JP5142162B2 - Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery - Google Patents

Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP5142162B2
JP5142162B2 JP2011007477A JP2011007477A JP5142162B2 JP 5142162 B2 JP5142162 B2 JP 5142162B2 JP 2011007477 A JP2011007477 A JP 2011007477A JP 2011007477 A JP2011007477 A JP 2011007477A JP 5142162 B2 JP5142162 B2 JP 5142162B2
Authority
JP
Japan
Prior art keywords
sulfur
positive electrode
lithium ion
ion secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011007477A
Other languages
Japanese (ja)
Other versions
JP2012150934A (en
Inventor
琢寛 幸
敏勝 小島
妥絵 奥山
哲男 境
正孝 仲西
淳一 丹羽
晶 小島
一仁 川澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyota Industries Corp
Priority to JP2011007477A priority Critical patent/JP5142162B2/en
Priority to PCT/JP2011/005021 priority patent/WO2012098597A1/en
Publication of JP2012150934A publication Critical patent/JP2012150934A/en
Application granted granted Critical
Publication of JP5142162B2 publication Critical patent/JP5142162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用正極活物質の製造方法と、得られた正極活物質を含むリチウムイオン二次電池用正極に関する。 The present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery and a positive electrode for a lithium ion secondary battery containing the obtained positive electrode active material .

非水電解質二次電池の一種であるリチウムイオン二次電池は、充放電容量の大きな電池であり、主として携帯電子機器用の電池として用いられている。また、リチウムイオン二次電池は、電気自動車用の電池としても期待されている。   A lithium ion secondary battery, which is a type of nonaqueous electrolyte secondary battery, is a battery with a large charge / discharge capacity, and is mainly used as a battery for portable electronic devices. Lithium ion secondary batteries are also expected as batteries for electric vehicles.

リチウムイオン二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含むものが一般的である。しかし、これらの金属は流通量が少なく高価であるため、近年では、これらのレアメタルに代わる物質を用いた正極活物質が求められている。   As a positive electrode active material of a lithium ion secondary battery, a material containing a rare metal such as cobalt or nickel is generally used. However, since these metals have a small circulation amount and are expensive, in recent years, a positive electrode active material using a material replacing these rare metals has been demanded.

またリチウムイオン二次電池の正極活物質として、硫黄を用いる技術が知られている。硫黄を正極活物質として用いることで、リチウムイオン二次電池の充放電容量を大きくすることができる。例えば、硫黄を正極活物質として用いたリチウムイオン二次電池の充放電容量は、一般的な正極材料であるコバルト酸リチウム正極材料を用いたリチウムイオン二次電池の充放電容量の約6倍である。   Moreover, the technique using sulfur as a positive electrode active material of a lithium ion secondary battery is known. By using sulfur as the positive electrode active material, the charge / discharge capacity of the lithium ion secondary battery can be increased. For example, the charge / discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is approximately six times the charge / discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material, which is a common positive electrode material. is there.

しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄化合物の電解液への溶出により次第に劣化し、電池容量が低下するという問題があった。   However, in a lithium ion secondary battery using elemental sulfur as the positive electrode active material, a compound of sulfur and lithium is generated during discharge. This compound of sulfur and lithium is soluble in a non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of a lithium ion secondary battery. For this reason, the lithium ion secondary battery using sulfur as the positive electrode active material has a problem that, when charging and discharging are repeated, it gradually deteriorates due to elution of the sulfur compound into the electrolytic solution, and the battery capacity is reduced.

そこで硫黄化合物の電解液への溶出を抑制するために、硫黄を含む正極活物質(以下、硫黄系正極活物質と呼ぶ)に、例えば炭素材料等の硫黄以外の材料を配合する技術が提案されている(例えば、特開2002−154815号公報参照)。   Therefore, in order to suppress elution of sulfur compounds into the electrolyte, a technique has been proposed in which a positive electrode active material containing sulfur (hereinafter referred to as a sulfur-based positive electrode active material) is blended with a material other than sulfur, such as a carbon material. (See, for example, JP-A-2002-154815).

特開2002−154815号公報には、硫黄系正極活物質として、炭素と硫黄を主な構成要素とするポリ硫化カーボンを用いる技術が紹介されている。このポリ硫化カーボンは、直鎖状不飽和ポリマーに硫黄が付加されたものである。同公報によれば、この硫黄系正極活物質は、充放電の繰り返しに伴うリチウムイオン二次電池の充放電容量低下を抑制できるとされている。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。充放電容量の低下度合いが小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、充放電容量の低下度合いの大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。   Japanese Patent Application Laid-Open No. 2002-154815 introduces a technique using polysulfide carbon having carbon and sulfur as main components as a sulfur-based positive electrode active material. This polysulfide carbon is obtained by adding sulfur to a linear unsaturated polymer. According to the publication, this sulfur-based positive electrode active material can suppress a decrease in charge / discharge capacity of a lithium ion secondary battery due to repeated charge / discharge. Hereinafter, the characteristic of the lithium ion secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge is referred to as “cycle characteristic”. A lithium ion secondary battery with a small degree of decrease in charge / discharge capacity is a lithium ion secondary battery with excellent cycle characteristics, and a lithium ion secondary battery with a large degree of decrease in charge / discharge capacity is a lithium ion secondary battery with inferior cycle characteristics. is there.

しかし、特開2002−154815号公報に紹介されている硫黄系正極活物質によっても、リチウムイオン二次電池のサイクル特性を充分に向上させることはできなかった。これは、放電時に硫黄とリチウムとが結合することにより、ポリ硫化カーボンに含まれる−CS−CS−結合や−S−S−結合が切断されて、ポリマーが切断されるためだと考えられている。   However, even with the sulfur-based positive electrode active material introduced in JP-A-2002-154815, the cycle characteristics of the lithium ion secondary battery could not be sufficiently improved. This is thought to be due to the fact that -CS-CS- bonds and -S-S- bonds contained in polysulfide carbon are cut and the polymer is cut when sulfur and lithium are bonded during discharge. Yes.

そこで本発明の発明者らは、ポリアクリロニトリルと硫黄との混合原料を熱処理して得られる硫黄系正極活物質を発明した(国際公開第2010/044437号参照)。この正極活物質を正極に用いたリチウムイオン二次電池の充放電容量は大きく、かつ、この正極活物質を正極に用いたリチウムイオン二次電池はサイクル特性に優れる。   Therefore, the inventors of the present invention invented a sulfur-based positive electrode active material obtained by heat-treating a mixed raw material of polyacrylonitrile and sulfur (see International Publication No. 2010/044437). The charge / discharge capacity of a lithium ion secondary battery using this positive electrode active material for the positive electrode is large, and the lithium ion secondary battery using this positive electrode active material for the positive electrode is excellent in cycle characteristics.

その一方で、ポリアクリロニトリルは比較的高価な材料である。また、この正極活物質を正極に用いたリチウムイオン二次電池は、ポリアクリロニトリル原料粉末の品質(特に粒径)によって充放電容量、サイクル特性等の電池性能が大きく左右される。品質の一定なポリアクリロニトリルはさらに高価である。このため、国際公開第2010/044437号に開示されている硫黄系正極活物質によると、大きな充放電容量を持ち、かつサイクル特性に優れるリチウムイオン二次電池を、安価に提供し難いという問題があった。   On the other hand, polyacrylonitrile is a relatively expensive material. In addition, a lithium ion secondary battery using this positive electrode active material for the positive electrode greatly depends on battery performance such as charge / discharge capacity and cycle characteristics depending on the quality (particularly particle size) of the polyacrylonitrile raw material powder. Quality polyacrylonitrile is even more expensive. Therefore, according to the sulfur-based positive electrode active material disclosed in International Publication No. 2010/044437, there is a problem that it is difficult to provide a low-cost lithium ion secondary battery having a large charge / discharge capacity and excellent cycle characteristics. there were.

特開2002−154815号公報JP 2002-154815 A 国際公開第2010/044437号International Publication No. 2010/044437

本発明は上記事情に鑑みてなされたものであり、大きな充放電容量を有するリチウムイオン二次電池を提供できる硫黄系正極活物質を用いたリチウムイオン二次電池用正極を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the positive electrode for lithium ion secondary batteries using the sulfur type positive electrode active material which can provide the lithium ion secondary battery which has a big charging / discharging capacity | capacitance. To do.

本発明の発明者らは、鋭意研究の結果、硫黄系正極活物質の炭素材料として3環以上の六員環が縮合してなる多環芳香族炭化水素を用いることで、大きな充放電容量を発現できる硫黄系正極活物質を製造できることを見いだした。   As a result of earnest research, the inventors of the present invention have a large charge / discharge capacity by using a polycyclic aromatic hydrocarbon formed by condensation of three or more six-membered rings as the carbon material of the sulfur-based positive electrode active material. It has been found that a sulfur-based positive electrode active material that can be expressed can be produced.

すなわち本発明のリチウムイオン二次電池用正極活物質の製造方法の特徴は、3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と、ポリアクリロニトリル粉末と、硫黄粉末とを含む原料を混合して混合原料とする混合工程と、混合原料を加熱する熱処理工程と、を行い、
選択多環芳香族炭化水素由来の第一の炭素骨格と第一の炭素骨格と結合した硫黄(S)とからなる第一硫黄系正極活物質と、ポリアクリロニ トリル由来の第二の炭素骨格と第二の炭素骨格と結合した硫黄(S)とからなる第二硫黄系正極活物質と、を含む硫黄系正極活物質を製造することにある。
That is, the method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention is characterized by at least one selected polycyclic aromatic carbon selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings. Performing a mixing step of mixing raw materials containing hydrogen, polyacrylonitrile powder, and sulfur powder into a mixed raw material, and a heat treatment step of heating the mixed raw material ,
A first sulfur-based positive electrode active material comprising a first carbon skeleton derived from a selected polycyclic aromatic hydrocarbon and sulfur (S) bonded to the first carbon skeleton; a second carbon skeleton derived from polyacrylonitrile; It is to produce a sulfur-based positive electrode active material containing a second sulfur-based positive electrode active material composed of sulfur (S) bonded to a second carbon skeleton .

そして上記製造方法によって製造される硫黄系正極活物質を含む本発明のリチウムイオン二次電池用正極の特徴は、3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と、ポリアクリロニトリル粉末と、硫黄粉末とを含む原料を混合して混合原料とする混合工程と、該混合原料を加熱する熱処理工程と、を行うことにより製造された、
選択多環芳香族炭化水素由来の第一の炭素骨格と第一の炭素骨格と結合した硫黄(S)とからなる第一硫黄系正極活物質と、ポリアクリロニトリル由来の第二の炭素骨格と第二の炭素骨格と結合した硫黄(S)とからなる第二硫黄系正極活物質と、を含むことにある。
The characteristics of the positive electrode for a lithium ion secondary battery of the present invention including the sulfur-based positive electrode active material produced by the production method described above are selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings Produced by performing a mixing step of mixing a raw material containing at least one selected polycyclic aromatic hydrocarbon, polyacrylonitrile powder, and sulfur powder into a mixed raw material, and a heat treatment step of heating the mixed raw material Was
A first sulfur-based positive electrode active material comprising a first carbon skeleton derived from a selected polycyclic aromatic hydrocarbon and sulfur (S) bonded to the first carbon skeleton; a second carbon skeleton derived from polyacrylonitrile; And a second sulfur-based positive electrode active material composed of sulfur (S) bonded to a second carbon skeleton.

