木 純一
岡崎 俊太郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180068511.1A priority Critical patent/CN103392062B/zh
Priority to PCT/JP2011/054624 priority patent/WO2012117520A1/ja
Priority to JP2013502091A priority patent/JP5494998B2/ja
Priority to US14/002,188 priority patent/US8887491B2/en
Priority to EP11859785.5A priority patent/EP2682589B1/en
Publication of WO2012117520A1 publication Critical patent/WO2012117520A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to an internal combustion engine comprising a three-way catalyst disposed in an exhaust passage, an evaporated fuel purge means for introducing evaporated fuel generated in a fuel tank into an intake passage, and a fuel injection valve for supplying fuel.
  • the present invention relates to a control device.
  • a three-way catalyst is disposed in the exhaust passage of the engine.
  • the three-way catalyst has an oxygen storage function. That is, when the gas flowing into the three-way catalyst (catalyst inflow gas) contains excess oxygen, the three-way catalyst stores the oxygen and purifies NOx. When the catalyst inflow gas contains excessive unburned substances, the three-way catalyst releases the stored oxygen and purifies the unburned substances.
  • the three-way catalyst is also simply referred to as “catalyst”.
  • a conventional air-fuel ratio control device includes an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor, which are disposed in the exhaust passage of the engine and upstream and downstream of the catalyst, respectively.
  • the air / fuel ratio (detected upstream air / fuel ratio) represented by the output value of the upstream air / fuel ratio sensor is matched with the target air / fuel ratio (upstream target air / fuel ratio, target air / fuel ratio of catalyst inflow gas).
  • the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled. This control is also referred to as “main feedback control”.
  • the conventional apparatus calculates the sub feedback amount so that the output value of the downstream air fuel ratio sensor matches the “target value corresponding to the theoretical air fuel ratio”, and the upstream target air fuel ratio is substantially determined by the sub feedback amount.
  • the air-fuel ratio of the engine is controlled by changing to (for example, refer to Patent Document 1).
  • the air-fuel ratio control using the sub feedback amount is also referred to as “sub feedback control”.
  • an air-fuel ratio control device capable of maintaining good emissions is being studied.
  • one such air-fuel ratio control device under study determines the state of the catalyst (oxygen storage state) without delay based on the output value of the downstream air-fuel ratio sensor, and based on the determination result, the catalyst inflow
  • the air-fuel ratio of the engine is controlled so that the air-fuel ratio of the gas matches an air-fuel ratio other than the stoichiometric air-fuel ratio.
  • control device determines that the state of the catalyst has become an oxygen excess state (lean state) based on the output value Voxs of the downstream air-fuel ratio sensor
  • the target rich air-fuel ratio is smaller than the air-fuel ratio.
  • control device determines that the state of the catalyst has become an oxygen-deficient state (rich state) based on the output value Voxs of the downstream air-fuel ratio sensor
  • the control device sets the target air-fuel ratio to “a target lean greater than the stoichiometric air-fuel ratio”. Set to “Air-fuel ratio”.
  • evaporative fuel purging means is adopted for the engine.
  • the evaporated fuel purge means adsorbs the evaporated fuel generated in the fuel tank to the canister, and introduces the evaporated fuel adsorbed to the canister to the intake passage of the engine when a predetermined purge execution requirement condition is satisfied. As a result, the evaporated fuel is burned in the combustion chamber of the engine and then discharged into the atmosphere. Introducing evaporative fuel into the engine intake passage is called evaporative fuel purge.
  • Evaporative fuel purge is one of the factors that change the air-fuel ratio of the engine. Normally, immediately after the evaporative fuel purge is started, the fuel from the evaporative fuel purge is supplied to the engine in addition to the fuel from the fuel injection valve, so the air-fuel ratio of the engine temporarily decreases. For this reason, when the evaporative fuel purge is started when the purification capability of the unburned material of the catalyst is not high, the unburned material more than the amount that can be purified by the catalyst flows into the catalyst. In that case, the emission amount of unburned substances increases and the emission deteriorates.
  • the present invention has been made to address the above-described problems. That is, one of the objects of the present invention is to accompany the start of the evaporated fuel purge by performing control (evaporated fuel purge start control) for allowing or prohibiting the start of the evaporated fuel purge according to the target air-fuel ratio.
  • An object of the present invention is to provide a control device for an internal combustion engine that can reduce the degree of deterioration of emissions.
  • An internal combustion engine control apparatus comprises: A catalyst disposed in an exhaust passage of the internal combustion engine; A downstream air-fuel ratio sensor disposed downstream of the catalyst in the exhaust passage;
  • the “target air-fuel ratio that is the target value of the air-fuel ratio of the gas flowing into the catalyst” is any of “target rich air-fuel ratio smaller than the theoretical air-fuel ratio” and “target lean air-fuel ratio larger than the theoretical air-fuel ratio”.
  • Target air-fuel ratio determining means for determining whether to set to the output based on the "output value of the downstream air-fuel ratio sensor", A fuel injection valve for injecting fuel to the engine; Fuel injection control means for determining “a fuel injection amount that is an amount of fuel injected from the fuel injection valve” according to the target air-fuel ratio and for injecting the fuel of the determined fuel injection amount from the fuel injection valve; , An evaporative fuel purge for introducing evaporative fuel generated in the "fuel tank for storing fuel supplied to the fuel injection valve" into the intake passage of the engine is executed when a predetermined purge execution request condition is satisfied. Evaporative fuel purge means; Is provided.
  • the evaporated fuel purge means includes: At the time when the purge execution request condition is not satisfied and when the purge execution request condition is changed (hereinafter also referred to as “the purge execution request condition is satisfied”), the target air-fuel ratio becomes the target air-fuel ratio.
  • the purge execution request condition is satisfied
  • the target air-fuel ratio becomes the target air-fuel ratio.
  • the evaporated fuel purge is started, and
  • the target air-fuel ratio is set to the target lean air-fuel ratio when the purge execution request condition is satisfied, the evaporative fuel purge is not started, and thereafter the time when the target air-fuel ratio is set to the target rich air-fuel ratio Thereafter, the fuel vapor purge is started when the target air-fuel ratio is set to the target rich air-fuel ratio.
  • the target air-fuel ratio when the evaporated fuel purge is started is the target rich air-fuel ratio and not the target lean air-fuel ratio.
  • the state is an “excess oxygen state (lean state)”.
  • the evaporated fuel purge is started when the catalyst is in a state where a large amount of unburned matter can be purified. Therefore, even if a large amount of unburned material flows into the catalyst by evaporative fuel purge, the catalyst can purify most of the unburned material. Therefore, it is possible to reduce the degree to which the emission deteriorates at the start of the evaporated fuel purge.
  • the evaporative fuel purge means changes the time point at which the evaporative fuel purge is started depending on whether the engine operating state at the time when the purge execution request condition is satisfied is the first operating state or the second operating state. Is desirable.
  • the first operating state is an operating state in which driving should be given priority to emissions
  • the second operating state is an operating state in which driving is given priority to drivability.
  • the first operation state may be a low load operation state
  • the second operation state may be a high load operation state.
  • the first operation state may be a low speed operation state
  • the second operation state may be a high speed operation state.
  • the first operating state is a state in which the operating state of the engine represented by “load and engine rotational speed” exists in the “operating region on the low load side and low rotational speed side”.
  • the second operating state may be a state where the operating state of the engine represented by “load and engine rotational speed” is present in the “operating region on the high load side and high rotational speed side”. .
  • the evaporated fuel purge means is configured as follows. (1) When the engine operating state at the time when the purge execution request condition is satisfied is the first operating state: (1A) The evaporated fuel purge means starts the evaporated fuel purge when the target air-fuel ratio is set to the target rich air-fuel ratio. (1B) The evaporative fuel purge means does not start the evaporative fuel purge when the target air-fuel ratio is set to the target lean air-fuel ratio, and when the target air-fuel ratio is set to the target rich air-fuel ratio Thereafter, the evaporated fuel purge is started when the target air-fuel ratio is set to the target rich air-fuel ratio.
  • the evaporated fuel purge is started when the state of the catalyst is the “oxygen excess state (lean state)”. Therefore, even if a large amount of unburned material flows into the catalyst with the start of the evaporated fuel purge, the catalyst can purify most of the unburned material. Therefore, when the engine operating state is in the first operating state, it is possible to reduce the extent to which the emission deteriorates at the start of the evaporated fuel purge.
  • the evaporated fuel purge means is further configured as follows.
  • the evaporated fuel purge means starts the evaporated fuel purge when the target air-fuel ratio is set to the target lean air-fuel ratio.
  • the evaporative fuel purge means does not start the evaporative fuel purge when the target air-fuel ratio is set to the target rich air-fuel ratio, and when the target air-fuel ratio is set to the target lean air-fuel ratio Thereafter, the evaporated fuel purge is started when the target air-fuel ratio is set to the target lean air-fuel ratio.
  • the evaporated fuel purge is started when the target air-fuel ratio is the target lean air-fuel ratio. Therefore, the air-fuel ratio of the engine is brought close to the stoichiometric air-fuel ratio by starting the evaporated fuel purge. As a result, it is difficult for the engine to vibrate for reasons such as stable combustion of the air-fuel mixture. Therefore, the drivability (driability) of the engine and the vehicle equipped with the engine can be improved.
  • the evaporated fuel purge is started when the state of the catalyst is the “oxygen-deficient state (rich state)”. Therefore, the emission may be deteriorated.
  • the second operating state is generally an operating state in which the load and / or the engine speed is high, the temperature of the catalyst is high at the time when the evaporated fuel purge is started, and therefore the purification capacity of the catalyst is high. Therefore, there is little possibility that the emission will be significantly deteriorated by the start of the evaporated fuel purge.
  • many engines have a downstream catalyst downstream of the catalyst. If the operating state of the engine is in the second operating state, the temperature of the downstream side catalyst has also reached a certain temperature. Therefore, unburned matter is also purified by this downstream catalyst. Therefore, the possibility that the emission is significantly deteriorated by the start of the evaporated fuel purge is even smaller.
  • the evaporated fuel purge means comprises: When the operation state of the engine when the purge execution request condition is satisfied is the first operation state, when the target air-fuel ratio is set to the target rich air-fuel ratio, the target air-fuel ratio becomes the target lean air-fuel ratio. It is possible to estimate a first time that is a time until switching to, and not to start the evaporated fuel purge when the estimated first time is less than a predetermined first threshold time.
  • the state of the catalyst at that time is an oxygen-excess state. It is preferable to initiate a fuel purge. However, a predetermined time is required until the fuel introduced into the intake passage by the evaporated fuel purge burns and becomes exhaust gas to reach the catalyst. Therefore, if the evaporated fuel purge is executed when the time (first time) until the target air-fuel ratio switches to the target lean air-fuel ratio is less than the predetermined first threshold time, the intake passage is caused by the evaporated fuel purge.
  • the state of the catalyst is already in an oxygen-deficient state when the fuel introduced into the gas burns and reaches the catalyst as exhaust gas (the target air-fuel ratio has already been changed to the target lean air-fuel ratio). As a result, emissions may deteriorate.
  • the engine operating state at the time when the purge execution request condition is satisfied is the first operating state, and the target air-fuel ratio is set to the target rich air-fuel ratio. Even when the estimated first time is less than the predetermined first threshold time, the evaporated fuel purge is not started. As a result, since the fuel introduced into the intake passage by the evaporated fuel purge burns and becomes exhaust gas and reaches the catalyst, the state of the catalyst is not in an oxygen-deficient state, so that the emission is deteriorated. It can be avoided.
  • the evaporated fuel purge means comprises: When the operation state of the engine at the time when the purge execution request condition is satisfied is the second operation state, when the target air-fuel ratio is set to the target lean air-fuel ratio, the target air-fuel ratio becomes the target rich air-fuel ratio. A second time, which is a time until switching to, is estimated, and when the estimated second time is less than a predetermined second threshold time, the evaporated fuel purge may not be started.
  • the evaporated fuel purge When the engine operating state is in the second operating state, it is preferable to start the evaporated fuel purge if the target air-fuel ratio is set to the target lean air-fuel ratio when the purge execution request condition is satisfied.
  • a predetermined time is required from when the execution of the evaporated fuel purge is started until the evaporated fuel is actually sucked into the combustion chamber. Therefore, when the evaporated fuel purge is executed when the time (second time) until the target air-fuel ratio switches to the target rich air-fuel ratio is less than the predetermined second threshold time, the intake passage is caused by the evaporated fuel purge.
  • the target air-fuel ratio has already been changed to the target rich air-fuel ratio when the fuel introduced into the combustion chamber reaches the combustion chamber. As a result, drivability may deteriorate.
  • the engine operating state when the purge execution request condition is satisfied is the second operating state, and the target air-fuel ratio is set to the target lean air-fuel ratio. Even when the estimated second time is less than a predetermined second threshold time, the evaporated fuel purge is not started. As a result, since the target air-fuel ratio has not been changed to the target rich air-fuel ratio by the time when the fuel introduced into the intake passage by the evaporated fuel purge reaches the combustion chamber, the air-fuel ratio of the engine becomes too small. It is possible to avoid deterioration of drivability.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which a control device according to each embodiment of the present invention is applied.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio of the gas flowing into the catalyst shown in FIG. 1 and the output value of the upstream air-fuel ratio sensor shown in FIG.
  • FIG. 3 is a graph showing the relationship between the air-fuel ratio of the gas flowing out from the catalyst shown in FIG. 1 and the output value of the downstream air-fuel ratio sensor shown in FIG.
  • FIG. 4 is a flowchart showing a routine executed by the CPU of the control device (first control device) according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which a control device according to each embodiment of the present invention is applied.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio of the gas flowing into the catalyst shown in FIG. 1 and the output
  • FIG. 6 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 7 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 8 is a flowchart showing a routine executed by the CPU of the control device (second control device) according to the second embodiment of the present invention.
  • FIG. 9 is a map that defines an operation region that is referred to by the CPU of the second control device.
  • FIG. 10 is a flowchart showing a routine executed by the CPU of the control device (third control device) according to the third embodiment of the present invention.
  • FIG. 11 is a time chart for explaining a method of estimating the first time and the second time.
  • control device for an internal combustion engine according to each embodiment of the present invention (hereinafter, also simply referred to as “control device”) will be described with reference to the drawings.
  • This control device is a part of an air-fuel ratio control device that controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (the air-fuel ratio of the engine).
  • the fuel injection amount control device that controls the fuel injection amount and the evaporation It is also a part of an evaporative fuel purge amount control device for controlling the fuel purge amount.
  • FIG. 1 shows a system in which a control device according to the first embodiment (hereinafter also referred to as “first control device”) is applied to a 4-cycle, spark ignition type, multi-cylinder (in-line 4-cylinder) internal combustion engine 10. The schematic structure of is shown.
  • the internal combustion engine 10 includes an engine body 20, an intake system 30, an exhaust system 40, and an evaporated fuel supply system 50.
  • the engine body 20 includes a cylinder block and a cylinder head.
  • the engine body 20 includes a plurality of cylinders (combustion chambers) 21.
  • Each cylinder communicates with an “intake port and exhaust port” (not shown).
  • a communicating portion between the intake port and the combustion chamber 21 is opened and closed by an intake valve (not shown).
  • a communicating portion between the exhaust port and the combustion chamber 21 is opened and closed by an exhaust valve (not shown).
  • Each combustion chamber 21 is provided with a spark plug (not shown).
  • the intake system 30 includes an intake manifold 31, an intake pipe 32, a plurality of fuel injection valves 33, and a throttle valve 34.
  • the intake manifold 31 includes a plurality of branch portions 31a and a surge tank 31b. One end of each of the plurality of branch portions 31a is connected to each of the plurality of intake ports. The other ends of the plurality of branch portions 31a are connected to the surge tank 31b.
  • One end of the intake pipe 32 is connected to the surge tank 31b.
  • An air filter (not shown) is disposed at the other end of the intake pipe 32.
  • One fuel injection valve 33 is provided for each cylinder (combustion chamber) 21.
  • the fuel injection valve 33 is provided at the intake port. That is, each of the plurality of cylinders includes a fuel injection valve 33 that supplies fuel independently of the other cylinders.
  • the fuel injection valve 33 responds to the injection instruction signal, and when it is normal, “the fuel of the indicated fuel injection amount included in the injection instruction signal” in the intake port (therefore, the cylinder 21 corresponding to the fuel injection valve 33). It is supposed to be injected into.
  • fuel is supplied to the fuel injection valve 33 via a fuel supply pipe 57 connected to a fuel tank 51 described later.
  • the pressure of the fuel supplied to the fuel injection valve 33 is controlled by a pressure regulator (not shown) so that the differential pressure between the pressure of the fuel and the pressure in the intake port becomes constant.
  • the fuel injection valve 33 is opened for a time corresponding to the command fuel injection amount. Therefore, if the fuel injection valve 33 is normal, the fuel injection valve 33 injects an amount of fuel equal to the indicated fuel injection amount.
  • the throttle valve 34 is rotatably disposed in the intake pipe 32.
  • the throttle valve 34 has a variable opening cross-sectional area of the intake passage.
  • the throttle valve 34 is rotationally driven in the intake pipe 32 by a throttle valve actuator (not shown).
  • the exhaust system 40 includes an exhaust manifold 41, an exhaust pipe 42, an upstream catalyst 43 disposed in the exhaust pipe 42, and a “downstream catalyst (not shown) disposed in the exhaust pipe 42 downstream of the upstream catalyst 43. Is provided.
  • the exhaust manifold 41 includes a plurality of branch portions 41a and a collecting portion 41b. One end of each of the plurality of branch portions 41a is connected to each of the plurality of exhaust ports. The other ends of the plurality of branch portions 41a are gathered in the gathering portion 41b.
  • the collecting portion 41b is also referred to as an exhaust collecting portion HK because exhaust gas discharged from a plurality of (two or more, four in this example) cylinders gathers.
  • the exhaust pipe 42 is connected to the collecting portion 41b.
  • the exhaust port, the exhaust manifold 41 and the exhaust pipe 42 constitute an exhaust passage.
  • Each of the upstream side catalyst 43 and the downstream side catalyst is a so-called three-way catalyst device (exhaust purification catalyst) carrying an active component made of a noble metal (catalyst substance) such as platinum, rhodium and palladium.
  • a noble metal catalyst substance
  • Each catalyst oxidizes unburned components such as HC, CO, and H 2 when the air-fuel ratio of the gas flowing into each catalyst is “the air-fuel ratio within the window of the three-way catalyst (for example, the theoretical air-fuel ratio)”.
  • it has a function of reducing nitrogen oxides (NOx). This function is also called a catalyst function.
  • each catalyst has an oxygen storage function for storing (storing) oxygen. That is, each catalyst occludes oxygen and purifies NOx when excessive oxygen is contained in the gas flowing into the catalyst (catalyst inflow gas). When the catalyst inflow gas contains excessive unburned substances, each catalyst releases the stored oxygen and purifies the unburned substances.
  • This oxygen storage function is provided by an oxygen storage material such as ceria (CeO 2 ) supported on the catalyst.
  • Each catalyst can purify unburned components and nitrogen oxides even if the air-fuel ratio shifts from the stoichiometric air-fuel ratio due to the oxygen storage function. That is, the window width is expanded by the oxygen storage function.
  • the evaporated fuel supply system 50 includes a fuel tank 51, a canister 52, a vapor collection pipe 53, a purge flow path pipe 54, a purge control valve 55, and a fuel pump 56.
  • the fuel tank 51 stores fuel that is injected and supplied from the fuel injection valve 33 to the engine 10.
  • the canister 52 is a “well-known charcoal canister” that stores the evaporated fuel (evaporated fuel gas) generated in the fuel tank 51.
  • the canister 52 includes a housing in which a tank port 52a, a purge port 52b, and an atmospheric port 52c exposed to the atmosphere are formed.
  • the canister 52 accommodates (holds) an adsorbent (activated carbon or the like) 52d for adsorbing evaporated fuel in the casing.
  • the vapor collection pipe 53 is a pipe for introducing the evaporated fuel generated in the fuel tank 51 from the fuel tank 51 to the canister 52.
  • the purge passage pipe 54 is a pipe for introducing the evaporated fuel desorbed from the adsorbent 52d of the canister 52 into the surge tank 31b.
  • the vapor collection pipe 53 and the purge flow path pipe 54 constitute a purge passage (purge passage portion).
  • the purge control valve 55 is interposed in the purge flow path pipe 54.
  • the purge control valve 55 is configured to change the passage cross-sectional area of the purge passage pipe 54 by adjusting the opening degree (valve opening period) by a drive signal representing the duty ratio DPG which is an instruction signal.
  • the purge control valve 55 is configured to completely close the purge flow path pipe 54 when the duty ratio DPG is “0”.
  • the fuel pump 56 is configured to supply the fuel stored in the fuel tank 51 to the fuel injection valve 33 through the fuel supply pipe 57.
  • the evaporated fuel supply system 50 configured as described above, when the purge control valve 55 is completely closed, the evaporated fuel generated in the fuel tank 51 is occluded in the canister 52.
  • the purge control valve 55 When the purge control valve 55 is opened, the evaporated fuel occluded in the canister 52 is discharged to the surge tank 31b (the intake passage downstream of the throttle valve 34) through the purge passage pipe 54, and the combustion chamber 21 (engine 10). ). That is, when the purge control valve 55 is open, the fuel vapor purge (also referred to as “vapor fuel gas purge” or “purge”) is performed.
  • This system includes a hot-wire air flow meter 61, a throttle position sensor 62, a water temperature sensor 63, a crank position sensor 64, an intake cam position sensor 65, an upstream air-fuel ratio sensor 66, a downstream air-fuel ratio sensor 67, and an accelerator opening sensor. 68.
  • the air flow meter 61 outputs a signal corresponding to the mass flow rate (intake air flow rate) Ga of intake air flowing through the intake pipe 32. That is, the intake air amount Ga represents the intake air amount taken into the engine 10 per unit time.
  • the throttle position sensor 62 detects the opening (throttle valve opening) of the throttle valve 34 and outputs a signal representing the throttle valve opening TA.
  • the water temperature sensor 63 detects the temperature of the cooling water of the engine 10 and outputs a signal indicating the cooling water temperature THW.
  • the coolant temperature THW is an operating state index amount that represents the warm-up state of the engine 10 (temperature of the engine 10).
  • the crank position sensor 64 outputs a signal having a narrow pulse every time the crankshaft rotates 10 ° and a wide pulse every time the crankshaft rotates 360 °. This signal is converted into an engine speed NE by an electric control device 70 described later.
  • the intake cam position sensor 65 outputs one pulse every time the intake cam shaft rotates 90 degrees from a predetermined angle, then 90 degrees, and then 180 degrees.
  • the electric control device 70 described later acquires an absolute crank angle CA based on the compression top dead center of the reference cylinder (for example, the first cylinder) based on signals from the crank position sensor 64 and the intake cam position sensor 65. It has become.
  • This absolute crank angle CA is set to “0 ° crank angle” at the compression top dead center of the reference cylinder, and increases to a 720 ° crank angle according to the rotation angle of the crankshaft.
  • the upstream air-fuel ratio sensor 66 is disposed in “one of the exhaust manifold 41 and the exhaust pipe 42” at a position between the collecting portion 41 b (exhaust collecting portion HK) of the exhaust manifold 41 and the upstream catalyst 43. .
  • the upstream air-fuel ratio sensor 66 is disclosed in, for example, “Limit current type wide area air-fuel ratio including diffusion resistance layer” disclosed in JP-A-11-72473, JP-A-2000-65782, JP-A-2004-69547, and the like. Sensor ".
  • the upstream air-fuel ratio sensor 66 corresponds to the air-fuel ratio of the exhaust gas flowing through the position where the upstream air-fuel ratio sensor 66 is disposed (the air-fuel ratio of the “catalyst inflow gas” that is the gas flowing into the catalyst 43, the upstream air-fuel ratio abyfs). Output the output value Vabyfs. As shown in FIG. 2, the output value Vabyfs increases as the air-fuel ratio (upstream air-fuel ratio abyfs) of the catalyst inflow gas increases (as the air-fuel ratio becomes leaner).
  • the electric control device 70 stores an air-fuel ratio conversion table (map) Mapabyfs that defines the relationship shown in FIG. 2 between the output value Vabyfs and the upstream air-fuel ratio abyfs.
  • Map air-fuel ratio conversion table
  • the electric control device 70 detects the actual upstream air-fuel ratio abyfs (obtains the detected upstream air-fuel ratio abyfs) by applying the output value Vabyfs to the air-fuel ratio conversion table Mapabyfs.
  • the downstream air-fuel ratio sensor 67 is disposed in the exhaust pipe 42.
  • the downstream air-fuel ratio sensor 67 is disposed downstream of the upstream catalyst 43 and upstream of the downstream catalyst (that is, the exhaust passage between the upstream catalyst 43 and the downstream catalyst). It is.
  • the downstream air-fuel ratio sensor 67 is a known electromotive force type oxygen concentration sensor (a known concentration cell type oxygen concentration sensor using a solid electrolyte such as stabilized zirconia).
  • the downstream air-fuel ratio sensor 67 generates an output value Voxs corresponding to the air-fuel ratio of the gas to be detected, which is a gas passing through a portion of the exhaust passage where the downstream air-fuel ratio sensor 67 is disposed. ing.
  • the output value Voxs is a value corresponding to the air-fuel ratio of the gas flowing out from the upstream catalyst 43 and flowing into the downstream catalyst.
  • this output value Voxs becomes the maximum output value max (for example, about 0.9 V to 1.0 V) when the air-fuel ratio of the detected gas is richer than the stoichiometric air-fuel ratio.
  • the output value Voxs becomes the minimum output value min (for example, about 0.1 V to 0 V) when the air-fuel ratio of the detected gas is leaner than the stoichiometric air-fuel ratio.
  • the output value Voxs is a voltage Vst (median value Vmid, intermediate voltage Vst, for example, about 0.5 V) between the maximum output value max and the minimum output value min when the air-fuel ratio of the detected gas is the stoichiometric air-fuel ratio.
  • the output value Voxs suddenly changes from the maximum output value max to the minimum output value min when the air-fuel ratio of the gas to be detected changes from an air-fuel ratio richer than the stoichiometric air-fuel ratio to a lean air-fuel ratio.
  • the output value Voxs suddenly changes from the minimum output value min to the maximum output value max when the air-fuel ratio of the detected gas changes from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to a rich air-fuel ratio.
  • the accelerator opening sensor 68 shown in FIG. 1 outputs a signal representing the operation amount Accp (accelerator pedal operation amount, accelerator pedal AP opening) of the accelerator pedal AP operated by the driver.
  • the accelerator pedal operation amount Accp increases as the operation amount of the accelerator pedal AP increases.
  • the electric control device 70 includes: “a CPU, a program executed by the CPU, a ROM in which tables (maps, functions), constants, and the like are stored in advance, a RAM in which the CPU temporarily stores data as necessary, and a backup RAM (B ⁇ RAM), an interface including an AD converter, and the like ".
  • the backup RAM is supplied with electric power from a battery mounted on the vehicle regardless of the position of an ignition key switch (not shown) of the vehicle on which the engine 10 is mounted (any one of an off position, a start position, an on position, etc.). It is like that.
  • the backup RAM stores data according to an instruction from the CPU (data is written) and holds (stores) the data so that the data can be read. Therefore, the backup RAM can hold data even when the operation of the engine 10 is stopped.
  • the backup RAM cannot retain data when the power supply from the battery is interrupted, for example, when the battery is removed from the vehicle. Therefore, when the power supply to the backup RAM is resumed, the CPU initializes (sets to the default value) data to be held in the backup RAM.
  • the backup RAM may be a readable / writable nonvolatile memory such as an EEPROM.
  • the electric control device 70 is connected to the above-described sensors and the like, and supplies signals from these sensors to the CPU. Furthermore, the electric control device 70 is responsive to an instruction from the CPU to provide a spark plug (actually an igniter) provided for each cylinder, a fuel injection valve 33 provided for each cylinder, a purge control valve. 55, and a drive signal (instruction signal) is sent to a throttle valve actuator or the like.
  • a spark plug actually an igniter
  • a fuel injection valve 33 provided for each cylinder
  • a purge control valve. 55 a drive signal (instruction signal) is sent to a throttle valve actuator or the like.
  • the electric control device 70 sends an instruction signal to the throttle valve actuator so that the throttle valve opening TA increases as the acquired accelerator pedal operation amount Accp increases. That is, the electric control device 70 changes the opening degree of the “throttle valve 34 disposed in the intake passage of the engine 10” according to the acceleration operation amount (accelerator pedal operation amount Accp) of the engine 10 changed by the driver. Throttle valve drive means is provided.
  • the first control device Based on the output value Voxs of the downstream air-fuel ratio sensor 67, the first control device determines that the state of the catalyst 43 (oxygen storage state) is an oxygen excess state (lean state, and the oxygen storage amount of the catalyst 43 is the maximum oxygen storage amount).
  • a state where the value is close to Cmax that is, a state where the oxygen storage amount of the catalyst 43 is equal to or higher than the high threshold value, or an oxygen-deficient state (rich state, a state where almost no oxygen is stored in the catalyst 43, That is, it is determined whether the oxygen storage amount of the catalyst 43 is less than “a low threshold value that is equal to or lower than the high threshold value”.
  • the first control device is a case where it is determined that the state of the catalyst 43 is an oxygen excess state, and the change amount ⁇ Voxs per predetermined time of the output value Voxs is a positive value.
  • becomes larger than the rich determination threshold dRichth, it is determined that the state of the catalyst 43 has become an oxygen-deficient state.
  • the first control device sets the value of the catalyst lean state display flag XCCROLean to “0”.
  • the first control device when it is determined that the state of the catalyst 43 is in an oxygen-deficient state, the first control device has a negative change amount ⁇ Voxs and the magnitude
  • the first control device when it is determined that the state of the catalyst 43 is an excess oxygen state, and the output value Voxs is greater than the rich determination threshold VRichth, the state of the catalyst 43 is insufficient for oxygen. It may be determined that the state has been reached. Further, the first control device determines that the state of the catalyst 43 is an oxygen-excess state when the output value Voxs becomes smaller than the lean determination threshold value VLeanth when the state of the catalyst 43 is determined to be an oxygen-deficient state. It may be determined that it has become.
  • the target air-fuel ratio abyfr (required air-fuel ratio, upstream target air-fuel ratio abyfr) that is the target value of the catalyst inflow gas. ) Is a “target lean air-fuel ratio afLean larger than the theoretical air-fuel ratio”. Therefore, when the first control device determines that the state of the catalyst 43 is an oxygen-deficient state, the first control device sets the target air-fuel ratio abyfr to the target lean air-fuel ratio afLean.
  • the target air-fuel ratio abyfr of the catalyst inflow gas is “a target rich air-fuel ratio afRich smaller than the stoichiometric air-fuel ratio”. It is. Therefore, when the first control device determines that the state of the catalyst 43 is an oxygen excess state, the first control device sets the target air-fuel ratio abyfr to the target rich air-fuel ratio afRich.
  • the purge control valve 55 is immediately opened, and the evaporated fuel is introduced into the intake passage (that is, the evaporated fuel purge is started).
  • the first control device maintains the purge control valve 55 in the closed state when the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean when the purge execution request condition is satisfied. That is, in this case, the first control device does not start the evaporated fuel purge. Thereafter, the first control device sets the target air-fuel ratio abyfr when the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich (or after the time when the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich. Is set to the target rich air-fuel ratio afRich), the purge control valve 55 is opened, and the evaporated fuel is introduced into the intake passage (that is, the evaporated fuel purge is started).
  • the target air-fuel ratio abyfr when the evaporated fuel purge is started is the target rich air-fuel ratio afRich and not the target lean air-fuel ratio afLean. That is, the state of the catalyst 43 when the evaporated fuel purge is started is the “oxygen excess state (lean state)”. Therefore, even if a large amount of unburned material flows into the catalyst 43 by starting the evaporated fuel purge, the catalyst 43 can purify most of the unburned material. Therefore, it is possible to reduce the degree to which the emission deteriorates at the start of the evaporated fuel purge.
  • the CPU of the first control device repeatedly executes the fuel injection control routine shown in FIG. 4 for each cylinder every time the crank angle of any cylinder reaches a predetermined crank angle before the intake top dead center. It has become.
  • the predetermined crank angle is, for example, BTDC 90 ° CA (90 ° crank angle before intake top dead center).
  • a cylinder whose crank angle coincides with the predetermined crank angle is also referred to as a “fuel injection cylinder”.
  • the CPU calculates the commanded fuel injection amount (final fuel injection amount) Fi and instructs fuel injection by this fuel injection control routine.
  • the CPU starts the process from step 400, and in step 405, determines whether or not the value of the fuel cut flag XFC is “0”. judge.
  • the value of the fuel cut flag XFC is set to “1” when the fuel cut start condition is satisfied, and is “0” when the fuel cut end condition is satisfied when the value of the fuel cut flag XFC is “1”.
  • Set to The value of the fuel cut flag XFC is further set to “0” in the initial routine.
  • the initial routine is a routine executed by the CPU when the ignition key switch of the vehicle on which the engine 10 is mounted is changed from OFF to ON.
  • the CPU makes a “Yes” determination at step 405 to proceed to step 410, where “fuel” is based on “intake air amount Ga, engine rotational speed NE, and lookup table MapMc (Ga, NE)”.
  • the amount of air sucked into the injection cylinder that is, the in-cylinder intake air amount) Mc
  • the in-cylinder intake air amount Mc may be calculated by a well-known air model (a model constructed according to a physical law simulating the behavior of air in the intake passage).
  • step 415 determines whether or not the value of the feedback control flag XFB is “1”.
  • the value of the feedback control flag XFB is set to “1” when the air-fuel ratio feedback control condition is satisfied, and is set to “0” when the feedback control condition is not satisfied.
  • the feedback control condition is satisfied when, for example, all the following conditions are satisfied.
  • A1 The upstream air-fuel ratio sensor 66 is activated.
  • A2) The downstream air-fuel ratio sensor 67 is activated.
  • the engine load KL is equal to or less than the threshold load KLfbth.
  • the value of the fuel cut flag XFC is “0”.
  • the load KL is a load factor (filling rate) KL in this example, and is calculated based on the following equation (1).
  • is the air density (unit is (g / l))
  • L is the displacement of the engine 10 (unit is (l))
  • 4 is the number of cylinders of the engine 10.
  • the load KL may be the in-cylinder intake air amount Mc, the throttle valve opening TA, the accelerator pedal operation amount Accp, and the like.
  • KL ⁇ Mc (k) / ( ⁇ ⁇ L / 4) ⁇ ⁇ 100 (%) (1)
  • step 415 the CPU makes a “No” determination at step 415 to proceed to step 420 to set the target air-fuel ratio abyfr to the stoichiometric air-fuel ratio stoich (eg, 14.6). To do.
  • step 425 the CPU sequentially performs the processing from step 425 to step 440 described below, proceeds to step 495, and once ends this routine.
  • Step 425 The CPU calculates the basic fuel injection amount Fbase by dividing the in-cylinder intake air amount Mc by the target air-fuel ratio abyfr.
  • the basic fuel injection amount Fbase is a feed-forward amount of the fuel injection amount necessary for making the air-fuel ratio of the engine coincide with the target air-fuel ratio abyfr.
  • Step 430 The CPU reads a main feedback amount KFmain separately calculated by a routine not shown.
  • the main feedback amount KFmain is calculated based on known PID control so that the detected upstream air-fuel ratio abyfs matches the target air-fuel ratio abyfr.
  • the main feedback amount KFmain is set to “1” when the value of the feedback control flag XFB is “0”. Further, the main feedback amount KFmain may always be set to “1”. That is, feedback control using the main feedback amount KFmain is not essential in this embodiment.
  • Step 435 The CPU calculates the command fuel injection amount Fi by correcting the basic fuel injection amount Fbase with the main feedback amount KFmain. More specifically, the CPU calculates the command fuel injection amount Fi by multiplying the basic fuel injection amount Fbase by the main feedback amount KFmain.
  • Step 440 The CPU sends an injection instruction signal for injecting “the fuel of the indicated fuel injection amount Fi” from the “fuel injection valve 33 provided corresponding to the fuel injection cylinder” to the fuel injection valve 33. To do.
  • Steps 425 to 440 constitute command fuel injection amount control means for “controlling the command fuel injection amount Fi so that the air-fuel ratio of the engine matches the target air-fuel ratio abyfr”.
  • step 415 determines “Yes” in step 415 and proceeds to step 445 to display the catalyst lean state display. It is determined whether or not the value of the flag XCCROLean is “1”.
  • the value of the catalyst lean state display flag XCCROLean is set by a routine described later.
  • step 445 the CPU makes a “Yes” determination at step 445 to proceed to step 450 where the target air-fuel ratio abyfr is set to “a predetermined target rich air-fuel ratio afRich (theoretical air-fuel ratio A constant air-fuel ratio smaller than the fuel ratio, for example, 14.2) ”is set. Thereafter, the CPU proceeds to step 425 and subsequent steps. Accordingly, the air-fuel ratio of the engine is made to coincide with the target rich air-fuel ratio afRich.
  • the CPU makes a “No” determination at step 445 to proceed to step 455.
  • the target air-fuel ratio abyfr is set to “a predetermined target lean air-fuel ratio afLean (a constant air-fuel ratio larger than the theoretical air-fuel ratio, for example, 15.0)”. Thereafter, the CPU proceeds to step 425 and subsequent steps. Accordingly, the air-fuel ratio of the engine is made to coincide with the target lean air-fuel ratio afLean.
  • step 405 if the value of the fuel cut flag XFC is “1” at the time when the CPU executes the process of step 405, the CPU makes a “No” determination at step 405 to directly proceed to step 495, and this routine Is temporarily terminated. In this case, fuel injection by the process of step 440 is not executed, so fuel cut control is executed. That is, the operating state of the engine 10 is a fuel cut operating state.
  • ⁇ Catalyst rich state determination> The CPU repeatedly executes the “catalyst state determination routine (required air-fuel ratio determination routine)” shown in the flowchart of FIG. 5 every elapse of a predetermined time ts. Therefore, when the predetermined timing comes, the CPU starts the process from step 500 and proceeds to step 510. From the “current output value Voxs of the downstream air-fuel ratio sensor 67” to the “previous output value of the downstream air-fuel ratio sensor 67”. By subtracting “Voxsold”, the change amount ⁇ Voxs of the output value Voxs per predetermined time ts (unit time) is calculated.
  • the previous output value Voxsold is a value that is updated in the next step 520, and is the output value Voxs at the time point a predetermined time ts before the current time (the output value Voxs when this routine was executed last time).
  • the change amount ⁇ Voxs is also referred to as a change rate ⁇ Voxs.
  • the CPU proceeds to step 520 to store the current output value Voxs as “previous output value Voxsold”.
  • the CPU proceeds to step 530 to determine whether or not the value of the catalyst lean state display flag XCCROLean is “1”.
  • the value of the catalyst lean state display flag XCCROLean is set to “1” in the above-described initial routine. Further, the value of the catalyst lean state display flag XCCROLean is determined when it is determined that the state of the catalyst 43 is in an oxygen-deficient state (rich state) based on the output value Voxs of the downstream air-fuel ratio sensor 67, as will be described later. It is set to “0”, and is set to “1” when it is determined that the state of the catalyst 43 is an oxygen excess state (lean state) based on the output value Voxs of the downstream air-fuel ratio sensor 67.
  • the CPU makes a “Yes” determination at step 530 to proceed to step 540 to determine whether or not the change rate ⁇ Voxs is positive. That is, the CPU determines whether or not the output value Voxs is increasing. At this time, if the change speed ⁇ Voxs is not positive, the CPU makes a “No” determination at step 540 to directly proceed to step 595 to end the present routine tentatively.
  • step 540 the CPU makes a “Yes” determination at step 540 to proceed to step 550, where the magnitude
  • step 550 If the magnitude of the change rate ⁇ Voxs
  • the value of the catalyst lean state display flag XCCROLean is set to “0”. That is, when the output value Voxs increases and the magnitude
  • the value of the catalyst lean state display flag XCCROLean is set to “0”.
  • step 530 “No” is determined, and the process proceeds to step 570.
  • the CPU determines in step 570 whether or not the change rate ⁇ Voxs is negative. That is, the CPU determines whether or not the output value Voxs is decreasing. At this time, if the change rate ⁇ Voxs is not negative, the CPU makes a “No” determination at step 570 to directly proceed to step 595 to end the present routine tentatively.
  • step 570 the CPU makes a “Yes” determination at step 570 to proceed to step 580, where the magnitude
  • the CPU makes a “Yes” determination at step 580 to proceed to step 590 to set the value of the catalyst lean state display flag XCCROLean. Set to “1”. That is, when the output value Voxs is decreasing and the magnitude
  • the CPU sets the value of the catalyst lean state display flag XCCROLean to “0” when the value of the catalyst lean state display flag XCCROLean is “1” and the output value Voxs becomes larger than the rich determination threshold VRichth. May be.
  • the value of the catalyst lean state display flag XCCROLean is “0” and the output value Voxs becomes smaller than the lean determination threshold value VLeanth
  • the value of the catalyst lean state display flag XCCROLean is set to “1”.
  • the rich determination threshold value VRichth may be a value equal to or less than the median value Vmid.
  • the lean determination threshold value VLeanth may be a value equal to or greater than the median value Vmid.
  • the value of the catalyst lean state display flag XCCROLean is alternately set to one of “1” and “0” based on the output value Voxs of the downstream side air-fuel ratio sensor 67. Then, the target air-fuel ratio abyfr is determined according to the catalyst lean state display flag XCCROLean (see step 445 to step 455 of the routine of FIG. 4), and the command fuel injection amount Fi is determined based on the target air-fuel ratio abyfr. (See step 425 to step 435 of the routine of FIG. 4).
  • ⁇ Evaporative fuel purge start control> The CPU executes the evaporated fuel purge start control routine shown in FIG. 6 every elapse of a predetermined time. Therefore, when the predetermined timing comes, the CPU starts the process from step 600 and proceeds to step 610 to determine whether or not the value of the purge execution flag XPG is “0”.
  • the value of the purge execution flag XPG is set to “1” when the purge control valve 55 is opened and the evaporated fuel is introduced into the intake passage (when the evaporated fuel purge is being executed). It is set to “0” when the valve 55 is closed and the evaporated fuel is not introduced into the intake passage (when the evaporated fuel purge is not executed). Further, the value of the purge execution flag XPG is set to “0” in the above-described initial routine.
  • the CPU makes a “Yes” determination at step 610 to proceed to step 620 to determine whether or not the value of the purge execution request flag XPGreq is “1”.
  • the value of the purge execution request flag XPGreq is set to “1” when the purge execution request condition is satisfied, and is set to “0” when the purge execution request condition is not satisfied. Further, the value of the purge execution request flag XPGreq is set to “0” in the above-described initial routine.
  • This purge execution request condition is satisfied, for example, when all of the following conditions are satisfied. Of course, other conditions may be added to the purge execution request condition.
  • the value of the feedback control flag XFB is “1” (main feedback control is being executed).
  • the engine 10 is in a steady operation (for example, the amount of change per unit time of the throttle valve opening TA representing the engine load is equal to or less than a predetermined value).
  • the cooling water temperature THW is equal to or higher than the threshold cooling water temperature THWth.
  • the CPU makes a “No” determination at step 620 to proceed to step 630 to set the value of the purge permission flag XKPG to “0”.
  • the value of the purge permission flag XKPG is set to “0” in the above-described initial routine.
  • step 640 determines whether or not the value of the purge permission flag XKPG is “1”. In this case, the value of the purge permission flag XKPG is set to “0”. Therefore, the CPU makes a “No” determination at step 640 to directly proceed to step 695 to end the present routine tentatively. As a result, the evaporated fuel purge is not started.
  • the value of the purge execution request flag XPGreq is set to “1” in a routine not shown.
  • the CPU makes a “Yes” determination at step 620 following step 610 to proceed to step 670 to determine whether or not the value of the catalyst lean state display flag XCCROLean is “1”.
  • the CPU determines whether or not the current target air-fuel ratio abyfr is the target rich air-fuel ratio afRich.
  • the CPU makes a “Yes” determination at step 670 to proceed to step 680 to set the value of the purge permission flag XKPG to “1”.
