WO2012115004A1 - 液晶パネルの検査装置および検査方法 - Google Patents

液晶パネルの検査装置および検査方法 Download PDF

Info

Publication number
WO2012115004A1
WO2012115004A1 PCT/JP2012/053812 JP2012053812W WO2012115004A1 WO 2012115004 A1 WO2012115004 A1 WO 2012115004A1 JP 2012053812 W JP2012053812 W JP 2012053812W WO 2012115004 A1 WO2012115004 A1 WO 2012115004A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance distribution
liquid crystal
crystal panel
monochromatic
inspection
Prior art date
Application number
PCT/JP2012/053812
Other languages
English (en)
French (fr)
Inventor
隆 山上
悠二郎 武田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012115004A1 publication Critical patent/WO2012115004A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a liquid crystal panel inspection apparatus and inspection method.
  • the present invention relates to an inspection apparatus and an inspection method for inspecting monochromatic unevenness of a liquid crystal panel. Note that this application claims priority based on Japanese Patent Application No. 2011-39423 filed on Feb. 25, 2011, the entire contents of which are incorporated herein by reference. .
  • a liquid crystal panel which is a component of a liquid crystal display device (LCD) has a structure in which a pair of glass substrates are opposed to each other with a predetermined gap secured.
  • the glass substrate on the array side (mother glass) and the glass substrate on the color filter side (mother glass) are processed in separate steps.
  • the film forming process, the photolithography process, and the etching process are repeated (TFT array process), and after forming a thin film transistor (TFT), a transparent electrode, a wiring connecting them, etc., finally an alignment film Process.
  • TFT array process On the glass substrate on the array side, the film forming process, the photolithography process, and the etching process are repeated (TFT array process), and after forming a thin film transistor (TFT), a transparent electrode, a wiring connecting them, etc., finally an alignment film Process.
  • TFT array process On the glass substrate on the array side, the film forming process, the photolithography process, and the etching process are repeated (TFT array process), and after forming a thin film transistor (TFT), a transparent electrode, a wiring connecting them, etc., finally an alignment film Process.
  • TFT array process On the glass substrate on the array side, the film forming process, the photolithography process, and the etching process are repeated (TFT array process), and after forming a
  • FIG. 1 shows an equivalent circuit diagram of the liquid crystal panel 200.
  • a plurality of scanning signal wirings 11 and image signal wirings 12 are provided in a matrix.
  • a pixel electrode 13 is provided at each intersection of the scanning signal wiring 11 and the image signal wiring 12.
  • a switching transistor (TFT) 14 having a source / drain terminal connected to the pixel electrode 13 and the image signal wiring 12 and a gate terminal connected to the scanning signal wiring 11 is provided.
  • An additional capacitor 16 for holding charges is provided between the pixel electrode 13 and the counter electrode 15.
  • a liquid crystal panel 200 before connecting a drive circuit (not shown) to the terminals of the scanning signal wiring 11 and the image signal wiring 12, it is inspected whether or not it operates normally.
  • a plurality of scanning signal lines 11 are short-circuited by a short-circuit ring 11a, and a plurality of image signal lines 12 are short-circuited by a short-circuit ring 12a.
  • a full lighting test was performed by supplying the scanning signal V G and the image signal V S to the plurality of scanning signal wirings 11 and the plurality of image signal wirings 12.
  • point defects can be inspected with simple inspection wiring and terminals. That is, in the structure 200 shown in FIG. 1, since all the image signal wirings (source wirings) 12 are short-circuited by the short-circuit ring 12a, all the pixel regions (or sub-pixel regions) are turned on at a time. As a result, it is possible to inspect point defects and white / black / grey color unevenness. However, a predetermined picture element region cannot be turned on. Therefore, even if white, black, and gray color unevenness can be inspected, single color unevenness inspection cannot be performed.
  • the drive circuit is connected to the scanning signal wiring 11 and the mounting process. This can only be done after connecting to the terminal of the image signal wiring 12.
  • a predetermined liquid crystal panel for example, a 40-inch liquid crystal panel 300
  • the liquid crystal panel 300 has streaky unevenness 310 in a blue single color inspection that can be performed after the drive circuit is attached.
  • a failure mode single color unevenness
  • the inspection before mounting the drive circuit it leads to an improvement in the throughput of the manufacturing process and a reduction in manufacturing cost.
  • the present invention has been made in view of such a point, and a main object thereof is to provide an inspection apparatus or an inspection method capable of detecting a failure mode of single-color unevenness in a stage prior to inspection for attaching a drive circuit. It will be.
  • An inspection apparatus is an inspection apparatus that inspects monochromatic unevenness of a liquid crystal panel, and is based on a camera that images the liquid crystal panel, a control device that controls the camera, and image data captured by the camera.
  • a luminance distribution measuring device for measuring a distribution, wherein the luminance distribution measuring device calculates a luminance distribution in monochromatic display of the liquid crystal panel, and the luminance in the monochromatic display calculated by the luminance distribution measuring device connected to the control device.
  • a storage device having a determination program for determining monochromatic unevenness based on the distribution.
  • control device the luminance distribution measuring device, and the storage device constitute a single color unevenness determination device
  • the single color unevenness determination device is connected to the camera, and the luminance distribution and the A luminance distribution processing unit that performs luminance distribution processing in monochromatic display, a single color unevenness determination simulation unit that is connected to the luminance distribution processing unit and performs determination of the single color unevenness, and a single luminance unevenness determination simulation unit that is connected to the standard luminance And a storage unit storing distribution data.
  • An inspection method is an inspection method for a liquid crystal panel, measuring a luminance distribution of the liquid crystal panel, calculating a luminance distribution in monochromatic display from the luminance distribution, luminance distribution in the monochromatic display, and standard luminance A step of comparing the distribution data, and a step of detecting the presence or absence of monochromatic unevenness by the comparison step.
  • a step of inspecting TFT characteristics is executed.