本発明の硫黄系正極活物質の製造方法によると、高い充放電容量をもつリチウムイオン二次電池を提供する硫黄系正極活物質を製造することができる。また、本発明のリチウムイオン二次電池用正極によると、高い充放電容量をもつリチウムイオン二次電池を提供することができ、第二硫黄系正極活物質をさらに含むことでサイクル特性を向上させることができる。 According to the method for producing a sulfur-based positive electrode active material of the present invention, it is possible to produce a sulfur-based positive electrode active material that provides a lithium ion secondary battery having a high charge / discharge capacity. Further, according to the positive electrode for a lithium ion secondary battery of the present invention, a lithium ion secondary battery having a high charge / discharge capacity can be provided, and the cycle characteristics are improved by further including a second sulfur-based positive electrode active material. be able to.

参考例の硫黄系正極活物質の製造方法で用いた反応装置を模式的に表す説明図である。It is explanatory drawing which represents typically the reaction apparatus used with the manufacturing method of the sulfur type positive electrode active material of a reference example . 参考例1の硫黄系正極活物質をX線回折した結果を表すグラフである。 4 is a graph showing the result of X-ray diffraction of the sulfur-based positive electrode active material of Reference Example 1 . 実施例1の硫黄系正極活物質をX線回折した結果を表すグラフである。 3 is a graph showing the result of X-ray diffraction of the sulfur-based positive electrode active material of Example 1 . 比較例1の硫黄系正極活物質をX線回折した結果を表すグラフである。6 is a graph showing the result of X-ray diffraction of the sulfur-based positive electrode active material of Comparative Example 1. 参考例1の硫黄系正極活物質をラマンスペクトル分析した結果を表すグラフである。 4 is a graph showing the results of Raman spectrum analysis of the sulfur-based positive electrode active material of Reference Example 1 . 実施例1の硫黄系正極活物質をラマンスペクトル分析した結果を表すグラフである。 3 is a graph showing the results of Raman spectrum analysis of the sulfur-based positive electrode active material of Example 1 . 比較例1の硫黄系正極活物質をラマンスペクトル分析した結果を表すグラフである。4 is a graph showing the results of Raman spectrum analysis of the sulfur-based positive electrode active material of Comparative Example 1. 参考例1の硫黄系正極活物質をFT−IRスペクトル分析した結果を表すグラフである。Is a graph showing a result of the sulfur-based positive electrode active material of Reference Example 1 was FT-IR spectroscopy. 実施例1の硫黄系正極活物質をFT−IRスペクトル分析した結果を表すグラフである。 2 is a graph showing the results of FT-IR spectrum analysis of the sulfur-based positive electrode active material of Example 1 . 比較例1の硫黄系正極活物質をFT−IRスペクトル分析した結果を表すグラフである。4 is a graph showing the results of FT-IR spectrum analysis of the sulfur-based positive electrode active material of Comparative Example 1. アントラセンをFT−IRスペクトル分析した結果を表すグラフである。It is a graph showing the result of FT-IR spectrum analysis of anthracene. 参考例1のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。 4 is a graph showing the results of a cycle test of the lithium ion secondary battery of Reference Example 1 . 実施例1のリチウムイオン二次電池の充放電曲線を表すグラフである。2 is a graph showing a charge / discharge curve of the lithium ion secondary battery of Example 1. FIG. 実施例1のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。 3 is a graph showing the results of a cycle test of the lithium ion secondary battery of Example 1. FIG. 参考例2のリチウムイオン二次電池の充放電曲線を表すグラフである。 5 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Reference Example 2. FIG. 参考例2のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。 6 is a graph showing the results of a cycle test of the lithium ion secondary battery of Reference Example 2 . 実施例2のリチウムイオン二次電池の充放電曲線を表すグラフである。 4 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Example 2. FIG. 実施例2のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。 6 is a graph showing the results of a cycle test of the lithium ion secondary battery of Example 2. FIG. 比較例1のリチウムイオン二次電池の充放電曲線を表すグラフである。4 is a graph showing a charge / discharge curve of a lithium ion secondary battery of Comparative Example 1. 比較例1のリチウムイオン二次電池のサイクル試験の結果を表すグラフである。6 is a graph showing the results of a cycle test of the lithium ion secondary battery of Comparative Example 1.

(硫黄系正極活物質の製造方法)
本発明においては、第一硫黄系正極活物質の原料として、3環以上の六員環が縮合した多環芳香族炭化水素の少なくとも一種と硫黄とを用いる。多環芳香族炭化水素(Polycyclic aromatic hydrocarbon、PAH)は、ヘテロ原子や置換基を含まない芳香環が縮合した炭化水素の総称であり、四員環、五員環、六員環、そして七員環からなるものがあるが、このうち、本発明では、ベンゼン環の構造である六員環が直鎖に3環以上連なった構造をもつアセン類、および、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ化合物などのうち少なくとも一種と硫黄とを用いることが好ましい。
(Method for producing sulfur-based positive electrode active material)
In the present invention, as a raw material for the first sulfur-based positive electrode active material, at least one polycyclic aromatic hydrocarbon condensed with three or more six-membered rings and sulfur are used. Polycyclic aromatic hydrocarbon (PAH) is a general term for hydrocarbons condensed with an aromatic ring that does not contain heteroatoms or substituents. Four-, five-, six-, and seven-membered rings Among them, in the present invention, acenes having a structure in which three or more six-membered rings, which are benzene rings, are connected in a straight chain and three or more six-membered rings are directly formed. It is preferable to use sulfur and at least one of compounds having a bent structure instead of a chain.

複数の芳香環が辺を共有しながら直鎖状に連なった多環芳香族炭化水素であるアセン類としては、2環のナフタレン、3環のアントラセン、4環のテトラセン、5環のペンタセン、6環のヘキサセン、7環のヘプタセン、8環のオクタセン、9環のノナセン、及び10環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。中でも安定性が高い3環〜6環のものが望ましい。   As acenes which are polycyclic aromatic hydrocarbons in which a plurality of aromatic rings share a side and are connected in a straight chain, bicyclic naphthalene, tricyclic anthracene, tetracyclic tetracene, pentacyclic pentacene, 6 There are ring hexacene, 7 ring heptacene, 8 ring octacene, 9 ring nonacene, and 10 or more aromatic rings, and at least one selected from these groups can be used. Among them, those having 3 to 6 rings having high stability are desirable.

また、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ多環芳香族炭化水素としては、フェナントレン、ベンゾピレン、クリセン、ピレン、ピセン、ペリレン、トリフェニレン、コロネン、及びこれらより多くの環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。またこのような多環芳香族炭化水素を含む例えば、石油ピッチ、石炭ピッチなどを用いてもよい。   In addition, polycyclic aromatic hydrocarbons having a structure in which three or more six-membered rings are not linear but bent include phenanthrene, benzopyrene, chrysene, pyrene, picene, perylene, triphenylene, coronene, and more rings. There are those in which the above aromatic rings are linked, and at least one selected from these groups can be used. Further, for example, petroleum pitch, coal pitch, or the like containing such polycyclic aromatic hydrocarbons may be used.

先ず第一硫黄系正極活物質の製造方法について説明する。この製造方法は、3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と硫黄粉末とを含む原料を混合して混合原料とする混合工程と、混合原料を加熱する熱処理工程と、を行う。混合工程は、選択多環芳香族炭化水素を粉砕し硫黄粉末と混合してもよいし、選択多環芳香族炭化水素を溶媒に溶解した溶液と硫黄粉末を混合してもよい。混合手段は、ミキサー、各種ミルなどを用いることができる。 First, the manufacturing method of a 1st sulfur type positive electrode active material is demonstrated. This production method comprises mixing a raw material containing at least one selected polycyclic aromatic hydrocarbon selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings and sulfur powder; And a heat treatment step of heating the mixed raw material. In the mixing step, the selected polycyclic aromatic hydrocarbon may be pulverized and mixed with the sulfur powder, or a solution obtained by dissolving the selected polycyclic aromatic hydrocarbon in a solvent may be mixed with the sulfur powder. A mixer, various mills, etc. can be used for a mixing means.

熱処理工程では、選択多環芳香族炭化水素と硫黄とを反応させる。この反応は、選択多環芳香族炭化水素の量に対して硫黄の量を過大として反応させ、硫黄を高濃度で含む正極活物質とすることが望ましい。この熱処理工程の温度は、選択多環芳香族炭化水素の少なくとも一部と硫黄の少なくとも一部とが液体となる条件で行うことが望ましい。このようにすることで、選択多環芳香族炭化水素と硫黄との接触面積を充分に大きくでき、硫黄を充分に含みかつ硫黄の脱離が抑制された硫黄系正極活物質を得ることができる。   In the heat treatment step, the selected polycyclic aromatic hydrocarbon is reacted with sulfur. In this reaction, it is desirable that the amount of sulfur is excessively increased with respect to the amount of the selected polycyclic aromatic hydrocarbon to produce a positive electrode active material containing sulfur at a high concentration. It is desirable that the temperature of the heat treatment step be such that at least a part of the selected polycyclic aromatic hydrocarbon and at least a part of sulfur are liquid. By doing so, a contact area between the selected polycyclic aromatic hydrocarbon and sulfur can be sufficiently increased, and a sulfur-based positive electrode active material containing sulfur sufficiently and suppressing sulfur desorption can be obtained. .

熱処理工程では、あまり高温にすると硫黄が気化するため反応系内の硫黄濃度が低くなる場合がある。そのような場合には、硫黄を還流しながら反応させることが望ましい。このようにすることで、硫黄を充分に含む硫黄系正極活物質を得やすくなる。熱処理工程において硫黄を還流する場合、選択多環芳香族炭化水素の融点以上で、硫黄が気化する温度以上の温度とすれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。   In the heat treatment process, if the temperature is too high, sulfur vaporizes, so the sulfur concentration in the reaction system may be lowered. In such a case, it is desirable to react while refluxing sulfur. By doing in this way, it becomes easy to obtain the sulfur type positive electrode active material which fully contains sulfur. When sulfur is refluxed in the heat treatment step, the temperature may be higher than the melting point of the selected polycyclic aromatic hydrocarbon and higher than the temperature at which sulfur is vaporized. Vaporization here refers to the phase change of sulfur from a liquid or solid to a gas, and may be any of boiling, evaporation, and sublimation. For reference, the melting point of α sulfur (orthogonal sulfur, which is the most stable structure near room temperature) is 112.8 ° C, melting point of β sulfur (monoclinic sulfur) is 119.6 ° C, and melting point of γ sulfur (monoclinic sulfur) is 106.8 ° C. The boiling point of sulfur is 444.7 ° C. By the way, since the vapor pressure of sulfur is high, the generation of sulfur vapor can be visually confirmed when the temperature of the mixed raw material is 150 ° C. or higher. Therefore, if the temperature of the mixed raw material is 150 ° C. or higher, sulfur can be refluxed. In addition, what is necessary is just to recirculate | reflux sulfur using the recirculation | reflux apparatus of a known structure when recirculating | refluxing sulfur in a heat treatment process.