  • the CPU proceeds to step 640 to determine whether or not the value of the purge permission flag XKPG is “1”.
  • the CPU makes a “Yes” determination at step 640 to proceed to step 650 to open the purge control valve 55 and introduce the evaporated fuel into the intake passage. That is, the CPU starts the evaporated fuel purge.
  • the CPU transmits a signal of the duty ratio DPG to the purge control valve 55.
  • the duty ratio DPG is determined based on, for example, the intake air amount Ga and the engine rotational speed NE.
  • the CPU proceeds to step 660, sets the value of the purge execution flag XPG to “1”, proceeds to step 695, and once ends this routine. Accordingly, when the CPU next starts the routine shown in FIG. 6 from step 600, the CPU makes a “No” determination at step 610 to directly proceed to step 695 to end the present routine tentatively.
  • the CPU makes a “No” determination at step 670 to proceed to step 690.
  • the value of the purge permission flag XKPG is set to “0”. In this case, the CPU makes a “No” determination at step 640 to directly proceed to step 695 to end the present routine tentatively. Therefore, when the purge execution request condition is satisfied, the value of the catalyst lean state display flag XCCROLean is not “1” (that is, if the target air-fuel ratio abyfr is the target lean air-fuel ratio afLean), the evaporated fuel purge is not started.
  • the value of the catalyst lean state display flag XCCROLean is changed to “1”, the CPU makes a “Yes” determination at step 670 to proceed to step 680, so that the evaporated fuel purge is started.
  • ⁇ Evaporative fuel purge end control> The CPU executes the evaporative fuel purge end control routine shown in FIG. 7 every elapse of a predetermined time. Therefore, when the predetermined timing comes, the CPU starts the process from step 700 and proceeds to step 710 to determine whether or not the value of the purge execution flag XPG is “1”.
  • the value of the purge execution flag XPG is set to “1” in step 660 of FIG. Therefore, the CPU makes a “Yes” determination at step 710 to proceed to step 720 to determine whether or not the value of the purge execution request flag XPGreq is “0”. At this time, if the value of the purge execution request flag XPGreq is “1”, the CPU makes a “No” determination at step 720 to directly proceed to step 795 to end the present routine tentatively. Therefore, in this case, the evaporated fuel purge is continued.
  • Step 720 if the purge execution request condition is not satisfied and the value of the purge execution request flag XPGreq is set to “0” at the time when the CPU executes the process of step 720, the CPU proceeds to step 720. "Yes" is determined, the processing of Steps 730 to 750 described below is performed in order, and then the routine proceeds to Step 795 to end the present routine tentatively.
  • Step 730 The CPU closes the purge control valve 55 (sets the duty ratio DPG to “0”). That is, the CPU ends (stops) the evaporated fuel purge.
  • Step 740 The CPU sets the value of the purge execution flag XPG to “0”.
  • Step 750 The CPU sets the value of the purge permission flag XKPG to “0”.
  • step 710 when the CPU next executes the process of step 710, the CPU makes a “No” determination at step 710 to directly proceed to step 795 to end the present routine tentatively.
  • the first control device The target value (target air-fuel ratio abyfr) of the air-fuel ratio of the gas flowing into the catalyst 43 is selected from among “target rich air-fuel ratio afRich smaller than stoichiometric air-fuel ratio” and “target lean air-fuel ratio afLean larger than stoichiometric air-fuel ratio” Target air-fuel ratio determining means (refer to the routine of FIG. 5 and steps 445 to 455 of FIG.
  • a fuel injection control means for determining the amount of fuel injected from the fuel injection valve 33 (fuel injection amount) in accordance with the target air-fuel ratio abyfr and for injecting the determined fuel injection amount from the fuel injection valve 33 (FIG. 4 step 425 to step 440), and Evaporated fuel purge for introducing the evaporated fuel generated in the fuel tank 51 for storing the fuel supplied to the fuel injection valve 33 into the intake passage of the engine 10 is executed when the “predetermined purge execution requirement condition” is satisfied.
  • Evaporative fuel purge means (refer to the evaporative fuel supply system 50, the routine of FIG. 6 and the routine of FIG. 7); Is a control device for an internal combustion engine.
  • the evaporated fuel purge means includes: When the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich at the time when the purge execution request condition is changed from the state where the purge execution request condition is not satisfied to the state where the purge execution request condition is satisfied, the evaporated fuel purge (See step 620, step 670, step 680, step 640 and step 650 in FIG. 6), and When the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean at the time when the purge execution request condition is satisfied, the evaporated fuel purge is not started (see step 670, step 690 and step 640 in FIG. 6), and thereafter.
  • the fuel vapor purge is started when the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich (FIG. 6). (See Step 620, Step 670, Step 680, Step 640 and Step 650.)
  • the target air-fuel ratio abyfr when the evaporated fuel purge is started is the target rich air-fuel ratio afRich and not the target lean air-fuel ratio afLean. Therefore, the catalyst when the evaporated fuel purge is started
  • the state 43 is an “excess oxygen state (lean state)”. In other words, the evaporated fuel purge is started when the catalyst 43 is in a state where a large amount of unburned matter can be purified. Therefore, even if a large amount of unburned material flows into the catalyst 43 due to the start of the evaporated fuel purge, the catalyst 43 can purify most of the unburned material. Therefore, it is possible to reduce the degree to which the emission deteriorates at the start of the evaporated fuel purge.
  • control device for an internal combustion engine according to a second embodiment of the present invention (hereinafter also referred to as “second control device”) will be described.
  • the second control device depends on whether the operation state of the engine 10 at the time when the purge execution request condition is satisfied is the first operation state where emission should be prioritized or the second operation state where drivability should be prioritized.
  • the difference from the first control device is only in that the conditions for starting the evaporated fuel purge are different.
  • the CPU of the second control device executes a routine executed by the CPU of the first control device, except for the routine shown in FIG. Furthermore, the CPU of the second control device executes the “evaporated fuel purge start control routine shown by the flowchart in FIG. 8 instead of FIG. 6” every time a predetermined time elapses. Therefore, the operation of the second control device will be described below mainly with reference to FIG.
  • the routine shown in FIG. 8 is similar to the routine shown in FIG.
  • the steps shown in FIG. 8 and also shown in FIG. 6 are denoted by the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • the routine shown in FIG. 8 differs from the routine shown in FIG. 6 only in that Steps 810 to 830 are added to the routine shown in FIG. Hereinafter, this difference will be described.
  • the CPU makes a “Yes” determination in both steps 610 and 620 and proceeds to step 810 to determine whether or not the operating state of the engine 10 is in an operating region where emission should be prioritized.
  • the operating state of the engine 10 is also expressed as being in the first operating state.
  • the operation state of the engine 10 represented by the load KL and the engine speed NE is indicated by the “emission priority operation region” shown in the operation region map of FIG. And the drivability priority operation area ”.
  • the emission priority operation region is a region on the low load side and the low rotation speed side when the entire operation region is divided into two regions by the “boundary line L that defines the relationship between the load and the engine rotation speed”.
  • the drivability priority operation region is a region on the high load side and the high rotation speed side of the two divided regions.
  • the CPU makes a “Yes” determination at step 810 to proceed to step 670 and subsequent steps. Therefore, if the value of the catalyst lean state display flag XCCROLean is “1”, the CPU immediately starts the purge of evaporated fuel (see Step 680, Step 640 and Step 650), and the value of the catalyst lean state display flag XCCROLean is If it is “0”, the fuel vapor purge is not started (see step 690 and step 640).
  • step 810 when the CPU executes the process of step 810, when the operation state of the engine 10 is not in the emission priority operation region (that is, when the operation state of the engine 10 is the drivability priority operation region, in other words, When the operating state of the engine 10 is the second operating state), the CPU makes a “No” determination at step 810 to proceed to step 820.
  • step 820 the CPU determines whether the value of the catalyst lean state display flag XCCROLean is “0”. At this time, if the value of the catalyst lean state display flag XCCROLean is “0”, the CPU makes a “Yes” determination at step 820 to proceed to step 830 to set the value of the purge permission flag XKPG to “1”. . Thereafter, the CPU proceeds to step 640 and subsequent steps.
  • the evaporated fuel purge is started when the target air-fuel ratio abyfr is the target lean air-fuel ratio afLean.
  • step 820 the CPU proceeds to step 820. If “No” is determined, the process proceeds to step 630 to set the value of the purge permission flag XKPG to “0”. Thereafter, the CPU proceeds to step 640. As a result, the evaporated fuel purge is not started.
  • the evaporated fuel purge means of the second control device is When the operation state of the engine 10 at the time when the purge execution request condition is satisfied is the first operation state (see the determination of “Yes” in step 810 in FIG. 8).
  • the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich
  • the fuel vapor purge is started (see step 670 and step 680 in FIG. 8), and the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean. If it is, the fuel vapor purge is not started (see step 670 and step 690 in FIG. 8).
  • the evaporated fuel purge means starts the evaporated fuel purge when the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich after the time when the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich. (See Step 670 and Step 680 in FIG. 8).
  • the evaporated fuel purge is started when the state of the catalyst 43 is an oxygen excess state. Therefore, even if a large amount of unburned material flows into the catalyst 43 as the evaporated fuel purge starts, the catalyst 43 can purify most of the unburned material. Therefore, when the operation state of the engine 10 is in the “first operation state where emission should be prioritized”, the degree to which the emission deteriorates at the start of the evaporated fuel purge can be reduced.
  • the evaporated fuel purge means of the second control device is When the operation state of the engine 10 at the time when the purge execution request condition is satisfied is “a second operation state different from the first operation state” (see the determination of “No” in step 810 in FIG. 8).
  • the evaporated fuel purge is started (see step 820 and step 830 in FIG. 8), and the target air-fuel ratio abyfr is set to the target rich air-fuel ratio afRich. If it is, the fuel vapor purge is not started (see step 820 and step 630 in FIG. 8).
  • the evaporated fuel purge means starts the evaporated fuel purge when the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean after the time when the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean. (See step 820 and step 830 in FIG. 8).
  • the evaporated fuel is additionally supplied to the engine 10 immediately after the start of the evaporated fuel purge, generally, the air-fuel ratio of the engine becomes temporarily small. Therefore, if the evaporated fuel purge is started when the target air-fuel ratio abyfr is the target rich air-fuel ratio afRich, the air-fuel ratio of the engine becomes excessively small. For this reason, vibrations are generated in the engine 10 due to the combustion state of the air-fuel mixture becoming unstable, and the drivability (driability) of the vehicle on which the engine 10 and the engine 10 are mounted may deteriorate.
  • the target air-fuel ratio abyfr is the target.
  • the evaporated fuel purge is started when the lean air-fuel ratio is afLean. Therefore, the air-fuel ratio of the engine is brought close to the stoichiometric air-fuel ratio by starting the evaporated fuel purge. Therefore, since the combustion state of the air-fuel mixture is stabilized, the drivability (operability) of the engine 10 and the vehicle equipped with the engine 10 can be improved.
  • the evaporative fuel purge is started when the state of the catalyst 43 is the “oxygen-deficient state (rich state)”, so that the emission may be deteriorated. is there.
  • the second operation state is an operation state in which the load and / or the engine rotation speed is higher than the first operation state, the temperature of the catalyst 43 at the time when the evaporated fuel purge is started is high, and therefore the catalyst The purification capacity of 43 is high. Therefore, there is little possibility that the emission will be significantly deteriorated by the start of the evaporated fuel purge.
  • the engine 10 includes a downstream catalyst downstream of the catalyst 43.
  • the temperature of the downstream catalyst reaches a certain level. Therefore, unburned matter is also purified by this downstream catalyst. Therefore, the possibility that the emission is significantly deteriorated by the start of the evaporated fuel purge is extremely small.
  • the first operation state in which the operation giving priority to emission may be the low load operation state (that is, the state in which the load KL is equal to or less than the threshold load KLth), and the second operation in which the operation giving priority to the drivability is performed.
  • the state may be a high load operation state (that is, a state where the load KL is larger than the threshold load KLth).
  • the first operating state may be a low speed operating state (that is, a state where the engine rotational speed NE is equal to or less than the threshold rotational speed NEth), and the second operating state is a high speed operating state (that is, the engine rotational speed NE is the threshold rotational speed).
  • the state may be higher than the speed NEth).
  • control device for an internal combustion engine according to a third embodiment of the present invention (hereinafter also referred to as “third control device”) will be described.
  • the third control device is different from the second control device only in “difference 1 and difference 2” described below.
  • the third control device sets the target air-fuel ratio abyfr to The fuel vapor purge is started when the target rich air-fuel ratio is afRich.
  • the third control device starts the evaporated fuel purge when the estimated first time is longer than the first threshold time.
  • the third control device when the operation state at the time when the purge execution request condition is satisfied is the second operation state (the operation state in which drivability should be prioritized), the target air-fuel ratio abyfr Evaporative fuel purge is started when is the target lean air-fuel ratio afLean.
  • the third control device starts the evaporated fuel purge when the estimated second time is longer than the second threshold time.
  • the CPU of the third control device executes a routine executed by the CPU of the second control device, except for the routine shown in FIG. Further, the CPU of the third control device executes the “evaporated fuel purge start control routine shown by the flowchart in FIG. 10 instead of FIG. 8” every time a predetermined time elapses. Therefore, the operation of the third control device will be described below mainly with reference to FIG.
  • the routine shown in FIG. 10 is similar to the routine shown in FIG.
  • the steps shown in FIG. 10 and also shown in FIG. 8 are denoted by the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • the routine shown in FIG. 10 differs from the routine shown in FIG. 8 only in that Step 1010 and Step 1020 are added to the routine shown in FIG. Hereinafter, this difference will be described.
  • the CPU makes a “Yes” determination at both steps 610 and 620 to proceed to step 810.
  • the CPU makes a “Yes” determination at step 810 to proceed to step 670 where the value of the catalyst lean state display flag XCCROLean is “1”. It is determined whether or not.
  • the CPU makes a “Yes” determination at step 670 to proceed to step 1010 to perform the next processing.
  • the CPU estimates a time (first time T1) from “current time” to “time when the target air-fuel ratio abyfr is changed to the target lean air-fuel ratio afLean”. A method for estimating the first time T1 will be described later.
  • the first time T1 is also the time from “current time” to “when the value of the catalyst lean state display flag XCCROLean is changed to“ 0 ””.
  • the CPU determines whether or not the first time T1 is within the first threshold time T1th.
  • the CPU makes a “Yes” determination at step 1010 to proceed to step 690, and sets the value of the purge permission flag XKPG to “0”. Accordingly, in this case, the evaporated fuel purge is not started.
  • the CPU makes a “No” determination at step 1010 to proceed to step 680 and perform purge.
  • the value of the permission flag XKPG is set to “1”.
  • the evaporated fuel purge is started. That is, when the first time T1 is longer than the first threshold time T1th (when the change of the target air-fuel ratio abyfr to the target lean air-fuel ratio afLean does not occur within the first threshold time T1th), the evaporated fuel purge is performed. Be started.
  • the CPU makes a “No” determination at step 810 to proceed to step 820. Then, it is determined whether or not the value of the catalyst lean state display flag XCCROLean is “0”.
  • the CPU makes a “Yes” determination at step 820 to proceed to step 1020 to perform the next process.
  • the CPU estimates a time (second time T2) from “current time” to “time when the target air-fuel ratio abyfr is changed to the target rich air-fuel ratio afRich”. A method for estimating the second time T2 will be described later.
  • the first time T2 is also the time from “current time” to “the time when the value of the catalyst lean state display flag XCCROLean is changed to“ 1 ””.
  • the CPU determines whether or not the second time T2 is within the second threshold time T2th.
  • the CPU makes a “Yes” determination at step 1020 to proceed to step 630, and sets the value of the purge permission flag XKPG to “0”. Accordingly, in this case, the evaporated fuel purge is not started.
  • the CPU makes a “No” determination at step 1020 to proceed to step 830, and performs purge.
  • the value of the permission flag XKPG is set to “1”.
  • the evaporated fuel purge is started. That is, when the second time T2 is longer than the second threshold time T2th (when the change of the target air-fuel ratio abyfr to the target rich air-fuel ratio afRich does not occur within the second threshold time T2th), the evaporated fuel purge is performed. Be started.
  • the CPU continues to set the target rich air-fuel ratio affr as the target air-fuel ratio abyfr from when the target air-fuel ratio abyfr is changed from the target lean air-fuel ratio afLean to the target rich air-fuel ratio afRich (see time t0).
  • (Target rich air-fuel ratio elapsed time) TRpass is measured.
  • the CPU predicts the duration TRich of the target rich air-fuel ratio afRich at time t0.
  • the third control device stores a lookup table MapTRich (Ga, NE) defining the relationship between “the intake air amount Ga and the engine rotational speed NE” and the target rich air-fuel ratio duration TRich in the ROM. is doing.
  • MapTRich (Ga, NE) is created based on data acquired in advance by experiments.
  • the CPU estimates the target rich air-fuel ratio duration TRich by applying the “intake air amount Ga and engine speed NE” at the time t0 to the table MapTRich (Ga, NE).
  • step 1010 in FIG. 10 the CPU estimates the first time T1 (time until the target air-fuel ratio abyfr switches to the target lean air-fuel ratio afLean) by subtracting the target rich air-fuel ratio elapsed time TRpass from the target rich air-fuel ratio continuation time TRich. (get.
  • the CPU continues to set the target lean air-fuel ratio affr as the target air-fuel ratio abyfr from the time when the target air-fuel ratio abyfr is changed from the target rich air-fuel ratio afRich to the target lean air-fuel ratio afLean (see time t2).
  • Elapsed time (target lean air-fuel ratio elapsed time) TLpass is measured.
  • the CPU predicts the duration TLean of the current target lean air-fuel ratio afLean at time t2.
  • the third control device stores a lookup table MapTLean (Ga, NE) defining the relationship between the “intake air amount Ga and the engine speed NE” and the target lean air-fuel ratio duration TLean in the ROM. is doing.
  • This table MapTLean (Ga, NE) is created based on data acquired in advance by experiments. Then, at time t2, the CPU estimates the target lean air-fuel ratio duration TLean by applying the “intake air amount Ga and engine speed NE” at time t2 to the table MapTLean (Ga, NE).
  • step 1020 in FIG. 10 the CPU estimates the second time T2 (time until the target air-fuel ratio abyfr switches to the target rich air-fuel ratio afRich) by subtracting the target lean air-fuel ratio elapsed time TLpass from the target lean air-fuel ratio continuation time TLean. (get.
  • the third control device includes the evaporated fuel purge means similar to the second control device.
  • the evaporated fuel purge means of the third control device is When the operation state of the engine 10 at the time when the purge execution request condition is satisfied is the first operation state (see the determination “Yes” in both step 620 and step 810 in FIG. 10), the target air-fuel ratio abyfr is When the target rich air-fuel ratio afRich is set (see the determination of “Yes” in step 670 in FIG. 10), the time until the target air-fuel ratio abyfr switches to the target lean air-fuel ratio afLean is the first time. 1 hour T1 is estimated, and when the estimated first time T1 is less than a predetermined first threshold time T1th, the fuel vapor purge is not started (“10” in step 1010 of FIG. 10). (See “Yes” and step 690.)
  • the evaporated fuel purge is not started.
  • the state of the catalyst 43 has not changed to an oxygen-deficient state. Can be avoided.
  • the evaporated fuel purge means of the third control device includes: When the operation state of the engine 10 at the time when the purge execution request condition is satisfied is the second operation state (see the determination of “Yes” in step 620 and the determination of “No” in step 810 in FIG. 10). ) When the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean (see the determination of “Yes” in step 820 in FIG. 10), the target air-fuel ratio abyfr is switched to the target rich air-fuel ratio afRich.
  • the second time T2 which is the time until switching, is estimated, and when the estimated second time T2 is less than a predetermined second threshold time T2th, the fuel vapor purge is not started (see FIG. (Refer to “Yes” in Step 1020 of Step 10 and Step 630.)
  • the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean.
  • the second time T2 is less than the predetermined second threshold time T2th, the evaporated fuel purge is not started.
  • the target air-fuel ratio abyfr is not changed to the target rich air-fuel ratio afRich by the time when the fuel introduced into the intake passage by the evaporated fuel purge reaches the combustion chamber 21, the “air-fuel ratio of the engine 10” is not changed. It is possible to avoid “becomes too small and the combustion state becomes unstable, and thus drivability deteriorates”.
  • the evaporated fuel purge can be performed without deteriorating emissions and without sacrificing drivability. it can.
  • “learning of the main feedback learning value KG” may be included as one of the purge execution request conditions. That is, when the learning of the main feedback learning value KG is not completed, the evaporated fuel purge is not executed.
  • the main feedback coefficient is larger than “1 + ⁇ ”.
  • the value of feedback learning value KG is increased by a value ⁇ KG per predetermined time, and the value of main feedback learning value KG whose average value of the main feedback coefficient is smaller than “1 ⁇ ” is decreased by a value ⁇ KG per predetermined time.
  • the value ⁇ is a value larger than 0 and smaller than 1 (for example, 0.02), and the initial value of the main feedback learning value KG is “1”.
  • the purge correction coefficient FPG is obtained according to the following (3).
  • FGPG is an evaporative fuel gas concentration learning value.
  • PGT is a target purge rate.
  • FPG 1 + PGT (FGPG-1) (3)
  • the evaporative fuel gas concentration learning value FGPG is set at a predetermined time when the average value FAFAV of the main feedback coefficient is not a value between “1 + ⁇ ” and “1 ⁇ ” during the evaporative fuel purge. Increased by FAFAV-1) / PGT.
  • the target purge rate PGT is determined based on the load KL, the engine speed NE, and the like.
  • the target purge rate PGT may be a constant value.
  • the value ⁇ is a value larger than 0 and smaller than 1 (for example, 0.02).
  • the target rich air-fuel ratio afRich may be a value that changes according to the intake air amount Ga, for example, or the target lean air-fuel ratio afLean may be a value that changes according to the intake air amount Ga, for example. There may be.

Abstract

本発明の一態様に係る内燃機関の制御装置(本制御装置)は、触媒(43)に流入するガスの空燃比の目標値である目標空燃比を「理論空燃比よりも小さい目標リッチ空燃比」と「理論空燃比よりも大きい目標リーン空燃比」とのうちの何れに設定すべきかを下流側空燃比センサ(67)の出力値に基づいて決定し、その目標空燃比に基づいて燃料噴射量を決定する。本制御装置は燃料タンク(51)内に発生した蒸発燃料を機関の吸気通路に導入する蒸発燃料パージ手段を備える。その蒸発燃料パージ手段は、パージ実行要求条件が不成立である状態からパージ実行要求条件が成立した状態へと変化したパージ実行要求条件成立時点において前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始し、且つ前記パージ実行要求条件成立時点において前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始しない。

Description

内燃機関の制御装置
 本発明は、排気通路に配設された三元触媒と、燃料タンク内に発生した蒸発燃料を吸気通路に導入する蒸発燃料パージ手段と、燃料を供給する燃料噴射弁と、を備える内燃機関の制御装置に関する。
 従来より、内燃機関から排出される排ガスを浄化するために同機関の排気通路に三元触媒が配設されている。三元触媒は、周知のように、酸素吸蔵機能を有する。即ち、三元触媒は、その三元触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。三元触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。以下、三元触媒は単に「触媒」とも称呼される。
 従来の空燃比制御装置(従来装置)は、機関の排気通路であって触媒の上流及び下流にそれぞれ配設された上流側空燃比センサ及び下流側空燃比センサを備える。従来装置は、上流側空燃比センサの出力値により表される空燃比(検出上流側空燃比)を目標空燃比(上流側目標空燃比、触媒流入ガスの目標空燃比)に一致させるように「機関に供給される混合気の空燃比(機関の空燃比)」を制御する。この制御は「メインフィードバック制御」とも称呼される。
 更に、従来装置は、下流側空燃比センサの出力値が「理論空燃比に対応する目標値」に一致するようにサブフィードバック量を算出し、そのサブフィードバック量により上流側目標空燃比を実質的に変更することにより、機関の空燃比を制御する(例えば、特許文献1を参照。)。サブフィードバック量を用いた空燃比制御は「サブフィードバック制御」とも称呼される。
特開2009-162139号公報
 ところで、出願人は、特に、「触媒の酸素吸蔵能力が低い場合(例えば、触媒が劣化した場合、或いは、触媒の容量が小さい場合等であって、最大酸素吸蔵量が小さい場合)」であっても、エミッションを良好に維持することができる空燃比制御装置を検討している。例えば、そのような検討中の空燃比制御装置の一つは、触媒の状態(酸素吸蔵状態)を下流側空燃比センサの出力値に基づいて遅滞なく判定し、その判定結果に基づいて触媒流入ガスの空燃比が理論空燃比以外の空燃比に一致するように機関の空燃比を制御する。
 より具体的に述べると、そのような制御装置は、下流側空燃比センサの出力値Voxsに基づいて触媒の状態が酸素過剰状態(リーン状態)になったと判定したとき、目標空燃比を「理論空燃比よりも小さい目標リッチ空燃比」に設定する。更に、この制御装置は、下流側空燃比センサの出力値Voxsに基づいて触媒の状態が酸素不足状態(リッチ状態)となったと判定したとき、目標空燃比を「理論空燃比よりも大きい目標リーン空燃比」に設定する。
 一方、機関には、蒸発燃料パージ手段が採用される。蒸発燃料パージ手段は、燃料タンク内に発生した蒸発燃料をキャニスタに吸着させ、所定のパージ実行要求条件が成立するとキャニスタに吸着された蒸発燃料を機関の吸気通路に導入する。これにより、蒸発燃料は機関の燃焼室にて燃焼させられてから大気中に排出される。蒸発燃料を機関の吸気通路に導入することは蒸発燃料パージと称呼される。
 蒸発燃料パージは、機関の空燃比を変化させる要因の一つである。通常、蒸発燃料パージが開始された直後においては、燃料噴射弁からの燃料に加えて蒸発燃料パージによる燃料が機関に供給されるので、機関の空燃比が一時的に小さくなる。このため、触媒の未燃物の浄化能力が高くない場合に蒸発燃料パージが開始されると、触媒が浄化できる量以上の未燃物が触媒に流入する。その場合、未燃物の排出量が増大してエミッションが悪化する。
 本発明は、上述した課題に対処するために為されたものである。即ち、本発明の目的の一つは、目標空燃比に応じて蒸発燃料パージの開始を許容したり禁止したりする制御(蒸発燃料パージ開始制御)を行うことにより、蒸発燃料パージの開始に伴うエミッションの悪化の程度を小さくすることが可能な内燃機関の制御装置を提供することにある。
 本発明による内燃機関の制御装置(本発明装置)は、
 内燃機関の排気通路に配設された触媒と、
 前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
 「前記触媒に流入するガスの空燃比の目標値である目標空燃比」を「理論空燃比よりも小さい目標リッチ空燃比」と「理論空燃比よりも大きい目標リーン空燃比」とのうちの何れに設定すべきかを「前記下流側空燃比センサの出力値」に基づいて決定する目標空燃比決定手段と、
 前記機関に対して燃料を噴射する燃料噴射弁と、
 「前記燃料噴射弁から噴射される燃料の量である燃料噴射量」を前記目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
 「前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク」内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージを所定のパージ実行要求条件が成立している場合に実行する蒸発燃料パージ手段と、
 を備える。
 更に、前記蒸発燃料パージ手段は、
 前記パージ実行要求条件が不成立である状態から前記パージ実行要求条件が成立した状態へと変化した時点(以下、「パージ実行要求条件成立時点」とも称呼する。)において、前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始し、且つ、
 前記パージ実行要求条件成立時点において前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始せず、その後、前記目標空燃比が前記目標リッチ空燃比に設定される時点以降において前記目標空燃比が前記目標リッチ空燃比に設定されているときに前記蒸発燃料パージを開始するように構成されている。
 前述したように、蒸発燃料パージを開始すると、その蒸発燃料パージによって機関の空燃比が一時的に過小となる(一時的に過度にリッチ側の空燃比になる。)。そのため、触媒に多量の未燃物が流入する。このとき、触媒の状態が酸素不足状態(リッチ状態)であって触媒の未燃物の浄化能力が低いと、未燃物が触媒にて浄化されることなく触媒下流に排出される。
 これに対し、本発明装置によれば、蒸発燃料パージが開始されるときの目標空燃比は目標リッチ空燃比であって目標リーン空燃比ではないので、蒸発燃料パージが開始されるときの触媒の状態は「酸素過剰状態(リーン状態)」である。換言すると、触媒が多量の未燃物を浄化できる状態にあるときに蒸発燃料パージが開始される。従って、触媒に蒸発燃料パージによって多量の未燃物が流入したとしても、触媒はその未燃物の多くを浄化することができる。よって、蒸発燃料パージ開始時においてエミッションが悪化する程度を小さくすることができる。
 この場合、前記蒸発燃料パージ手段は、パージ実行要求条件成立時点の機関の運転状態が第1運転状態であるか第2運転状態にあるかに応じて蒸発燃料パージを開始する時点を変更することが望ましい。
 例えば、第1運転状態はエミッションを優先した運転を行うべき運転状態であり、第2運転状態はドライバビリティを優先した運転を行うべき運転状態である。より具体的には、第1運転状態は低負荷運転状態であってもよく、第2運転状態は高負荷運転状態であってもよい。更に、例えば、第1運転状態は低速運転状態であってもよく、第2運転状態は高速運転状態であってもよい。加えて、例えば、第1運転状態は「負荷と機関回転速度」とにより表される機関の運転状態が「低負荷側且つ低回転速度側の運転領域」内に存在している状態であってもよく、第2運転状態は「負荷と機関回転速度」とにより表される機関の運転状態が「高負荷側且つ高回転速度側の運転領域」内に存在している状態であってもよい。
 より具体的に述べると、前記蒸発燃料パージ手段は、次のように構成されることが望ましい。
(1)パージ実行要求条件成立時点の機関の運転状態が第1運転状態である場合:
(1A)前記蒸発燃料パージ手段は、前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始する。
(1B)前記蒸発燃料パージ手段は、前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始せず、前記目標空燃比が前記目標リッチ空燃比に設定される時点以降において前記目標空燃比が前記目標リッチ空燃比に設定されているときに前記蒸発燃料パージを開始する。
 これによれば、上述したように、触媒の状態が「酸素過剰状態(リーン状態)」であるときに蒸発燃料パージが開始される。従って、蒸発燃料パージの開始に伴って多量の未燃物が触媒に流入したとしても、触媒はその未燃物の多くを浄化することができる。よって、機関の運転状態が第1運転状態にある場合、蒸発燃料パージ開始時にエミッションが悪化する程度を小さくすることができる。
 ところで、前述したように、蒸発燃料パージの開始直後においては機関の空燃比が一時的に小さくになる。よって、目標空燃比が目標リッチ空燃比であるときに蒸発燃料パージを開始すると、機関の空燃比は非常に小さくなる。このため、混合気の燃焼状態が不安定になること等に起因して機関に振動が発生し、ドライバビリティが悪化する場合がある。そこで、前記蒸発燃料パージ手段は、更に、次のように構成されることが望ましい。
(2)パージ実行要求条件成立時点の機関の運転状態が第2運転状態である場合:
(2A)前記蒸発燃料パージ手段は、前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始する。
(2B)前記蒸発燃料パージ手段は、前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始せず、前記目標空燃比が前記目標リーン空燃比に設定される時点以降において前記目標空燃比が前記目標リーン空燃比に設定されているときに前記蒸発燃料パージを開始する。
 これによれば、目標空燃比が目標リーン空燃比であるときに蒸発燃料パージが開始される。従って、機関の空燃比は蒸発燃料パージの開始により理論空燃比に近づけられる。その結果、混合気の燃焼が安定する等の理由により、機関に振動が発生し難い。よって、機関及び機関を搭載した車両のドライバビリティ(運転性)を向上することができる。
 なお、この場合、触媒の状態が「酸素不足状態(リッチ状態)」であるときに蒸発燃料パージが開始される。よって、エミッションが悪化する可能性がある。しかしながら、第2運転状態は一般に負荷及び/又は機関回転速度が大きい運転状態であるので、蒸発燃料パージが開始される時点において、触媒の温度は高く、それ故、触媒の浄化能力は高い。よって、蒸発燃料パージの開始によりエミッションが顕著に悪化する可能性は小さい。更に、多くの機関は、この触媒の下流に下流側触媒を備えている。機関の運転状態が第2運転状態にあれば、下流側触媒の温度もある程度の温度に到達している。よって、この下流側触媒によっても未燃物は浄化される。従って、蒸発燃料パージの開始によりエミッションが顕著に悪化する可能性はより一層小さい。
 本発明装置の一態様において、前記蒸発燃料パージ手段は、
 前記パージ実行要求条件成立時点の前記機関の運転状態が前記第1運転状態である場合、前記目標空燃比が前記目標リッチ空燃比に設定されているとき、前記目標空燃比が前記目標リーン空燃比へと切り換わるまでの時間である第1時間を推定し、前記推定された第1時間が所定の第1閾値時間未満である場合には前記蒸発燃料パージを開始しないように構成され得る。
 機関の運転状態が第1運転状態にある場合、パージ実行要求条件成立時点において目標空燃比が目標リッチ空燃比に設定されていれば、その時点の触媒の状態は酸素過剰状態であるから、蒸発燃料パージを開始することが好ましい。しかし、蒸発燃料パージによって吸気通路に導入された燃料が燃焼し且つ排ガスとなって触媒に到達するまでには所定の時間を要する。従って、前記目標空燃比が前記目標リーン空燃比へと切り換わるまでの時間(第1時間)が所定の第1閾値時間未満である場合に蒸発燃料パージを実行すると、その蒸発燃料パージによって吸気通路に導入された燃料が燃焼し且つ排ガスとなって触媒に到達した時点において触媒の状態は既に酸素不足状態となっている(目標空燃比が既に目標リーン空燃比に変更されている)。この結果、エミッションが悪化する可能性がある。
 これに対し、上記一態様によれば、前記パージ実行要求条件成立時点の前記機関の運転状態が前記第1運転状態であって、且つ、前記目標空燃比が前記目標リッチ空燃比に設定されている場合であっても、前記推定された第1時間が所定の第1閾値時間未満である場合には前記蒸発燃料パージが開始されない。この結果、蒸発燃料パージによって吸気通路に導入された燃料が燃焼し且つ排ガスとなって触媒に到達した時点において触媒の状態が酸素不足状態となっていることがないので、エミッションが悪化することを回避することができる。
 本発明装置の一態様において、前記蒸発燃料パージ手段は、
 前記パージ実行要求条件成立時点の前記機関の運転状態が前記第2運転状態である場合、前記目標空燃比が前記目標リーン空燃比に設定されているとき、前記目標空燃比が前記目標リッチ空燃比へと切り換わるまでの時間である第2時間を推定し、前記推定された第2時間が所定の第2閾値時間未満である場合には前記蒸発燃料パージを開始しないように構成され得る。
 機関の運転状態が第2運転状態にある場合、パージ実行要求条件成立時点において目標空燃比が目標リーン空燃比に設定されていれば、蒸発燃料パージを開始することが好ましい。しかし、蒸発燃料パージの実行を開始してから蒸発燃料が燃焼室に実際に吸入されるまでには所定の時間を要する。従って、前記目標空燃比が前記目標リッチ空燃比へと切り換わるまでの時間(第2時間)が所定の第2閾値時間未満である場合に蒸発燃料パージを実行すると、その蒸発燃料パージによって吸気通路に導入された燃料が燃焼室に到達した時点において目標空燃比は既に目標リッチ空燃比に変更されている。この結果、ドライバビリティが悪化する可能性がある。
 これに対し、上記一態様によれば、前記パージ実行要求条件成立時点の前記機関の運転状態が前記第2運転状態であって、且つ、前記目標空燃比が前記目標リーン空燃比に設定されている場合であっても、前記推定された第2時間が所定の第2閾値時間未満である場合には前記蒸発燃料パージが開始されない。この結果、蒸発燃料パージによって吸気通路に導入された燃料が燃焼室に到達する時点までに目標空燃比が目標リッチ空燃比に変更されていることがないので、機関の空燃比が過小となってドライバビリティが悪化することを回避することができる。
 本発明装置の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、本発明の各実施形態に係る制御装置が適用される内燃機関の概略平面図である。 図2は、図1に示した触媒に流入するガスの空燃比と図1に示した上流側空燃比センサの出力値との関係を示したグラフである。 図3は、図1に示した触媒から流出するガスの空燃比と図1に示した下流側空燃比センサの出力値との関係を示したグラフである。 図4は、本発明の第1実施形態に係る制御装置(第1制御装置)のCPUが実行するルーチンを示したフローチャートである。 図5は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図6は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図7は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図8は、本発明の第2実施形態に係る制御装置(第2制御装置)のCPUが実行するルーチンを示したフローチャートである。 図9は、第2制御装置のCPUが参照する運転領域を定めたマップである。 図10は、本発明の第3実施形態に係る制御装置(第3制御装置)のCPUが実行するルーチンを示したフローチャートである。 図11は、第1時間及び第2時間の推定方法を説明するためのタイムチャートである。
 以下、本発明の各実施形態に係る内燃機関の制御装置(以下、単に「制御装置」とも称呼する。)について図面を参照しながら説明する。この制御装置は、内燃機関に供給される混合気の空燃比(機関の空燃比)を制御する空燃比制御装置の一部であり、更に、燃料噴射量を制御する燃料噴射量制御装置及び蒸発燃料のパージ量を制御する蒸発燃料パージ量制御装置の一部でもある。
<第1実施形態>
(構成)
 図1は、第1実施形態に係る制御装置(以下、「第1制御装置」とも称呼する。)を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。
 内燃機関10は、機関本体部20と、吸気系統30と、排気系統40と、蒸発燃料供給系統50と、を含む。
 機関本体部20は、シリンダブロック部及びシリンダヘッド部を含む。機関本体部20は、複数の気筒(燃焼室)21を備えている。各気筒は、図示しない「吸気ポート及び排気ポート」と連通している。吸気ポートと燃焼室21との連通部は図示しない吸気弁により開閉される。排気ポートと燃焼室21との連通部は図示しない排気弁により開閉される。各燃焼室21には図示しない点火プラグが配設されている。
 吸気系統30は、インテークマニホールド31、吸気管32、複数の燃料噴射弁33、及び、スロットル弁34を備えている。
 インテークマニホールド31は、複数の枝部31aとサージタンク31bとを備えている。複数の枝部31aのそれぞれの一端は、複数の吸気ポートのそれぞれに接続されている。複数の枝部31aの他端はサージタンク31bに接続されている。
 吸気管32の一端はサージタンク31bに接続されている。吸気管32の他端には図示しないエアフィルタが配設されている。
 燃料噴射弁33は、一つの気筒(燃焼室)21に対して一つずつ配設されている。燃料噴射弁33は吸気ポートに設けられている。即ち、複数の気筒のそれぞれは、他の気筒とは独立して燃料供給を行う燃料噴射弁33を備えている。燃料噴射弁33は、噴射指示信号に応答し、正常である場合に「その噴射指示信号に含まれる指示燃料噴射量の燃料」を吸気ポート(従って、燃料噴射弁33に対応する気筒21)内に噴射するようになっている。
 より具体的に述べると、燃料噴射弁33には、後述する燃料タンク51に接続された燃料供給管57を介して燃料が供給されている。燃料噴射弁33に供給されている燃料の圧力は、その燃料の圧力と吸気ポート内の圧力との差圧が一定になるように図示しないプレッシャレギュレータにより制御されている。燃料噴射弁33は、指示燃料噴射量に応じた時間だけ開弁させられる。従って、燃料噴射弁33が正常であれば、燃料噴射弁33は指示燃料噴射量と等量の燃料を噴射する。
 スロットル弁34は、吸気管32内に回動可能に配設されている。スロットル弁34は、吸気通路の開口断面積を可変とするようになっている。スロットル弁34は、図示しないスロットル弁アクチュエータにより吸気管32内で回転駆動されるようになっている。
 排気系統40は、エキゾーストマニホールド41、エキゾーストパイプ42、エキゾーストパイプ42に配設された上流側触媒43、及び、上流側触媒43よりも下流においてエキゾーストパイプ42に配設された「図示しない下流側触媒」を備えている。
 エキゾーストマニホールド41は、複数の枝部41aと集合部41bとを備えている。複数の枝部41aのそれぞれの一端は、複数の排気ポートのそれぞれに接続されている。複数の枝部41aのそれぞれの他端は集合部41bに集合している。この集合部41bは、複数(2以上であり、本例では4つ)の気筒から排出された排ガスが集合する部分であるから、排気集合部HKとも称呼される。
 エキゾーストパイプ42は集合部41bに接続されている。排気ポート、エキゾーストマニホールド41及びエキゾーストパイプ42は、排気通路を構成している。
 上流側触媒43及び下流側触媒のそれぞれは、所謂、白金、ロジウム及びパラジウム等の貴金属(触媒物質)からなる活性成分を担持する三元触媒装置(排気浄化用の触媒)である。各触媒は、各触媒に流入するガスの空燃比が「三元触媒のウインドウ内の空燃比(例えば、理論空燃比)」であるとき、HC,CO,Hなどの未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。
 更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有する。即ち、各触媒は、その触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。各触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。この酸素吸蔵機能は、触媒に担持されているセリア(CeO)等の酸素吸蔵材によってもたらされる。各触媒は、酸素吸蔵機能により空燃比が理論空燃比から偏移したとしても未燃成分及び窒素酸化物を浄化することができる。つまり、酸素吸蔵機能により、ウインドウの幅が拡大する。
 蒸発燃料供給系統50は、燃料タンク51、キャニスタ52、ベーパ捕集管53、パージ流路管54、パージ制御弁55、及び、燃料ポンプ56を備えている。
 燃料タンク51は、燃料噴射弁33から機関10に対して噴射・供給される燃料を貯留する。
 キャニスタ52は、燃料タンク51内にて発生した蒸発燃料(蒸発燃料ガス)を吸蔵する「周知のチャコールキャニスタ」である。キャニスタ52は、タンクポート52aと、パージポート52bと、大気に曝されている大気ポート52cと、が形成された筐体を備える。キャニスタ52は、その筐体内に、蒸発燃料を吸着するための吸着剤(活性炭等)52dを収納(保持)している。
 ベーパ捕集管53の一端は燃料タンク51の上部に接続され、ベーパ捕集管53の他端はタンクポート52aに接続されている。ベーパ捕集管53は、燃料タンク51内に発生した蒸発燃料を燃料タンク51からキャニスタ52へと導入するための管である。
 パージ流路管54の一端はパージポート52bに接続され、パージ流路管54の他端はサージタンク31b(即ち、スロットル弁34よりも下流の吸気通路)に接続されている。パージ流路管54は、キャニスタ52の吸着剤52dから脱離した蒸発燃料をサージタンク31bへと導入するための管である。ベーパ捕集管53及びパージ流路管54はパージ通路(パージ通路部)を構成している。
 パージ制御弁55はパージ流路管54に介装されている。パージ制御弁55は、指示信号であるデューティ比DPGを表す駆動信号により開度(開弁期間)が調節されることにより、パージ流路管54の通路断面積を変更するようになっている。パージ制御弁55は、デューティ比DPGが「0」であるときにパージ流路管54を完全に閉じるようになっている。
 燃料ポンプ56は、燃料タンク51に貯留されている燃料を燃料供給管57を通して燃料噴射弁33に供給するようになっている。
 このように構成された蒸発燃料供給系統50において、パージ制御弁55が完全に閉じられている場合、燃料タンク51内で発生した蒸発燃料はキャニスタ52に吸蔵される。パージ制御弁55が開かれている場合、キャニスタ52に吸蔵された蒸発燃料はパージ流路管54を通してサージタンク31b(スロットル弁34よりも下流の吸気通路)に放出され、燃焼室21(機関10)へ供給される。即ち、パージ制御弁55が開かれているとき、蒸発燃料のパージ(「蒸発燃料ガスのパージ」又は「パージ」とも称呼される。)が行われる。
 このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、水温センサ63、クランクポジションセンサ64、インテークカムポジションセンサ65、上流側空燃比センサ66、下流側空燃比センサ67、及び、アクセル開度センサ68を備えている。
 エアフローメータ61は、吸気管32内を流れる吸入空気の質量流量(吸入空気流量)Gaに応じた信号を出力するようになっている。即ち、吸入空気量Gaは、単位時間あたりに機関10に吸入される吸入空気量を表す。
 スロットルポジションセンサ62は、スロットル弁34の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
 水温センサ63は、機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。冷却水温THWは、機関10の暖機状態(機関10の温度)を表す運転状態指標量である。
 クランクポジションセンサ64は、クランク軸が10°回転する毎に幅狭のパルスを有するとともに同クランク軸が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、後述する電気制御装置70によって機関回転速度NEに変換される。
 インテークカムポジションセンサ65は、インテークカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。後述する電気制御装置70は、クランクポジションセンサ64及びインテークカムポジションセンサ65からの信号に基づいて、基準気筒(例えば第1気筒)の圧縮上死点を基準とした絶対クランク角度CAを取得するようになっている。この絶対クランク角度CAは、基準気筒の圧縮上死点において「0°クランク角度」に設定され、クランク軸の回転角度に応じて720°クランク角度まで増大し、その時点にて再び0°クランク角度に設定される。
 上流側空燃比センサ66は、エキゾーストマニホールド41の集合部41b(排気集合部HK)と上流側触媒43との間の位置において「エキゾーストマニホールド41及びエキゾーストパイプ42の何れか」に配設されている。
 上流側空燃比センサ66は、例えば、特開平11-72473号公報、特開2000-65782号公報及び特開2004-69547号公報等に開示された「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
 上流側空燃比センサ66は、上流側空燃比センサ66の配設位置を流れる排ガスの空燃比(触媒43に流入するガスである「触媒流入ガス」の空燃比、上流側空燃比abyfs)に応じた出力値Vabyfsを出力する。出力値Vabyfsは、図2に示したように、触媒流入ガスの空燃比(上流側空燃比abyfs)が大きくなるほど(リーン側の空燃比になるほど)増大する。
 電気制御装置70は、出力値Vabyfsと上流側空燃比abyfsとの図2に示した関係を規定した空燃比変換テーブル(マップ)Mapabyfsを記憶している。電気制御装置70は、出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより、実際の上流側空燃比abyfsを検出する(検出上流側空燃比abyfsを取得する)ようになっている。
 再び、図1を参照すると、下流側空燃比センサ67は、エキゾーストパイプ42内に配設されている。下流側空燃比センサ67の配設位置は、上流側触媒43よりも下流側であり、且つ、下流側触媒よりも上流側(即ち、上流側触媒43と下流側触媒との間の排気通路)である。下流側空燃比センサ67は、周知の起電力式の酸素濃度センサ(安定化ジルコニア等の固体電解質を用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ67は、排気通路であって下流側空燃比センサ67が配設されている部位を通過するガスである被検出ガスの空燃比に応じた出力値Voxsを発生するようになっている。換言すると、出力値Voxsは、上流側触媒43から流出し且つ下流側触媒に流入するガスの空燃比に応じた値である。
 この出力値Voxsは、図3に示したように、被検出ガスの空燃比が理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V~1.0V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V~0V)となる。更に、出力値Voxsは、被検出ガスの空燃比が理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(中央値Vmid、中間電圧Vst、例えば、約0.5V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへと急変する。同様に、出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
 図1に示したアクセル開度センサ68は、運転者によって操作されるアクセルペダルAPの操作量Accp(アクセルペダル操作量、アクセルペダルAPの開度)を表す信号を出力するようになっている。アクセルペダル操作量Accpは、アクセルペダルAPの操作量が大きくなるとともに大きくなる。
 電気制御装置70は、「CPU、CPUが実行するプログラム、テーブル(マップ、関数)及び定数等を予め記憶したROM、CPUが必要に応じてデータを一時的に格納するRAM、バックアップRAM(B-RAM)、並びに、ADコンバータを含むインターフェース等」からなる周知のマイクロコンピュータである。
 バックアップRAMは、機関10を搭載した車両の図示しないイグニッション・キー・スイッチの位置(オフ位置、始動位置及びオン位置等の何れか)に関わらず、車両に搭載されたバッテリから電力の供給を受けるようになっている。バックアップRAMは、バッテリから電力の供給を受けている場合、CPUの指示に応じてデータを格納する(データが書き込まれる)とともに、そのデータを読み出し可能となるように保持(記憶)する。従って、バックアップRAMは、機関10の運転停止中においてもデータを保持することができる。
 バックアップRAMは、バッテリが車両から取り外される等によりバッテリからの電力供給が遮断されると、データを保持することができない。そこで、CPUは、バックアップRAMへの電力供給が再開されたとき、バックアップRAMに保持されるべきデータを初期化(デフォルト値に設定)するようになっている。なお、バックアップRAMは、EEPROM等の読み書き可能な不揮発性メモリであってもよい。
 電気制御装置70は、上述したセンサ等と接続され、CPUにそれらのセンサからの信号を供給するようになっている。更に、電気制御装置70は、CPUの指示に応じて、各気筒に対応して設けられた点火プラグ(実際にはイグナイタ)、各気筒に対応して設けられた燃料噴射弁33、パージ制御弁55、及び、スロットル弁アクチュエータ等に駆動信号(指示信号)を送出するようになっている。
 なお、電気制御装置70は、取得されたアクセルペダルの操作量Accpが大きくなるほどスロットル弁開度TAが大きくなるように、スロットル弁アクチュエータに指示信号を送出するようになっている。即ち、電気制御装置70は、運転者により変更される機関10の加速操作量(アクセルペダル操作量Accp)に応じて「機関10の吸気通路に配設されたスロットル弁34」の開度を変更するスロットル弁駆動手段を備えている。
(第1制御装置の作動の概要)
 第1制御装置は、下流側空燃比センサ67の出力値Voxsに基づいて、触媒43の状態(酸素吸蔵状態)が、酸素過剰状態(リーン状態、触媒43の酸素吸蔵量がその最大酸素吸蔵量Cmaxに近い値となっている状態、即ち、触媒43の酸素吸蔵量が高側閾値以上である状態)であるか、酸素不足状態(リッチ状態、触媒43に酸素が殆ど吸蔵されていない状態、即ち、触媒43の酸素吸蔵量が「高側閾値以下である低側閾値」未満である状態)であるかを判定する。
 より具体的に述べると、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsの所定時間あたりの変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定する。このとき、第1制御装置は、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。
 更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、触媒43の状態が酸素過剰状態となったと判定する。このとき、第1制御装置は、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定する。
 なお、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定してもよい。更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、触媒43の状態が酸素過剰状態となったと判定してもよい。
 触媒43の状態が酸素不足状態であるとき、触媒43には過剰な酸素を流入させるべきであるので、触媒流入ガスの目標値である目標空燃比abyfr(要求空燃比、上流側目標空燃比abyfr)は「理論空燃比よりも大きい目標リーン空燃比afLean」である。そこで、第1制御装置は、触媒43の状態が酸素不足状態であると判定している場合、目標空燃比abyfrを目標リーン空燃比afLeanに設定する。
 触媒43の状態が酸素過剰状態であるとき、触媒43には過剰な未燃物を流入させるべきであるので、触媒流入ガスの目標空燃比abyfrは「理論空燃比よりも小さい目標リッチ空燃比afRich」である。そこで、第1制御装置は、触媒43の状態が酸素過剰状態であると判定している場合、目標空燃比abyfrを目標リッチ空燃比afRichに設定する。
 一方、第1制御装置は、所定のパージ実行要求条件が成立したとき(パージ実行要求条件が不成立である状態からパージ実行要求条件が成立した状態へと変化したパージ実行要求条件成立時点において)、目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときにはパージ制御弁55を直ちに開弁し、蒸発燃料を吸気通路に導入する(即ち、蒸発燃料パージを開始する。)。
 これに対し、第1制御装置は、パージ実行要求条件成立時点において、目標空燃比abyfrが目標リーン空燃比afLeanに設定されているときにはパージ制御弁55を閉弁した状態に維持する。即ち、この場合、第1制御装置は蒸発燃料パージを開始しない。第1制御装置は、その後、目標空燃比abyfrが目標リッチ空燃比afRichに設定されたとき(或いは、目標空燃比abyfrが目標リッチ空燃比afRichに設定された時点以降であって、目標空燃比abyfrが目標リッチ空燃比afRichに設定されているとき)、パージ制御弁55を開弁し、蒸発燃料を吸気通路に導入する(即ち、蒸発燃料パージを開始する。)。
 蒸発燃料パージを開始すると、その蒸発燃料パージによって機関の空燃比が一時的に過小となる(一時的に過度にリッチ側の空燃比になる。)。そのため、触媒43に多量の未燃物が流入する。このとき、触媒43の状態が酸素不足状態(リッチ状態)であって触媒43の未燃物の浄化能力が低いと、未燃物が触媒43にて浄化されることなく触媒下流に排出される。
 これに対し、第1制御装置によれば、蒸発燃料パージが開始されるときの目標空燃比abyfrは目標リッチ空燃比afRichであって目標リーン空燃比afLeanではない。即ち、蒸発燃料パージが開始されるときの触媒43の状態は「酸素過剰状態(リーン状態)」である。従って、蒸発燃料パージを開始することによって多量の未燃物が触媒43に流入したとしても、触媒43はその未燃物の多くを浄化することができる。よって、蒸発燃料パージ開始時においてエミッションが悪化する程度を小さくすることができる。
(実際の作動)
 次に、第1制御装置の実際の作動について説明する。
<燃料噴射制御>
 第1制御装置のCPUは、図4に示した燃料噴射制御ルーチンを、任意の気筒のクランク角度が吸気上死点前の所定クランク角度となる毎に、その気筒に対して繰り返し実行するようになっている。前記所定クランク角度は、例えば、BTDC90°CA(吸気上死点前90°クランク角度)である。クランク角度が前記所定クランク角度に一致した気筒は「燃料噴射気筒」とも称呼される。CPUは、この燃料噴射制御ルーチンにより、指示燃料噴射量(最終燃料噴射量)Fiの計算及び燃料噴射の指示を行う。
 任意の気筒のクランク角度が吸気上死点前の所定クランク角度と一致すると、CPUはステップ400から処理を開始し、ステップ405にてフューエルカットフラグXFCの値が「0」であるか否かを判定する。フューエルカットフラグXFCの値は、フューエルカット開始条件が成立したときに「1」に設定され、フューエルカットフラグXFCの値が「1」であるときにフューエルカット終了条件が成立したときに「0」に設定される。フューエルカットフラグXFCの値は更にイニシャルルーチンにおいて「0」に設定されるようになっている。イニシャルルーチンは、機関10が搭載された車両のイグニッション・キー・スイッチがオフからオンに変更されたときにCPUにより実行されるルーチンである。
 いま、フューエルカットフラグXFCの値が「0」であると仮定する。この場合、CPUは、ステップ405にて「Yes」と判定してステップ410に進み、「吸入空気量Ga、機関回転速度NE、及び、ルックアップテーブルMapMc(Ga,NE)」に基いて「燃料噴射気筒に吸入される空気量(即ち、筒内吸入空気量)Mc)」を取得する。筒内吸入空気量Mcは、周知の空気モデル(吸気通路における空気の挙動を模した物理法則に従って構築されたモデル)により算出されてもよい。
 次に、CPUはステップ415に進み、フィードバック制御フラグXFBの値が「1」であるか否かを判定する。このフィードバック制御フラグXFBの値は、空燃比のフィードバック制御条件が成立しているときに「1」に設定され、フィードバック制御条件が成立していないときに「0」に設定される。フィードバック制御条件は、例えば、以下の総ての条件が成立したときに成立する。
(A1)上流側空燃比センサ66が活性化している。
(A2)下流側空燃比センサ67が活性化している。
(A3)機関の負荷KLが閾値負荷KLfbth以下である。
(A4)フューエルカットフラグXFCの値が「0」である。
 なお、負荷KLは、本例において負荷率(充填率)KLであり、下記の(1)式に基いて算出される。この(1)式において、ρは空気密度(単位は(g/l))、Lは機関10の排気量(単位は(l))、4は機関10の気筒数である。但し、負荷KLは、筒内吸入空気量Mc、スロットル弁開度TA及びアクセルペダル操作量Accp等であってもよい。
 
 KL={Mc(k)/(ρ・L/4)}・100(%)…(1)
 
 フィードバック制御フラグXFBの値が「1」でなければ、CPUはステップ415にて「No」と判定してステップ420に進み、目標空燃比abyfrを理論空燃比stoich(例えば、14.6)に設定する。
 次に、CPUは以下に述べるステップ425乃至ステップ440の処理を順に行い、ステップ495に進んで本ルーチンを一旦終了する。
 ステップ425:CPUは、筒内吸入空気量Mcを目標空燃比abyfrで除することによって基本燃料噴射量Fbaseを算出する。基本燃料噴射量Fbaseは、機関の空燃比を目標空燃比abyfrに一致させるために必要な燃料噴射量のフィードフォワード量である。
 ステップ430:CPUは、図示しないルーチンにより別途計算されているメインフィードバック量KFmainを読み込む。メインフィードバック量KFmainは、検出上流側空燃比abyfsが目標空燃比abyfrに一致するように周知のPID制御に基づいて算出される。なお、メインフィードバック量KFmainは、フィードバック制御フラグXFBの値が「0」であるとき「1」に設定される。更に、メインフィードバック量KFmainは常に「1」に設定されてもよい。即ち、メインフィードバック量KFmainを用いたフィードバック制御は本実施形態において必須ではない。
 ステップ435:CPUは、基本燃料噴射量Fbaseをメインフィードバック量KFmainにより補正することによって指示燃料噴射量Fiを算出する。より具体的に述べると、CPUは、基本燃料噴射量Fbaseにメインフィードバック量KFmainを乗じることによって指示燃料噴射量Fiを算出する。
 ステップ440:CPUは、「指示燃料噴射量Fiの燃料」を「燃料噴射気筒に対応して設けられている燃料噴射弁33」から噴射させるための噴射指示信号を、その燃料噴射弁33に送出する。
 この結果、機関の空燃比を目標空燃比abyfrに一致させるために必要な量の燃料が燃料噴射気筒の燃料噴射弁33から噴射させられる。即ち、ステップ425乃至ステップ440は、「機関の空燃比が目標空燃比abyfrに一致するように指示燃料噴射量Fiを制御する」指示燃料噴射量制御手段を構成している。
 一方、CPUがステップ415の処理を行う時点において、フィードバック制御フラグXFBの値が「1」であると、CPUはそのステップ415にて「Yes」と判定してステップ445に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。触媒リーン状態表示フラグXCCROLeanの値は後述するルーチンにより設定される。
 触媒リーン状態表示フラグXCCROLeanの値が「1」であると、CPUはステップ445にて「Yes」と判定してステップ450に進み、目標空燃比abyfrを「所定の目標リッチ空燃比afRich(理論空燃比よりも小さい一定の空燃比、例えば、14.2)」に設定する。その後、CPUはステップ425以降に進む。従って、機関の空燃比は目標リッチ空燃比afRichに一致させられる。
 これに対し、CPUがステップ445の処理を実行する時点において、触媒リーン状態表示フラグXCCROLeanの値が「0」であると、CPUはステップ445にて「No」と判定してステップ455に進み、目標空燃比abyfrを「所定の目標リーン空燃比afLean(理論空燃比よりも大きい一定の空燃比、例えば、15.0)」に設定する。その後、CPUはステップ425以降に進む。従って、機関の空燃比は目標リーン空燃比afLeanに一致させられる。
 一方、CPUがステップ405の処理を実行する時点において、フューエルカットフラグXFCの値が「1」であると、CPUはそのステップ405にて「No」と判定してステップ495に直接進み、本ルーチンを一旦終了する。この場合、ステップ440の処理による燃料噴射が実行されないので、フューエルカット制御が実行される。即ち、機関10の運転状態はフューエルカット運転状態となる。
<触媒リッチ状態判定>
 CPUは図5にフローチャートにより示した「触媒状態判定ルーチン(要求空燃比決定ルーチン)」を所定時間tsの経過毎に繰り返し実行している。従って、所定のタイミングになると、CPUはステップ500から処理を開始してステップ510に進み、「現時点の下流側空燃比センサ67の出力値Voxs」から「前回の下流側空燃比センサ67の出力値Voxsold」を減じることにより、所定時間ts(単位時間)あたりの出力値Voxsの変化量ΔVoxsを算出する。前回の出力値Voxsoldは、次のステップ520にて更新される値であり、現時点から所定時間tsだけ前の時点の出力値Voxs(本ルーチンが前回実行されたときの出力値Voxs)である。変化量ΔVoxsは変化速度ΔVoxsとも称呼される。次に、CPUはステップ520に進み、現時点の出力値Voxsを「前回の出力値Voxsold」として記憶する。
 次に、CPUはステップ530に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。触媒リーン状態表示フラグXCCROLeanの値は、上述したイニシャルルーチンにおいて「1」に設定されるようになっている。更に、触媒リーン状態表示フラグXCCROLeanの値は、後述するように、下流側空燃比センサ67の出力値Voxsに基づいて触媒43の状態が酸素不足状態(リッチ状態)であると判定されたときに「0」に設定され、下流側空燃比センサ67の出力値Voxsに基づいて触媒43の状態が酸素過剰状態(リーン状態)であると判定されたときに「1」に設定される。
 いま、触媒リーン状態表示フラグXCCROLeanの値が「1」であると仮定する。この場合、CPUはステップ530にて「Yes」と判定してステップ540に進み、変化速度ΔVoxsが正であるか否かを判定する。即ち、CPUは、出力値Voxsが増大しているか否かを判定する。このとき、変化速度ΔVoxsが正でなければ、CPUはステップ540にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsが正であると、CPUはステップ540にて「Yes」と判定してステップ550に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリッチ判定閾値dRichth以下であると、CPUはステップ550にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
 CPUがステップ550の処理を実行する時点において、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいと、CPUはそのステップ550にて「Yes」と判定してステップ560に進み、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。即ち、出力値Voxsが増大していて且つその変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きい場合、CPUは「触媒43の状態は酸素不足状態である。」と判定し、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。
 この状態(即ち、触媒リーン状態表示フラグXCCROLeanの値が「0」に設定された状態)において、CPUがステップ500から処理を再び開始すると、CPUはステップ510及びステップ520を経由してステップ530に進み、そのステップ530にて「No」と判定してステップ570に進む。
 CPUは、ステップ570にて変化速度ΔVoxsが負であるか否かを判定する。即ち、CPUは、出力値Voxsが減少しているか否かを判定する。このとき、変化速度ΔVoxsが負でなければ、CPUはステップ570にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsが負であると、CPUはステップ570にて「Yes」と判定してステップ580に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリーン判定閾値dLeanth以下であると、CPUはステップ580にて「No」と判定し、ステップ595に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいと、CPUはステップ580にて「Yes」と判定してステップ590に進み、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定する。即ち、出力値Voxsが減少していて且つその変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きい場合、CPUは「触媒43の状態が酸素過剰状態である。」と判定し、触媒リーン状態表示フラグXCCROLeanを「1」に設定する。
 なお、CPUは、触媒リーン状態表示フラグXCCROLeanの値が「1」であるとき、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定してもよい。同様に、触媒リーン状態表示フラグXCCROLeanの値が「0」であるとき、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定してもよい。この場合、リッチ判定閾値VRichthは中央値Vmid以下の値であってもよい。リーン判定閾値VLeanthは中央値Vmid以上の値であってもよい。
 このように触媒リーン状態表示フラグXCCROLeanの値は、下流側空燃比センサ67の出力値Voxsに基づいて、「1」と「0」との何れかの値に交互に設定される。そして、触媒リーン状態表示フラグXCCROLeanに応じて目標空燃比abyfrが決定され(図4のルーチンのステップ445乃至ステップ455を参照。)、その目標空燃比abyfrに基づいて指示燃料噴射量Fiが決定される(図4のルーチンのステップ425乃至ステップ435を参照。)。
<蒸発燃料パージ開始制御>
 CPUは図6に示した蒸発燃料パージ開始制御ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ600から処理を開始してステップ610に進み、パージ実行フラグXPGの値が「0」であるか否かを判定する。このパージ実行フラグXPGの値は、パージ制御弁55が開弁させられて吸気通路に蒸発燃料が導入されているとき(蒸発燃料パージが実行されているとき)「1」に設定され、パージ制御弁55が閉弁させられて吸気通路に蒸発燃料が導入されていないとき(蒸発燃料パージが実行されていないとき)「0」に設定される。更に、パージ実行フラグXPGの値は、上述したイニシャルルーチンにおいて「0」に設定されるようになっている。
 いま、蒸発燃料パージは実行されておらず、従って、パージ実行フラグXPGの値は「0」であると仮定する。この場合、CPUはステップ610にて「Yes」と判定してステップ620に進み、パージ実行要求フラグXPGreqの値が「1」であるか否かを判定する。
 パージ実行要求フラグXPGreqの値は、パージ実行要求条件が成立している場合に「1」に設定され、パージ実行要求条件が成立していない場合に「0」に設定される。更に、パージ実行要求フラグXPGreqの値は、上述したイニシャルルーチンにおいて「0」に設定されるようになっている。
 このパージ実行要求条件は、例えば、以下の総ての条件が成立したときに成立する。勿論、パージ実行要求条件には、他の条件が加えられてもよい。
(B1)フィードバック制御フラグXFBの値が「1」である(メインフィードバック制御が実行中である。)。
(B2)機関10が定常運転されている(例えば、機関の負荷を表すスロットル弁開度TAの単位時間あたりの変化量が所定値以下である。)。
(B3)冷却水温THWが閾値冷却水温THWth以上である。
 いま、パージ実行要求条件が不成立であり、従って、パージ実行要求フラグXPGreqの値が「0」であると仮定する。この場合、CPUはステップ620にて「No」と判定してステップ630に進み、パージ許可フラグXKPGの値を「0」に設定する。なお、パージ許可フラグXKPGの値は上述したイニシャルルーチンにおいて「0」に設定されるようになっている。
 次に、CPUはステップ640に進み、パージ許可フラグXKPGの値が「1」であるか否かを判定する。この場合、パージ許可フラグXKPGの値は「0」に設定されている。よって、CPUはステップ640にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。この結果、蒸発燃料パージは開始されない。
 この状態において、パージ実行要求条件が成立すると、パージ実行要求フラグXPGreqの値は図示しないルーチンにおいて「1」に設定される。この場合、CPUはステップ610に続くステップ620にて「Yes」と判定してステップ670に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。換言すると、CPUは、現時点の目標空燃比abyfrが目標リッチ空燃比afRichであるか否かを判定する。
 ここで、触媒リーン状態表示フラグXCCROLeanの値が「1」であると仮定する。この場合、CPUはステップ670にて「Yes」と判定してステップ680に進み、パージ許可フラグXKPGの値を「1」に設定する。次いで、CPUはステップ640に進み、パージ許可フラグXKPGの値が「1」であるか否かを判定する。
 この場合、CPUはステップ640にて「Yes」と判定してステップ650に進み、パージ制御弁55を開弁し、蒸発燃料を吸気通路に導入する。即ち、CPUは、蒸発燃料パージを開始させる。なお、実際には、CPUはデューティ比DPGの信号をパージ制御弁55に送信する。デューティ比DPGは、例えば、吸入空気量Ga及び機関回転速度NEに基づいて定められる。次いで、CPUはステップ660に進み、パージ実行フラグXPGの値を「1」に設定し、ステップ695に進んで本ルーチンを一旦終了する。これにより、CPUが次に図6に示したルーチンをステップ600から開始すると、CPUはステップ610にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了するようになる。
 このように、パージ実行要求フラグXPGreqの値が「0」から「1」へと変更されたパージ実行要求条件成立時点において、触媒リーン状態表示フラグXCCROLeanの値が「1」であれば(即ち、目標空燃比abyfrが目標リッチ空燃比afRichであれば)、蒸発燃料パージは直ちに開始される。
 これに対し、CPUがステップ670の処理を実行する時点において、触媒リーン状態表示フラグXCCROLeanの値が「0」であると、CPUはそのステップ670にて「No」と判定してステップ690に進み、パージ許可フラグXKPGの値を「0」に設定する。この場合、CPUはステップ640にて「No」と判定してステップ695に直接進んで本ルーチンを一旦終了する。よって、パージ実行要求条件成立時点において、触媒リーン状態表示フラグXCCROLeanの値が「1」でなければ(即ち、目標空燃比abyfrが目標リーン空燃比afLeanであれば)、蒸発燃料パージは開始されない。そして、触媒リーン状態表示フラグXCCROLeanの値が「1」に変更されると、CPUはステップ670にて「Yes」と判定してステップ680に進むので、蒸発燃料パージが開始される。
<蒸発燃料パージ終了制御>
 CPUは図7に示した蒸発燃料パージ終了制御ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ700から処理を開始してステップ710に進み、パージ実行フラグXPGの値が「1」であるか否かを判定する。
 いま、蒸発燃料パージが開始されたと仮定すると、図6のステップ660にてパージ実行フラグXPGの値は「1」に設定されている。従って、CPUはステップ710にて「Yes」と判定してステップ720に進み、パージ実行要求フラグXPGreqの値が「0」であるか否かを判定する。このとき、パージ実行要求フラグXPGreqの値が「1」であれば、CPUはステップ720にて「No」と判定し、ステップ795に直接進んで本ルーチンを一旦終了する。従って、この場合、蒸発燃料パージは続行される。
 これに対し、CPUがステップ720の処理を実行する時点において、パージ実行要求条件が不成立となっていてパージ実行要求フラグXPGreqの値が「0」に設定されていると、CPUはそのステップ720にて「Yes」と判定し、以下に述べるステップ730乃至ステップ750の処理を順に行い、その後、ステップ795に進んで本ルーチンを一旦終了する。
 ステップ730:CPUは、パージ制御弁55を閉弁する(デューティ比DPGを「0」に設定する)。即ち、CPUは蒸発燃料パージを終了(停止)する。
 ステップ740:CPUは、パージ実行フラグXPGの値を「0」に設定する。
 ステップ750:CPUは、パージ許可フラグXKPGの値を「0」に設定する。
 この結果、次にCPUがステップ710の処理を実行するとき、CPUはそのステップ710にて「No」と判定し、ステップ795に直接進んで本ルーチンを一旦終了する。   
 以上、説明したように、第1制御装置は、
 触媒43に流入するガスの空燃比の目標値(目標空燃比abyfr)を「理論空燃比よりも小さい目標リッチ空燃比afRich」と「理論空燃比よりも大きい目標リーン空燃比afLean」とのうちの何れに設定すべきかを下流側空燃比センサ67の出力値Voxsに基づいて決定する目標空燃比決定手段(図5のルーチンと、図4のステップ445乃至ステップ455を参照。)と、
 燃料噴射弁33から噴射される燃料の量(燃料噴射量)を目標空燃比abyfrに応じて決定するとともに、その決定した燃料噴射量の燃料を燃料噴射弁33から噴射させる燃料噴射制御手段(図4のステップ425乃至ステップ440を参照。)と、
 燃料噴射弁33に供給される燃料を貯蔵する燃料タンク51内に発生した蒸発燃料を機関10の吸気通路に導入する蒸発燃料パージを「所定のパージ実行要求条件」が成立している場合に実行する蒸発燃料パージ手段(蒸発燃料供給系統50、図6のルーチン、及び、図7のルーチンを参照。)と、
 を備えた内燃機関の制御装置である。
 更に、前記蒸発燃料パージ手段は、
 前記パージ実行要求条件が不成立である状態から前記パージ実行要求条件が成立した状態へと変化したパージ実行要求条件成立時点において目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときには蒸発燃料パージを開始し(図6のステップ620、ステップ670、ステップ680、ステップ640及びステップ650を参照。)、且つ、
 前記パージ実行要求条件成立時点において目標空燃比abyfrが目標リーン空燃比afLeanに設定されているときには蒸発燃料パージを開始せず(図6のステップ670、ステップ690及びステップ640を参照。)、その後、目標空燃比abyfrが目標リッチ空燃比afRichに設定される時点以降において目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときに蒸発燃料パージを開始するように構成されている(図6のステップ620、ステップ670、ステップ680、ステップ640及びステップ650を参照。)。
 この第1制御装置によれば、蒸発燃料パージが開始されるときの目標空燃比abyfrは目標リッチ空燃比afRichであって目標リーン空燃比afLeanではないので、蒸発燃料パージが開始されるときの触媒43の状態は「酸素過剰状態(リーン状態)」である。換言すると、触媒43が多量の未燃物を浄化できる状態にあるときに蒸発燃料パージが開始される。従って、蒸発燃料パージの開始によって多量の未燃物が触媒43に流入したとしても、触媒43はその未燃物の多くを浄化することができる。よって、蒸発燃料パージ開始時においてエミッションが悪化する程度を小さくすることができる。
<第2実施形態>
 次に、本発明の第2実施形態に係る内燃機関の制御装置(以下、「第2制御装置」とも称呼する。)について説明する。
 第2制御装置は、パージ実行要求条件成立時点の機関10の運転状態が、エミッションを優先すべき第1運転状態であるか、ドライバビリティを優先すべき第2運転状態であるか、に応じて、蒸発燃料パージの開始をする条件を異ならせている点においてのみ、第1制御装置と相違する。
(実際の作動)
 第2制御装置のCPUは、図6に示したルーチンを除き、第1制御装置のCPUが実行するルーチンを実行する。更に、第2制御装置のCPUは、所定時間が経過する毎に「図6に代わる図8にフローチャートにより示した蒸発燃料パージ開始制御ルーチン」を実行するようになっている。従って、以下、主として図8を参照しながら第2制御装置の作動について説明する。
 図8に示したルーチンは図6に示したルーチンと類似している。図8に示されたステップであって図6にも示されたステップには、図6に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。図8に示したルーチンは、図6に示したルーチンに対し、ステップ810乃至ステップ830が追加されている点のみにおいて、図6に示したルーチンと相違している。以下、この相違点について説明する。
 パージ実行フラグXPGの値が「0」であり(蒸発燃料パージが実行中でなく)、且つ、パージ実行要求フラグXPGreqの値が「1」に設定されたとき(パージ実行要求条件成立時点)、CPUはステップ610及びステップ620の両ステップにて「Yes」と判定してステップ810に進み、機関10の運転状態がエミッションを優先すべき運転領域にあるか否かを判定する。機関10の運転状態がエミッションを優先すべき運転領域にある場合、機関10の運転状態は第1運転状態にあるとも表現される。
 より具体的に述べると、CPUはステップ810に進んだとき、負荷KLと機関回転速度NEとにより表される機関10の運転状態が、図9の運転領域マップに示された「エミッション優先運転領域及びドライバビリティ優先運転領域」の何れの領域にあるかを判定する。エミッション優先運転領域は、全運転領域を「負荷と機関回転速度との関係を規定する境界線L」により二つの領域に区分けした場合における、低負荷側且つ低回転速度側の領域である。ドライバビリティ優先運転領域は、前記区分けされた二つの領域のうちの高負荷側且つ高回転速度側の領域である。
 いま、機関10の運転状態がエミッション優先運転領域にあると仮定する。この場合、CPUはステップ810にて「Yes」と判定してステップ670以降に進む。従って、CPUは、触媒リーン状態表示フラグXCCROLeanの値が「1」であれば蒸発燃料パージを直ちに開始し(ステップ680、ステップ640及びステップ650を参照。)、触媒リーン状態表示フラグXCCROLeanの値が「0」であれば蒸発燃料パージを開始しない(ステップ690及びステップ640を参照。)。
 これに対し、CPUがステップ810の処理を実行する時点において、機関10の運転状態がエミッション優先運転領域にない場合(即ち、機関10の運転状態がドライバビリティ優先運転領域である場合、換言すると、機関10の運転状態が第2運転状態である場合)、CPUはそのステップ810にて「No」と判定してステップ820に進む。
 そして、CPUはステップ820にて触媒リーン状態表示フラグXCCROLeanの値が「0」であるか否かを判定する。このとき、触媒リーン状態表示フラグXCCROLeanの値が「0」であると、CPUはステップ820にて「Yes」と判定してステップ830に進み、パージ許可フラグXKPGの値を「1」に設定する。その後、CPUはステップ640以降に進む。この結果、機関10の運転状態がドライバビリティ優先運転領域にある場合、目標空燃比abyfrが目標リーン空燃比afLeanであるとき、蒸発燃料パージが開始される。
 これに対し、CPUがステップ820の処理を実行する時点において、触媒リーン状態表示フラグXCCROLeanの値が「1」であって目標空燃比abyfrが目標リッチ空燃比afRichであると、CPUはステップ820にて「No」と判定してステップ630に進み、パージ許可フラグXKPGの値を「0」に設定する。その後、CPUはステップ640に進む。この結果、蒸発燃料パージは開始されない。
 以上、説明したように、第2制御装置の蒸発燃料パージ手段は、
 パージ実行要求条件成立時点の機関10の運転状態が第1運転状態である場合(図8のステップ810での「Yes」との判定を参照。)、
 目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときには蒸発燃料パージを開始し(図8のステップ670及びステップ680を参照。)、且つ、目標空燃比abyfrが目標リーン空燃比afLeanに設定されているときには蒸発燃料パージを開始しない(図8のステップ670及びステップ690を参照。)。そして、この場合、蒸発燃料パージ手段は、目標空燃比abyfrが目標リッチ空燃比afRichに設定される時点以降において目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときに蒸発燃料パージを開始する(図8のステップ670及びステップ680を参照。)。
 これによれば、触媒43の状態が酸素過剰状態であるときに蒸発燃料パージが開始される。従って、触媒43に蒸発燃料パージの開始に伴って多量の未燃物が流入したとしても、触媒43はその未燃物の多くを浄化することができる。よって、機関10の運転状態が「エミッションを優先すべき第1運転状態」にある場合、蒸発燃料パージ開始時にエミッションが悪化する程度を小さくすることができる。
 更に、第2制御装置の蒸発燃料パージ手段は、
 パージ実行要求条件成立時点の機関10の運転状態が「前記第1運転状態と異なる第2運転状態」である場合(図8のステップ810での「No」との判定を参照。)、
 目標空燃比abyfrが目標リーン空燃比afLeanに設定されているときには蒸発燃料パージを開始し(図8のステップ820及びステップ830を参照。)、且つ、目標空燃比abyfrが目標リッチ空燃比afRichに設定されているときには蒸発燃料パージを開始しない(図8のステップ820及びステップ630を参照。)。そして、この場合、蒸発燃料パージ手段は、目標空燃比abyfrが目標リーン空燃比afLeanに設定される時点以降において目標空燃比abyfrが目標リーン空燃比afLeanに設定されているときに蒸発燃料パージを開始する(図8のステップ820及びステップ830を参照。)。
 蒸発燃料パージの開始直後においては蒸発燃料が追加的に機関10に供給されるので、一般に機関の空燃比は一時的に小さくになる。よって、目標空燃比abyfrが目標リッチ空燃比afRichであるときに蒸発燃料パージを開始すると、機関の空燃比は過度に小さくなる。このため、混合気の燃焼状態が不安定になること等に起因して機関10に振動が発生し、機関10及び機関10を搭載した車両のドライバビリティ(運転性)が悪化する場合がある。
 これに対し、第2制御装置によれば、機関10の運転状態が「機関10及び機関10を搭載した車両のドライバビリティを優先すべき第2運転状態」にある場合、目標空燃比abyfrが目標リーン空燃比afLeanであるときに蒸発燃料パージが開始される。従って、機関の空燃比は蒸発燃料パージの開始により理論空燃比に近づけられる。よって、混合気の燃焼状態が安定するので、その機関10及び機関10を搭載した車両のドライバビリティ(運転性)を向上することができる。
 ところで、機関10の運転状態が第2運転状態にある場合、触媒43の状態が「酸素不足状態(リッチ状態)」であるときに蒸発燃料パージが開始されるので、エミッションが悪化する可能性がある。しかしながら、第2運転状態は第1運転状態に比較して負荷及び/又は機関回転速度が大きい運転状態であるので、蒸発燃料パージが開始される時点における触媒43の温度は高く、それ故、触媒43の浄化能力は高い。よって、蒸発燃料パージの開始によりエミッションが顕著に悪化する可能性は小さい。更に、機関10は、触媒43の下流に下流側触媒を備えている。そして、機関10の運転状態が第2運転状態にあれば、その下流側触媒の温度もある程度の温度に到達している。よって、この下流側触媒によっても未燃物は浄化される。従って、蒸発燃料パージの開始によりエミッションが顕著に悪化する可能性は極めて小さい。
 なお、エミッションを優先した運転を行うべき第1運転状態は低負荷運転状態であってもよく(即ち、負荷KLが閾値負荷KLth以下の状態)、ドライバビリティを優先した運転を行うべき第2運転状態は高負荷運転状態(即ち、負荷KLが閾値負荷KLthよりも大きい状態)であってもよい。更に、第1運転状態は低速運転状態(即ち、機関回転速度NEが閾値回転速度NEth以下の状態)であってもよく、第2運転状態は高速運転状態(即ち、機関回転速度NEが閾値回転速度NEthよりも大きい状態)であってもよい。
<第3実施形態>
 次に、本発明の第3実施形態に係る内燃機関の制御装置(以下、「第3制御装置」とも称呼する。)について説明する。第3制御装置は、以下に述べる「相違点1及び相違点2」のみにおいて、第2制御装置と相違している。
(相違点1)第3制御装置は、第2制御装置と同様、パージ実行要求条件成立時点における運転状態が第1運転状態(エミッションを優先すべき運転状態)である場合、目標空燃比abyfrが目標リッチ空燃比afRichであるときに蒸発燃料パージを開始する。但し、第3制御装置は、パージ実行要求条件成立時点における運転状態が第1運転状態であり且つその時点の目標空燃比abyfrが目標リッチ空燃比afRichであっても、その時点から「目標空燃比abyfrが目標リーン空燃比afLeanに変更される時点」までの時間(第1時間)を推定するとともに、その推定された第1時間が第1閾値時間以下であれば蒸発燃料パージを開始しない。換言すると、第3制御装置は、推定された第1時間が第1閾値時間よりも長いとき、蒸発燃料パージを開始する。
(相違点2)第3制御装置は、第2制御装置と同様、パージ実行要求条件成立時点における運転状態が第2運転状態(ドライバビリティを優先すべき運転状態)である場合、目標空燃比abyfrが目標リーン空燃比afLeanであるときに蒸発燃料パージを開始する。但し、第3制御装置は、パージ実行要求条件成立時点における運転状態が第2運転状態であり且つその時点の目標空燃比abyfrが目標リーン空燃比afLeanであっても、その時点から「目標空燃比abyfrが目標リッチ空燃比afRichに変更される時点」までの時間(第2時間)を推定するとともに、その推定された第2時間が第2閾値時間以下であれば蒸発燃料パージを開始しない。換言すると、第3制御装置は、推定された第2時間が第2閾値時間よりも長いとき、蒸発燃料パージを開始する。
(実際の作動)
 第3制御装置のCPUは、図8に示したルーチンを除き、第2制御装置のCPUが実行するルーチンを実行する。更に、第3制御装置のCPUは、所定時間が経過する毎に「図8に代わる図10にフローチャートにより示した蒸発燃料パージ開始制御ルーチン」を実行するようになっている。従って、以下、主として図10を参照しながら第3制御装置の作動について説明する。
 図10に示したルーチンは図8に示したルーチンと類似している。図10に示されたステップであって図8にも示されたステップには、図8に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。図10に示したルーチンは、図8に示したルーチンに対し、ステップ1010及びステップ1020が追加されている点のみにおいて、図8に示したルーチンと相違している。以下、この相違点について説明する。
 パージ実行フラグXPGの値が「0」であり(蒸発燃料パージが実行中でなく)、且つ、パージ実行要求フラグXPGreqの値が「1」に設定されたとき(パージ実行要求条件成立時点)、CPUはステップ610及びステップ620の両ステップにて「Yes」と判定してステップ810に進む。このとき、機関10の運転状態がエミッションを優先すべき運転領域にあれば、CPUはステップ810にて「Yes」と判定してステップ670に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。
 このとき、触媒リーン状態表示フラグXCCROLeanの値が「1」であれば、CPUはステップ670にて「Yes」と判定してステップ1010に進み、次の処理を行う。
・CPUは、「現時点」から「目標空燃比abyfrが目標リーン空燃比afLeanに変更される時点」までの時間(第1時間T1)を推定する。第1時間T1の推定方法については後述する。第1時間T1は、「現時点」から「触媒リーン状態表示フラグXCCROLeanの値が「0」に変更される時点」までの時間でもある。
・CPUは、第1時間T1が第1閾値時間T1th以内であるか否かを判定する。
 そして、第1時間T1が第1閾値時間T1th以内である場合、CPUはステップ1010にて「Yes」と判定してステップ690に進み、パージ許可フラグXKPGの値を「0」に設定する。従って、この場合、蒸発燃料パージは開始されない。
 これに対し、CPUがステップ1010の処理を実行する時点において、第1時間T1が第1閾値時間T1th以内でない場合、CPUはそのステップ1010にて「No」と判定してステップ680に進み、パージ許可フラグXKPGの値を「1」に設定する。この結果、蒸発燃料パージが開始される。即ち、CPUは、第1時間T1が第1閾値時間T1thよりも長い場合(目標空燃比abyfrの目標リーン空燃比afLeanへの変更が第1閾値時間T1th以内に発生しない場合)、蒸発燃料パージが開始される。
 一方、パージ実行フラグXPGの値が「0」であり(蒸発燃料パージが実行中でなく)、且つ、パージ実行要求フラグXPGreqの値が「1」に設定されたとき(パージ実行要求条件成立時点)、機関10の運転状態がエミッションを優先すべき運転領域になければ(ドライバビリティを優先すべき運転領域ににあると)、CPUはステップ810にて「No」と判定してステップ820に進み、触媒リーン状態表示フラグXCCROLeanの値が「0」であるか否かを判定する。
 このとき、触媒リーン状態表示フラグXCCROLeanの値が「0」であれば、CPUはステップ820にて「Yes」と判定してステップ1020に進み、次の処理を行う。
・CPUは、「現時点」から「目標空燃比abyfrが目標リッチ空燃比afRichに変更される時点」までの時間(第2時間T2)を推定する。第2時間T2の推定方法については後述する。第1時間T2は、「現時点」から「触媒リーン状態表示フラグXCCROLeanの値が「1」に変更される時点」までの時間でもある。
・CPUは、第2時間T2が第2閾値時間T2th以内であるか否かを判定する。
 そして、第2時間T2が第2閾値時間T2th以内である場合、CPUはステップ1020にて「Yes」と判定してステップ630に進み、パージ許可フラグXKPGの値を「0」に設定する。従って、この場合、蒸発燃料パージは開始されない。
 これに対し、CPUがステップ1020の処理を実行する時点において、第2時間T2が第2閾値時間T2th以内でない場合、CPUはそのステップ1020にて「No」と判定してステップ830に進み、パージ許可フラグXKPGの値を「1」に設定する。この結果、蒸発燃料パージが開始される。即ち、CPUは、第2時間T2が第2閾値時間T2thよりも長い場合(目標空燃比abyfrの目標リッチ空燃比afRichへの変更が第2閾値時間T2th以内に発生しない場合)、蒸発燃料パージが開始される。
 次に、第1時間及び第2時間の推定方法について図11を参照しながら説明する。
 CPUは、目標空燃比abyfrが目標リーン空燃比afLeanから目標リッチ空燃比afRichに変更された時点(時刻t0を参照。)から目標リッチ空燃比afRichが目標空燃比abyfrとして設定され続けている経過時間(目標リッチ空燃比経過時間)TRpassを計測する。
 更に、CPUは時刻t0において、今回の目標リッチ空燃比afRichの継続時間TRichを予測する。具体的には、第3制御装置は、「吸入空気量Ga及び機関回転速度NE」と目標リッチ空燃比継続時間TRichとの関係を規定したルックアップテーブルMapTRich(Ga,NE)をROM内に記憶している。このテーブルMapTRich(Ga,NE)は予め実験により取得されたデータに基づいて作成されている。そして、CPUは、時刻t0にて、その時刻t0における「吸入空気量Ga及び機関回転速度NE」をテーブルMapTRich(Ga,NE)に適用することにより、目標リッチ空燃比継続時間TRichを推定する。
 更に、時刻t1において、図10のステップ1010に進んだと仮定する。このとき、CPUは目標リッチ空燃比継続時間TRichから目標リッチ空燃比経過時間TRpassを減じることにより、上記第1時間T1(目標空燃比abyfrが目標リーン空燃比afLeanに切り換わるまでの時間)を推定(取得)する。
 同様に、CPUは、目標空燃比abyfrが目標リッチ空燃比afRichから目標リーン空燃比afLeanに変更された時点(時刻t2を参照。)から目標リーン空燃比afLeanが目標空燃比abyfrとして設定され続けている経過時間(目標リーン空燃比経過時間)TLpassを計測する。
 更に、CPUは時刻t2において、今回の目標リーン空燃比afLeanの継続時間TLeanを予測する。具体的には、第3制御装置は、「吸入空気量Ga及び機関回転速度NE」と目標リーン空燃比継続時間TLeanとの関係を規定したルックアップテーブルMapTLean(Ga,NE)をROM内に記憶している。このテーブルMapTLean(Ga,NE)は予め実験により取得されたデータに基づいて作成されている。そして、CPUは、時刻t2にて、その時刻t2における「吸入空気量Ga及び機関回転速度NE」をテーブルMapTLean(Ga,NE)に適用することにより、目標リーン空燃比継続時間TLeanを推定する。
 更に、時刻t3において、図10のステップ1020に進んだと仮定する。このとき、CPUは目標リーン空燃比継続時間TLeanから目標リーン空燃比経過時間TLpassを減じることにより、上記第2時間T2(目標空燃比abyfrが目標リッチ空燃比afRichに切り換わるまでの時間)を推定(取得)する。
 以上、説明したように、第3制御装置は、第2制御装置と同様の蒸発燃料パージ手段を備える。
 但し、第3制御装置の蒸発燃料パージ手段は、
 パージ実行要求条件成立時点の機関10の運転状態が前記第1運転状態である場合(図10のステップ620及びステップ810の両ステップにおける「Yes」との判定を参照。)、目標空燃比abyfrが目標リッチ空燃比afRichに設定されているとき(図10のステップ670での「Yes」との判定を参照。)、目標空燃比abyfrが目標リーン空燃比afLeanへと切り換わるまでの時間である第1時間T1を推定し、その推定された第1時間T1が所定の第1閾値時間T1th未満である場合には蒸発燃料パージを開始しないように構成されている(図10のステップ1010での「Yes」との判定及びステップ690を参照。)。
 これにより、パージ実行要求条件成立時点の機関10の運転状態が第1運転状態であって、且つ、目標空燃比abyfrが目標リッチ空燃比afRichに設定されている場合であっても、推定された第1時間T1が所定の第1閾値時間T1th未満である場合には蒸発燃料パージが開始されない。この結果、蒸発燃料パージによって吸気通路に導入された燃料が燃焼し且つ排ガスとなって触媒43に到達した時点において触媒43の状態が酸素不足状態に変化してしまっていることがないので、エミッションが悪化することを回避することができる。
 加えて、第3制御装置の前記蒸発燃料パージ手段は、
 パージ実行要求条件成立時点の機関10の運転状態が第2運転状態である場合(図10のステップ620での「Yes」との判定、及び、ステップ810での「No」との判定を参照。)、目標空燃比abyfrが目標リーン空燃比afLeanに設定されているとき(図10のステップ820での「Yes」との判定を参照。)、目標空燃比abyfrが目標リッチ空燃比afRichへと切り換わるまでの時間である第2時間T2を推定し、その推定された第2時間T2が所定の第2閾値時間T2th未満である場合には蒸発燃料パージを開始しないように構成されている(図10のステップ1020での「Yes」との判定及びステップ630を参照。)。
 これにより、パージ実行要求条件成立時点の機関10の運転状態が第2運転状態であって、且つ、目標空燃比abyfrが目標リーン空燃比afLeanに設定されている場合であっても、推定された第2時間T2が所定の第2閾値時間T2th未満である場合には蒸発燃料パージが開始されない。この結果、蒸発燃料パージによって吸気通路に導入された燃料が燃焼室21に到達する時点までに目標空燃比abyfrが目標リッチ空燃比afRichに変更されていることがないので、「機関10の空燃比が過小となって燃焼状態が不安定となり、よって、ドライバビリティが悪化すること」を回避することができる。
 以上、説明したように、本発明による内燃機関の制御装置の各実施形態によれば、蒸発燃料パージを、エミッションを悪化させることなく、更には、ドライバビリティを犠牲にすることなく、行うことができる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、基本燃料噴射量Fbaseをメインフィードバック量KFmainのみでなく、メインフィードバック学習値KG及びパージ補正係数FPGにも基づいて、下記(2)式のように補正することによって指示燃料噴射量Fiを求めてもよい。
 
 Fi=FPG・KG・FAF・Fbase  …(2)
 
 この場合、パージ実行要求条件の一つとして「メインフィードバック学習値KGの学習が完了していること」が含まれ得る。即ち、メインフィードバック学習値KGの学習が完了していない場合、蒸発燃料パージは実行されない。
 メインフィードバック学習値KGの学習が完了していないために蒸発燃料パージが実行されておらず、且つ、メインフィードバック制御が実行されいるとき、メインフィードバック係数の平均値が「1+α」よりも大きいときメインフィードバック学習値KGの値が所定時間あたり値ΔKGだけ増大させられ、メインフィードバック係数の平均値が「1-α」よりも小さいメインフィードバック学習値KGの値が所定時間あたり値ΔKGだけ減少させられる。なお、値αは0よりも大きく1よりも小さい値(例えば、0.02)であり、メインフィードバック学習値KGの初期値は「1」である。
 その後、メインフィードバック制御が継続していて、且つ、メインフィードバック係数の平均値が「1+α」と「1-α」との間の値である状態の継続時間が閾値時間以上となったとき、メインフィードバック学習値KGの学習が完了したと判定される。
 更に、パージ補正係数FPGは下記の(3)に従って求められる。(3)式において、FGPGは蒸発燃料ガス濃度学習値である。PGTは目標パージ率である。
 
 FPG=1+PGT(FGPG-1) …(3)
 
 蒸発燃料ガス濃度学習値FGPGは、蒸発燃料のパージを実行している期間において、メインフィードバック係数の平均値FAFAVが「1+β」と「1-β」との間の値でないとき、所定時間に(FAFAV-1)/PGTだけ増大させられる。目標パージ率PGTは、負荷KL及び機関回転速度NE等に基づいて定められる。目標パージ率PGTは一定値であってもよい。なお、値βは0よりも大きく1よりも小さい値(例えば、0.02)である。
 また、上記各実施形態において、目標リッチ空燃比afRichは例えば吸入空気量Gaに応じて変化する値であってもよいく、目標リーン空燃比afLeanは例えば吸入空気量Gaに応じて変化する値であってもよい。

Claims (6)

  1.  内燃機関の排気通路に配設された触媒と、
     前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
     前記触媒に流入するガスの空燃比の目標値である目標空燃比を理論空燃比よりも小さい目標リッチ空燃比と理論空燃比よりも大きい目標リーン空燃比とのうちの何れに設定すべきかを前記下流側空燃比センサの出力値に基づいて決定する目標空燃比決定手段と、
     前記機関に対して燃料を噴射する燃料噴射弁と、
     前記燃料噴射弁から噴射される燃料の量である燃料噴射量を前記目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
     前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージを所定のパージ実行要求条件が成立している場合に実行する蒸発燃料パージ手段と、
     を備えた内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記パージ実行要求条件が不成立である状態から前記パージ実行要求条件が成立した状態へと変化したパージ実行要求条件成立時点において前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始し、且つ、
     前記パージ実行要求条件成立時点において前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始せず、その後、前記目標空燃比が前記目標リッチ空燃比に設定される時点以降において前記目標空燃比が前記目標リッチ空燃比に設定されているときに前記蒸発燃料パージを開始するように構成された制御装置。
  2.  請求項1に記載の内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記パージ実行要求条件成立時点の前記機関の運転状態が第1運転状態である場合、
     前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始し、且つ、前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始せず前記目標空燃比が前記目標リッチ空燃比に設定される時点以降において前記目標空燃比が前記目標リッチ空燃比に設定されているときに前記蒸発燃料パージを開始するように構成され、更に、
     前記パージ実行要求条件成立時点の前記機関の運転状態が前記第1運転状態と異なる第2運転状態である場合、
     前記目標空燃比が前記目標リーン空燃比に設定されているときには前記蒸発燃料パージを開始し、且つ、前記目標空燃比が前記目標リッチ空燃比に設定されているときには前記蒸発燃料パージを開始せず前記目標空燃比が前記目標リーン空燃比に設定される時点以降において前記目標空燃比が前記目標リーン空燃比に設定されているときに前記蒸発燃料パージを開始するように構成された、
     制御装置。
  3.  請求項2に記載の内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記パージ実行要求条件成立時点の前記機関の運転状態が前記第1運転状態である場合、前記目標空燃比が前記目標リッチ空燃比に設定されているとき、前記目標空燃比が前記目標リーン空燃比へと切り換わるまでの時間である第1時間を推定し、前記推定された第1時間が所定の第1閾値時間未満である場合には前記蒸発燃料パージを開始しないように構成された、
     制御装置。
  4.  請求項2又は請求項3に記載の内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記パージ実行要求条件成立時点の前記機関の運転状態が前記第2運転状態である場合、前記目標空燃比が前記目標リーン空燃比に設定されているとき、前記目標空燃比が前記目標リッチ空燃比へと切り換わるまでの時間である第2時間を推定し、前記推定された第2時間が所定の第2閾値時間未満である場合には前記蒸発燃料パージを開始しないように構成された、
     制御装置。
  5.  請求項2乃至請求項4の何れか一項に記載の内燃機関の制御装置において、
     前記第1運転状態は前記機関の負荷が閾値負荷よりも小さい運転状態であり、
     前記第2運転状態は前記機関の負荷が前記閾値負荷よりも大きい運転状態である、
     制御装置。
  6.  請求項2乃至請求項5の何れか一項に記載の内燃機関の制御装置において、
     前記第1運転状態は前記機関の回転速度が閾値回転速度よりも小さい運転状態であり、
     前記第2運転状態は前記機関の回転速度が前記閾値回転速度よりも大きい運転状態である、
     制御装置。
PCT/JP2011/054624 2011-03-01 2011-03-01 内燃機関の制御装置 WO2012117520A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180068511.1A CN103392062B (zh) 2011-03-01 2011-03-01 内燃机的控制装置
PCT/JP2011/054624 WO2012117520A1 (ja) 2011-03-01 2011-03-01 内燃機関の制御装置
JP2013502091A JP5494998B2 (ja) 2011-03-01 2011-03-01 内燃機関の制御装置
US14/002,188 US8887491B2 (en) 2011-03-01 2011-03-01 Control apparatus for an internal combustion engine
EP11859785.5A EP2682589B1 (en) 2011-03-01 2011-03-01 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054624 WO2012117520A1 (ja) 2011-03-01 2011-03-01 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012117520A1 true WO2012117520A1 (ja) 2012-09-07

Family

ID=46757482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054624 WO2012117520A1 (ja) 2011-03-01 2011-03-01 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8887491B2 (ja)
EP (1) EP2682589B1 (ja)
JP (1) JP5494998B2 (ja)
CN (1) CN103392062B (ja)
WO (1) WO2012117520A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269371B2 (ja) * 2014-07-28 2018-01-31 トヨタ自動車株式会社 内燃機関
US9359967B2 (en) * 2014-09-03 2016-06-07 Ford Global Technologies, Llc Method for identification of a threshold-level catalyst
JP6245309B2 (ja) * 2015-05-29 2017-12-13 トヨタ自動車株式会社 内燃機関の制御装置
JP6327240B2 (ja) * 2015-12-15 2018-05-23 トヨタ自動車株式会社 内燃機関の制御装置
CN117108409B (zh) * 2023-10-16 2024-02-20 潍柴动力股份有限公司 发动机的补氧方法、装置、电子设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121266A (ja) * 1994-10-27 1996-05-14 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2000027716A (ja) * 1998-07-15 2000-01-25 Toyota Motor Corp 希薄燃焼内燃機関の蒸発燃料処理方法及び装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP2000073884A (ja) * 1998-08-27 2000-03-07 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
JP2004156626A (ja) * 2004-01-23 2004-06-03 Denso Corp 筒内噴射式内燃機関の制御装置
JP2006125304A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008038736A (ja) * 2006-08-04 2008-02-21 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2009162139A (ja) * 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610737A (ja) 1992-06-29 1994-01-18 Mazda Motor Corp エンジンの空燃比制御装置
JP2841005B2 (ja) * 1993-02-01 1998-12-24 本田技研工業株式会社 内燃機関の蒸発燃料処理制御装置
JP3305136B2 (ja) * 1994-10-31 2002-07-22 本田技研工業株式会社 内燃エンジンの燃料供給系の異常検出装置
US5699778A (en) * 1994-12-15 1997-12-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel evaporative emission suppressing apparatus
US5966930A (en) * 1996-08-22 1999-10-19 Honda Giken Kogyo Kabushiki Kaisha Catalyst deterioration-determining system for internal combustion engines
JP3264221B2 (ja) * 1997-07-28 2002-03-11 株式会社デンソー 内燃機関の空燃比制御装置
JP3932642B2 (ja) * 1998-01-23 2007-06-20 トヨタ自動車株式会社 希薄燃焼内燃機関の排気浄化装置
US5921222A (en) * 1998-08-05 1999-07-13 Ford Global Technologies, Inc. Vapor recovery control system for an internal combustion engine
JP2000274295A (ja) * 1999-03-19 2000-10-03 Unisia Jecs Corp 内燃機関のアイドル回転制御装置
JP4088412B2 (ja) * 2000-12-26 2008-05-21 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2004100623A (ja) 2002-09-11 2004-04-02 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
JP4023440B2 (ja) * 2003-12-02 2007-12-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2007085179A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 蒸発燃料処理装置
JP4389867B2 (ja) * 2005-12-14 2009-12-24 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121266A (ja) * 1994-10-27 1996-05-14 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2000027716A (ja) * 1998-07-15 2000-01-25 Toyota Motor Corp 希薄燃焼内燃機関の蒸発燃料処理方法及び装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP2000073884A (ja) * 1998-08-27 2000-03-07 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
JP2004156626A (ja) * 2004-01-23 2004-06-03 Denso Corp 筒内噴射式内燃機関の制御装置
JP2006125304A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2008038736A (ja) * 2006-08-04 2008-02-21 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2009162139A (ja) * 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
EP2682589A1 (en) 2014-01-08
JPWO2012117520A1 (ja) 2014-07-07
CN103392062B (zh) 2015-09-09
CN103392062A (zh) 2013-11-13
US20130333358A1 (en) 2013-12-19
US8887491B2 (en) 2014-11-18
EP2682589A4 (en) 2015-01-14
EP2682589B1 (en) 2016-06-22
JP5494998B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
US9726103B2 (en) Fuel injection amount control apparatus for an internal combustion engine
JP5041078B2 (ja) 多気筒内燃機関の空燃比制御装置
JP5088421B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5494885B2 (ja) 内燃機関の制御装置
JP5494317B2 (ja) 多気筒内燃機関の異常判定装置
US9080493B2 (en) Exhaust gas control apparatus for internal combustion engine
JP5664884B2 (ja) 内燃機関の空燃比制御装置
JP5494998B2 (ja) 内燃機関の制御装置
JP5522392B2 (ja) 内燃機関の燃料噴射量制御装置
JP2012225308A (ja) 内燃機関の制御装置
JP4737005B2 (ja) エンジンの制御装置
JP5287959B2 (ja) 内燃機関の制御装置
WO2011033687A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5459513B2 (ja) 内燃機関の空燃比制御装置
JP5640662B2 (ja) 内燃機関の燃料噴射量制御装置
JP2012077713A (ja) 多気筒内燃機関の制御装置
JP2005207286A (ja) 触媒劣化判定装置
JP2012062775A (ja) 内燃機関の空燃比制御装置
JP2012041850A (ja) 内燃機関の排気浄化のための制御装置
JP2016145546A (ja) 内燃機関の制御装置
JP2013002408A (ja) 内燃機関の空燃比制御装置
JP2012062774A (ja) 内燃機関の排気浄化のための制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14002188

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011859785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE