WO2012114965A1 - 座標入力装置、電子機器 - Google Patents

座標入力装置、電子機器 Download PDF

Info

Publication number
WO2012114965A1
WO2012114965A1 PCT/JP2012/053573 JP2012053573W WO2012114965A1 WO 2012114965 A1 WO2012114965 A1 WO 2012114965A1 JP 2012053573 W JP2012053573 W JP 2012053573W WO 2012114965 A1 WO2012114965 A1 WO 2012114965A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
pseudo
drive
electrode
random signal
Prior art date
Application number
PCT/JP2012/053573
Other languages
English (en)
French (fr)
Inventor
健吾 ▲高▼濱
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/985,669 priority Critical patent/US9195356B2/en
Publication of WO2012114965A1 publication Critical patent/WO2012114965A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a coordinate input device used for a computer, an information processing device, and the like.
  • Touch panels are well known as coordinate input devices used for computers and information processing devices.
  • a projection capacitive two-dimensional touch panel As a general touch panel, a projection capacitive two-dimensional touch panel is known, but has various problems as described below.
  • a projection capacitive two-dimensional touch panel since an air gap, a protective plate, and the like are usually provided on the sensor unit, the signal received by the sensor unit is small, so that the SN of the detection signal is sufficiently high. In other words, it is buried in electric field noise and thermal noise radiated from other devices, and practical detection accuracy cannot be obtained. For this reason, there arises a problem that a hover operation as an extended function on the touch panel, a finger direction detection function cannot be performed, and a pen input function having a small tip area cannot be realized.
  • each intersection is detected in a short time in order to scan in time series and detect each intersection. If the panel size increases and the number of intersections to be detected increases, there is a problem that the SN of the detection signal cannot be sufficiently obtained.
  • the number of intersections detected during one clock scan can be increased, so that the detection time at one intersection can be increased, and as a result, the SN of the detection signal can be improved. There is an effect.
  • Patent No. 3251589 (Registered on November 16, 2001)”
  • Patent Gazette “Patent No. 4009005 (registered on Sep. 07, 2007)”
  • the detection time at each intersection can be lengthened and the SN of the detection signal can be improved, but the coupling capacitance is measured from the detection signals from all the reception electrodes and the coordinate position is specified. Therefore, there arises a problem that the processing time for detecting the coordinate position becomes long.
  • the present invention has been made in view of the above-described problems, and the object thereof is to achieve both improvement of SN of a detection signal at the intersection of a drive electrode and a reception electrode and reduction of a coordinate position detection processing time. It is to provide a coordinate input device that can be used.
  • the coordinate input device of the present invention is arranged such that the drive electrode group arranged on the substrate at a predetermined interval and the drive electrode group are insulated and intersected and arranged at a predetermined interval.
  • the drive electrode group is applied with a voltage synchronized with the period of the pseudo-random signal, the number of intersections detected during one cross scan can be increased. As a result, since the detection time per intersection can be increased, the SN of the detection signal can be improved.
  • the drive electrode group to which a voltage synchronized with the period of the pseudo-random signal is applied is a common electrode group, and the reception electrode group is divided into N (N: a positive number of 2 or more) blocks, and each block is divided.
  • N a positive number of 2 or more
  • each detection means can simultaneously measure the coupling capacitance obtained from the reception electrode group in units of divided blocks of the reception electrode group.
  • the measurement of the coupling capacitance at each intersection can be performed in parallel for the number of divided blocks, so that the measurement of the coupling capacitance can be speeded up.
  • the time for detecting the coordinate position (detection processing time) Can be greatly shortened.
  • the coordinate input device having the above-described configuration, it is possible to achieve both the improvement of the SN of the detection signal at the intersection of the drive electrode and the reception electrode and the shortening of the coordinate position detection processing time.
  • the coordinate input device of the present invention is arranged such that the drive electrode group arranged on the substrate at a predetermined interval and the drive electrode group are insulated and intersected and arranged at a predetermined interval.
  • FIG. 2 is an equalization circuit diagram of a coupling capacitance measuring circuit provided in the coordinate input device shown in FIG. 1. It is a timing chart which shows the drive process in a coupling capacitance measurement circuit. It is the equalization circuit diagram of the M series generator with which the coordinate input device shown in FIG.
  • FIG. 1 was equipped. It is a figure which shows inverse matrix IM.
  • FIG. 2 is an equalization circuit diagram of an M series restoration circuit provided in the coordinate input device shown in FIG. 1.
  • 10 is a timing chart showing operation timings of the M-sequence recovery circuit shown in FIG. 9. It is a graph which shows the relationship between detection time and SN in this invention and the conventional method.
  • It is a schematic block diagram of an M sequence restoration circuit that performs M sequence restoration processing in parallel.
  • 13 is a timing chart showing operation timings of the M-sequence recovery circuit shown in FIG.
  • It is an equalization circuit diagram of another M series restoration circuit which performs M series restoration processing in parallel. It is a timing chart which shows the timing of each signal in the M series restoration process by the M series restoration circuit shown in FIG.
  • FIG. 17 is an equalization circuit diagram of a coupling capacitance measurement circuit provided in the coordinate input device shown in FIG. 16. It is a timing chart which shows the drive process in the coupling capacitance measuring circuit shown in FIG.
  • FIG. 17 is an equalization circuit diagram of an M-sequence generator provided in the coordinate input device shown in FIG. 16.
  • FIG. 17 is an equalization circuit diagram of an M series restoration circuit provided in the coordinate input device shown in FIG. 16. It is an equalization circuit diagram of the M series restoration circuit which performs M series restoration processing in parallel.
  • (A) is a waveform diagram of an M-sequence signal when there are 80 drive electrodes
  • (b) is a waveform diagram of an M-sequence signal when there are 127 drive electrodes. It is a graph which shows the relationship between a coupling coefficient and time when there are 80 drive electrodes. It is a graph which shows the relationship between a coupling coefficient and time when there are 127 drive electrodes.
  • FIG. 1 is a schematic block diagram of the coordinate input device according to the present embodiment.
  • the coordinate input device includes a sensor unit 11, an M-sequence generator (pseudo-random signal generation means) 12, a drive electrode drive circuit (drive electrode drive means) 13, and a reception electrode selection.
  • a circuit (reception electrode selection unit) 14 a first detection unit (detection unit) 15, a second detection unit (detection unit) 16, a switch SW 17, and an M-sequence recovery circuit (pseudorandom signal recovery unit) 18 are included.
  • the sensor unit 11 is configured such that the drive electrodes D1 to D80 (drive electrode group) arranged at predetermined intervals in the row direction on a substrate (not shown) and the drive electrode group are insulated and intersect,
  • the receiving electrodes S1 to S100 (receiving electrode group) are arranged at predetermined intervals in the direction.
  • the reception electrode group is divided into N (N is a positive number of 2 or more) blocks.
  • N 2 that is, the receiving electrode groups S1 to S100 are divided into blocks S1 to S50 and blocks S51 to S100.
  • the M-sequence generator 12 generates a pseudo-random signal whose autocorrelation function is a pulse-like binary value, and outputs the generated pseudo-random signal to the drive electrode drive circuit 13.
  • the drive electrode drive circuit 13 sequentially applies a voltage synchronized with the period of the pseudo random signal to the drive electrodes D1 to D80 of the drive electrode group.
  • the drive electrode drive circuit 13 includes a shift register that shifts in synchronization with the period of the pseudo-random signal of the M-sequence generator 12, and the output of the flip-flop that constitutes the shift register corresponds to “1”.
  • the voltage V0 is applied only to the electrode, and the drive electrode whose output corresponds to “0” is connected to GND. Details of the configuration of the drive electrode drive circuit 13 will be described later.
  • the reception electrode selection circuit 14 is formed of a first reception electrode selection unit 14a and a second reception electrode selection unit 14b that are respectively connected to a reception electrode group divided into two reception electrode blocks.
  • the unit 14a and the second receiving electrode selection unit 14b receive a value corresponding to a coupling capacitance obtained by electrostatic coupling between the driving electrode group (driving electrodes D1 to D80) and the receiving electrode group (receiving electrodes S1 to S100). It is supposed to be.
  • Each of the first reception electrode selection unit 14a and the second reception electrode selection unit 14b includes, for example, a shift register as in the drive electrode drive circuit 13, and '1 of flip-flops constituting the shift register. Only the receiving electrode corresponding to 'is transmitted to the input terminal of the coupling capacitance measuring circuit (described later) via the analog switch. Details of the configuration of the reception electrode selection circuit 14 will be described later.
  • the first detection unit 15 detects and stores data modulated by a pseudo-random signal including information on the input coordinate position from a signal corresponding to the reception electrode selected by the first reception electrode selection unit 14a. It is like that.
  • the first detection unit 15 includes a coupling capacitance measurement circuit (1), an ADC (1), and a line memory (storage unit) (1).
  • the coupling capacitance measuring circuit (1) which will be described later, includes a switched capacitor integrator, and outputs the coupling capacitance between the selected drive electrode and the selected reception electrode as an analog value to the subsequent ADC (1). It is supposed to be.
  • the ADC (1) converts the analog signal from the coupling capacitance measuring circuit (1) into a digital signal and outputs it to the line memory (1) at the subsequent stage.
  • the line memory (1) temporarily holds the AD conversion result in the ADC (1) and sends it to the subsequent M-sequence restoration circuit 18 by time division processing with other blocks.
  • the second detection unit 16 detects and stores data modulated by a pseudo-random signal including information on the input coordinate position from the signal corresponding to the reception electrode selected by the second reception electrode selection unit 14b. It is like that. Specifically, the second detection unit 16 includes a coupling capacitance measurement circuit (2), an ADC (2), and a line memory (2). Since these coupling capacitance measuring circuit (2), ADC (2), and line memory (2) have the same functions as the above-mentioned coupling capacitance measuring circuit (1), ADC (1), and line memory (1). Detailed description will be omitted.
  • Detecting units including the above-described coupling capacitance measuring circuit, ADC, and line memory are provided for each block of the receiving electrode group, and N pairs are provided.
  • N 2
  • there are two pairs of detection units first detection unit 15 and second detection unit 16).
  • the detection results output from the first detection unit 15 and the second detection unit 16 are switched in time series by the switch SW 17 and sequentially sent to the M-sequence restoration circuit 18.
  • the M-sequence restoration circuit 18 detects each block in the reception electrode group and restores the sequential output output from the line memory of the detection unit corresponding to each block in a time-sharing manner for each block. . Details of the M-sequence restoration circuit 18 will be described later.
  • the drive electrode groups D1 to D80 side straddle all the reception electrode blocks, and the drive electrodes can be driven by the M-sequence pattern at the same time.
  • FIG. 2 is a diagram illustrating a schematic configuration of an electrode structure and a driving circuit of the coordinate input device. Here, for convenience of explanation, a state where the block is not divided on the receiving electrode group side is shown.
  • the drive electrode drive circuit 13 has flip-flops connected in series, and controls the analog switches connected to the drive electrodes D1 to D80 with a signal obtained by taking the output Q of each flip-flop and Discharge_B. To do.
  • the output of the M series signal generator is input to the first stage flip-flop D, and the pattern of the M series signal is shifted downward by one stage at the rising edge of D_CLK.
  • the reception electrode selection circuit 14 controls an analog switch in which flip-flops are connected in series and each flip-flop output Q is connected to the reception electrode.
  • the signal input to the first flip-flop is shifted to the right at the rising edge of S_CLK by the start pulse D_SP.
  • the receiving electrode is connected to the coupling capacitance measuring circuit via the analog switch.
  • FIG. 3 is a timing chart showing the timing of each signal when the receiving electrode group in this embodiment is divided into blocks and detection operations are processed in parallel.
  • FIG. 4 is a timing chart showing the timing of each signal in the conventional detection operation process in which the drive electrodes are not scanned in the M series.
  • the scan clock on the receiving electrode side is given to S_CLK, and the start pulse S_SP is given as a pulse of this one clock width.
  • S1_SW selected every time S_CLK rises is sequentially scanned.
  • the drive electrode scan when the reception electrode S1 is selected will be described with reference to a timing chart in which the time axis is expanded as shown in the lower part of FIG.
  • the drive electrode start pulse D_SP is supplied to the reception shift register, and this pulse is shifted in the shift register every time the drive electrode drive clock D_CLK rises.
  • the M-series scan is different in that a plurality of drive electrodes are simultaneously activated.
  • V0 is applied to the drive electrode, and this V0 potential is detected by a switched capacitor integrator described later.
  • Discharge_B changes by 4 pulses during one pulse of the drive electrode.
  • the M-sequence pattern when scanning the drive side electrode, the M-sequence pattern is used.
  • the M-sequence pattern input to the drive side shift register is sequentially shifted by D_CLK.
  • the electrode corresponding to the M-sequence pattern is selected as the active electrode from the 100th drive electrode toward the smaller number.
  • the coupling capacitance detection is obtained from 127 pieces of data detected from 100 + 1 clock to 100 + 127 clock.
  • the coupling capacitance measurement circuit in M-series scanning can be realized with the same circuit and the same timing drive as those of pulse scan. However, as shown in the timing chart of FIG. 3, the start of detection is the first data detection timing at the 101st clock.
  • FIG. 5 is a schematic block diagram of the coupling capacitance measuring circuit.
  • the coupling capacitance measuring circuit includes six analog switches S1 to S6, and outputs the input potential V0 as HL_Dout to a subsequent ADC (AD converter).
  • the analog switches S1, S2, S3, S4, S5, and S6 are usually composed of Pch, Nch transistor, and inverter, but in this embodiment, the analog switches S1 and S2 are driven as shown in FIG. Side shift registers & analog switches are shown.
  • the coupling capacitance between the drive electrode and the reception electrode is C1, and the circuit after the analog switches S3 and S4 shows the coupling capacitance measurement circuit.
  • FIG. 6 is a timing chart showing drive processing in the coupling capacitance measurement circuit.
  • the charge of C2 in the feedback section of the OP amplifier is discharged by the IRST signal, the charge of C2 becomes 0 (the potential at both ends of C2 is also 0 V), and the operation is initialized.
  • the output of the operational amplifier is connected to C3 via the analog switch S6.
  • the control terminal HLD of S6 becomes “1”
  • the output of the operational amplifier is charged to C3, and when the HLD becomes “0”, it is disconnected from the operational amplifier.
  • the detection voltage is held. This voltage is transmitted to the ADC (AD converter).
  • init_pat [6: 0] is set as the initial value of the flip-flop, and the above calculation is performed every clock.
  • the output to the drive electrode drive circuit 13 is output as an M series signal from the Mseq (6) terminal.
  • “1111111” is used for Init_pat [6: 0].
  • the M-sequence signal output from the M-sequence generator 12 is output to the drive electrode drive circuit 13, and the digital signal output from the reception electrode selection circuit 14 is timed with the drive electrode drive circuit 13. Therefore, it is necessary to restore the M-sequence signal.
  • the M-series restoration is performed as follows.
  • the original M-sequence signal is ⁇ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, ... 0, 0, 1, 0, 1,0,1,0 ⁇ , Replace 1 with 1 and 0 with -1.
  • MS ⁇ 1,1,1,1,1,1,1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, ...- 1, -1, -1, -1,1, -1,1, -1 ⁇ ,
  • DM is a symmetric matrix.
  • the M series restoration is performed in the M series restoration circuit 18 described above.
  • FIG. 9 is a schematic block diagram of the M-sequence restoration circuit 18.
  • the above-described equation (1) is configured by a shift register.
  • the AD converted 10-bit output is connected to the B terminal of SEL1, and the output of SEL1 is input to the D terminal of the 10-bit flip-flop ADC127.
  • ADCs 127 to ADC1 of 10-bit flip-flops constitute 127 shift registers, and the operation enable is controlled by the DINEN terminal.
  • the Q terminal of the ADC1 at the final stage is connected to the A terminal of SEL1.
  • the Q terminals of the ADC 127 to ADC 1 are connected to 127 two's complement generators that generate two's complement.
  • control terminals S are connected to Q terminals of 127 flip-flops storing M series.
  • the M sequence pattern output from the M sequence generator 12 is connected to the SEL2B terminal.
  • Each of 127 MS127 to MS1 is a 1-bit flip-flop, and the operation enable is controlled by the CALEN terminal.
  • the Q terminal of the ADC1 at the final stage is connected to the A terminal of SEL1.
  • the output terminal of MS1 is connected to the A terminal of SEL2, and the output from Mseq-gen or the loop output from MS1 is selected by MSEL and input to the Q terminal of MS127.
  • the adder adds the data two by two with a sign, and finally outputs an 18-bit Rcon from the final stage of the adder as a total output.
  • This is output in a pipeline manner as a matrix calculation result of the above equation (1), that is, a signal after M-sequence demodulation.
  • T1 is a preliminary period for setting data in the flip-flop in the drive electrode drive circuit 13. After the generation of the M series and the N drive clocks, the first pattern of the M series is set to the bottom drive electrode Dn.
  • T2 is the period of the M series and is K clock (127 in the example).
  • the pattern is changed for one period of the M series by the K clock.
  • coupling capacitor C X is, C X-1 in the next clock ⁇ C 1, C 0, C -1, ⁇ , until C X-M + 1 is restored as Rcon.
  • These X C X , C X-1 ,..., C 1 are capacitances corresponding to X drive electrodes.
  • the processing speed becomes N times by parallelizing the receiving side block.
  • the performance of the touch panel has a trade-off relationship between the coordinate detection accuracy and the detection speed that are inversely proportional to the S / N of the detection signal.
  • the detection accuracy becomes 1 / Sqrt (2) when the detection coordinates are averaged twice, and the detection accuracy is 4 times average.
  • the detection accuracy is 1 / Sqrt (4), and it takes a long time to improve the detection accuracy (broken line in the graph shown in FIG. 11).
  • FIG. 12 is a schematic configuration block diagram of the M-sequence restoration circuit 28 that performs the M-sequence restoration processing in parallel.
  • the degree of parallelism means that the reception electrode group in the reception electrode selection circuit 14 described above is divided into a plurality (two or more) blocks and a plurality of coupling capacitances are measured in parallel.
  • HL_Dout0 to HL_Dout3 are ADC outputs from four parallel receiving circuits. These are connected to the input terminal of SEL3, and one of the output terminals is selected by S [1: 0] and output to the Y terminal.
  • SEL terminal is “0”
  • ADC1-3 is selected, and when “1”, B0 to B3 are selected.
  • the configuration of the data shift register increases the number of flip-flops by the multiplicity (4 in this example) in parallel processing. Compared to the single M-sequence demodulator 28 described above, it is composed of 127 ⁇ 4 stages of flip-flops.
  • the clock D_CLK4 used is four times the clock of D_CLK.
  • S [1: 0] is configured such that four phases are arranged in one cycle of D_CLK, and all four of HL_Dout0 to HLDout3 are selected in one cycle of D_CLK.
  • the adder is drawn out every four flip-flops of the data register. (For example, ADC127-0 is followed by ADC126-0.) Note that the clock of the M series register uses D_CLK and has the same driving method as the single M series demodulation circuit 28 described above.
  • D_CLK4 is a clock having a frequency four times that of D_CLK.
  • S [1: 0] is a signal that is generated from D_CLK4 and changes to “01”, “10”, “11”, “00”,... With “00” as the top of the decoding start period T2. is there.
  • the ADC shift register has 127 ⁇ 4 stages, and an addition tap is output from the Q output for every four stages of the flip-flop.
  • the signed addition result of ADC127-0, ADC126-0, ..., ADC1-0 is calculated in Rcon. Since an output from the ADC of a different reception block is output for each D_CLK4, Rcon is always an addition result for the same reception block, and is output so that the block changes cyclically every D_CLK4.
  • FIG. 14 shows a schematic configuration block of another M-sequence restoration circuit 38 that performs M-sequence restoration processing in parallel.
  • FIG. 15 is a timing chart showing the timing of each signal in the M sequence restoration processing by the M sequence restoration circuit 38 shown in FIG.
  • DINEN1 is “1” when an odd number of receiving electrodes are selected
  • DINEN2 is “1” when an even number of receiving electrodes are selected.
  • M-sequence demodulation calculations can be performed continuously by adopting two shift registers and switching each reception electrode.
  • the second embodiment has an effect that the design and layout can be easily performed even with a large N time division.
  • FIG. 16 is a schematic block diagram of the coordinate input device according to the present embodiment.
  • the configuration of the M-sequence generator is changed from the coordinate input device shown in the first embodiment to newly become the M-sequence generator 22, and drive electrode driving is performed.
  • the configuration of the circuit is changed to be a new drive electrode drive circuit 23, and the configuration of the M series restoration circuit is also changed in accordance with the change in the configuration of the drive electrode drive circuit 23, and a new M series restoration circuit 48 is obtained. ing. Since the configuration other than the drive electrode drive circuit 23 and the M series restoration circuit 48 is the same as the configuration of the coordinate input device shown in FIG. 1, detailed description thereof is omitted.
  • FIG. 17 is a diagram showing a schematic configuration of an electrode structure and a drive circuit of a coordinate input device. Here, for convenience of explanation, a state where the block is not divided on the receiving electrode group side is shown.
  • flip-flops are connected in series, and an analog switch connected to each electrode is controlled by an output Q of each flip-flop and a signal of Discharge_B.
  • the drive electrode is connected to GND.
  • the output of the M-sequence signal generation period is input to the first-stage flip-flop D, and the pattern of the M-sequence signal is shifted downward by one stage at the rising edge of D_CLK.
  • reception electrode selection circuit 14 has the same configuration as the reception electrode selection circuit 14 shown in FIG. 2 of the first embodiment, detailed description thereof is omitted.
  • the drive electrodes are set to ⁇ V0, GND, + V0, the combined capacitance of all the drive electrodes and the selected reception electrode is input to the coupling capacitance measurement circuit. .
  • V0 is selected via C3-5, C4-5, C5-5, C8-5, C9-5, C79-5.
  • -V0 is connected to the receiving electrode S5 via C1-5, C2-5, C6-5, C7-5, C10-5, C80-5.
  • the coupling with the drive electrode input to the coupling capacitance measuring circuit is different from that of the first embodiment. Therefore, the configuration of the coupling capacitance measurement circuit is also different.
  • the coupling capacitance measuring circuit shown in FIG. 18 is used, the result integrated and held by four pulses is expressed as 4 ⁇ V0 ⁇ (C1 ⁇ C3) / C2, and is not driven by ⁇ V0. Compared to the first embodiment, the voltage is smaller by the term ⁇ C3.
  • the large-area capacitively coupled capacitive touch panel has large C1 and C3 and the corresponding LSI size increases depending on C2, the feedback capacitance C2 of the integrator is increased as in the example shown in FIG. As a result, it is possible to reduce the chip area of the LSI and to design a circuit at a low cost.
  • FIG. 19 is a timing chart showing drive processing in the coupling capacitance measuring circuit shown in FIG.
  • the coordinate input device according to Embodiment 1 operates at the same timing as the coupling capacitance measuring circuit shown in FIG. 15 (see the timing chart shown in FIG. 6).
  • FIG. 20 is a block diagram illustrating a schematic configuration of the M-sequence generator 22 according to the present embodiment.
  • the relationship between the mutual capacitance of the drive electrodes and the reception electrodes measured by the reception circuit is expressed by the following equation (2).
  • the signals ⁇ a1, a2,..., A127 ⁇ are applied to the AD converter.
  • the element of the restoration matrix IM in the above equation (7) is '0' or '1', it can be configured with only an adder, and the subtractor required in the first embodiment is not necessary.
  • FIG. 21 is a block diagram of a schematic configuration of the M-sequence restoration circuit 48 provided in the coordinate input device according to the present embodiment.
  • the M-sequence restoration circuit 48 can be configured with only an adder as compared with the M-sequence restoration circuit 18 of the first embodiment. Therefore, cumulative calculation is repeated when calculating 127 restored data.
  • the configuration is changed to the method to be performed.
  • the output Q of the 18-bit EN and R flip-flop is connected to the 18-bit B input of the adder, and the ADC-converted 10-bit data HLDout0 is input to the adder A input. .
  • the output Q of the 18-bit EN and R flip-flop is connected to the subsequent 12-bit EN flip-flop.
  • the Q output of the subsequent flip-flop is output to Rcon and input to the address decoder.
  • the operation performed by the M series restoration circuit 48 can also be performed in parallel as described in the second embodiment.
  • a parallel M-sequence recovery circuit that performs processing of the M-sequence recovery circuit 48 in parallel will be described.
  • FIG. 22 is a schematic configuration block diagram of an M-sequence restoration circuit 58 that performs M-sequence restoration processing in parallel.
  • M-sequence restoration circuit 58 that performs M-sequence restoration processing in parallel.
  • the degree of parallelism is 4 will be described.
  • FIG. 22 is a restoration circuit in which four Acum_blocks are provided so that time division processing can be performed.
  • the signals HLDout1 to HLDout4 obtained by integrating from the four receiving electrodes are input to the selector, selected and designated by S [1: 0], and output to a plurality of Acum_blocks as 10-bit data Din.
  • DINEN is a signal for enabling the operation of Acum_block in synchronization with S [1: 0].
  • D_CLK4 is a clock having a frequency four times that of D_CLK, and S [1: 0] and DINEN1 to DINEN4 operate in a time-sharing manner in four phases.
  • D_CLK is an example of four time divisions.
  • D_CLKN is set to N times the frequency of D_CLK
  • S [X: 0] is time division according to each N phase. What is necessary is just to drive.
  • the fourth embodiment has an effect that the design and layout can be easily performed even with a large N time division.
  • the drive electrode is driven at ⁇ V0, and the M series restoration is restored with DM having coefficients of 1 and -1.
  • the configuration of the coordinate input device is the same as that of the third embodiment, but the configuration of the M series restoration circuit is different.
  • Equation (10) is an equation obtained by restoring the restoration matrix with DM having a coefficient of ⁇ 1.
  • FIG. 23 is a schematic block diagram of the M-sequence restoration circuit 68 according to the present embodiment.
  • the M series restoration circuit 68 has a configuration in which an XOR is placed in the input unit and an adder is added with a carry IN (CI) with respect to the M series restoration circuit 48 of the third embodiment. It has become.
  • the operation performed by the M series restoration circuit 68 can also be performed in parallel as described in the fourth embodiment.
  • a parallel M series restoration circuit that performs the processing of the M series restoration circuit 68 in parallel will be described.
  • FIG. 24 is a block diagram of a schematic configuration of an M-sequence restoration circuit 78 that performs M-sequence restoration processing in parallel.
  • M-sequence restoration circuit 78 that performs M-sequence restoration processing in parallel.
  • the degree of parallelism is 4 will be described.
  • the signals HLDout1 to HLDout4 obtained by integrating from the four receiving electrodes are input to the selector, selected and designated by S [1: 0], and output to a plurality of Acum_blocks as 10-bit data Din.
  • DINEN is a signal for enabling the operation of Acum_block in synchronization with S [1: 0].
  • D_CLK4 is a clock having a frequency four times that of D_CLK, and S [1: 0] and DINEN1 to DINEN4 operate in a time-sharing manner in four phases.
  • D_CLK is an example of four time divisions.
  • D_CLKN is set to N times the frequency of D_CLK
  • S [X: 0] is time division according to each N phase. What is necessary is just to drive.
  • the sixth embodiment has an effect that the design and layout can be easily performed even with a large N time division.
  • FIG. 25 is a diagram for explaining the effect when there are 80 drive electrodes and (b) in FIG. 25 is 127 drive electrodes.
  • the voltages applied to the 80 drive electrodes are the GND and V0 potentials corresponding to M-sequence '0' and '1'.
  • the number Mn of electrodes corresponding to V0 is expressed by the following equation (14):
  • Mn calculated by the above equation (14) when M-seq is RotateLeft is the magnification of the mutual capacitance of one cross, and is equal to C1. (See C1 shown in FIGS. 26 and 27)
  • the voltages applied to the 80 electrodes are ⁇ V0 and V0 potentials corresponding to “0” and “1” in the M series.
  • the number Mbn of electrodes corresponding to ⁇ V0 is expressed by the following equation (15).
  • C1-C3 of the second embodiment is minimum (1) at the M-sequence period K-127.
  • the feedback capacitance of the coupling capacitance measurement circuit can be reduced, the chip area of the detection IC can be reduced, and the SN can be reduced. There is an effect that it can be improved.
  • FIG. 28 is an overall configuration diagram of a coordinate input device in which the receiving electrode of the present invention is divided into two blocks.
  • FIG. 29 is an overall configuration diagram of a coordinate input device that does not divide the receiving electrode as a comparative example.
  • both the coordinate input devices of FIGS. 28 and 29 have 80 drive electrodes.
  • the SN / Sqrt (t) comparative example is 1 / Sqrt (8000), while the present invention is 5.63 / Sqrt (6430), and the present invention is 6 more than the comparative example. The effect is that the performance can be improved by 28 times.
  • the SN of the detection signal can be sufficiently increased, the signal received by the sensor is small and buried in electric field noise and thermal noise radiated from other devices. Thus, there is no problem that practical detection accuracy cannot be obtained.
  • the SN of the detection signal can be sufficiently obtained, so that the hover operation as an extended function on the touch panel and the finger direction detection function can be executed without any problem.
  • the parallel processing is performed, so that a sufficient detection speed can be obtained.
  • the driving electrode In order to measure the cross capacitance of the receiving electrode, a detection time of about 3 ⁇ Td is required on the drive electrode side, and about 3 ⁇ Tr during integration.
  • the voltage proportional to the cross capacitance is updated by the integrator every Temp and is voltage-held. The voltage held is digitized by an AD converter, but in the case of a 10-12 bit sequential parallel AD, a 20-50 MHz one can be used as a macro.
  • an integration circuit is provided for each reception electrode, sampled and held, and time-division digitized by one AD converter, and digital M-sequence restoration calculation is timed. It can be configured to be divided.
  • a practical limitation for increasing the size is to satisfy Tmes ⁇ number of intersections ⁇ 1/60 in order to make the coordinate frame rate 60 Hz or higher.
  • the time constant of ITO is almost determined while maintaining transparency, and the time constant determines the size constraint.
  • the number of block divisions of the receiving electrode group can be appropriately determined in consideration of various matters such as the panel size.
  • the drive electrode drive circuit preferably applies a predetermined voltage to the drive electrode when the pseudo random signal is at a high level, and applies a 0 voltage to the drive electrode when the pseudo random signal is at a low level.
  • intersection corresponding to the number of high levels of the pseudo-random signal can be detected in one clock cycle.
  • the drive electrode drive circuit applies a predetermined voltage to the drive electrode when the pseudo-random signal is at a high level, and applies a voltage having a polarity opposite to the predetermined voltage to the drive electrode when the pseudo-random signal is at a low level. It is preferable to apply.
  • the intersection corresponding to the number of high and low levels of the pseudo random signal can be detected in one clock cycle.
  • the combined capacitance of all the drive electrodes and the selected receiving electrode is measured as the coupling capacitance.
  • pseudo-random signal restoration means for restoring the output from the detection means to the original pseudo-random signal
  • the pseudo-random signal restoration means outputs the output from the detection means that is sequentially output for each block. It is preferable to restore by division.
  • the pseudo-random signal restoration means restores the output from the detection means, which is sequentially output for each block, in a time division manner.
  • the amount is small.
  • the circuit scale of the pseudo random signal restoration means can be reduced.
  • the detection means includes a coupling capacitance measurement circuit that measures the coupling capacitance received by the reception electrode selection circuit, and a storage unit that temporarily stores the coupling capacitance measured by the coupling capacitance measurement circuit as a detection result. It is preferable that the detection results stored in time series in the storage unit of each detection unit are output to the pseudo-random restoration unit while switching in units of blocks.
  • pseudo-random signal restoration means for restoring the output from the detection means to the original pseudo-random signal
  • the pseudo-random signal restoration means outputs the output from each detection means in parallel for each block. It is preferable to restore to
  • the coordinate input device configured as described above can be used in various electronic devices.
  • a coordinate input device can be used as a touch panel provided on the display panel.
  • a coordinate input device can be used as an input interface in various electronic devices.
  • the coordinate input device of the present invention can be applied to a mobile phone, a smartphone, a PDA, an electronic book reader, a tablet PC, a digital signage (electronic advertisement), etc. as an electronic device provided with a touch panel.
  • the present invention can be used for electronic devices generally equipped with a touch panel.
  • Sensor unit 12 M series generator (pseudo random signal generating means) 13 drive electrode drive circuit 14 reception electrode selection circuit 14a first reception electrode selection unit 14b second reception electrode selection unit 15 first detection unit (detection means) 16 2nd detection part (detection means) 18 M-sequence recovery circuit (pseudo-random signal recovery means) 22 M-sequence generator (pseudo-random signal generator) 23 drive electrode drive circuit 28 M series restoration circuit (pseudo random signal restoration means) 38 M-sequence recovery circuit (pseudo-random signal recovery means) 48 M-sequence recovery circuit (pseudo-random signal recovery means) 58 M-sequence recovery circuit (pseudo-random signal recovery means) D1 to D80: Drive electrode group S1 to S100: Receive electrode group

Abstract

 本発明の座標入力装置は、M系列発生器(12)と、駆動電極駆動回路(13)と、結合容量に相当する値を受信する受信電極選択回路(14)とを備え、上記受信電極選択回路(14)によって受信された値から、入力された座標位置を検出すると共に、受信電極群を2ブロックに分割して、それぞれのブロックに対応するように第1検出部(15)、第2検出部(16)が設けられている。

Description

座標入力装置、電子機器
 本発明は、コンピュータや情報処理装置などに使用される座標入力装置に関するものである。
 コンピュータや情報処理装置などに使用される座標入力装置として、タッチパネルがよく知られている。
 一般的なタッチパネルとして、投影型静電容量方式の2次元タッチパネルが知られているが、以下に示すような種々の問題を抱えている。
 投影型静電容量方式の2次元タッチパネルでは、通常、センサ部上にエアギャップや保護板などが設けられていることから、センサ部が受け取る信号が小さくなるため、検出信号のSNが十分にとれず、他の機器から放射される電界ノイズや熱雑音に埋もれて、実用的な検出精度が得られない。このため、タッチパネルにおける拡張機能としてのホバー操作や、指の方向検出機能ができない、また先端の面積の小さいペン入力機能が実現できないという問題が生じる。
 さらに、駆動電極(M本)と受信電極(N本)の交点がM×N個あり、パルススキャン方式では、時系列的にスキャンをして1交点ずつ検出するために、各交点を短い時間で検出しなければならず、パネルサイズが大型化し、検出する交点の数が多くなれば、検出信号のSNを十分に取れないという問題が生じる。
 なお、十分な検出時間を確保するために、ディスプレイの表示駆動とは独立して、交点の検出を行うようにした場合、ディスプレイの表示電極駆動時の静電輻射を受け、それがタッチパネル検出のノイズとなるという問題が生じる。
 そこで、十分な検出時間を確保するために、例えば、特許文献1,2に開示されているように、M系列駆動により、1クロックスキャンの間に検出する交点の数を増加させる方法が提案されている。
 このM系列駆動によれば、1クロックスキャンの間に検出する交点の数を増加させることができるので、一つの交点における検出時間を長くでき、この結果、検出信号のSNを向上させることができるという効果を奏する。
 これにより、上述した検出信号のSNが十分にとれないことによる種々の問題を解決することができる。
日本国公開特許公報「特許第3251489号公報(2001年11月16日登録)」 日本国公開特許公報「特許第4009005号公報(2007年09月07日登録)」
 ところで、従来のM系列駆動では、各交点における検出時間を長くして、検出信号のSNを向上させることができるものの、全ての受信電極からの検出信号から結合容量を測定し、座標位置を特定するため、座標位置の検出処理時間が長くなるという問題が生じる。
 本発明は、上記の問題点に鑑みなされたものであって、その目的は、駆動電極と受信電極の交点における検出信号のSNの向上と座標位置の検出処理時間の短縮の両立を図ることのできる座標入力装置を提供することにある。
 本発明の座標入力装置は、上記の課題を解決するために、基板上に所定間隔で配列された駆動電極群と、上記駆動電極群とは絶縁されると共に交差して所定間隔で配列された受信電極群と、自己相関関数がパルス的な擬似ランダム信号を発生する擬似ランダム信号発生手段と、上記駆動電極群の各電極に、上記擬似ランダム信号の周期に同期した電圧を順次印加する駆動電極駆動回路と、上記受信電極群に接続され、上記駆動電極群と受信電極群との静電結合によって得られる結合容量に相当する値を受信する受信電極選択回路と、上記受信電極選択回路によって受信された値から、入力された座標位置を検出する検出手段とを備え、上記受信電極群をN(N:2以上の正数)ブロックに分割して、それぞれのブロック毎に上記検出手段が設けられていることを特徴としている。
 上記の構成によれば、駆動電極群は、擬似ランダム信号の周期に同期した電圧が印加されるので、1クロススキャンの間に検出する交点の数を増加させることができる。この結果、一交点あたりの検出時間を長くすることが可能となるので、検出信号のSNを向上させることが可能となる。
 しかも、擬似ランダム信号の周期に同期した電圧が印加される駆動電極群を共通の電極群とし、受信電極群をN(N:2以上の正数)ブロックに分割して、それぞれのブロック毎に検出手段が設けられていることで、各検出手段は、受信電極群から得られる結合容量を、当該受信電極群の分割されたブロック単位で同時に測定することができる。
 これにより、各交点における結合容量の測定を、分割したブロック数分並列して行うことができるので、結合容量の測定を高速化でき、この結果、座標位置の検出に係る時間(検出処理時間)を大幅に短縮することができる。
 従って、上記構成の座標入力装置によれば、駆動電極と受信電極の交点における検出信号のSNの向上と座標位置の検出処理時間の短縮の両立を図ることができるという効果を奏する。
 本発明の座標入力装置は、上記の課題を解決するために、基板上に所定間隔で配列された駆動電極群と、上記駆動電極群とは絶縁されると共に交差して所定間隔で配列された受信電極群と、自己相関関数がパルス的な擬似ランダム信号を発生する擬似ランダム信号発生手段と、上記駆動電極群の各電極に、上記擬似ランダム信号の周期に同期した電圧を順次印加する駆動電極駆動回路と、上記受信電極群に接続され、上記駆動電極群と受信電極群との静電結合によって得られる結合容量に相当する値を受信する受信電極選択回路と、上記受信電極選択回路によって受信された値から、入力された座標位置を検出する検出手段とを備え、上記受信電極群をN(N:2以上の正数)ブロックに分割して、それぞれのブロック毎に上記検出手段が設けられていることで、駆動電極と受信電極の交点における検出信号のSNの向上と座標位置の検出処理時間の短縮の両立を図ることができるという効果を奏する。
本実施の形態に係る座標入力装置の概略構成ブロック図である。 座標入力装置の電極構造及び駆動回路の概略構成を示す図である。 本実施の形態における受信電極群をブロック分割して検出動作を並列処理する場合の各信号のタイミングを示すタイミングチャートである。 受信電極群をブロック分割しない場合の検出動作の処理における各信号のタイミングを示すタイミングチャートである。 図1に示す座標入力装置に備えられた結合容量測定回路の等化回路図である。 結合容量測定回路における駆動処理を示すタイミングチャートである。 図1に示す座標入力装置に備えられたM系列発生器の等化回路図である。 逆マトリクスIMを示す図である。 図1に示す座標入力装置に備えられたM系列復元回路の等化回路図である。 図9に示すM系列復元回路の動作タイミングを示すタイミングチャートである。 本発明と従来法とにおける検出時間とSNとの関係示すグラフである。 M系列復元処理を並列に行うM系列復元回路の概略構成ブロック図である。 図12に示すM系列復元回路の動作タイミングを示すタイミングチャートである。 M系列復元処理を並列に行う他のM系列復元回路の等化回路図である。 図14に示すM系列復元回路によるM系列復元処理における各信号のタイミングを示すタイミングチャートである。 本実施の形態に係る座標入力装置の概略構成ブロック図である。 座標入力装置の電極構造及び駆動回路の概略構成を示す図である。 図16に示す座標入力装置に備えられた結合容量測定回路の等化回路図である。 図18に示す結合容量測定回路における駆動処理を示すタイミングチャートである。 図16に示す座標入力装置に備えられたM系列発生器の等化回路図である。 図16に示す座標入力装置に備えられたM系列復元回路の等化回路図である。 M系列復元処理を並列に行うM系列復元回路の等化回路図である。 本実施の形態に係る座標入力装置に備えられたM系列復元回路の等化回路図である。 M系列復元処理を並列に行うM系列復元回路の等化回路図である。 (a)は駆動電極が80本のときのM系列信号の波形図、(b)は駆動電極が127本のときのM系列信号の波形図である。 駆動電極が80本のときの結合係数と時間との関係を示すグラフである。 駆動電極が127本のときの結合係数と時間との関係を示すグラフである。 本発明の効果を説明するための座標入力装置の概略構成ブロック図である。 本発明の効果を説明するための比較のための座標入力装置の概略構成ブロック図である。
 〔実施の形態1〕
 本発明の一実施の形態について説明すれば、以下の通りである。
 <座標入力装置の全体構成説明>
 図1は、本実施の形態に係る座標入力装置の概略構成ブロック図である。
 本実施の形態に係る座標入力装置は、図1に示すように、センサ部11、M系列発生器(擬似ランダム信号発生手段)12、駆動電極駆動回路(駆動電極駆動手段)13、受信電極選択回路(受信電極選択手段)14、第1検出部(検出手段)15、第2検出部(検出手段)16、切替SW17、M系列復元回路(擬似ランダム信号復元手段)18を含んでいる。
 上記センサ部11は、基板(図示せず)上の行方向に所定間隔で配列された駆動電極D1~D80(駆動電極群)と、上記駆動電極群とは絶縁されると共に交差して、列方向に所定間隔で配列された受信電極S1~S100(受信電極群)とで構成されている。
 上記受信電極群は、N(Nは2以上の正数)個のブロックに分けられる。ここでは、N=2の場合、すなわち受信電極群S1~S100が、S1~S50までのブロックと、S51~S100までのブロックとに分けた場合の例について説明する。
 上記M系列発生器12は、自己相関関数がパルス的な2値の擬似ランダム信号を発生し、発生した擬似ランダム信号を駆動電極駆動回路13に出力するようになっている。
 上記駆動電極駆動回路13は、駆動電極群の各駆動電極D1~D80に、上記擬似ランダム信号の周期に同期した電圧を順次印加するようになっている。例えば、駆動電極駆動回路13は、M系列発生器12の擬似ランダム信号の周期と同期してシフトするシフトレジスタを備えており、シフトレジスタを構成するフリップフロップの出力が‘1’に対応する駆動電極のみに電圧V0を印加し、出力が‘0’に対応する駆動電極はGNDに接続するようになっている。この駆動電極駆動回路13の構成の詳細については後述する。
M系列発生器12が発生する擬似ランダム信号は、図1に示すように、経過時間T=1,2,3、・・・、64、・・、127において、Tとともにそのパターンが1段ずつ下方向へシフトしてどの駆動電極Dxをアクティブにするかを決定する。
 上記受信電極選択回路14は、2つの受信電極ブロックに分割された受信電極群にそれぞれ接続された第1受信電極選択部14aと第2受信電極選択部14bとで形成され、第1受信電極選択部14aと第2受信電極選択部14bは、上記駆動電極群(駆動電極D1~D80)と受信電極群(受信電極S1~S100)との静電結合によって得られる結合容量に相当する値を受信するようになっている。第1受信電極選択部14aと第2受信電極選択部14bは、何れも例えば、上記駆動電極駆動回路13と同様に、シフトレジスタを備えており、シフトレジスタを構成するフリップフロップの内の‘1’に対応する受信電極のみアナログスイッチを介して結合容量測定回路(後述する)の入力端子に伝えるようになっている。この受信電極選択回路14の構成の詳細については後述する。
 上記第1検出部15は、第1受信電極選択部14aによって選択された受信電極に対応する信号から、入力された座標位置の情報を含む擬似ランダム信号で変調されたデータを検出し、記憶するようになっている。具体的には、第1検出部15は、結合容量測定回路(1)、ADC(1)、ラインメモリ(記憶部)(1)を含んでいる。
 上記結合容量測定回路(1)は、後述するが、スイッチトキャパシタ積分器からなり、選択された駆動電極と選択された受信電極との間の結合容量をアナログ値として後段のADC(1)に出力するようになっている。
 上記ADC(1)は、結合容量測定回路(1)からのアナログ信号をデジタル信号に変換して後段のラインメモリ(1)に出力するようになっている。
 上記ラインメモリ(1)は、ADC(1)におけるAD変換結果を一旦保持し、他のブロックと時分割処理で後段のM系列復元回路18にへ送るようになっている。
 上記第2検出部16は、第2受信電極選択部14bによって選択された受信電極に対応する信号から、入力された座標位置の情報を含む擬似ランダム信号で変調されたデータを検出し、記憶するようになっている。具体的には、第2検出部16は、結合容量測定回路(2)、ADC(2)、ラインメモリ(2)を含んでいる。これら結合容量測定回路(2)、ADC(2)、ラインメモリ(2)は、前記の結合容量測定回路(1)、ADC(1)、ラインメモリ(1)と同じ機能を有しているので、詳細な説明は省略する。
 上記結合容量測定回路、ADC、ラインメモリを含んだ検出部は、受信電極群のそれぞれのブロックに対応し、N対設ける。ここで、本実施の形態では、N=2の例について説明しているので、検出部は2対(第1検出部15、第2検出部16)である。
 これら第1検出部15、第2検出部16から出力される検出結果は、切替SW17によって時系列で切り替えられて順次、M系列復元回路18に送られる。
 上記M系列復元回路18は、受信電極群における各ブロックから検出し、各ブロックに対応した検出部のラインメモリから出力される順次出力を、ブロック毎に時分割で復元を行うようになっている。このM系列復元回路18の詳細については後述する。
 上記構成の座標入力装置によれば、受信電極群S1~S100側はN=2ブロックに分かれており、同時にN=2ブロックの結合容量検出結果をデジタル化してラインメモリに記憶することができる。つまり、結合容量検出結果を2つのブロックで並列して得ることができる。
 また、駆動電極群D1~D80側は全ての受信電極ブロックをまたいでおり、同時にM系列パターンによって、駆動電極を駆動することができる。
 これにより、駆動電極及び受信電極の時定数(抵抗値Rと他との結合容量C)の制約により、高速化できなかったところをN=2倍の検出速度にすることができるという効果を奏する。つまり、Nを大きくすれば、それだけ検出速度が上がることになる。
 <座標入力装置の電極構造、シフトレジスタ>
 図2は、座標入力装置の電極構造及び駆動回路の概略構成を示す図である。ここでは、説明の便宜上、受信電極群側ではブロック分割されていない状態を示している。
 駆動電極駆動回路13は、図2に示すように、フリップフロップが直列に接続され、各フリップフロップの出力QとDischarge_Bのandを取った信号で各駆動電極D1~D80に接続したアナログスイッチをコントロールする。
 出力Q=‘1’ and Discharge_B=‘1’の時のみ電圧V0が駆動電極に供給される。この条件以外のときは、駆動電極はGNDに接続される。
 初段フリップフロップDにはM系列信号発生器の出力が入力され、D_CLKの立ち上がりで、1段ずつM系列信号のパターンが下のほうへシフトされていく。
 受信電極選択回路14は、図2に示すように、フリップフロップが直列に接続され、各フリップフロップ出力Qが受信電極と接続されているアナログスイッチのコントロールを行う。最初のフリップフロップに入力される信号はスタートパルスD_SPでS_CLKの立ち上がり毎に右にシフトしていく。
 フリップフロップQ=‘1’の時、受信電極はアナログスイッチを介して結合容量測定回路へ繋がる。
 フリップフロップQ=‘0’に対応する受信電極はGNDに接続されて、結合容量測定回路には入力されない。
 スタートパルス(SP)は、1クロックのみなので、シフトされる信号もどれか1個のフリップフロップのみがQ=‘1’となり、受信電極の選択を行う。
 上記構成の座標入力装置における座標入力動作について、図3及び図4に示すタイミングチャートを参照しながら以下に説明する。
 図3は、本実施の形態における受信電極群をブロック分割して検出動作を並列処理する場合の各信号のタイミングを示すタイミングチャートである。
 図4は、駆動電極をM系列でスキャンしない従来の検出動作の処理における各信号のタイミングを示すタイミングチャートである。
 本発明の手法を判り易くするために、まず、従来のスキャニング方法について、タイミング説明を行う。
 図4のタイミングチャートに示すように、S_CLKに受信電極側のスキャンクロックをあたえ、スタートパルスS_SPをこの1クロック幅のパルスとして与える。S_CLKの立ち上がり毎に選択されるS1_SWが順次スキャンされる。
 受信電極S1が選択された時の駆動電極のスキャンについて、図4の下の段のように、時間軸を拡大したタイミングチャートで説明する。
 受信電極S1が選択されると、駆動電極スタートパルスD_SPが受信用シフトレジスタに供給される、駆動電極駆動クロックD_CLKの立ち上がり毎に、このパルスはシフトレジスタの中でシフトしていく。
 この従来例では駆動側の電極がアクティブになるのは1本だけである。後述するように、M系列スキャンでは複数本の駆動電極が同時にアクティブになる点が異なる。
 フリップフロップの出力Q=‘1’に対応するところと、Discharge_B=‘1’になった時に駆動電極にV0が印加され、このV0電位を後述するスイッチトキャパシタ積分器が検出する。
 ここでは、駆動電極の1パルスの間にDischarge_Bが4パルス変化する場合を示している。
 次に、本発明の手法について、図3に示すタイミングチャートを参照しながら以下に説明する。
 本発明のM系列スキャニング、駆動側電極をスキャンする場合に、M系列パターンで行う。
 すなわち、図3に示すように、駆動側シフトレジスタに入力されたM系列パターンはD_CLKにより順次シフトされていく。
 ここで、駆動側電極が100本ある場合には、最初の100クロック完了した時点で、駆動電極の100番目から小さい番号の方に向かってM系列パターンに対応した電極がアクティブ電極として選択される、結合容量検出は100+1クロック目から100+127クロックで検出された127個のデータから求める。
 M系列スキャニングにおける結合容量測定回路は、パルススキャンのものと同じ回路、同じタイミング駆動で実現できる。但し、検出開始は図3に示すタイミングチャートで示すように、101クロック目が1個目のデータ検出タイミングになる。
 ここでも、従来例の説明と同様に、駆動電極の1パルスの間にDischarge_Bが4パルス変化する場合を示している。
 <結合容量測定回路>
 続いて、結合容量測定回路の構成とその駆動タイミングについて図5及び図6を参照しながら以下に説明する。なお、結合容量測定回路の構成は、第1検出部15と第2検出部16とで同じ構成である。
 図5は、結合容量測定回路の概略構成ブロック図である。
 上記結合容量測定回路は、図5に示すように、6つのアナログスイッチS1~S6を含み、入力電位V0をHL_Doutとして、後段のADC(AD変換器)に出力するようになっている。
 上記アナログスイッチS1,S2,S3,S4,S5,S6は、通常、PchとNchトランジスターとインバータで構成されるが、本実施の形態では、図5に示すように、アナログスイッチS1とS2は駆動側のシフトレジスタ&アナログスイッチを示している。駆動電極と受信電極の結合容量は、C1で、アナログスイッチS3,S4より後の回路が結合容量測定回路を示している。
 図6は、結合容量測定回路における駆動処理を示すタイミングチャートである。
 まず、IRST信号により、OPアンプの帰還部にあるC2の電荷が放電され、C2の電荷は0(C2の両端電位も0V)となり動作の初期化がおこなわれる。
 CHG端子(図4におけるDischarge_B)が‘1’になると、アナログスイッチS1とS3がONとなり、この期間はINTG=‘0’なので、駆動電極にはV0が印加され結合容量C1に充電電流が流れて、C1にC1×V0の電荷が充電される。
 次に、CHG端子が‘0’になり、INTG端子に‘1’を印加すると、アナログスイッチS1とS3はオフ、S2とS4はオンになり、C1はオペアンプの入力端子のほうへC1×V0の電荷を放電する。この電流はオペアンプの働きによりC2にそのまま充電されてC2のオペアンプ出力側にはV0×C1/C2の電圧が現れる。
 同じように、CHG端子に1パルスとINTGに1パルスの波形が加わる毎にC2にはその回数分だけ電荷が積分され、4パルス終了後には、C2のオペアンプ出力側の電圧は4V0×C1/C2となる。
 測定したい結合容量はC1なので、この電圧は結合容量に比例した電圧として検出される。
 オペアンプの出力はアナログスイッチS6を介してC3と接続されており、S6の制御端子HLDが‘1’になると、オペアンプの出力がC3に充電され、HLDが‘0’になると、オペアンプから切り離されて、検出電圧がホールドされる。この電圧がADC(AD変換器)へ伝えられる。
 <M系列発生回路・M系例復元回路>
 続いて、M系列発生器12の構成について図7及び図8を参照しながら以下に説明する。
 図7は、M系列周期K=127の場合のM系列発生器12の構成例を示す図である。
 上記M系列発生器12は、X(n)=X(n-7)xorX(n-6)を実現する回路である。
 ここで、set_pat=‘1’にするとinit_pat[6:0]がフリップフロップの初期値として設定され、あとは1クロック毎に上記演算が行われる。駆動電極駆動回路13への出力はMseq(6)端子からM系列信号として出力される。ここで、図7に示す例では、Init_pat[6:0]は‘1111111’を使用する。
 上記M系列発生器12から出力されるM系列信号は、駆動電極駆動回路13に出力されるが、この駆動電極駆動回路13とのタイミングを図って受信電極選択回路14から出力されるデジタル信号は、M系列信号に復元する必要がある。
 この場合のM系列復元は、以下のようにして行われる。
 まず、元のM系列の信号を、
 {1,1、1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0、・・・0,0,1,0,1,0,1,0}とするとし、
1を1、0を-1に置き換えて、
 MS={1,1、1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1、・・・-1,-1,1,-1,1,-1,1,-1}
のベクトルを作成し、順次、左側へローテーションした127個のベクトルを生成して図8に示すような逆マトリクスDMを作成する。図8において、DMは対称行列となる。
 127個のADC変換ベクトルを、
 ADC={a1,a2,a3,a4,・・・・,a126,a127}とすると、復元信号Rconは、以下の(1)式として表される。(1)式において、‘.’は、逆マトリクスDMと縦ベクトルADCの内積を示す。
Figure JPOXMLDOC01-appb-M000001
 つまり、上記M系列復元では、127×127のマトリクスを作成し、AD変換された127個のデータ列をADCとして、(1)式で表される復元データRconを求めことになる。
 上記M系列復元は、上述したM系列復元回路18において行われる。
 上記M系列復元回路18の構成及び動作について図9及び図10を参照しながら以下に説明する。
 図9は、M系列復元回路18の概略構成ブロック図である。
 上記M系列復元回路18では、上述した(1)式をシフトレジスタにて構成している。
 すなわち、上記M系列復元回路18において、図9に示すように、AD変換された10bitの出力はSEL1のB端子に接続され、SEL1の出力は10bitのフリップフロップADC127のD端子に入力される。10bitフリップフロップのADC127~ADC1は127個のシフトレジスタを構成しており、DINEN端子で動作イネーブルをコントロールしている。最終段のADC1のQ端子はSEL1のA端子に接続されている。
 上記ADC127~ADC1のそれぞれのQ端子は、2の補数を発生する127個の2の補数発生器に接続されている。
 上記2の補数発生器の制御端子Sに‘0’が入力される時、入力の2の補数が計算されて最上位が負‘1’を表わす11bitの符号付きデータに変換されて後段の加算器に入力される。
 一方、上記制御端子Sに‘1’が入力されると、最上位ビットは正‘0’を表わす11bitの符号付きデータに変換される。
 これら制御端子Sには、M系列を格納している127個のフリップフロップの各Q端子が接続されている。
 M系列発生器12から出力するM系列パターンはSEL2B端子に接続されている。127個のMS127~MS1は各1ビットのフリップフロップで、CALEN端子で動作イネーブルをコントロールしている。最終段のADC1のQ端子は、SEL1のA端子に接続されている。MS1の出力端子は、SEL2のA端子に接続されており、MSELによって、Mseq-genからの出力かMS1からのループ出力かを選択してMS127のQ端子に入力する。
 加算器は、2つずつデータを符号付きのまま加算して、最終的に全ての総和出力として18bitのRconを加算器の最終段から出力する。
 これは、上記の(1)式のマトリクス計算の計算結果、すなわちM系列復調後の信号としてパイプライン的に出力する。
 続いて、上記構成のM系列復元回路18の動作について、図10に示すタイミングチャートを参照しながら以下に説明する。
 T1は、駆動電極駆動回路13内のフリップフロップの中にデータを設定するための、予備期間である。M系列を発生して駆動電極数N個のクロックの後には、一番下の駆動電極DnにM系列の先頭のパターンがセットされる。
 T2は、M系列の周期の期間でKクロック(例では127)である。N番目の駆動電極に注目すると、KクロックでM系列の一周期分のパターン変化をする。T2の区間で結合静電容量がクロック毎に検出され、AD変換されていく。AD変換されたデータはSEL1のB端子に供給されているので、DINSEL=‘1’とDINEN=‘1’により、AD変換されたデータがフリップフロップの中をクロック毎にシフトし、Kクロック後にはADCシフトレジスタに127個のデータが格納される。
 DINEN=‘0’になるとシフト動作をやめる。上記と同時にMSEL=‘1’,MSREN=‘1’となっているので、発生したM系列パターンはデータと同様に、127個の1bit幅のシフトレジスタに格納される。この127個の各フリップフロップの出力は2の補数発生器につながっており、’1’に対応するADCは正数として、’0’に対応するADCは2の補数が取られて負数として扱われ、総和が取られてRconに出力する。
 最初の1クロックでは、結合容量Cが、次のクロックではCX-1が・・ C、C、C-1、・・・、CX-M+1までがRconとして復元される。これらのX個の C、CX-1、・・・、CはX本の駆動電極に対応する容量である。
 動作は、パイプラインで行っているので、M系列復元は2番目の受信電極を選択している時(S2_SW=‘1’)T4に実行される。
 <発明の効果>
 一般に、M系列駆動は、特許文献1,2に記載のように、検出信号のSNを(K+1)/2/Sqrt(K)(KはM系列の周期)だけ高められる。
 そのうえ、本実施の形態では、受信側ブロックの並列化によりN倍の処理速度になる。
 タッチパネルの性能は、検出信号のS/Nに反比例する座標検出精度と検出速度とがトレードオフの関係になっている。
 例えば、従来法で、あるスキャン時間T=1の時SN=1であった場合、検出座標を2回スキャンの平均をとると検出精度は1/Sqrt(2)となり、4回平均の場合の検出精度は1/Sqrt(4)となり、検出精度を良くしようとすると、検出時間がかかることになる(図11に示すグラフの破線)。
 しかしながら、本実施の形態における座標入力装置で採用しているM系列駆動で行うと、スキャン時間が従来法より少し多め(駆動電極+K)本で約2倍としても、同じ検出時間で4倍の効果を奏することが可能となる(図11に示すグラフの実線)。
 すなわち、(K+1)/2/Sqrt(K)/Sqrt(2)=4.02(K=127の場合)となる。
 さらに、並列化N=8とすると、
(K+1)/2/Sqrt(K)/Sqrt(2)×Sqrt(8)=11.4(K=127)倍の実効的なSN改善を図ることができる。
 〔実施の形態2〕
 本発明の他の実施の形態について説明すれば、以下の通りである。なお、本実施の形態では、前記実施の形態1における座標入力装置の構成のうち、M系列復元回路18の処理を並列に行う並列M系列復元回路について説明する。
 図12は、M系列復元処理を並列に行うM系列復元回路28の概略構成ブロック図である。ここでは、並列度が4の場合について説明する。並列度とは、前記した受信電極選択回路14における受信電極群を複数(2以上)のブロックに分けて、複数の結合容量を並列に測定することをいう。
 すなわち、上記M系列復元回路28において、図12に示すように、HL_Dout0~HL_Dout3は、4つの並列受信回路からのADC出力である。これらは、SEL3の入力端子に接続されており、S[1:0]によっていずれかの出力端子が選択されてY端子に出力する。SEL端子は‘0’でADC1-3が選ばれ、‘1’ではB0~B3が選択される。
 データのシフトレジスタの構成は、並列処理では多重度(この例では4)の分だけ、フリップフロップの数が多くなる。前述したシングルのM系列復調回路28に比較して、127×4段のフリップフロップから構成される。
 また、使用されるクロックD_CLK4は、D_CLKの4倍のクロックを使用する。
 S[1:0]は、D_CLKの1サイクルの間に4個の相を配置し、D_CLKの1サイクルでHL_Dout0~HLDout3の4本がすべて選択されるように構成する。加算器の引き出し位置は、データレジスタの4フリップフロップ毎に引き出す。(例えば、ADC127-0の次はADC126-0となる。)
 なお、M系列レジスタのクロックは、D_CLKを使用し、前述のシングルのM系列復調回路28と同じ駆動方法である。
 次に、上記構成のM系列復元回路28の動作について図13に示すタイミングチャートを参照に以下に説明する。
 ここで、D_CLK4は、D_CLKの4倍の周波数のクロックである。
 また、S[1:0]は、D_CLK4から生成し、デコード開始期間T2の先頭を‘00’として‘01’,‘10’,‘11’,‘00’,・・・と変化する信号である。
 まず、S[1:0]によって指定されたブロックのデータが順次、ADCシフトレジスタに取り込まれていく。ADCシフトレジスタは、127×4段ありフリップフロップの4段毎にQ出力から加算タップが出ている。
 そのため、ADC127-0,ADC126-0,・・・,ADC1-0の符号付き加算結果がRconに計算される。D_CLK4毎に異なる受信ブロックのADCからの出力が出力されるので、Rconはいつも同じ受信ブロックに対する加算結果となり、D_CLK4毎にブロックがサイクリックに変化するように出力される。
 従って、上記構成のM系列復元回路28によれば、RconにはシングルのM系列復調回路28の場合の4倍の速度で計算結果を出すことができるという効果を奏する。
 図14は、M系列復元処理を並列に行う他のM系列復元回路38の概略構成ブロックを示す。
 図15は、図14に示すM系列復元回路38によるM系列復元処理における各信号のタイミングを示すタイミングチャートである。このタイミングチャートで、DINEN1は奇数の受信電極を選択する時に‘1’、DINEN2は偶数の受信電極を選択する時に‘1’となる。
 前記M系列復元回路28の駆動タイミングチャート(図13)に基づくと、最初の受信電極S1が選択され、駆動電極をスキャン開始して、M系列復元信号が得られるまで、(N+K+K)×D_CLKの時間が必要である。次の受信電極S2が選択されると、すでに駆動電極駆動回路13にはM系列がセットされているので、この電極では(K+K)×D_CLKの時間でM系列の復元が完了する。そして、全受信電極をスキャンするには、(N+2K×Mb)×D_CLKの時間を必要とする。ここで、MBは受信ブロックの1ブロックの受信電極数を示す。
 これに対して、図14に示すM系列復元回路38では、シフトレジスタを2本用意して、M系列復元のサイクルの間に次の受信電極のデータを取り込むことを可能にしている。
 すなわち、受信電極S1が選択されている時は、DINSEL1=‘1’でDINSEL2=‘0’なので、Shift Register1(シフトレジスタ)にADCからのデータが取り込まれて当該シフトレジスタ内をシフトしていく。その間、Shift Register2(シフトレジスタ)は、以前の値を保持している。
 次に受信電極2が選択されている時は、DINSEL1=‘0’でDINSEL2=‘1’なのでShift Register2にADCからのデータが取り込まれて同じくシフトレジスタ内をシフトしていく。その間Shift Register2は以前の値を保持しており、かつSEL3を通して、加算器を介して総和計算がおこなわれてRconに出力していく。
つぎの受信電極S3が選択される場合は、受信電極S1のサイクルと同じ動作が行われる。
 上記のように、シフトレジスタを2本採用して受信電極毎に切り替えることで、連続的にM系列復調計算を行うことができる。
 これにより、全受信電極をスキャンして復調が完了するまでの時間を、(N+K×Mb)×D_CLKの期間に短縮することができる。
 前記実施の形態1で説明したように、データをシフトレジスタで回し、加算器を固定して使うような場合、加算器と時分割するシフトレジスタとのスイッチのための配線が膨大なものとなり、Nが大きくなるとともにレイアウト設計がしにくくなる。
 これに対して、本実施の形態2では、大きなN時分割であっても容易に設計、レイアウトができるようになるという効果を奏する。
 〔実施の形態3〕
 本発明の他の実施の形態について説明すれば、以下の通りである。
 <座標入力装置の全体構成説明>
 図16は、本実施の形態に係る座標入力装置の概略構成ブロック図である。
 ここで、本実施の形態に係る座標入力装置は、前記実施の形態1に示す座標入力装置に対して、M系列発生器の構成が変更され、新たにM系列発生器22となり、駆動電極駆動回路の構成が変更され、新たに駆動電極駆動回路23となり、さらに、駆動電極駆動回路23の構成の変更に伴って、M系列復元回路の構成も変更され、新たにM系列復元回路48となっている。駆動電極駆動回路23とM系列復元回路48以外の構成については、図1に示す座標入力装置の構成と同じであるので、詳細な説明は省略する。
 図17は、座標入力装置の電極構造及び駆動回路の概略構成を示す図である。ここでは、説明の便宜上、受信電極群側ではブロック分割されていない状態を示している。
 駆動電極駆動回路23は、図17に示すように、フリップフロップが直列に接続され、各フリップフロップの出力QとDischarge_Bの信号で各電極に接続したアナログスイッチをコントロールしている。
 出力Q=‘1’and Discharge_B=‘1’の時は、電圧V0が駆動電極に供給される。
 出力Q=‘0’and Discharge_B=‘1’の時は、電圧-V0が駆動電極に供給される。
 上記以外の条件のときは、駆動電極はGNDに接続される。
 初段フリップフロップDにはM系列信号発生期の出力が入力され、D_CLKの立ち上がりで、1段ずつM系列信号のパターンが下のほうへシフトされていく。
 受信電極選択回路14は、前記実施の形態1の図2に示す受信電極選択回路14と同じ構成であるので、詳細な説明は省略する。
 以上のように、駆動電極を-V0,GND,+V0にすることで、全ての駆動電極と選択された、受信電極との相互容量を介して合成されたものが結合容量測定回路に入力される。
 図16に示す座標入力装置において、Discharge_B=‘1’の時にV0が選択された電極は、C3-5,C4-5,C5-5,C8-5,C9-5,C79-5を介して、-V0が選択された電極は,C1-5,C2-5,C6-5,C7-5,C10-5,C80-5を介して、受信電極S5に接続されている。
 上記構成の座標入力装置において、結合容量測定回路に入力される駆動電極との結合が前記実施の形態1とは異なる。従って、結合容量測定回路の構成も異なる。
 以下に、本実施の形態に係る座標入力装置における結合容量測定回路の構成及び動作について説明する。
 <結合容量測定回路>
 図18は、図16に示す座標入力装置において、C3-5+C4-5+C5-5+C8-5+C9-5+・・・・・+C79-5=C1として、C1-5+C2-5+C6-5+C7-5+C10-5+・・・・・・・+80-5=C3としたときの、結合容量測定回路の等価回路を示している。
 すなわち、図18に示す結合容量測定回路を用いれば、4回のパルスで積分されてホールドされる結果は、4×V0×(C1-C3)/C2と表わされ、-V0で駆動しない前記実施の形態1に比較して、-C3の項だけ小さい電圧となる。
 従って、より小さいC2のアンプでもダイナミックレンジを広くとることができる。
 また、大面積の静電結合容量タッチパネルは、これらのC1,C3が大きく、それに対応するLSIのサイズがC2依存して大きくなるため、図18に示す例のように、積分器の帰還容量C2を小さくできることで、結果的にLSIのチップ面積を縮小し、安価なコストで回路設計が可能になる。
 図19は、図18に示す結合容量測定回路における駆動処理を示すタイミングチャートである。
 なお、図19に示すタイミングチャートから分かるように、前記実施の形態1に係る座標入力装置の図15に示す結合容量測定回路と同じタイミングで動作する(図6に示すタイミングチャート参照)。
 <M系列発生回路>
 図20は、本実施の形態に係るM系列発生器22の概略構成を示すブロックである。
 本実施の形態に係るM系列発生器22では、同時に複数の駆動電極がアクティブになるので、受信回路で測定される駆動電極と受信電極の相互容量の関係が以下の(2)式で表わされ、{a1,a2,・・,a127}の信号がAD変換器に印加される。
Figure JPOXMLDOC01-appb-M000002
 ここで、CV={C80,C79,C78,・・・,C1,Cd47,・・・・,Cd1}とし、上記(2)式のM系列のマトリクスをDMとすると、以下の(3)式となる。
Figure JPOXMLDOC01-appb-M000003
 上記(3)式のDMの要素-1を0に置き換えたマトリクスをIMとすると、以下の(4)式となる。
Figure JPOXMLDOC01-appb-M000004
 IMとDMの積をとると、以下の(5)式となる。但しこれはM系列の次数K=127=2-1のときで(5)式の右辺の係数は一般式では(K+1)/2である。
Figure JPOXMLDOC01-appb-M000005
 上記(3)式の両辺にIMを掛けると、以下の(6)式となり、この(6)式から最終的に下記の復元式を示す(7)式が得られる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 すなわち、M系列発生器12では、前述の(1)式のマトリクスをDMとすると、簡略な標記し、その要素が‘-1’の箇所を‘0’に置き換えたマトリクスをIMとすると、前記(5)式のように、その積IM・DMは直交する。
 この性質を利用すると最終的に(7)式が得られ、CV={C80,C79,C78,・・・,C1,Cd47,・・・・,Cd1}が求まる。
 上記(7)式の復元マトリクスIMの要素は‘0’か‘1’なので加算器のみで構成することができ、前記実施の形態1で必要であった減算器は不要になる。
 このようにして復元回路の演算量を削減し、回路規模縮小とともに消費電力低減を図ることができる。
 <M系列復元回路>
 上記のように回路規模が縮小されたM系列復元回路48について以下に説明する。
 図21は、本実施の形態に係る座標入力装置に備えられたM系列復元回路48の概略構成ブロック図である。
 上記M系列復元回路48では、図21に示すように、前記実施の形態1のM系列復元回路18に比べて、加算器だけで構成できるので、127個の復元データ算出に際して累積計算を繰り返して行う方法に変更した構成となっている。前記実施の形態1と同様にMS1~MS127のフリップフロップにはK=127のM系列信号が記憶されており、MSEL=‘0’の時にD_CLK立ち上がり毎にデータが右シフトしていく。
 Acum_blockの中には、18ビットのEN,R付きフリップフロップの出力Qが加算器の18ビットB入力に接続され、加算器A入力にはADC変換された10ビットのデータHLDout0が入力されている。
 また、18ビットのEN,R付きフリップフロップの出力Qは後段の12ビットのEN付きフリップフロップに接続されている。後段のフリップフロップのQ出力はRconに出力されており、アドレスデコーダーに入力されている。
 上記加算器と2種のフリップフロップは127組あり、同時にRcon1~Rcon127に出力しており、アドレスデコーダーに入力された7ビットのrade信号によって選択され12ビットのRcnデータとして出力される。
 DIRES=‘1’になると18ビットフリップフロップはクリアされ、DINENとMSXXXが両方‘1’になった時のみ、HLDout0が加算されて累積値が17ビットのフリップフロップに蓄えられていく。
 MSXXXは、D_CLK毎にシフトしていくので、127クロック分計算した後には、M系列復元演算結果としてRcon1~Rcon127の結果が得られる。そして、7ビットのradr信号によって、得られたRcon1~Rcon127の内どれを選択して出力するかが決まる。
 上記のM系列復元回路48で行う動作は、前記実施の形態2で説明したように、並列で行うことも可能である。以下に、M系列復元回路48の処理を並列に行う並列M系列復元回路について説明する。
 〔実施の形態4〕
 本発明の他の実施の形態について説明すれば、以下の通りである。なお、本実施の形態では、前記実施の形態3における座標入力装置の構成のうち、M系列復元回路48の処理を並列に行う並列M系列復元回路について説明する。
 図22は、M系列復元処理を並列に行うM系列復元回路58の概略構成ブロック図である。ここでは、並列度が4の場合について説明する。
 図22に示すM系列復元回路58は、Acum_blockを4個設けて時分割処理ができるようにした復元回路である。
 4つの受信電極から積分して得られた信号HLDout1~HLDout4は、セレクタに入力し、S[1:0]で選択指定し10ビットデータDinとして複数のAcum_blockに出力する。DINENはS[1:0]に同期してAcum_blockを演算イネーブルにする信号である。
 D_CLK4は、D_CLKの4倍の周波数のクロックで、S[1:0]とDINEN1~DINEN4は4つの相で時分割動作する。
 本実施の形態では、D_CLKを4時分割での例であるが、N時分割する場合は、D_CLKNはD_CLKのN倍の周波数にし、各N相に応じてS[X:0]を時分割駆動すればよい。
 このように、Acum_block2の構成をとり、シフト構造のフリップフロップをN段にすることで、N時分割への拡張構成が容易となる。
 前記実施の形態3で説明したように、データをシフトレジスタで回し、加算器を固定して使うような場合、加算器と時分割するシフトレジスタとのスイッチのための配線が膨大なものとなり、Nが大きくなるとともにレイアウト設計がしにくくなる。
 これに対して、本実施の形態4では、大きなN時分割であっても容易に設計、レイアウトができるようになるという効果を奏する。
 〔実施の形態5〕
 本発明の他の実施の形態について説明すれば、以下の通りである。
 本実施の形態では、駆動電極を±V0で駆動し、M系列復元を係数が1と-1のDMで復元する場合について説明する。なお、座標入力装置の構成について、前記実施の形態3と同じ構成とするが、M系列復元回路の構成が異なる。
 結合容量CVとADC変換データの関係は、下記の(8)式および(9)式で表現され、両辺にDMをかけると下記の(10)式が得られる。ここで、(9)式は、(8)式を簡易的に表現した式である。また、(10)式は、復元マトリクスを±1の係数のDMで復元した式である。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、(10)式において、要素が0と1のIMで表現してDM.DMを変形すると下記の(11)式が得られる。(11)式におけるマトリクスは、(12)式で示される。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 (11)式を、(10)式に代入すると、下記の(13)式が得られ、CVの復元からCVの平均値を差し引いたものが得られる。
Figure JPOXMLDOC01-appb-M000013
 CVの平均値は、指のタッチと非タッチの時に変化成分は広く薄められるので、(13)式における局所的な変化としては無視することができる。そのため、IMで復元した結果に比べてもほぼ同等のタッチ性能を得ることができる。
 <M系列復元回路>
 上記のM系列復元処理を実現するための回路について以下に説明する。
 図23は、本実施の形態に係るM系列復元回路68の概略構成ブロック図である。
 上記M系列復元回路68では、図23に示すように、前記実施の形態3のM系列復元回路48に対して、入力部に、XORを置き、加算器をキャリーIN(CI)付にした構成となっている。
 これにより、少ないゲート数でDMの係数に対応した加減算を実現することができる。
 また、MS255~MS1の出力が‘1’の時、ADCの出力は反転されずそのまま加算器に入力される。また、加算器のキャリーインも発生しない。MS255~MS1の出力が”0”の時、ADCの出力は反転され、かつ加算器のキャリーインが発生し、2の補数の負の数として加算操作が実行される。
 ここで、DMの係数の絶対値はすべて1であることから、復元信号は最終的にK+1(2=128)で割られるのに対して、ノイズ要素は独立したσのノイズの和となるので、復元信号に混入するノイズはSqrt(K)/(K+1)となる。従って、従来法に比べてSNは(K+1)/Sqrt(K)倍となる。
 上記のM系列復元回路68で行う動作は、前記実施の形態4で説明したように、並列で行うことも可能である。以下に、M系列復元回路68の処理を並列に行う並列M系列復元回路について説明する。
 〔実施の形態6〕
 本発明の他の実施の形態について説明すれば、以下の通りである。
 図24は、M系列復元処理を並列に行うM系列復元回路78の概略構成ブロック図である。ここでは、並列度が4の場合について説明する。
 図24に示すM系列復元回路78は、Acum_blockを4個設けて時分割処理ができるようにした復元回路である。
 4つの受信電極から積分して得られた信号HLDout1~HLDout4は、セレクタに入力し、S[1:0]で選択指定し10ビットデータDinとして複数のAcum_blockに出力する。DINENはS[1:0]に同期してAcum_blockを演算イネーブルにする信号である。
 D_CLK4は、D_CLKの4倍の周波数のクロックで、S[1:0]とDINEN1~DINEN4は4つの相で時分割動作する。
 本実施の形態では、D_CLKを4時分割での例であるが、N時分割する場合は、D_CLKNはD_CLKのN倍の周波数にし、各N相に応じてS[X:0]を時分割駆動すればよい。
 このように、Acum_block2の構成をとり、シフト構造のフリップフロップをN段にすることで、N時分割への拡張構成が容易となる。
 前記実施の形態5で説明したように、データをシフトレジスタで回し、加算器を固定して使うような場合、加算器と時分割するシフトレジスタとのスイッチのための配線が膨大なものとなり、Nが大きくなるとともにレイアウト設計がしにくくなる。
 これに対して、本実施の形態6では、大きなN時分割であっても容易に設計、レイアウトができるようになるという効果を奏する。
 〔実施の形態7〕
 実施の形態1から6まで、M系列復元回路18(28,38,48,58,68,78)についてハードウェアの演算器を用いた実施例について記述した。それ以外の実施の形態ではM系列復元回路はCPUによって置き換えてもよい。実質的に、上述した(7)式に基づく復元演算ができれば良い。
 <発明の効果>
 以上の各実施の形態による効果について、図25~図29を参照しながら以下に説明する。
 図25の(a)は、駆動電極が80本、図25の(b)は、駆動電極が127本の場合の効果を説明するための図である。
 前記実施の形態1、2では、80本の駆動電極に印加される電圧は、M系列の‘0’、‘1’に対応してGNDおよびV0電位となる。V0に対応する電極の本数Mnは、以下の(14)式、
Figure JPOXMLDOC01-appb-M000014
と表わされ、M-seqをRotateLeftしていった時に上記(14)式で計算されるMnが1クロスの相互容量の倍率であり、C1に等しい。(図26及び図27に示すC1を参照)
 一方、前記実施の形態3、4では、80本の電極に印加される電圧は、M系列の‘0’、 ‘1’に対応して、-V0およびV0電位となる。-V0に対応する電極の本数Mbnは、以下の(15)式で表される。
Figure JPOXMLDOC01-appb-M000015
 ここで、タッチパネルの駆動電極が80本では、図26に示すように、M系列周期K-127の時に、前記実施の形態1の時のC1(34~46)で、前記実施の形態2のC1-C3(-12~12)である。
 また、タッチパネルの駆動電極が127本では、図27に示すように、M系列周期K-127の時に、前記実施の形態2のC1-C3は最小(1)になる。
 このように、駆動電圧をM系列のパターンに応じてV0または-V0で駆動することにより、結合容量測定回路の帰還容量も少なくすることができ、検出ICのチップ面積を削減し、かつSNを向上させることができるという効果を奏する。
 さらに、受信電極のブロック分けの有無による効果の違いについて図28及び図29を参照しながら以下に説明する。
 図28は、本発明の受信電極を2ブロックに分割した座標入力装置の全体構成図である。
 図29は、比較例として、受信電極をブロック分けしない座標入力装置の全体構成図である。
 ここで、図28及び図29の座標入力装置共に、駆動電極は80本とする。
 図29に示す比較例では、スキャン時間80×100クロック=8000クロックに対して、図28に示す本発明では、スキャン時間80+127×50=6430クロックである。
 一方、検出信号のSNは、図29に示す比較例がSN=1としたとき、図28に示す本発明では、シミュレーション結果はSN=5.63倍になる。検出時間を勘案すると、SN/Sqrt(t)の比較例では1/Sqrt(8000)に対して、本発明では5.63/Sqrt(6430)となり、本発明の方が比較例に比べて6.28倍の性能向上を図ることができるという効果を奏する。
 また、上記の各実施の形態で説明した座標入力装置では、検出信号のSNを十分に高めることができるので、センサが受け取る信号が小さく、他の機器から放射される電界ノイズや熱雑音に埋もれて、実用的な検出精度が得られないという問題は生じない。
 また、上記座標入力装置をタッチパネルに適用した場合、検出信号のSNが十分にとれるため、タッチパネルにおける拡張機能としてのホバー操作や、指の方向検出機能を問題無く実行することができるという効果を奏する。
 しかも、タッチパネルが大型化しても、並列化処理を行うので、充分な検出速度を得ることができるので、大型タッチパネルを実用化できるという効果を奏する。
 また、先端面積が指より小さい導電体電極をもつペンを使用し、解像度が得られるように、駆動電極および受信電極のピッチを小さくしたタッチパネルにおいても、高精度・高速かつ高SNの座標検出を行うことができる。
 <受信電極側のブロック分割数について>
 上記の実施の形態では、主に、受信電極群を2つのブロックに分割して、2つの結合容量測定を並列して行う例について説明したが、これに限定されるものではなく、受信電極群のブロック分割数は適宜変更することが可能である。
 ここで、受信電極群のブロック分割数を変更する際に考慮する点について以下に説明する。
 駆動電極とシールド間との浮遊容量および駆動電極の抵抗値の時定数Td=Rd×Cdおよび、受信電極とシールド間との浮遊容量および受信電極の時定数Tr=Rr×Crとすると、駆動電極と受信電極の交差容量を測定するためには、駆動電極側では3×Td、積分時には3×Tr程度の検出時間が必要となる。
 1つの交点を測定するために必要な時間Tmes=3×(Td+Tr)×(1+a)となる。パネルサイズによっても異なるが、ダイヤモンド電極の標準的なもので5’パネルで25pF,18kΩ程度となり、Td≒Tr≒0.45μsecで、a=2とするとTems=2.7μsecになる。積分器で交差容量に比例した電圧がTems毎に更新され、電圧ホールドされる。電圧ホールドされたものはAD変換器によってデジタル化されるが、10~12ビットの逐次並列型ADの場合、20~50MHzものものがマクロとして使用可能である。
 AD変換器の変換レートを20MHzとすると、2.7μsec×20×106=54個のブロック化が可能となる。
 また、パネルサイズが10’クラスだと、CもRも倍になり、時定数Td,Trおよび測定時間Tmesは4倍になるので、AD変換器の変換レートを20MHzとすると、2.7×4μsec×20×106=216個のブロック化が可能となる。
 このぐらいの周波数であれば、最大ブロック数の場合では各受信電極毎に積分回路を備え、サンプルホールドして、1個のAD変換器で時分割デジタル化し、デジタル的なM系列復元演算を時分割処理する構成にできる。
 大型化するのに実用的な制約は、座標フレームレートを60Hz以上にするために、Tmes×交点数<1/60を満たすことである。透明度を保ったままITOの時定数はほぼ決まっており、時定数がサイズ制約を決定することになる。
 このように、受信電極群のブロック分割数は、パネルのサイズ等種々の事項を考慮して適宜決めることが可能となっている。
 上記駆動電極駆動回路は、擬似ランダム信号がハイレベルのときに、所定の電圧を駆動電極に印加し、擬似ランダム信号がローレベルのときに、0電圧を駆動電極に印加することが好ましい。
 この場合、1クロック周期において、擬似ランダム信号のハイレベルの数に相当する交点の検出を行うことができる。
 上記駆動電極駆動回路は、擬似ランダム信号がハイレベルのときに、所定の電圧を駆動電極に印加し、擬似ランダム信号がローレベルのときに、上記所定の電圧の逆極性の電圧を駆動電極に印加することが好ましい。
 この場合、1クロック周期において、擬似ランダム信号のハイレベルとローレベルの数に相当する交点の検出を行うことができる。これにより、全ての駆動電極と選択された、受信電極との相互容量を介して合成されたものが結合容量として測定される。
 さらに、上記検出手段からの出力を、元の擬似ランダム信号に復元する擬似ランダム信号復元手段を備え、上記擬似ランダム信号復元手段は、ブロック毎に順次出力される、上記検出手段からの出力を時分割で復元することが好ましい。
 この場合、擬似ランダム信号復元手段は、ブロック毎に順次出力される、上記検出手段からの出力を時分割で復元しているので、時分割で復元しないで、一度に復元する場合に比べて演算量が少なくて済む。これにより、擬似ランダム信号復元手段の回路規模を小さくすることができる。具体的には、以下のように各ブロックに対応して、検出結果を一時的に記憶する記憶部を備えていることが好ましい。
 すなわち、上記検出手段は、受信電極選択回路によって受信された結合容量を測定する結合容量測定回路と、上記結合容量測定回路によって測定された結合容量を検出結果として一時的に記憶する記憶部とを備え、上記各検出手段の記憶部に時系列に記憶された検出結果を、ブロック単位で切替ながら上記擬似ランダム復元手段に出力することが好ましい。
 さらに、上記検出手段からの出力を、元の擬似ランダム信号に復元する擬似ランダム信号復元手段を備え、上記擬似ランダム信号復元手段は、ブロック毎に出力される、各検出手段からの出力を、並列に復元することが好ましい。
 この場合、擬似ランダム信号の復元が、ブロック毎に並列に行われるので、復元処理の高速化を図ることができる。つまり、座標位置の検出時間を大幅に削減できるという効果を奏する。
 上記構成の座標入力装置は、様々な電子機器に用いることができる。例えば、表示パネル上に設けたタッチパネルとして座標入力装置を用いることができる。他に、各種電子機器における入力インターフェースとして座標入力装置を用いることができる。
 本発明の座標入力装置は、タッチパネルを供えた電子機器として、携帯電話、スマートフォン、PDA、電子書籍リーダー、タブレットPC、デジタルサイネージ(電子広告)等に適用することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、タッチパネルを搭載する電子機器一般に利用することができる。
11 センサ部
12 M系列発生器(擬似ランダム信号発生手段)
13 駆動電極駆動回路
14 受信電極選択回路
14a 第1受信電極選択部
14b 第2受信電極選択部
15 第1検出部(検出手段)
16 第2検出部(検出手段)
18 M系列復元回路(擬似ランダム信号復元手段)
22 M系列発生器(擬似ランダム信号発生手段)
23 駆動電極駆動回路
28 M系列復元回路(擬似ランダム信号復元手段)
38 M系列復元回路(擬似ランダム信号復元手段)
48 M系列復元回路(擬似ランダム信号復元手段)
58 M系列復元回路(擬似ランダム信号復元手段)
D1~D80:駆動電極群
S1~S100:受信電極群

Claims (7)

  1.  基板上に所定間隔で配列された駆動電極群と、
     上記駆動電極群とは絶縁されると共に交差して所定間隔で配列された受信電極群と、
     自己相関関数がパルス的な擬似ランダム信号を発生する擬似ランダム信号発生手段と、
     上記駆動電極群の各電極に、上記擬似ランダム信号の周期に同期した電圧を順次印加する駆動電極駆動回路と、
     上記受信電極群に接続され、上記駆動電極群と受信電極群との静電結合によって得られる結合容量に相当する値を受信する受信電極選択回路と、
     上記受信電極選択回路によって受信された値から、入力された座標位置を検出する検出手段とを備え、
     上記受信電極群をN(N:2以上の正数)ブロックに分割して、それぞれのブロック毎に上記検出手段が設けられていることを特徴とする座標入力装置。
  2.  上記駆動電極駆動回路は、
     擬似ランダム信号がハイレベルのときに、所定の電圧を駆動電極に印加することを特徴とする請求項1に記載の座標入力装置。
  3.  上記駆動電極駆動回路は、
     擬似ランダム信号がハイレベルのときに、所定の電圧を駆動電極に印加し、
     擬似ランダム信号がローレベルのときに、上記所定の電圧の逆極性の電圧を駆動電極に印加することを特徴とする請求項1に記載の座標入力装置。
  4.  さらに、上記検出手段からの出力を、元の擬似ランダム信号に復元する擬似ランダム信号復元手段を備え、
     上記擬似ランダム信号復元手段は、
     ブロック毎に順次出力される、上記検出手段からの出力を時分割で復元することを特徴とする請求項1~3の何れか1項に記載の座標入力装置。
  5.  上記検出手段は、
     受信電極選択回路によって受信された結合容量を測定する結合容量測定回路と、
     上記結合容量測定回路によって測定された結合容量を検出結果として一時的に記憶する記憶部とを備え、
     上記各検出手段の記憶部に時系列に記憶された検出結果を、ブロック単位で切替ながら上記擬似ランダム信号復元手段に出力することを特徴とする請求項4に記載の座標入力装置。
  6.  さらに、上記検出手段からの出力を、元の擬似ランダム信号に復元する擬似ランダム信号復元手段を備え、
     上記擬似ランダム信号復元手段は、
     ブロック毎に出力される、各検出手段からの出力を、並列に復元することを特徴とする請求項1~3の何れか1項に記載の座標入力装置。
  7.  請求項1~6の何れか1項に記載の座標入力装置を備えたことを特徴とする電子機器。
PCT/JP2012/053573 2011-02-22 2012-02-15 座標入力装置、電子機器 WO2012114965A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/985,669 US9195356B2 (en) 2011-02-22 2012-02-15 Coordinate input device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035916 2011-02-22
JP2011035916 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012114965A1 true WO2012114965A1 (ja) 2012-08-30

Family

ID=46720747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053573 WO2012114965A1 (ja) 2011-02-22 2012-02-15 座標入力装置、電子機器

Country Status (2)

Country Link
US (1) US9195356B2 (ja)
WO (1) WO2012114965A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226424A (zh) * 2013-04-17 2013-07-31 敦泰科技有限公司 电容式触控设备检测方法和装置以及电容式触控设备
WO2014163107A1 (ja) * 2013-04-05 2014-10-09 シャープ株式会社 タッチパネル位置検出方法、タッチパネルコントローラ、タッチパネルシステム、及び電子機器
WO2015020090A1 (ja) * 2013-08-08 2015-02-12 デクセリアルズ株式会社 静電容量型タッチパネル

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197208B2 (en) 2012-04-19 2015-11-24 Elo Touch Solutions, Inc. Projected capacitive touch sensor with asymmetric bridge pattern
WO2013158699A1 (en) 2012-04-19 2013-10-24 Elo Touch Solutions, Inc. Projected capacitive touch sensor with asymmetric bridge pattern
US9886142B2 (en) * 2013-12-03 2018-02-06 Pixart Imaging Inc. Capacitive touch sensing system
CN105118424B (zh) * 2014-12-05 2017-12-08 京东方科技集团股份有限公司 数据传输模块及方法、显示面板及驱动方法、显示装置
JP6717673B2 (ja) * 2016-06-10 2020-07-01 株式会社ジャパンディスプレイ 入力検出装置および電子装置
JP6704802B2 (ja) * 2016-06-10 2020-06-03 株式会社ジャパンディスプレイ 入力検出装置および電子装置
US11507241B2 (en) * 2020-09-28 2022-11-22 Sharp Kabushiki Kaisha Touch panel, display device, and input device having shielding for touch sensing electrodes and/or pressure sensing electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292950A (ja) * 1996-04-24 1997-11-11 Sharp Corp 座標入力装置
JP2011003036A (ja) * 2009-06-18 2011-01-06 Wacom Co Ltd 指示体検出装置及び指示体検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251489B2 (ja) * 1996-02-16 2002-01-28 シャープ株式会社 座標入力装置
JP4009005B2 (ja) 1998-03-19 2007-11-14 シャープ株式会社 センサアレイ装置
US8525798B2 (en) * 2008-01-28 2013-09-03 Cypress Semiconductor Corporation Touch sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292950A (ja) * 1996-04-24 1997-11-11 Sharp Corp 座標入力装置
JP2011003036A (ja) * 2009-06-18 2011-01-06 Wacom Co Ltd 指示体検出装置及び指示体検出方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163107A1 (ja) * 2013-04-05 2014-10-09 シャープ株式会社 タッチパネル位置検出方法、タッチパネルコントローラ、タッチパネルシステム、及び電子機器
CN103226424A (zh) * 2013-04-17 2013-07-31 敦泰科技有限公司 电容式触控设备检测方法和装置以及电容式触控设备
WO2015020090A1 (ja) * 2013-08-08 2015-02-12 デクセリアルズ株式会社 静電容量型タッチパネル

Also Published As

Publication number Publication date
US9195356B2 (en) 2015-11-24
US20130321341A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
WO2012114965A1 (ja) 座標入力装置、電子機器
KR101341924B1 (ko) 정전식 터치센서
JP3251489B2 (ja) 座標入力装置
US11320946B2 (en) Capacitive panel scanning with reduced number of sensing circuits
JP2005152223A (ja) 容量検出回路及び検出方法並びにそれを用いた指紋センサ
CN103455217B (zh) 具有集成触摸屏的显示设备及其驱动方法
JP5389888B2 (ja) タッチパネルシステムおよび電子機器
JP3281256B2 (ja) 座標入力装置
US20110055305A1 (en) Proximity detection device and proximity detection method
JP2005157643A (ja) 容量検出回路及び検出方法並びにそれを用いた指紋センサ
WO2016166945A1 (en) A Capacitive Touch Panel with Balanced Parallel Driving
JP5443207B2 (ja) タッチセンサ装置
US20210041977A1 (en) Detecting the angle of a touch screen mounted passive dial
KR101198358B1 (ko) 터치스크린 장치, 터치패널의 구동장치 및 구동방법
WO2014208189A1 (ja) タッチパネルコントローラ、集積回路、及び電子機器
WO2014002907A1 (ja) タッチパネルコントローラ、集積回路、タッチパネル装置、及び電子機器
US20150185899A1 (en) Touchscreen device and method of sensing touch
US20210255727A1 (en) Sensor diagnostics for in-cell touch screen controllers
JP2005134240A (ja) 容量検出回路及び検出方法並びにそれを用いた指紋センサ
JP5406774B2 (ja) タッチ判別装置及び入力装置
KR20150077946A (ko) 터치스크린 장치, 터치 감지 방법 및 구동 신호 생성 방법
US9900028B1 (en) Decimation filtering in systems having parallel analog-to-digital converter channels
CN110554796B (zh) 应用于触控辨识装置的感测模块及其方法
JP2005114361A (ja) 容量検出回路及び検出方法並びにそれを用いた指紋センサ
Wei et al. Design of a front-end signal processing circuitry for Capacitive Multi-touch Screens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13985669

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP