WO2012114651A1 - Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle - Google Patents

Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle Download PDF

Info

Publication number
WO2012114651A1
WO2012114651A1 PCT/JP2012/000414 JP2012000414W WO2012114651A1 WO 2012114651 A1 WO2012114651 A1 WO 2012114651A1 JP 2012000414 W JP2012000414 W JP 2012000414W WO 2012114651 A1 WO2012114651 A1 WO 2012114651A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
modified polyacrylonitrile
polyacrylonitrile
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2012/000414
Other languages
French (fr)
Japanese (ja)
Inventor
琢寛 幸
敏勝 小島
妥絵 奥山
境 哲男
正孝 仲西
淳一 丹羽
晶 小島
一仁 川澄
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Priority to JP2013500857A priority Critical patent/JP5618112B2/en
Publication of WO2012114651A1 publication Critical patent/WO2012114651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to sulfur-modified polyacrylonitrile suitably used as a positive electrode active material for a non-aqueous electrolyte secondary battery, and an evaluation method thereof.
  • a lithium ion secondary battery which is a type of non-aqueous electrolyte secondary battery, is a battery with a large charge / discharge capacity, and is mainly used as a battery for portable electronic devices. Lithium ion secondary batteries are also expected as batteries for electric vehicles.
  • a positive electrode active material of a lithium ion secondary battery As a positive electrode active material of a lithium ion secondary battery, a material containing a rare metal such as cobalt or nickel is generally used. However, since these metals have a small circulation amount and are expensive, in recent years, a positive electrode active material using a substance replacing these rare metals has been demanded.
  • the charge / discharge capacity of the lithium ion secondary battery can be increased.
  • the charge / discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is approximately six times the charge / discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material, which is a common positive electrode material. is there.
  • a compound of sulfur and lithium is generated during discharge.
  • This compound of sulfur and lithium is soluble in a non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of a lithium ion secondary battery.
  • a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that, when charging and discharging are repeated, it gradually deteriorates due to elution of sulfur into the electrolytic solution, and the battery capacity decreases.
  • cycle characteristic the characteristic of the lithium ion secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge.
  • the lithium ion secondary battery having a small decrease in charge / discharge capacity is a lithium ion secondary battery having excellent cycle characteristics, and the lithium ion secondary battery having a large decrease in charge / discharge capacity is a lithium ion secondary battery having inferior cycle characteristics.
  • Patent Document 1 introduces a technique of using polysulfide carbon having carbon and sulfur as main constituent elements as a positive electrode active material.
  • This polysulfide carbon is obtained by adding sulfur to a linear unsaturated polymer. According to this technique, elution of sulfur into the electrolytic solution can be suppressed by the carbon material. For this reason, it is thought that the cycle characteristic of the lithium ion secondary battery which uses this polysulfide carbon as a positive electrode active material improves. However, even with a lithium ion secondary battery using carbon polysulfide as the positive electrode active material, no significant improvement in cycle characteristics was observed.
  • the inventors of the present invention invented a positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile and sulfur (see Patent Document 2).
  • the charge / discharge capacity of a lithium ion secondary battery using this positive electrode active material for the positive electrode is large, and the lithium ion secondary battery using this positive electrode active material for the positive electrode is excellent in cycle characteristics.
  • lithium ion secondary batteries using sulfur-modified polyacrylonitrile as a positive electrode active material sometimes have different charge / discharge capacities depending on the polyacrylonitrile manufacturer and product lot. Therefore, in order to reduce the uneven quality of the lithium ion secondary battery, it is necessary to select and use sulfur-modified polyacrylonitrile suitable as a positive electrode active material for the lithium ion secondary battery.
  • JP 2002-154815 A International Publication No. 2010/044437
  • the present invention has been made in view of the above circumstances, sulfur-modified polyacrylonitrile capable of improving the charge / discharge capacity of a lithium ion secondary battery, and an evaluation method for selecting such sulfur-modified polyacrylonitrile, and
  • An object is to provide a positive electrode using the sulfur-modified polyacrylonitrile, a non-aqueous electrolyte secondary battery, and a vehicle equipped with the non-aqueous electrolyte secondary battery.
  • the sulfur-modified polyacrylonitrile of the present invention that solves the above problems is A sulfur-modified polyacrylonitrile made from sulfur and polyacrylonitrile, A region occupied by particles having a particle diameter of 1 ⁇ m or less and / or an aggregate of the particles in the whole particle is 80% or more in terms of an imaging area ratio.
  • Another sulfur-modified polyacrylonitrile of the present invention that solves the above problems is a sulfur-modified polyacrylonitrile using sulfur and polyacrylonitrile as a material,
  • the polyacrylonitrile is produced by a method other than emulsion polymerization.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the above-mentioned problems is characterized by containing the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material.
  • the non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes the sulfur-modified polyacrylonitrile of the present invention in the positive electrode as a positive electrode active material.
  • a vehicle of the present invention that solves the above-described problems is characterized by mounting the nonaqueous electrolyte secondary battery of the present invention.
  • the method for evaluating the sulfur-modified polyacrylonitrile of the present invention that solves the above problems is as follows.
  • An evaluation method for sulfur-modified polyacrylonitrile used as a positive electrode active material for a non-aqueous electrolyte secondary battery Of all the particles, particles having a particle diameter of 1 ⁇ m or less and / or an area occupied by the aggregate of the particles are determined as conforming products when the imaging area ratio is 80% or more, and the other regions are regarded as non-conforming products. It is characterized by evaluating.
  • the method for producing a non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes the method for evaluating sulfur-modified polyacrylonitrile of the present invention.
  • the nonaqueous electrolyte secondary battery using the sulfur-modified polyacrylonitrile of the present invention has a large charge / discharge capacity. Further, according to the method for evaluating sulfur-modified polyacrylonitrile of the present invention, sulfur-modified polyacrylonitrile that can improve the charge / discharge capacity of the non-aqueous electrolyte secondary battery can be selected. Therefore, if the method for evaluating sulfur-modified polyacrylonitrile of the present invention is used, sulfur-modified polyacrylonitrile that can be used for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity can be produced.
  • a non-aqueous electrolyte secondary battery having a large charge / discharge capacity can be produced. Furthermore, since the vehicle of the present invention is equipped with the above-described nonaqueous electrolyte secondary battery of the present invention, it is excellent in various characteristics that require electric power.
  • FIG. 6 is a SEM image of the surface of sulfur-modified polyacrylonitrile of sample 5.
  • 2 is an SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 6.
  • 3 is a SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 7.
  • 2 is a SEM image of the surface of a sulfur-modified polyacrylonitrile of sample 8.
  • 2 is an SEM image of the surface of sulfur-modified polyacrylonitrile of sample 9.
  • 3 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Sample 1.
  • FIG. 4 is a graph showing cycle characteristics of a lithium ion secondary battery of Sample 1.
  • 5 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Sample 8.
  • FIG. 4 is a graph showing cycle characteristics of a lithium ion secondary battery of Sample 1.
  • 5 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Sample 8.
  • 4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 1 by FT-IR.
  • 4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 2 by FT-IR.
  • 4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 3 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 4 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 5 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 6 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 7 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 8 by FT-IR.
  • 6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 9 by FT-IR.
  • 10 is a graph showing the relationship between the absorbance ratio (D 1230 / D 1250 ) of the sulfur-modified polyacrylonitrile of Samples 1 to 9 by FT-IR and the second discharge capacity.
  • 3 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 1.
  • 4 is a graph showing the results of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 2.
  • 4 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 3.
  • 4 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 4.
  • 6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 5.
  • 6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 6.
  • 6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 7.
  • 6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 8.
  • 6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 9.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material in the positive electrode.
  • the nonaqueous electrolyte secondary battery of the present invention is a battery using the positive electrode of the present invention, and contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material in the positive electrode.
  • the sulfur-modified polyacrylonitrile of the present invention is the same as that disclosed in Patent Document 2 above. Specifically, the sulfur-modified polyacrylonitrile of the present invention is made of sulfur and polyacrylonitrile, and contains carbon element (C) and sulfur element (S).
  • polyacrylonitrile is abbreviated as PAN as necessary.
  • Polyacrylonitrile as a material for sulfur-modified polyacrylonitrile is preferably in the form of a powder, and preferably has a mass average molecular weight of about 10 4 to 3 ⁇ 10 5 .
  • the particle size of polyacrylonitrile is preferably about 0.5 to 50 ⁇ m, more preferably about 1 to 10 ⁇ m, when observed with an electron microscope. If the molecular weight and particle size of polyacrylonitrile are within these ranges, the contact area between polyacrylonitrile and sulfur can be increased, and polyacrylonitrile and sulfur can be reacted with high reliability. For this reason, the elution of sulfur to the electrolytic solution can be more reliably suppressed.
  • sulfur-modified polyacrylonitrile As the positive electrode active material of a lithium ion secondary battery, the high capacity inherent in sulfur can be maintained, and elution of sulfur into the electrolyte is suppressed, so the cycle characteristics are greatly improved. . This is presumably because sulfur does not exist as a simple substance in sulfur-modified polyacrylonitrile, but exists in a stable state combined with polyacrylonitrile.
  • sulfur is heat-processed with polyacrylonitrile. When polyacrylonitrile is heated, it is considered that polyacrylonitrile is three-dimensionally crosslinked to form a condensed ring (mainly a 6-membered ring) and close the ring.
  • sulfur-modified polyacrylonitrile has a carbon skeleton derived from polyacrylonitrile.
  • the method for producing polyacrylonitrile includes a step of polymerizing an acrylonitrile monomer (hereinafter simply referred to as a monomer).
  • a monomer acrylonitrile monomer
  • general polymerization methods include bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization.
  • Bulk polymerization is a method in which polymerization is carried out by adding only a monomer or a small amount of a polymerization initiator to the monomer without using a solvent.
  • the product is mainly composed of a polymer and an unreacted monomer, and contains impurities derived from a polymerization initiator, but is pure as compared with other polymerization methods.
  • the viscosity of the reaction system increases with the progress of polymerization, and stirring and flow (removal from the reactor) and removal of heat of reaction become difficult.
  • Suspension polymerization is a polymerization method in which a monomer and a solvent (water) are mechanically stirred and suspended for polymerization.
  • a radical generator soluble in the monomer as the polymerization initiator.
  • the polymerization disclosure agent is present in the monomer droplets dispersed in the solvent. For this reason, the polymerization reaction proceeds in a state close to a bulk polymerization occurring in each monomer droplet. Since the reaction occurs in the monomer droplets, there is an advantage that a polymer having a small molecular weight (that is, a small particle size) and few impurities can be obtained.
  • Solution polymerization is a method in which a polymerization reaction is performed in a solvent.
  • a solvent that does not easily react with either the monomer or the catalyst (polymerization initiator) is used. According to this method, since the solvent absorbs heat, the reaction heat of polymerization is easy to adjust, but the reaction rate is slow. Since it is difficult to manage the solvent, it is not an industrially used method. It is technically difficult to produce a solution polymerized product having a uniform particle size.
  • Emulsion polymerization is a type of radical polymerization.
  • a polymerization initiator usually a radical generator
  • a medium such as water
  • a monomer that is hardly soluble in the medium and an emulsifier (surfactant).
  • emulsifier surfactant
  • Emulsion polymerization is suitable for making the particle shape uniformly at the submicron level, and is also optimal in terms of production efficiency.
  • high molecular weight that is, increase in particle size is unavoidable in emulsion polymerization.
  • the polyacrylonitrile obtained by the emulsion polymerization method contains an emulsifier as an impurity.
  • acrylamide generated by hydrolysis of acrylonitrile CH 2 ⁇ CHCN
  • polyacrylonitrile obtained by emulsion polymerization is not preferable as a material for sulfur-modified polyacrylonitrile for a positive electrode active material. That is, when sulfur-modified polyacrylonitrile using polyacrylonitrile obtained by emulsion polymerization as a raw material is used as a positive electrode active material, sulfur-modified polyacrylonitrile obtained using polyacrylonitrile obtained by other methods as a positive electrode active material Compared with the case where it uses as, the capacity
  • polyacrylonitrile produced by a method other than emulsion polymerization (bulk polymerization, suspension polymerization, solution polymerization, etc.).
  • Non-conforming PAN Polyacrylonitrile produced by emulsion polymerization
  • conforming PAN Polyacrylonitrile produced by other methods
  • the particle size of conforming PAN is very small compared to the particle size of non-conforming PAN. This is considered to be because the polymerization reaction proceeds in the micelle formed in the presence of the emulsifier in the emulsion polymerization.
  • the particle size of the incompatible PAN produced by emulsion polymerization is a size corresponding to the size of micelles formed in the emulsion polymerization reaction system.
  • the particle size of the conforming PAN is as small as approximately 1 ⁇ m or less, whereas the particle size of the nonconforming PAN is a large diameter exceeding 5 ⁇ m.
  • the particle size of the sulfur-modified polyacrylonitrile can be measured by the measurement method described later in the column of Examples.
  • the incompatible PAN includes acrylamide having a carboxylic acid-based surfactant remaining or synthesized during polymerization. Therefore, when the sulfur-modified polyacrylonitrile is subjected to IR analysis (for example, Fourier transform infrared spectroscopy, FT-IR), a peak derived from C ⁇ O of the carboxylic acid surfactant and / or acrylamide is confirmed. The presence or absence of this peak makes it possible to discriminate between compatible PAN and non-compatible PAN.
  • IR analysis for example, Fourier transform infrared spectroscopy, FT-IR
  • the absorbance ratio (D 1230 / D 1250 ) by FT-IR is small in the conforming PAN and large in the non-conforming PAN. Specifically, it is 0.75 or less in conforming PAN, and exceeds 0.75 in non-conforming PAN. For this reason, conforming PAN and non-conforming PAN can be distinguished also by the absorbance ratio (D 1230 / D 1250 ) by FT-IR.
  • stereoregularity include regularity of configuration and regularity of conformation. Of these, if the regularity of the configuration is low, it becomes atactic. If the regularity of the three-dimensional structure is low, the structure is not a straight chain but an intricate structure. In any case, the lower regularity results in a more complicated structure.
  • 13C NMR As a method for measuring stereoregularity, 13C NMR or the like may be used in addition to FT-IR.
  • the sulfur used in the sulfur-modified polyacrylonitrile is preferably in the form of a powder, like polyacrylonitrile. Although it does not specifically limit about the particle size of sulfur, When classifying using a sieve, what is in the range of the magnitude
  • the blending ratio of the polyacrylonitrile powder and sulfur powder used for the sulfur-modified polyacrylonitrile is not particularly limited, but is preferably 1: 0.5 to 1:10 by mass ratio, and preferably 1: 0.5 to 1: 7 is more preferable, and 1: 2 to 1: 5 is even more preferable.
  • sulfur-modified polyacrylonitrile contains carbon, nitrogen, and sulfur, and may contain small amounts of oxygen and hydrogen.
  • FIG. 1 As a result of X-ray diffraction of sulfur-modified polyacrylonitrile by CuK ⁇ ray, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2 ⁇ ) range of 20-30 °. It was done.
  • X-ray diffraction was measured by X-ray diffraction using CuK ⁇ rays with a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE). The measurement conditions were voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, measurement range: diffraction angle (2 ⁇ ) 10 ° -60 °.
  • mass loss by thermogravimetric analysis when sulfur-modified polyacrylonitrile is heated from room temperature to 900 ° C. at a rate of temperature increase of 20 ° C./min is 10% or less at 400 ° C.
  • mass loss by thermogravimetric analysis when sulfur-modified polyacrylonitrile is heated from room temperature to 900 ° C. at a rate of temperature increase of 20 ° C./min is 10% or less at 400 ° C.
  • mass decrease is recognized from around 120 ° C., and a large mass decrease due to the disappearance of sulfur is recognized suddenly at 200 ° C. or higher.
  • sulfur-modified polyacrylonitrile sulfur does not exist as a simple substance, but is considered to exist in a state of being bonded to polyacrylonitrile that has advanced ring closure.
  • FIG. 2 An example of the Raman spectrum of sulfur-modified polyacrylonitrile is shown in FIG.
  • the Raman spectrum shown in FIG. 2 there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ⁇ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, There is a peak near 317 cm ⁇ 1 .
  • the Raman shift peak described above is observed at the same position even when the ratio of elemental sulfur to polyacrylonitrile is changed. Thus, these peaks characterize sulfur-modified polyacrylonitrile.
  • Each of the peaks described above exists within a range of approximately ⁇ 8 cm ⁇ 1 with the above peak position as the center.
  • the “main peak” refers to a peak having the maximum peak height among all peaks appearing in the Raman spectrum.
  • the positive electrode of the present invention contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material.
  • the positive electrode can have the same structure as a general positive electrode for a non-aqueous electrolyte secondary battery (for example, a positive electrode for a lithium ion secondary battery) except for the positive electrode active material.
  • the positive electrode of the present invention can be manufactured by applying a positive electrode material, which is a mixture of sulfur-modified polyacrylonitrile, a conductive additive, a binder, and a solvent, to a current collector.
  • a mixed raw material in which sulfur powder and polyacrylonitrile powder are mixed can be heated (a heat treatment step is performed) after filling the positive electrode current collector.
  • polyacrylonitrile and sulfur are reacted to obtain sulfur-modified polyacrylonitrile, and at the same time, the sulfur-modified polyacrylonitrile and the current collector can be integrated without using a binder. If no binder is used, the amount of the positive electrode active material per positive electrode mass can be increased, and the capacity per positive electrode mass can be improved.
  • vapor grown carbon fiber Vapor Carbon Carbon: VGCF
  • carbon powder carbon black (CB)
  • acetylene black AB
  • ketjen black KB
  • graphite positive electrodes such as aluminum and titanium
  • VGCF vapor grown carbon fiber
  • CB carbon black
  • AB acetylene black
  • KB ketjen black
  • positive electrodes such as aluminum and titanium
  • fine metal powders stable in potential examples thereof include fine metal powders stable in potential.
  • polyvinylidene fluoride Polyvinylidene: PVDF
  • polytetrafluoroethylene PTFE
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamideimide
  • CMC carboxymethylcellulose
  • PVC polyvinylidene fluoride
  • PMA methacrylic resin
  • PAN polyacrylonitrile
  • PPO polyphenylene oxide
  • PEO polyethylene oxide
  • PE polyethylene
  • PP polypropylene
  • the solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like.
  • These conductive assistants, binders and solvents may be used as a mixture of plural kinds.
  • the amount of these materials to be blended is not particularly limited. For example, it is preferable to blend about 20 to 100 parts by weight of a conductive additive and about 10 to 20 parts by weight of a binder with respect to 100 parts by weight of sulfur-modified polyacrylonitrile.
  • a mixture of the sulfur-modified polyacrylonitrile of the present invention, the above-described conductive additive and binder is kneaded with a mortar or a press machine to form a film, and the film mixture is collected with a press machine or the like.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention can also be produced by pressure bonding to the body.
  • current collectors include aluminum foil, aluminum mesh, punched aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punched stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh
  • examples thereof include a punching copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon nonwoven fabric, and a carbon woven fabric.
  • the carbon non-woven fabric / woven fabric current collector made of carbon having a high graphitization degree is suitable as a current collector for sulfur-modified polyacrylonitrile because it does not contain hydrogen and has low reactivity with sulfur.
  • pitches that is, by-products such as petroleum, coal, coal tar, etc.
  • polyacrylonitrile fiber which are carbon fiber materials
  • the nonaqueous electrolyte secondary battery of the present invention preferably contains a conductive material in the positive electrode.
  • the conductive material refers to a material that exhibits high electrical conductivity or that can greatly improve the lithium ion conductivity of the positive electrode.
  • the electrical conductivity of the entire positive electrode and / or the conductivity of charge carriers such as lithium ions can be improved, and the discharge rate characteristics of the nonaqueous electrolyte secondary battery can be improved.
  • the material for the conductive material conductive material
  • the conductive material at least one metal selected from the group consisting of a fourth periodic metal, a fifth periodic metal, a sixth periodic metal, and a rare earth element, or a sulfide thereof can be used.
  • the 4th periodic metal, the 5th periodic metal, and the 6th periodic metal as used in this specification are based on a periodic table.
  • the fourth periodic metal refers to a metal included in the fourth periodic element in the periodic table.
  • the conductive material is preferably one that exhibits high electrical conductivity in a sulfide state or that can greatly improve the lithium ion conductivity of the positive electrode.
  • the conductive material consists of both the metal and its sulfide, or consists only of the metal sulfide. These conductive material materials preferably contain a large amount of sulfide, and more preferably consist only of sulfide.
  • the conductive material and the sulfur-modified polyacrylonitrile are easily combined by blending the metal with the positive electrode in a sulfide state, and the conductive material and the positive electrode active material are dispersed substantially uniformly. Further, by using sulfide as the conductive material, there is an advantage that the ratio of the metal and sulfur in the conductive material can be easily controlled within a desired range.
  • Non-aqueous electrolyte secondary battery Non-aqueous electrolyte secondary battery
  • the non-aqueous electrolyte secondary battery using the positive electrode of the present invention is simply abbreviated as a non-aqueous electrolyte secondary battery.
  • a lithium ion secondary battery using the positive electrode of the present invention is simply abbreviated as a lithium ion secondary battery.
  • the positive electrode is as described above.
  • the negative electrode active material a known carbon-based material such as lithium metal or graphite, an element that can occlude / release lithium ions and can be alloyed with lithium, and / or a compound containing the element can be used.
  • the charge carrier is lithium
  • the nonaqueous electrolyte secondary battery of the present invention is a lithium secondary battery, a lithium ion secondary battery, or a lithium polymer secondary battery.
  • metallic sodium an element that can occlude / release sodium ions and can be alloyed with sodium, and / or a compound containing the element can also be used.
  • the charge carrier is sodium
  • the nonaqueous electrolyte secondary battery of the present invention is a sodium secondary battery, a sodium ion secondary battery, or a sodium polymer secondary battery.
  • the elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, It is preferably at least one selected from the group consisting of Ge, Sn, Pb, Sb and Bi. Of these, silicon (Si) or tin (Sn) is particularly preferable.
  • the elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiO x (0.5 ⁇ x ⁇ 1.5). Silicon has a large theoretical capacity, but has a large volume change during charge and discharge. Therefore, it can be used in a compound state (ie, SiO x ) to reduce the volume change.
  • a tin alloy Cu—Sn alloy, Co—Sn alloy, etc.
  • a tin alloy Cu—Sn alloy, Co—Sn alloy, etc.
  • silicon-based materials such as silicon thin films and alloy-based materials such as copper-tin and cobalt-tin can be preferably used.
  • the charge carrier is sodium
  • hard carbon, soft carbon, or a tin compound as the negative electrode active material.
  • a negative electrode active material such as a carbon-based material, a silicon-based material, an alloy-based material, or the like that does not contain lithium, for example, among the negative electrode active materials described above
  • a short circuit occurs between the positive and negative electrodes due to the generation of dendrites. It is advantageous in that it is difficult.
  • a substance such as Li or Na that is involved in charge / discharge by ionizing and moving between the positive electrode and the negative electrode are not included in either the positive electrode or the negative electrode.
  • the charge carrier pre-doping method may be a known method.
  • an electrolytic doping method in which a half cell is assembled using metallic lithium as the counter electrode and electrochemically doped with lithium in the negative electrode can be used.
  • an adhesive pre-doping method in which a metal lithium foil attached to an electrode is allowed to stand in an electrolytic solution and lithium is doped into the negative electrode by utilizing diffusion of lithium.
  • the positive electrode is predoped with lithium, the above-described electrolytic doping method can be used. The same applies to sodium.
  • a silicon-based material that is a high-capacity negative electrode material is particularly preferable, and among these, thin-film silicon that is advantageous in terms of capacity per volume due to thin electrode thickness is more preferable.
  • an electrolyte obtained by dissolving an alkali metal salt as a supporting electrolyte (supporting salt) in an organic solvent can be used.
  • the organic solvent is preferably at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, ⁇ -butyrolactone, and acetonitrile.
  • the charge carrier is lithium
  • LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the supporting electrolyte.
  • the concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l.
  • the electrolyte is not limited to liquid.
  • the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery
  • the electrolyte is in a solid state (for example, a polymer gel).
  • the charge carrier is Na
  • sodium salts such as NaPF 6 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaI, NaClO 4 can be used for the electrolyte.
  • the nonaqueous electrolyte secondary battery may include a member such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte.
  • the separator is interposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode.
  • the separator is also required to have a function of holding an electrolytic solution.
  • the separator it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, polyacrylonitrile, aramid, polyimide, cellulose, glass or the like.
  • the shape of the nonaqueous electrolyte secondary battery is not particularly limited, and can be various shapes such as a cylindrical shape, a stacked shape, and a coin shape.
  • the production method of the present invention includes a step (heat treatment step) of heating a mixed material obtained by mixing the above-described sulfur-modified polyacrylonitrile material (that is, polyacrylonitrile powder and sulfur powder). What is necessary is just to mix a mixing material with general mixing apparatuses, such as a mortar and a ball mill.
  • a mixing material one obtained by simply mixing sulfur and a carbon material may be used.
  • the mixed raw material may be formed into a pellet shape and used.
  • a mixture of polyacrylonitrile powder, sulfur powder and conductive material may be used as a mixed material.
  • the sulfur contained in the mixed raw material and the carbon material are combined by heating the mixed raw material in the heat treatment step.
  • the heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, it is preferably performed in a closed system.
  • the atmosphere in which the heat treatment step is performed is not particularly limited, but it is preferably performed in an atmosphere that does not hinder the bonding between the carbon material and sulfur (for example, an atmosphere not containing hydrogen or a non-oxidizing atmosphere).
  • an atmosphere not containing hydrogen or a non-oxidizing atmosphere for example, when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, so that sulfur in the reaction system may be lost.
  • the vaporized sulfur reacts with the polyacrylonitrile at the same time as the polyacrylonitrile ring-closing reaction by heat treatment in a non-oxidizing atmosphere. It is believed that polyacrylonitrile is obtained.
  • the non-oxidizing atmosphere referred to here includes a reduced pressure state in which the oxygen concentration is low enough not to cause an oxidation reaction, an inert gas atmosphere such as nitrogen or argon, a sulfur gas atmosphere, and the like.
  • the mixed raw material is placed in a container that is kept tight enough not to dissipate sulfur vapor, and the inside of the container is decompressed.
  • heating may be performed in an inert gas atmosphere.
  • the mixed raw material may be heated in a vacuum packaged state with a material that does not easily react with sulfur vapor (for example, an aluminum laminate film).
  • the packaged raw material is put in a pressure vessel such as an autoclave containing water and heated, and the generated steam is added from the outside of the packaging material. It is preferable to press. According to this method, since pressure is applied by water vapor from the outside of the packaging material, the packaging material is prevented from being swollen and damaged by sulfur vapor.
  • the heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited.
  • the preferable heating temperature mentioned above should just be temperature which the coupling
  • the heating temperature is preferably 250 ° C. or more and 500 ° C. or less, more preferably 250 ° C. or more and 400 ° C. or less, and further preferably 300 ° C. or more and 400 ° C. or less.
  • the mixed raw material may be heated so that a part of the mixed raw material becomes a gas and a part becomes a liquid.
  • the temperature of the mixed raw material may be a temperature equal to or higher than the temperature at which sulfur is vaporized.
  • Vaporization here refers to the phase change of sulfur from a liquid or solid to a gas, and may be any of boiling, evaporation, and sublimation.
  • the melting point of ⁇ sulfur orthogonal sulfur, which is the most stable structure near room temperature
  • the melting point of ⁇ sulfur (monoclinic sulfur) is 119.6 ° C.
  • ⁇ sulfur monoclinic sulfur
  • the object to be treated may be used as it is as sulfur-modified polyacrylonitrile.
  • unit sulfur removal as sulfur modified polyacrylonitrile, when removing single-piece
  • the sulfur-modified polyacrylonitrile, the positive electrode for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery, and the evaluation method for the sulfur-modified polyacrylonitrile of the present invention will be specifically described.
  • the reaction apparatus 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas introduction tube 5, gas discharge tube 6), argon gas It has a pipe 50, a gas tank 51 containing argon gas, a trap pipe 60, a trap tank 62 containing a sodium hydroxide aqueous solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
  • reaction vessel 2 a bottomed cylindrical glass tube (made of quartz glass) was used. In the heat treatment step described later, the mixed raw material 9 was accommodated in the reaction vessel 2. The opening of the reaction vessel 2 was closed with a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Corporation) containing the thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the other one of the through holes. A gas discharge pipe 6 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the remaining one of the through holes.
  • alumina protective tube 40 alumina SSA-S, manufactured by Nikkato Corporation
  • the reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm.
  • the alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm.
  • the gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (inside the reaction vessel 2). The length of this exposed portion was 3 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 become approximately 100 ° C. or less in a heat treatment process described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out of the gas introduction pipe 5 and the gas discharge pipe 6 but is returned (refluxed) to the reaction vessel 2.
  • thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2.
  • the temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
  • An argon gas pipe 50 was connected to the gas introduction pipe 5.
  • the argon gas pipe 50 was connected to a gas tank 51 containing argon gas.
  • One end of a trap pipe 60 was connected to the gas discharge pipe 6.
  • the other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62.
  • the trap pipe 60 and the trap tank 62 are traps for hydrogen sulfide gas generated in a heat treatment process to be described later.
  • the heating was stopped when the mixed raw material 9 reached 360 ° C. After stopping the heating, the temperature of the mixed raw material 9 increased to 400 ° C. and then decreased. Therefore, in this heat treatment step, the mixed raw material 9 was heated to 400 ° C. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2. The heating time at this time was about 10 minutes at 400 ° C., and sulfur was refluxed.
  • Elemental sulfur removal step In order to remove elemental sulfur (free sulfur) remaining in the object to be treated after the heat treatment step, the following steps were performed.
  • the object to be treated after the heat treatment step was pulverized with a mortar. 2 g of the pulverized product was placed in a glass tube oven and heated at 200 ° C. for 3 hours while being vacuumed. The temperature elevation temperature at this time was 10 ° C./min. By this step, the elemental sulfur remaining in the object to be treated after the heat treatment step was evaporated and removed, and the sulfur-modified polyacrylonitrile of Example 1 not including (or substantially not including) elemental sulfur was obtained.
  • Negative electrode As the negative electrode, a metal lithium foil having a thickness of 500 ⁇ m punched to a diameter of 14 mm was used.
  • Electrolytic Solution As the electrolytic solution, a nonaqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate was used. Ethylene carbonate and diethyl carbonate were mixed at a mass ratio of 1: 1. The concentration of LiPF 6 in the electrolytic solution was 1.0 mol / l.
  • [4] Battery A coin battery was manufactured using the positive electrode and the negative electrode obtained in [1] and [2]. Specifically, in a dry room, a separator (Celgard 2400) made of a polypropylene microporous membrane with a thickness of 25 ⁇ m and a glass nonwoven fabric filter with a thickness of 500 ⁇ m are sandwiched between a positive electrode and a negative electrode, and an electrode body battery It was. This electrode body battery was accommodated in a battery case (CR2032-type coin battery member, manufactured by Hosen Co., Ltd.) made of a stainless steel container. The electrolyte solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain a lithium ion secondary battery of Example 1.
  • a separator made of a polypropylene microporous membrane with a thickness of 25 ⁇ m and a glass nonwoven fabric filter with a thickness of 500 ⁇ m are sandwiched between a positive electrode and a negative electrode, and an
  • the sulfur-modified polyacrylonitrile of Samples 1 to 5 was observed as an aggregate of fine particles having a particle size of 1 ⁇ m or less in the SEM image. Because it is an aggregate of a large number of particles, the aggregate as a whole appeared to be in the form of secondary particles of irregular shape. Assuming that the entire area where the sulfur-modified polyacrylonitrile was imaged was 100 area%, the area occupied by particles having a particle diameter of 1 ⁇ m or less and / or aggregates of these particles was 80 area% or more. Preferably it is 90 area% or more. On the SEM image, no granular material having a particle size exceeding 5 ⁇ m was confirmed.
  • the sulfur-modified polyacrylonitrile of Samples 6 to 9 was observed as a granular material having a particle size exceeding 5 ⁇ m in the SEM image. Although cracks were observed on the surface, the entire granule was not indeterminately shaped and was almost granular. Little or no aggregates of particles having a particle diameter of 1 ⁇ m or less and / or aggregates of these particles were confirmed.
  • the entire region where polyacrylonitrile was imaged in the SEM image obtained by imaging each sulfur-modified polyacrylonitrile at a magnification of 5000 was defined as a parameter, that is, “entire particle”. And the area
  • the parameter in the sulfur-modified polyacrylonitrile and the evaluation method of the present invention is not limited to this. For example, “the entire region where polyacrylonitrile is imaged in an SEM image captured at 3000 to 7000 times” may be used as a parameter.
  • the lithium ion secondary batteries of Samples 1 to 9 were repeatedly charged and discharged at 30 ° C. Specifically, CC discharge (low current discharge) was first performed at 0.1 C to 1.0 V. In the subsequent cycles, charge and discharge in which CC discharge was performed at 0.1 C to 1.0 V after CC charge to 0.1 V at 0.1 C was repeated. And the discharge capacity of the 2nd time of each lithium ion secondary battery was compared.
  • the second discharge capacity of each lithium ion secondary battery is 764.7 mAh / g for sample 1, 747.5 mAh / g for sample 2, 732.2 mAh / g for sample 3, 594.3 mAh / g for sample 4,
  • the sample 5 was 384.3 mAh / g
  • the sample 6 was 339.0 mAh / g
  • the sample 7 was 316.8 mAh / g
  • the sample 8 was 286.1 mAh / g
  • the sample 9 was 129.6 mAh / g.
  • FIGS The results of the cycle test of the lithium ion secondary battery of Sample 1 are shown in FIGS.
  • the result of the cycle test of the lithium ion secondary battery of Sample 8 is shown in FIG. Table 1 shows the second discharge capacity of each lithium ion secondary battery.
  • the second discharge capacity of the lithium ion secondary batteries of samples 1 to 5 was larger than the second discharge capacity of the lithium ion secondary batteries of samples 6 to 9. This result confirmed that the sulfur-modified polyacrylonitrile of Samples 1 to 5 was a compatible PAN, and the sulfur-modified polyacrylonitrile of Samples 6 to 9 was a non-compatible PAN.
  • FIGS. 25 shows a graph showing the relationship between the absorbance ratio by FT-IR (D 1230 / D 1250 ) and the second discharge capacity.
  • D 1230 / D 1250 of samples 1 to 5 which are compliant PANs is a very small value of 0.75 or less
  • D 1230 / D 1250 of samples 6, 8 and 9 which are non-compliant PANs is Since it was a large value exceeding 1.00, it can be understood that the conforming PAN and the non-conforming PAN can also be identified by D 1230 / D 1250 .
  • Reactor 2 Reaction vessel 3: Lid 4: Thermocouple

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention addresses the problem of providing sulfur-modified polyacrylonitrile that improves the charge-discharge capacity of a non-aqueous electrolyte secondary battery, and an evaluation method for selecting such sulfur-modified polyacrylonitrile. As the sulfur-modified polyacrylonitrile, the one in which the area occupied by particles having a grain size of 1 μm or less and/or the aggregate of such particles is 80% or more in the imaging area ratio of all particles, is selected.

Description

硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle
 本発明は、非水電解質二次電池用の正極活物質として好適に用いられる硫黄変性ポリアクリロニトリル、およびその評価方法に関する。 The present invention relates to sulfur-modified polyacrylonitrile suitably used as a positive electrode active material for a non-aqueous electrolyte secondary battery, and an evaluation method thereof.
 非水電解質二次電池の一種であるリチウムイオン二次電池は、充放電容量の大きな電池であり、主として携帯電子機器用の電池として用いられている。また、リチウムイオン二次電池は、電気自動車用の電池としても期待されている。 A lithium ion secondary battery, which is a type of non-aqueous electrolyte secondary battery, is a battery with a large charge / discharge capacity, and is mainly used as a battery for portable electronic devices. Lithium ion secondary batteries are also expected as batteries for electric vehicles.
 リチウムイオン二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含有するものが一般的である。しかし、これらの金属は流通量が少なく高価であるため、近年では、これらのレアメタルにかわる物質を用いた正極活物質が求められている。 As a positive electrode active material of a lithium ion secondary battery, a material containing a rare metal such as cobalt or nickel is generally used. However, since these metals have a small circulation amount and are expensive, in recent years, a positive electrode active material using a substance replacing these rare metals has been demanded.
 リチウムイオン二次電池の正極活物質として、硫黄を用いる技術が知られている。硫黄を正極活物質として用いることで、リチウムイオン二次電池の充放電容量を大きくできる。例えば、硫黄を正極活物質として用いたリチウムイオン二次電池の充放電容量は、一般的な正極材料であるコバルト酸リチウム正極材料を用いたリチウムイオン二次電池の充放電容量の約6倍である。 As a positive electrode active material of a lithium ion secondary battery, a technique using sulfur is known. By using sulfur as the positive electrode active material, the charge / discharge capacity of the lithium ion secondary battery can be increased. For example, the charge / discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is approximately six times the charge / discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material, which is a common positive electrode material. is there.
 しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄の電解液への溶出により次第に劣化し、電池容量が低下する問題がある。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。 However, in a lithium ion secondary battery using elemental sulfur as the positive electrode active material, a compound of sulfur and lithium is generated during discharge. This compound of sulfur and lithium is soluble in a non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of a lithium ion secondary battery. For this reason, a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that, when charging and discharging are repeated, it gradually deteriorates due to elution of sulfur into the electrolytic solution, and the battery capacity decreases. Hereinafter, the characteristic of the lithium ion secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge is referred to as “cycle characteristic”. The lithium ion secondary battery having a small decrease in charge / discharge capacity is a lithium ion secondary battery having excellent cycle characteristics, and the lithium ion secondary battery having a large decrease in charge / discharge capacity is a lithium ion secondary battery having inferior cycle characteristics.
 サイクル特性を向上させるため、硫黄を含む正極活物質(以下、硫黄系正極活物質と呼ぶ)に炭素材料を配合する技術が提案されている(例えば、特許文献1参照)。 In order to improve cycle characteristics, a technique has been proposed in which a carbon material is blended with a positive electrode active material containing sulfur (hereinafter referred to as a sulfur-based positive electrode active material) (see, for example, Patent Document 1).
 特許文献1には、炭素と硫黄を主な構成要素とするポリ硫化カーボンを正極活物質として用いる技術が紹介されている。このポリ硫化カーボンは、直鎖状不飽和ポリマーに硫黄が付加されたものである。この技術によると、硫黄の電解液への溶出を炭素材料によって抑制できる。このため、このポリ硫化カーボンを正極活物質とするリチウムイオン二次電池のサイクル特性は向上すると考えられる。しかし正極活物質としてポリ硫化カーボンを用いたリチウムイオン二次電池によっても、サイクル特性の顕著な向上はみられなかった。正極活物質としてポリ硫化カーボンを用いる場合(正極活物質用の炭素材料として直鎖状不飽和ポリマーを用いる場合)には、放電時に硫黄とリチウムとが結合すると考えられる。このため、ポリ硫化カーボンに含まれる-CS-CS-結合や-S-S-結合が切断されて、ポリマーが切断されるためだと考えられる。よって、リチウムイオン二次電池のサイクル特性をさらに向上させ得る硫黄系正極活物質が求められていた。 Patent Document 1 introduces a technique of using polysulfide carbon having carbon and sulfur as main constituent elements as a positive electrode active material. This polysulfide carbon is obtained by adding sulfur to a linear unsaturated polymer. According to this technique, elution of sulfur into the electrolytic solution can be suppressed by the carbon material. For this reason, it is thought that the cycle characteristic of the lithium ion secondary battery which uses this polysulfide carbon as a positive electrode active material improves. However, even with a lithium ion secondary battery using carbon polysulfide as the positive electrode active material, no significant improvement in cycle characteristics was observed. When carbon polysulfide is used as the positive electrode active material (when a linear unsaturated polymer is used as the carbon material for the positive electrode active material), it is considered that sulfur and lithium are combined during discharge. For this reason, it is considered that the polymer is cut by breaking the —CS—CS— bond or —SS— bond contained in the polysulfide carbon. Therefore, a sulfur-based positive electrode active material that can further improve the cycle characteristics of the lithium ion secondary battery has been demanded.
 本発明の発明者等は、ポリアクリロニトリルと硫黄との混合物を熱処理して得られる正極活物質を発明した(特許文献2参照)。この正極活物質を正極に用いたリチウムイオン二次電池の充放電容量は大きく、かつ、この正極活物質を正極に用いたリチウムイオン二次電池はサイクル特性に優れる。 The inventors of the present invention invented a positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile and sulfur (see Patent Document 2). The charge / discharge capacity of a lithium ion secondary battery using this positive electrode active material for the positive electrode is large, and the lithium ion secondary battery using this positive electrode active material for the positive electrode is excellent in cycle characteristics.
 しかしその一方で、硫黄変性ポリアクリロニトリルを正極活物質として用いたリチウムイオン二次電池は、ポリアクリロニトリルの製造元や製品ロット毎に異なる充放電容量を示す場合があった。したがって、リチウムイオン二次電池の品質のむらを低減する為には、リチウムイオン二次電池の正極活物質として適した硫黄変性ポリアクリロニトリルを選別し使用する必要があった。 However, on the other hand, lithium ion secondary batteries using sulfur-modified polyacrylonitrile as a positive electrode active material sometimes have different charge / discharge capacities depending on the polyacrylonitrile manufacturer and product lot. Therefore, in order to reduce the uneven quality of the lithium ion secondary battery, it is necessary to select and use sulfur-modified polyacrylonitrile suitable as a positive electrode active material for the lithium ion secondary battery.
特開2002-154815号公報JP 2002-154815 A 国際公開第2010/044437号International Publication No. 2010/044437
 本発明は上記事情に鑑みてなされたものであり、リチウムイオン二次電池の充放電容量を向上させ得る硫黄変性ポリアクリロニトリル、および、このような硫黄変性ポリアクリロニトリルを選別する為の評価方法、ならびに当該硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、当該非水電解質二次電池を搭載した車両を提供することを目的とする。 The present invention has been made in view of the above circumstances, sulfur-modified polyacrylonitrile capable of improving the charge / discharge capacity of a lithium ion secondary battery, and an evaluation method for selecting such sulfur-modified polyacrylonitrile, and An object is to provide a positive electrode using the sulfur-modified polyacrylonitrile, a non-aqueous electrolyte secondary battery, and a vehicle equipped with the non-aqueous electrolyte secondary battery.
 上記課題を解決する本発明の硫黄変性ポリアクリロニトリルは、
 硫黄およびポリアクリロニトリルを材料とする硫黄変性ポリアクリロニトリルであって、
 粒子全体のなかで粒子径1μm以下の粒子および/または該粒子の集合体の占める領域が、撮像面積比で80%以上であることを特徴とする。
The sulfur-modified polyacrylonitrile of the present invention that solves the above problems is
A sulfur-modified polyacrylonitrile made from sulfur and polyacrylonitrile,
A region occupied by particles having a particle diameter of 1 μm or less and / or an aggregate of the particles in the whole particle is 80% or more in terms of an imaging area ratio.
 上記課題を解決する本発明の他の硫黄変性ポリアクリロニトリルは、硫黄およびポリアクリロニトリルを材料とする硫黄変性ポリアクリロニトリルであって、
 該ポリアクリロニトリルが乳化重合以外の方法で製造されたものであることを特徴とする。
Another sulfur-modified polyacrylonitrile of the present invention that solves the above problems is a sulfur-modified polyacrylonitrile using sulfur and polyacrylonitrile as a material,
The polyacrylonitrile is produced by a method other than emulsion polymerization.
 上記課題を解決する本発明の非水電解質二次電池用正極は、本発明の硫黄変性ポリアクリロニトリルを正極活物質として含むことを特徴とする。 The positive electrode for a non-aqueous electrolyte secondary battery of the present invention that solves the above-mentioned problems is characterized by containing the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material.
 上記課題を解決する本発明の非水電解質二次電池は、本発明の硫黄変性ポリアクリロニトリルを正極活物質として正極に含むことを特徴とする。
 上記課題を解決する本発明の車両は、本発明の非水電解質二次電池を搭載していることを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes the sulfur-modified polyacrylonitrile of the present invention in the positive electrode as a positive electrode active material.
A vehicle of the present invention that solves the above-described problems is characterized by mounting the nonaqueous electrolyte secondary battery of the present invention.
 上記課題を解決する本発明の硫黄変性ポリアクリロニトリルの評価方法は、
 非水電解質二次電池用の正極活物質として用いられる硫黄変性ポリアクリロニトリルの評価方法であって、
 粒子全体のなかで粒子径1μm以下の粒子および/または該粒子の集合体の占める領域が、撮像面積比で80%以上であるものを適合品と判断し、それ以外のものを非適合品と評価することを特徴とする。
The method for evaluating the sulfur-modified polyacrylonitrile of the present invention that solves the above problems is as follows.
An evaluation method for sulfur-modified polyacrylonitrile used as a positive electrode active material for a non-aqueous electrolyte secondary battery,
Of all the particles, particles having a particle diameter of 1 μm or less and / or an area occupied by the aggregate of the particles are determined as conforming products when the imaging area ratio is 80% or more, and the other regions are regarded as non-conforming products. It is characterized by evaluating.
 上記課題を解決する本発明の非水電解質二次電池の製造方法は、本発明の硫黄変性ポリアクリロニトリルの評価方法を含むことを特徴とする。 The method for producing a non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes the method for evaluating sulfur-modified polyacrylonitrile of the present invention.
 本発明の硫黄変性ポリアクリロニトリルを用いた非水電解質二次電池は、充放電容量が大きい。また、本発明の硫黄変性ポリアクリロニトリルの評価方法によると、非水電解質二次電池の充放電容量を向上させ得る硫黄変性ポリアクリロニトリルを選別できる。このため、本発明の硫黄変性ポリアクリロニトリルの評価方法を用いれば、充放電容量の大きな非水電解質二次電池に使用可能な硫黄変性ポリアクリロニトリルを製造できる。また、本発明の硫黄変性ポリアクリロニトリルの評価方法を用いれば、充放電容量の大きな非水電解質二次電池を製造できる。更には、本発明の車両は、上述した本発明の非水電解質二次電池を搭載しているため、電力を必要とする各種特性に優れる。 The nonaqueous electrolyte secondary battery using the sulfur-modified polyacrylonitrile of the present invention has a large charge / discharge capacity. Further, according to the method for evaluating sulfur-modified polyacrylonitrile of the present invention, sulfur-modified polyacrylonitrile that can improve the charge / discharge capacity of the non-aqueous electrolyte secondary battery can be selected. Therefore, if the method for evaluating sulfur-modified polyacrylonitrile of the present invention is used, sulfur-modified polyacrylonitrile that can be used for a non-aqueous electrolyte secondary battery having a large charge / discharge capacity can be produced. Moreover, if the evaluation method for sulfur-modified polyacrylonitrile of the present invention is used, a non-aqueous electrolyte secondary battery having a large charge / discharge capacity can be produced. Furthermore, since the vehicle of the present invention is equipped with the above-described nonaqueous electrolyte secondary battery of the present invention, it is excellent in various characteristics that require electric power.
硫黄変性ポリアクリロニトリルをX線回折した結果を表すグラフである。It is a graph showing the result of having carried out X-ray diffraction of sulfur modification polyacrylonitrile. 硫黄変性ポリアクリロニトリルをラマンスペクトル分析した結果を表すグラフである。It is a graph showing the result of having performed a Raman spectrum analysis of sulfur-modified polyacrylonitrile. 実施例の硫黄変性ポリアクリロニトリルの製造方法で用いた反応装置を模式的に表す説明図である。It is explanatory drawing which represents typically the reaction apparatus used with the manufacturing method of the sulfur modified polyacrylonitrile of an Example. 試料1の硫黄変性ポリアクリロニトリル表面のSEM像である。2 is an SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 1. 試料2の硫黄変性ポリアクリロニトリル表面のSEM像である。2 is a SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 2. 試料3の硫黄変性ポリアクリロニトリル表面のSEM像である。3 is an SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 3. 試料4の硫黄変性ポリアクリロニトリル表面のSEM像である。3 is an SEM image of the surface of sulfur-modified polyacrylonitrile of sample 4. 試料5の硫黄変性ポリアクリロニトリル表面のSEM像である。6 is a SEM image of the surface of sulfur-modified polyacrylonitrile of sample 5. 試料6の硫黄変性ポリアクリロニトリル表面のSEM像である。2 is an SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 6. 試料7の硫黄変性ポリアクリロニトリル表面のSEM像である。3 is a SEM image of the surface of sulfur-modified polyacrylonitrile of Sample 7. 試料8の硫黄変性ポリアクリロニトリル表面のSEM像である。2 is a SEM image of the surface of a sulfur-modified polyacrylonitrile of sample 8. 試料9の硫黄変性ポリアクリロニトリル表面のSEM像である。2 is an SEM image of the surface of sulfur-modified polyacrylonitrile of sample 9. 試料1のリチウムイオン二次電池の充放電曲線を表すグラフである。3 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Sample 1. FIG. 試料1のリチウムイオン二次電池のサイクル特性を表すグラフである。4 is a graph showing cycle characteristics of a lithium ion secondary battery of Sample 1. 試料8のリチウムイオン二次電池の充放電曲線を表すグラフである。5 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Sample 8. FIG. 試料1の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 1 by FT-IR. 試料2の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 2 by FT-IR. 試料3の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。4 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 3 by FT-IR. 試料4の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 4 by FT-IR. 試料5の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 5 by FT-IR. 試料6の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 6 by FT-IR. 試料7の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 7 by FT-IR. 試料8の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 8 by FT-IR. 試料9の硫黄変性ポリアクリロニトリルをFT-IRで分析した結果を表すグラフである。6 is a graph showing the result of analyzing the sulfur-modified polyacrylonitrile of Sample 9 by FT-IR. 試料1~9の硫黄変性ポリアクリロニトリルのFT-IRによる吸光度比(D1230/D1250)と2回目の放電容量との関係を表すグラフである。10 is a graph showing the relationship between the absorbance ratio (D 1230 / D 1250 ) of the sulfur-modified polyacrylonitrile of Samples 1 to 9 by FT-IR and the second discharge capacity. 試料1の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。3 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 1. 試料2の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。4 is a graph showing the results of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 2. 試料3の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。4 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 3. 試料4の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。4 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 4. 試料5の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 5. 試料6の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 6. 試料7の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 7. 試料8の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 8. 試料9の硫黄変性ポリアクリロニトリルを熱質量-示差熱分析した結果を表すグラフである。6 is a graph showing the result of thermal mass-differential thermal analysis of sulfur-modified polyacrylonitrile of Sample 9.
 本発明の非水電解質二次電池用正極(以下、本発明の正極と呼ぶ)は、本発明の硫黄変性ポリアクリロニトリルを正極活物質として正極に含有する。本発明の非水電解質二次電池は、本発明の正極を用いた電池であり、本発明の硫黄変性ポリアクリロニトリルを正極活物質として正極に含有する。 The positive electrode for a nonaqueous electrolyte secondary battery of the present invention (hereinafter referred to as the positive electrode of the present invention) contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material in the positive electrode. The nonaqueous electrolyte secondary battery of the present invention is a battery using the positive electrode of the present invention, and contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material in the positive electrode.
 〈硫黄変性ポリアクリロニトリル〉
 本発明の硫黄変性ポリアクリロニトリルは、上記の特許文献2に開示されたものと同様のものである。詳しくは、本発明の硫黄変性ポリアクリロニトリルは、硫黄とポリアクリロニトリルとを材料とし、炭素元素(C)および硫黄元素(S)を含有する。以下、必要に応じて、ポリアクリロニトリルをPANと略記する。
<Sulfur modified polyacrylonitrile>
The sulfur-modified polyacrylonitrile of the present invention is the same as that disclosed in Patent Document 2 above. Specifically, the sulfur-modified polyacrylonitrile of the present invention is made of sulfur and polyacrylonitrile, and contains carbon element (C) and sulfur element (S). Hereinafter, polyacrylonitrile is abbreviated as PAN as necessary.
 硫黄変性ポリアクリロニトリル用の材料としてのポリアクリロニトリルは、粉末状であるのが好ましく、質量平均分子量が10~3×10程度であるのが好ましい。また、ポリアクリロニトリルの粒径は、電子顕微鏡によって観察した際に、0.5~50μm程度であるのが好ましく、1~10μm程度であるのがさらに好ましい。ポリアクリロニトリルの分子量および粒径がこれらの範囲内であれば、ポリアクリロニトリルと硫黄との接触面積を大きくでき、ポリアクリロニトリルと硫黄とを信頼性高く反応させ得る。このため、電解液への硫黄の溶出をより信頼性高く抑制できる。 Polyacrylonitrile as a material for sulfur-modified polyacrylonitrile is preferably in the form of a powder, and preferably has a mass average molecular weight of about 10 4 to 3 × 10 5 . The particle size of polyacrylonitrile is preferably about 0.5 to 50 μm, more preferably about 1 to 10 μm, when observed with an electron microscope. If the molecular weight and particle size of polyacrylonitrile are within these ranges, the contact area between polyacrylonitrile and sulfur can be increased, and polyacrylonitrile and sulfur can be reacted with high reliability. For this reason, the elution of sulfur to the electrolytic solution can be more reliably suppressed.
 リチウムイオン二次電池の正極活物質として硫黄変性ポリアクリロニトリルを用いることで、硫黄が本来有する高容量を維持でき、かつ、硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄変性ポリアクリロニトリル中で硫黄が単体として存在するのでなく、ポリアクリロニトリルと結合した安定な状態で存在するためだと考えられる。特許文献2に開示されている硫黄系正極活物質の製造方法において、硫黄はポリアクリロニトリルとともに加熱処理されている。ポリアクリロニトリルを加熱すると、ポリアクリロニトリルが3次元的に架橋して縮合環(主として6員環)を形成しつつ閉環すると考えられる。このため硫黄は、閉環の進行したポリアクリロニトリルと結合した状態で硫黄変性ポリアクリロニトリル中に存在していると考えられる。このため、硫黄変性ポリアクリロニトリルはポリアクリロニトリルに由来する炭素骨格を持つ。ポリアクリロニトリルと硫黄とが結合することで、硫黄の電解液への溶出を抑制でき、サイクル特性を向上させ得る。 By using sulfur-modified polyacrylonitrile as the positive electrode active material of a lithium ion secondary battery, the high capacity inherent in sulfur can be maintained, and elution of sulfur into the electrolyte is suppressed, so the cycle characteristics are greatly improved. . This is presumably because sulfur does not exist as a simple substance in sulfur-modified polyacrylonitrile, but exists in a stable state combined with polyacrylonitrile. In the manufacturing method of the sulfur type positive electrode active material currently disclosed by patent document 2, sulfur is heat-processed with polyacrylonitrile. When polyacrylonitrile is heated, it is considered that polyacrylonitrile is three-dimensionally crosslinked to form a condensed ring (mainly a 6-membered ring) and close the ring. For this reason, it is considered that sulfur is present in the sulfur-modified polyacrylonitrile in a state of being bonded to the polyacrylonitrile that has progressed in the ring closure. For this reason, sulfur-modified polyacrylonitrile has a carbon skeleton derived from polyacrylonitrile. By combining polyacrylonitrile and sulfur, elution of sulfur into the electrolytic solution can be suppressed, and cycle characteristics can be improved.
 ところで、ポリアクリロニトリルの製造方法は、アクリロニトリルモノマー(以下、単にモノマーと略する)を重合させる工程を含む。一般的な重合方法としては、塊状重合、懸濁重合、溶液重合、乳化重合等の方法が挙げられる。 Incidentally, the method for producing polyacrylonitrile includes a step of polymerizing an acrylonitrile monomer (hereinafter simply referred to as a monomer). Examples of general polymerization methods include bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization.
 塊状重合とは、溶媒を用いず、モノマーだけ、または、モノマーに少量の重合開始剤を加えて重合を行う方法である。生成物はポリマーと未反応モノマーが主体であり、重合開始剤由来の不純物を含むが、他の重合法と比較して純粋である。その反面、モノマーが液体状である場合、重合の進行とともに反応系の粘度が高くなり、撹拌や流動(反応器からの取り出し)、反応熱の除去が困難になる。 Bulk polymerization is a method in which polymerization is carried out by adding only a monomer or a small amount of a polymerization initiator to the monomer without using a solvent. The product is mainly composed of a polymer and an unreacted monomer, and contains impurities derived from a polymerization initiator, but is pure as compared with other polymerization methods. On the other hand, when the monomer is in a liquid state, the viscosity of the reaction system increases with the progress of polymerization, and stirring and flow (removal from the reactor) and removal of heat of reaction become difficult.
 懸濁重合とは、モノマーと溶媒(水)とを機械的に攪拌し懸濁させて重合を行う重合方法である。この方法では、重合開始剤として、モノマーに可溶なラジカル発生剤を用いるのが一般的である。また、反応系において、重合開示剤は溶媒中に分散したモノマー滴中に存在する。このため重合反応は、それぞれのモノマー滴中で塊状重合が起こっているのに近い状態で進行する。反応がモノマー滴中で起こる為、分子量の小さな(すなわち粒径の小さな)不純物の少ないポリマーを得ることができる利点がある。 Suspension polymerization is a polymerization method in which a monomer and a solvent (water) are mechanically stirred and suspended for polymerization. In this method, it is common to use a radical generator soluble in the monomer as the polymerization initiator. In the reaction system, the polymerization disclosure agent is present in the monomer droplets dispersed in the solvent. For this reason, the polymerization reaction proceeds in a state close to a bulk polymerization occurring in each monomer droplet. Since the reaction occurs in the monomer droplets, there is an advantage that a polymer having a small molecular weight (that is, a small particle size) and few impurities can be obtained.
 溶液重合は、溶媒中で重合反応を行う方法である。溶液重合用の溶媒としては、モノマーとも触媒(重合開始剤)とも反応し難いものが用いられる。この方法によると、溶媒が熱を吸収するため重合の反応熱は調整し易いが、反応速度は遅い。溶媒の管理が難しいため工業的にはあまり使われる方法ではない。なお、溶液重合品から均一粒子径のものを作るのは、技術的に困難とされている。 Solution polymerization is a method in which a polymerization reaction is performed in a solvent. As the solvent for the solution polymerization, a solvent that does not easily react with either the monomer or the catalyst (polymerization initiator) is used. According to this method, since the solvent absorbs heat, the reaction heat of polymerization is easy to adjust, but the reaction rate is slow. Since it is difficult to manage the solvent, it is not an industrially used method. It is technically difficult to produce a solution polymerized product having a uniform particle size.
 乳化重合は、ラジカル重合の一種で、水等の媒体と、媒体に難溶なモノマーと乳化剤(界面活性剤)とを混合し、そこに媒体に溶解可能な重合開始剤(通常はラジカル発生剤)を加えて重合させる方法である。乳化重合は、粒子形状をサブミクロンレベルで均一に作るには適しており、製造効率的にも最適である。その一方で、乳化重合では高分子量化(すなわち粒径の増大)は不可避である。また、乳化重合品には多少の乳化剤(界面活性剤)が残留するため、乳化重合法で得られたポリアクリロニトリルは不純物としての乳化剤を含む。また、アクリロニトリル(CH=CHCN)の加水分解により生じたアクリルアミドを不純物として含む可能性もある。 Emulsion polymerization is a type of radical polymerization. A polymerization initiator (usually a radical generator) that can be dissolved in a medium such as water, a monomer that is hardly soluble in the medium, and an emulsifier (surfactant). ) Is added for polymerization. Emulsion polymerization is suitable for making the particle shape uniformly at the submicron level, and is also optimal in terms of production efficiency. On the other hand, high molecular weight (that is, increase in particle size) is unavoidable in emulsion polymerization. Further, since some emulsifier (surfactant) remains in the emulsion polymerization product, the polyacrylonitrile obtained by the emulsion polymerization method contains an emulsifier as an impurity. There is also a possibility that acrylamide generated by hydrolysis of acrylonitrile (CH 2 ═CHCN) may be contained as an impurity.
 これらの重合方法のうち乳化重合は、工業的に有利であるとされている。しかし本発明の発明者らは、鋭意研究の結果、乳化重合で得られたポリアクリロニトリルは、正極活物質用の硫黄変性ポリアクリロニトリルの材料として好ましくないことを見出した。すなわち、乳化重合で得られたポリアクリロニトリルを原料とする硫黄変性ポリアクリロニトリルを正極活物質として用いた場合には、その他の方法で得られたポリアクリロニトリルを原料とする硫黄変性ポリアクリロニトリルを正極活物質として用いた場合に比べて、非水電解質二次電池の容量が小さくなる。その理由は定かではないが、上述した乳化剤やアクリルアミド等の不純物が一因であると予想される。したがって、ポリアクリロニトリルとしては、乳化重合以外の方法(塊状重合、懸濁重合、溶液重合等)で製造されたものを用いるのが好ましい。 Of these polymerization methods, emulsion polymerization is considered industrially advantageous. However, as a result of intensive studies, the inventors of the present invention have found that polyacrylonitrile obtained by emulsion polymerization is not preferable as a material for sulfur-modified polyacrylonitrile for a positive electrode active material. That is, when sulfur-modified polyacrylonitrile using polyacrylonitrile obtained by emulsion polymerization as a raw material is used as a positive electrode active material, sulfur-modified polyacrylonitrile obtained using polyacrylonitrile obtained by other methods as a positive electrode active material Compared with the case where it uses as, the capacity | capacitance of a nonaqueous electrolyte secondary battery becomes small. The reason is not clear, but it is expected that the above-mentioned impurities such as emulsifiers and acrylamide are partly responsible. Therefore, it is preferable to use polyacrylonitrile produced by a method other than emulsion polymerization (bulk polymerization, suspension polymerization, solution polymerization, etc.).
 乳化重合で製造されたポリアクリロニトリル(以下、非適合PANと呼ぶ)と、それ以外の方法で製造されたポリアクリロニトリル(以下、適合PANと呼ぶ)とは、粒径、不純物の有無、立体規則度等によって識別できると考えられる。 Polyacrylonitrile produced by emulsion polymerization (hereinafter referred to as non-conforming PAN) and polyacrylonitrile produced by other methods (hereinafter referred to as conforming PAN) are: particle size, presence of impurities, stereoregularity Etc.
 例えば、適合PANの粒径は非適合PANの粒径に比べて非常に小さい。これは、乳化重合において、乳化剤の存在下で形成されるミセル内部で、重合反応が進行するためだと考えられる。なお、乳化重合で製造された非適合PANの粒径は、乳化重合の反応系に形成されるミセルの大きさに対応した大きさとなる。詳しくは、適合PANの粒径はおよそ1μm以下と非常に小径であるのに対し、非適合PANの粒径は5μmを超える大径である。硫黄変性ポリアクリロニトリルの粒径は、実施例の欄で後述する測定方法によって測定できる。 For example, the particle size of conforming PAN is very small compared to the particle size of non-conforming PAN. This is considered to be because the polymerization reaction proceeds in the micelle formed in the presence of the emulsifier in the emulsion polymerization. The particle size of the incompatible PAN produced by emulsion polymerization is a size corresponding to the size of micelles formed in the emulsion polymerization reaction system. Specifically, the particle size of the conforming PAN is as small as approximately 1 μm or less, whereas the particle size of the nonconforming PAN is a large diameter exceeding 5 μm. The particle size of the sulfur-modified polyacrylonitrile can be measured by the measurement method described later in the column of Examples.
 不純物の有無は、C=Oピークの有無によって確認できる。すなわち、非適合PANには、カルボン酸系界面活性剤が残留しているか、または、重合時に合成されたアクリルアミドが含まれる。したがって、硫黄変性ポリアクリロニトリルをIR分析(例えば、フーリエ変換型赤外分光、FT-IR)すると、カルボン酸系界面活性剤および/またはアクリルアミドのC=Oに由来するピークが確認される。このピークの有無によって、適合PANと非適合PANとを識別できる。 The presence or absence of impurities can be confirmed by the presence or absence of the C = O peak. That is, the incompatible PAN includes acrylamide having a carboxylic acid-based surfactant remaining or synthesized during polymerization. Therefore, when the sulfur-modified polyacrylonitrile is subjected to IR analysis (for example, Fourier transform infrared spectroscopy, FT-IR), a peak derived from C═O of the carboxylic acid surfactant and / or acrylamide is confirmed. The presence or absence of this peak makes it possible to discriminate between compatible PAN and non-compatible PAN.
 物質の立体規則性は、その合成法によって異なることが知られている。また、ポリアクリロニトリルの立体規則度が高いほど、FT-IRにより測定される1230cm-1の吸光度(D1230)と1250cm-1の吸光度(D1250)との吸光度比(D1230/D1250)が大きくなるとされている。さらに、溶液重合法で合成したポリアクリロニトリル(適合PAN)はアタクチック(不斉炭素原子の絶対配置が全くランダムになった構造)になることが知られている。 It is known that the stereoregularity of substances varies depending on the synthesis method. Also, the higher the tacticity of the polyacrylonitrile, the absorbance of 1230 cm -1 as measured by FT-IR (D 1230) and the absorbance of 1250cm -1 (D 1250) and absorbance ratio of (D 1230 / D 1250) is It is supposed to grow. Furthermore, it is known that polyacrylonitrile (compatible PAN) synthesized by a solution polymerization method becomes atactic (a structure in which the absolute configuration of asymmetric carbon atoms is completely random).
 本発明の発明者らは、鋭意研究の結果、FT-IRによる吸光度比(D1230/D1250)は適合PANでは小さく、非適合PANでは大きいことを見出した。具体的には、適合PANでは0.75以下であり、非適合PANでは0.75を超える。このため、FT-IRによる吸光度比(D1230/D1250)によっても、適合PANと非適合PANとを識別できる。立体規則性として、立体配置(configuration)の規則性と、立体構造(conformation)の規則性とが挙げられる。このうち立体配置の規則性が低ければ、アタクチックとなる。立体構造の規則性が低ければ、直鎖ではなく入り組んだ構造となる。何れの場合にも、規則性が低い方が複雑な構造になる。 As a result of intensive studies, the inventors of the present invention have found that the absorbance ratio (D 1230 / D 1250 ) by FT-IR is small in the conforming PAN and large in the non-conforming PAN. Specifically, it is 0.75 or less in conforming PAN, and exceeds 0.75 in non-conforming PAN. For this reason, conforming PAN and non-conforming PAN can be distinguished also by the absorbance ratio (D 1230 / D 1250 ) by FT-IR. Examples of stereoregularity include regularity of configuration and regularity of conformation. Of these, if the regularity of the configuration is low, it becomes atactic. If the regularity of the three-dimensional structure is low, the structure is not a straight chain but an intricate structure. In any case, the lower regularity results in a more complicated structure.
 なお、立体規則性を測定する方法として、FT-IR以外にも13CNMR等を用いても良い。 As a method for measuring stereoregularity, 13C NMR or the like may be used in addition to FT-IR.
 硫黄変性ポリアクリロニトリルに用いられる硫黄は、ポリアクリロニトリルと同様に、粉末状であるのが好ましい。硫黄の粒径については特に限定しないが、篩いを用いて分級した際に、篩目開き40μmの篩を通過せず、かつ、150μmの篩を通過する大きさの範囲内にあるものが好ましい。篩目開き40μmの篩を通過せず、かつ、100μmの篩を通過する大きさの範囲内にあるものがより好ましい。 The sulfur used in the sulfur-modified polyacrylonitrile is preferably in the form of a powder, like polyacrylonitrile. Although it does not specifically limit about the particle size of sulfur, When classifying using a sieve, what is in the range of the magnitude | size which does not pass a sieve with a sieve opening of 40 micrometers and passes a 150 micrometers sieve is preferable. It is more preferable that the mesh size does not pass through a 40 μm sieve and is within a size range that passes through a 100 μm sieve.
 硫黄変性ポリアクリロニトリルに用いるポリアクリロニトリル粉末と硫黄粉末との配合比については特に限定しないが、質量比で、1:0.5~1:10であるのが好ましく、1:0.5~1:7であるのがより好ましく、1:2~1:5であるのがさらに好ましい。 The blending ratio of the polyacrylonitrile powder and sulfur powder used for the sulfur-modified polyacrylonitrile is not particularly limited, but is preferably 1: 0.5 to 1:10 by mass ratio, and preferably 1: 0.5 to 1: 7 is more preferable, and 1: 2 to 1: 5 is even more preferable.
 硫黄変性ポリアクリロニトリルは、元素分析の結果、炭素、窒素、及び硫黄を含み、更に、少量の酸素及び水素を含む場合もある。また、図1に示すように、硫黄変性ポリアクリロニトリルをCuKα線によりX線回折した結果、回折角(2θ)20~30°の範囲では、25°付近にピーク位置を有するブロードなピークのみが確認された。参考までに、X線回折は、粉末X線回折装置(MAC Science社製、型番:M06XCE)により、CuKα線を用いてX線回折測定を行なった。測定条件は、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、測定範囲:回折角(2θ)10°~60°であった。 As a result of elemental analysis, sulfur-modified polyacrylonitrile contains carbon, nitrogen, and sulfur, and may contain small amounts of oxygen and hydrogen. Further, as shown in FIG. 1, as a result of X-ray diffraction of sulfur-modified polyacrylonitrile by CuKα ray, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2θ) range of 20-30 °. It was done. For reference, X-ray diffraction was measured by X-ray diffraction using CuKα rays with a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE). The measurement conditions were voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, measurement range: diffraction angle (2θ) 10 ° -60 °.
 さらに硫黄変性ポリアクリロニトリルを、室温から900℃まで20℃/分の昇温速度で加熱した際の熱重量分析による質量減は400℃時点で10%以下である。これに対して、硫黄粉末とポリアクリロニトリル粉末の混合物を同様の条件で加熱すると120℃付近から質量減少が認められ、200℃以上になると急激に硫黄の消失に基づく大きな質量減が認められる。 Furthermore, mass loss by thermogravimetric analysis when sulfur-modified polyacrylonitrile is heated from room temperature to 900 ° C. at a rate of temperature increase of 20 ° C./min is 10% or less at 400 ° C. On the other hand, when a mixture of sulfur powder and polyacrylonitrile powder is heated under the same conditions, a mass decrease is recognized from around 120 ° C., and a large mass decrease due to the disappearance of sulfur is recognized suddenly at 200 ° C. or higher.
 すなわち、硫黄変性ポリアクリロニトリルにおいて、硫黄は単体としては存在せず、閉環の進行したポリアクリロニトリルと結合した状態で存在していると考えられる。 That is, in sulfur-modified polyacrylonitrile, sulfur does not exist as a simple substance, but is considered to exist in a state of being bonded to polyacrylonitrile that has advanced ring closure.
 硫黄変性ポリアクリロニトリルのラマンスペクトルの一例を図2に示す。図2に示すラマンスペクトルにおいて、ラマンシフトの1331cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲で1548cm-1、939cm-1、479cm-1、381cm-1、317cm-1付近にピークが存在する。上記したラマンシフトのピークは、ポリアクリロニトリルに対する単体硫黄の比率を変更した場合にも同様の位置に観測される。このためこれらのピークは硫黄変性ポリアクリロニトリルを特徴づけるものである。上記した各ピークは、上記したピーク位置を中心としては、ほぼ±8cm-1の範囲内に存在する。なお、本明細書において、「主ピーク」とは、ラマンスペクトルで現れた全てのピークのなかでピーク高さが最大となるピークを指す。 An example of the Raman spectrum of sulfur-modified polyacrylonitrile is shown in FIG. In the Raman spectrum shown in FIG. 2, there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, There is a peak near 317 cm −1 . The Raman shift peak described above is observed at the same position even when the ratio of elemental sulfur to polyacrylonitrile is changed. Thus, these peaks characterize sulfur-modified polyacrylonitrile. Each of the peaks described above exists within a range of approximately ± 8 cm −1 with the above peak position as the center. In the present specification, the “main peak” refers to a peak having the maximum peak height among all peaks appearing in the Raman spectrum.
 参考までに、上記したラマンシフトは、日本分光社製 RMP-320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)で測定したものである。なお、ラマンスペクトルのピークは、入射光の波長や分解能の違いなどにより、数が変化したり、ピークトップの位置がずれたりすることがある。したがって正極活物質として硫黄変性ポリアクリロニトリルを用いた本発明の正極のラマンスペクトルを測定すると、上記のピークと同じピーク、または、上記のピークとは数やピークトップの位置が僅かに異なるピークが確認される。 For reference, the Raman shift described above was measured by RMP-320 (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, resolution: 3 cm −1 ) manufactured by JASCO Corporation. Note that the number of Raman spectrum peaks may change or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when measuring the Raman spectrum of the positive electrode of the present invention using sulfur-modified polyacrylonitrile as the positive electrode active material, the same peak as the above peak or a peak slightly different from the above peak in number and peak top position is confirmed. Is done.
 (非水電解質二次電池用正極)
 本発明の正極は正極活物質として本発明の硫黄変性ポリアクリロニトリルを含有する。
(Positive electrode for non-aqueous electrolyte secondary battery)
The positive electrode of the present invention contains the sulfur-modified polyacrylonitrile of the present invention as a positive electrode active material.
 正極は、正極活物質以外は、一般的な非水電解質二次電池用正極(例えばリチウムイオン二次電池用正極)と同様の構造にできる。例えば、本発明の正極は、硫黄変性ポリアクリロニトリル、導電助剤、バインダ、および溶媒を混合した正極材料を、集電体に塗布することによって製作できる。或いは、硫黄粉末およびポリアクリロニトリル粉末を混合した混合原料を、正極用集電体に充填した後に加熱する(熱処理工程を施す)こともできる。この方法によれば、ポリアクリロニトリルと硫黄とを反応させ硫黄変性ポリアクリロニトリルを得ると同時に、バインダを用いることなく、硫黄変性ポリアクリロニトリルと集電体とを一体化させることができる。バインダを用いなければ、正極質量あたり正極活物質の量を増大させることができ、正極質量当たりの容量を向上させることができる。 The positive electrode can have the same structure as a general positive electrode for a non-aqueous electrolyte secondary battery (for example, a positive electrode for a lithium ion secondary battery) except for the positive electrode active material. For example, the positive electrode of the present invention can be manufactured by applying a positive electrode material, which is a mixture of sulfur-modified polyacrylonitrile, a conductive additive, a binder, and a solvent, to a current collector. Alternatively, a mixed raw material in which sulfur powder and polyacrylonitrile powder are mixed can be heated (a heat treatment step is performed) after filling the positive electrode current collector. According to this method, polyacrylonitrile and sulfur are reacted to obtain sulfur-modified polyacrylonitrile, and at the same time, the sulfur-modified polyacrylonitrile and the current collector can be integrated without using a binder. If no binder is used, the amount of the positive electrode active material per positive electrode mass can be increased, and the capacity per positive electrode mass can be improved.
 導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。 As conductive aids, vapor grown carbon fiber (Vapor Carbon Carbon: VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, positive electrodes such as aluminum and titanium Examples thereof include fine metal powders stable in potential.
 バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。 As the binder, polyvinylidene fluoride (Polyvinylidene: PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), carboxymethylcellulose (CMC), polychlorinated Examples include vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), and polypropylene (PP).
 溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄変性ポリアクリロニトリル100質量部に対して、導電助剤20~100質量部程度、バインダ10~20質量部程度を配合するのが好ましい。また、その他の方法として、本発明の硫黄変性ポリアクリロニトリルと上述した導電助剤およびバインダとの混合物を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することで、本発明の非水電解質二次電池用正極を製造することもできる。 Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These conductive assistants, binders and solvents may be used as a mixture of plural kinds. The amount of these materials to be blended is not particularly limited. For example, it is preferable to blend about 20 to 100 parts by weight of a conductive additive and about 10 to 20 parts by weight of a binder with respect to 100 parts by weight of sulfur-modified polyacrylonitrile. As another method, a mixture of the sulfur-modified polyacrylonitrile of the present invention, the above-described conductive additive and binder is kneaded with a mortar or a press machine to form a film, and the film mixture is collected with a press machine or the like. The positive electrode for a nonaqueous electrolyte secondary battery of the present invention can also be produced by pressure bonding to the body.
 集電体としては、非水電解質二次電池用正極に一般に用いられるものを使用すれば良い。例えば集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等が例示される。このうち黒鉛化度の高いカーボンから成るカーボン不織布/織布集電体は、水素を含まず、硫黄との反応性が低いために、硫黄変性ポリアクリロニトリル用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やポリアクリロニトリル繊維等を用いることができる。 As the current collector, those generally used for positive electrodes for nonaqueous electrolyte secondary batteries may be used. For example, current collectors include aluminum foil, aluminum mesh, punched aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punched stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh Examples thereof include a punching copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon nonwoven fabric, and a carbon woven fabric. Among these, the carbon non-woven fabric / woven fabric current collector made of carbon having a high graphitization degree is suitable as a current collector for sulfur-modified polyacrylonitrile because it does not contain hydrogen and has low reactivity with sulfur. As a raw material for carbon fiber having a high degree of graphitization, various pitches (that is, by-products such as petroleum, coal, coal tar, etc.) and polyacrylonitrile fiber, which are carbon fiber materials, can be used.
 本発明の非水電解質二次電池は、正極に伝導材を含むのが好ましい。伝導材とは、自身が高い電気伝導性を示すか、あるいは、正極のリチウムイオン伝導性を大きく向上させ得る材料を指す。正極に伝導材を含むことで、正極全体の電気伝導度および/またはリチウムイオン等の電荷担体の伝導性を向上させることができ、非水電解質二次電池の放電レート特性を向上させ得る。伝導材の材料(伝導材材料)としては、硫化物の状態で上記の機能を示すものを用いるのが好ましい。硫黄変性ポリアクリロニトリルの原料たる硫黄によって硫化されても、伝導材の機能を損なわないためである。 The nonaqueous electrolyte secondary battery of the present invention preferably contains a conductive material in the positive electrode. The conductive material refers to a material that exhibits high electrical conductivity or that can greatly improve the lithium ion conductivity of the positive electrode. By including a conductive material in the positive electrode, the electrical conductivity of the entire positive electrode and / or the conductivity of charge carriers such as lithium ions can be improved, and the discharge rate characteristics of the nonaqueous electrolyte secondary battery can be improved. As the material for the conductive material (conductive material), it is preferable to use a material that exhibits the above function in the state of sulfide. This is because the function of the conductive material is not impaired even if it is sulfurized by sulfur as a raw material of sulfur-modified polyacrylonitrile.
 伝導材材料としては、第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属、またはその硫化物を用いることができる。なお、本明細書でいう第4周期金属、第5周期金属および第6周期金属とは、周期律表によるものである。例えば第4周期金属とは、周期律表における第4周期元素に含まれる金属を指す。伝導材材料としては、硫化物の状態で自身が高い電気伝導性を示すか、あるいは、正極のリチウムイオン伝導性を大きく向上させ得るものが好ましく、例えば、Ti、Fe、La、Ce、Pr、Nd、Sm、V、Mn、Fe、Ni、Cu、Zn、Mo、Ag、Cd、In、Sn、Sb、Ta、W、Pbからなる群から選ばれる少なくとも一種、またはその硫化物であるのが好ましい。なお伝導材は、正極中においては、上記金属とその硫化物との両方からなるか、或いは、上記金属の硫化物のみからなる。これらの伝導材材料は硫化物を多く含むのが好ましく、硫化物のみからなるのがより好ましい。上記金属を硫化物の状態で正極に配合することで、伝導材と硫黄変性ポリアクリロニトリルとがなじみ易くなり、伝導材と正極活物質とが略均一に分散するためである。また、伝導材材料として硫化物を用いることで、伝導材における上記金属と硫黄との比率を所望する範囲に容易に制御できる利点もある。 As the conductive material, at least one metal selected from the group consisting of a fourth periodic metal, a fifth periodic metal, a sixth periodic metal, and a rare earth element, or a sulfide thereof can be used. In addition, the 4th periodic metal, the 5th periodic metal, and the 6th periodic metal as used in this specification are based on a periodic table. For example, the fourth periodic metal refers to a metal included in the fourth periodic element in the periodic table. The conductive material is preferably one that exhibits high electrical conductivity in a sulfide state or that can greatly improve the lithium ion conductivity of the positive electrode. For example, Ti, Fe, La, Ce, Pr, It is at least one selected from the group consisting of Nd, Sm, V, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, In, Sn, Sb, Ta, W, and Pb, or a sulfide thereof. preferable. In the positive electrode, the conductive material consists of both the metal and its sulfide, or consists only of the metal sulfide. These conductive material materials preferably contain a large amount of sulfide, and more preferably consist only of sulfide. This is because the conductive material and the sulfur-modified polyacrylonitrile are easily combined by blending the metal with the positive electrode in a sulfide state, and the conductive material and the positive electrode active material are dispersed substantially uniformly. Further, by using sulfide as the conductive material, there is an advantage that the ratio of the metal and sulfur in the conductive material can be easily controlled within a desired range.
 (非水電解質二次電池)
 以下、本発明の正極を用いた非水電解質二次電池の構成について説明する。以下、本発明の正極を用いた非水電解質二次電池を単に非水電解質二次電池と略する。また、本発明の正極を用いたリチウムイオン二次電池単にリチウムイオン二次電池と略する。なお、正極に関しては、上述したとおりである。
(Non-aqueous electrolyte secondary battery)
Hereinafter, the structure of the nonaqueous electrolyte secondary battery using the positive electrode of the present invention will be described. Hereinafter, the non-aqueous electrolyte secondary battery using the positive electrode of the present invention is simply abbreviated as a non-aqueous electrolyte secondary battery. Further, a lithium ion secondary battery using the positive electrode of the present invention is simply abbreviated as a lithium ion secondary battery. The positive electrode is as described above.
  〔負極〕
 負極活物質としては、公知の金属リチウム、黒鉛などの炭素系材料、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素および/または当該元素を含む化合物を用いることができる。この場合、電荷担体はリチウムであり、本発明の非水電解質二次電池はリチウム二次電池、またはリチウムイオン二次電池、またはリチウムポリマー二次電池である。その他の負極活物質として、金属ナトリウム、ナトリウムイオンを吸蔵・放出可能であってナトリウムと合金化可能な元素および/または当該元素を含む化合物を用いることもできる。この場合、電荷担体はナトリウムであり、本発明の非水電解質二次電池はナトリウム二次電池、またはナトリウムイオン二次電池、またはナトリウムポリマー二次電池である。
 上述したリチウムと合金化反応可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biからなる群から選ばれる少なくとも1種であるのが好ましい。このうち、ケイ素(Si)またはスズ(Sn)であるのが特に好ましい。上述したリチウムと合金化反応可能な元素を有する元素化合物は、ケイ素化合物またはスズ化合物であるのが好ましい。ケイ素化合物は、SiO(0.5≦x≦1.5)であるのが好ましい。ケイ素は、理論容量が大きい一方で、充放電時の体積変化が大きいため、化合物の状態(つまりSiO)で、用いることで体積変化を少なくすることができる。
 スズ化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)、スズ合金(Cu-Sn合金、Co-Sn合金等)などが好ましく用いられる。その他、シリコン薄膜などのシリコン系材料、銅-スズやコバルト-スズなどの合金系材料も好ましく使用できる。電荷担体がナトリウムである場合、負極活物質としてはハードカーボンまたはソフトカーボンまたはスズ化合物を用いるのが好ましい。
 負極活物質として、リチウムを含まない材料、例えば、上記した負極活物質のなかで炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらの負極活物質を用いた負極を本発明の正極と組み合わせて用いる場合には、Li、Na等の、イオン化して正極と負極との間を移動することで充放電に関与する物質(所謂電荷担体)が、正極および負極の何れにも含まれない。このため、負極および正極の何れか一方、または両方にあらかじめ電荷担体を挿入するプリドープ処理が必要となる。電荷担体のプリドープ法としては公知の方法に従えば良い。例えば電荷担体の一種であるリチウムを負極にドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的に負極にリチウムをドープする電解ドープ法を用いることができる。或いは、電極に金属リチウム箔を貼り付けたものを電解液の中に放置し、リチウムの拡散を利用して負極にリチウムをドープする貼り付けプリドープ法を用いることもできる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することができる。ナトリウムに関しても同様である。
[Negative electrode]
As the negative electrode active material, a known carbon-based material such as lithium metal or graphite, an element that can occlude / release lithium ions and can be alloyed with lithium, and / or a compound containing the element can be used. In this case, the charge carrier is lithium, and the nonaqueous electrolyte secondary battery of the present invention is a lithium secondary battery, a lithium ion secondary battery, or a lithium polymer secondary battery. As another negative electrode active material, metallic sodium, an element that can occlude / release sodium ions and can be alloyed with sodium, and / or a compound containing the element can also be used. In this case, the charge carrier is sodium, and the nonaqueous electrolyte secondary battery of the present invention is a sodium secondary battery, a sodium ion secondary battery, or a sodium polymer secondary battery.
The elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, It is preferably at least one selected from the group consisting of Ge, Sn, Pb, Sb and Bi. Of these, silicon (Si) or tin (Sn) is particularly preferable. The elemental compound having an element capable of alloying with lithium is preferably a silicon compound or a tin compound. The silicon compound is preferably SiO x (0.5 ≦ x ≦ 1.5). Silicon has a large theoretical capacity, but has a large volume change during charge and discharge. Therefore, it can be used in a compound state (ie, SiO x ) to reduce the volume change.
As the tin compound, for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.), a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) and the like are preferably used. In addition, silicon-based materials such as silicon thin films and alloy-based materials such as copper-tin and cobalt-tin can be preferably used. When the charge carrier is sodium, it is preferable to use hard carbon, soft carbon, or a tin compound as the negative electrode active material.
When a negative electrode active material, such as a carbon-based material, a silicon-based material, an alloy-based material, or the like that does not contain lithium, for example, among the negative electrode active materials described above, a short circuit occurs between the positive and negative electrodes due to the generation of dendrites. It is advantageous in that it is difficult. However, when the negative electrode using these negative electrode active materials is used in combination with the positive electrode of the present invention, a substance such as Li or Na that is involved in charge / discharge by ionizing and moving between the positive electrode and the negative electrode (So-called charge carriers) are not included in either the positive electrode or the negative electrode. For this reason, a pre-doping process in which charge carriers are inserted in advance into either one or both of the negative electrode and the positive electrode is necessary. The charge carrier pre-doping method may be a known method. For example, in the case where lithium, which is a kind of charge carrier, is doped into the negative electrode, an electrolytic doping method in which a half cell is assembled using metallic lithium as the counter electrode and electrochemically doped with lithium in the negative electrode can be used. Alternatively, an adhesive pre-doping method in which a metal lithium foil attached to an electrode is allowed to stand in an electrolytic solution and lithium is doped into the negative electrode by utilizing diffusion of lithium. Also, when the positive electrode is predoped with lithium, the above-described electrolytic doping method can be used. The same applies to sodium.
 リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。 As the negative electrode material not containing lithium, a silicon-based material that is a high-capacity negative electrode material is particularly preferable, and among these, thin-film silicon that is advantageous in terms of capacity per volume due to thin electrode thickness is more preferable.
  〔電解質〕
 非水電解質二次電池に用いる電解質としては、有機溶媒に支持電解質(支持塩)であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、γ-ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電荷担体がリチウムである場合、支持電解質としては、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。電解質の濃度は、0.5mol/l~1.7mol/l程度であれば良い。電解質は液状に限定されない。例えば、非水電解質二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば高分子ゲル状)をなす。また、電荷担体がNaである場合には、NaPF、NaBF、NaAsF、NaCFSO、NaI、NaClO等のナトリウム塩を電解質に用いることができる。
〔Electrolytes〕
As the electrolyte used for the non-aqueous electrolyte secondary battery, an electrolyte obtained by dissolving an alkali metal salt as a supporting electrolyte (supporting salt) in an organic solvent can be used. The organic solvent is preferably at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, γ-butyrolactone, and acetonitrile. When the charge carrier is lithium, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the supporting electrolyte. The concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l. The electrolyte is not limited to liquid. For example, when the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery, the electrolyte is in a solid state (for example, a polymer gel). When the charge carrier is Na, sodium salts such as NaPF 6 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaI, NaClO 4 can be used for the electrolyte.
  〔その他〕
 非水電解質二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。非水電解質二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。
[Others]
The nonaqueous electrolyte secondary battery may include a member such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte. The separator is interposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a sealed type, the separator is also required to have a function of holding an electrolytic solution. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, polyacrylonitrile, aramid, polyimide, cellulose, glass or the like. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and can be various shapes such as a cylindrical shape, a stacked shape, and a coin shape.
 (非水電解質二次電池用正極の製造方法)
 本発明の製造方法は、上述した硫黄変性ポリアクリロニトリルの材料(すなわちポリアクリロニトリル粉末および硫黄粉末)を混合した混合材料を加熱する工程(熱処理工程)を含む。混合材料は、乳鉢やボールミル等の一般的な混合装置で混合すれば良い。混合原料としては、硫黄と炭素材料とを単に混合したものを用いても良いが、例えば、混合原料をペレット状に成形して用いても良い。伝導材を含有する正極を製造する場合には、ポリアクリロニトリル粉末、硫黄粉末および伝導材材料の混合物を混合材料として用いれば良い。
(Method for producing positive electrode for non-aqueous electrolyte secondary battery)
The production method of the present invention includes a step (heat treatment step) of heating a mixed material obtained by mixing the above-described sulfur-modified polyacrylonitrile material (that is, polyacrylonitrile powder and sulfur powder). What is necessary is just to mix a mixing material with general mixing apparatuses, such as a mortar and a ball mill. As the mixed raw material, one obtained by simply mixing sulfur and a carbon material may be used. For example, the mixed raw material may be formed into a pellet shape and used. When manufacturing a positive electrode containing a conductive material, a mixture of polyacrylonitrile powder, sulfur powder and conductive material may be used as a mixed material.
 熱処理工程において混合原料を加熱することで、混合原料に含まれる硫黄と炭素材料とが結合する。熱処理工程は、密閉系でおこなっても良いし開放系でおこなっても良いが、硫黄蒸気の散逸を抑制するためには、密閉系で行うのが好ましい。また、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、炭素材料と硫黄との結合を妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合がある。また、特に炭素材料としてポリアクリロニトリルを用いる場合には、非酸化性雰囲気下で熱処理することで、ポリアクリロニトリルの閉環反応と同時に、蒸気状態の硫黄がポリアクリロニトリルと反応して、硫黄によって変性されたポリアクリロニトリルが得られると考えられる。ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。 The sulfur contained in the mixed raw material and the carbon material are combined by heating the mixed raw material in the heat treatment step. The heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, it is preferably performed in a closed system. In addition, the atmosphere in which the heat treatment step is performed is not particularly limited, but it is preferably performed in an atmosphere that does not hinder the bonding between the carbon material and sulfur (for example, an atmosphere not containing hydrogen or a non-oxidizing atmosphere). For example, when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, so that sulfur in the reaction system may be lost. In particular, when polyacrylonitrile is used as a carbon material, the vaporized sulfur reacts with the polyacrylonitrile at the same time as the polyacrylonitrile ring-closing reaction by heat treatment in a non-oxidizing atmosphere. It is believed that polyacrylonitrile is obtained. The non-oxidizing atmosphere referred to here includes a reduced pressure state in which the oxygen concentration is low enough not to cause an oxidation reaction, an inert gas atmosphere such as nitrogen or argon, a sulfur gas atmosphere, and the like.
 密閉状態の非酸化性雰囲気とするための具体的な方法については特に限定はなく、例えば、硫黄蒸気が散逸しない程度の密閉性が保たれる容器中に混合原料を入れて、容器内を減圧または不活性ガス雰囲気にして加熱すれば良い。その他、混合原料を硫黄蒸気と反応し難い材料(例えばアルミニウムラミネートフィルム等)で真空包装した状態で加熱しても良い。この場合、発生した硫黄蒸気によって包装材料が破損しないように、例えば、水を入れたオートクレーブ等の耐圧容器中に、包装された原料を入れて加熱し、発生した水蒸気で包装材の外部から加圧することが好ましい。この方法によれば、包装材料の外部から水蒸気によって加圧されるので、硫黄蒸気によって包装材料が膨れて破損することが防止される。 There is no particular limitation on the specific method for creating a non-oxidizing atmosphere in a sealed state. For example, the mixed raw material is placed in a container that is kept tight enough not to dissipate sulfur vapor, and the inside of the container is decompressed. Alternatively, heating may be performed in an inert gas atmosphere. In addition, the mixed raw material may be heated in a vacuum packaged state with a material that does not easily react with sulfur vapor (for example, an aluminum laminate film). In this case, in order to prevent the packaging material from being damaged by the generated sulfur vapor, for example, the packaged raw material is put in a pressure vessel such as an autoclave containing water and heated, and the generated steam is added from the outside of the packaging material. It is preferable to press. According to this method, since pressure is applied by water vapor from the outside of the packaging material, the packaging material is prevented from being swollen and damaged by sulfur vapor.
 熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい加熱温度は、硫黄と炭素材料との結合が進行するような温度であれば良い。具体的には、加熱温度は、250℃以上500℃以下とすることが好ましく、250℃以上400℃以下とすることがより好ましく、300℃以上400℃以下とすることがさらに好ましい。 The heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited. The preferable heating temperature mentioned above should just be temperature which the coupling | bonding of sulfur and a carbon material advances. Specifically, the heating temperature is preferably 250 ° C. or more and 500 ° C. or less, more preferably 250 ° C. or more and 400 ° C. or less, and further preferably 300 ° C. or more and 400 ° C. or less.
 熱処理工程においては、硫黄を還流するのが好ましい。この場合、混合原料の一部が気体となり、一部が液体となるように混合原料を加熱すれば良い。換言すると、混合原料の温度は、硫黄が気化する温度以上の温度であれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。 In the heat treatment step, it is preferable to reflux sulfur. In this case, the mixed raw material may be heated so that a part of the mixed raw material becomes a gas and a part becomes a liquid. In other words, the temperature of the mixed raw material may be a temperature equal to or higher than the temperature at which sulfur is vaporized. Vaporization here refers to the phase change of sulfur from a liquid or solid to a gas, and may be any of boiling, evaporation, and sublimation. For reference, the melting point of α sulfur (orthogonal sulfur, which is the most stable structure near room temperature) is 112.8 ° C., the melting point of β sulfur (monoclinic sulfur) is 119.6 ° C., and γ sulfur (monoclinic sulfur). ) Has a melting point of 106.8 ° C. The boiling point of sulfur is 444.7 ° C. By the way, since the vapor pressure of sulfur is high, generation | occurrence | production of sulfur vapor | steam can also be confirmed visually when the temperature of a mixed raw material will be 150 degreeC or more. Therefore, if the temperature of the mixed raw material is 150 ° C. or higher, sulfur can be refluxed. In addition, what is necessary is just to recirculate | reflux sulfur using the recirculation | reflux apparatus of a known structure when recirculating | refluxing sulfur in a heat treatment process.
 なお、混合材料中の硫黄の配合量が過大である場合にも、熱処理工程において炭素材料に充分な量の硫黄を取り込むことができる。このため、炭素材料に対して硫黄を過大に配合する場合には、熱処理工程後の被処理体(硫黄変性ポリアクリロニトリル)から単体硫黄を除去することで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中の炭素材料と硫黄との配合比を、質量比で1:2~1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃~250℃で加熱することで、炭素材料に充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。単体硫黄を除去する工程を省く場合には、被処理体をそのまま硫黄変性ポリアクリロニトリルとして用いれば良い。また、熱処理工程後の被処理体から単体硫黄を除去する場合には、単体硫黄除去後の被処理体を硫黄変性ポリアクリロニトリルとして用いれば良い。 Even when the amount of sulfur in the mixed material is excessive, a sufficient amount of sulfur can be taken into the carbon material in the heat treatment step. For this reason, in the case where sulfur is excessively added to the carbon material, the above-described adverse effects due to the elemental sulfur can be suppressed by removing the elemental sulfur from the object to be treated (sulfur-modified polyacrylonitrile) after the heat treatment step. Specifically, when the mixing ratio of the carbon material and sulfur in the mixed raw material is 1: 2 to 1:10 by mass ratio, the target object after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing the pressure. By doing so, a sufficient amount of sulfur can be taken into the carbon material, and adverse effects due to the remaining single sulfur can be suppressed. When omitting the step of removing simple sulfur, the object to be treated may be used as it is as sulfur-modified polyacrylonitrile. Moreover, what is necessary is just to use the to-be-processed body after single-piece | unit sulfur removal as sulfur modified polyacrylonitrile, when removing single-piece | unit sulfur from the to-be-processed body after a heat treatment process.
 以下、本発明の硫黄変性ポリアクリロニトリル、非水電解質二次電池用正極、非水電解質二次電池、および硫黄変性ポリアクリロニトリルの評価方法を具体的に説明する。 Hereinafter, the sulfur-modified polyacrylonitrile, the positive electrode for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery, and the evaluation method for the sulfur-modified polyacrylonitrile of the present invention will be specifically described.
 〈硫黄変性ポリアクリロニトリル〉
 〔1〕混合原料
 硫黄粉末として、篩いを用いて分級した際に粒径50μm以下となるものを準備した。ポリアクリロニトリル粉末として、電子顕微鏡で確認した場合に粒径が0.2μm~2μmの範囲にあるものを準備した。硫黄粉末5gとポリアクリロニトリル粉末1gとを乳鉢で混合・粉砕して、混合原料を得た。
 〔2〕装置
 図3に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、アルゴンガス配管50、アルゴンガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を持つ。
<Sulfur modified polyacrylonitrile>
[1] Mixed raw material A sulfur powder having a particle size of 50 μm or less when classified using a sieve was prepared. A polyacrylonitrile powder having a particle diameter in the range of 0.2 μm to 2 μm when prepared with an electron microscope was prepared. 5 g of sulfur powder and 1 g of polyacrylonitrile powder were mixed and pulverized in a mortar to obtain a mixed raw material.
[2] Apparatus As shown in FIG. 3, the reaction apparatus 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas introduction tube 5, gas discharge tube 6), argon gas It has a pipe 50, a gas tank 51 containing argon gas, a trap pipe 60, a trap tank 62 containing a sodium hydroxide aqueous solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
 反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。 As the reaction vessel 2, a bottomed cylindrical glass tube (made of quartz glass) was used. In the heat treatment step described later, the mixed raw material 9 was accommodated in the reaction vessel 2. The opening of the reaction vessel 2 was closed with a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Corporation) containing the thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the other one of the through holes. A gas discharge pipe 6 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the remaining one of the through holes. The reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm. The alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm. The gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (inside the reaction vessel 2). The length of this exposed portion was 3 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 become approximately 100 ° C. or less in a heat treatment process described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out of the gas introduction pipe 5 and the gas discharge pipe 6 but is returned (refluxed) to the reaction vessel 2.
 アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。 The tip of the thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2. The temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
 ガス導入管5にはアルゴンガス配管50を接続した。アルゴンガス配管50はアルゴンガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。 An argon gas pipe 50 was connected to the gas introduction pipe 5. The argon gas pipe 50 was connected to a gas tank 51 containing argon gas. One end of a trap pipe 60 was connected to the gas discharge pipe 6. The other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62. The trap pipe 60 and the trap tank 62 are traps for hydrogen sulfide gas generated in a heat treatment process to be described later.
 〔3〕熱処理工程
 混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときのアルゴンガスの流速は100ml/分であった。アルゴンガスの導入開始10分後に、アルゴンガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が100℃になった時点で、混合原料9の加熱を継続しつつアルゴンガスの導入を停止した。混合原料9が約200℃になるとガスが発生した。混合原料9が360℃になった時点で加熱を停止した。加熱停止後、混合原料9の温度は400℃にまで上昇し、その後低下した。したがって、この熱処理工程において、混合原料9は400℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。なお、このときの加熱時間は400℃で約10分であり、硫黄は還流された。
[3] Heat treatment step The reaction vessel 2 containing the mixed raw material 9 was placed in an electric furnace 7 (crucible furnace, opening width φ80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction tube 5. The flow rate of argon gas at this time was 100 ml / min. Ten minutes after the start of the introduction of the argon gas, heating of the mixed raw material 9 in the reaction vessel 2 was started while continuing the introduction of the argon gas. The temperature rising rate at this time was 5 ° C./min. When the mixed raw material 9 reached 100 ° C., the introduction of argon gas was stopped while continuing to heat the mixed raw material 9. Gas was generated when the mixed raw material 9 reached about 200 ° C. The heating was stopped when the mixed raw material 9 reached 360 ° C. After stopping the heating, the temperature of the mixed raw material 9 increased to 400 ° C. and then decreased. Therefore, in this heat treatment step, the mixed raw material 9 was heated to 400 ° C. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2. The heating time at this time was about 10 minutes at 400 ° C., and sulfur was refluxed.
 〔4〕単体硫黄除去工程
 熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
[4] Elemental sulfur removal step In order to remove elemental sulfur (free sulfur) remaining in the object to be treated after the heat treatment step, the following steps were performed.
 熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物2gをガラスチューブオーブンに入れ、真空吸引しつつ200℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)実施例1の硫黄変性ポリアクリロニトリルを得た。 The object to be treated after the heat treatment step was pulverized with a mortar. 2 g of the pulverized product was placed in a glass tube oven and heated at 200 ° C. for 3 hours while being vacuumed. The temperature elevation temperature at this time was 10 ° C./min. By this step, the elemental sulfur remaining in the object to be treated after the heat treatment step was evaporated and removed, and the sulfur-modified polyacrylonitrile of Example 1 not including (or substantially not including) elemental sulfur was obtained.
 〈リチウムイオン二次電池の製作〉
 〔1〕正極
 実施例1の硫黄変性ポリアクリロニトリル3mgとアセチレンブラック(AB)2.1mgとTAB0.9mgとを混合した。TABとは、ABとポリテトラフルオロエチレン(PTFE)とをAB:PTFE=2:1(質量比)で混合した混合物である。この混合物を、ヘキサンを適量加えつつ、メノウ製乳鉢でフィルム状になるまで混練し、フィルム状の正極材料を得た。この正極材料全量を、直径14mmの円形に打ち抜いたアルミニウムメッシュにプレス機で圧着し、100℃で3時間乾燥した。この工程で、実施例1のリチウムイオン二次電池用正極を得た。
<Production of lithium ion secondary battery>
[1] Positive electrode 3 mg of the sulfur-modified polyacrylonitrile of Example 1, 2.1 mg of acetylene black (AB), and 0.9 mg of TAB were mixed. TAB is a mixture of AB and polytetrafluoroethylene (PTFE) mixed at AB: PTFE = 2: 1 (mass ratio). This mixture was kneaded with an agate mortar while adding an appropriate amount of hexane until it became a film, to obtain a film-like positive electrode material. The total amount of the positive electrode material was press-bonded to an aluminum mesh punched into a circle having a diameter of 14 mm with a press machine and dried at 100 ° C. for 3 hours. In this step, the positive electrode for the lithium ion secondary battery of Example 1 was obtained.
 〔2〕負極
 負極としては、厚さ500μmの金属リチウム箔を直径14mmに打ち抜いたものを用いた。
[2] Negative electrode As the negative electrode, a metal lithium foil having a thickness of 500 μm punched to a diameter of 14 mm was used.
 〔3〕電解液
 電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPFを溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは質量比1:1で混合した。電解液中のLiPFの濃度は、1.0mol/lであった。
[3] Electrolytic Solution As the electrolytic solution, a nonaqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate was used. Ethylene carbonate and diethyl carbonate were mixed at a mass ratio of 1: 1. The concentration of LiPF 6 in the electrolytic solution was 1.0 mol / l.
 〔4〕電池
 〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、厚さ25μmのポリプロピレン微孔質膜からなるセパレータ(Celgard2400)と、厚さ500μmのガラス不織布フィルタと、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
[4] Battery A coin battery was manufactured using the positive electrode and the negative electrode obtained in [1] and [2]. Specifically, in a dry room, a separator (Celgard 2400) made of a polypropylene microporous membrane with a thickness of 25 μm and a glass nonwoven fabric filter with a thickness of 500 μm are sandwiched between a positive electrode and a negative electrode, and an electrode body battery It was. This electrode body battery was accommodated in a battery case (CR2032-type coin battery member, manufactured by Hosen Co., Ltd.) made of a stainless steel container. The electrolyte solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain a lithium ion secondary battery of Example 1.
 〈硫黄変性ポリアクリロニトリルの粒径測定〉
 ポリアクリロニトリルとして製造元および/または製造ロットの異なるもの7種類を準備した。内訳は、懸濁重合法で製造されたものが3種類(試料1~3)、塊状重合法で製造されたもの(試料4)、溶液重合法で製造されたもの(試料5)、および、乳化重合で製造されたものが2種類(試料7、8)であった。また、試料8と同じポリアクリロニトリルを乾式ミリング処理(ボールミルを用いてミリング処理)したもの(試料6)、湿式ミリング処理(エタノールにポリアクリロニトリルを分散させボールミルを用いてミリング処理)したもの(試料9)を準備した。
<Measurement of particle size of sulfur-modified polyacrylonitrile>
Seven types of polyacrylonitrile having different manufacturers and / or different production lots were prepared. The breakdown includes three types produced by suspension polymerization (samples 1 to 3), those produced by bulk polymerization (sample 4), those produced by solution polymerization (sample 5), and Two types (samples 7 and 8) were produced by emulsion polymerization. Also, the same polyacrylonitrile as sample 8 was subjected to dry milling (milling using a ball mill) (sample 6), and wet milling (dispersing polyacrylonitrile in ethanol and milling using a ball mill) (sample 9). ) Was prepared.
 試料1~9の各硫黄変性ポリアクリロニトリルを、走査式電子顕微鏡(SEM)により5000倍で撮像した。このときの加速電圧5~10kVであり、コーティングには白金を用いた。各硫黄変性ポリアクリロニトリル表面のSEM像を図4~12に示す。 Each of the sulfur-modified polyacrylonitriles of Samples 1 to 9 was imaged at a magnification of 5000 with a scanning electron microscope (SEM). The acceleration voltage at this time was 5 to 10 kV, and platinum was used for coating. SEM images of the surface of each sulfur-modified polyacrylonitrile are shown in FIGS.
 図4~12に示すように試料1~5の硫黄変性ポリアクリロニトリルの外観と試料6~9の硫黄変性ポリアクリロニトリルの外観とは大きく異なる。 As shown in FIGS. 4 to 12, the appearance of the sulfur-modified polyacrylonitrile of samples 1 to 5 and the appearance of the sulfur-modified polyacrylonitrile of samples 6 to 9 are greatly different.
 図4~8に示すように、試料1~5の硫黄変性ポリアクリロニトリルは、SEM像において、粒径1μm以下の微細な粒子の集合体として観察された。多数の粒子の集合体であるため、集合体全体としては不定形の二次粒子状にみえた。硫黄変性ポリアクリロニトリルが撮像された領域全体を100面積%とすると、粒子径1μm以下の粒子および/またはこの粒子の集合体の占める領域は、80面積%以上であった。好ましくは90面積%以上である。SEM像上では、粒径5μmを超える粒状体は確認されなかった。 As shown in FIGS. 4 to 8, the sulfur-modified polyacrylonitrile of Samples 1 to 5 was observed as an aggregate of fine particles having a particle size of 1 μm or less in the SEM image. Because it is an aggregate of a large number of particles, the aggregate as a whole appeared to be in the form of secondary particles of irregular shape. Assuming that the entire area where the sulfur-modified polyacrylonitrile was imaged was 100 area%, the area occupied by particles having a particle diameter of 1 μm or less and / or aggregates of these particles was 80 area% or more. Preferably it is 90 area% or more. On the SEM image, no granular material having a particle size exceeding 5 μm was confirmed.
 図9~12に示すように、試料6~9の硫黄変性ポリアクリロニトリルは、SEM像において、粒径5μmを超える粒状体として観察された。表面にクラックが認められたが、粒状体全体が不定形状でなく、略粒状をなしていた。粒子径1μm以下の粒子および/またはこの粒子の集合体は、殆ど(または全く)確認されなかった。 As shown in FIGS. 9 to 12, the sulfur-modified polyacrylonitrile of Samples 6 to 9 was observed as a granular material having a particle size exceeding 5 μm in the SEM image. Although cracks were observed on the surface, the entire granule was not indeterminately shaped and was almost granular. Little or no aggregates of particles having a particle diameter of 1 μm or less and / or aggregates of these particles were confirmed.
 SEM像を基に、試料1~5の硫黄変性ポリアクリロニトリルが適合PANであり、試料6~9の硫黄変性ポリアクリロニトリルが非適合PANであると評価した。 Based on the SEM images, it was evaluated that the sulfur-modified polyacrylonitrile of Samples 1 to 5 was a conforming PAN, and the sulfur-modified polyacrylonitrile of Samples 6 to 9 was a non-conforming PAN.
 なお、この評価試験においては、各硫黄変性ポリアクリロニトリルを5000倍で撮像したSEM像においてポリアクリロニトリルが撮像された領域全体を母数すなわち「粒子全体」とした。そして、このなかで粒子径1μm以下の粒子および/またはその集合体が撮像された領域の占める領域を算出した。しかし、本発明の硫黄変性ポリアクリロニトリルおよびその評価方法における母数は、これに限定されない。例えば、「3000~7000倍で撮像したSEM像においてポリアクリロニトリルが撮像された領域全体」を母数としても良い。 In this evaluation test, the entire region where polyacrylonitrile was imaged in the SEM image obtained by imaging each sulfur-modified polyacrylonitrile at a magnification of 5000 was defined as a parameter, that is, “entire particle”. And the area | region which the area | region where the particle diameter of 1 micrometer or less and / or its aggregate imaged in this was occupied was computed. However, the parameter in the sulfur-modified polyacrylonitrile and the evaluation method of the present invention is not limited to this. For example, “the entire region where polyacrylonitrile is imaged in an SEM image captured at 3000 to 7000 times” may be used as a parameter.
 〈充放電特性の評価〉
 試料1~9の各硫黄変性ポリアクリロニトリルを用い、上記のリチウムイオン二次電池の製造方法により、試料1~9のリチウムイオン二次電池を製造した。
<Evaluation of charge / discharge characteristics>
Using each of the sulfur-modified polyacrylonitriles of Samples 1 to 9, lithium ion secondary batteries of Samples 1 to 9 were manufactured by the above-described lithium ion secondary battery manufacturing method.
 試料1~9の各リチウムイオン二次電池について、30℃で繰り返し充放電をおこなった。詳しくは、まず0.1Cで1.0VまでCC放電(低電流放電)を行った。それ以降のサイクルは、0.1Cで3.0VまでCC充電を行った後に0.1Cで1.0VまでCC放電を行う充放電を繰り返した。そして、各リチウムイオン二次電池の2回目の放電容量を比較した。各リチウムイオン二次電池の2回目の放電容量は、試料1では764.7mAh/g、試料2では747.5mAh/g、試料3では732.2mAh/g、試料4では594.3mAh/g、試料5では384.3mAh/g、試料6では339.0mAh/g、試料7では316.8mAh/g、試料8では286.1mAh/g、試料9では129.6mAh/gであった。参考までに、試料1のリチウムイオン二次電池のサイクル試験の結果を図13、14に示す。試料8のリチウムイオン二次電池のサイクル試験の結果を図15に示す。また、各リチウムイオン二次電池の2回目の放電容量を表1に示す。 The lithium ion secondary batteries of Samples 1 to 9 were repeatedly charged and discharged at 30 ° C. Specifically, CC discharge (low current discharge) was first performed at 0.1 C to 1.0 V. In the subsequent cycles, charge and discharge in which CC discharge was performed at 0.1 C to 1.0 V after CC charge to 0.1 V at 0.1 C was repeated. And the discharge capacity of the 2nd time of each lithium ion secondary battery was compared. The second discharge capacity of each lithium ion secondary battery is 764.7 mAh / g for sample 1, 747.5 mAh / g for sample 2, 732.2 mAh / g for sample 3, 594.3 mAh / g for sample 4, The sample 5 was 384.3 mAh / g, the sample 6 was 339.0 mAh / g, the sample 7 was 316.8 mAh / g, the sample 8 was 286.1 mAh / g, and the sample 9 was 129.6 mAh / g. For reference, the results of the cycle test of the lithium ion secondary battery of Sample 1 are shown in FIGS. The result of the cycle test of the lithium ion secondary battery of Sample 8 is shown in FIG. Table 1 shows the second discharge capacity of each lithium ion secondary battery.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料1~5のリチウムイオン二次電池の2回目の放電容量は、試料6~9のリチウムイオン二次電池の2回目の放電容量に比べて大きかった。この結果から、試料1~5の硫黄変性ポリアクリロニトリルが適合PANであり、試料6~9の硫黄変性ポリアクリロニトリルが非適合PANであることが裏づけられた。 The second discharge capacity of the lithium ion secondary batteries of samples 1 to 5 was larger than the second discharge capacity of the lithium ion secondary batteries of samples 6 to 9. This result confirmed that the sulfur-modified polyacrylonitrile of Samples 1 to 5 was a compatible PAN, and the sulfur-modified polyacrylonitrile of Samples 6 to 9 was a non-compatible PAN.
 〈FT-IRによる硫黄変性ポリアクリロニトリルの分析〉
 試料1~9の硫黄変性ポリアクリロニトリルについて、FT-IRにより、不純物の有無、および立体規則性を測定した。装置としてはAffinity-1(島津製作所製)を用い、拡散反射法による測定を行った。分解能は8cm-1であり、積算回数は50回であった。FT-IRで得られたチャートを図16~24に示す。FT-IRによる吸光度比(D1230/D1250)と2回目の放電容量との関係を表すグラフを図25に示す。
<Analysis of sulfur-modified polyacrylonitrile by FT-IR>
With respect to the sulfur-modified polyacrylonitriles of Samples 1 to 9, the presence or absence of impurities and the stereoregularity were measured by FT-IR. Affinity-1 (manufactured by Shimadzu Corporation) was used as an apparatus, and measurement was performed by a diffuse reflection method. The resolution was 8 cm −1 and the number of integrations was 50 times. The charts obtained by FT-IR are shown in FIGS. FIG. 25 shows a graph showing the relationship between the absorbance ratio by FT-IR (D 1230 / D 1250 ) and the second discharge capacity.
 図16~24に示すように、試料1~5の硫黄変性ポリアクリロニトリルにはC=Oピークは認められなかったのに対し、試料6~9の硫黄変性ポリアクリロニトリルにはC=Oピークが認められた。また、試料1~5の硫黄変性ポリアクリロニトリルは、指紋領域までほぼ一致していた。さらに、FT-IRによる吸光度比(D1230/D1250)は試料1では0.73、試料2では0.75、試料3では0.71、試料4では0.73、試料5では0.75、試料6では1.04、試料8では1.09、試料9では1.04であった。なお、試料7ではD1230のピークとD1250のピークとが分離しなかったため、D1230/D1250は算出できなかった。 As shown in FIGS. 16 to 24, the C = O peak was not observed in the sulfur-modified polyacrylonitriles of Samples 1 to 5, whereas the C = O peak was observed in the sulfur-modified polyacrylonitriles of Samples 6 to 9. It was. Further, the sulfur-modified polyacrylonitrile of Samples 1 to 5 almost coincided with the fingerprint region. Further, the absorbance ratio (D 1230 / D 1250 ) by FT-IR is 0.73 for sample 1, 0.75 for sample 2, 0.71 for sample 3, 0.73 for sample 4, and 0.75 for sample 5. The sample 6 was 1.04, the sample 8 was 1.09, and the sample 9 was 1.04. In Sample 7, D 1230 / D 1250 could not be calculated because the peak of D 1230 and the peak of D 1250 were not separated.
 適合PANである試料1~5にC=Oピークが認められず、非適合PANである試料6~9にC=Oピークが認められたことから、C=Oピークの有無によっても適合PANと非適合PANとを識別できることがわかる。 Since no C = O peak was observed in samples 1 to 5 that are conforming PANs and C = O peaks were observed in samples 6 to 9 that were nonconforming PANs, It can be seen that a non-conforming PAN can be identified.
 また、適合PANである試料1~5のD1230/D1250は0.75以下と非常に小さい値であるのに対し、非適合PANである試料6、8、9のD1230/D1250は1.00を超える大きい値であったことから、D1230/D1250によっても適合PANと非適合PANとを識別できることがわかる。 In addition, D 1230 / D 1250 of samples 1 to 5 which are compliant PANs is a very small value of 0.75 or less, whereas D 1230 / D 1250 of samples 6, 8 and 9 which are non-compliant PANs is Since it was a large value exceeding 1.00, it can be understood that the conforming PAN and the non-conforming PAN can also be identified by D 1230 / D 1250 .
 なお、図25に示すように、FT-IRによる吸光度比(D1230/D1250)と2回目の放電容量との間には強い相関がある。具体的には、両者の相関係数は-0.83であり、両者には負の相関がある。 As shown in FIG. 25, there is a strong correlation between the absorbance ratio (D 1230 / D 1250 ) by FT-IR and the second discharge capacity. Specifically, the correlation coefficient between the two is −0.83, and both have a negative correlation.
 〈熱質量分析による硫黄系正極活物質の分析〉
 試料1~9の硫黄変性ポリアクリロニトリルの熱質量変化(TG)を測定した。測定装置としてはリガク製熱分析装置(Thermo Plus TG8120)を用いた。詳しくは、高純度窒素ガスを100ml/分の流量で供給しつつ、各試料を室温から550℃まで10℃/分の昇温速度で加熱し、温度と質量変化との関係を測定することによって、熱質量-示差熱分析を行った。分析結果を図26~34に示す。
<Analysis of sulfur-based positive electrode active materials by thermal mass spectrometry>
The thermal mass change (TG) of the sulfur-modified polyacrylonitrile of Samples 1 to 9 was measured. A Rigaku thermal analyzer (Thermo Plus TG8120) was used as the measuring device. Specifically, by supplying high purity nitrogen gas at a flow rate of 100 ml / min, each sample was heated from room temperature to 550 ° C. at a rate of temperature increase of 10 ° C./min, and the relationship between temperature and mass change was measured. Thermal mass-differential thermal analysis was performed. The analysis results are shown in FIGS.
 図26~34に示すように、試料6~9には100℃以下の低温域での質量変化および温度変化がみられたが、試料1~5にはそのような質量変化や温度変化はみられなかった。この低温域での質量変化および温度変化は水の存在を示すため、試料6~9には水が含まれていることがわかる。また、試料4、7には240付近、および、320℃~370℃以上の高温域での温度変化がみられた。この温度変化は不純物の存在を示すため、試料4、7に不純物が含まれることがわかる。これらの結果から、水および/または不純物によっても適合PANと非適合PANとを識別できることがわかる。 As shown in FIGS. 26 to 34, mass changes and temperature changes were observed in samples 6 to 9 in a low temperature range of 100 ° C. or lower, but such mass changes and temperature changes were observed in samples 1 to 5. I couldn't. Since the mass change and temperature change in this low temperature range indicate the presence of water, it can be seen that Samples 6 to 9 contain water. Samples 4 and 7 showed temperature changes in the vicinity of 240 and in a high temperature range of 320 ° C. to 370 ° C. or more. Since this temperature change indicates the presence of impurities, it can be seen that the samples 4 and 7 contain impurities. From these results, it can be seen that compatible PAN and non-compatible PAN can also be distinguished by water and / or impurities.
1:反応装置   2:反応容器   3:蓋   4:熱電対 1: Reactor 2: Reaction vessel 3: Lid 4: Thermocouple

Claims (11)

  1.  硫黄およびポリアクリロニトリルを材料とする硫黄変性ポリアクリロニトリルであって、
     粒子全体のなかで粒子径1μm以下の粒子および/または該粒子の集合体の占める領域が、撮像面積比で80%以上であることを特徴とする硫黄変性ポリアクリロニトリル。
    A sulfur-modified polyacrylonitrile made from sulfur and polyacrylonitrile,
    Sulfur-modified polyacrylonitrile characterized in that the area occupied by particles having a particle diameter of 1 μm or less and / or aggregates of the particles is 80% or more in terms of imaging area.
  2.  ラマンスペクトルにおいて、ラマンシフトの1331cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲内で1548cm-1、939cm-1、479cm-1、381cm-1、317cm-1付近にそれぞれピークが存在する請求項1に記載の硫黄変性ポリアクリロニトリル。 In the Raman spectrum, there is a main peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, 317cm -1 The sulfur-modified polyacrylonitrile according to claim 1, wherein there are peaks in the vicinity.
  3.  フーリエ変換型赤外分光による1230cm-1における吸光度D1230と、1250cm-1における吸光度D1250と、の吸光度比D1230/D1250が0.75以下である請求項1または請求項2に記載の硫黄変性ポリアクリロニトリル。 The absorbance ratio D 1230 / D 1250 between the absorbance D 1230 at 1230 cm −1 and the absorbance D 1250 at 1250 cm −1 by Fourier transform infrared spectroscopy is 0.75 or less. Sulfur modified polyacrylonitrile.
  4.  フーリエ変換型赤外分光によるC=O由来のピークが確認されない請求項1~請求項3の何れか一つに記載の硫黄変性ポリアクリロニトリル。 The sulfur-modified polyacrylonitrile according to any one of claims 1 to 3, wherein a peak derived from C = O by Fourier transform infrared spectroscopy is not confirmed.
  5.  前記D1230/D1250が0.73以下である請求項3に記載の硫黄変性ポリアクリロニトリル。 The sulfur-modified polyacrylonitrile according to claim 3, wherein the D 1230 / D 1250 is 0.73 or less.
  6.  請求項1~請求項5の何れか一つに記載の硫黄変性ポリアクリロニトリルを正極活物質として含むことを特徴とする非水電解質二次電池用正極。 A positive electrode for a nonaqueous electrolyte secondary battery comprising the sulfur-modified polyacrylonitrile according to any one of claims 1 to 5 as a positive electrode active material.
  7.  請求項1~請求項5の何れか一つに記載の硫黄変性ポリアクリロニトリルを正極活物質として正極に含むことを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the sulfur-modified polyacrylonitrile according to any one of claims 1 to 5 as a positive electrode active material in a positive electrode.
  8.  請求項7に記載の非水電解質二次電池を搭載していることを特徴とする車両。 A vehicle equipped with the non-aqueous electrolyte secondary battery according to claim 7.
  9.  非水電解質二次電池の正極活物質として用いられる硫黄変性ポリアクリロニトリルの評価方法であって、
     粒子全体のなかで粒子径1μm以下の粒子および/または該粒子の集合体の占める領域が、撮像面積比で80%以上であるものを適合品と判断し、それ以外のものを非適合品と評価することを特徴とする硫黄変性ポリアクリロニトリルの評価方法。
    An evaluation method for sulfur-modified polyacrylonitrile used as a positive electrode active material of a nonaqueous electrolyte secondary battery,
    Of all the particles, particles having a particle diameter of 1 μm or less and / or an area occupied by the aggregate of the particles are determined as conforming products when the imaging area ratio is 80% or more, and the other regions are regarded as non-conforming products. A method for evaluating sulfur-modified polyacrylonitrile, which is characterized by being evaluated.
  10.  請求項9に記載の硫黄変性ポリアクリロニトリルの評価方法を含むことを特徴とする非水電解質二次電池の製造方法。 A method for producing a nonaqueous electrolyte secondary battery, comprising the method for evaluating a sulfur-modified polyacrylonitrile according to claim 9.
  11.  硫黄およびポリアクリロニトリルを材料とする硫黄変性ポリアクリロニトリルであって、
     該ポリアクリロニトリルが塊状重合、懸濁重合または溶液重合で製造されたものであることを特徴とする硫黄変性ポリアクリロニトリル。
    A sulfur-modified polyacrylonitrile made from sulfur and polyacrylonitrile,
    A sulfur-modified polyacrylonitrile, wherein the polyacrylonitrile is produced by bulk polymerization, suspension polymerization or solution polymerization.
PCT/JP2012/000414 2011-02-25 2012-01-24 Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle WO2012114651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013500857A JP5618112B2 (en) 2011-02-25 2012-01-24 Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011040647 2011-02-25
JP2011-040647 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114651A1 true WO2012114651A1 (en) 2012-08-30

Family

ID=46720447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000414 WO2012114651A1 (en) 2011-02-25 2012-01-24 Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle

Country Status (2)

Country Link
JP (1) JP5618112B2 (en)
WO (1) WO2012114651A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004020A (en) * 2014-07-02 2016-01-12 경상대학교산학협력단 Method of manufacturing binder-free electrode, and battery
WO2016013724A1 (en) * 2014-07-21 2016-01-28 경상대학교 산학협력단 Electrode, battery, and method for manufacturing electrode
WO2018155715A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Composition for forming energy device electrode, positive electrode for energy device, and energy device
WO2019088087A1 (en) 2017-10-31 2019-05-09 株式会社Adeka Method for producing organo-sulfur electrode active material
WO2019088088A1 (en) 2017-10-31 2019-05-09 株式会社Adeka Slurry composition, and electrode using slurry composition
WO2019167875A1 (en) 2018-03-01 2019-09-06 株式会社Adeka Organic sulfur-based electrode active material
WO2019181703A1 (en) 2018-03-23 2019-09-26 株式会社Adeka Method for suppressing thermal runaway caused by internal short circuit
WO2020071298A1 (en) * 2018-10-01 2020-04-09 第一工業製薬株式会社 Electrode material for electrical storage device, electrode, electrical storage device, electrical equipment, and method for manufacturing electrode material for electrical storage device
JP2020080301A (en) * 2018-10-01 2020-05-28 第一工業製薬株式会社 Electrode material for power storage device, electrode, power storage device, electric equipment, and method for manufacturing electrode material for power storage device
KR20200130808A (en) 2018-03-13 2020-11-20 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
KR20210002452A (en) 2018-04-25 2021-01-08 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
KR20210011363A (en) 2018-05-23 2021-02-01 가부시키가이샤 아데카 Lithium ion secondary battery
WO2021060045A1 (en) 2019-09-27 2021-04-01 株式会社Adeka Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said electrode
JP2021174764A (en) * 2020-04-20 2021-11-01 住友ゴム工業株式会社 Organic sulfur material, electrode, lithium-ion secondary battery, and manufacturing method thereof
WO2021251234A1 (en) * 2020-06-12 2021-12-16 株式会社Adeka Electrode and lithium ion secondary battery
WO2023095755A1 (en) 2021-11-26 2023-06-01 株式会社Adeka Non-aqueous electrolyte secondary battery electrode comprising porous metal-containing current collector and organosulfur-based active material, non-aqueous electrolyte secondary battery containing said electrode, and organosulfur-based active material for manufacturing said electrode
JP7524606B2 (en) 2020-05-25 2024-07-30 住友ゴム工業株式会社 Sulfur-based active material, electrode, non-aqueous electrolyte secondary battery, and manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060043A1 (en) * 2019-09-27 2021-04-01 株式会社Adeka Sulfur-modified polyacrylonitrile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592710A (en) * 1978-12-04 1980-07-14 Pfizer Amine polymer having dehydration activity
JPH06206916A (en) * 1992-10-01 1994-07-26 Bayer Ag Highly concentrated aqueous polyacrylonitrile emulsion and its production
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592710A (en) * 1978-12-04 1980-07-14 Pfizer Amine polymer having dehydration activity
JPH06206916A (en) * 1992-10-01 1994-07-26 Bayer Ag Highly concentrated aqueous polyacrylonitrile emulsion and its production
JP2002154815A (en) * 2000-02-09 2002-05-28 Hitachi Maxell Ltd Carbon polysulfide, method for manufacturing the same and nonaqueous electrolyte battery which uses the same
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2010153296A (en) * 2008-12-26 2010-07-08 National Institute Of Advanced Industrial Science & Technology Sulfur modified polyacrylonitrile sheet, method for manufacturing the same, and application of the same
WO2011129103A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery comprising the positive electrode

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004020A (en) * 2014-07-02 2016-01-12 경상대학교산학협력단 Method of manufacturing binder-free electrode, and battery
KR101664412B1 (en) * 2014-07-02 2016-10-11 경상대학교산학협력단 Method of manufacturing binder-free electrode, and battery
WO2016013724A1 (en) * 2014-07-21 2016-01-28 경상대학교 산학협력단 Electrode, battery, and method for manufacturing electrode
KR20160011097A (en) * 2014-07-21 2016-01-29 경상대학교산학협력단 Electrode, battery and method of manufacturing the electrode
KR101656406B1 (en) * 2014-07-21 2016-09-12 경상대학교산학협력단 Electrode, battery and method of manufacturing the electrode
WO2018155715A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Composition for forming energy device electrode, positive electrode for energy device, and energy device
WO2018154787A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
WO2018155714A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
US11223045B2 (en) 2017-10-31 2022-01-11 Adeka Corporation Method for producing organo-sulfur electrode active material
WO2019088087A1 (en) 2017-10-31 2019-05-09 株式会社Adeka Method for producing organo-sulfur electrode active material
WO2019088088A1 (en) 2017-10-31 2019-05-09 株式会社Adeka Slurry composition, and electrode using slurry composition
KR20200081370A (en) 2017-10-31 2020-07-07 가부시키가이샤 아데카 Slurry composition and electrode using slurry composition
KR20200081362A (en) 2017-10-31 2020-07-07 가부시키가이샤 아데카 Manufacturing method of organic sulfur-based electrode active material
WO2019167875A1 (en) 2018-03-01 2019-09-06 株式会社Adeka Organic sulfur-based electrode active material
KR20200127155A (en) 2018-03-01 2020-11-10 가부시키가이샤 아데카 Organic sulfur-based electrode active material
US11594732B2 (en) 2018-03-01 2023-02-28 Adeka Corporation Organo sulfur-based electrode active material
KR20200130808A (en) 2018-03-13 2020-11-20 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
WO2019181703A1 (en) 2018-03-23 2019-09-26 株式会社Adeka Method for suppressing thermal runaway caused by internal short circuit
KR20200135292A (en) 2018-03-23 2020-12-02 가부시키가이샤 아데카 How to suppress thermal runaway due to internal short circuit
KR20210002452A (en) 2018-04-25 2021-01-08 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
KR20210011363A (en) 2018-05-23 2021-02-01 가부시키가이샤 아데카 Lithium ion secondary battery
WO2020071298A1 (en) * 2018-10-01 2020-04-09 第一工業製薬株式会社 Electrode material for electrical storage device, electrode, electrical storage device, electrical equipment, and method for manufacturing electrode material for electrical storage device
JP2020080301A (en) * 2018-10-01 2020-05-28 第一工業製薬株式会社 Electrode material for power storage device, electrode, power storage device, electric equipment, and method for manufacturing electrode material for power storage device
JP7449527B2 (en) 2018-10-01 2024-03-14 第一工業製薬株式会社 Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device
WO2021060045A1 (en) 2019-09-27 2021-04-01 株式会社Adeka Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said electrode
KR20220071224A (en) 2019-09-27 2022-05-31 가부시키가이샤 아데카 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the electrode
JP7163983B2 (en) 2020-04-20 2022-11-01 住友ゴム工業株式会社 Organic sulfur material, electrode, lithium ion secondary battery, and manufacturing method
JP2021174764A (en) * 2020-04-20 2021-11-01 住友ゴム工業株式会社 Organic sulfur material, electrode, lithium-ion secondary battery, and manufacturing method thereof
JP7524606B2 (en) 2020-05-25 2024-07-30 住友ゴム工業株式会社 Sulfur-based active material, electrode, non-aqueous electrolyte secondary battery, and manufacturing method
WO2021251234A1 (en) * 2020-06-12 2021-12-16 株式会社Adeka Electrode and lithium ion secondary battery
WO2023095755A1 (en) 2021-11-26 2023-06-01 株式会社Adeka Non-aqueous electrolyte secondary battery electrode comprising porous metal-containing current collector and organosulfur-based active material, non-aqueous electrolyte secondary battery containing said electrode, and organosulfur-based active material for manufacturing said electrode
KR20240108455A (en) 2021-11-26 2024-07-09 가부시키가이샤 아데카 An electrode for a non-aqueous electrolyte secondary battery containing a current collector containing a porous metal and an organic sulfur-based active material, a non-aqueous electrolyte secondary battery containing the electrode, and an organic sulfur-based active material for the production of the electrode.

Also Published As

Publication number Publication date
JP5618112B2 (en) 2014-11-05
JPWO2012114651A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5618112B2 (en) Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP5142415B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5754606B2 (en) Non-aqueous electrolyte secondary battery positive electrode material, non-aqueous electrolyte secondary battery, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
WO2012060037A1 (en) Method for producing sulfur-based positive pole active substance, sulfur-based positive pole active substance, and positive pole for lithium ion secondary battery
WO2012132387A1 (en) Electrode material, method for producing same, electrode, secondary battery, and vehicle
JP5142162B2 (en) Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP2012150933A (en) Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
JP2014096326A (en) Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
TWI485919B (en) Process for producing cathode active material for use in lithium secondary battery
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
JP7404852B2 (en) Sulfur-based active material
JP2016170930A (en) Negative electrode active material layer and power storage device having the same
JP2021174764A (en) Organic sulfur material, electrode, lithium-ion secondary battery, and manufacturing method thereof
JP2013089337A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5164295B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
EP3923377A1 (en) Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
EP3716363B1 (en) Sulfur-based active material
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
JP2013191329A (en) Nonaqueous electrolyte secondary battery and vehicle
US11876228B2 (en) Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
US20210324115A1 (en) Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
WO2013024688A1 (en) Negative electrode active material, negative electrode, and secondary cell
JP2016081767A (en) Electrode active material, electrode and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749157

Country of ref document: EP

Kind code of ref document: A1