ここで、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、選択多環芳香族炭化水素と硫黄との結合を妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合があるからである。また、ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。   Here, the atmosphere in which the heat treatment step is performed is not particularly limited, but in an atmosphere that does not hinder the bond between the selected polycyclic aromatic hydrocarbon and sulfur (for example, an atmosphere containing no hydrogen or a non-oxidizing atmosphere). It is preferred to do so. For example, if hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, so that sulfur in the reaction system may be lost. In addition, the non-oxidizing atmosphere here includes a reduced pressure state in which the oxygen concentration is low enough that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen or argon, a sulfur gas atmosphere, and the like.

混合原料における選択多環芳香族炭化水素および硫黄の形状、粒径等は特に問わない。熱処理工程において選択多環芳香族炭化水素と硫黄とが液体状で接触するのが好ましいため、選択多環芳香族炭化水素や硫黄の粒径が不均一であったり大きかったりする場合にも、選択多環芳香族炭化水素と硫黄とが液体状で接触する条件とすれば、選択多環芳香族炭化水素と硫黄とが充分接触するためである。また、混合原料中の選択多環芳香族炭化水素と硫黄とは、均一に分散しているのが好ましいが、不均一であっても良い。   The shape, particle size, etc. of the selected polycyclic aromatic hydrocarbon and sulfur in the mixed raw material are not particularly limited. Since it is preferable that the selected polycyclic aromatic hydrocarbon and sulfur come into contact with each other in a liquid state in the heat treatment step, it is also selected when the particle size of the selected polycyclic aromatic hydrocarbon or sulfur is uneven or large. This is because the selected polycyclic aromatic hydrocarbon and sulfur are in sufficient contact with each other if the polycyclic aromatic hydrocarbon and sulfur are in contact with each other in a liquid state. Further, the selected polycyclic aromatic hydrocarbon and sulfur in the mixed raw material are preferably uniformly dispersed, but may be non-uniform.

熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい温度で混合原料を加熱する場合には、10分〜10時間程度加熱するのが好ましく、30分〜6時間加熱するのがより好ましい。   What is necessary is just to set suitably the heating time of the mixed raw material in a heat processing process according to heating temperature, and it does not specifically limit it. When the mixed raw material is heated at the preferred temperature described above, it is preferably heated for about 10 minutes to 10 hours, more preferably for 30 minutes to 6 hours.

第一硫黄系正極活物質の製造方法において、混合原料中の選択多環芳香族炭化水素と硫黄との配合比にも好ましい範囲が存在する。選択多環芳香族炭化水素に対する硫黄の配合量が過小であると選択多環芳香族炭化水素に充分量の硫黄を取り込めず、選択多環芳香族炭化水素に対する硫黄の配合量が過大であると、第一硫黄系正極活物質中に遊離の硫黄(単体硫黄)が多く残存して、リチウムイオン二次電池内の特に電解液を汚染するためである。混合原料中の選択多環芳香族炭化水素と硫黄との配合比は、質量比で選択多環芳香族炭化水素:硫黄が1:0.5〜1:10であるのが好ましく、1:1〜1:7であるのがより好ましく、1:2〜1:5であるのが特に好ましい。 In the method for producing the first sulfur-based positive electrode active material, there is a preferable range in the blending ratio of the selected polycyclic aromatic hydrocarbon and sulfur in the mixed raw material. If the amount of sulfur added to the selected polycyclic aromatic hydrocarbon is too small, a sufficient amount of sulfur cannot be taken into the selected polycyclic aromatic hydrocarbon, and the amount of sulfur added to the selected polycyclic aromatic hydrocarbon is too large. This is because a large amount of free sulfur (elemental sulfur) remains in the first sulfur-based positive electrode active material, and in particular, contaminates the electrolyte solution in the lithium ion secondary battery. The mixing ratio of the selected polycyclic aromatic hydrocarbon and sulfur in the mixed raw material is preferably 1: 0.5 to 1:10 in the selected polycyclic aromatic hydrocarbon: sulfur by mass ratio, and 1: 1 to 1 : 7 is more preferable, and 1: 2 to 1: 5 is particularly preferable.

なお、選択多環芳香族炭化水素に対する硫黄の配合量を過大とすれば、熱処理工程において選択多環芳香族炭化水素に充分な量の硫黄を容易に取り込むことができる。そして選択多環芳香族炭化水素に対して硫黄を必要以上の量で配合したとしても、熱処理工程後の被処理体から過剰の単体硫黄を除去する単体硫黄除去工程を行うことで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中の選択多環芳香族炭化水素と硫黄との配合比を、質量比で1:2〜1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃〜250℃で加熱する(単体硫黄除去工程)ことで、選択多環芳香族炭化水素に充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄系正極活物質として用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄系正極活物質として用いれば良い。   If the amount of sulfur added to the selected polycyclic aromatic hydrocarbon is excessive, a sufficient amount of sulfur can be easily taken into the selected polycyclic aromatic hydrocarbon in the heat treatment step. And even if it mix | blends sulfur more than necessary with respect to the selection polycyclic aromatic hydrocarbon, by performing the simple substance sulfur removal process which removes excess simple sulfur from the processed object after a heat treatment process, the above-mentioned simple substance The adverse effect of sulfur can be suppressed. Specifically, when the mixing ratio of the selected polycyclic aromatic hydrocarbon and sulfur in the mixed raw material is 1: 2 to 1:10 by mass ratio, the object to be treated after the heat treatment step is 200 ° C. while reducing the pressure. By heating at ˜250 ° C. (single sulfur removal step), it is possible to suppress an adverse effect due to the remaining single sulfur while incorporating a sufficient amount of sulfur into the selected polycyclic aromatic hydrocarbon. When the single sulfur removal step is not performed on the target object after the heat treatment step, this target object may be used as it is as the sulfur-based positive electrode active material. Moreover, what is necessary is just to use the to-be-processed body after a single sulfur removal process as a sulfur type positive electrode active material, when performing a single-piece | unit sulfur removal process to the to-be-processed body after a heat treatment process.

混合原料は、選択多環芳香族炭化水素および硫黄のみで構成しても良いし、正極活物質に配合可能な一般的な材料(導電助剤等)を配合しても良い。   The mixed raw material may be composed only of the selected polycyclic aromatic hydrocarbon and sulfur, or may be blended with a general material (such as a conductive aid) that can be blended with the positive electrode active material.

上記製造方法によると、正極活物質の材料としてコバルト等のレアメタルを配合するかわりに選択多環芳香族炭化水素と硫黄とが反応してなる物質を配合したことで、リチウムイオン二次電池の充放電容量を向上させる第一硫黄系正極活物質を容易に製造することができる。 According to the above manufacturing method , instead of blending a rare metal such as cobalt as a material for the positive electrode active material, a material obtained by reacting a selected polycyclic aromatic hydrocarbon and sulfur can be blended to recharge a lithium ion secondary battery. The 1st sulfur type positive electrode active material which improves discharge capacity can be manufactured easily.

第一硫黄系正極活物質は、例えば、出発物質である選択多環芳香族炭化水素としてペンタセンを選択した場合には、化1式で示されるようなヘキサチアペンタセン類似の構造となっていると考えられるが、その構造は明らかではない。また、選択多環芳香族炭化水素としてアントラセンを用いた硫黄正極活物質は、FT−IRスペクトルにおいて、1056cm-1付近と、840cm-1付近と、にそれぞれピークが存在し、アントラセンのFT−IRスペクトルとは全く異なっているので、FT−IRスペクトルで同定することが可能である。 For example, when pentacene is selected as the selected polycyclic aromatic hydrocarbon which is the starting material, the first sulfur-based positive electrode active material has a structure similar to hexathiapentacene as shown in Formula 1. Though possible, its structure is not clear. The selection polycyclic aromatic hydrocarbon as a sulfur positive electrode active material with anthracene in FT-IR spectrum, a near 1056cm -1, there are respectively a peak and around 840 cm -1, the, FT-IR anthracene Since it is completely different from the spectrum, it can be identified by the FT-IR spectrum.

Figure 0005142162
Figure 0005142162

第一硫黄系正極活物質を元素分析すると、硫黄(S)と炭素(C)とが大部分を占め、少量の酸素および水素が検出される。硫黄(S)と炭素(C)の組成比は、原子比(S/C)で1/5以上の範囲で含まれていることが望ましい。この範囲より硫黄が少ないと、リチウムイオン二次電池用正極に用いた時に充放電特性が低下する場合がある。 When elemental analysis of the first sulfur-based positive electrode active material is performed, sulfur (S) and carbon (C) occupy most, and small amounts of oxygen and hydrogen are detected. It is desirable that the composition ratio of sulfur (S) and carbon (C) is included in the range of 1/5 or more in terms of atomic ratio (S / C). If the amount of sulfur is less than this range, the charge / discharge characteristics may deteriorate when used for a positive electrode for a lithium ion secondary battery.

本発明のリチウムイオン二次電池用正極は、ポリアクリロニトリル由来の第二の炭素骨格と、第二の炭素骨格と結合した硫黄(S)とからなる第二硫黄系正極活物質をさらに含む。この第二硫黄系正極活物質をさらに含むことで、サイクル特性がさらに向上するようになる。その理由は明らかではないが、ポリアクリロニトリルと硫黄との結合力が大きいので硫黄が固定化されるためと考えられている。 The positive electrode for a lithium ion secondary battery of the present invention further includes a second sulfur-based positive electrode active material comprising a second carbon skeleton derived from polyacrylonitrile and sulfur (S) bonded to the second carbon skeleton . By further including this second sulfur-based positive electrode active material, the cycle characteristics are further improved. Although the reason is not clear, it is considered that sulfur is immobilized because the bonding force between polyacrylonitrile and sulfur is large.

この第二硫黄系正極活物質をさらに含む本発明に係る硫黄系正極活物質を製造するには、3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と硫黄との反応により形成された第一の硫黄系正極活物質と第二硫黄系正極活物質とを物理的に混合することが考えられる。しかし安定性が懸念される場合があるため、安定性を高めるためには、3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と、ポリアクリロニトリル粉末と、硫黄粉末とを含む原料を混合して混合原料とする混合工程と、この混合原料を加熱する熱処理工程と、を行うことが望ましい。ポリアクリロニトリル粉末としては、重量平均分子量が10,000〜300,000程度の範囲内にあるものが好ましい。また、ポリアクリロニトリルの粒径については、電子顕微鏡によって観察した際に、0.5〜50μm程度の範囲内にあるものが好ましく、1〜10μm程度の範囲内にあるものがより好ましい。 In order to produce the sulfur-based cathode active material according to the present invention further including this second sulfur-based cathode active material, at least one kind selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings It is conceivable to physically mix the first sulfur-based positive electrode active material and the second sulfur-based positive electrode active material formed by the reaction between the selected polycyclic aromatic hydrocarbon and sulfur . However, since stability may be a concern, in order to improve stability, at least one selected polycyclic aromatic carbon selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings is used. It is desirable to perform a mixing step in which a raw material containing hydrogen, polyacrylonitrile powder, and sulfur powder is mixed to obtain a mixed raw material, and a heat treatment step in which the mixed raw material is heated. The polyacrylonitrile powder preferably has a weight average molecular weight in the range of about 10,000 to 300,000. The particle size of polyacrylonitrile is preferably in the range of about 0.5 to 50 μm, more preferably in the range of about 1 to 10 μm, when observed with an electron microscope.

混合原料中の選択多環芳香族炭化水素とポリアクリロニトリルとの合計量と、硫黄との配合比は、質量比で1:0.5〜1:10とすることができる。選択多環芳香族炭化水素とポリアクリロニトリルとの合計量に対する硫黄の配合量が過小であると選択多環芳香族炭化水素及びポリアクリロニトリルに充分量の硫黄を取り込めず、選択多環芳香族炭化水素とポリアクリロニトリルとの合計量に対する硫黄の配合量が過大であると、硫黄系正極活物質中に遊離の硫黄(単体硫黄)が多く残存して、リチウムイオン二次電池内の特に電解液を汚染するためである。混合原料中の選択多環芳香族炭化水素とポリアクリロニトリルとの合計量に対する硫黄の配合比は、質量比で1:0.5〜1:10であるのが好ましく、1:1〜1:7であるのがより好ましく、1:2〜1:5であるのが特に好ましい。   The mixing ratio of the total amount of the selected polycyclic aromatic hydrocarbon and polyacrylonitrile in the mixed raw material and sulfur can be 1: 0.5 to 1:10 by mass ratio. If the compounding amount of sulfur is too small relative to the total amount of the selected polycyclic aromatic hydrocarbon and polyacrylonitrile, a sufficient amount of sulfur cannot be taken into the selected polycyclic aromatic hydrocarbon and polyacrylonitrile, and the selected polycyclic aromatic hydrocarbon If the amount of sulfur is too large relative to the total amount of acrylonitrile and polyacrylonitrile, a large amount of free sulfur (single sulfur) will remain in the sulfur-based positive electrode active material, contaminating the electrolyte in the lithium ion secondary battery. It is to do. The compounding ratio of sulfur with respect to the total amount of the selected polycyclic aromatic hydrocarbon and polyacrylonitrile in the mixed raw material is preferably 1: 0.5 to 1:10, and preferably 1: 1 to 1: 7. Is more preferable, and 1: 2 to 1: 5 is particularly preferable.

混合原料中にさらにポリアクリロニトリル粉末を含む場合の熱処理工程は、前述した選択多環芳香族炭化水素と硫黄とを反応させる製造方法と同様に行うことができる。   The heat treatment step when the mixed raw material further contains polyacrylonitrile powder can be performed in the same manner as in the production method in which the selected polycyclic aromatic hydrocarbon and sulfur are reacted.

第二硫黄系正極活物質の混合量は、特に限定的ではないが、正極活物質全体に0〜80質量%程度とすることが好ましく、5〜60質量%程度とすることがより好ましく、10〜40質量%程度とすることが更に好ましい。換言すると、混合原料中の多環芳香族炭化水素とポリアクリロニトリルとの配合比は、質量比で90:10〜60:40であることが好ましい。   The mixing amount of the second sulfur-based positive electrode active material is not particularly limited, but is preferably about 0 to 80% by mass, more preferably about 5 to 60% by mass with respect to the entire positive electrode active material. More preferably, it is about -40 mass%. In other words, the blending ratio of the polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material is preferably 90:10 to 60:40 by mass ratio.

(リチウムイオン二次電池用正極)
本発明のリチウムイオン二次電池用正極は、上述した第一硫黄系正極活物質と第二硫黄系正極活物質とを含む本発明に係る硫黄系正極活物質を含む。このリチウムイオン二次電池用正極は、正極活物質以外は、一般的なリチウムイオン二次電池用正極と同様の構造にできる。例えば、本発明のリチウムイオン二次電池用正極は、硫黄系正極活物質、導電助剤、バインダ、および溶媒を混合した正極材料を、集電体に塗布することによって製作できる。
(Positive electrode for lithium ion secondary battery)
The positive electrode for lithium ion secondary batteries of this invention contains the sulfur type positive electrode active material which concerns on this invention containing the 1st sulfur type positive electrode active material and 2nd sulfur type positive electrode active material which were mentioned above. The positive electrode for a lithium ion secondary battery can have the same structure as a general positive electrode for a lithium ion secondary battery, except for the positive electrode active material. For example, the positive electrode for a lithium ion secondary battery of the present invention can be manufactured by applying a positive electrode material in which a sulfur-based positive electrode active material , a conductive additive, a binder, and a solvent are mixed to a current collector.

導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。   Conductive aids include vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, aluminum, titanium and other positive electrodes Examples thereof include fine metal powders stable in potential.

バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。   The binders include Polyvinylidene Fluoride (PVDF), Polytetrafluoroethylene (PTFE), Styrene-Butadiene Rubber (SBR), Polyimide (PI), Polyamideimide (PAI), Carboxymethylcellulose (CMC), Polychlorinated Examples include vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), and polypropylene (PP).

溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄系正極活物質100質量部に対して、導電助剤20〜100質量部程度、バインダ10〜20質量部程度を配合するのが好ましい。また、その他の方法として、本発明の硫黄系正極活物質と上述した導電助剤およびバインダとの混合原料を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合原料をプレス機等で集電体に圧着することで、本発明のリチウムイオン二次電池用正極を製造することもできる。   Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These conductive assistants, binders and solvents may be used as a mixture of plural kinds. The blending amount of these materials is not particularly limited. For example, it is preferable to blend about 20 to 100 parts by mass of the conductive auxiliary and about 10 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-based positive electrode active material. Further, as another method, a mixed raw material of the sulfur-based positive electrode active material of the present invention and the above-described conductive additive and binder is kneaded with a mortar or a press and made into a film, and the mixed raw material in a film is pressed The positive electrode for a lithium ion secondary battery of the present invention can also be produced by pressure bonding to the current collector.

集電体としては、リチウムイオン二次電池用正極に一般に用いられるものを使用すれば良い。例えば、集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等が例示される。このうち黒鉛化度の高いカーボンから成るカーボン不織布/織布集電体は、水素を含まず、硫黄との反応性が低いために、硫黄系正極活物質用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やポリアクリロニトリル繊維(PAN)等を用いることができる。   What is necessary is just to use what is generally used for the positive electrode for lithium ion secondary batteries as a collector. For example, current collectors include aluminum foil, aluminum mesh, punched aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punched stainless steel sheet, stainless steel expanded sheet, nickel foam, nickel nonwoven fabric, copper foil, copper Examples thereof include a mesh, a punched copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon nonwoven fabric, and a carbon woven fabric. Among these, the carbon non-woven fabric / woven fabric current collector made of carbon having a high degree of graphitization is suitable as a current collector for a sulfur-based positive electrode active material because it does not contain hydrogen and has low reactivity with sulfur. As a raw material of carbon fiber having a high degree of graphitization, various pitches (that is, by-products such as petroleum, coal, coal tar, etc.), polyacrylonitrile fiber (PAN), and the like, which are carbon fiber materials, can be used.

本発明のリチウムイオン二次電池用正極は、正極活物質として、上述した本発明の硫黄系正極活物質を含む。したがって本発明のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池は、充放電容量が大きくサイクル特性に優れ、かつ安価に製造できる。   The positive electrode for lithium ion secondary batteries of this invention contains the sulfur type positive electrode active material of this invention mentioned above as a positive electrode active material. Therefore, a lithium ion secondary battery using the positive electrode for a lithium ion secondary battery of the present invention has a large charge / discharge capacity, excellent cycle characteristics, and can be produced at low cost.

(リチウムイオン二次電池)
以下、本発明の硫黄系正極活物質を正極に用いたリチウムイオン二次電池の構成について説明する。以下、本発明の硫黄系正極活物質を正極に用いたリチウムイオン二次電池を単にリチウムイオン二次電池用と略する。なお、正極に関しては、上述したとおりである。
(Lithium ion secondary battery)
Hereinafter, the structure of a lithium ion secondary battery using the sulfur-based positive electrode active material of the present invention for the positive electrode will be described. Hereinafter, a lithium ion secondary battery using the sulfur-based positive electrode active material of the present invention as a positive electrode is simply abbreviated as a lithium ion secondary battery. The positive electrode is as described above.

(負極)
負極材料としては、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅−錫やコバルト−錫などの合金系材料を使用できる。負極材料として、リチウムを含まない材料、例えば、上記した負極材料の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライトの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本発明の正極と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えば良い。例えば、負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することが出来る。
(Negative electrode)
As the negative electrode material, a known carbon-based material such as lithium metal or graphite, a silicon-based material such as a silicon thin film, or an alloy-based material such as copper-tin or cobalt-tin can be used. When a negative electrode material that does not contain lithium, for example, a carbon-based material, a silicon-based material, an alloy-based material, or the like among the negative electrode materials described above, short-circuiting between the positive and negative electrodes due to generation of dendrites is unlikely to occur. This is advantageous. However, when these negative electrode materials not containing lithium are used in combination with the positive electrode of the present invention, neither the positive electrode nor the negative electrode contains lithium. For this reason, a lithium pre-doping process in which lithium is inserted in advance into either one or both of the negative electrode and the positive electrode is necessary. The lithium pre-doping method may be a known method. For example, when lithium is doped into the negative electrode, a half battery is assembled using metallic lithium as the counter electrode, and lithium is inserted by an electrolytic doping method in which lithium is electrochemically doped, or a metallic lithium foil is attached to the electrode. There is a method of inserting lithium by a pasting pre-doping method in which it is left in an electrolytic solution after being attached and doped by utilizing diffusion of lithium to the electrode. Also, when the positive electrode is predoped with lithium, the above-described electrolytic doping method can be used.

リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。   As the negative electrode material that does not contain lithium, a silicon-based material that is a high-capacity negative electrode material is particularly preferable, and among these, thin-film silicon that is advantageous in terms of capacity per volume due to thin electrode thickness is more preferable.

(電解質)
リチウムイオン二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、γ−ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiI、LiClO4等を用いることができる。電解質の濃度は、0.5mol/l〜1.7mol/l程度であれば良い。なお、電解質は液状に限定されない。例えば、リチウムイオン二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば、高分子ゲル状)をなす。
(Electrolytes)
As the electrolyte used for the lithium ion secondary battery, an electrolyte in which an alkali metal salt as an electrolyte is dissolved in an organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, γ-butyrolactone, and acetonitrile. As the electrolyte, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used. The concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l. The electrolyte is not limited to liquid. For example, when the lithium ion secondary battery is a lithium polymer secondary battery, the electrolyte is in a solid state (for example, a polymer gel).

(その他)
リチウムイオン二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。リチウムイオン二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。リチウムイオン二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。
(Other)
The lithium ion secondary battery may include a member such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte. The separator is interposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the lithium ion secondary battery is a sealed type, the separator is also required to have a function of holding an electrolytic solution. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, polyacrylonitrile, aramid, polyimide, cellulose, glass or the like. The shape of the lithium ion secondary battery is not particularly limited, and can be various shapes such as a cylindrical shape, a stacked shape, and a coin shape.

以下、本発明のリチウムイオン二次電池用正極を具体的に説明する。 Hereinafter, the positive electrode for a lithium ion secondary battery of the present invention will be specifically described.

参考例1
〈硫黄系正極活物質の製造〉
〔1〕混合工程
アントラセン粉末に平均粒径50μmの硫黄粉末を混合し、混合原料を調製した。混合原料中におけるアントラセンと硫黄との配合比率は、重量比で硫黄5質量部に対してアントラセンが1質量部となるようにした。
( Reference Example 1 )
<Manufacture of sulfur-based positive electrode active material>
[1] Mixing Step Sulfur powder having an average particle size of 50 μm was mixed with anthracene powder to prepare a mixed raw material. The mixing ratio of anthracene and sulfur in the mixed raw material was such that anthracene was 1 part by mass with respect to 5 parts by mass of sulfur.

〔2〕装置
図1に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、アルゴンガス配管50、アルゴンガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を有する。
[2] Apparatus As shown in FIG. 1, the reaction apparatus 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas introduction tube 5, gas discharge tube 6), and argon gas. It has a pipe 50, a gas tank 51 containing argon gas, a trap pipe 60, a trap tank 62 containing a sodium hydroxide aqueous solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.

反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。   As the reaction vessel 2, a bottomed cylindrical glass tube (made of quartz glass) was used. In the heat treatment step described later, the mixed raw material 9 was accommodated in the reaction vessel 2. The opening of the reaction vessel 2 was closed with a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Corporation) containing the thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the other one of the through holes. A gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the remaining one of the through holes. The reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm. The alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm. The gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (inside the reaction vessel 2). The length of this exposed part was 3 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 are approximately 100 ° C. or lower in a heat treatment process described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out of the gas introduction pipe 5 and the gas discharge pipe 6, but is returned (refluxed) to the reaction vessel 2.

アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。   The tip of the thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2. The temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.

ガス導入管5にはアルゴンガス配管50を接続した。アルゴンガス配管50はアルゴンガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。   An argon gas pipe 50 was connected to the gas introduction pipe 5. The argon gas pipe 50 was connected to a gas tank 51 containing argon gas. One end of a trap pipe 60 was connected to the gas discharge pipe 6. The other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62. The trap pipe 60 and the trap tank 62 are traps for hydrogen sulfide gas generated in a heat treatment process to be described later.

〔3〕熱処理工程
混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときのアルゴンガスの流速は100ml/分であった。アルゴンガスの導入開始10分後に、アルゴンガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が100℃になった時点で、混合原料9の加熱を継続しつつアルゴンガスの導入を停止した。混合原料9が約200℃になるとガスが発生した。混合原料9が360℃になった時点で加熱を停止した。加熱停止後、混合原料9の温度は400℃にまで上昇し、その後低下した。したがって、この熱処理工程において、混合原料9は400℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。なお、このときの加熱時間は400℃で約5分であり、硫黄は還流された。
[3] Heat treatment step The reaction vessel 2 containing the mixed raw material 9 was placed in an electric furnace 7 (crucible furnace, opening width φ80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction tube 5. The flow rate of argon gas at this time was 100 ml / min. Ten minutes after the start of the introduction of the argon gas, heating of the mixed raw material 9 in the reaction vessel 2 was started while continuing the introduction of the argon gas. The temperature rising rate at this time was 5 ° C./min. When the mixed raw material 9 reached 100 ° C., the introduction of argon gas was stopped while continuing to heat the mixed raw material 9. Gas was generated when the mixed raw material 9 reached about 200 ° C. Heating was stopped when the mixed raw material 9 reached 360 ° C. After stopping the heating, the temperature of the mixed raw material 9 increased to 400 ° C. and then decreased. Therefore, in this heat treatment step, the mixed raw material 9 was heated to 400 ° C. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2. The heating time at this time was about 5 minutes at 400 ° C., and sulfur was refluxed.

〔4〕単体硫黄除去工程
熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
[4] Elemental sulfur removal process In order to remove elemental sulfur (free sulfur) remaining in the object to be treated after the heat treatment process, the following processes were performed.

熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物2gをガラスチューブオーブンに入れ、真空吸引しつつ200℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)参考例1の第一硫黄系正極活物質を得た。 The object to be treated after the heat treatment step was pulverized in a mortar. 2 g of the pulverized product was placed in a glass tube oven and heated at 200 ° C. for 3 hours while being vacuumed. The temperature elevation temperature at this time was 10 ° C./min. By this step, the single sulfur remaining in the object to be treated after the heat treatment step was evaporated and removed , and the first sulfur-based positive electrode active material of Reference Example 1 containing no (or almost no) single sulfur was obtained.

〈リチウムイオン二次電池の製作〉
〔1〕正極
参考例1の第一硫黄系正極活物質3mgとアセチレンブラック2.7mgとポリテトラフルオロエチレン(PTFE)0.3mgとの混合物を、ヘキサンを適量加えつつ、メノウ製乳鉢でフィルム状になるまで混練し、フィルム状の正極材料を得た。この正極材料全量を、φ14mmの円形に打ち抜いたアルミニウムメッシュ(#100メッシュ)の上に置き、卓上プレス機で圧着し、100℃で3時間乾燥した。この工程で、参考例1のリチウムイオン二次電池用正極を得た。
<Production of lithium ion secondary battery>
[1] Positive electrode
A mixture of 3 mg of the first sulfur-based positive electrode active material of Reference Example 1, 2.7 mg of acetylene black and 0.3 mg of polytetrafluoroethylene (PTFE) was kneaded until a film was formed in an agate mortar while adding an appropriate amount of hexane, A film-like positive electrode material was obtained. The entire amount of the positive electrode material was placed on an aluminum mesh (# 100 mesh) punched out into a circle of φ14 mm, pressed with a table press, and dried at 100 ° C. for 3 hours. In this step, the positive electrode for the lithium ion secondary battery of Reference Example 1 was obtained.

〔2〕負極
負極としては、厚さ0.5mmの金属リチウム箔(本城金属社製)をφ14mmに打ち抜いたものを用いた。
[2] Negative electrode As the negative electrode, a 0.5 mm thick metal lithium foil (Honjo Metal Co., Ltd.) punched to φ14 mm was used.

〔3〕電解液
電解液としては、エチレンカーボネートとジエチルカーボネートとを混合した混合溶媒に、LiPF6を溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPF6の濃度は、1.0mol/lであった。
[3] Electrolytic Solution As the electrolytic solution, a nonaqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed was used. Ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The concentration of LiPF 6 in the electrolytic solution was 1.0 mol / l.

〔4〕電池
〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、厚さ25μmのポリプロピレン微孔質膜からなるセパレータ(「Celgard2400」Celgard社製)と、厚さ500μmのガラス不織布フィルタと、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、参考例1のリチウムイオン二次電池を得た。
[4] Battery Using the positive and negative electrodes obtained in [1] and [2], a coin battery was manufactured. Specifically, in a dry room, a separator made of a polypropylene microporous membrane with a thickness of 25 μm (“Celgard2400” manufactured by Celgard) and a glass nonwoven fabric filter with a thickness of 500 μm are sandwiched between the positive electrode and the negative electrode. Thus, an electrode body battery was obtained. This electrode body battery was housed in a battery case (CR2032 type coin battery member, manufactured by Hosen Co., Ltd.) made of a stainless steel container. The electrolyte solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain a lithium ion secondary battery of Reference Example 1 .

実施例1
参考例1と同様のアントラセン粉末と、平均粒径50μmの硫黄粉末と、平均粒径1μmのポリアクリロニトリル粉末(ポリサイエンス社製)とを混合して混合原料を調製した。混合原料中における配合比率は、固形分の重量比で硫黄5質量部に対してポリアクリロニトリルが1質量部、アントラセンが1質量部となるようにした。
( Example 1 )
An anthracene powder similar to that of Reference Example 1 , a sulfur powder having an average particle diameter of 50 μm, and a polyacrylonitrile powder having an average particle diameter of 1 μm (manufactured by Polyscience) were mixed to prepare a mixed raw material. The mixing ratio in the mixed raw material was such that polyacrylonitrile was 1 part by mass and anthracene was 1 part by mass with respect to 5 parts by mass of sulfur in terms of the solid content.

この混合原料を用い、参考例1と同様の装置を用いて参考例1と同様に熱処理工程を行い、その後、参考例1と同様に単体硫黄除去工程を行って、実施例1の硫黄系正極活物質を得た。 Using this mixed raw material, the same heat treatment process as in Reference Example 1 using the same apparatus as in Reference Example 1, followed by performing elemental sulfur removal process in the same manner as in Reference Example 1, Example 1 sulfur based cathode An active material was obtained.

そして実施例1の硫黄系正極活物質を用い、参考例1と同様にして実施例1のリチウムイオン二次電池用正極を形成し、参考例1と同様にして実施例1のリチウムイオン二次電池を得た。 Then using a sulfur-based positive electrode active material of Example 1, Reference Example 1 and to form a positive electrode for a lithium ion secondary battery of Example 1 in the same manner, the same way the lithium ion secondary of Example 1 following Reference Example 1 A battery was obtained.

参考例2
石炭ピッチ粉末(等方性ピッチ、CAS番号65996-93-2)1質量部と硫黄粉末5質量部とを乳鉢で混合・粉砕して、混合原料を調製した。この混合原料を用い、参考例1と同様の装置を用いて参考例1と同様に熱処理工程を行い、その後、参考例1と同様に単体硫黄除去工程を行って、参考例2の硫黄系正極活物質を得た。
( Reference Example 2 )
1 part by mass of coal pitch powder (isotropic pitch, CAS number 65996-93-2) and 5 parts by mass of sulfur powder were mixed and pulverized in a mortar to prepare a mixed raw material. Using this mixed raw material, the same heat treatment process as in Reference Example 1 using the same apparatus as in Reference Example 1, followed by performing elemental sulfur removal process in the same manner as in Reference Example 1, Reference Example 2 sulfur based cathode An active material was obtained.

そして参考例2の硫黄系正極活物質を用い、参考例1と同様にして参考例2のリチウムイオン二次電池用正極を形成し、参考例1と同様にして参考例2のリチウムイオン二次電池を得た。 Then using a sulfur-based positive electrode active material of Reference Example 2, Reference Example 1 and in the same manner to form a positive electrode for a lithium ion secondary battery of Example 2, similarly to the lithium ion secondary Reference Example 2 This Reference Example 1 A battery was obtained.

実施例2
石炭ピッチ粉末(等方性ピッチ、CAS番号65996-93-2)と、平均粒径50μmの硫黄粉末と、平均粒径1μmのポリアクリロニトリル粉末(ポリサイエンス社製)とを混合して混合原料を調製した。混合原料中における配合比率は、固形分の重量比で硫黄5質量部に対してポリアクリロニトリルが1質量部、石炭ピッチ粉末が1質量部となるようにした。
( Example 2 )
Coal pitch powder (isotropic pitch, CAS No. 65996-93-2), sulfur powder with an average particle size of 50μm, and polyacrylonitrile powder with an average particle size of 1μm (manufactured by Polysciences) are mixed to produce a mixed raw material. Prepared. The mixing ratio in the mixed raw material was such that polyacrylonitrile was 1 part by mass and coal pitch powder was 1 part by mass with respect to 5 parts by mass of sulfur in the weight ratio of the solid content.

この混合原料を用い、参考例1と同様の装置を用いて参考例1と同様に熱処理工程を行い、その後、参考例1と同様に単体硫黄除去工程を行って、実施例2の硫黄系正極活物質を得た。 Using this mixed raw material, the same heat treatment process as in Reference Example 1 using the same apparatus as in Reference Example 1, followed by performing elemental sulfur removal process in the same manner as in Reference Example 1, Example 2 sulfur based cathode An active material was obtained.

そして実施例2の硫黄系正極活物質を用い、参考例1と同様にして実施例2のリチウムイオン二次電池用正極を形成し、参考例1と同様にして実施例2のリチウムイオン二次電池を得た。 Then using a sulfur-based positive electrode active material of Example 2, Reference Example 1 and to form a positive electrode for a lithium ion secondary battery of Example 2 in the same manner, the same way the lithium ion secondary of Example 2 following Reference Example 1 A battery was obtained.

(比較例1)
参考例1と同様の平均粒径50μmの硫黄粉末を25.008gと、実施例1と同様のポリアクリロニトリル粉末を5.061gと、を乳鉢で混合し、混合原料を調製した。
(Comparative Example 1)
25.008 g of sulfur powder having an average particle size of 50 μm as in Reference Example 1 and 5.061 g of polyacrylonitrile powder as in Example 1 were mixed in a mortar to prepare a mixed raw material.

この混合原料を用い、参考例1と同様の装置を用いて参考例1と同様に熱処理工程を行い、その後、熱処理温度を250℃としたこと以外は参考例1と同様にして単体硫黄除去工程を行って、比較例1の硫黄系正極活物質を得た。 Using this mixed raw material, the same heat treatment process as in Reference Example 1 using the same apparatus as in Reference Example 1, then, except that the heat treatment temperature was 250 ° C. elemental sulfur removal step in the same manner as in Reference Example 1 The sulfur-based positive electrode active material of Comparative Example 1 was obtained.

そして比較例1の硫黄系正極活物質を用い、参考例1と同様にして比較例1のリチウムイオン二次電池用正極を形成し、参考例1と同様にして比較例1のリチウムイオン二次電池を得た。 Then using a sulfur-based positive electrode active material of Comparative Example 1, in the same manner as in Reference Example 1 to form a positive electrode for a lithium ion secondary battery of Comparative Example 1, the lithium ion secondary of Example 1 compared in the same manner as in Example 1 primary A battery was obtained.

<元素分析>
参考例1及び実施例1の各硫黄系正極活物質について元素分析を行った。結果を表1に示す。
<Elemental analysis>
Elemental analysis was performed on each sulfur-based positive electrode active material of Reference Example 1 and Example 1 . The results are shown in Table 1.

Figure 0005142162
Figure 0005142162

<X線回折による硫黄系正極活物質の分析>
参考例1、実施例1、比較例1の各硫黄系正極活物質についてX線回折分析を行った。装置として粉末X線回折装置(MAC Science社製、M06XCE)を用いた。測定条件は、CuKα線、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、回折角(2θ):10°〜60°であった。得られた回折パターンを図2〜4にそれぞれ示す。
<Analysis of sulfur-based positive electrode active materials by X-ray diffraction>
X-ray diffraction analysis was performed for each of the sulfur-based positive electrode active materials of Reference Example 1, Example 1, and Comparative Example 1. A powder X-ray diffractometer (manufactured by MAC Science, M06XCE) was used as the apparatus. The measurement conditions were CuKα line, voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, diffraction angle (2θ): 10 ° -60 °. The obtained diffraction patterns are shown in FIGS.

比較例1の硫黄系正極活物質は、図4から明らかなように、回折角(2θ)が20°〜30°の範囲では、2θ=25°付近にピーク位置を有するブロードな回折ピークだけが観察され、硫黄単体の存在を示すシャープなピーク(2θ=22°付近)は観察されなかった。また、参考例1および実施例1の硫黄系正極活物質は、図2,3から明らかなように、2θ=25.3°付近と2θ=28.4°に二つのピークが観察されるが、硫黄単体の存在を示すシャープなピーク(2θ=22°付近)は観察されなかった。なお実施例1の硫黄系正極活物質のピークは参考例1の硫黄系正極活物質のピークより強度が小さくなっている。これは、比較例1の硫黄系正極活物質のピークがブロードであることから、比較例1の出発物質であるポリアクリロニトリル由来の第二硫黄系正極活物質のピークの影響を受けたものと考えられる。 As is clear from FIG. 4, the sulfur-based positive electrode active material of Comparative Example 1 has only a broad diffraction peak having a peak position near 2θ = 25 ° when the diffraction angle (2θ) is in the range of 20 ° to 30 °. A sharp peak (near 2θ = 22 °) indicating the presence of simple sulfur was not observed. In addition, as is clear from FIGS. 2 and 3, in the sulfur-based positive electrode active materials of Reference Example 1 and Example 1 , two peaks are observed near 2θ = 25.3 ° and 2θ = 28.4 °. A sharp peak indicating the presence (2θ = around 22 °) was not observed. Note sulfur-peak of the positive electrode active material of Example 1 is stronger than the peak of the sulfur-based positive electrode active material of Reference Example 1 is smaller. This is considered to be influenced by the peak of the second sulfur-based positive electrode active material derived from polyacrylonitrile, which is the starting material of Comparative Example 1, since the peak of the sulfur-based positive electrode active material of Comparative Example 1 is broad. It is done.

<ラマンスペクトル分析による硫黄系正極活物質の分析>
参考例1、実施例1、比較例1の各硫黄系正極活物質についてラマンスペクトル分析を行った。分析装置には日本分光株式会社製の「RMP-320」(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)を用いた。得られたラマンスペクトルを図5〜7にそれぞれ示す。図5〜7における横軸はラマンシフト(cm-1)であり、縦軸は相対強度である。
<Analysis of sulfur-based positive electrode active materials by Raman spectrum analysis>
A Raman spectrum analysis was performed on each sulfur-based positive electrode active material of Reference Example 1, Example 1, and Comparative Example 1. “RMP-320” (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, resolution: 3 cm −1 ) manufactured by JASCO Corporation was used as the analyzer. The obtained Raman spectra are shown in FIGS. The horizontal axis in FIGS. 5 to 7 is the Raman shift (cm −1 ), and the vertical axis is the relative intensity.

参考例1の硫黄系正極活物質は、図5に示されるように、主ピークが1537cm-1付近に存在し、1361cm-1付近にもピークが存在する。 Sulfur-based positive electrode active material of Example 1, as shown in FIG. 5, the main peak is present in the vicinity of 1537cm -1, also there is a peak in the vicinity of 1361cm -1.

実施例1の硫黄系正極活物質は、図6に示されるように、1534cm-1付近と1347cm-1付近に主ピークが存在した。 Sulfur-based positive electrode active material of Example 1, as shown in FIG. 6, the main peak is present near 1534cm -1 and near 1347cm -1.

比較例1の硫黄系正極活物質は、図7に示されるように、1328cm-1付近に主ピークが存在し、1558cm-1付近、946cm-1付近、479cm-1付近、379cm-1付近、317cm-1付近にピークが存在した。 Sulfur-based positive electrode active material of Comparative Example 1, as shown in FIG. 7, there are major peak near 1328cm -1, 1558cm around -1, 946Cm around -1, 479Cm around -1, 379Cm around -1, There was a peak near 317cm- 1 .

なお単体硫黄(S8硫黄)のピークは500〜550cm-1付近に存在し、非常に強いピークであることが知られている。図5〜7には、このS8硫黄のピークは認められなかった。この結果から、参考例1、実施例1、比較例1の各硫黄系正極活物質に硫黄はS8硫黄としては存在していないと考えられる。このため、硫黄系正極活物質の硫黄は、C−S結合等の結合をした状態で存在するか、または、ラマンスペクトルで検出できない非晶質の状態で存在すると考えられる。 Note the peak of elemental sulfur (S 8 sulfur) is present near 500~550cm -1, it is known to be very strong peaks. In FIGS. 5 to 7, this S 8 sulfur peak was not observed. From this result, it is considered that sulfur does not exist as S 8 sulfur in each of the sulfur-based positive electrode active materials of Reference Example 1, Example 1, and Comparative Example 1. For this reason, it is considered that sulfur in the sulfur-based positive electrode active material exists in a bonded state such as a C—S bond, or exists in an amorphous state that cannot be detected by a Raman spectrum.

<FT−IRスペクトル分析>
参考例1、実施例1、比較例1の各硫黄系正極活物質についてFT−IRスペクトル分析を行った。分析装置には島津社製の「IRAffinity-1」を用い、測定条件は、拡散反射法を用いて、分解能:4cm-1、積算回数:100回、測定範囲:400cm-1〜4000cm-1とした。得られたスペクトルを図8〜10にそれぞれ示す。
<FT-IR spectrum analysis>
FT-IR spectrum analysis was performed on each of the sulfur-based positive electrode active materials of Reference Example 1, Example 1, and Comparative Example 1. The analyzer uses the "IRAffinity-1" manufactured by Shimadzu Corporation, measurement conditions, using a diffuse reflection method, resolution: 4 cm -1, the number of integrations: 100 times, measuring range: and 400cm -1 ~4000cm -1 did. The obtained spectra are shown in FIGS.

参考例1の硫黄系正極活物質は、図8に示されるように、1056cm-1付近と、840cm-1付近にそれぞれ特有のピークが存在した。また、1501cm-1付近と、1465cm-1付近と、1409cm-1付近と、1334cm-1付近と、1308cm-1付近と、1222cm-1付近と、1148cm-1付近と、752cm-1と、665cm-1付近にそれぞれピークが存在した。 Sulfur-based positive electrode active material of Example 1, as shown in FIG. 8, the vicinity of 1056cm -1, characteristic peaks were present respectively in the vicinity of 840 cm -1. Further, the vicinity of 1501cm -1, and around 1465cm -1, and around 1409cm -1, and around 1334cm -1, and around 1308cm -1, and around 1222cm -1, and around 1148cm -1, and 752cm -1, 665cm Peaks existed around -1 .

実施例1の硫黄系正極活物質は、図9に示されるように、1057cm-1付近と、840cm-1付近にそれぞれ特有のピークが存在した。また、1361cm-1付近と、1248cm-1付近と、1164cm-1付近と、1024cm-1付近と、988cm-1付近と、942cm-1付近と、802cm-1付近と、749cm-1と、666cm-1付近と、633cm-1付近と、585cm-1付近と、512cm-1付近にそれぞれピークが存在した。 Sulfur-based positive electrode active material of Example 1, as shown in FIG. 9, the vicinity of 1057cm -1, characteristic peaks were present respectively in the vicinity of 840 cm -1. Further, the vicinity of 1361cm -1, and around 1248cm -1, and around 1164cm -1, and around 1024cm -1, and around 988cm -1, and around 942cm -1, and around 802cm -1, and 749cm -1, 666cm and around -1, and around 633Cm -1, and around 585Cm -1, a peak was present respectively in the vicinity of 512cm -1.

比較例1の硫黄系正極活物質は、図10に示されるように、1270cm-1付近と、1167cm-1付近と、1022cm-1付近と、990cm-1付近と、941cm-1付近と、803cm-1付近と、746cm-1付近と、675cm-1付近と、633cm-1付近と、587cm-1と、516cm-1付近にそれぞれピークが存在した。 Sulfur-based positive electrode active material of Comparative Example 1, as shown in FIG. 10, and around 1270 cm -1, and around 1167cm -1, and around 1022cm -1, and around 990 cm -1, and around 941cm -1, 803cm and around -1, and around 746Cm -1, and around 675 cm -1, and around 633Cm -1, and 587Cm -1, peak respectively in the vicinity of 516Cm -1 were present.

このように、参考例1と実施例1の硫黄系正極活物質は、FT−IRスペクトルにおいてそれぞれ異なるピーク位置を示し、また比較例1の硫黄系正極活物質のFT−IRスペクトルとも異なっている。そして参考例1と実施例1の硫黄系正極活物質のFT−IRスペクトルは、共に1056cm-1〜1057cm-1付近と、840cm-1付近と、にピークをもち、このピークは比較例1のスペクトルには存在せず、図11に示すアントラセンのFT−IRスペクトルにも存在しないので、アントラセン由来の炭素骨格と硫黄との結合に起因するピークと考えられる。なお図11に示すのは、試薬のアントラセンを355℃で熱処理したもののFT−IRスペクトルであるが、熱処理前のアントラセンも全く同じFT−IRスペクトルであった。 Thus, the sulfur-based positive electrode active materials of Reference Example 1 and Example 1 show different peak positions in the FT-IR spectrum, and are also different from the FT-IR spectrum of the sulfur-based positive electrode active material of Comparative Example 1. . The FT-IR spectra of the sulfur-based positive electrode active materials of Reference Example 1 and Example 1 both have peaks at around 1056 cm −1 to 1057 cm −1 and around 840 cm −1 . Since it does not exist in the spectrum and does not exist in the FT-IR spectrum of anthracene shown in FIG. 11, it is considered to be a peak due to the bond between the anthracene-derived carbon skeleton and sulfur. FIG. 11 shows the FT-IR spectrum of the reagent anthracene heat-treated at 355 ° C., but the anthracene before the heat treatment also had the same FT-IR spectrum.

<充放電容量・サイクル特性測定試験>
参考例1〜2、実施例1〜2、比較例1の各リチウムイオン二次電池の充放電容量とサイクル特性を測定した。参考例1のリチウムイオン二次電池については、放電レート0.1C、30℃で55サイクルの充放電をおこない、そのときの容量と充放電効率の変化を図12に示す。詳しくは、まず0.1Cで1.0VまでCC放電(低電流放電)を行い、それ以降のサイクルは0.1Cで3.0VまでCC充電を行った後に0.1Cで1.0VまでCC放電を行う充放電を、繰り返した。
<Charge / discharge capacity / cycle characteristics measurement test>
The charge / discharge capacity and cycle characteristics of each of the lithium ion secondary batteries of Reference Examples 1-2, Examples 1-2, and Comparative Example 1 were measured. For the lithium ion secondary battery of Reference Example 1 , 55 cycles of charge and discharge were performed at a discharge rate of 0.1 C and 30 ° C., and the changes in capacity and charge and discharge efficiency at that time are shown in FIG. Specifically, first, CC discharge (low current discharge) is performed at 0.1 C to 1.0 V, and the subsequent cycles are charge and discharge in which CC discharge is performed at 0.1 C to 3.0 V and then CC is discharged at 0.1 C to 1.0 V. Repeated.

実施例1のリチウムイオン二次電池については、正極活物質の1gあたり50mAに相当する電流値で充放電を行った。このときの放電終止電圧は1.0V、充電終止電圧は3.0Vであった。充放電を45回繰り返したときの充放電曲線を図13に示す。また参考例1と同様のサイクル試験をおこなったときのサイクル特性を図14に示す。 The lithium ion secondary battery of Example 1 was charged and discharged at a current value corresponding to 50 mA per 1 g of the positive electrode active material. At this time, the discharge end voltage was 1.0 V, and the charge end voltage was 3.0 V. FIG. 13 shows a charge / discharge curve when charge / discharge is repeated 45 times. FIG. 14 shows the cycle characteristics when the same cycle test as in Reference Example 1 was performed.

参考例2のリチウムイオン二次電池については、正極活物質の1gあたり50mAに相当する電流値で充放電を行った。このときの放電終止電圧は1.0V、充電終止電圧は3.0Vであった。充放電を11回繰り返したときの充放電曲線を図15に示す。また参考例1と同様のサイクル試験をおこなったときのサイクル特性を図16に示す。 The lithium ion secondary battery of Reference Example 2 was charged and discharged at a current value corresponding to 50 mA per 1 g of the positive electrode active material. At this time, the discharge end voltage was 1.0 V, and the charge end voltage was 3.0 V. FIG. 15 shows a charge / discharge curve when charge / discharge is repeated 11 times. FIG. 16 shows the cycle characteristics when the same cycle test as in Reference Example 1 was performed.

実施例2のリチウムイオン二次電池については、正極活物質の1gあたり50mAに相当する電流値で充放電を行った。このときの放電終止電圧は1.0V、充電終止電圧は3.0Vであった。充放電を52回繰り返したときの充放電曲線を図17に示す。また参考例1と同様のサイクル試験をおこなったときのサイクル特性を図18に示す。 The lithium ion secondary battery of Example 2 was charged and discharged at a current value corresponding to 50 mA per 1 g of the positive electrode active material. At this time, the discharge end voltage was 1.0 V, and the charge end voltage was 3.0 V. FIG. 17 shows a charge / discharge curve when charge / discharge is repeated 52 times. FIG. 18 shows the cycle characteristics when the same cycle test as in Reference Example 1 was performed.

比較例1のリチウムイオン二次電池については、正極活物質の1gあたり50mAに相当する電流値で充放電を行った。このときの放電終止電圧は1.0V、充電終止電圧は3.0Vであった。充放電を30回繰り返したときの充放電曲線を図17に示す。また参考例1と同様のサイクル試験をおこなったときのサイクル特性を図18に示す。 The lithium ion secondary battery of Comparative Example 1 was charged and discharged at a current value corresponding to 50 mA per 1 g of the positive electrode active material. At this time, the discharge end voltage was 1.0 V, and the charge end voltage was 3.0 V. FIG. 17 shows a charge / discharge curve when charge / discharge is repeated 30 times. FIG. 18 shows the cycle characteristics when the same cycle test as in Reference Example 1 was performed.

参考例1のリチウムイオン二次電池は、図12に示されるように比較例1と同等の初期容量(1回目充放電)を示した。しかし、2回目の充放電以降に急速に容量低下が生じた。一方、実施例1のリチウムイオン二次電池は、図13、図14に示されるように初期容量も大きく、かつ、2回目の充放電以降にも容量低下が少なかった。この結果から、第二硫黄系正極活物質をさらに含むことにより、リチウムイオン二次電池の充放電容量およびサイクル特性を向上させ得ることがわかる。また実施例1のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池に対して同等の充放電特性を示していることもわかる。 The lithium ion secondary battery of Reference Example 1 showed an initial capacity (first charge / discharge) equivalent to that of Comparative Example 1 as shown in FIG. However, the capacity decreased rapidly after the second charge / discharge. On the other hand, the lithium ion secondary battery of Example 1 had a large initial capacity as shown in FIGS. 13 and 14, and had a small capacity drop after the second charge / discharge. From this result, it is understood that the charge / discharge capacity and cycle characteristics of the lithium ion secondary battery can be improved by further including the second sulfur-based positive electrode active material. The lithium ion secondary battery of Example 1, it can also be seen showing the equivalent charge-discharge characteristics for lithium ion secondary battery of Comparative Example 1.

さらに参考例2のリチウムイオン二次電池は、図15、図16に示されるように初期容量も大きく、かつ、2回目の充放電以降にも容量低下が少なかった。すなわち本参考例の正極活物質は、石炭ピッチ中に含まれる多環芳香族炭化水素由来の炭素骨格を有しているため、このような特性が発現されたと考えられる。 Furthermore, the lithium ion secondary battery of Reference Example 2 had a large initial capacity as shown in FIGS. 15 and 16, and had a small capacity drop after the second charge / discharge. That is, since the positive electrode active material of this reference example has a carbon skeleton derived from polycyclic aromatic hydrocarbons contained in the coal pitch, it is considered that such characteristics were expressed.

そして実施例2のリチウムイオン二次電池は、参考例2に比べて充放電容量が大きくサイクル特性も優れているが、この効果は、第二硫黄系正極活物質をさらに含むことによるものであることが明らかである。 The lithium ion secondary batteries of Example 2, but charge and discharge capacity as compared with Reference Example 2 has excellent large cycle characteristics, this effect is by further comprising a second sulfur-based positive electrode active material It is clear.

1:反応装置 2:反応容器 3:蓋 4:熱電対
5:ガス導入管 6:ガス排出管 7:電気炉
1: Reactor 2: Reaction vessel 3: Lid 4: Thermocouple
5: Gas introduction pipe 6: Gas discharge pipe 7: Electric furnace

Claims (13)

3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と、ポリアクリロニトリル粉末と、硫黄粉末とを含む原料を混合して混合原料とする混合工程と、該混合原料を加熱する熱処理工程と、を行うことにより製造された、
前記選択多環芳香族炭化水素由来の第一の炭素骨格と該第一の炭素骨格と結合した硫黄(S)とからなる第一硫黄系正極活物質と、ポリアクリロニトリル由来の第二の炭素骨格と該第二の炭素骨格と結合した硫黄(S)とからなる第二硫黄系正極活物質と、を含むことを特徴とするリチウムイオン二次電池用正極。
Mixed raw material by mixing raw materials containing at least one selected polycyclic aromatic hydrocarbon selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings, polyacrylonitrile powder, and sulfur powder And a heat treatment step of heating the mixed raw material, and
A first sulfur-based positive electrode active material comprising a first carbon skeleton derived from the selected polycyclic aromatic hydrocarbon and sulfur (S) bonded to the first carbon skeleton; and a second carbon skeleton derived from polyacrylonitrile. And a second sulfur-based positive electrode active material comprising sulfur (S) bonded to the second carbon skeleton, and a positive electrode for a lithium ion secondary battery.
前記熱処理工程における加熱温度は250℃〜500℃である請求項1に記載のリチウムイオン二次電池用正極。   The positive electrode for a lithium ion secondary battery according to claim 1, wherein a heating temperature in the heat treatment step is 250 ° C. to 500 ° C. 前記熱処理工程において、前記硫黄を還流する請求項1又は請求項2に記載のリチウムイオン二次電池用正極。   The positive electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the sulfur is refluxed in the heat treatment step. 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの配合比は、質量比で90:10〜60:40である請求項1〜請求項3の何れか一つに記載のリチウムイオン二次電池用正極。   The blending ratio of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material is 90:10 to 60:40 in mass ratio. Positive electrode for lithium ion secondary battery. 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの合計量と前記硫黄との配合比は、質量比で1:0.5〜1:10である請求項1〜請求項4の何れか一つに記載のリチウムイオン二次電池用正極。   The compounding ratio of the total amount of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material and the sulfur is 1: 0.5 to 1:10 by mass ratio. The positive electrode for lithium ion secondary batteries as described in any one. 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの合計量と前記硫黄との配合比は、質量比で1:2〜1:10であり、
前記熱処理工程後の前記混合原料を、減圧しつつ200℃〜250℃で加熱する単体硫黄除去工程を含む請求項1〜請求項5の何れか一つに記載のリチウムイオン二次電池用正極。
The mixing ratio of the sulfur and the total amount of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material is 1: 2 to 1:10 by mass ratio,
The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 5, further comprising a single sulfur removal step of heating the mixed raw material after the heat treatment step at 200 ° C to 250 ° C while reducing the pressure.
前記選択多環芳香族炭化水素はアントラセンであり、FT−IRスペクトルにおいて、1057cm-1付近と、840cm-1付近と、にそれぞれピークが存在する請求項1〜請求項6の何れか一つに記載のリチウムイオン二次電池用正極。 The selected polycyclic aromatic hydrocarbon is anthracene, the FT-IR spectrum, a near 1057cm -1, and around 840 cm -1, in any one of claims 1 to 6, a peak respectively is present The positive electrode for lithium ion secondary batteries as described. 3環以上の六員環が縮合してなる多環芳香族炭化水素から選ばれる少なくとも一種の選択多環芳香族炭化水素と、ポリアクリロニトリル粉末と、 硫黄粉末とを含む原料を混合して混合原料とする混合工程と、該混合原料を加熱する熱処理工程と、を行い、
前記選択多環芳香族炭化水素由来の第一の炭素骨格と該第一の炭素骨格と結合した硫黄(S)とからなる第一硫黄系正極活物質と、ポリアクリロニトリル由来の第二の炭素骨格と該第二の炭素骨格と結合した硫黄(S)とからなる第二硫黄系正極活物質と、を含む硫黄系正極活物質を製造することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
A mixed raw material by mixing raw materials containing at least one selected polycyclic aromatic hydrocarbon selected from polycyclic aromatic hydrocarbons formed by condensation of three or more six-membered rings, polyacrylonitrile powder, and sulfur powder And a heat treatment step of heating the mixed raw material ,
A first sulfur-based positive electrode active material comprising a first carbon skeleton derived from the selected polycyclic aromatic hydrocarbon and sulfur (S) bonded to the first carbon skeleton; and a second carbon skeleton derived from polyacrylonitrile. And a second sulfur-based positive electrode active material comprising sulfur (S) bonded to the second carbon skeleton, and producing a sulfur-based positive electrode active material for a lithium ion secondary battery Manufacturing method.
前記熱処理工程における加熱温度は250℃〜500℃である請求項8に記載のリチウムイオン二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 8, wherein a heating temperature in the heat treatment step is 250C to 500C . 前記熱処理工程において、前記硫黄を還流する請求項8又は請求項9に記載のリチウムイオン二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 8 or 9, wherein the sulfur is refluxed in the heat treatment step . 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの配合比は、質量比で90:10〜60:40である請求項8〜請求項10の何れか一つに記載のリチウムイオン二次電池用正極活物質の製造方法。 11. The blending ratio of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material is 90:10 to 60:40 by mass ratio. A method for producing a positive electrode active material for a lithium ion secondary battery. 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの合計量と前記硫黄との配合比は、質量比で1:0.5〜1:10である請求項8〜請求項11の何れか一つに記載のリチウムイオン二次電池用正極活物質の製造方法。 12. The compounding ratio of the total amount of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material and the sulfur is 1: 0.5 to 1:10 in mass ratio. The manufacturing method of the positive electrode active material for lithium ion secondary batteries as described in any one . 前記混合原料中の前記選択多環芳香族炭化水素と前記ポリアクリロニトリルとの合計量と前記硫黄との配合比は、質量比で1:2〜1:10であり、
前記熱処理工程後の前記混合原料を、減圧しつつ200℃〜250℃で加熱する単体硫黄除去工程を含む請求項8〜請求項12の何れか一つに記載のリチウムイオン二次電池用正極活物質の製造方法。
The mixing ratio of the sulfur and the total amount of the selected polycyclic aromatic hydrocarbon and the polyacrylonitrile in the mixed raw material is 1: 2 to 1:10 by mass ratio,
13. The positive electrode active for a lithium ion secondary battery according to any one of claims 8 to 12, comprising a simple sulfur removal step of heating the mixed raw material after the heat treatment step at 200 ° C. to 250 ° C. while reducing the pressure. A method for producing a substance.
JP2011007477A 2011-01-18 2011-01-18 Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery Active JP5142162B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011007477A JP5142162B2 (en) 2011-01-18 2011-01-18 Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery
PCT/JP2011/005021 WO2012098597A1 (en) 2011-01-18 2011-09-07 Sulfur-based positive electrode active material, method of producing the same, and positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007477A JP5142162B2 (en) 2011-01-18 2011-01-18 Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012150934A JP2012150934A (en) 2012-08-09
JP5142162B2 true JP5142162B2 (en) 2013-02-13

Family

ID=46515252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007477A Active JP5142162B2 (en) 2011-01-18 2011-01-18 Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5142162B2 (en)
WO (1) WO2012098597A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2921210C (en) 2013-09-02 2021-08-17 Mitsubishi Gas Chemical Company, Inc. Solid-state battery with a sulfur-polyacrylonitrile, s-carbon composite, or nis as a positive electrode active material
JP6981621B2 (en) 2017-08-08 2021-12-15 第一工業製薬株式会社 A method for manufacturing an electrode material for a lithium ion battery, an electrode material for a lithium ion capacitor, an electrode, a battery, a capacitor, an electric device, an electrode material for a lithium ion battery, and a method for manufacturing an electrode material for a lithium ion capacitor.
WO2019088087A1 (en) 2017-10-31 2019-05-09 株式会社Adeka Method for producing organo-sulfur electrode active material
EP3706210A4 (en) 2017-10-31 2021-08-04 Adeka Corporation Slurry composition, and electrode using slurry composition
US11594732B2 (en) 2018-03-01 2023-02-28 Adeka Corporation Organo sulfur-based electrode active material
JP7216073B2 (en) 2018-03-13 2023-01-31 株式会社Adeka Non-aqueous electrolyte secondary battery
KR20210011363A (en) 2018-05-23 2021-02-01 가부시키가이샤 아데카 Lithium ion secondary battery
CN112424240A (en) * 2018-09-26 2021-02-26 日本瑞翁株式会社 Method for purifying monomer composition and method for producing polymer
WO2021060045A1 (en) 2019-09-27 2021-04-01 株式会社Adeka Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using said electrode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226202A (en) * 1993-12-17 1995-08-22 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JP2001223010A (en) * 2000-02-09 2001-08-17 Hitachi Maxell Ltd Nonaqueous secondary battery
JP4029273B2 (en) * 2002-03-29 2008-01-09 株式会社ジーエス・ユアサコーポレーション Electrode cell electrode material and electrochemical cell using the same
CA2561915A1 (en) * 2004-03-30 2005-10-13 Fuji Jukogyo Kabushiki Kaisya Redox active reversible electrode and secondary battery including the same
KR101331382B1 (en) * 2008-10-17 2013-11-20 가부시키가이샤 도요다 지도숏키 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP5358792B2 (en) * 2008-12-26 2013-12-04 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile sheet, production method thereof and use thereof
JP5233891B2 (en) * 2009-07-23 2013-07-10 株式会社豊田中央研究所 Electric storage device and method for manufacturing electrode active material
JP5164286B2 (en) * 2010-11-02 2013-03-21 株式会社豊田自動織機 Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2012150934A (en) 2012-08-09
WO2012098597A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5164286B2 (en) Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery
JP5142162B2 (en) Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP5263557B2 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012150933A (en) Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
JP5737679B2 (en) Sodium secondary battery
JP5142415B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP5618112B2 (en) Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle
JP6441462B2 (en) Organic sulfur material and method for producing the same
JP6099247B2 (en) Sulfur-based active material, method for producing the same, and electrode for lithium ion secondary battery
JP2014096326A (en) Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
WO2012132173A1 (en) Non-aqueous electrolyte secondary battery and vehicle
JP5754606B2 (en) Non-aqueous electrolyte secondary battery positive electrode material, non-aqueous electrolyte secondary battery, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP2013191330A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013110081A (en) Laminated battery, manufacturing method of he same, and vehicle
JP5164295B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP5754598B2 (en) Sulfur-based positive electrode active material and non-aqueous secondary battery
JP2013089337A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2013084445A1 (en) Nonaqueous electrolyte secondary battery
JP2013191327A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013191329A (en) Nonaqueous electrolyte secondary battery and vehicle
JP5660730B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6410146B2 (en) Sulfur-containing compound, positive electrode and lithium ion secondary battery
JP2013191328A (en) Nonaqueous electrolyte secondary battery and vehicle

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250