  • a control device that controls a camera that images a liquid crystal panel, a luminance distribution measurement device that measures a luminance distribution and calculates a luminance distribution in a monochrome display of the liquid crystal panel, and a luminance distribution in a monochrome display.
  • a storage device having a determination program for determining monochromatic unevenness. Therefore, since the monochrome program can be determined by the determination program for determining the monochrome irregularity based on the calculated luminance distribution of the monochrome display, the failure mode of the monochrome irregularity is detected at the stage prior to the inspection for attaching the drive circuit. It becomes possible to do.
  • FIG. 2 is an equivalent circuit diagram of a liquid crystal panel 200 disclosed in Patent Document 1.
  • FIG. (A) And (b) is a figure showing the liquid crystal panel 300 which shows the test
  • FIG. (A), (b), and (c) are the figures which show the simulation result of the red, green, and blue monochrome display of the liquid crystal panel 50, respectively. It is a flowchart for demonstrating the inspection method which concerns on embodiment of this invention.
  • FIG. 3 is a block diagram showing a configuration of the inspection apparatus 100 according to the embodiment of the present invention.
  • the inspection apparatus 100 according to the present embodiment is an apparatus that inspects monochromatic unevenness of a liquid crystal panel.
  • the inspection apparatus 100 includes a camera 20 that images a liquid crystal panel, a control device 32 that controls the camera 20, and a luminance distribution measurement device 36 that is connected to the control device 32.
  • the luminance distribution measuring device 36 is a device that measures the luminance distribution based on the image data captured by the camera 20, and can calculate the luminance distribution in the monochromatic display of the liquid crystal panel.
  • a storage device 34 is connected to the control device 32, and the storage device 34 has a determination program 35 for determining a single color unevenness based on the luminance distribution in the single color display calculated by the luminance distribution measuring device 36. Have.
  • the camera 20 of this embodiment is, for example, a CCD image sensor or a CMOS image sensor.
  • the control device 32 of the present embodiment is formed of a semiconductor integrated circuit, and is, for example, an MPU (micro processing unit) or a CPU (central processing unit).
  • the control device 32 can control the operation of the camera 20 and output image data captured by the camera 20 to the luminance distribution measurement device 36.
  • data from the luminance distribution measuring device 36 can be output to the storage device 34.
  • the storage device 34 of this embodiment is, for example, a hard disk (HDD), a semiconductor memory, an optical disk, a magneto-optical disk, or the like.
  • the storage device 34 of the present embodiment stores a determination program 35 for determining monochromatic unevenness, but can store other programs, data, and the like.
  • the luminance distribution measuring device 36 is constructed from a program that measures the luminance distribution based on the image data captured by the camera 20, the luminance distribution measuring program can be stored in the storage device 34.
  • the luminance distribution measurement program has a function of calculating the luminance distribution in the monochrome display of the liquid crystal panel from the luminance distribution.
  • stage 22 on which the inspection liquid crystal panel is placed is connected to the control device 32 of the present embodiment, and the movement of the stage 22 can be controlled by the control device 32.
  • the stage 22 may be one that can support and move the liquid crystal panel by a conveyor type (roller conveyor, belt conveyor) in addition to a structure that can support the liquid crystal panel with pins.
  • an input device 42 keyboard, mouse, touch panel, etc.
  • an output device 44 display, etc.
  • a general-purpose PC personal computer
  • the monochromatic unevenness determination device 30 can be constructed by the control device 32, the luminance distribution measurement device 36, and the storage device 34 of the present embodiment.
  • the single color unevenness determination device 30 shown in FIG. 4 includes a luminance distribution processing unit 37 that performs luminance distribution processing, a single color unevenness determination simulation unit 38 that determines single color unevenness, and a storage unit in which standard luminance distribution data 33a is stored. 31.
  • the luminance distribution processing unit 37 is constructed by the luminance distribution measuring program for constructing the luminance distribution measuring device 36, the control device 32, and the storage device 34 operating in cooperation.
  • the single color unevenness determination simulation unit 38 is constructed by the single color unevenness determination program 35 stored in the storage device 34 and the control device 32 operating in cooperation.
  • the storage unit 31 is constructed from the storage device 34.
  • the storage unit 31 stores standard luminance distribution data 33a indicating inspection result data of a non-defective liquid crystal panel.
  • the storage unit 31 also stores liquid crystal panel gate error data (G error data) 33b and additional or auxiliary capacitance (Cs) error data (Cs error data) 33c. .
  • the monochromatic unevenness determination device 30 of this embodiment is connected to the camera 20. Specifically, the luminance distribution processing unit 37 is connected to the camera 20. Further, the luminance distribution processing unit 37, the single color unevenness determination simulation unit 38, and the storage unit 31 are connected to each other.
  • the monochromatic unevenness determination device 30 is provided with an input / output unit (interface) 39, and an input device 42 and an output device 44 are connected via the input / output unit 39.
  • the operator can issue an instruction to the luminance distribution processing unit 37 and / or the camera 20 by the input device 42 of the present embodiment.
  • the output device 44 includes image data of the camera 20, an output result (luminance distribution data) of the luminance distribution processing unit 37, an output result (determination result) of the monochromatic unevenness determination simulation unit 38, various data 33a of the storage unit 31, and the like. Can be displayed.
  • FIG. 5 shows an example of the luminance distribution 90 of the liquid crystal panel 50.
  • the liquid crystal panel 50 shown in FIG. 5 is the one before the drive circuit is attached, and in this state, monochromatic display cannot be performed. Further, no point defect is found in the liquid crystal panel 50, and it is determined that the liquid crystal panel 50 is a non-defective product in this state just like the liquid crystal panel 300 shown in FIG.
  • the luminance distribution 90 of the liquid crystal panel 50 shown in FIG. 5 is obtained by imaging the liquid crystal panel 50 with the camera 20 and processing the image data of the liquid crystal panel 50 by the luminance distribution measuring device 36 (or the luminance distribution processing unit 37). The brightness distribution is displayed.
  • the liquid crystal panel 50 to be inspected is placed on the stage 22 and the camera 20 images the liquid crystal panel 50.
  • the image data obtained by the camera 20 is processed by the luminance distribution measuring device 36 so that red (R), green (G), and blue (B) single color simulation display can be performed.
  • the luminance distribution data is decomposed into data for each pixel region defining red (R), green (G), and blue (B) in the luminance distribution measuring device 36, and a monochromatic simulation display is performed. Yes. That is, when the pixel regions defining red (R), green (G), and blue (B) are arranged along the columns of the liquid crystal panel 50, the luminance distribution located in the red (R) pixel region. Data is selected, or luminance distribution data located in a green (G) or blue (B) picture element region is selected, and a monochromatic simulation display is performed.
  • the minimum unit for displaying each color is referred to as “picture element” or “picture element region”, while the minimum unit for performing color display is referred to as “pixel” or “pixel region”. Therefore, in the case of a liquid crystal panel displaying three primary colors of red (R), green (G), and blue (B), “picture element regions” of red (R), green (G), and blue (B) are combined into one unit.
  • the unit is referred to as a “pixel region”.
  • the “picture element region” may be referred to as a sub-pixel. This relationship is the same even in the case of four primary color displays (for example, red (R), green (G), blue (B), and yellow (Y) liquid crystal panels).
  • FIGS. 6A to 6C show the results of monochromatic simulation display of red (R), green (G), and blue (B), respectively.
  • FIGS. 6A and 6B no single-color unevenness occurs in the single-color simulation display of red (R) and green (G).
  • FIG. 6C it is shown that the single-color unevenness 55 occurs in the blue (B) single-color simulation display.
  • the liquid crystal panel 50 is determined to be defective. Specifically, the single-color unevenness determination program 35 (or the single-color unevenness determination simulation unit 38) determines whether the single-color unevenness 55 in the single-color simulation display is within an allowable value, and determines a non-defective product or a defective product. Data about this allowable value is stored in the storage device 34.
  • the stage 22 is operated by the control device 32, and the liquid crystal panel 50 is moved to advance to the next step.
  • the stage 22 is operated to move the liquid crystal panel 50 to the defective product zone.
  • the inspection of the liquid crystal panel 50 for displaying the three primary colors red (R), green (G), and blue (B) has been described.
  • the liquid crystal panel 50 displaying the four primary colors of blue (B) and yellow (Y) can also be inspected.
  • the inspection apparatus 100 includes the control device 32 that controls the camera 20 that images the liquid crystal panel 50, the luminance distribution 90, and the monochrome display (50 (R), And a luminance distribution measuring device 36 for calculating a luminance distribution (for example, 55 in 50 (B)) at 50 (G) and 50 (B).
  • the storage device 34 stores a determination program 35 that determines monochromatic unevenness based on the luminance distribution in monochromatic display. Therefore, the single-color unevenness can be determined by the single-color display luminance distribution (55) calculated by the luminance distribution measuring device 36 and the single-color unevenness determination program 35.
  • the inspection apparatus 100 of the present embodiment it is possible to detect a failure mode of single-color unevenness at a stage before the inspection for attaching the drive circuit.
  • FIG. 7 is a flowchart for explaining the inspection method of the present embodiment.
  • step S100 the luminance distribution of the liquid crystal panel 50 is measured.
  • the measurement of the luminance distribution is executed by the luminance distribution processing unit 37, the luminance is obtained for each coordinate from the image data of the camera 20, and is converted into a luminance distribution display (see “90” in FIG. 5) based on the luminance.
  • step S100 the luminance data for each coordinate is processed into luminance data for each monochrome pixel region, and the luminance distribution in the single color display (50 (R), 50 (G), 50 (B)). (Such as “55” in FIG. 6C) is calculated.
  • the luminance distribution (for example, 55) in the monochromatic display is compared with the standard luminance distribution data 33a (step S110).
  • the single color unevenness determination simulation unit 38 compares the standard luminance distribution data 33a in the storage unit 31 with the luminance distribution (for example, 55) in the single color display calculated by the luminance distribution processing unit 37.
  • the standard luminance distribution data 33a includes a luminance distribution serving as a reference in monochromatic display and its allowable value.
  • the single-color unevenness determination simulation unit 38 compares the luminance distribution in the single-color display (50 (R), 50 (G), 50 (B)) based on the standard luminance distribution data 33a to determine whether it is a good product or a defective product. judge.
  • step S115 If any of the luminance distributions (55) in the monochromatic display is within the allowable value (“OK”), it is determined as a non-defective product (step S115). Then, the liquid crystal panel 50 is moved to the next manufacturing process (post-process). If any one of the luminance distributions in the monochrome display is not within the allowable value (“NG”), it is determined as a defective product.
  • a TFT characteristic inspection is performed on the liquid crystal panel 50 determined to be defective (step S120).
  • the inspection of the TFT characteristics is executed by changing the gate voltage (Vg), the source voltage (Vs), the common voltage (Vcom), etc., for example.
  • the inspection of the TFT characteristics is executed by the single color unevenness determination simulation unit 38.
  • the single-color unevenness determination simulation unit 38 can execute a step of inspecting TFT characteristics by starting a program (inspection program for inspecting TFT characteristics) stored in the storage unit 31, for example.
  • step S120 If it is determined in step S120 that the failure mode of the single color unevenness is not caused by the TFT characteristics of the liquid crystal panel 50 ("NO"), it is a problem of the liquid crystal cell of the liquid crystal panel 50 (for example, cell It is recognized that the thickness is uneven (step S125). Since the problem of the liquid crystal cell cannot be solved by signal adjustment of the drive circuit (or adjustment of the light amount of the backlight), it is determined as a defective product. In addition to determining as a defective product, it may be determined as a liquid crystal panel in which color unevenness occurs (a liquid crystal panel having a problem with high quality).
  • step S120 If it is determined in step S120 that the TFT characteristic of the liquid crystal panel 50 is the cause (“YES”), the gate signal is inspected (step S130). Since the gate voltage is typically set higher than other voltages, it tends to be relatively likely that it is causing problems. Therefore, by changing the gate signal (specifically, by raising or lowering the gate voltage), color unevenness may be eliminated, and it is checked whether there is a problem with the gate.
  • step S130 it is determined whether the gate problem can be dealt with by adjusting the gate signal.
  • the gate signal adjustment is executed by the single-color unevenness determination simulation unit 38.
  • the single-color unevenness determination simulation unit 38 can perform adjustment according to the error based on the gate error data (G error data) 33 b stored in the storage unit 31. If the gate signal can be adjusted, the color unevenness is eliminated by executing the adjustment in the drive circuit. If it is determined that the color unevenness cannot be eliminated by adjusting the gate signal, it is determined as a defective product.
  • step S140 when it is determined in step S130 that the problem is not a gate problem, it is checked whether or not it is a problem of the auxiliary capacity (Cs) (step S140). Since the auxiliary capacity (Cs) determines the capacity of the pixel region, color unevenness may be eliminated by adjusting the voltage (Vcs) applied to the auxiliary capacity (Cs) by increasing or decreasing it. is there. Specifically, the Cs voltage is adjusted by the single color unevenness determination simulation unit 38. The monochromatic unevenness determination simulation unit 38 can perform adjustment according to the error based on the Cs error data 33 c stored in the storage unit 31. If the adjustment can be made by adjusting the Cs voltage, the color unevenness is eliminated by executing the adjustment in the drive circuit. If it is determined that the color unevenness cannot be eliminated by adjusting the Cs voltage, it is determined as a defective product.
  • the luminance distribution (for example, 55) of the single color display (50 (R), 50 (G), 50 (B)) calculated by the luminance distribution processing unit 37 in step S100 is converted into the single color unevenness. Determination is performed by the determination simulation unit 38 (step S110). Thereby, it is possible to detect a failure mode of single-color unevenness at a stage before the inspection for attaching the drive circuit. Furthermore, it is possible to determine whether or not the color unevenness can be eliminated by adjusting the signal by executing the TFT characteristic inspection by the single color unevenness determination simulation unit 38 (step S120). If it is necessary to inspect the defective liquid crystal panel 50 by attaching a driving circuit, the driving circuit and its execution process are wasted, resulting in a decrease in throughput and a problem of cost. Such a problem can be avoided in the method of the present embodiment.
  • an inspection apparatus or an inspection method that can detect a failure mode of single-color unevenness at a stage prior to inspection for attaching a drive circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知できる検査装置を提供する。液晶パネル50の単色ムラを検査する検査装置100であり、液晶パネル50を撮像するカメラ20と、カメラ20を制御する制御装置32と、カメラ20が撮像した画像データに基づいて、輝度分布を測定するとともに、液晶パネル50の単色表示における輝度分布を算出する輝度分布測定装置36と、輝度分布測定装置36が算出した輝度分布に基づいて単色ムラを判定する判定プログラム35を有する記憶装置34とを備えている。

Description

液晶パネルの検査装置および検査方法
 本発明は、液晶パネルの検査装置および検査方法に関する。特に、液晶パネルの単色ムラを検査する検査装置および検査方法に関する。
 なお、本出願は2011年2月25日に出願された日本国特許出願2011-39423号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 液晶表示装置(LCD)の構成部品である液晶パネルは、一対のガラス基板を所定のギャップを確保した状態で対向させた構造を有している。液晶パネルの製造工程においては、まず、アレイ側のガラス基板(マザーガラス)と、カラーフィルタ側のガラス基板(マザーガラス)がそれぞれ別々の工程で加工が行われる。
 アレイ側のガラス基板においては、成膜工程とフォトリソグラフィ工程とエッチング工程とが繰り返され(TFTアレイ工程)、薄膜トランジスタ(TFT)、透明電極、それらを繋ぐ配線などを形成した後、最後に配向膜処理を行う。なお、カラーフィルタ側の加工については省略する。セル工程に入ると、アレイ側のガラス基板とカラーフィルタ側のガラス基板との間に、スペーサを介して、液晶材料を注入する。その後は、それぞれのパネルサイズに切り分けた後、偏光板等のフィルムを接着する。このようにして液晶パネルが製造される。
 液晶パネルの検査には、その製造工程において大別して2つの機能検査がある。1つはアレイ工程の最終に行う検査である。この検査は、ガラス基板上に作製されたTFT回路の機能、および、短絡を検査するものである。もう一方は、セル工程の最終に行う検査である。この検査は、液晶を封入したパネル(アレイ基板)を点灯させて、テストパターンを表示させることによって、パネルの動作状態を確認するものである。この検査は、点灯検査とも呼ばれ、色度、色ムラ、パネルの動作状態を確認するものである。
 上述のように、液晶パネルが製造されたときには、液晶パネルの欠陥検査が行われる。図1を参照しながら、液晶パネルの欠陥検査について説明する(例えば、特許文献1参照)。
 図1は、液晶パネル200の等価回路図を示している。図1に示した液晶パネル200では、複数の走査信号配線11と画像信号配線12とがマトリックス状に設けられている。走査信号配線11と画像信号配線12との各交点に画素電極13を設ける。この画素電極13と画像信号配線12にソース・ドレイン端子が接続されると共に、走査信号配線11にゲート端子が接続されたスイッチング用トランジスタ(TFT)14を設ける。そして、この画素電極13と対向電極15との間には、電荷保持用の付加容量16を設けている。
 このような液晶パネル200では、駆動回路(不図示)を走査信号配線11および画像信号配線12の端子に接続する前に、正常に動作するか否かを検査する。このような検査を行うに際しては、複数の走査信号配線11を短絡環11aで短絡接続するとともに、複数の画像信号配線12を短絡環12aで短絡接続する。そして、この複数の走査信号配線11と複数の画像信号配線12に、走査信号VGと画像信号VSを供給することによって、全点灯試験を行っていた。
特開平6-82817号公報
 この液晶パネル200の検査では、簡便な検査用配線および端子にて、点欠陥を検査することができる。すなわち、図1に示した構造200では、全ての画像信号配線(ソース配線)12を短絡環12aにて短絡接続しているので、全ての絵素領域(またはサブ画素領域)を一度に点灯させることができ、その結果、点欠陥、および、白・黒・グレーの色ムラを検査することができる。しかしながら、所定の絵素領域を点灯させることはできず、それゆえ、白・黒・グレーの色ムラを検査することができても、単色ムラの検査を行うことができない。したがって、点欠陥(どの絵素領域が点灯していないか)を検査することは可能であるが、赤色、緑色、青色における単色ムラについては、実装工程にて駆動回路を、走査信号配線11および画像信号配線12の端子に接続した後でないと実施することができない。
 具体的には、図2(a)に示すように、所定の液晶パネル(例えば、40インチの液晶パネル)300において、駆動回路を取り付ける前の検査では良品だったものがある。しかしながら、図2(b)に示すように、その液晶パネル300は、駆動回路を取り付けた後に実行できる青色の単色検査では、筋状のムラ310が生じていた。このように、駆動回路を取り付ける前の検査では、把握できない不良モード(単色ムラ)が存在する。一方で、駆動回路を取り付ける前の検査においてそのような不良モード(単色ムラ)を発見できれば、製造工程のスループットの向上にも繋がり、製造コストの低下にもなる。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知することができる検査装置または検査方法を提供することになる。
 本発明に係る検査装置は、液晶パネルの単色ムラを検査する検査装置であり、液晶パネルを撮像するカメラと、前記カメラを制御する制御装置と、前記カメラが撮像した画像データに基づいて、輝度分布を測定する輝度分布測定装置であって、前記液晶パネルの単色表示における輝度分布を算出する輝度分布測定装置と、前記制御装置に接続され、前記輝度分布測定装置が算出した前記単色表示における輝度分布に基づいて単色ムラを判定する判定プログラムを有する記憶装置とを備えている。
 ある好適な実施形態において、前記制御装置、前記輝度分布測定装置および前記記憶装置は、単色ムラ判定装置を構築しており、前記単色ムラ判定装置は、前記カメラに接続され、前記輝度分布および前記単色表示における輝度分布の処理を行う輝度分布処理部と、前記輝度分布処理部に接続され、前記単色ムラの判定を行う単色ムラ判定シミュレーション部と、前記単色ムラ判定シミュレーション部に接続され、標準輝度分布データが格納された記憶部とから構成されている。
 本発明に係る検査方法は、液晶パネルの検査方法であり、液晶パネルの輝度分布を測定し、当該輝度分布から単色表示における輝度分布を算出する工程と、前記単色表示における輝度分布と、標準輝度分布データとを対比する工程と、前記対比工程によって、単色ムラの有無を検出する工程とを含む。
 ある好適な実施形態において、前記単色ムラの有無を検出する工程によって、良品でないと判断されたとき、TFT特性を検査する工程を実行する。
 本発明によれば、液晶パネルを撮像するカメラを制御する制御装置と、輝度分布を測定するとともに液晶パネルの単色表示における輝度分布を算出する輝度分布測定装置と、単色表示における輝度分布に基づいて単色ムラを判定する判定プログラムを有する記憶装置とを備えている。したがって、算出された単色表示の輝度分布に基づいて単色ムラを判定する判定プログラムによって、単色ムラを判定することができるので、駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知することが可能となる。
特許文献1に開示された液晶パネル200の等価回路図である。 (a)および(b)は、それぞれ、駆動回路を取り付ける前および後の検査を示す液晶パネル300を表す図である。 本発明の実施形態に係る検査装置100の構成を示すブロック図である。 本発明の実施形態に係る単色ムラ判定装置30の構成を示すブロック図である。 液晶パネル50の輝度分布90を模式的に示す図である。 (a)、(b)及び(c)は、それぞれ、液晶パネル50の赤色、緑色、青色の単色表示のシミュレーション結果を示す図である。 本発明の実施形態に係る検査方法を説明するためのフローチャートである。
 以下、図面を参照しながら、本発明の実施形態を説明する。以下の図面においては、説明の簡潔化のために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
 図3は、本発明の実施形態に係る検査装置100の構成を示すブロック図である。本実施形態の検査装置100は、液晶パネルの単色ムラを検査する装置である。
 本実施形態の検査装置100は、液晶パネルを撮像するカメラ20と、カメラ20を制御する制御装置32と、制御装置32に接続された輝度分布測定装置36とから構成されている。輝度分布測定装置36は、カメラ20が撮像した画像データに基づいて輝度分布を測定する装置であり、そして、液晶パネルの単色表示における輝度分布を算出することができる。また、制御装置32には、記憶装置34が接続されており、そして、記憶装置34には、輝度分布測定装置36が算出した単色表示における輝度分布に基づいて単色ムラを判定する判定プログラム35を有している。
 本実施形態のカメラ20は、例えば、CCDイメージセンサ、または、CMOSイメージセンサなどである。本実施形態の制御装置32は、半導体集積回路からなり、例えばMPU(マイクロ・プロセッシング・ユニット)またはCPU(セントラル・プロセッシング・ユニット)である。制御装置32は、カメラ20の動作を制御するとともに、カメラ20が撮像した画像データを輝度分布測定装置36に出力することができる。また、輝度分布測定装置36からのデータを、記憶装置34に出力することもできる。
 本実施形態の記憶装置34は、例えば、ハードディスク(HDD)、半導体メモリ、光ディスク、光磁気ディスクなどである。本実施形態の記憶装置34には、単色ムラを判定する判定プログラム35が格納されているが、他のプログラム、データなどを格納しておくことができる。また、輝度分布測定装置36が、カメラ20が撮像した画像データに基づいて輝度分布を測定するプログラムから構築されている場合、その輝度分布測定プログラムを記憶装置34に格納しておくことができる。また、この輝度分布測定プログラムは、当該輝度分布から液晶パネルの単色表示における輝度分布を算出する機能を有している。
 また、本実施形態の制御装置32には、検査用の液晶パネルが載置されるステージ22が接続されており、制御装置32によってステージ22の移動を制御することができる。ステージ22は、液晶パネルをピンで支持できる構成のものの他、コンベア形式(ローラコンベア、ベルトコンベア)にて液晶パネルを支持・移動できるものであってもよい。
 さらに、制御装置32には、入力装置42(キーボード、マウス、タッチパネルなど)および出力装置44(ディスプレイなど)が接続されている。本実施形態の制御装置32、記憶装置34、入力装置42、出力装置44は、汎用のPC(パーソナル・コンピュータ)のものを適用することができる。また、本実施形態の制御装置32、輝度分布測定装置36および記憶装置34によって、単色ムラ判定装置30を構築することができる。
 制御装置32、輝度分布測定装置36および記憶装置34から、単色ムラ判定装置30を構築した場合、図4に示した構成にすることができる。図4に示した単色ムラ判定装置30は、輝度分布の処理を行う輝度分布処理部37と、単色ムラの判定を行う単色ムラ判定シミュレーション部38と、標準輝度分布データ33aが格納された記憶部31とを含んでいる。
 輝度分布処理部37は、輝度分布測定装置36を構築する輝度分布測定プログラムと、制御装置32および記憶装置34が協働して動作することによって構築されている。単色ムラ判定シミュレーション部38は、記憶装置34に格納された単色ムラ判定プログラム35と制御装置32とが協働して動作することによって構築されている。
 また、記憶部31は、記憶装置34から構築されている。記憶部31には、良品の液晶パネルの検査結果データを示す標準輝度分布データ33aが格納されている。また、本実施形態の構成では、記憶部31には、液晶パネルのゲートエラーデータ(Gエラーデータ)33bと、付加容量または補助容量(Cs)エラーデータ(Csエラーデータ)33cも格納されている。
 本実施形態の単色ムラ判定装置30は、カメラ20に接続されている。具体的には、輝度分布処理部37は、カメラ20に接続されている。また、輝度分布処理部37、単色ムラ判定シミュレーション部38、記憶部31は、相互に接続されている。単色ムラ判定装置30には、入出力部(インターフェイス)39が設けられており、入出力部39を介して入力装置42、出力装置44が接続されている。
 本実施形態の入力装置42によって操作者は、輝度分布処理部37及び/又はカメラ20に指示を出すことができる。また、出力装置44には、カメラ20の画像データ、輝度分布処理部37の出力結果(輝度分布データ)、単色ムラ判定シミュレーション部38の出力結果(判定結果)、記憶部31の各種データ33aなどを表示することができる。
 図5は、液晶パネル50の輝度分布90の一例を示している。図5に示した液晶パネル50は、駆動回路を取り付ける前のものであり、この状態では、単色表示を行うことができない。また、液晶パネル50には点欠陥は発見されずに、図2(a)に示した液晶パネル300と同様に、これだけの状態では良品と判断されてしまうものである。
 図5に示した液晶パネル50の輝度分布90は、カメラ20にて液晶パネル50を撮像し、その液晶パネル50の画像データを、輝度分布測定装置36(または輝度分布処理部37)によって処理して輝度分布表示にしたものである。検査対象の液晶パネル50は、ステージ22の上に載置され、その液晶パネル50をカメラ20が撮像する。
 本実施形態の構成では、カメラ20で得られた画像データを輝度分布測定装置36で処理することによって、赤色(R)、緑色(G)、青色(B)のそれぞれの単色シミュレーション表示ができるようにされている。ここでは、輝度分布測定装置36内にて輝度分布データを、赤色(R)、緑色(G)、青色(B)を規定する絵素領域ごとのデータに分解して、単色シミュレーション表示を行っている。すなわち、赤色(R)、緑色(G)、青色(B)を規定する絵素領域が液晶パネル50の列に沿って配列されている場合、赤色(R)の絵素領域に位置する輝度分布データを選択し、あるいは、緑色(G)又は青色(B)の絵素領域に位置する輝度分布データを選択して、単色シミュレーション表示を行う。
 なお、本実施形態では、各色を表示する最小単位を「絵素」又は「絵素領域」と称し、一方で、カラー表示を行うための最小単位を「画素」または「画素領域」と称する。したがって、赤色(R)、緑色(G)、青色(B)の三原色表示の液晶パネルの場合、赤色(R)、緑色(G)、青色(B)の「絵素領域」を1つのまとまりの単位として「画素領域」と称する。ここで、「画素領域」をピクセルと称するならば、「絵素領域」をサブピクセルと称しても構わない。なお、この関係は、四原色表示(例えば、赤色(R)、緑色(G)、青色(B)、黄色(Y)の液晶パネルの場合でも同様である。
 図6(a)から(c)は、それぞれ、赤色(R)、緑色(G)、青色(B)の単色シミュレーション表示の結果を示している。この例では、図6(a)及び(b)に示すように、赤色(R)および緑色(G)の単色シミュレーション表示では、単色ムラは発生していない。一方、図6(c)に示すように、青色(B)の単色シミュレーション表示では、単色ムラ55が発生していることが示されている。
 この単色シミュレーション表示における単色ムラ55が、許容値を越えた場合には、液晶パネル50を不良と判定する。具体的には、単色ムラ判定プログラム35(または単色ムラ判定シミュレーション部38)によって、単色シミュレーション表示における単色ムラ55を許容値内のものか否か判定して、良品か不良品を決定する。この許容値についてのデータは、記憶装置34内に格納されている。
 ここで、良品と判定されたら、制御装置32によってステージ22を操作して、液晶パネル50を次の工程に進めるように移動させる。一方、不良品と判定されたら、ステージ22を操作して、液晶パネル50を不良品ゾーンに移動させる。なお、上述の例は、赤色(R)、緑色(G)、青色(B)の三原色表示の液晶パネル50の検査について説明したが、同様の仕組みによって、赤色(R)、緑色(G)、青色(B)、黄色(Y)の四原色表示の液晶パネル50も検査することができる。
 以上説明したように、本実施形態の検査装置100は、液晶パネル50を撮像するカメラ20を制御する制御装置32と、輝度分布90を測定するとともに液晶パネル50の単色表示(50(R)、50(G)、50(B))における輝度分布(例えば、50(B)中の55)を算出する輝度分布測定装置36とを備えている。また、記憶装置34には、単色表示における輝度分布に基づいて単色ムラを判定する判定プログラム35が格納されている。したがって、輝度分布測定装置36で算出された単色表示の輝度分布(55)と、単色ムラ判定プログラム35によって、単色ムラを判定することができる。その結果、本実施形態の検査装置100によれば、駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知することが可能となる。
 次に、図6及び図7も参照しながら、本実施形態の検査方法の一例を説明する。図7は、本実施形態の検査方法を説明するためのフローチャートである。
 まず、検査する液晶パネル50をステージ22の上に載置して、カメラ20によって液晶パネル50を撮像する。次に、液晶パネル50の輝度分布を測定する(ステップS100)。輝度分布の測定は、輝度分布処理部37によって実行し、カメラ20の画像データから座標ごとに輝度を求め、その輝度に基づいて輝度分布の表示(図5中の「90」参照)に変換する。また、このステップS100において、座標ごとの輝度のデータを、単色の絵素領域ごとの輝度データに加工して、単色表示(50(R)、50(G)、50(B))における輝度分布(図6(c)中の「55」など)を算出する。
 次に、単色表示における輝度分布(例えば、55)と、標準輝度分布データ33aとを対比する(ステップS110)。具体的には、単色ムラ判定シミュレーション部38によって、記憶部31内の標準輝度分布データ33aと、輝度分布処理部37によって算出された単色表示における輝度分布(例えば、55)とを対比する。標準輝度分布データ33aには、単色表示における基準となる輝度分布およびその許容値が含まれている。そして、単色ムラ判定シミュレーション部38は、標準輝度分布データ33aに基づいて、単色表示(50(R)、50(G)、50(B))における輝度分布を対比して、良品か不良品か判定する。
 単色表示における輝度分布(55)のいずれもが許容値内であれば(「OK」)、良品と判定される(ステップS115)。そして、この液晶パネル50は、次の製造工程(後工程)に移される。単色表示における輝度分布のいずれか1つが許容値内になければ(「NG」)、不良品と判定される。
 次に、不良品と判定された液晶パネル50には、TFT特性の検査を実行する(ステップS120)。TFT特性の検査は、例えば、ゲート電圧(Vg)、ソース電圧(Vs)、コモン電圧(Vcom)などを変更して実行する。TFT特性の検査は、単色ムラ判定シミュレーション部38によって実行する。この例では、単色ムラ判定シミュレーション部38は、例えば、記憶部31に格納されているプログラム(TFT特性を検査する検査プログラム)を起動させて、TFT特性を検査するステップを実行することができる。
 ステップS120において、液晶パネル50のTFT特性が原因ではなく、単色ムラの不良モードが生じていると判定されたならば(「NO」)、それは、液晶パネル50の液晶セルの問題(例えば、セル厚のムラなど)と認定される(ステップS125)。液晶セルの問題では、駆動回路の信号調整(または、バックライトの光量調整)によっては解消できないので、不良品として判定する。なお、不良品として判定する他、色ムラが生じている液晶パネル(高品質としては問題がある液晶パネル)として判定しても構わない。
 ステップS120において、液晶パネル50のTFT特性が原因と判定された場合(「YES」)、ゲート信号の検査を実行する(ステップS130)。ゲート電圧は、典型的には、他の電圧よりも高く設定されるので、それが問題を引き起こしている可能性が比較的高い傾向がある。したがって、ゲート信号を変更することにより(具体的には、ゲート電圧を上げる又は下げることにより)、色ムラが解消する場合があるので、ゲートに問題があるかどうかを調べる。
 ステップS130によって、ゲートの問題と判定された場合(ステップS135)、そのゲートの問題を、ゲート信号の調整で対応できるかどうかを判断する。具体的には、単色ムラ判定シミュレーション部38により、ゲート信号の調整を実行する。単色ムラ判定シミュレーション部38は、記憶部31に格納されているゲートエラーデータ(Gエラーデータ)33bに基づいて、エラーに応じた調整を行うことができる。そして、ゲート信号の調整で対応できる場合には、駆動回路においてその調整を実行することによって色ムラの解消を行う。ゲート信号の調整で色ムラの解消を行うことができないと判定された場合には、不良品として判定する。
 次に、ステップS130においてゲートの問題でないと判定された場合、補助容量(Cs)の問題であるかどうかを調べる(ステップS140)。補助容量(Cs)は、絵素領域の容量を決定しているので、補助容量(Cs)に印加する電圧(Vcs)を上げたり下げたりして調整することによって、色ムラが解消する場合がある。具体的には、単色ムラ判定シミュレーション部38により、Cs電圧の調整を実行する。単色ムラ判定シミュレーション部38は、記憶部31に格納されているCsエラーデータ33cに基づいて、エラーに応じた調整を行うことができる。そして、Cs電圧の調整で対応できる場合には、駆動回路においてその調整を実行することによって色ムラの解消を行う。Cs電圧の調整で色ムラの解消を行うことができないと判定された場合には、不良品として判定する。
 本実施形態の手法によれば、ステップS100において輝度分布処理部37で算出された単色表示(50(R)、50(G)、50(B))の輝度分布(例えば55)を、単色ムラ判定シミュレーション部38で判定する(ステップS110)。これにより、駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知することができる。さらに、単色ムラ判定シミュレーション部38によってTFT特性の検査を実行することにより(ステップS120)、信号の調整によって、色ムラを解消することが可能かどうか判定することも可能である。仮に、不良品の液晶パネル50に駆動回路を取り付けて検査しなければならないとすると、駆動回路およびその実行工程が無駄になるため、スループットの低下およびコストの問題が生じる。本実施形態の手法ではそのような問題を回避することができる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 本発明によれば、駆動回路を取り付ける検査の前段階にて、単色ムラの不良モードを検知することができる検査装置または検査方法を提供することができる。
 11 走査信号配線
 11a 短絡環
 12 画像信号配線
 12a 短絡環
 13 画素電極
 15 対向電極
 16 付加容量
 20 カメラ
 30 単色ムラ判定装置
 31 記憶部
 32 制御装置
 33a 標準輝度分布データ
 33b ゲートエラーデータ
 33c  Csエラーデータ
 34 記憶装置
 35 単色ムラ判定プログラム
 36 輝度分布測定装置
 37 輝度分布処理部
 38 単色ムラ判定シミュレーション部
 39 入出力部
 42 入力装置
 44 出力装置
 50 液晶パネル
 55 単色ムラ
 90 輝度分布
100 検査装置
200 液晶パネル
300 液晶パネル

Claims (4)

  1.  液晶パネルの単色ムラを検査する検査装置であって、
     液晶パネルを撮像するカメラと、
     前記カメラを制御する制御装置と、
     前記カメラが撮像した画像データに基づいて、輝度分布を測定する輝度分布測定装置であって、前記液晶パネルの単色表示における輝度分布を算出する輝度分布測定装置と、
     前記制御装置に接続され、前記輝度分布測定装置が算出した前記単色表示における輝度分布に基づいて単色ムラを判定する判定プログラムを有する記憶装置と
     を備えている、検査装置。
  2.  前記制御装置、前記輝度分布測定装置および前記記憶装置は、単色ムラ判定装置を構築しており、
     前記単色ムラ判定装置は、
          前記カメラに接続され、前記輝度分布および前記単色表示における輝度分布の処理を行う輝度分布処理部と、
          前記輝度分布処理部に接続され、前記単色ムラの判定を行う単色ムラ判定シミュレーション部と、
          前記単色ムラ判定シミュレーション部に接続され、標準輝度分布データが格納された記憶部と
     から構成されている、請求項1に記載の検査装置。
  3.  液晶パネルの検査方法であって、
     液晶パネルの輝度分布を測定し、当該輝度分布から単色表示における輝度分布を算出する工程と、
     前記単色表示における輝度分布と、標準輝度分布データとを対比する工程と、
     前記対比工程によって、単色ムラの有無を検出する工程と
     を含む、検査方法。
  4.  前記単色ムラの有無を検出する工程によって、良品でないと判断されたとき、TFT特性を検査する工程を実行する、請求項3に記載の検査方法。
PCT/JP2012/053812 2011-02-25 2012-02-17 液晶パネルの検査装置および検査方法 WO2012115004A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039423 2011-02-25
JP2011039423 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115004A1 true WO2012115004A1 (ja) 2012-08-30

Family

ID=46720785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053812 WO2012115004A1 (ja) 2011-02-25 2012-02-17 液晶パネルの検査装置および検査方法

Country Status (1)

Country Link
WO (1) WO2012115004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814288A (zh) * 2019-02-19 2019-05-28 武汉精立电子技术有限公司 一种自动检测面板背光的方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327497A (ja) * 1995-05-31 1996-12-13 Sanyo Electric Co Ltd カラー液晶表示パネルの検査方法
JP2005221568A (ja) * 2004-02-03 2005-08-18 Micronics Japan Co Ltd 表示用パネルの処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327497A (ja) * 1995-05-31 1996-12-13 Sanyo Electric Co Ltd カラー液晶表示パネルの検査方法
JP2005221568A (ja) * 2004-02-03 2005-08-18 Micronics Japan Co Ltd 表示用パネルの処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814288A (zh) * 2019-02-19 2019-05-28 武汉精立电子技术有限公司 一种自动检测面板背光的方法及系统

Similar Documents

Publication Publication Date Title
TWI385637B (zh) 用於補償平面面板顯示器之顯示缺陷之方法與裝置
KR101286534B1 (ko) 액정표시장치의 검사장치 및 검사방법
KR101374989B1 (ko) 무라 검출장치 및 그의 구동방법
KR20100098311A (ko) 액정 디스플레이의 검사 회로와 검사 방법
KR20130051796A (ko) 기판 검사장치
JP2014164221A (ja) 表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置
KR20080098852A (ko) 얼룩 결함 검사 장치와 방법, 및 평판 디스플레이 패널의제조 방법
WO2020019389A1 (zh) 一种液晶显示面板的残像消除方法
KR101274691B1 (ko) 평판표시장치의 표시결함 보상방법
KR101286515B1 (ko) 평판표시장치의 가로선 보상방법 및 장치
WO2012115004A1 (ja) 液晶パネルの検査装置および検査方法
KR20080105656A (ko) 액정 디스플레이 패널의 결함 자동 리페어 장치 및 방법,액정 디스플레이 패널의 제조 방법
WO2017049863A1 (zh) 液晶滴注系统及控制方法
US20120129419A1 (en) Display-panel inspection method, and method for fabricating display device
CN115167021A (zh) 显示面板的检测方法及检测装置
WO2012169423A1 (ja) パターン検査装置およびパターン検査方法
JP2019158442A (ja) 表示パネル検査システムおよび表示パネル検査方法
CN1900700B (zh) 可调式缺陷定级的定量方法
KR102031681B1 (ko) 액정표시 패널의 수리 장치 및 그 방법
CN111445823A (zh) 一种液晶显示面板及其烧付不良的补正方法
WO2012115003A1 (ja) 液晶パネルの検査装置および検査方法
JP2015087529A (ja) 欠陥検査装置、欠陥検査方法、及び信号入力装置
JP2007286402A (ja) 液晶表示デバイス検査方法、および液晶表示デバイス検査装置
KR20150037297A (ko) 표시패널
JPH09210855A (ja) 液晶表示装置の検査装置及びその検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP