WO2012114929A1 - 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手 - Google Patents

揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手 Download PDF

Info

Publication number
WO2012114929A1
WO2012114929A1 PCT/JP2012/053339 JP2012053339W WO2012114929A1 WO 2012114929 A1 WO2012114929 A1 WO 2012114929A1 JP 2012053339 W JP2012053339 W JP 2012053339W WO 2012114929 A1 WO2012114929 A1 WO 2012114929A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint member
swing
swash plate
type variable
capacity compressor
Prior art date
Application number
PCT/JP2012/053339
Other languages
English (en)
French (fr)
Inventor
卓 板垣
達朗 杉山
美香 小原
立己 ▲崎▼原
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011198652A external-priority patent/JP2013060838A/ja
Priority claimed from JP2011210892A external-priority patent/JP2012189074A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2012114929A1 publication Critical patent/WO2012114929A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/229Prismatic coupling parts having each groove centre-line lying on planes parallel to the axis of the respective coupling part

Definitions

  • the present invention relates to a rotation preventing mechanism for a swing plate of a swing swash plate type variable capacity compressor and a constant velocity universal joint constituting the mechanism.
  • a swing swash plate type variable capacity compressor includes a drive shaft that is rotatably supported by a housing, a swash plate that is connected to the drive shaft, rotates, and can be inclined with respect to the drive shaft.
  • a swing plate connected through a bearing and prevented from rotating, a piston connected to the swing plate and reciprocating in the axial direction of the drive shaft, and supported by the housing to support the swing plate.
  • the main axis is the main component.
  • a rotation prevention mechanism is provided to prevent rotation of the swing plate.
  • Patent Document 1 discloses a structure in which a constant velocity universal joint is used as the rotation prevention mechanism.
  • a constant velocity universal joint constituting the rotation prevention mechanism in the one described in Patent Document 1
  • a plurality of track grooves 2 are formed on the spherical inner peripheral surface 1 along the axial direction at equal intervals in the circumferential direction, as shown in FIG.
  • the outer joint member 3 formed in this manner, and the inner joint member in which a plurality of track grooves 5 paired with the track grooves 2 of the outer joint member 3 are formed on the spherical outer peripheral surface 4 along the axial direction at equal intervals in the circumferential direction.
  • a plurality of balls 7 interposed between the track groove 2 of the outer joint member 3 and the track groove 5 of the inner joint member 6, the spherical inner peripheral surface 1 of the outer joint member 3, and the spherical shape of the inner joint member 6.
  • a cage 8 is provided between the outer peripheral surface 4 and the ball 7 to hold the ball 7.
  • the constant velocity universal joint is disposed at the center of the swing plate 15, the outer joint member 3 is attached to the swing plate 15, and the inner joint member 6 is attached to the central shaft 11.
  • the inner joint member 6 is attached to the central shaft 11 disposed in the housing 10.
  • a swash plate 13 is fitted to the outer joint member 3 via a radial bearing 12, and a swing plate 15 is supported on the swash plate 13 via a thrust bearing 14.
  • the swing plate 15 is connected to the piston 17 via a rod 16.
  • the swash plate 13 is rotated through the link mechanism 19 by the rotational drive of the drive shaft 18, but the rocking plate 15 is not rotated by the constant velocity universal joint as the rotation prevention mechanism attached to the central shaft 11.
  • the so-called “Missing movement” is performed.
  • the piston 17 connected to the rocking plate 15 via the rod 16 is reciprocated by this “slashing movement”.
  • FIG. 18 shows a swing swash plate type variable displacement compressor disclosed in Patent Document 2.
  • the rotation prevention mechanism includes an inner joint member 22 having a guide groove for guiding the ball 21, a sleeve 24 that can be rotated relative to the drive shaft 23 and moved in the axial direction, and an outer joint having a guide groove for guiding the ball 21.
  • the member 25 is provided.
  • the inner joint member 22 is provided in the housing 26 so as to be movable in the axial direction while being prevented from rotating.
  • the sleeve 24 functions as a rocking center member for the rocking motion of the rocking plate 28, and is movable in the axial direction together with the inner joint member 22.
  • the outer joint member 25 is swingably supported by the sleeve 24, and a swing plate 28 is attached to the outer periphery.
  • a bearing 30 is incorporated between the outer joint member 25 and the swash plate 29.
  • the rotor 20 accommodated in the housing 26 is mounted on the drive shaft 23 and rotates together with the drive shaft 23.
  • a thrust bearing 35 is incorporated between the rotor 20 and the wall portion 26 a of the housing 26.
  • the swash plate 29 is rotated by the rotational movement of the drive shaft 23 via the rotor 20 and the link mechanism 32, but the swing plate 28 swings without rotating by a constant velocity universal joint as a rotation prevention mechanism. Perform “Missing Movement”.
  • the piston 34 connected to the rocking plate 28 via the rod 33 reciprocates due to this “missing movement”.
  • the constant velocity universal joint which comprises a rotation prevention mechanism is equipped with the holder
  • Patent Document 2 does not require a cage, but requires a separate sleeve. For this reason, spherical contact portions exist between the outer joint member and the sleeve and between the inner joint member and the sleeve, and the spherical contact portion, that is, the number of parts is the same as that having the cage described in Patent Document 1. For this reason, like the one described in Patent Document 1, the accumulated play increases, vibration and noise increase, and there is a problem in terms of durability.
  • the constant velocity universal joint constituting the rotation preventing mechanism of the swing plate is used under lean lubrication in the swing swash plate type variable capacity compressor. There is little supply of the lubricant between the track grooves, and the lubricity and durability are severe.
  • a solid metal material (melting material) is used for each component of the constant velocity universal joint.
  • the final product is finished through a process for obtaining a shaped material by forging, a turning process for the outer diameter surface and the inner diameter surface, a heat treatment process such as quenching, and a grinding process process for parts requiring high accuracy. .
  • the processing amount is large and the material loss is also large, and there is a limit to the reduction of the manufacturing cost.
  • the wear resistance and fatigue properties of the sliding parts are often the cause of a decrease in durability.
  • the swash plate type variable capacity compressor has fretting, seizure, etc. because the ball moves in a minute manner on the track groove at high frequency under extremely severe conditions such as high temperature, high pressure, high speed rotation, and lean lubrication. It is necessary to take measures to prevent damage.
  • the durability of the contact part between the ball and the track groove (wear, fretting, peeling, etc.) and the lubrication performance are indispensable issues. It turned out to be.
  • the present invention is a rocking plate rotation prevention mechanism capable of achieving quietness, improving durability, and suppressing the manufacturing cost by reducing the number of parts, and the constant velocity freely constituting the same.
  • the object is to provide a joint. Furthermore, the present invention suppresses vibration and noise and is excellent in durability, and has excellent workability, high material yield, and low cost in use under lean lubrication in a swash plate type variable capacity compressor.
  • An object of the present invention is to provide a rocking plate rotation prevention mechanism capable of achieving the above and a constant velocity universal joint constituting the same.
  • a constant velocity universal joint constituting a rocking plate rotation prevention mechanism of a rocking swash plate type variable capacity compressor has no cage and has a spherical surface.
  • the present invention has been conceived by conceiving a configuration having a small number of contact portions and parts.
  • the high-density metal sintered body is used as a component of the constant velocity universal joint, and the idea is to make the pores into an oil pot for lubricant.
  • the durability of the contact portion between the ball and the track groove In order to ensure the performance, the idea was to make the ball a different material from the inner and outer joint members.
  • the present invention includes a drive shaft rotatably supported by a housing, and a slant that is connected to the drive shaft and rotates and tiltable with respect to the drive shaft.
  • the constant velocity universal joint includes an outer joint member in which an even number of linear track grooves are formed on an inner periphery, an inner joint member in which an even number of linear track grooves are formed on an outer periphery, and the outer joint member.
  • the outer joint member is provided with an even number of torque transmission balls, and the straight track grooves of the outer joint member are provided to be inclined symmetrically two by two, and the straight track grooves of the inner joint member are provided two by two on the outer joint member.
  • Each side surface of the virtual regular polygonal column having a number of angles corresponding to half of the balls is provided in a state of being symmetrically inclined in the opposite direction to the pair of track grooves, with the joint operating at 0 °.
  • the ball track center line of each of the two straight track grooves forming a pair of the outer joint member and the inner joint member is A constant velocity universal joint, which is disposed on each side surface and in which a spherical inner peripheral surface formed on the inner periphery of the outer joint member and a spherical outer peripheral surface formed on the outer periphery of the inner joint member are fitted,
  • the joint member is attached to the swing plate and the front The inner joint member is attached to the central shaft.
  • the constant velocity universal joint that constitutes the rotation prevention mechanism of the swing plate of the swing swash plate type variable displacement compressor has no cage and has a small number of spherical contact parts and parts, thus suppressing vibration and noise. This makes it possible to reduce the manufacturing cost by reducing noise, improving durability, and reducing the number of parts.
  • the swash plate type variable capacity compressor can be silenced, improved in durability, and reduced in cost. Can do.
  • the number of track grooves and torque transmission balls of the constant velocity universal joint is six, and the number of corners of the virtual regular polygonal column is three, so that the number of parts can be further reduced and the manufacturing can be facilitated.
  • the track gap between the track grooves and the balls of the outer joint member and the inner joint member is made smaller than the spherical gap between the spherical outer peripheral surface and the spherical inner peripheral surface, and the radial load applied to the joint is tracked. It can be set to receive between the groove and the ball. Thereby, it is excellent in durability with a low friction structure. Further, the preload may be applied by setting the clearance of the track groove to be negative. Thereby, the imbalance (swinging) at the time of high speed rotation can be suppressed.
  • the track gap between the track grooves and the balls of the outer joint member and the inner joint member is made larger than the spherical gap between the spherical outer peripheral surface and the spherical inner peripheral surface, and the joint is loaded.
  • the radial load can be set so as to be received between the spherical outer peripheral surface and the spherical inner peripheral surface. In this case, a radial load can be received by the spherical sliding structure, and the “slashing motion” can be stabilized.
  • At least one of the constituent members of the above constant velocity universal joint can be a sintered metal body, and a hardened layer can be formed on the surface by heat treatment.
  • a green compact corresponding to the shape of the constituent member is formed and sintered to obtain a metal sintered body, and then a hardened layer is formed on the surface by heat treatment.
  • various quenching and carburizing quenching can be applied, and it can be appropriately selected depending on the material and product specifications.
  • the structural member which has a predetermined precision and mechanical strength is obtained. Therefore, a constant velocity universal joint suitable for use under lean lubrication in a swing swash plate type variable capacity compressor, which suppresses vibration and noise required as a swing plate rotation prevention mechanism and has excellent durability.
  • the constituent members can be mass-produced with good workability. Even a component having a complicated shape can be manufactured without waste of material, and as a result, the swash plate type variable capacity compressor can be made quieter, more durable, and less expensive.
  • the inner joint member of the above constant velocity universal joint can be a sintered metal. Accordingly, a complicated outer peripheral shape having track grooves inclined and unevenly arranged and having a notch for assembly can be formed with a near net shape. Therefore, machining as post-processing such as cutting can be reduced, and cost can be reduced. Even if the outer joint member or the torque transmission ball is a molten material, the lubricant enters the spherical fitting portion, and further, the lubricant also enters between the ball and the track groove. Obtainable.
  • the metal sintered body forming at least one of the constituent members of the constant velocity universal joint has a porosity of 5% or more and 20% or less.
  • the porosity is expressed by the following calculation formula.
  • Porosity (1-density of metal sintered body / true density) ⁇ 100 [%]
  • the “true density [g / cm 3 ]” in the above equation means the theoretical density of a material that does not have pores inside the material, such as a material made of melted material. Can do.
  • compositions A to C 3 Examples of types
  • True density 100 / ⁇ (Blend degree of element A / Density of element A) + (Blend degree of element B / Density of element B) + (Blend degree of element C / Density of element C) ⁇
  • the true density of a stainless steel material having a chemical composition of Fe / Cr of 87.0 / 13.0 [wt%] is 7.87 / 7.15 [g / cm 3 ], respectively.
  • the porosity of the sintered metal is preferably 5% or more and 20% or less.
  • the metal sintered body is characterized by comprising an alloyed powder containing a metal powder of an iron-based alloy as a main component and containing at least chromium and molybdenum. Specifically, for example, alloying with a chromium content of 1.0 to 2.0 mass% and a molybdenum content of 0.05 to 0.5 mass% with the balance being an iron-based alloy and inevitable impurities. It is formed by sintering powder compact. Thereby, a higher-strength metal sintered body is obtained, and the strength and durability are improved.
  • the chromium content is preferably 1.0 to 2.0 mass%, more preferably 1.2 to 1.8 mass%
  • the molybdenum content is preferably 0.05 to 0.5 mass%, more preferably. Is 0.1 to 0.3 mass%. Addition of chromium and molybdenum can improve the hardenability and compensate for the drawbacks of the sintered metal that tends to have low hardness.
  • the raw material powder used for forming the green compact it is desirable to use a raw material powder or a material containing a lubricant for reducing the frictional force between the powder and the molding die. It is desirable to include a solid lubricant that becomes a liquid phase by receiving and diffuses and permeates between raw material powders. That is, the metal sintered body can be formed by heating a green compact of a raw material powder mixed with a solid lubricant. Thereby, since the green compact can be smoothly released from the molding die, high accuracy of the metal sintered body can be achieved.
  • the surface hardness of the sintered metal is preferably HV513 to 750. If the surface hardness of the metal sintered body is lower than HV513, the wear powder is likely to wear, causing the wear powder to enter the rolling part and the sliding part to cause further wear, or the wear powder may enter the pores of the metal sintered body. It will clog and reduce the oil pot effect. It also contributes to a decrease in durability due to rolling fatigue.
  • the lubricant to be initially impregnated is preferably polyalkyl glycol (PAG).
  • PAG is compatible with a refrigerant generally used in a car air conditioner compressor and is preferable as a lubricant coexisting with the refrigerant.
  • the durability of the contact portion between the ball and the track groove can be ensured by forming the above-mentioned ball with a ceramic which is a different material from the inner and outer joint members.
  • a ceramic ball has a smaller coefficient of thermal expansion than a steel material, a change in an internal gap at a high temperature is small, and deformation of a contact portion of the ball is also small.
  • adhesion at the rolling contact portion hardly occurs. Therefore, the drive shaft of the swing swash plate compressor rotates at a high speed (approximately 10,000 rpm at the maximum), and the rolling durability of the ball contact portion under lean lubrication can be improved.
  • silicon nitride Si3N4
  • SiC silicon carbide
  • Al2O3 zirconia
  • ZrO2 alumina
  • a torque load is received by one skipped ball out of the total number of balls during rotation driving. For example, when the number of balls is 6, three balls receive torque load (when the torque direction is reversed, the other three balls receive load). Since the compressor does not change the torque direction in function (except during deceleration), ceramic balls are incorporated only between the track grooves where torque in the rotational direction is loaded, and the balls incorporated between the other track grooves can be steel balls. Good.
  • the contact form between the ball and the track groove may be an angular contact (two-point contact) or a circular contact (one-point contact).
  • the contact point becomes constant, a clearance is formed at the bottom of the track groove, and excellent lubricity can be exhibited.
  • the contact ratio means the ratio of the radius of curvature of the track groove to the radius of the ball.
  • a gap is formed between the outer joint member and the inner joint member so that the inner joint member can be incorporated into the outer joint member. Can be planned.
  • the rotation blocking mechanism of the swing plate of the swing swash plate type variable capacity compressor is constituted by the constant velocity universal joint having a small spherical contact portion and a small number of parts, it is quiet by suppressing vibration and noise. , Improvement of durability and reduction of the number of parts can be achieved, and as a result, the swash plate type variable capacity compressor can be quieted, improved in durability and reduced in cost. .
  • the constituent members of the constant velocity universal joint when at least one of the constituent members of the constant velocity universal joint is made of a sintered metal, the constituent members can be mass-produced with good workability, and even if the constituent members have complicated shapes, there is no waste of materials. Can be produced. Further, in the case of a high-density sintered metal having a porosity of 5% or more and 20% or less, the mechanical strength required for the components of the constant velocity universal joint is ensured and the swash plate is oscillated. Lubricating performance that can withstand use under lean lubrication in the type variable capacity compressor can be ensured.
  • the ball is formed of a ceramic which is a different material from the inner and outer joint members, durability at the contact portion between the ball and the track groove can be ensured.
  • FIG. 1 is a longitudinal sectional view showing an overall structure of a rocking plate rotation prevention mechanism and a rocking swash plate type variable capacity compressor of a rocking swash plate type variable capacity compressor according to a first embodiment of the present invention. It is a longitudinal cross-sectional view of the constant velocity universal joint which comprises the rotation prevention mechanism of the 1st Embodiment of this invention. It is a front view of the said constant velocity universal joint. It is a front view of the outer joint member of the said constant velocity universal joint. It is the figure which looked at the NN cross section of the outer joint member of FIG. It is a longitudinal cross-sectional view of an outer joint member.
  • FIG. 1 is a longitudinal sectional view showing the overall structure of a swing swash plate type variable capacity compressor.
  • the swing swash plate type variable displacement compressor 39 includes a front housing 40a, a cylinder block 40b serving as a middle housing, and a rear housing 40c indicated by a two-dot chain line behind the front housing 40a. 40 is formed.
  • a plurality of (for example, five) cylinder bores 55 are formed so as to be substantially evenly arranged around the center line L.
  • a discharge chamber as a substantially annular space is formed inside the rear housing 40c, and a suction chamber is formed as a space in the center portion.
  • the drive shaft 41 receives rotational power from an external power source (for example, an engine), and the rotor 60 is integrally attached so as to be orthogonal to the drive shaft 41.
  • the rotor 60 may be an integral part of the drive shaft 41.
  • the arm portion 97 is formed so as to protrude rearward from a part near the outer periphery of the rotor 60.
  • the arm portion 97 is provided with a long hole 97a that operates as a cam.
  • the drive shaft 41 is rotatably supported by a front housing 40a, which is a part of the housing, via radial rolling bearings 101 and 102, and the rear surface of the rotor 60 integrally attached to the drive shaft 41 is thrust rolled.
  • the bearing 61 is also supported so as to be rotatable in the thrust direction.
  • a seal device 103 is provided between the radial rolling bearings 101 and 102 to prevent fluid from leaking from the periphery of the drive shaft 41 to the outside.
  • the swash plate 42 is generally annular and includes an arm portion 96 protruding forward from a part thereof.
  • the arm portion 96 is provided with a pin 98, and is inserted into and engaged with a long hole 97 a provided in the arm portion 97 of the rotor 60 attached to the drive shaft 41.
  • the link mechanism 95 is constituted by these portions, and the swash plate 42 can rotate together with the drive shaft 41 and can be inclined and tilted with respect to the drive shaft 41 and the rotor 60.
  • a substantially annular swing plate 43 that is prevented from rotating by means described later and only swings is supported via a radial rolling bearing 93 and a thrust rolling bearing 94.
  • the outer joint member 73 of the constant velocity universal joint 70 is press-fitted into the inner peripheral hole 92 of the swing plate 43 and is positioned and fixed by a retaining ring 90.
  • the inner ring of the radial rolling bearing 93 is incorporated in the small diameter portion 91a of the swing plate 43, and is positioned and fixed by a retaining ring.
  • the outer ring of the radial rolling bearing 93 is incorporated in the inner peripheral hole of the swash plate 42 and is positioned and fixed at the shoulder.
  • the central shaft 57 that supports the swash plate 42 and the swing plate 43 is supported by the cylinder block 40b so as not to rotate in a state that coincides with the axis L of the drive shaft 41.
  • a male spline 65 is formed on the large diameter portion of the center shaft 57 and engages with the female spline 66 at the center portion of the cylinder block 40b.
  • the central shaft 57 is prevented from rotating with respect to the cylinder block 40b, but is supported by the cylinder block 40b so as to be movable in the axial direction.
  • a female spline 76 of the inner joint member 71 of the constant velocity universal joint 70 is fitted to a male spline 81 formed at the shaft end of the central shaft 57, and is positioned and fixed in the axial direction by a retaining ring 82.
  • the constant velocity universal joint 70 includes an outer joint member 73, an inner joint member 71, and a torque transmission ball 72 (see FIG. 2).
  • the outer joint member 73 of the constant velocity universal joint 70 is attached and fixed to the swing plate 43, while the inner joint member 71 is attached and fixed to the central shaft 57, and the swing plate A rotation blocking mechanism M for blocking the rotation of 43 is configured.
  • the rotation prevention mechanism M Although the swing plate 43 swings together with the swash plate 42 by the rotation prevention mechanism M, it is possible to stop the swing plate 43 from rotating regardless of the rotational motion of the swash plate 42. Details of the rotation prevention mechanism M of this embodiment will be described later.
  • the same number of spherical recesses 43a as the cylinder bores 55 are provided, and correspondingly the same number of spherical end portions 100a formed on one end of the connecting rod 100 are fitted.
  • the piston 44 slidably inserted into the cylinder bore 55 is also provided with a spherical recess 44a, and a spherical end 100b formed at the other end of the connecting rod 100 is fitted.
  • a discharge chamber as a substantially annular space is formed in the rear housing 40c, and a suction chamber is formed as a space in the center portion.
  • a valve plate is interposed between the cylinder block 40b and the rear housing 40c, and a discharge port and a suction port are opened in the valve seat at a position corresponding to each cylinder bore 55.
  • a suction valve is disposed at each suction port and is closed from the cylinder bore side, while a discharge valve is disposed at each discharge port and is closed from the discharge chamber side.
  • a control valve is attached to the rear end portion of the rear housing 40c, and fluid pressure is created by being controlled by the control device. This is introduced as a control pressure into a control pressure chamber inside the CFC housing 40a in which the swash plate 42 and the swing plate 43 are arranged, and the tilt angle of the swing plate 43 is controlled.
  • the swing swash plate type variable displacement compressor 39 having the above configuration will be described.
  • the swash plate 42 connected to the rotor 60 of the drive shaft 41 via the arm portion 97, the long hole 97a, the pin 98, and the arm portion 96 is driven. It rotates with the shaft 41.
  • the oscillating plate 43 is connected to the swash plate 42 via a radial rolling bearing 93 and a thrust rolling bearing 94, and a central portion is connected via a constant velocity universal joint 70 constituting the rotation preventing mechanism M.
  • the rocking plate 43 does not rotate because it is supported by the non-rotating central shaft 57, and the rocking plate 43 performs only rocking motion with an amplitude corresponding to the inclination angle.
  • the plurality of pistons 44 connected to the swing plate 43 via the connecting rod 100 reciprocate within the cylinder bore 55.
  • those in the suction process are enlarged to a low pressure, and therefore are in the suction chamber (not shown) in the rear housing 40c.
  • the refrigerant flows into the working chamber 104.
  • the working chamber 104 formed on the top surface of the piston 44 in the pressure feeding process is reduced, the refrigerant inside thereof is compressed to a high pressure and discharged into a discharge chamber (not shown).
  • a discharge chamber for example, HFC-134a as an alternative chlorofluorocarbon is used as the refrigerant.
  • the discharge amount of the compressor 39 per one rotation of the drive shaft 41 is approximately proportional to the stroke length of the piston 44 determined by the inclination angles of the swash plate 42 and the swing plate 43.
  • the rolling bearings, constant velocity universal joints, and sliding portions of the respective constituent members are under severe lubrication conditions due to a small amount of lubricant in the compressor 39.
  • the constant velocity universal joint 70 shown in FIG. 2 is an enlargement of the constant velocity universal joint 70 shown in FIG. 1.
  • FIG. 2 (a) is an RR of the constant velocity universal joint 70 shown in FIG. 2 (b). It is a longitudinal cross-sectional view in a line, FIG.2 (b) is a front view.
  • This constant velocity universal joint 70 is a fixed type constant velocity universal joint and is called a so-called delta type constant velocity universal joint.
  • the constant velocity universal joint 70 includes an outer joint member 73, an inner joint member 71, and a torque transmission ball 72.
  • Six track grooves 85 are formed on the spherical inner peripheral surface 86 of the outer joint member 73.
  • a track groove 77 facing the track groove 85 of the outer joint member 73 is formed on the spherical outer peripheral surface 80 of the inner joint member 71.
  • Six balls 72 for transmitting torque are interposed between the track grooves 77 of the inner joint member 71 and the track grooves 85 of the outer joint member 73. Since the constant velocity universal joint 70 does not have a cage for holding the torque transmission ball 72, the number of parts is small and the spherical contact portion is small and the structure is simple. Therefore, vibration and noise can be suppressed and durability can be improved.
  • the outer joint member 73 is formed in an annular shape, and its outer peripheral surface is cylindrical, and is press-fitted into the inner peripheral hole 92 of the swing plate 43 as shown in FIG. Further, the female spline 76 of the inner joint member 71 is fitted to the male spline 81 of the center shaft 57 as shown in FIG. A tapered chamfered portion 75 is provided at the right end portion of the inner joint member 71 following the female spline 76.
  • the fixing method using the splines 81 and 76 and the retaining ring 82 is excellent in assemblability and can be disassembled, and is excellent in maintainability.
  • the spherical inner peripheral surface 86 of the outer joint member 73 and the spherical outer peripheral surface 80 of the inner joint member 71 are spherically fitted.
  • the centers of curvature of the spherical inner peripheral surface 86 and the spherical outer peripheral surface 80 are both formed at the center O of the joint.
  • six track grooves 85 are formed on the spherical inner peripheral surface 86 of the outer joint member 73, and the tracks of the outer joint member 73 are formed on the spherical outer peripheral surface 80 of the inner joint member 71.
  • a track groove 77 facing the groove 85 is formed.
  • the track grooves 77 and 85 of the inner joint member 71 and the outer joint member 73 are formed linearly.
  • the straight track grooves 85a and 85b formed in the outer joint member 73 are provided so as to be bilaterally symmetrically inclined, and the straight track grooves 77a and 77b formed in the inner joint member 71 are formed as outer joints. Two strips are provided symmetrically in the left-right direction in the opposite direction to the linear track grooves 85a, 85b that form a pair of members 73. As a result, the track grooves 77a and 85a and the track grooves 77b and 85b that form a pair of the inner joint member 71 and the outer joint member 73 intersect with each other, and the ball 72 is disposed at the intersecting portion.
  • the ball 72 when the joint takes an operating angle, the ball 72 is always guided on a plane that bisects the angle formed by the two axes of the outer joint member 73 and the inner joint member 71, so that the constant velocity between the two axes is constant. Rotational torque is transmitted to. Since the rotation preventing mechanism M (see FIG. 1) of the rocking plate 43 is configured by using such a function of the constant velocity universal joint 70, the ball 72 is connected to the inner joint member according to the inclination angle of the rocking plate 43. 71 and reciprocating while engaging with the track grooves 77 and 85 of the outer joint member 73, the rotation of the swing plate 43 can be smoothly prevented.
  • the swinging motion of the swinging plate 43 is set to the joint center O of the constant velocity universal joint 70, between the track grooves 77 and 85 of the inner joint member 71 and the outer joint member 73 and the ball 72, the spherical contact portion 80, Since this is performed at 86, a stable swing motion without vibration is realized.
  • the track groove form will be described in further detail.
  • the three side surfaces S1, S2, S3 of the virtual equilateral triangular prism shown by the two-dot chain line are parallel to the joint axis KK and
  • the ball track center lines L2a, L2b of the two track grooves 85a, 85b of the outer joint member 73 on each side surface S1, S2, S3 are inclined symmetrically.
  • the ball track center lines L2a and L2b of the two track grooves 85a and 85b are provided so as to be inclined in opposite directions.
  • the ball track centerlines L1a and L1b (see FIG. 4) of the two straight track grooves 77a and 77b of the inner joint member 71 are also located on the side surfaces S1, S2 and S3.
  • the ball trajectory centerlines L1a and L1b of 77a and 77b are inclined symmetrically.
  • the inclination direction of the ball track center lines L2a and L2b of the two track grooves 85a and 85b of the outer joint member 73 and the ball track center lines L1a and L1b of the two track grooves 77a and 77b of the inner joint member 71 respectively.
  • the track groove 85a of the outer joint member 73 as a pair intersects the track groove 77a of the inner joint member 71, and the track groove 85b and the inner joint member of the outer joint member 73 as a pair.
  • 71 track grooves 77b (see FIG. 4).
  • One ball 72 is arranged at each intersection.
  • the above-mentioned ball trajectory center line means a locus drawn by the center of the ball when the ball arranged in the track groove moves along the track groove. Therefore, the inclined state of the track groove is the same as the inclined state of the ball track center line.
  • FIG. 3 shows the outer joint member 73.
  • 3 (a) is a front view of the outer joint member 73
  • FIG. 3 (b) is a view taken along the NN cross section of the outer joint member 73
  • FIG. It is a longitudinal cross-sectional view.
  • a spherical inner peripheral surface 86 is formed on the inner periphery of the outer joint member 73, and two linear track grooves 85a and 85b are provided so as to be symmetrically inclined.
  • the ball track center line L2a of the track groove 85a and the ball track center line L2b of the track groove 85b are inclined by an inclination angle ⁇ with respect to the joint axis KK, and the inclination directions are formed in directions opposite to each other.
  • This tilt state is expressed as tilting symmetrically in this specification.
  • the inclination angle ⁇ can be changed as appropriate in consideration of the function of the constant velocity universal joint 70.
  • the three side surfaces S1, S2, S3 of the virtual equilateral triangular prism shown by the two-dot chain line are parallel to the joint axis KK and
  • the ball track center lines L2a and L2b of the two track grooves 85a and 85b of the outer joint member 73 are positioned on the side surfaces S1, S2 and S3.
  • the distance between the ball trajectory centerlines L2a and L2b located on the side surfaces S1, S2, and S3 is widened toward the right end portion in FIG. 3C and is narrowed toward the left end portion. Therefore, the track grooves 85a and 85b are formed so as to merge near the left end.
  • FIG. 4 (a) is a front view of the inner joint member 71
  • FIG. 4 (b) is a view showing the outer peripheral surface of the inner joint member 71 as viewed along the line PP in FIG. 4 (a).
  • FIG. 4C is a view showing the outer peripheral surface of the inner joint member 71 as viewed in the direction of the line QQ in FIG. 4A.
  • a spherical outer peripheral surface 80 is formed on the outer periphery of the inner joint member 71, and two linear track grooves 77a and 77b are provided so as to be symmetrically inclined in two lines.
  • the ball track center line L1a of the track groove 77a and the ball track center line L1b of the track groove 77b are inclined by an inclination angle ⁇ with respect to the joint axis KK, and the inclination directions are opposite to each other. Yes. Further, the ball track center lines L1a and L1b of the track grooves 77a and 77b of the inner joint member 71 are opposite to the ball track center lines L2a and L2b of the track grooves 85a and 85b of the paired outer joint member 73, respectively. It is inclined.
  • the track grooves 77a and 85a and the track grooves 77b and 85b of the inner joint member 71 and the outer joint member 73 intersect at the joint center O, and a ball 72 (not shown) is disposed at the intersecting portion.
  • the three sides S1, S2, and S3 of the virtual equilateral triangular prism indicated by a two-dot chain line are connected to the joint axis as shown in FIG.
  • two track grooves 77a, 77b of the inner joint member 71 are formed on each side surface S1, S2, S3.
  • Ball trajectory centerlines L1a and L1b are located. The distance between the ball trajectory center lines L1a and L1b located on the respective side surfaces S1, S2 and S3 is narrowed toward the right end portion of FIG. It is spreading towards.
  • the track grooves 77a and 77b are formed so as to merge in the vicinity of the right end.
  • the spherical outer peripheral surface 80 is provided with notches 71a for incorporation at three locations in the circumferential direction. A method for incorporating the inner joint member 71 into the outer joint member 73 will be described later.
  • FIG. 5 shows a perspective view of the inner joint member 71. From this figure, the linear track grooves 77a and 77b formed on the outer periphery of the inner joint member 71 are inclined, the spherical outer peripheral surface 80 and the notch 71a formed on the outer periphery, and the tapered chamfered portion 75 and the female spline. The formation state of 76 is easily understood.
  • FIGS. 6 and 7 are both partial cross-sectional views at the joint center 0 (see FIG. 2A).
  • the track grooves 77 and 85 are inclined with respect to the joint axis KK. It is the figure combined as a cross section seen from each axial direction of line L1, L2.
  • FIG. 6 shows the case of angular contact
  • FIG. 7 shows the case of circular contact.
  • the cross-sectional shapes of the track groove 77 of the inner joint member 71 and the track groove 85 of the outer joint member 73 are Gothic arched or elliptical (not shown).
  • a Gothic arch shape is shown.
  • the track groove 77 of the inner joint member 71 and the ball 72 are in contact at two points C11 and C12
  • the track groove 85 of the outer joint member 73 and the ball 72 are in contact at two points C21 and C22.
  • the ball 72 and the track grooves 77 and 85 come into contact with each other with a contact angle ⁇ , and the contact point becomes constant, so that a stable contact state is obtained.
  • a clearance S is generated at the bottom of the track groove, and a lubricant is interposed in the clearance to exhibit excellent lubricity.
  • the radius of curvature of the track grooves 77 and 85 is appropriately larger than the radius of the ball 72, and the ball 72 contacts the track groove 77 of the inner joint member 71 at one point C3.
  • the track groove 85 of the outer joint member 73 contacts at one point C4.
  • Points C3, C4 are located on a straight line parallel with the center O B of the street line R-R of the ball 72.
  • the contact surface pressure can be relaxed more than the angular contact by setting the contact rate. it can.
  • FIG. 8 is a partial cross-sectional view at the joint center 0 as in FIGS. 6 and 7, but the track grooves 77 and 85 are viewed from the axial directions of the ball track center lines L1 and L2. It is the figure combined as a cross section.
  • the track gap and the spherical gap are defined based on FIG. In both cases of the angular contact and the circular contact, the track gap is the position where the ball 72 is brought into contact with the track groove 77 of the inner joint member 71 in a state where the axes of the inner joint member 71 and the outer joint member 73 are aligned.
  • the center-to-ball center distance V in the joint radial direction between the outer joint member 73 and the position in contact with the track groove 85 of the outer joint member 73, and the spherical clearance refers to the spherical outer peripheral surface 80 of the inner joint member 71 and the outer joint member 73. It is defined as a gap W in the joint radial direction with the spherical inner peripheral surface 86.
  • One of the forms of a radial load support structure that is applied to the constant velocity universal joint 70 from the swing plate 43 (see FIG. 1) while the compressor 39 is in operation is between the ball 72 and the track grooves 77 and 85. Can be supported.
  • the track gap V is set to be smaller than the spherical gap W.
  • the support structure of the radial load excellent in durability with low friction can be comprised.
  • the track clearance may be set negative and preload may be applied. Thereby, the imbalance (swinging) at the time of high speed rotation can be suppressed.
  • the radial load applied to the constant velocity universal joint 70 is supported between the spherical outer peripheral surface 80 of the inner joint member 71 and the spherical inner peripheral surface 86 of the outer joint member 73. can do.
  • the track gap V is set larger than the spherical gap W.
  • one or both surfaces of the spherical outer peripheral surface 80 and the spherical inner peripheral surface 86 are subjected to surface treatment for reducing sliding resistance, for example, low friction resistance coating such as molybdenum disulfide. It is desirable to perform processing.
  • the radial load applied to the joint can be supported by the support structure between the ball and the track groove or the spherical sliding structure. it can. Therefore, the radial load support structure can be appropriately selected depending on the operating conditions of the compressor.
  • the spherical outer peripheral surface 80 of the inner joint member 71 is provided with notches 71a for incorporation at three locations in the circumferential direction.
  • a gap is formed between the outer joint member 73 and the inner joint member 71 so that the inner joint member 71 can be incorporated into the outer joint member 73.
  • the axis of the outer joint member 73 and the axis of the inner joint member 71 are in a state of being orthogonal to each other.
  • the inner joint member 71 is moved along the arrow direction with respect to the outer joint member 73 and inserted until the spherical outer peripheral surface 80 of the inner joint member 71 contacts the spherical inner peripheral surface 86 of the outer joint member 73. Thereafter, the inner joint member 71 is rotated 90 degrees so that the axis of the inner joint member 71 coincides with the axis of the outer joint member 73, whereby the incorporation of the inner joint member 71 into the outer joint member 73 is completed.
  • the ball 72 is inserted into the outer joint member 73 after inserting the inner joint member 71 into the space where the track grooves 77 and 85 are opened with a large operating angle between the joint members 71 and 73. To do. Thereby, the constant velocity universal joint 70 is assembled.
  • FIG. 10 is a longitudinal sectional view showing the overall structure of the swing swash plate type variable capacity compressor.
  • the sliding portions of the rolling bearing, the constant velocity universal joint, and the respective constituent members are very small in the compressor 39.
  • the constant velocity universal joint 70 constituting the rotation prevention mechanism M of the present embodiment can ensure lubrication performance because at least one of its constituent members is made of a metal sintered body. it can.
  • FIG. 11 is an enlargement of the constant velocity universal joint 70 shown in FIG. 10.
  • FIG. 11A shows an RR of the constant velocity universal joint 70 shown in FIG. It is a longitudinal cross-sectional view in a line
  • FIG.11 (b) is a front view.
  • the outer joint member 73 and the inner joint member 71 of the constant velocity universal joint 70 are formed of a metal sintered body.
  • the outer joint member 73 of the constant velocity universal joint 70 is attached and fixed to the swing plate 43, while the inner joint member 71 is attached to the central shaft 57.
  • a rotation blocking mechanism M for blocking the rotation of the swing plate 43 is configured by being attached and fixed. Although the swing plate 43 swings together with the swash plate 42 by the rotation prevention mechanism M, it is possible to stop the swing plate 43 from rotating regardless of the rotational motion of the swash plate 42.
  • the structure, operation and assembly method of this constant velocity universal joint 70, the contact form between the ball and the track groove, the support structure for the radial load, and the like are the same as those described in the first embodiment. Parts having the same functions as those of the embodiment and the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the outer joint member 73 and the inner joint member 71 of the constant velocity universal joint 70 are formed of a metal sintered body. 12 and 13, the green compact of the outer joint member 73 is shown as 73 ', the metal sintered body is shown as 73 ", the green compact of the inner joint member 71 is shown as 71', and the metal sintered body is shown as 71". .
  • the green compacts 73 ′ and 71 ′ and the sintered metal bodies 73 ′′ and 71 ′′ have a slightly different detailed shape from the outer joint member 73 and the inner joint member 71 as final products, but this point is omitted. And will be described in a simplified manner.
  • the outer joint member 73 and the inner joint member 71 are formed of sintered metal bodies 73 ′′ and 71 ′′ formed by sintering a green compact of a raw material powder containing metal powder as a main component.
  • a hardened layer (not shown) is formed by heat treatment.
  • the outer joint member 73 and the inner joint member 71 having such a configuration mainly include a raw material powder preparation step S1, a compacting step S2, a degreasing step S3, a sintering step S4, a heat treatment step S5, as shown in FIG. It is manufactured through a finishing step S6 and a lubricant impregnation step S7.
  • raw material powder is prepared and generated as a molding material for the outer joint member 73 and the inner joint member 71 made of a sintered metal.
  • the raw material powder includes, for example, iron (Fe) as a main component, and contains at least 1.0 to 2.0 mass% chromium (Cr) and 0.05 to 0.5 mass% molybdenum (Mo). It is an alloyed powder made of iron-based alloys and inevitable impurities. Thereby, a higher-strength metal sintered body is obtained, and the strength and durability are improved.
  • the chromium content is preferably 1.0 to 2.0 mass%, more preferably 1.2 to 1.8 mass%, and the molybdenum content is preferably 0.05 to 0.5 mass%, more preferably. Is 0.1 to 0.3 mass%. Addition of chromium and molybdenum can improve the hardenability and compensate for the drawbacks of the sintered metal that tends to have low hardness.
  • This raw material powder includes, as necessary, solid additives such as copper, molybdenum disulfide, and graphite, as well as zinc stearate and ethylene bisstear, which is a non-metallic lubricant, for easy molding.
  • Solid additives such as copper, molybdenum disulfide, and graphite, as well as zinc stearate and ethylene bisstear, which is a non-metallic lubricant, for easy molding.
  • Lubricants such as luamide may be mixed.
  • compacted powders 73 ′ and 71 ′ having the shapes of the outer joint member 73 and the inner joint member 71 are formed by compacting the raw material powder.
  • the green compacts 73 ′ and 71 ′ have a high density so that the porosity of the metal sintered bodies 73 ′′ and 71 ′′ formed by heating at or above the sintering temperature is 5% or more and 20% or less. It is compression molded. Since the raw material powder used in this embodiment is mainly composed of iron and the density of iron is 7.87 g / cm 3 , the green compacts 73 ′ and 71 ′ described above are sintered metal 73. It is desirable to perform compression molding so that the density when “, 71” is within the range of 7.0 to 7.5 g / cm 3 .
  • a molding die that defines a cavity that follows the shape of a green compact is set in a CNC press using a servo motor as a drive source, and the above raw material powder filled in the cavity is 600 to
  • the green compacts 73 ′ and 71 ′ are formed by pressurizing with a pressure of 1500 MPa.
  • the molding die may be heated to 70 ° C. or higher.
  • the green compacts 73 ′ and 71 ′ are obtained.
  • the surface of ' may come into close contact with the inner wall surface of the cavity, and the green compacts 73' and 71 'may not be released from the molding die smoothly.
  • the solid lubricant is mixed with the raw material powder, the solid lubricant is liquefied by the above high pressure when the green compacts 73 ′ and 71 ′ are formed.
  • the formed solid lubricant can be diffused and penetrated between the raw material powders. Therefore, the green compacts 73 ′ and 71 ′, which are brittle products, can be released smoothly, and the collapse of the shapes of the green compacts 73 ′ and 71 ′ accompanying the mold release can be avoided.
  • the lubricant and the like contained in the green compacts 73 'and 71' are removed.
  • Degreasing can be performed under the same conditions as those for producing a general sintered metal product.
  • the degreased green compacts 73 ′ and 71 ′ are heated at a temperature equal to or higher than the sintering temperature to sinter-bond adjacent raw material powders to form the metal sintered bodies 73 ′′ and 71 ′′.
  • the raw material powder is mainly composed of iron
  • the green compacts 73 ′ and 71 ′ are arranged in a mixed gas atmosphere of nitrogen gas and hydrogen gas, This is heated at 1150 to 1300 ° C. (eg, 1250 ° C.) for 60 minutes or longer to form sintered metal bodies 73 ′′ and 71 ′′.
  • the green compacts 73 ′ and 71 ′ may be sintered not only in the inert gas atmosphere as described above but also in a vacuum.
  • the porosity of the surface layer portions of the metal sintered bodies 73 ′′ and 71 ′′ subjected to the above processing is reduced, but the entire metal sintered bodies 73 ′′ and 71 ′′ including the surface layer portions are completely removed.
  • the porosity is 5% or more and 20% or less.
  • the plastic working described above may be performed as necessary, and is not necessarily performed.
  • the heat treatment step S5 is a step of forming a hardened layer (not shown) on the surface of the sintered metal bodies 73 ", 71" by performing a heat treatment such as quenching.
  • This imparts a high surface hardness of HV513 to 750 to the surfaces of the metal sintered bodies 73 ′′, 71 ′′, such as sliding surfaces and track grooves.
  • the wear powder enters the rolling part and the sliding part to cause further wear, or the wear powder is clogged in the pores of the metal sintered bodies 73 ′′ and 71 ′′, thereby reducing the oil pot effect.
  • the like and durability against rolling fatigue between the spherical contact portion and the ball and the track groove can be secured.
  • As a quenching method for ensuring strength and hardness continuous quenching or carburizing quenching can be employed, and it can be appropriately selected depending on materials and product specifications. However, carburizing and quenching is desirable for materials with low carbon content.
  • finishing step S6 the required portions of the metal sintered bodies 73 "and 71" are made more precise by applying a finishing process such as grinding to predetermined portions of the metal sintered bodies 73 "and 71". It is a process to do.
  • This finishing step S6 may be performed as necessary, and is not necessarily performed.
  • Lubricant impregnation step S7 is a step of initially impregnating the metal sintered bodies 73 ′′ and 71 ′′ with a lubricant.
  • the lubricant to be initially impregnated is preferably polyalkyl glycol (PAG).
  • PAG is compatible with a refrigerant generally used in a car air conditioner compressor and is preferable as a lubricant coexisting with the refrigerant.
  • the lubricant impregnation step S7 may be performed as necessary, and is not necessarily performed.
  • FIG. 15 is a longitudinal sectional view of a constant velocity universal joint in the rotation preventing mechanism of the present embodiment. Parts having the same functions as those of the first embodiment described above are denoted by the same reference numerals, and redundant description is omitted.
  • the inner joint member 71 of the constant velocity universal joint 70 is formed of a metal sintered body.
  • the outer joint member 73 and the ball 72 are formed of a commonly used melted material. Since the spherical outer peripheral surface 80 of the inner joint member 71 made of a sintered metal is in spherical contact with the spherical inner peripheral surface 86 of the outer joint member 73, each spherical fitting is possible even if the outer joint member 73 is a molten material. Since the lubricant enters the part, a good lubricating state can be obtained.
  • FIG. 16A is a longitudinal sectional view of the constant velocity universal joint
  • FIG. 16B is a front view. Parts having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the ball 72 is made of ceramics
  • the inner joint member 71 made of sintered metal body
  • the outer joint member 73 for example, S53C material
  • the ball 72 and the track groove 77 The durability at the contact portion with 85 can be secured.
  • a ceramic material silicon nitride (Si 3 N 4 ) is desirable first, but from the viewpoint of the effect of applying different materials, silicon carbide (SiC), zirconia (Al 2 O 3 ), and alumina (ZrO 2 ) are used. You may apply.
  • the ceramic-formed ball 72 has a smaller coefficient of thermal expansion than that of a steel material, changes in the internal gap at high temperatures are small, and deformation of the contact portion of the ball is also small. Moreover, since it becomes a different material from the inner and outer joint members, adhesion at the rolling contact portion hardly occurs. Therefore, the drive shaft of the swing swash plate compressor rotates at a high speed (approximately 10,000 rpm at the maximum), and the rolling durability of the ball contact portion under lean lubrication can be improved.
  • the constant velocity universal joint 70 constituting the rotation prevention mechanism of the present embodiment receives a torque load with one skipped ball out of the number of balls 72 during rotation driving (the same applies to the respective embodiments described above).
  • a torque load with one skipped ball out of the number of balls 72 during rotation driving (the same applies to the respective embodiments described above).
  • the torque load direction of the outer joint member 73 is the arrow direction, out of the six balls, three balls with hatching incorporated in the track grooves 77a and 85a are used. Receive torque load.
  • the torque direction is reversed, on the contrary, three unhatched balls incorporated in the track grooves 77b and 85b are subjected to a load.
  • the swinging swash plate type variable capacity compressor does not change the torque direction in function (except during deceleration), only the three balls 72 with hatching incorporated in the track grooves 77a and 85a are made of ceramics.
  • the non-hatched balls 77 incorporated in the grooves 77b and 85b may be steel balls.
  • the center shaft 57 and the inner joint member 71 are fixed by the splines 81 and 76 and the retaining ring 82, but the center shaft 57 and the inner joint member 71 are welded or pressed. It may be fixed.
  • the fixing method using the splines 81 and 76 and the retaining ring 82 is excellent in assemblability and can be disassembled, and is excellent in maintainability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 揺動斜板型可変容量圧縮機39の揺動板43の回転阻止機構Mにおいて、揺動板43の回転阻止機構Mが等速自在継手70で構成され、この等速自在継手70は、内周面に偶数個の直線状トラック溝85が形成された外側継手部材73と、外周面に偶数個の直線状トラック溝77が形成された内側継手部材71と、外側継手部材73と内側継手部材71の対となるトラック溝85、77間に配された偶数個のトルク伝達ボール72とからなり、外側継手部材73の内周面に形成された直線状トラック溝85は2条ずつ左右対称に傾斜して設けられ、内側継手部材71の外周面に形成された直線状トラック溝77は2条ずつ外側継手部材73の対となるトラック溝85とは反対方向に左右対称に傾斜して設けられており、継手が作動角0°の状態で、ボール72の半数に相当する角数の仮想正多角柱の各側面Sを継手の軸線K-Kに対して平行にかつ継手の軸線K-Kから等距離になるように配置したとき、外側継手部材73と内側継手部材71の対となる2条ずつの直線状トラック溝85、77のボール軌道中心線L2、L1が各側面S上に配置され、外側継手部材73の球状内周面86と内側継手部材71の球状外周面80とが嵌合する等速自在継手70であって、外側継手部材73が揺動板43に取付けられ、内側継手部材71が中心軸57に取付けられていることを特徴とする。

Description

揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手
 この発明は、揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手に関する。
 揺動斜板型可変容量圧縮機は、ハウジングに回転自在に支持された駆動軸と、この駆動軸に連結されて回転すると共に、駆動軸に対して傾斜可能な斜板と、この斜板に軸受を介して連結され、回転が阻止された揺動板と、この揺動板に連結されて駆動軸の軸方向に往復運動するピストンと、揺動板を支持するために前記ハウジングに支持された中心軸とを主な構成部品としている。そして、揺動板の回転を阻止するために回転阻止機構が設けられている。
 上記の回転阻止機構として等速自在継手が用いられた構造が、例えば、特許文献1に記載されている。特許文献1に記載のものでは、回転阻止機構を構成する等速自在継手は、図17に示すように、球状内周面1に複数のトラック溝2が円周方向等間隔に軸方向に沿って形成された外側継手部材3と、球状外周面4に外側継手部材3のトラック溝2と対をなす複数のトラック溝5が円周方向等間隔に軸方向に沿って形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在される複数のボール7と、外側継手部材3の球状内周面1と内側継手部材6の球状外周面4との間に介在してボール7を保持する保持器8とを備えている。この回転阻止機構では、等速自在継手が揺動板15の中央に配置され、外側継手部材3が揺動板15に取付けられ、内側継手部材6が中心軸11に取付けられる。
 具体的には、ハウジング10内に配置された中心軸11に内側継手部材6が取付けられている。また、外側継手部材3にラジアル軸受12を介して斜板13が嵌合され、斜板13にスラスト軸受14を介して揺動板15が支持されている。揺動板15はロッド16を介してピストン17と連結されている。
 駆動軸18の回転駆動によって、リンク機構19を介して斜板13が回転するが、中心軸11に取付けられた回転阻止機構としての等速自在継手によって、揺動板15が回転することなく揺動を行ういわゆる「みそすり運動」を行う。この「みそすり運動」によって、揺動板15にロッド16を介して連結されたピストン17が往復運動することになる。
 特許文献1に記載のものでは、回転阻止機構として、保持器8を備えた等速自在継手を用いるものであるが、保持器を備えない等速自在継手を用いたものも提案されている(特許文献2)。特許文献2の揺動斜板型可変容量圧縮機を図18に示す。回転阻止機構は、ボール21をガイドするガイド溝を有する内側継手部材22と、駆動軸23に対して相対回転および軸方向に移動可能なスリーブ24と、ボール21をガイドするガイド溝を有する外側継手部材25とを備えたものである。
 この場合、内側継手部材22は、ハウジング26内に回転は阻止されるが軸方向に移動可能に設けられている。また、スリーブ24は、揺動板28の揺動運動の揺動中心部材として機能し、内側継手部材22と共に軸方向に移動可能とされる。外側継手部材25は、スリーブ24に揺動可能に支持され、外周に揺動板28が取付けられている。外側継手部材25と斜板29との間には軸受30が組み込まれている。ハウジング26内に収容されるロータ20は駆動軸23に装着され、駆動軸23とともに回転する。ロータ20とハウジング26の壁部26aとの間にスラスト軸受35が組み込まれている。駆動軸23の回転運動によって、ロータ20およびリンク機構32を介して斜板29が回転するが、回転阻止機構としての等速自在継手によって、揺動板28は回転することなく揺動を行ういわゆる「みそすり運動」を行う。この「みそすり運動」によって、揺動板28にロッド33を介して連結されたピストン34が往復運動することになる。
 一方、等速自在継手の構成部品の材料面として、保持器に焼結金属を適用したものが、特許文献3に記載されているが、揺動斜板型可変容量圧縮機内の希薄潤滑下で使用される等速自在継手として、強度、耐久性や潤滑性の面で問題に着目したものではない。
特開2006-200405号公報 特開2008-138637号公報 実開平3-105726号公報
 ところが、前述した特許文献1に記載のものでは、回転阻止機構を構成する等速自在継手は、保持器を備えたものであり、使用する部品点数や球面接触部が多くなっている。このため、多くの部品点数による累積ガタが大きくなって、振動や騒音が大きくなると共に、耐久性の面でも問題がある。
 特許文献2に記載のものでは、保持器は不要であるが、別途スリーブを必要とする。このため、外側継手部材とスリーブ間および内側継手部材とスリーブ間に球面接触部が存在し、球面接触の箇所、すなわち部品点数としては特許文献1に記載の保持器を有するものと同じである。このため、特許文献1に記載のものと同様、累積ガタが大きくなって、振動や騒音が大きくなると共に、耐久性の面でも問題がある。
 また、上記の揺動板の回転阻止機構を構成する等速自在継手は、揺動斜板型可変容量圧縮機内の希薄潤滑下で使用されるので、等速自在継手の各摺動部やボールとトラック溝間への潤滑剤の供給が少なく、潤滑性や耐久性等において過酷な状態となっている。
 さらに、上記の等速自在継手の各構成部品には、中実の金属材料(溶製材)が用いられている。そのため、鍛造加工等により素形材を得る工程、外径面や内径面などの旋削加工工程、焼入れ等の熱処理工程や高精度が要求される部位の研削加工工程などを経て最終製品に仕上げられる。このため、加工量が多く材料ロスも多く、製造コストの低減には限界がある。
 加えて、上記の等速自在継手は、摺動部の耐摩耗性や疲労性が耐久性を低下させる原因になっている場合が多い。揺動斜板型可変容量圧縮機内は、高温、高圧、高速回転、希薄潤滑という非常に過酷な条件下で、ボールが高周波数でトラック溝上を微小に接触移動するため、フレッティングや焼付き等の損傷防止策が必要となる。そして、特に、等速自在継手の設計自由度や適用自由度を向上させる観点から、ボールとトラック溝間の接触部の耐久性(摩耗、フレッティング、剥離等)や、潤滑性能が不可欠な問題であることが判明した。
 上記のような問題に鑑み、本発明は、静粛化、耐久性の向上および部品点数の削減による製造コストの抑制を図ることが可能な揺動板の回転阻止機構およびこれを構成する等速自在継手を提供することを目的とする。さらに本発明は、揺動斜板型可変容量圧縮機内の希薄潤滑下での使用において、振動や騒音を抑制しかつ耐久性に優れると共に、加工性が良好で、材料歩留まりが高く、低コスト化を図ることができる揺動板の回転阻止機構およびこれを構成する等速自在継手を提供することを目的とする。
 本発明者らは、上記の目的を達成するために種々検討した結果、揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を構成する等速自在継手として、保持器がなく球面接触部や部品点数の少ない構成とすることを着想し、本発明に至った。また、前記等速自在継手の構成部材に高密度の金属焼結体を活用し、その空孔を潤滑剤のオイルポットにするという着想を行い、加えて、ボールとトラック溝の接触部の耐久性を確保するために、ボールを内外の継手部材と異質材とすることを着想した。
 前述の目的を達成するための技術的手段として、本発明は、ハウジングに回転自在に支持された駆動軸と、この駆動軸に連結されて回転すると共に、前記駆動軸に対して傾斜可能な斜板と、この斜板に軸受を介して連結され、回転が阻止された揺動板と、この揺動板に連結されて前記駆動軸の軸方向に往復運動するピストンと、前記揺動板を支持するために前記ハウジングに支持された中心軸とを備えた揺動斜板型可変容量圧縮機の揺動板の回転阻止機構において、前記揺動板の回転阻止機構が等速自在継手で構成され、この等速自在継手は、内周に偶数個の直線状トラック溝が形成された外側継手部材と、外周に偶数個の直線状トラック溝が形成された内側継手部材と、前記外側継手部材と内側継手部材の対となるトラック溝間に配された偶数個のトルク伝達ボールとからなり、前記外側継手部材の直線状トラック溝は2条ずつ左右対称に傾斜して設けられ、前記内側継手部材の直線状トラック溝は2条ずつ前記外側継手部材の対となるトラック溝とは反対方向に左右対称に傾斜して設けられており、継手が作動角0°の状態で、前記ボールの半数に相当する角数の仮想正多角柱の各側面を、継手の軸線に対して平行にかつ継手の軸線から等距離になるように配置したとき、前記外側継手部材と内側継手部材の対となる2条ずつの直線状トラック溝のボール軌道中心線が前記各側面上に配置され、前記外側継手部材の内周に形成された球状内周面と内側継手部材の外周に形成された球状外周面とが嵌合する等速自在継手であって、前記外側継手部材が前記揺動板に取付けられ、前記内側継手部材が前記中心軸に取付けられていることを特徴とする。
 上記のように、揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を構成する等速自在継手は、保持器がなく球面接触部や部品点数が少ないので、振動や騒音の抑制よる静粛化、耐久性の向上および部品点数の削減による製造コストの抑制を図ることができ、ひいては、揺動斜板型可変容量圧縮機の静粛化、耐久性の向上および低コスト化を図ることができる。
 上記の等速自在継手のトラック溝およびトルク伝達ボールの個数を6個とし、上記仮想正多角柱の角数を3としたことにより、一層部品点数が少なく、製造を容易にすることができる。
 上記の外側継手部材と内側継手部材の両トラック溝とボールとの間のトラック隙間を球状外周面と球状内周面との間の球面隙間よりも小さくし、継手に負荷されるラジアル荷重をトラック溝とボールとの間で受けるように設定することができる。これにより、低摩擦な構造で、耐久性に優れる。さらにトラック溝の隙間を負に設定し、予圧を付与してもよい。これにより、高速回転時のアンバランス(振れ回り)を抑制することができる。
 上記とは逆に、外側継手部材と内側継手部材の両トラック溝とボールとの間のトラック隙間を球状外周面と球状内周面との間の球面隙間よりも大きくし、継手に負荷されるラジアル荷重を球状外周面と球状内周面との間で受けるように設定することもできる。この場合、球面滑り構造によりラジアル荷重を受けることができ、「みそすり運動」を安定させることができる。
 上記の等速自在継手の構成部材の少なくとも1つを金属焼結体とし、その表面に熱処理による硬化層を形成することができる。この場合、構成部材の形状に対応した圧粉体を形成し、これを焼結して金属焼結体を得た後、その表面に熱処理による硬化層を形成する。熱処理としては、ずぶ焼入れ、浸炭焼入れなど種々適用でき、また、材料や製品仕様により適宜選択することができる。これにより、所定の精度および機械的強度を有する構成部材が得られる。したがって、揺動斜板型可変容量圧縮機内の希薄潤滑下での使用に適し、揺動板の回り止め機構として必要とされる振動や騒音を抑制しかつ耐久性に優れた等速自在継手の構成部材を加工性よく量産することができる。複雑な形状の構成部材であっても材料の無駄なく製作することができ、ひいては、揺動斜板型可変容量圧縮機の静粛化、耐久性の向上および低コスト化を図ることができる。
 上記の等速自在継手の内側継手部材を金属焼結体とすることができる。これにより、トラック溝が傾斜かつ不等配置で、かつ組立用の切欠き部を有する複雑な外周形状をニアネットシェイプで成形することができる。したがって、切削等の後加工としての機械加工を削減することができ、コストを低減することができる。また、外側継手部材やトルク伝達ボールが溶製材であっても、球面嵌合部に潤滑剤が入り込むと共に、さらにボールとトラック溝との間にも潤滑剤が入り込むので、さらに良好な潤滑状態を得ることができる。
 等速自在継手の構成部材の少なくとも1つを形成する金属焼結体の空孔率が5%以上で20%以下であることを特徴とする。ここでいう空孔率は以下に示す計算式で示される。
 空孔率=(1-金属焼結体の密度/真密度)×100[%]
 上式における「真密度[g/cm]」とは、溶製材からなる素材のように、素材内部に空孔が存在しないような材料の理論密度を意味し、下記の計算式から求めることができる。
   ・ 単一組成からなる材料の場合
   真密度=100/(100/材料を構成する元素の密度)=材料を構成する元素の密度
   ・ 複数組成からなる材料の場合(ここでは組成A~Cの3種類からなるものを例示)
   真密度=100/{(元素Aの配合度/元素Aの密度)+(元素Bの配合度/元素Bの密度)+(元素Cの配合度/元素Cの密度)}
例えば、Fe/Crの化学成分が、それぞれ87.0/13.0[wt%]のステンレス材の真密度は、上記各元素の密度がそれぞれ7.87/7.15[g/cm]であることから、
真密度=100/{(87.0/7.87)+(13.0/7.15)}≒7.78
となる。
 空孔率が5%以上で20%以下という高密度の金属焼結体からなるものであるため、等速自在継手の構成部材に必要とされる機械的強度を確保すると共に揺動斜板型可変容量圧縮機内の希薄潤滑下での使用に耐えうる潤滑性を確保することができる。金属焼結体の空孔率が5%未満と小さすぎると、潤滑剤のオイルポットとしての機能を果たさず、転動強度や摺動性の面で劣る場合がある。一方、金属焼結体の空孔率が20%を超えて大きすぎると、硬度低下の一因となる。したがって、構成部材としての機能を両立させるためには金属焼結体の空孔率が5%以上で20%以下が望ましい。
 金属焼結体は、鉄系合金の金属粉末を主成分とし、これに少なくともクロムおよびモリブデンを含む合金化粉からなることを特徴とする。具体的には、例えば、クロムの含有量が1.0~2.0mass%、モリブデンの含有量が0.05~0.5mass%であり、残部を鉄系合金および不可避的不純物とした合金化粉の圧粉体を焼結することで成形する。これにより、より高強度な金属焼結体が得られ、強度、耐久性が向上する。クロムの含有量は、好ましくは1.0~2.0mass%、さらに好ましくは1.2~1.8mass%であり、モリブデンの含有量は、好ましくは0.05~0.5mass%、さらに好ましくは0.1~0.3mass%である。クロムおよびモリブデンの添加は、焼入れ性を向上させ、硬度が低くなりやすい金属焼結体の欠点を補うことができる。
 圧粉体の成形に用いる原料粉末としては、原料粉末同士や粉末と成形金型間の摩擦力を低減させるための潤滑剤を含むものを使用することが望ましく、特に粉末体成形時の加圧力を受けることによって液相化し、原料粉末間に拡散・浸透していくような固体潤滑剤を含むものが望ましい。すなわち、金属焼結体は、固体潤滑剤を混合した原料粉末の圧粉体を加熱することで成形されたものとすることができる。これにより、圧粉体を成形金型からスムーズに離型することができるので、金属焼結体の高精度化を達成することができる。
 金属焼結体の表面硬度はHV513~750であることが望ましい。金属焼結体の表面硬度がHV513より低いと、磨耗しやすく摩耗粉が転動部や摺動部に入り込んで更なる摩耗を引き起こす原因となったり、摩耗粉が金属焼結体の空孔に詰まり、オイルポット効果を減少させる原因となる。また、転動疲労による耐久性低下の一因にもなる。
 金属焼結体に潤滑剤を初期含浸することにより、揺動斜板型可変容量圧縮機内の希薄潤滑下にもかかわらず、運転開始時より良好な潤滑状態を得ることができる。初期含浸する潤滑剤は、具体的には、ポリアルキルグリコール(PAG)が好ましい。PAGは、カーエアコン用コンプレッサで一般的に使用される冷媒と相溶性があり、冷媒と共存する潤滑剤として好ましい。
 上記のボールを内側外側の両継手部材とは異質材であるセラミックスで形成することにより、ボールとトラック溝の接触部における耐久性を確保することができる。具体的には、セラミックス製ボールは、鋼材に比べて熱膨張係数が小さく、高温での内部隙間の変化が小さく、ボールの接触部の変形も小さい。また、内側外側の両継手部材とは異質材となるので、転動接触部での凝着が生じにくくなる。したがって、揺動斜板型圧縮機の駆動軸が高速回転(概ね最大10,000rpm)し、かつ希薄潤滑下でのボール接触部の転動耐久性を向上させることができる。
 上記のセラミックスの材質としては、第一に窒化ケイ素(Si3N4)が望ましいが、異種材適用の効果の観点から、炭化ケイ素(SiC)、ジルコニア(Al2O3)、アルミナ(ZrO2)を適用してもよい。
 本発明の揺動板の回転阻止機構を構成する等速自在継手では、回転駆動時には、ボールの総個数の内、1つ飛びのボールでトルク負荷を受ける。例えば、ボール個数が6個の場合は3個のボールでトルク負荷を受ける(トルク方向が逆の場合はそれ以外の3個のボールが負荷を受ける)。圧縮機は機能上トルク方向が変動しない(減速時を除く)ため、セラミックス製ボールを回転方向トルクが負荷されるトラック溝間にのみに組込み、他のトラック溝間に組込むボールは鋼球としてもよい。
 ボールとトラック溝との接触形態としては、アンギュラコンタクト(2点接触)であっても、サーキュラコンタクト(1点接触)であってもよい。アンギュラコンタクトにすることにより、接触点が一定となり、トラック溝底部にすきまが形成され、優れた潤滑性を発揮することができる。
 一方、サーキュラコンタクトの場合は、アンギュラコンタクトよりもボールとトラック溝の接触面積を大きく設定することができるため、接触率の設定により、接触面圧を緩和することができる。ここで、接触率とは、ボールの半径に対するトラック溝の曲率半径の比を意味する。
 上記内側継手部材の外周面に切欠き部を設けることにより、外側継手部材と内側継手部材と間に組み込みを可能とする隙間が形成され、内側継手部材の外側継手部材への組み込み性の向上を図ることができる。
 本発明によれば、揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を、球面接触部が少なく部品点数の少ない等速自在継手により構成したので、振動や騒音の抑制よる静粛化、耐久性の向上および部品点数の削減による製造コストの抑制を図ることができ、ひいては、揺動斜板型可変容量圧縮機の静粛化、耐久性の向上および低コスト化を図ることができる。
 また、等速自在継手の構成部材の少なくとも1つを金属焼結体にした場合には、構成部材を加工性よく量産することができ、複雑な形状の構成部材であっても材料の無駄なく製作することができる。また、空孔率が5%以上で20%以下という高密度の金属焼結体とした場合には、等速自在継手の構成部材に必要とされる機械的強度を確保すると共に揺動斜板型可変容量圧縮機内の希薄潤滑下での使用に耐えうる潤滑性能を確保することができる。
 さらに、ボールを内側外側の両継手部材とは異質材であるセラミックスで形成した場合には、ボールとトラック溝の接触部における耐久性を確保することができる。
本発明の第1の実施形態に係る揺動斜板型可変容量圧縮機の揺動板の回転阻止機構と揺動斜板型可変容量圧縮機の全体構造を示す縦断面図である。 本発明の第1の実施形態の回転阻止機構を構成する等速自在継手の縦断面図である。 上記等速自在継手の正面図である。 上記等速自在継手の外側継手部材の正面図である。 図3aの外側継手部材のN-N断面で矢視した図である。 外側継手部材の縦断面図である。 上記等速自在継手の内側継手部材の正面図である。 図4aの内側継手部材のP-P線で矢視した外周面を示す図である。 図4aの内側継手部材のQ-Q線で矢視した外周面を示す図である。 内側継手部材の斜視図である。 等速自在継手の部分的な横断面図である。 等速自在継手の部分的な横断面図である。 ラジアル荷重の支持構造を示す部分的な横断面図である。 外側継手部材への内側継手部材の組込み方法を示す図である。 本発明の第2の実施形態に係る揺動斜板型可変容量圧縮機の揺動板の回転阻止機構と揺動斜板型可変容量圧縮機の全体構造を示す縦断面図である。 本発明の第2の実施形態の回転阻止機構を構成する等速自在継手の縦断面図である。 上記等速自在継手の正面図である。 上記等速自在継手の外側継手部材の正面図である。 図12aの外側継手部材のN-N断面で矢視した図である。 外側継手部材の縦断面図である。 上記等速自在継手の内側継手部材の正面図である。 図13aの内側継手部材のP-P線で矢視した外周面を示す図である。 図13aの内側継手部材のQ-Q線で矢視した外周面を示す図である。 金属焼結体の製造工程を示す図である。 本発明の第3の実施形態の回転阻止機構を構成する等速自在継手の縦断面図である。 本発明の第4の実施形態の回転阻止機構を構成する等速自在継手の縦断面図である。 上記等速自在継手の正面図である。 従来技術の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を示す縦断面図である。 従来技術の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を示す縦断面図である。
 本発明の第1の実施形態である揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を図1~図9に基づいて説明する。
 図1は揺動斜板型可変容量圧縮機の全体構造を示す縦断面図である。揺動斜板型可変容量圧縮機39は、フロントハウジング40aとミドルハウジングとしてのシリンダブロック40bとその後方の二点鎖線で示すリアハウジング40cが図示しない締結手段によって一体化されて圧縮機39のハウジング40を形成している。シリンダブロック40bには、複数個(例えば5個)のシリンダボア55が、中心線Lの周りに概ね均等に配置されるように形成されている。図示は省略するが、リアハウジング40cの内部には概ね環状の空間としての吐出室が形成されていると共に、中心部分には空間として吸入室が形成されている。
 駆動軸41は、外部の動力源(例えばエンジン)から回転動力を受け入れるものであって、この駆動軸41と直交するようにロータ60が一体的に取り付けられている。ロータ60は駆動軸41と一体部品の場合もある。ロータ60の外周寄りの一部からアーム部97が後方に向かって突出するように形成されている。アーム部97には、カムとして作動する長孔97aが設けられている。駆動軸41はラジアル転がり軸受101、102を介して、ハウジングの一部であるフロントハウジング40aに回転自在に支持されていると共に、駆動軸41に一体的に取り付けられたロータ60の背面をスラスト転がり軸受61を介して、スラスト方向にも回転自在に支持されている。ラジアル転がり軸受101および102の間にはシール装置103が設けられて、駆動軸41の周囲から流体が外部に漏洩することを防止している。
 斜板42は、概ね円環状であって、その一部から前方へ突出するアーム部96を備えている。アーム部96には、ピン98が設けられていて、駆動軸41に取り付けられたロータ60のアーム部97に設けられた長孔97aに挿入されて係合している。これらの部分によってリンク機構95が構成されて、斜板42が駆動軸41と共に回転することができ、かつ駆動軸41やロータ60に対して角度変位でき傾斜可能となっている。斜板42には、後述する手段により回転を阻止されて揺動のみをする概ね円環状の揺動板43が、ラジアル転がり軸受93とスラスト転がり軸受94を介して支持されている。
 揺動板43の内周孔92には、等速自在継手70の外側継手部材73が圧入嵌合され、止め輪90によって位置決め固定されている。揺動板43の小径部分91aにラジアル転がり軸受93の内輪が組み込まれて、止め輪によって位置決め固定されている。ラジアル転がり軸受93の外輪は斜板42の内周孔に組み込まれて、その肩部で位置決め固定されている。
 斜板42と揺動板43を支持する中心軸57は、駆動軸41の軸線Lと一致した状態で、回転しないようにシリンダブロック40bによって支持されている。具体的には、中心軸57の大径部に雄スプライン65が形成され、シリンダブロック40bの中心部の雌スプライン66に係合している。この結果、中心軸57はシリンダブロック40bに対して回転は阻止されるが、軸方向には移動可能に、シリンダブロック40bに支持される。中心軸57の軸端に形成された雄スプライン81に等速自在継手70の内側継手部材71の雌スプライン76が嵌合され、止め輪82によって軸方向に位置決め固定されている。詳細は後述するが、等速自在継手70は、外側継手部材73、内側継手部材71およびトルク伝達ボール72とからなる(図2参照)。
 本実施形態の回転阻止機構の概要として、等速自在継手70の外側継手部材73が揺動板43に取り付け固定され、一方、内側継手部材71が中心軸57に取り付け固定されて、揺動板43の回転を阻止するための回転阻止機構Mが構成される。この回転阻止機構Mにより、揺動板43が斜板42と共に揺動運動するものの、斜板42の回転運動とは無関係に回転しないように停止していることが可能となる。本実施形態の回転阻止機構Mの詳細は後述する。
 揺動板43の周辺部には、シリンダボア55と同数の球状の窪み部43aが設けられており、これに対応して同数のコネクティングロッド100の一端に形成された球状端部100aが嵌合している。また、シリンダボア55内に摺動可能に挿入されたピストン44にも球状の窪み部44aが設けられていて、コネクティングロッド100の他端に形成された球状端部100bが嵌合している。
 リアハウジング40cの内部については図示を省略するが、概要は次のとおりである。前述したように、リアハウジング40cの内部には概ね環状の空間としての吐出室が形成されていると共に、中心部分には空間として吸入室が形成されている。そして、シリンダブロック40bとリアハウジング40cとの間には、バルブプレートが介在され、各シリンダボア55に対応する位置においてバルブシートに吐出口と吸入口が開口している。各吸入口には吸入バルブが配置されシリンダボアの側から閉鎖されており、一方、各吐出口には吐出バルブが配置され吐出室の側から閉鎖されている。また、リアハウジング40cの後端部に制御弁が取り付けられており、制御装置によって制御されて流体圧が作り出される。これを制御圧として斜板42や揺動板43が配置されたフロンハウジング40aの内部の制御圧室に導入されて、揺動板43の傾斜角が制御されている。
 上記の構成からなる揺動斜板型可変容量圧縮機39の作動について説明する。駆動軸41が外部の動力源によって回転駆動されると、駆動軸41のロータ60に対してアーム部97、長孔97a、ピン98、アーム部96を介して連結されている斜板42が駆動軸41と共に回転する。しかし、揺動板43は、斜板42に対してラジアル転がり軸受93およびスラスト転がり軸受94を介して連結されているのと、中心部が回転阻止機構Mを構成する等速自在継手70を介して回転しない中心軸57によって支持されているので回転することはなく、揺動板43は、その傾斜角度に応じた大きさの振幅で揺動運動のみを行う。それによって、揺動板43にコネクティングロッド100を介して連結されている複数個のピストン44が、シリンダボア55内で往復運動する。その結果、複数個のピストン44の頂面に形成される作動室104の中で、吸入工程にあるものは拡大して低圧となるので、リアハウジング40c内の吸入室(図示省略)内にある冷媒が作動室104内に流入する。これとは反対に、圧送工程にあるピストン44の頂面に形成される作動室104は縮小されるため、その内部にある冷媒は圧縮されて高圧となり吐出室(図示省略)に吐出される。例えば、冷媒としては代替フロンとしてのHFC-134a等が用いられる。駆動軸41の1回転当たりの圧縮機39の吐出量は、斜板42および揺動板43の傾斜角度によって決まるピストン44のストロークの長さに概ね比例している。上記のような圧縮機39の作動状態において、転がり軸受、等速自在継手や各構成部材の摺動部分は、圧縮機39内の微量な潤滑剤による過酷な潤滑条件下にある。
 次に、本発明の第1の実施形態である揺動板の回転阻止機構を構成する等速自在継手の詳細を図2~図9に基づいて説明する。図2に示す等速自在継手70は、図1に示した等速自在継手70を拡大したものである、図2(a)は、図2(b)の等速自在継手70のR-R線における縦断面図であり、図2(b)は正面図である。この等速自在継手70は固定式等速自在継手で、所謂デルタ型等速自在継手と称されるものである。等速自在継手70は、外側継手部材73、内側継手部材71およびトルク伝達ボール72からなる。外側継手部材73の球状内周面86には6本のトラック溝85が形成されている。内側継手部材71の球状外周面80には、外側継手部材73のトラック溝85と対向するトラック溝77が形成されている。内側継手部材71のトラック溝77と外側継手部材73のトラック溝85との間にトルクを伝達する6個のボール72が介在されている。この等速自在継手70ではトルク伝達ボール72を保持する保持器は存在しないので、部品点数が少なく、かつ球面接触部分が少なくてシンプルな構造である。そのため、振動や騒音を抑制しかつ耐久性に優れたものとすることができる。外側継手部材73は円環状に形成され、その外周面は円筒状であり、図1に示すように揺動板43の内周孔92に圧入嵌合される。また、内側継手部材71の雌スプライン76は、図1に示すように中心軸57の雄スプライン81に嵌合される。内側継手部材71の右側端部には雌スプライン76に続いてテーパ状面取り部75が設けられている。スプライン81、76と止め輪82とによる固定方法では、組立性に優れると共に、分解することも可能となって、メンテナンス性等に優れる。
 図2(a)に示すように、外側継手部材73の球状内周面86と内側継手部材71の球状外周面80とが球面嵌合されている。球状内周面86と球状外周面80の曲率中心は、いずれも、継手の中心Oに形成されている。図2(b)に示すように、外側継手部材73の球状内周面86には6本のトラック溝85が形成され、内側継手部材71の球状外周面80には、外側継手部材73のトラック溝85と対向するトラック溝77が形成されている。内側継手部材71および外側継手部材73のトラック溝77、85は直線状に形成されている。外側継手部材73に形成された直線状トラック溝85a、85bは、2条ずつ左右対称に傾斜して設けられており、内側継手部材71に形成された直線状トラック溝77a、77bは、外側継手部材73の対となる直線状トラック溝85a、85bとは反対方向に2条ずつ左右対称に傾斜して設けられている。その結果、内側継手部材71と外側継手部材73の対となるトラック溝77a、85aおよびトラック溝77b、85bは、それぞれ交差し、この交差部分にボール72が配置されている。
 上記の構成により、継手が作動角をとった場合、外側継手部材73と内側継手部材71の両軸線がなす角度を二等分する平面上にボール72が常に案内され、二軸間で等速に回転トルクが伝達されることになる。このような等速自在継手70の機能を利用して揺動板43の回転阻止機構M(図1参照)を構成したので、揺動板43の傾斜角度に応じて、ボール72が内側継手部材71と外側継手部材73のトラック溝77、85に係合しながら往復移動して揺動板43の回転阻止をスムーズに行える。また、揺動板43の揺動運動が、等速自在継手70の継手中心Oとし、内側継手部材71および外側継手部材73のトラック溝77、85とボール72との間や球面接触部80、86で行われるので、振動のない安定した揺動運動が実現する。
 トラック溝の形態をさらに詳述する。図2(b)に示すように、継手が作動角0°の状態で、二点鎖線で示す仮想正三角柱の3つの側面S1、S2、S3を継手の軸線K-Kに対して平行にかつ継手の軸線K-Kから等距離になるように配置したとき、各側面S1、S2、S3上に外側継手部材73の2条ずつのトラック溝85a、85bのボール軌道中心線L2a、L2b(図3参照)が位置し、その状態で、両トラック溝85a、85bのボール軌道中心線L2aとL2bが左右対称に傾斜している。換言すれば、2条ずつのトラック溝85a、85bのボール軌道中心線L2a、L2bが互いに反対方向に傾斜して設けられている。内側継手部材71の2条ずつの直線状トラック溝77a、77bのボール軌道中心線L1a、L1b(図4参照)も、各側面S1、S2、S3上に位置し、その状態で、両トラック溝77a、77bのボール軌道中心線L1a、L1bが左右対称に傾斜している。そして、外側継手部材73の2条ずつのトラック溝85a、85bのボール軌道中心線L2a、L2bと内側継手部材71の2条ずつのトラック溝77a、77bのボール軌道中心線L1a、L1bの傾斜方向は反対方向となっており、対となる外側継手部材73のトラック溝85aと内側継手部材71のトラック溝77aとが交差し、また、対となる外側継手部材73のトラック溝85bと内側継手部材71のトラック溝77bとが交差して形成されている(図4参照)。各交差部分に1個ずつボール72が配置されている。ここで、上記のボール軌道中心線とは、トラック溝に配置されたボールがトラック溝に沿って移動するときのボールの中心が描く軌跡を意味する。したがって、トラック溝の傾斜状態は、ボール軌道中心線の傾斜状態と同じである。
 図3に外側継手部材73を示す。図3(a)は外側継手部材73の正面図であり、図3(b)は外側継手部材73のN-N断面で矢視した図であり、図3(c)は外側継手部材73の縦断面図である。図3(b)に示すように、外側継手部材73の内周には球状内周面86が形成され、直線状トラック溝85a、85bが2条ずつ左右対称に傾斜して設けられている。トラック溝85aのボール軌道中心線L2aとトラック溝85bのボール軌道中心線L2bは、それぞれ、継手の軸線K-Kに対して傾斜角βだけ傾斜し、その傾斜方向は互いに反対方向に形成されている。この傾斜状態を、本明細書では左右対称に傾斜すると表現する。傾斜角βは、等速自在継手70の機能を考慮して、適宜変更することができる。
 図3(a)に示すように、継手が作動角0°の状態で、二点鎖線で示す仮想正三角柱の3つの側面S1、S2、S3を継手の軸線K-Kに対して平行にかつ継手の軸線K-Kから等距離になるように配置したとき、各側面S1、S2、S3上に外側継手部材73の2条ずつのトラック溝85a、85bのボール軌道中心線L2a、L2bが位置する。各側面S1、S2、S3上に位置するボール軌道中心線L2a、L2bの間隔は、図3(c)の右側端部に向けて拡がり、左側端部に向けて狭まっている。そのため左側端部付近ではトラック溝85a、85bが合流するように形成されている。
 次に内側継手部材を図4に示す。図4(a)は内側継手部材71の正面図であり、図4(b)は、図4(a)のP-P線で矢視した内側継手部材71の外周面を示した図であり、図4(c)は、図4(a)のQ-Q線で矢視した内側継手部材71の外周面を示した図である。図4(b)に示すように、内側継手部材71の外周には球状外周面80が形成され、直線状トラック溝77a、77bが2条ずつ左右対称に傾斜して設けられている。トラック溝77aのボール軌道中心線L1aとトラック溝77bのボール軌道中心線L1bは、それぞれ、継手の軸線K-Kに対して傾斜角βだけ傾斜し、その傾斜方向は互いに反対方向に形成されている。また、内側継手部材71のトラック溝77a、77bのボール軌道中心線L1a、L1bは、対となる外側継手部材73のトラック溝85a、85bのボール軌道中心線L2a、L2bとは、それぞれ反対方向に傾斜している。この結果、内側継手部材71および外側継手部材73のトラック溝77a、85aおよびトラック溝77b、85bが継手中心Oで交差し、この交差部分にボール72(図示省略)が配置される。
 前述した外側継手部材73と同様、図4(a)に示すように、継手が作動角0°の状態で、二点鎖線で示す仮想正三角柱の3つの側面S1、S2、S3を継手の軸線K-Kに対して平行にかつ継手の軸線K-Kから等距離になるように配置したとき、各側面S1、S2、S3上に内側継手部材71の2条ずつのトラック溝77a、77bのボール軌道中心線L1a、L1bが位置する。各側面S1、S2、S3上に位置するボール軌道中心線L1a、L1bの間隔は、前述した外側継手部材73とは反対に、図4(c)の右側端部に向けて狭まり、左側端部に向けて拡がっている。そのため右側端部付近ではトラック溝77a、77bが合流するように形成されている。球状外周面80は、円周方向の3箇所に組込み用の切欠き部71aが設けられている。外側継手部材73への内側継手部材71の組込み方法については、後述する。
 図5に内側継手部材71の斜視図を示す。この図により、内側継手部材71の外周に形成された直線状トラック溝77a、77bの傾斜状態や外周に形成された球状外周面80および切欠き部71a、さらにはテーパ状面取り部75と雌スプライン76の形成状態が分かりやすく理解される。
 次に、ボール72とトラック溝77、85との接触形態を図6及び図7に基づいて説明する。図6および図7は、いずれも継手中心0(図2(a)参照)における部分的な横断面図である。ただし、図6および図7では、トラック溝77、85が継手の軸線K-Kに対して傾斜しているので、その断面形状を正しく示すため、トラック溝77、85については、そのボール軌道中心線L1、L2のそれぞれの軸線方向から見た横断面として複合させた図としている。図6はアンギュラコンタクトの場合を示し、図7はサーキュラコンタクトの場合を示す。図6に示すように、アンギュラコンタクトにおいては、内側継手部材71のトラック溝77および外側継手部材73のトラック溝85の横断面形状は、ゴシックアーチ状、或いは楕円形状(図示省略)である。本実施形態ではゴシックアーチ状のものを示す。内側継手部材71のトラック溝77とボール72とは2点C11、C12で接触し、外側継手部材73のトラック溝85とボール72とは2点C21、C22で接触する。ボール72の中心Oと各トラック溝77、85の接触点であるC11、C12、C21、C22とを結ぶ直線とボール72の中心Oを通りR-R線と平行な直線とのなす角度が接触角αである。アンギュラコンタクトとすることにより、ボール72とトラック溝77、85とは接触角αをもって接触し、接触点が一定となるので、安定した接触状態となる。また、トラック溝底部に隙間Sが生じ、この隙間に潤滑剤が介在されて優れた潤滑性を発揮する。
 図7に示すサーキュラコンタクトにおいては、ボール72の半径よりトラック溝77、85の曲率半径が適宜大きく形成されており、ボール72は、内側継手部材71のトラック溝77とは1点C3で接触し、外側継手部材73のトラック溝85とは1点C4で接触する。点C3、C4は、ボール72の中心Oを通りR-R線と平行な直線上に位置する。サーキュラコンタクトにおいては、アンギュラコンタクトの場合よりもボール72とトラック溝77、85との接触面積を大きく設定することができるため、接触率の設定により、アンギュラコンタクトよりも接触面圧を緩和することができる。圧縮機の潤滑条件や運転条件により接触形態をアンギュラコンタクトにするか或いはサーキュラコンタクトにするか適切に選択することができる。
 さらに、ラジアル荷重の支持構造を図8に基づいて説明する。図8は、図6および図7と同様、継手中心0における部分的な横断面図であるが、トラック溝77、85については、そのボール軌道中心線L1、L2のそれぞれの軸線方向から見た横断面として複合させた図としている。まず、ここで、トラック隙間と球面隙間を図8に基づいて定義する。アンギュラコンタクト、サーキュラコンタクトのいずれの場合でも、内側継手部材71と外側継手部材73の軸線を一致させた状態において、トラック隙間とは、ボール72を内側継手部材71のトラック溝77に接触させた位置と、外側継手部材73のトラック溝85に接触させた位置との継手半径方向におけるボール中心間距離Vと定義し、球面隙間とは、内側継手部材71の球状外周面80と外側継手部材73の球状内周面86との間の継手半径方向における隙間Wと定義する。圧縮機39が運転中に揺動板43(図1参照)から等速自在継手70に負荷されるラジアル荷重の支持構造の形態の一つとして、ボール72とトラック溝77、85との間で支持することができる。この場合には、トラック隙間Vを球面隙間Wよりも小さくする設定する。これにより、低摩擦で耐久性に優れたラジアル荷重の支持構造を構成することができる。さらに、上記のトラック隙間を負に設定し予圧を付与してもよい。これにより、高速回転時のアンバランス(振れ回り)を抑制することができる。
 ラジアル荷重の支持構造の別の形態として、等速自在継手70に負荷されるラジアル荷重を、内側継手部材71の球状外周面80と外側継手部材73の球状内周面86との球面間で支持することができる。この場合は、トラック隙間Vを球面隙間Wよりも大きく設定する。これにより、球面滑り構造によりラジアル荷重を受けることができ、「みそすり運動」を安定させることができる。なお、球面滑り構造とする場合、球状外周面80と球状内周面86の一方あるいは両方の表面を、摺動抵抗を低減させるための表面処理、例えば、二硫化モリブデン等の低摩擦抵抗のコーティング処理を施しておくのが望ましい。
 上記のように、トラック隙間Vと球面隙間Wとを設定、管理することによって、継手に負荷されるラジアル荷重を、ボールとトラック溝間での支持構造や、あるいは球面滑り構造により支持することができる。したがって、圧縮機の運転条件等によりラジアル荷重の支持構造を適切に選択することができる。
 次に、図9に基づいて、外側継手部材73への内側継手部材71の組込み方法を説明する。内側継手部材71の球状外周面80には円周方向の3箇所に組込み用の切欠き部71aが設けられている。このような切欠き部71aを設けたことによって、外側継手部材73と内側継手部材71と間に組み込みを可能とする隙間が形成され、内側継手部材71の外側継手部材73への組み込み性の向上を図ることができる。図示のように、まず、外側継手部材73の軸線と内側継手部材71の軸線とが直交する状態とする。次に、外側継手部材73に対して内側継手部材71を矢印方向に沿って移動させて外側継手部材73の球状内周面86に内側継手部材71の球状外周面80が当接するまで挿入する。その後、内側継手部材71を90度回転させて、外側継手部材73の軸線に内側継手部材71の軸線を一致させることにより、外側継手部材73への内側継手部材71の組込みが完了する。なお、ボール72は、外側継手部材73に内側継手部材71を組込んだ後、両継手部材71、73の間に大きな作動角をつけて、トラック溝77、85の開いた空間からボールを挿入する。これにより、等速自在継手70が組立てられる。
 次に、本発明の第2の実施形態である揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を図10~図14に基づいて説明する。図10は揺動斜板型可変容量圧縮機の全体構造を示す縦断面図である。第1の実施形態で述べたように、揺動斜板型可変容量圧縮機39の作動状態において、転がり軸受、等速自在継手や各構成部材の摺動部分は、圧縮機39内の微量な潤滑剤による過酷な潤滑条件下にある。このような潤滑条件下にあるが、本実施形態の回転阻止機構Mを構成する等速自在継手70は、その構成部材の少なくとも1つが金属焼結体からなるので、潤滑性能を確保することができる。金属焼結体の詳細については後述する。揺動斜板型可変容量圧縮機の構造や作動は、第1の実施形態で説明した内容と同じであるので、第1の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。
 本発明の第2の実施形態である揺動板の回転阻止機構を構成する等速自在継手の詳細を図11~図14に基づいて説明する。図11に示す等速自在継手70は、図10に示した等速自在継手70を拡大したものである、図11(a)は、図11(b)の等速自在継手70のR-R線における縦断面図であり、図11(b)は正面図である。本実施形態では、等速自在継手70の外側継手部材73および内側継手部材71が金属焼結体で形成されている。第1の実施形態と同様、本実施形態の回転阻止機構の概要として、等速自在継手70の外側継手部材73が揺動板43に取り付け固定され、一方、内側継手部材71が中心軸57に取り付け固定されて、揺動板43の回転を阻止するための回転阻止機構Mが構成される。この回転阻止機構Mにより、揺動板43が斜板42と共に揺動運動するものの、斜板42の回転運動とは無関係に回転しないように停止していることが可能となる。この等速自在継手70の構造、作動や組込み方法、ボールとトラック溝との接触形態、ラジアル荷重の支持構造などは、第1の実施形態で説明した内容と同じであるので、第1の実施形態や第2の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。
 次に、本実施形態の回転阻止機構Mを構成する等速自在継手70に適用される金属焼結体について、図12~14に基づいて詳述する。本実施形態では、等速自在継手70の外側継手部材73および内側継手部材71が金属焼結体で形成されている。図12および図13では、外側継手部材73の圧粉体を73’、金属焼結体を73”として示し、内側継手部材71の圧粉体を71’、金属焼結体を71”として示す。圧粉体73’、71’および金属焼結体73”、71”は、最終製品としての外側継手部材73、内側継手部材71とは若干細部形状が異なる部分があるが、この点については省略して単純化して説明する。外側継手部材73および内側継手部材71は、金属粉末を主成分とする原料粉末の圧粉体を焼結することによって形成された金属焼結体73”、71”からなり、その表面には、熱処理による硬化層(図示省略)が形成されている。このような構成を有する外側継手部材73および内側継手部材71は、主に、図14に示すような原料粉末準備工程S1、圧粉工程S2、脱脂工程S3、焼結工程S4、熱処理工程S5、仕上げ工程S6および潤滑剤含浸工程S7を経て製造される。
 原料粉末準備工程S1では、金属焼結体からなる外側継手部材73および内側継手部材71の成形用材料としての原料粉末が準備・生成される。原料粉末は、例えば、鉄(Fe)を主成分とし、これに少なくとも1.0~2.0mass%のクロム(Cr)および0.05~0.5mass%のモリブデン(Mo)を含み、残部を鉄系合金および不可避的不純物とした合金化粉とされる。これにより、より高強度な金属焼結体が得られ、強度、耐久性が向上する。クロムの含有量は、好ましくは1.0~2.0mass%、さらに好ましくは1.2~1.8mass%であり、モリブデンの含有量は、好ましくは0.05~0.5mass%、さらに好ましくは0.1~0.3mass%である。クロムおよびモリブデンの添加は、焼入れ性を向上させ、硬度が低くなりやすい金属焼結体の欠点を補うことができる。
 この原料粉末には、必要に応じて、添加剤として、銅、二硫化モリブデン、黒鉛等の固体潤滑剤や、成形を容易にするためにステアリン酸亜鉛や非金属系潤滑剤であるエチレンビスステアルアミド等の潤滑剤を混合しても良い。
 圧粉工程S2では、上記の原料粉末を圧粉することにより、外側継手部材73および内側継手部材71の形状をなした圧粉体73’、71’を形成する。圧粉体73’、71’は、焼結温度以上で加熱することにより形成される金属焼結体73”、71”の空孔率が5%以上で20%以下となるように高密度に圧縮成形される。本実施形態で用いられる原料粉末は鉄を主成分とするものであり、鉄の密度は7.87g/cmであるので、上記の圧粉体73’、71’は、金属焼結体73”、71”となったときの密度が7.0~7.5g/cmの範囲内になるように圧縮成形することが望ましい。
 具体的には、例えばサーボモータを駆動源としたCNCプレス機に圧粉体形状に倣ったキャビティを画成してなる成形金型をセットし、キャビティ内に充填した上記の原料粉末を600~1500MPaの加圧力で加圧することにより圧粉体73’、71’を成形する。圧粉体73’、71’の成形時において、成形金型は70℃以上に加温してもよい。
 金属焼結体73”、71”の空孔率を上記の範囲内となるような圧粉体73’、71’を得るべく、原料粉末を高密度に圧縮すると、圧粉体73’、71’の表面がキャビティの内壁面に密着してしまい、圧粉体73’、71’をスムーズに成形金型から離型することができない恐れがある。この点、本実施形態では、原料粉末に固体潤滑剤を混合したことから、圧粉体73’、71’の成形時には、上記の高い加圧力により固体潤滑剤を液相化し、この液相化された固体潤滑剤を原料粉末相互間に拡散・浸透させることができる。したがって、脆性品である圧粉体73’、71’をスムーズに離型することができ、離型に伴う圧粉体73’、71’の形状の崩れを回避することができる。
 脱脂工程S3では、圧粉体73’、71’に含まれる潤滑剤等が除去される。脱脂は、一般的な焼結金属製品を製作する場合と同様の条件で行うことができる。
 焼結工程S4では、脱脂された圧粉体73’、71’を焼結温度以上で加熱し、隣接する原料粉末同士を焼結結合させることによって金属焼結体73”、71”を形成する。原料粉末は鉄を主成分とするものであることから、酸化を可及的に防止するために、例えば窒素ガスおよび水素ガスの混合ガス雰囲気下に圧粉体73’、71’を配置し、これを1150~1300℃(例えば1250℃)で60分間以上加熱することにより金属焼結体73”、71”を形成する。なお、圧粉体73’、71’の焼結は、上記のような不活性ガス雰囲気下のみならず、真空下で行うようにしてもよい。
 焼結工程S4を経た金属焼結体73”、71”のトラック溝85、77や球状面86、80に転造加工やバニシング加工などの塑性加工を施すことにより、より高密度に成形することができる。この場合には、上記の加工を施した金属焼結体73”、71”の表層部の空孔率は小さくなるが、この表層部を含めた金属焼結体73”、71”の全体の空孔率を5%以上で20%以下にする。上記の塑性加工は、必要に応じて実施すればよく、必ずしも実施する必要はない。
 熱処理工程S5は、金属焼結体73”、71”に焼入れ処理等の熱処理を施すことにより、その表面に硬化層(図示省略)を形成する工程である。これにより、金属焼結体73”、71”の摺動面やトラック溝などの表面にHV513~750の高い表面硬度を付与する。これにより、摩耗粉が転動部や摺動部に入り込んで更なる摩耗を引き起こす原因となったり、摩耗粉が金属焼結体73”、71”の空孔に詰まり、オイルポット効果を減少させる等の問題を防止でき、球面接触部やボールとトラック溝間の転動疲労に対する耐久性を確保することができる。強度および硬度を確保するための焼入方法としては、ずぶ焼入れや浸炭焼入れを採用することができ、また、材料や製品仕様により適宜選択することができる。しかし、炭素量が少ない材料の場合は浸炭焼入れが望ましい。
 仕上げ工程S6は、金属焼結体73”、71”の所定部位に対して、研削加工等の仕上げ処理を施すことにより、金属焼結体73”、71”の必要な部位を一層高精度化する工程である。この仕上げ工程S6は、必要に応じて実施すればよく、必ずしも実施する必要はない。
 潤滑剤含浸工程S7は、金属焼結体73”、71”に潤滑剤を初期含浸する工程である。これにより、揺動斜板型可変容量圧縮機内の希薄潤滑下にもかかわらず、運転開始時より良好な潤滑状態を得ることができる。初期含浸する潤滑剤は、具体的には、ポリアルキルグリコール(PAG)が好ましい。PAGは、カーエアコン用コンプレッサで一般的に使用される冷媒と相溶性があり、冷媒と共存する潤滑剤として好ましい。また、この潤滑剤含浸工程S7も、必要に応じて実施すればよく、必ずしも実施する必要はない。
 次に、第3の実施形態を図15に基づいて説明する。図15は本実施形態の回転阻止機構における等速自在継手の縦断面図である。前述した第1の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。
 第3の実施形態の回り止め機構では、等速自在継手70の内側継手部材71のみが金属焼結体で形成されている。外側継手部材73およびボール72は、通常用いられる溶製材で形成されている。金属焼結体からなる内側継手部材71は、その球状外周面80が外側継手部材73の球状内周面86と球面接触するので、外側継手部材73が溶製材であっても、各球面嵌合部に潤滑剤が入り込むので、良好な潤滑状態を得ることができる。本実施形態の等速自在継手の構造、ボールとトラック溝との接触形態、ラジアル荷重の支持形態や金属焼結体の組成、性状や製造の工程などは、第1の実施形態や第2の実施形態において前述した内容と同様であるので、説明を省略する。
 本発明の第4の実施形態の回り止め機構を図16に基づいて説明する。本実施形態は、第3の実施形態と比べて、回転阻止機構を構成する等速自在継手のボール72をセラミックスで形成した点が異なる。図16(a)は等速自在継手の縦断面図であり、図16(b)は正面図である。前述した実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。
 本実施形態では、ボール72をセラミックスで形成し、内側継手部材71(焼結金属体製)および外側継手部材73(例えばS53C材)とは異質材とすることにより、ボール72とトラック溝77、85との接触部における耐久性を確保することができる。セラミックスの材質としては、第一に窒化ケイ素(Si)が望ましいが、異種材適用の効果という観点から、炭化ケイ素(SiC)、ジルコニア(Al)、アルミナ(ZrO)を適用してもよい。セラミックス形成したボール72は、鋼材に比べて熱膨張係数が小さく、高温での内部隙間の変化が小さく、ボールの接触部の変形も小さい。また、内側外側の両継手部材とは異質材となるので、転動接触部での凝着が生じにくくなる。したがって、揺動斜板型圧縮機の駆動軸が高速回転(概ね最大10,000rpm)し、かつ希薄潤滑下でのボール接触部の転動耐久性を向上させることができる。
 本実施形態の回転阻止機構を構成する等速自在継手70は、回転駆動時には、ボール72の個数の内、1つ飛びのボールでトルク負荷を受ける(前述した各実施形態においても同じ)。図16(b)に示すように、外側継手部材73のトルク負荷方向を矢印方向とすると、ボール個数が6個のうち、トラック溝77a、85aに組込まれたハッチングを付した3個のボールでトルク負荷を受ける。トルク方向が逆の場合には、反対にトラック溝77b、85bに組込まれたハッチングのない3個のボールが負荷を受けることになる。揺動斜板型可変容量圧縮機は、機能上トルク方向が変動しない(減速時を除く)ため、トラック溝77a、85aに組込まれるハッチングを付した3個のボール72のみをセラミックス製とし、トラック溝77b、85bに組込まれるハッチングのないボール77は鋼球としてもよい。本実施形態の等速自在継手の構造、ボールとトラック溝との接触形態、ラジアル荷重の支持形態や金属焼結体の組成、性状や製造の工程などは、第1の実施形態や第2の実施形態において前述した内容と同様であるので、説明を省略する。
 以上の各実施形態やその変形例では、保持器のない6個ボールのデルタ型等速自在継手を回転阻止機構に適用した場合について説明したが、ボールの個数は偶数個であればよく、8個や10個以上の等速自在継手も適用することができる。また、セラミックス製ボールは、揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を構成する他の形式の等速自在継手、例えば、ツェッパ型等速自在継手にも適用することができる。
 また、前述した実施形態では、中心軸57と内側継手部材71とは、スプライン81、76と止め輪82とにより固定するようにしたが、中心軸57と内側継手部材71とを溶接や圧接により固定するようにしてもよい。スプライン81、76と止め輪82とによる固定方法では、組立性に優れると共に、分解することも可能となって、メンテナンス性等に優れる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
39   揺動斜板型可変容量圧縮機
40   ハウジング
41   駆動軸
42   斜板
43   揺動板
44   ピストン
57   中心軸
70   等速自在継手
71   内側継手部材
71”  外側継手部材の金属焼結体
72   トルク伝達ボール
73   外側継手部材
73”  外側継手部材の金属焼結体
77   トラック溝
80   球状外周面
85   トラック溝
86   球状内周面
K    継手の軸線
M    回転阻止機構
O    継手中心
P    トラック隙間
Q    球面隙間
S    仮想正多角柱の側面
α    接触角
β    傾斜角

Claims (21)

  1.  ハウジングに回転自在に支持された駆動軸と、この駆動軸に連結されて回転すると共に、前記駆動軸に対して傾斜可能な斜板と、この斜板に軸受を介して連結され、回転が阻止された揺動板と、この揺動板に連結されて前記駆動軸の軸方向に往復運動するピストンと、前記揺動板を支持するために前記ハウジングに支持された中心軸とを備えた揺動斜板型可変容量圧縮機の揺動板の回転阻止機構において、
     前記揺動板の回転阻止機構が等速自在継手で構成され、この等速自在継手は、内周に偶数個の直線状トラック溝が形成された外側継手部材と、外周に偶数個の直線状トラック溝が形成された内側継手部材と、前記外側継手部材と内側継手部材の対となるトラック溝間に配された偶数個のトルク伝達ボールとからなり、前記外側継手部材の直線状トラック溝は2条ずつ左右対称に傾斜して設けられ、前記内側継手部材の直線状トラック溝は2条ずつ前記外側継手部材の対となるトラック溝とは反対方向に左右対称に傾斜して設けられており、継手が作動角0°の状態で、前記ボールの半数に相当する角数の仮想正多角柱の各側面を継手の軸線に対して平行にかつ継手の軸線から等距離になるように配置したとき、前記外側継手部材と内側継手部材の対となる2条ずつの直線状トラック溝のボール軌道中心線が前記各側面上に配置され、前記外側継手部材の内周に形成された球状内周面と内側継手部材の外周に形成された球状外周面とが嵌合する等速自在継手であって、前記外側継手部材が前記揺動板に取付けられ、前記内側継手部材が前記中心軸に取付けられていることを特徴とする揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  2.  前記等速自在継手のトラック溝およびトルク伝達ボールの個数を6個とし、前記仮想正多角柱の角数を3としたことを特徴とする請求項1に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  3.  前記外側継手部材と内側継手部材の両トラック溝とボールとの間のトラック隙間を前記球状外周面と球状内周面との間の球面隙間よりも小さくし、継手に負荷されるラジアル荷重を前記トラック溝とボールとの間で受けることを特徴とする請求項1又は請求項2に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  4.  前記トラック隙間を負とし、予圧を付与したことを特徴とする請求項3に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  5.  前記外側継手部材と内側継手部材の両トラック溝とボールとの間のトラック隙間を前記球状外周面と球状内周面との間の球面隙間よりも大きくし、継手に負荷されるラジアル荷重を前記球状外周面と球状内周面との間で受けることを特徴とする請求項1又は請求項2に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  6.  前記等速自在継手の構成部材の少なくとも1つが金属焼結体からなり、その表面に熱処理による硬化層が形成されていることを特徴とする請求項1~5のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  7.  前記等速自在継手の内側継手部材が金属焼結体であることを特徴とする請求項6に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  8.  前記金属焼結体の空孔率が5%以上で20%以下であることを特徴とする請求項6又は請求項7に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  9.  前記金属焼結体は、鉄系合金の金属粉末を主成分とし、これに少なくともクロムおよびモリブデンを含む合金化粉からなることを特徴とする請求項6~8のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  10.  前記金属焼結体の合金化粉のクロムの含有量が1.0~2.0mass%、モリブデンの含有量が0.05~0.5mass%であることを特徴とする請求項6~9のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  11.  前記金属焼結体は、固体潤滑剤を混合した原料粉末の圧粉体を焼結することで形成されたものであることを特徴とする請求項6~10のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  12.  前記金属焼結体の表面硬度がHV513~750であることを特徴とする請求項6~11のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  13.  前記金属焼結体は潤滑剤が初期含浸されていることを特徴とする請求項6~12のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  14.  前記潤滑剤がポリアルキレングリコールであることを特徴とする請求項13に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  15.  前記ボールがセラミックスで形成されていることを特徴とする請求項1~14のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  16.  前記セラミックスが窒化ケイ素、炭化ケイ素、ジルコニア、アルミナのいずれかであることを特徴とする請求項15に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  17.  前記セラミックスで形成されたボールを回転方向トルクが負荷されるトラック溝間にのみ組込み、他のトラック溝間に組込むボールを鋼球としたことを特徴とする請求項15又は請求項16に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  18.  前記ボールとトラック溝とをアンギュラコンタクトとしたことを特徴とする請求項1~17のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  19.  前記ボールとトラック溝とをサーキュラコンタクトとしたことを特徴とする請求項1~17のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  20.  前記内側継手部材の外周面に外側継手部材への組み込み用の切欠き部を設けたことを特徴とする請求項1~19のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構。
  21.  請求項1~20のいずれか一項に記載の揺動斜板型可変容量圧縮機の揺動板の回転阻止機構を構成する等速自在継手。
     
     
     
PCT/JP2012/053339 2011-02-21 2012-02-14 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手 WO2012114929A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-034370 2011-02-21
JP2011034370 2011-02-21
JP2011-198652 2011-09-12
JP2011198652A JP2013060838A (ja) 2011-09-12 2011-09-12 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手
JP2011-210892 2011-09-27
JP2011210892A JP2012189074A (ja) 2011-02-21 2011-09-27 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手

Publications (1)

Publication Number Publication Date
WO2012114929A1 true WO2012114929A1 (ja) 2012-08-30

Family

ID=46720711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053339 WO2012114929A1 (ja) 2011-02-21 2012-02-14 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手

Country Status (1)

Country Link
WO (1) WO2012114929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042692A (zh) * 2021-03-03 2021-06-29 李学亮 一种制芯机加工用加沙量自动调节装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987940A (ja) * 1972-12-13 1974-08-22
JPS5220625B1 (ja) * 1968-06-27 1977-06-04
JPH04116018U (ja) * 1991-03-29 1992-10-15 エヌテイエヌ株式会社 等速ジヨイント
JP2000355726A (ja) * 1999-04-16 2000-12-26 Unisia Jecs Corp 合金鋼粉成形素材及び合金鋼粉加工体
JP2002372067A (ja) * 2001-06-18 2002-12-26 Ntn Corp プロペラシャフト用等速自在継手
JP2007198484A (ja) * 2006-01-26 2007-08-09 Denso Corp 等速ジョイント及びそれを用いた揺動斜板型圧縮機
WO2007114131A1 (ja) * 2006-03-28 2007-10-11 Ntn Corporation トルクリミッタ
JP2009127821A (ja) * 2007-11-27 2009-06-11 Ntn Corp 等速自在継手
JP2010024495A (ja) * 2008-07-18 2010-02-04 Ntn Corp 焼結金属製部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220625B1 (ja) * 1968-06-27 1977-06-04
JPS4987940A (ja) * 1972-12-13 1974-08-22
JPH04116018U (ja) * 1991-03-29 1992-10-15 エヌテイエヌ株式会社 等速ジヨイント
JP2000355726A (ja) * 1999-04-16 2000-12-26 Unisia Jecs Corp 合金鋼粉成形素材及び合金鋼粉加工体
JP2002372067A (ja) * 2001-06-18 2002-12-26 Ntn Corp プロペラシャフト用等速自在継手
JP2007198484A (ja) * 2006-01-26 2007-08-09 Denso Corp 等速ジョイント及びそれを用いた揺動斜板型圧縮機
WO2007114131A1 (ja) * 2006-03-28 2007-10-11 Ntn Corporation トルクリミッタ
JP2009127821A (ja) * 2007-11-27 2009-06-11 Ntn Corp 等速自在継手
JP2010024495A (ja) * 2008-07-18 2010-02-04 Ntn Corp 焼結金属製部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042692A (zh) * 2021-03-03 2021-06-29 李学亮 一种制芯机加工用加沙量自动调节装置

Similar Documents

Publication Publication Date Title
JP2013060838A (ja) 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手
KR100827358B1 (ko) 고하중용 미끄럼 베어링
KR100493218B1 (ko) 슬라이딩재 및 슬라이딩 장치
JP2003529711A (ja) ピストン
US9228573B2 (en) Wabble plate type variable displacement compressor
WO2012114929A1 (ja) 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手
KR20020088348A (ko) 사판식 압축기
KR100822508B1 (ko) 밀폐형 압축기
EP1589241A1 (en) Needle bearing, shaft, compressor for car air-conditioner, and planetrary gear mechanism for automatic speed changer
US6925925B2 (en) Piston for a compressor
JP5065160B2 (ja) 揺動板式可変容量圧縮機
JP4834395B2 (ja) 密閉形圧縮機
WO2009142099A1 (ja) 揺動板式可変容量圧縮機
CN106332550B (zh) 双头斜盘式压缩机及气缸体的制作方法
JP2013036339A (ja) 斜板式可変容量圧縮機の揺動板の回り止め機構およびこれを構成する等速自在継手
JP2012197679A (ja) 斜板式可変容量圧縮機の揺動板の回り止め機構およびこれを構成する等速自在継手
WO1986000380A1 (en) Power transmission device
JP2012189074A (ja) 揺動斜板型可変容量圧縮機の揺動板の回転阻止機構およびこれを構成する等速自在継手
JP3759771B2 (ja) 斜板式コンプレッサ
JP2002257042A (ja) 圧縮機における潤滑面形成対象部品
JP5606475B2 (ja) 液圧回転機および液圧回転機の製造方法
JP6665125B2 (ja) 液圧回転機
JP2003343423A (ja) 斜板式流体ポンプ・モータ
EP1281864A1 (en) A wobble plate arrangement for a compressor
JP2569350B2 (ja) 容量可変式コンプレッサ用のピストンロッドとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12750182

Country of ref document: EP

Kind code of ref document: A1