JP7449527B2 - Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device - Google Patents

Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device Download PDF

Info

Publication number
JP7449527B2
JP7449527B2 JP2019163004A JP2019163004A JP7449527B2 JP 7449527 B2 JP7449527 B2 JP 7449527B2 JP 2019163004 A JP2019163004 A JP 2019163004A JP 2019163004 A JP2019163004 A JP 2019163004A JP 7449527 B2 JP7449527 B2 JP 7449527B2
Authority
JP
Japan
Prior art keywords
component
storage device
electrode
sulfur
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019163004A
Other languages
Japanese (ja)
Other versions
JP2020080301A (en
Inventor
孝志 向井
勇太 池内
恭輝 齊藤
綾乃 祖父江
哲也 東崎
昌宏 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DKS CO. LTD.
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD., National Institute of Advanced Industrial Science and Technology AIST filed Critical DKS CO. LTD.
Priority to KR1020217006977A priority Critical patent/KR20210062628A/en
Priority to PCT/JP2019/038446 priority patent/WO2020071298A1/en
Priority to CN201980059098.9A priority patent/CN112673498B/en
Priority to TW108135473A priority patent/TW202030912A/en
Publication of JP2020080301A publication Critical patent/JP2020080301A/en
Application granted granted Critical
Publication of JP7449527B2 publication Critical patent/JP7449527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は、蓄電デバイスの電極材料、電極、蓄電デバイス、電気機器、及び蓄電デバイスの電極材料の製造方法に関する。 The present invention relates to an electrode material for a power storage device, an electrode, a power storage device, an electric device, and a method for manufacturing an electrode material for a power storage device.

近年、ノートパソコン、スマートフォン、携帯ゲーム機器、及びPDA等の携帯電子機器;電気自動車;並びに家庭太陽光発電等の普及に伴い、これらに用いられる繰り返し充放電が可能な蓄電デバイスの性能に対する要求が高まっている。携帯電子機器をより軽量化し、且つ、長時間の使用を可能とするため、また電気自動車の長距離走行を可能とするために、蓄電デバイスの小型化及び高エネルギー密度化が要求されている。蓄電デバイスとしては、二次電池及びキャパシタ等が挙げられる。現在、特に二次電池が、携帯電子機器の電源、電気自動車用電源及び家庭用電源等として用いられている。 In recent years, with the spread of notebook computers, smartphones, mobile game devices, portable electronic devices such as PDAs; electric vehicles; and home solar power generation, there has been a demand for the performance of energy storage devices that can be repeatedly charged and discharged. It's increasing. In order to make portable electronic devices lighter and allow them to be used for longer periods of time, and to enable electric vehicles to travel longer distances, there is a need for smaller power storage devices and higher energy density. Examples of power storage devices include secondary batteries and capacitors. Currently, secondary batteries in particular are used as power sources for portable electronic devices, electric vehicles, household power sources, and the like.

従来、二次電池としては、ニッケル-カドミウム(Ni-Cd)電池、ニッケル-水素(Ni-MH)電池等の水系の電解質を用いたアルカリ二次電池が主流であったが、上記した小型化及び高エネルギー密度化の要請から、非水電解質を用いたリチウムイオン電池の使用が増大する傾向にある。また、出力密度に優れたキャパシタの中で、リチウムイオンキャパシタは、高エネルギー密度であることから、出力用途での使用の増大が期待される。そして、最近では、電気伝導を担うイオンをリチウムからナトリウム又はカリウムに代替した電池の研究開発も進められている。 Conventionally, alkaline secondary batteries using water-based electrolytes, such as nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen (Ni-MH) batteries, were the mainstream as secondary batteries, but the miniaturization described above Due to the demand for higher energy density, the use of lithium ion batteries using non-aqueous electrolytes is increasing. Furthermore, among capacitors with excellent output density, lithium ion capacitors have high energy density, and therefore are expected to be increasingly used in output applications. Recently, research and development has been progressing on batteries in which ions responsible for electrical conduction are replaced with sodium or potassium instead of lithium.

例えば、リチウムイオン電池やナトリウムイオン電池は、一般的に、正極;負極;電解液又は電解質;及びセパレータなどから構成される。電極(正極又は負極)は、例えば、電極材料(主に活物質をいう)、バインダ及び導電助剤からなるスラリーを、集電体上に塗工し乾燥することで作製される。 For example, a lithium ion battery or a sodium ion battery is generally composed of a positive electrode; a negative electrode; an electrolytic solution or electrolyte; and a separator. The electrode (positive electrode or negative electrode) is produced, for example, by applying a slurry consisting of an electrode material (mainly an active material), a binder, and a conductive additive onto a current collector and drying the slurry.

市販のリチウムイオン電池の正極材料(主に正極活物質をいう)としては、コバルト酸リチウム(LiCoO)や三元系材料(Li(Ni,Co,Mn)O)などが使用されている。これらの実用的な放電容量は150~160mAh/g程度である。コバルトやニッケルは、レアメタルであることから、これらのレアメタルに代わる正極材料が求められている。また、負極材料(主に負極活物質をいう)としては、グラファイト(黒鉛)、ハードカーボン、及びチタン酸リチウム(LiTi12)などが使用されている。これらの実用的な放電容量は150~350mAh/g程度であるが、更なる高容量化が求められている。 Lithium cobalt oxide (LiCoO 2 ) and ternary materials (Li (Ni, Co, Mn) O 2 ) are used as positive electrode materials (mainly positive electrode active materials) for commercially available lithium ion batteries. . The practical discharge capacity of these is about 150 to 160 mAh/g. Since cobalt and nickel are rare metals, there is a need for positive electrode materials that can replace these rare metals. Further, as negative electrode materials (mainly negative electrode active materials), graphite, hard carbon, lithium titanate (Li 4 Ti 5 O 12 ), etc. are used. Although the practical discharge capacity of these is about 150 to 350 mAh/g, there is a demand for an even higher capacity.

多岐にわたる電極材料のうち、硫黄は、単位質量当たりの反応電子数が大きく、理論容量が1672mAh/gで、材料コストも低いため、魅力的な電極材料として知られている。また、硫黄は、2V(vs.Li/Li)付近に充放電プラトーを示し、正極としても、負極としても利用することが可能である。 Among a wide variety of electrode materials, sulfur is known as an attractive electrode material because it has a large number of reactive electrons per unit mass, has a theoretical capacity of 1672 mAh/g, and has a low material cost. Further, sulfur exhibits a charge/discharge plateau around 2V (vs. Li/Li + ), and can be used as both a positive electrode and a negative electrode.

しかし、硫黄単体からなる電極は、リチウム化(正極として用いた場合では放電、負極として用いた場合では充電)する際に、多硫化リチウム(Li:x=2~8)や低分子量の硫化物が生成し、電解液中(特に、カーボネート系溶媒)に溶出しやすく、可逆的な安定した容量を維持することが困難であった。そこで、電解液中への硫黄溶出を抑制するため、-CS-CS-結合又はS-S-結合をもつ硫黄系有機材料の他、硫黄に硫黄以外の材料を複合化した材料などの硫黄系の電極材料が提案されている。 However, when electrodes made of simple sulfur are lithiated (discharged when used as a positive electrode, charged when used as a negative electrode), lithium polysulfide (Li 2 S x : x = 2 to 8) or low molecular weight Sulfides are generated and are easily eluted into electrolytes (especially carbonate solvents), making it difficult to maintain a stable reversible capacity. Therefore, in order to suppress sulfur elution into the electrolyte, in addition to sulfur-based organic materials with -CS-CS- bonds or SS- bonds, sulfur-based materials such as composite materials with sulfur and materials other than sulfur are used. Electrode materials have been proposed.

また、最近では、硫黄を含有する有機化合物が電極材料として提案されている(特許文献1~7及び非特許文献1~5)。なかでも、硫化したポリアクリロニトリル(硫黄変性ポリアクリロニトリル)は、500~700mAh/gの可逆容量と、安定した寿命特性が得られることが見出されている。 Furthermore, recently, organic compounds containing sulfur have been proposed as electrode materials (Patent Documents 1 to 7 and Non-Patent Documents 1 to 5). Among them, sulfurized polyacrylonitrile (sulfur-modified polyacrylonitrile) has been found to have a reversible capacity of 500 to 700 mAh/g and stable life characteristics.

そして、硫黄系材料は、リチウム以外のアルカリ金属イオンとも電気化学的に反応できることが知られている。リチウム以外のアルカリ金属の中でも、ナトリウムは、海水中に豊富に含まれ、地殻中においては6番目に存在する元素であり、産出地がリチウムのように偏在していないため、蓄電デバイスの低コスト化が期待される。 It is also known that sulfur-based materials can electrochemically react with alkali metal ions other than lithium. Among alkali metals other than lithium, sodium is abundant in seawater and is the 6th most abundant element in the earth's crust. Unlike lithium, sodium is not distributed as unevenly as lithium, making it a low-cost energy storage device. It is expected that

例えば、非特許文献6には、硫黄変性アクリロニトリルがナトリウムを電荷担体にした場合でも優れた特性を示すことが示されている。 For example, Non-Patent Document 6 shows that sulfur-modified acrylonitrile exhibits excellent properties even when sodium is used as a charge carrier.

WO2010/044437号公報WO2010/044437 publication 特開2014-179179号公報Japanese Patent Application Publication No. 2014-179179 特開2014-96327号公報JP2014-96327A 特開2014-96326号公報JP2014-96326A 特開2012-150933号公報Japanese Patent Application Publication No. 2012-150933 特開2012-99342号公報JP2012-99342A 特開2010-153296号公報Japanese Patent Application Publication No. 2010-153296

幸琢寛ら、「リチウムイオン電池活物質の開発と電極材料技術」,サイエンス&テクノロジー出版、pp.194-222(2014)Yukihiro et al., “Development of lithium ion battery active materials and electrode material technology,” Science & Technology Publishing, pp. 194-222 (2014) 小島敏勝ら、第53回電池討論会講演要旨集,3C27,p.202(2012)Toshikatsu Kojima et al., 53rd Battery Symposium Abstracts, 3C27, p. 202 (2012) 幸琢寛ら、第53回電池討論会講演要旨集,3C28,p.203(2012)Yukitakuhiro et al., 53rd Battery Symposium Abstracts, 3C28, p. 203 (2012) 小島敏勝ら、第54回電池討論会講演要旨集,1A08,p.7(2013)Toshikatsu Kojima et al., 54th Battery Symposium Abstracts, 1A08, p. 7 (2013) 小島敏勝ら、第54回電池討論会講演要旨集,3E08,p.344(2013)Toshikatsu Kojima et al., 54th Battery Symposium Abstracts, 3E08, p. 344 (2013) 幸琢寛ら、「レアメタルフリー二次電池の最新技術動向」,シーエムシー出版、pp.81-101(2013)Yukihiro et al., “Latest technological trends in rare metal-free secondary batteries”, CMC Publishing, pp. 81-101 (2013)

非水電解質を用いた蓄電デバイスの電極には、活物質を結着するバインダとして、ポリフッ化ビニリデン(PVDF)が、広く実用化され普及している。PVDFは、高い柔軟性と優れた耐酸化性・耐還元性を示すバインダであり、これをスラリーとする際の溶媒としてN-メチル-2-ピロリドン(NMP)等の有機溶媒が好ましく用いられる。しかしながら、これらの有機溶媒は、製造コスト及び環境への負荷が比較的高い。このため、脱有機溶媒が求められる。さらに、NMPは、硫黄系の電極材料を用いた場合、電極材料中の硫黄を溶解させるため、電極の容量低下を招く。また、PVDFは、高温の電解液中で膨潤しやすく、PVDFの膨潤は、電極材料層の電子導電性を低下させ、電極の出力特性とサイクル寿命特性を悪化させる1つの要因となっている。したがって、NMP等の有機溶媒を用いず、且つ電解液中で膨潤しにくいバインダを用いることが望ましい。 Polyvinylidene fluoride (PVDF) has been widely put into practical use as a binder for binding active materials in electrodes of power storage devices using non-aqueous electrolytes. PVDF is a binder that exhibits high flexibility and excellent oxidation resistance and reduction resistance, and an organic solvent such as N-methyl-2-pyrrolidone (NMP) is preferably used as a solvent when making it into a slurry. However, these organic solvents have relatively high manufacturing costs and environmental burdens. Therefore, organic solvent removal is required. Furthermore, when a sulfur-based electrode material is used, NMP dissolves sulfur in the electrode material, resulting in a decrease in electrode capacity. In addition, PVDF easily swells in a high-temperature electrolyte, and the swelling of PVDF reduces the electronic conductivity of the electrode material layer, which is one factor that deteriorates the output characteristics and cycle life characteristics of the electrode. Therefore, it is desirable to use a binder that does not use an organic solvent such as NMP and does not easily swell in the electrolytic solution.

近年、高温の電解液中でも膨張しにくいバインダとして、カルボキシメチルセルロース(CMC)、アクリル系樹脂、及びアルギン酸などの水系バインダが注目されている。電極に水系バインダを用いることで、電極の製造工程で調製するスラリーの溶媒として水を選択できる。このため、製造コスト面と環境面でも有望である。また、水に硫黄が溶けないため、スラリーの溶媒として水を用いれば、スラリーの溶媒への硫黄溶出による容量低下を防ぐことができる。 In recent years, water-based binders such as carboxymethyl cellulose (CMC), acrylic resins, and alginic acid have attracted attention as binders that do not easily expand even in high-temperature electrolytes. By using a water-based binder for the electrode, water can be selected as the solvent for the slurry prepared in the electrode manufacturing process. Therefore, it is promising in terms of manufacturing cost and environment. Furthermore, since sulfur is not soluble in water, if water is used as a solvent for the slurry, a decrease in capacity due to sulfur elution into the slurry solvent can be prevented.

しかし、これまで報告されてきた電極材料として用いられる各種の硫黄系材料は、疎水性で水に対する濡れ性が低い。したがって、水を溶媒或いは分散媒とするバインダ(言い換えれば、水系バインダ)を用いる場合、スラリー調製の混練工程において、疎水性の硫黄系材料の分散が困難であった。疎水性の硫黄系材料の分散性を高めようとして、親水性を付与するためには、界面活性剤などを用いることが容易に思いつく。しかしながら、多くの界面活性剤は、電池として用いた場合、過充電や高温放置などで分解しガスを発生させ、電池特性を低下させる。 However, various sulfur-based materials used as electrode materials that have been reported so far are hydrophobic and have low wettability with water. Therefore, when using a binder using water as a solvent or dispersion medium (in other words, a water-based binder), it is difficult to disperse the hydrophobic sulfur-based material in the kneading step of slurry preparation. In an attempt to improve the dispersibility of a hydrophobic sulfur-based material and impart hydrophilicity to it, it is easy to think of using a surfactant or the like. However, when many surfactants are used in batteries, they decompose due to overcharging or being left at high temperatures, generating gas and deteriorating battery characteristics.

本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、電極特性を低下させることなく、疎水性の活物質の欠点を補い、疎水性の活物質に親水性を付与し、優れた分散性を発揮できる蓄電デバイスの電極材料を提供することにある。 The present invention has been made in view of the current state of the prior art as described above, and its main purpose is to compensate for the drawbacks of hydrophobic active materials and to make hydrophobic active materials hydrophilic without deteriorating electrode characteristics. An object of the present invention is to provide an electrode material for a power storage device that can exhibit excellent dispersibility.

本発明の第一は、非水電解質を用いた蓄電デバイスの電極材料であって、前記電極材料は、複合粉末を含み、前記複合粉末を構成する1つの粒子中にA成分とB成分の両方が含まれ、前記粒子は、前記A成分の表面にB成分が担持、被覆又は露出された構造であり、前記A成分が、アルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料からなり、前記B成分が、官能基としてSO基を少なくとも有する硫黄変性セルロースであり、前記A成分及び前記B成分の合計量100質量%に対し、前記B成分が0.01質量%以上である、非水電解質を用いた蓄電デバイスの電極材料に関する。 A first aspect of the present invention is an electrode material for an electricity storage device using a non-aqueous electrolyte, wherein the electrode material includes a composite powder, and both A component and B component are contained in one particle constituting the composite powder. The particles have a structure in which component B is supported, coated, or exposed on the surface of component A, and component A is a material capable of electrochemically occluding and releasing alkali metal ions. Component B is sulfur-modified cellulose having at least 3 SO groups as a functional group, and Component B is 0.01% by mass or more with respect to 100% by mass of the total amount of Component A and Component B. The present invention relates to an electrode material for a power storage device using a non-aqueous electrolyte.

前記蓄電デバイスの電極材料において、前記硫黄変性セルロースが、最大繊維径1μm以下の硫黄変性セルロースナノファイバーであってよい。 In the electrode material of the electricity storage device, the sulfur-modified cellulose may be sulfur-modified cellulose nanofibers with a maximum fiber diameter of 1 μm or less.

前記蓄電デバイスの電極材料において、前記粒子が、前記A成分をマトリックスとし、前記マトリックス中に前記B成分が分散した状態で存在する粒子であってよい。 In the electrode material of the electricity storage device, the particles may be particles in which the A component is used as a matrix and the B component is dispersed in the matrix.

前記蓄電デバイスの電極材料において、前記電極材料が、さらに導電材料を含有し、前記A成分、前記B成分及び前記導電材料の合計量100質量%に対し、前記導電材料が0.1質量%以上30質量%以下であってよい。 In the electrode material of the electricity storage device, the electrode material further contains a conductive material, and the conductive material is 0.1% by mass or more with respect to 100% by mass of the total amount of the A component, the B component, and the conductive material. It may be 30% by mass or less.

前記蓄電デバイスの電極材料において、前記A成分が、硫黄系有機材料であってよい。 In the electrode material of the electricity storage device, the A component may be a sulfur-based organic material.

前記蓄電デバイスの電極材料において、前記A成分が、硫黄変性ポリアクリロニトリルであってよい。 In the electrode material of the electricity storage device, the component A may be sulfur-modified polyacrylonitrile.

前記蓄電デバイスの電極材料において、前記複合粉末のメディアン径(D50)が0.1μm以上50μm以下であってよい。 In the electrode material of the electricity storage device, the composite powder may have a median diameter (D50) of 0.1 μm or more and 50 μm or less.

本発明の第二は、少なくとも、前記電極材料、バインダ及び集電体を有する、蓄電デバイスの電極に関する。 A second aspect of the present invention relates to an electrode for an electricity storage device, which includes at least the electrode material, the binder, and the current collector.

前記蓄電デバイスの電極において、前記バインダが水系バインダであってよい。 In the electrode of the electricity storage device, the binder may be a water-based binder.

本発明の第三は、正極、負極、及び前記正極と前記負極との間に介在する電解質を備える蓄電デバイスであって、前記正極又は前記負極のうちいずれか一方が、前記電極である、蓄電デバイスに関する。 A third aspect of the present invention is an electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode, wherein either the positive electrode or the negative electrode is the electrode. Regarding devices.

本発明の第四は、前記蓄電デバイスを用いた電気機器に関する。 A fourth aspect of the present invention relates to an electrical device using the electricity storage device.

本発明の第五は、前記蓄電デバイスの電極材料の製造方法であって、前記A成分又は前記A成分の前駆体と、前記B成分の前駆体と、硫黄とを接触させた状態で200℃以上800℃以下に加熱する工程を有し、前記A成分がアルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料であり、前記A成分の前駆体が有機材料であって、前記B成分の前駆体がセルロース材料であり、前記セルロース材料がアルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基を有する、蓄電デバイスの電極材料の製造方法に関する。 A fifth aspect of the present invention is a method for producing an electrode material for the electricity storage device, wherein the A component or the precursor of the A component, the B component precursor, and sulfur are brought into contact with each other at 200°C. Component A is a material capable of electrochemically occluding and releasing alkali metal ions, the precursor of component A is an organic material, and the precursor of component A is an organic material, The present invention relates to a method for producing an electrode material for an electricity storage device, in which the precursor of component B is a cellulose material, and the cellulose material has an anionic group forming an alkali metal salt or an alkaline earth metal salt.

前記蓄電デバイスの電極材料の製造方法において、前記A成分の前駆体、前記B成分の前駆体、又は前記A成分の前駆体及び前記B成分の前駆体が導電材料を含有してよい。 In the method for manufacturing an electrode material for an electricity storage device, the precursor of the component A, the precursor of the component B, or the precursor of the component A and the precursor of the component B may contain a conductive material.

前記蓄電デバイスの電極材料の製造方法において、前記A成分の前駆体が、ポリアクリロニトリルであってよい。 In the method for manufacturing an electrode material for an electricity storage device, the precursor of component A may be polyacrylonitrile.

前記蓄電デバイスの電極材料の製造方法において、前記加熱する工程の後、さらに減圧又は不活性ガス雰囲気中、250℃以上に加熱する工程を有してよい。 The method for manufacturing an electrode material for an electricity storage device may further include, after the heating step, a step of heating to 250° C. or higher in a reduced pressure or inert gas atmosphere.

前記蓄電デバイスの電極材料の製造方法において、前記B成分の前駆体が、溶媒に分散又は溶解したセルロース材料であってよい。 In the method for manufacturing an electrode material for an electricity storage device, the precursor of component B may be a cellulose material dispersed or dissolved in a solvent.

前記蓄電デバイスの電極材料の製造方法において、前記セルロース材料が、カルボン酸アルカリ金属塩を官能基として有してよい。 In the method for manufacturing an electrode material for an electricity storage device, the cellulose material may have an alkali metal carboxylate salt as a functional group.

前記蓄電デバイスの電極材料の製造方法において、前記セルロース材料が、最大繊維径1μm以下のセルロースナノファイバーであってよい。 In the method for manufacturing an electrode material for an electricity storage device, the cellulose material may be cellulose nanofibers having a maximum fiber diameter of 1 μm or less.

本発明によれば、電極特性を低下させることなく、疎水性の活物質の欠点を補い、疎水性の活物質に親水性を付与し、優れた分散性を発揮できる蓄電デバイスの電極材料を提供することができる。 According to the present invention, there is provided an electrode material for a power storage device that can compensate for the drawbacks of a hydrophobic active material, impart hydrophilicity to the hydrophobic active material, and exhibit excellent dispersibility without deteriorating electrode characteristics. can do.

複合粉末の粒子の断面と単なる混合粉末の粒子の断面の概念図である。(a)は、単なる混合粉末の粒子の断面概念図、並びに(b)、(c)及び(d)は、複合粉末の粒子の断面概念図を示す。It is a conceptual diagram of the cross section of the particle of composite powder, and the cross section of the particle of simple mixed powder. (a) shows a conceptual cross-sectional view of particles of a simple mixed powder, and (b), (c), and (d) show conceptual cross-sectional views of particles of a composite powder. 試作した粉末の水分散性を示す図である。(a)は、比較例1の硫黄変性化合物の粉末の水分散性、(b)は、実施例1の複合粉末の水分散性の評価結果を示す。It is a figure which shows the water dispersibility of the powder produced experimentally. (a) shows the water dispersibility of the sulfur-modified compound powder of Comparative Example 1, and (b) shows the evaluation results of the water dispersibility of the composite powder of Example 1. 実施例1及び比較例1によりそれぞれ得られた粉末の体積基準粒度分布を示す図である。FIG. 2 is a diagram showing volume-based particle size distributions of powders obtained in Example 1 and Comparative Example 1, respectively. 比較例1により作製した電池の充放電曲線を示す図である。FIG. 3 is a diagram showing a charge-discharge curve of a battery produced in Comparative Example 1. 実施例1により作製した電池の充放電曲線を示す図である。1 is a diagram showing a charge/discharge curve of a battery produced in Example 1. FIG. 硫黄変性セルロース粉末B’1のIRスペクトルである。It is an IR spectrum of sulfur-modified cellulose powder B'1. 硫黄変性セルロース粉末B’2のIRスペクトルである。It is an IR spectrum of sulfur-modified cellulose powder B'2. 硫黄変性セルロース粉末B’4のIRスペクトルである。It is an IR spectrum of sulfur-modified cellulose powder B'4. 硫黄変性セルロース粉末B’5のIRスペクトルである。This is an IR spectrum of sulfur-modified cellulose powder B'5.

[蓄電デバイスの電極材料]
本開示の蓄電デバイスの電極材料は、非水電解質を用いた蓄電デバイスの電極材料であって、前記電極材料は、複合粉末を含み、前記複合粉末を構成する1つの粒子中にA成分とB成分の両方が含まれ、前記粒子は、前記A成分の表面にB成分が担持、被覆又は露出された構造であり、前記A成分が、アルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料からなり、前記B成分が、官能基としてSO基を少なくとも有する硫黄変性セルロースであり、前記A成分及び前記B成分の合計量100質量%に対し、前記B成分が0.01質量%以上である。
[Electrode materials for power storage devices]
An electrode material for an electricity storage device according to the present disclosure is an electrode material for an electricity storage device using a non-aqueous electrolyte, and the electrode material includes a composite powder, and a component A and a component B are contained in one particle constituting the composite powder. The particles have a structure in which component B is supported, coated, or exposed on the surface of component A, and component A is capable of electrochemically occluding and releasing alkali metal ions. The B component is sulfur-modified cellulose having at least 3 SO groups as a functional group, and the B component is 0.01 mass % with respect to 100 mass % of the total amount of the A component and the B component. % or more.

このように、複合粉末を構成する粒子がA成分の表面にB成分が担持、被覆又は露出された構造をとり、A成分が疎水性の材料であってもB成分は親水性であるので、複合粉末は親水性に優れる。したがって、本開示の蓄電デバイスの電極材料によれば、水、及び水を溶媒或いは分散媒とするバインダ(水系バインダ)を用いても、分散性に優れ、容易に且つ均一性に優れたスラリーを得ることができ、電極の製造時間の短縮を図ることができる。そのため、本開示の蓄電デバイスの電極材料によれば、従来の電極材料と比べて電極の生産性が大幅に向上し、蓄電デバイスの高容量化と高出力化を両立させることが可能となり、利用用途を拡大することが可能となる。 In this way, the particles constituting the composite powder have a structure in which component B is supported, coated, or exposed on the surface of component A, and even if component A is a hydrophobic material, component B is hydrophilic. Composite powder has excellent hydrophilicity. Therefore, according to the electrode material of the electricity storage device of the present disclosure, even if water and a binder using water as a solvent or dispersion medium (aqueous binder) are used, a slurry with excellent dispersibility and excellent uniformity can be easily produced. Therefore, the manufacturing time of the electrode can be shortened. Therefore, according to the electrode material of the electricity storage device of the present disclosure, the productivity of the electrode is significantly improved compared to conventional electrode materials, and it is possible to achieve both high capacity and high output of the electricity storage device, and use It becomes possible to expand the usage.

本開示において、蓄電デバイスとは、少なくとも正極と負極を有し、化学的、物理的又は物理化学的に蓄えられたエネルギーを電力の形で取り出すことのできる装置又は素子等をいう。蓄電デバイスとしては、充放電可能な二次電池;並びにキャパシタ及びコンデンサ等の電気容量デバイス等が挙げられる。さらに具体的には、例えば、リチウムイオン電池、リチウムイオンキャパシタ、ナトリウムイオン電池、ナトリウムイオンキャパシタ、カリウムイオン電池、及びカリウムイオンキャパシタ等が挙げられる。 In the present disclosure, an electricity storage device refers to a device or element that has at least a positive electrode and a negative electrode and can extract chemically, physically, or physicochemically stored energy in the form of electric power. Examples of power storage devices include rechargeable and dischargeable secondary batteries, and capacitance devices such as capacitors and capacitors. More specifically, examples include lithium ion batteries, lithium ion capacitors, sodium ion batteries, sodium ion capacitors, potassium ion batteries, and potassium ion capacitors.

また、電極材料とは、電極を構成する材料をいう。電極を構成する材料としては、例えば、活物質、導電助剤、バインダ、集電体及びその他の材料が挙げられる。 Further, the term "electrode material" refers to a material that constitutes an electrode. Examples of materials constituting the electrode include active materials, conductive aids, binders, current collectors, and other materials.

<複合粉末>
本開示の複合粉末は、その複合粉末を構成する1つの粒子中にA成分とB成分の両方が含まれ、前記粒子は、A成分の表面にB成分が担持、被覆又は露出された構造である。前記粒子は、担持、被覆又は露出の少なくともいずれかの構造を有していればよい。
<Composite powder>
The composite powder of the present disclosure includes both component A and component B in one particle constituting the composite powder, and the particle has a structure in which component B is supported, coated, or exposed on the surface of component A. be. The particles may have at least one of supported, coated, and exposed structures.

例えば、A成分を核としてその周囲(表面)にB成分が担持又は被覆されたものであってよい。担持又は被覆とは、A成分の表面がB成分によって部分被覆又は完全被覆されていることを意味する。また、露出とは、A成分をマトリックスとし、そのマトリックス中にB成分が分散した状態で存在し、B成分がA成分の表面に現れている状態を意味する。A成分の表面にB成分の一部が露出したものであってもよい。 For example, it may be one in which component A is the core and component B is supported or coated around the core (on the surface). Supporting or covering means that the surface of component A is partially or completely covered with component B. Moreover, exposure means a state in which the A component is used as a matrix, the B component exists in a dispersed state in the matrix, and the B component appears on the surface of the A component. Part of the B component may be exposed on the surface of the A component.

前記粒子が、前記A成分をマトリックスとし、前記マトリックス中に前記B成分が分散した状態で存在する粒子であることが好ましい。マトリックス中に分散とは、A成分にB成分がフィラーとして含まれている状態であってよい。 It is preferable that the particles have the component A as a matrix, and the component B exists in a dispersed state in the matrix. Dispersion in the matrix may be a state in which component A contains component B as a filler.

また、複合は、混合とは異なる概念であり、混合粉末がA成分により構成される粒子とB成分により構成される粒子との単なる集合であるのに対して、複合粉末は当該粉末を構成する1つの粒子中にA成分とB成分の両方が含まれている。一例として、図1(a)に単なる混合粉末の粒子の断面概念図、並びに図1(b)、(c)及び(d)に複合粉末の粒子の断面概念図を比較して示す。図1(b)は、A成分の表面がB成分によって完全被覆された場合の概念図であり、図1(c)は、A成分の表面がB成分によって部分被覆(言い換えれば、担持)された場合の概念図であり、図1(d)は、A成分のマトリックス中にB成分が分散し、B成分がA成分の表面に一部露出した場合の概念図である。 Composite is a different concept from mixing; mixed powder is simply an aggregation of particles composed of component A and particles composed of component B, whereas composite powder is a collection of particles composed of component A and component B, while composite powder is a combination of particles composed of component A and component B. Both A component and B component are contained in one particle. As an example, FIG. 1(a) shows a cross-sectional conceptual diagram of particles of a simple mixed powder, and FIGS. 1(b), (c), and (d) show cross-sectional conceptual diagrams of composite powder particles for comparison. FIG. 1(b) is a conceptual diagram when the surface of component A is completely covered with component B, and FIG. 1(c) is a conceptual diagram when the surface of component A is partially covered (in other words, supported) by component B. FIG. 1(d) is a conceptual diagram when the B component is dispersed in the matrix of the A component and a portion of the B component is exposed on the surface of the A component.

A成分とB成分の混合粉末を水に分散しようとする場合、B成分は単体でも親水性に優れるため、B成分のみが単体で分散してA成分とB成分が分離しやすい。しかし、本開示の複合粉末を構成する粒子は、A成分の表面にB成分が担持、被覆又は露出された構造であるため、水に対する優れた分散性を示し、A成分もB成分も分散した状態とすることができる。 When dispersing a mixed powder of components A and B in water, component B alone has excellent hydrophilicity, so only component B is easily dispersed and the components A and B are easily separated. However, since the particles constituting the composite powder of the present disclosure have a structure in which component B is supported, coated, or exposed on the surface of component A, they exhibit excellent dispersibility in water, and both component A and component B are dispersed. It can be a state.

本開示の複合粉末のメディアン径(D50)は0.1μm以上50μm以下が好ましく、0.1μm以上30μm以下がより好ましく、0.5μm以上15μm以下がさらに好ましく、0.55μm以上14.5μm以下が最も好ましい。複合粉末のメディアン径(D50)を上記の範囲内にすることで、出力特性及びサイクル寿命特性に優れた電極が得られる電極材料とすることができる。0.1μm以上であることにより、比表面積が高くなりすぎず、電極形成に必要なバインダが多くならない。その結果、電極の出力特性とエネルギー密度に優れる。また、50μm以下であることにより、粒子表面積が大きくなり、実用的な入出力特性が得られる。 The median diameter (D50) of the composite powder of the present disclosure is preferably 0.1 μm or more and 50 μm or less, more preferably 0.1 μm or more and 30 μm or less, even more preferably 0.5 μm or more and 15 μm or less, and 0.55 μm or more and 14.5 μm or less. Most preferred. By setting the median diameter (D50) of the composite powder within the above range, the electrode material can provide an electrode with excellent output characteristics and cycle life characteristics. By being 0.1 μm or more, the specific surface area does not become too high and the amount of binder required for electrode formation does not increase. As a result, the electrode has excellent output characteristics and energy density. In addition, when the particle size is 50 μm or less, the particle surface area becomes large, and practical input/output characteristics can be obtained.

ここで、メディアン径(D50)とは、レーザー回折・散乱式粒子径分布測定法を用い、体積基準の体積換算で頻度の累積が50%になる粒子径を意味し、以降においても同様である。測定装置は、HORIBA製「LA-960」などを用いることができる。 Here, the median diameter (D50) means the particle diameter at which the cumulative frequency is 50% in terms of volume based on volume using a laser diffraction/scattering particle size distribution measurement method, and the same applies hereafter. . As the measuring device, "LA-960" manufactured by HORIBA or the like can be used.

複合粉末全体におけるA成分とB成分の割合としては、両者の合計量を100質量%とした場合に、B成分が0.01質量%以上であるところ、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。B成分が0.01質量%以上であることにより、A成分に対する親水性付与の効果に優れ、水系バインダを用いたスラリーを作製する際に十分な分散性を有する。なお、A成分に親水性を付与する目的だけであれば、10質量%を超えるB成分を設ける必要はなく、10質量%以下であってよい。 As for the ratio of component A and component B in the entire composite powder, when the total amount of both is 100% by mass, component B is 0.01% by mass or more, preferably 0.1% by mass or more, and 0. More preferably, the content is .5% by mass or more. When component B is 0.01% by mass or more, it has an excellent effect of imparting hydrophilicity to component A, and has sufficient dispersibility when producing a slurry using an aqueous binder. Note that if the purpose is only to impart hydrophilicity to component A, it is not necessary to provide component B in an amount exceeding 10% by mass, and the amount may be 10% by mass or less.

(A成分)
A成分は、アルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料からなる。A成分は、アルカリ金属イオンを電気化学的に吸蔵及び放出することができる電極材料であれば特に限定されない。アルカリ金属イオンを電気化学的に吸蔵することとしては、アルカリ金属と可逆的に合金(固溶体、金属間化合物などを含む)を形成すること、アルカリ金属と可逆的に化学結合すること、アルカリ金属イオンを吸着すること、またアルカリ金属を可逆的に内包することなどが挙げられる。また、アルカリ金属イオンを電気化学的に放出することとは、吸蔵されるアルカリ金属イオンが離れることをいう。
(A component)
Component A is made of a material capable of electrochemically occluding and releasing alkali metal ions. Component A is not particularly limited as long as it is an electrode material that can electrochemically occlude and release alkali metal ions. Electrochemical storage of alkali metal ions includes reversibly forming alloys (including solid solutions, intermetallic compounds, etc.) with alkali metals, reversibly chemically bonding with alkali metals, and alkali metal ions. Examples include adsorption of alkali metals and reversible encapsulation of alkali metals. Furthermore, electrochemically releasing alkali metal ions means that occluded alkali metal ions are separated.

A成分は、例えば、Li、Na、K、C、Mg、Al、Si、P、S、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb、及びBiよりなる群から選ばれた少なくとも一種以上の元素を含んでよい。また、A成分は、これらの元素が含まれる合金;これらの元素の酸化物、硫化物、及びハロゲン化物;並びに有機化合物の硫黄変性化合物などの硫黄系有機材料;などであってもよい。 The A component is, for example, Li, Na, K, C, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, It may contain at least one element selected from the group consisting of Ge, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, W, Pb, and Bi. In addition, the A component may be an alloy containing these elements; oxides, sulfides, and halides of these elements; and sulfur-based organic materials such as sulfur-modified organic compounds.

これらのなかでも、B成分(硫黄変性セルロース)と近い充放電プラトー域を示す観点から、S(硫黄)、上記元素の硫化物、及び有機化合物の硫黄変性化合物などの硫黄系有機材料が好ましい。上記元素の硫化物、又は有機化合物の硫黄変性化合物などの硫黄系有機材料としては、例えば、硫化金属、硫黄複合カーボン、硫黄変性天然ゴム、硫黄変性ピッチ、硫黄変性アントラセン、硫黄変性ポリアクリル、硫黄変性フェノール、硫黄変性ポリオレフィン、硫黄変性ポリビニルアルコール、硫黄変性ナイロン、硫黄変性酢酸ビニル共重合体、硫黄変性テレフタル酸、硫黄変性ジアミノ安息香酸、硫黄変性メタクリル樹脂、硫黄変性ポリカーボネート、硫黄変性ポリスチレン、硫黄変性N-ビニルホルムアルデヒド共重合体、硫黄変性グリコール、及び硫黄変性ポリアクリロニトリルなどが挙げられる。A成分は1種単独からなるものでもよく、2種以上からなるものであってよい。 Among these, sulfur-based organic materials such as S (sulfur), sulfides of the above elements, and sulfur-modified organic compounds are preferred from the viewpoint of exhibiting a charge-discharge plateau region similar to that of component B (sulfur-modified cellulose). Sulfur-based organic materials such as sulfides of the above elements or sulfur-modified organic compounds include, for example, metal sulfide, sulfur composite carbon, sulfur-modified natural rubber, sulfur-modified pitch, sulfur-modified anthracene, sulfur-modified polyacrylic, sulfur Modified phenol, sulfur-modified polyolefin, sulfur-modified polyvinyl alcohol, sulfur-modified nylon, sulfur-modified vinyl acetate copolymer, sulfur-modified terephthalic acid, sulfur-modified diaminobenzoic acid, sulfur-modified methacrylic resin, sulfur-modified polycarbonate, sulfur-modified polystyrene, sulfur-modified Examples include N-vinyl formaldehyde copolymer, sulfur-modified glycol, and sulfur-modified polyacrylonitrile. Component A may consist of one type alone, or may consist of two or more types.

これらのなかでも、安定した容量保持率が得られるため、硫黄系有機材料が好適である。また、電荷担体としてリチウム、ナトリウム又はカリウムを用いたいずれの場合であっても、500~700mAh/gもの可逆的な電気容量を安定して示すことができるため、特に硫黄変性ポリアクリロニトリルが好適である。 Among these, sulfur-based organic materials are preferred because they provide stable capacity retention. In addition, sulfur-modified polyacrylonitrile is particularly suitable because it can stably exhibit a reversible electric capacity of 500 to 700 mAh/g regardless of whether lithium, sodium, or potassium is used as a charge carrier. be.

A成分は、粒子状であって、そのメディアン径(D50)は0.1μm以上30μm以下が好ましく、0.5μm以上15μm以下がより好ましく、0.55μm以上14.5μm以下がさらに好ましい。メディアン径(D50)が上記範囲内であれば、得られる電極の表面平滑性を悪化させない。加えて、A成分の表面にB成分が担持又は被覆された状態;及び/又はA成分のマトリックス中にB成分が分散され、B成分がA成分の表面に一部露出した状態のものが得られやすい。 Component A is in the form of particles, and its median diameter (D50) is preferably 0.1 μm or more and 30 μm or less, more preferably 0.5 μm or more and 15 μm or less, and even more preferably 0.55 μm or more and 14.5 μm or less. If the median diameter (D50) is within the above range, the surface smoothness of the resulting electrode will not be deteriorated. In addition, a state in which the B component is supported or coated on the surface of the A component; and/or a state in which the B component is dispersed in the matrix of the A component and a part of the B component is exposed on the surface of the A component can be obtained. It's easy to get caught.

(B成分)
B成分は、官能基としてSO基を少なくとも有する硫黄変性セルロースである。硫黄変性セルロースとは、セルロースが脱水素反応を起こして硫化した材料を意味し、セルロースに由来する炭素骨格と該炭素骨格と結合した硫黄とからなる。硫黄変性セルロースは、前駆体(セルロース)の白色から黒色に見た目が変化しており、優れた親水性を示し、水には不溶である。また、官能基としてSO基を有するとは、硫黄変性セルロースにおけるセルロースに由来する炭素骨格にSO基が結合する場合が含まれる。SO基は、SOH、SONa、SOLi、及びSOKよりなる群から選択された少なくとも一種以上であってよい。
(B component)
Component B is a sulfur-modified cellulose having at least SO 3 groups as functional groups. Sulfur-modified cellulose refers to a material in which cellulose is sulfurized through a dehydrogenation reaction, and is composed of a carbon skeleton derived from cellulose and sulfur bonded to the carbon skeleton. Sulfur-modified cellulose has changed in appearance from the white color of its precursor (cellulose) to black, exhibits excellent hydrophilicity, and is insoluble in water. Moreover, having an SO 3 group as a functional group includes a case where the SO 3 group is bonded to a carbon skeleton derived from cellulose in sulfur-modified cellulose. The SO 3 group may be at least one selected from the group consisting of SO 3 H, SO 3 Na, SO 3 Li, and SO 3 K.

セルロースと硫黄変性セルロースの違いについて述べる。セルロースは、水に分散又は水を吸収して膨潤する性質があると共に、180℃以上では、質量減少して炭化反応が始まる。しかし、硫黄変性セルロースは、親水性はあるものの水には不溶であるため、水により膨潤せず、400℃でも質量減少は30質量%以下であり、優れた耐熱性を示す。硫黄変性セルロースは、原料の仕込み量や熱処理温度などの製造条件によっても異なるが、元素分析で10~60質量%が硫黄で構成されてよく、20~60質量%が硫黄で構成されていてよい。 Describe the difference between cellulose and sulfur-modified cellulose. Cellulose has the property of dispersing in water or absorbing water and swelling, and at temperatures above 180° C., the mass decreases and a carbonization reaction begins. However, since sulfur-modified cellulose is hydrophilic but insoluble in water, it does not swell with water and exhibits excellent heat resistance, with a mass loss of 30% by mass or less even at 400°C. Sulfur-modified cellulose may be composed of 10 to 60% by mass of sulfur according to elemental analysis, and may be composed of 20 to 60% by mass of sulfur, although this varies depending on manufacturing conditions such as the amount of raw materials charged and the heat treatment temperature. .

B成分は、硫黄変性セルロースナノファイバー(S-CeNFと称する場合がある)であることが好ましい。S-CeNFは、水に対して溶解や膨潤することなく、優れた親水性を示す。また、300~400mAh/gの可逆的な電気容量を安定して示すことができる。したがって、A成分をB成分と複合化することで、親水性を付与するだけでなく、電極の高容量化も期待できる。 Component B is preferably sulfur-modified cellulose nanofibers (sometimes referred to as S-CeNF). S-CeNF exhibits excellent hydrophilicity without dissolving or swelling in water. Further, it can stably exhibit a reversible electric capacity of 300 to 400 mAh/g. Therefore, by combining component A with component B, it is expected that not only hydrophilicity will be imparted, but also higher capacity of the electrode will be achieved.

さらに、S-CeNFは繊維状であるため、A成分の表面、内部、又は表面及び内部に、導電性を有する三次元網目構造を形成することができる。S-CeNFによる3次元網目構造が形成されていれば、A成分は電解液に接触することが可能となり、電極材料として充分な出力特性が得られる。また、電極の活物質として充分な集電効果が得られる。 Furthermore, since S-CeNF is fibrous, it is possible to form a conductive three-dimensional network structure on the surface, inside, or on the surface and inside of component A. If a three-dimensional network structure is formed by S-CeNF, the A component can come into contact with the electrolyte, and sufficient output characteristics can be obtained as an electrode material. Further, a sufficient current collecting effect can be obtained as an active material of an electrode.

S-CeNFは、最大繊維径が1μm以下であることが好ましく、1nm以上500nm以下であることがより好ましく、2nm以上200nm以下であることがさらに好ましい。A成分の表面に三次元網目構造の硫黄変性セルロースナノファイバーが担持、被覆又は露出された構造をとること、特に、A成分をマトリックスとし、前記マトリックス中に三次元網目構造の硫黄変性セルロースナノファイバーを分散した粒子が得られ易く、A成分に元々期待される電極特性、具体的には、出力特性及びサイクル寿命特性を低下させることなく、A成分に親水性を付与させ、優れた分散性を発揮できる。 The maximum fiber diameter of S-CeNF is preferably 1 μm or less, more preferably 1 nm or more and 500 nm or less, and even more preferably 2 nm or more and 200 nm or less. A structure in which sulfur-modified cellulose nanofibers with a three-dimensional network structure are supported, coated, or exposed on the surface of component A, in particular, component A is used as a matrix, and sulfur-modified cellulose nanofibers with a three-dimensional network structure are included in the matrix. It is easy to obtain particles in which component A is dispersed, and it is possible to impart hydrophilicity to component A and achieve excellent dispersibility without deteriorating the electrode properties originally expected of component A, specifically, the output characteristics and cycle life characteristics. I can demonstrate it.

最大繊維径は、電子線顕微鏡などを用いて得た繊維像の中から、少なくとも10本以上の繊維を無作為に選択し、それぞれの繊維における短軸方向の長さの最大値を求め、その最大値を平均することにより得られる。平均繊維径は、電子線顕微鏡などを用いて得た繊維像の中から、少なくとも10本以上の繊維を無作為に選択し、それぞれの繊維における短軸方向の長さの平均値を求めることにより得られる。 The maximum fiber diameter is determined by randomly selecting at least 10 fibers from a fiber image obtained using an electron microscope, finding the maximum length of each fiber in the short axis direction, and calculating the maximum fiber diameter. Obtained by averaging the maximum values. The average fiber diameter is determined by randomly selecting at least 10 fibers from a fiber image obtained using an electron microscope, etc., and calculating the average length of each fiber in the short axis direction. can get.

また、S-CeNFは、繊維の長さが0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.8μm以上であることがさらに好ましい。 Further, the fiber length of S-CeNF is preferably 0.2 μm or more, more preferably 0.5 μm or more, and even more preferably 0.8 μm or more.

繊維の長さは、カヤーニオートメーション(KAJAANI AUTOMATION)社製の繊維長測定機(FS-200型)により測定できる。 The length of the fiber can be measured using a fiber length measuring machine (model FS-200) manufactured by KAJAANI AUTOMATION.

アスペクト比(S-CeNFの繊維の長さ/S-CeNFの繊維の直径)が、10以上100000以下であることがより好ましい。A成分の表面や内部に三次元網目構造を形成することが容易なためである。 The aspect ratio (S-CeNF fiber length/S-CeNF fiber diameter) is more preferably 10 or more and 100,000 or less. This is because it is easy to form a three-dimensional network structure on the surface or inside of component A.

また、アスペクト比が8以上50000以下であることがより好ましく、25以上10000以下であることがさらに好ましい。電池又はキャパシタの出力特性が優れる。 Further, the aspect ratio is more preferably 8 or more and 50,000 or less, and even more preferably 25 or more and 10,000 or less. Excellent battery or capacitor output characteristics.

アスペクト比は、繊維の長さ/繊維の直径(平均繊維径)で求められる。繊維の直径は、繊維の長さを測定する装置と同じ装置により測定することもできる。 The aspect ratio is determined by fiber length/fiber diameter (average fiber diameter). Fiber diameter can also be measured by the same device that measures fiber length.

<導電材料>
本開示の蓄電デバイスの電極材料は、A成分又はB成分に、導電材料などの任意成分を含んでよい。
<Conductive material>
The electrode material of the electricity storage device of the present disclosure may include an arbitrary component such as a conductive material in the A component or the B component.

蓄電デバイスの電極材料は、導電材料を含有することが好ましい。電極材料のさらなる高出力化が期待できるためである。特に、B成分に導電材料が含まれることなどにより、A成分の表面に担持、被覆又は露出されるように含まれる場合、A成分の表面に親水性と導電性の両方を付与できるため好ましい。もちろん、A成分に導電材料が含まれてもかまわない。 The electrode material of the electricity storage device preferably contains a conductive material. This is because the electrode material can be expected to have even higher output power. In particular, it is preferable that component B contains a conductive material such that it is supported, coated, or exposed on the surface of component A, since both hydrophilicity and conductivity can be imparted to the surface of component A. Of course, the A component may contain a conductive material.

導電材料とは、電子導電性(電子伝導性)を有する材料をいう。例えば、C(カーボン)、Al(アルミニウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Ta(タンタル)、Pt(白金)、Au(金)から選ばれる金属;これらの金属からなる合金;及び導電性を有するセラミックや高分子などであってもよい。これらの中でも、導電性と材料コスト、不可逆容量が少ない観点からカーボンが好ましい。カーボンとしては、グラファイト、カーボンブラック、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、グラフェン、ハードカーボン、ソフトカーボン、グラッシーカーボン、及び気相成長炭素繊維(VGCF;登録商標)等が挙げられる。このうち特にカーボンブラックが好ましい。カーボンブラックは、製造方法により性質が異なるが、ファーネスブラック(FB)、チャンネルブラック、アセチレンブラック(AB)、サーマルブラック、ランプブラック、及びケッチェンブラック(KB;登録商標)などが問題なく使用できる。導電材料は、1種単独で用いてもよく、2種以上を併用してもよい。 A conductive material refers to a material having electronic conductivity (electronic conductivity). For example, C (carbon), Al (aluminum), Ti (titanium), V (vanadium), Cr (chromium), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Ta (tantalum). ), Pt (platinum), and Au (gold); alloys made of these metals; and conductive ceramics and polymers. Among these, carbon is preferred from the viewpoint of conductivity, material cost, and low irreversible capacity. Examples of carbon include graphite, carbon black, carbon fiber, carbon nanotube, carbon nanohorn, graphene, hard carbon, soft carbon, glassy carbon, and vapor grown carbon fiber (VGCF; registered trademark). Among these, carbon black is particularly preferred. Carbon black has different properties depending on the manufacturing method, but furnace black (FB), channel black, acetylene black (AB), thermal black, lamp black, Ketjen black (KB; registered trademark), and the like can be used without problems. The conductive materials may be used alone or in combination of two or more.

導電材料の含有量は、A成分とB成分からなる複合粉末、及び導電材料の合計量100質量%に対し、0.1質量%以上30質量%以下が好ましい。0.1質量%以上であることにより、導電性付与の効果が十分であり、30質量%以下であることにより、活物質容量も低くなりすぎないため好ましい。 The content of the conductive material is preferably 0.1% by mass or more and 30% by mass or less with respect to 100% by mass of the composite powder consisting of component A and component B and the conductive material. When the content is 0.1% by mass or more, the effect of imparting conductivity is sufficient, and when it is 30% by mass or less, the active material capacity does not become too low, which is preferable.

[蓄電デバイス用の電極材料の製造]
本開示の蓄電デバイスの電極材料を製造する方法は特に限定されるものではない。本開示の蓄電デバイスの電極材料が含有する複合粉末を得る方法も、特に限定されない。
[Manufacture of electrode materials for power storage devices]
The method for manufacturing the electrode material of the electricity storage device of the present disclosure is not particularly limited. The method for obtaining the composite powder contained in the electrode material of the electricity storage device of the present disclosure is also not particularly limited.

まず、B成分の調製について述べる。B成分は、B成分の前駆体(セルロース材料)と硫黄とを原料とし、B成分の前駆体に硫黄を接触させた状態で、加熱処理する工程により得ることができる。B成分の前駆体に硫黄を接触させた状態とは、B成分の前駆体と硫黄とが物理的に接触していればよく、例えば、B成分の前駆体と硫黄を混合した固形粉末、B成分の前駆体と硫黄を溶媒中に分散し乾燥したものなどが挙げられる。このようにB成分の前駆体に硫黄を接触させて加熱処理することで、セルロースに硫黄が固相拡散するため、収率よくB成分(硫黄変性セルロース)を得ることができる。 First, the preparation of component B will be described. Component B can be obtained by using a precursor of component B (cellulose material) and sulfur as raw materials and heat-treating the precursor of component B in a state where the precursor is brought into contact with sulfur. The state in which the precursor of component B is in contact with sulfur only requires that the precursor of component B and sulfur are in physical contact with each other. For example, solid powder of a mixture of the precursor of component B and sulfur, Examples include those in which component precursors and sulfur are dispersed in a solvent and dried. By bringing the precursor of component B into contact with sulfur and heat-treating it in this way, sulfur diffuses into the cellulose in a solid phase, so component B (sulfur-modified cellulose) can be obtained with a high yield.

加熱処理は、B成分の前駆体が硫黄変性する温度であればよく、200℃以上800℃以下とすることが好ましい。これにより、B成分の前駆体(セルロース材料)に由来する炭素骨格と該炭素骨格と結合した硫黄とからなるB成分(硫黄変性セルロース)が合成できる。200℃以上であることにより、B成分の前駆体が十分に硫黄変性し、得られるB成分(硫黄変性セルロース)の導電性は、200℃未満のものと比べて高い。また、800℃以下であることにより、B成分から硫黄が脱離しにくく、硫黄含有量が減少しにくいため、炭化物となり電極材料の電気容量が低下することを防ぐことができる。B成分の収率と電気容量が高い観点から、220℃以上600℃以下がより好ましい。また、B成分の導電性に優れる観点から、250℃以上500℃以下がさらに好ましい。 The heat treatment may be performed at any temperature at which the precursor of component B is modified with sulfur, and is preferably 200°C or more and 800°C or less. Thereby, component B (sulfur-modified cellulose) consisting of a carbon skeleton derived from the precursor of component B (cellulose material) and sulfur bonded to the carbon skeleton can be synthesized. When the temperature is 200°C or higher, the precursor of component B is sufficiently sulfur-modified, and the conductivity of the resulting component B (sulfur-modified cellulose) is higher than that at lower than 200°C. In addition, when the temperature is 800° C. or lower, sulfur is difficult to desorb from component B and the sulfur content is difficult to decrease, so that it is possible to prevent the formation of carbide and a decrease in the electric capacity of the electrode material. From the viewpoint of high yield and electric capacity of component B, the temperature is more preferably 220°C or more and 600°C or less. Further, from the viewpoint of excellent conductivity of component B, the temperature is more preferably 250°C or more and 500°C or less.

加熱処理時の雰囲気は、特に限定されないが、大気中であると酸素による酸化が起こりうるので、不活性ガス雰囲気や還元雰囲気などの非酸素雰囲気とすることが好ましい。具体的には、例えば、減圧雰囲気、ヘリウム雰囲気、ネオン雰囲気、アルゴン雰囲気、窒素雰囲気、水素雰囲気、及び硫黄ガス雰囲気が挙げられる。 The atmosphere during the heat treatment is not particularly limited, but since oxidation due to oxygen may occur in the air, it is preferably a non-oxygen atmosphere such as an inert gas atmosphere or a reducing atmosphere. Specifically, examples thereof include a reduced pressure atmosphere, a helium atmosphere, a neon atmosphere, an argon atmosphere, a nitrogen atmosphere, a hydrogen atmosphere, and a sulfur gas atmosphere.

加熱処理の時間は、B成分が生成される時間であればよく、1時間以上50時間以下であってよく、1時間以上40時間以下であってよい。この範囲にあることにより、セルロースが十分に硫黄変性し、得られる複合粉末の電気容量に優れるため好ましい。また、加熱時間が長すぎないので、硫黄変性の反応が十分に進行し、無駄な加熱エネルギーを消費しないので、経済的に好ましい。 The heat treatment time may be any time as long as component B is produced, and may be 1 hour or more and 50 hours or less, or 1 hour or more and 40 hours or less. This range is preferable because the cellulose is sufficiently sulfur-modified and the resulting composite powder has excellent electric capacity. Furthermore, since the heating time is not too long, the sulfur modification reaction proceeds sufficiently and unnecessary heating energy is not consumed, which is economically preferable.

原料となる硫黄の質量は、B成分の前駆体(セルロース材料)の質量と同量かそれ以上であればよい。硫黄の質量は、具体的には、例えば、B成分の前駆体の質量に対し1倍量以上10倍量以下が好ましく、2倍量以上6倍量以下がより好ましい。硫黄の質量がB成分の前駆体の質量に対し1倍量以上であることにより、硫黄変性が十分に起こり、電気容量に優れた電極材料となる。10倍量以下であることにより、得られる電極材料中に、原料の硫黄が残留しにくく、後工程において脱硫黄処理を行う場合に時間がかからない。電極材料中に単体硫黄が残留すると、初期の電気容量は大きくなるが、サイクル寿命特性が悪くなることがある。このような場合は、脱硫黄処理を行うことが好ましい。 The mass of sulfur used as a raw material may be equal to or greater than the mass of the precursor of component B (cellulose material). Specifically, the mass of sulfur is preferably, for example, 1 to 10 times the mass of the precursor of component B, and more preferably 2 to 6 times. When the mass of sulfur is one or more times the mass of the precursor of component B, sulfur modification occurs sufficiently, resulting in an electrode material with excellent electric capacity. When the amount is 10 times or less, raw material sulfur is unlikely to remain in the obtained electrode material, and it does not take much time to perform desulfurization treatment in a subsequent step. If elemental sulfur remains in the electrode material, the initial capacitance increases, but cycle life characteristics may deteriorate. In such a case, it is preferable to perform a desulfurization treatment.

B成分の前駆体であるセルロース材料は、分子式(C10で表される炭水化物又はその誘導体であって、アルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基を有するものであればよい。なお、分子式(C10で表される炭水化物の誘導体とは、官能基の導入、酸化、還元、原子の置き換えなど、分子式(C10で表される炭水化物の構造や性質を大幅に変えない程度の改変がなされた化合物のことを意味する。 The cellulose material that is the precursor of component B is a carbohydrate represented by the molecular formula (C 6 H 10 O 5 ) n or a derivative thereof, and has an anionic group forming an alkali metal salt or an alkaline earth metal salt. That's fine. In addition, derivatives of carbohydrates represented by the molecular formula (C 6 H 10 O 5 ) n refer to derivatives of carbohydrates represented by the molecular formula (C 6 H 10 O 5 ) n , including introduction of functional groups, oxidation, reduction, and atom replacement. Refers to compounds that have been modified to the extent that the structure and properties of carbohydrates are not significantly changed.

B成分の前駆体であるセルロース材料としては、下記の分子式(C10で表される炭水化物の誘導体が、アルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基によって置換されたものが挙げられる。例えば、メチルセルロース、エチルセルロース、エチルメチルセルロース、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース、セルロース硫酸塩、酢酸セルロース、メチルセルロースエーテル、メチルエチルセルロースエーテル、エチルセルロースエーテル、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)、ヘミセルロース、マイクロクリスタリンセルロース、セルロースナノクリスタル、並びにセルロースナノファイバー(CeNF)などが挙げられる。これらのうち、CeNFが好ましい。 The cellulose material that is the precursor of component B is a carbohydrate derivative represented by the following molecular formula (C 6 H 10 O 5 ) n substituted with an anionic group forming an alkali metal salt or an alkaline earth metal salt. There are many things that can be mentioned. For example, methylcellulose, ethylcellulose, ethylmethylcellulose, carboxymethylcellulose (CMC), hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, Nonoxynyl hydroxyethylcellulose, cellulose sulfate, cellulose acetate, methylcellulose ether, methylethylcellulose ether, ethylcellulose ether, low nitrogen hydroxyethylcellulose dimethyldiallylammonium chloride (polyquaternium-4), -[2-hydroxy-3-(trimethylammonium) chloride ) propyl] hydroxyethylcellulose (polyquaternium-10), chloride-[2-hydroxy-3-(lauryldimethylammonio)propyl]hydroxyethylcellulose (polyquaternium-24), hemicellulose, microcrystalline cellulose, cellulose nanocrystals, and cellulose nanofibers (CeNF), etc. Among these, CeNF is preferred.

CeNFは、木材などの構成物質であるセルロース;又は動物、藻類、若しくはバクテリアから得たセルロースなどを最大繊維径が1μm以下にまで物理的又は化学的に細かくほぐしたセルロース繊維である。より具体的には、セルロース繊維の長さが0.2μm以上、アスペクト比(セルロース繊維の長さ/セルロース繊維の直径(繊維径))が10以上100000以下、及び平均重合度が100~100000のセルロース繊維であることが好ましく、セルロース繊維の長さが0.5μm以上、アスペクト比(セルロース繊維の長さ/セルロース繊維の直径(繊維径))が10以上250以下、及び平均重合度が100~10000のセルロース繊維であることがより好ましい。なお、ここで、平均重合度とは、TAPPI T230標準法に記載の粘度法により算出された値をいう。 CeNF is a cellulose fiber obtained by physically or chemically loosening cellulose, which is a constituent material of wood or the like, or cellulose obtained from animals, algae, or bacteria, to a maximum fiber diameter of 1 μm or less. More specifically, the cellulose fiber length is 0.2 μm or more, the aspect ratio (cellulose fiber length/cellulose fiber diameter (fiber diameter)) is 10 to 100,000, and the average degree of polymerization is 100 to 100,000. Cellulose fibers are preferable, and the cellulose fibers have a length of 0.5 μm or more, an aspect ratio (cellulose fiber length/cellulose fiber diameter (fiber diameter)) of 10 to 250, and an average degree of polymerization of 100 to 250. 10,000 cellulose fibers are more preferred. Note that the average degree of polymerization herein refers to a value calculated by the viscosity method described in the TAPPI T230 standard method.

なお、アルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基を有するCeNFは、セルロース繊維の所定の繊維径まで効率良く解繊することができる。 Note that CeNF having an anionic group forming an alkali metal salt or an alkaline earth metal salt can efficiently defibrate cellulose fibers to a predetermined fiber diameter.

B成分の前駆体であるセルロース材料が有するアニオン性基がなすアルカリ金属塩又はアルカリ土類金属塩としては、特に限定されないが、例えば、カルボン酸アルカリ金属塩又はアルカリ土類金属塩;リン酸アルカリ金属塩又はアルカリ土類金属塩;スルホン酸アルカリ金属塩又はアルカリ土類金属塩;及び硫酸アルカリ金属塩又はアルカリ土類金属塩等が挙げられる。これらのいずれか1種を有してよく、2種以上を有していてもよい。また、これらの中でも、セルロース材料が、カルボン酸アルカリ金属塩を官能基として有することが、得られる活物質の高い放電容量と水分散性の点から好ましい。 The alkali metal salt or alkaline earth metal salt formed by the anionic group of the cellulose material that is the precursor of component B is not particularly limited, but includes, for example, alkali metal salt or alkaline earth metal salt of carboxylic acid; alkali phosphate; Examples include metal salts or alkaline earth metal salts; sulfonic acid alkali metal salts or alkaline earth metal salts; and sulfuric acid alkali metal salts or alkaline earth metal salts. It may contain any one type of these, or it may contain two or more types. Moreover, among these, it is preferable that the cellulose material has an alkali metal carboxylic acid salt as a functional group from the viewpoint of high discharge capacity and water dispersibility of the obtained active material.

上記アルカリ金属塩又はアルカリ土類金属塩の種類としては、特に限定されないが、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩;並びにマグネシウム塩、カルシウム塩、バリウム塩等のアルカリ土類金属塩等が挙げられる。 The types of the alkali metal salts or alkaline earth metal salts are not particularly limited, but include alkali metal salts such as sodium salts, potassium salts, and lithium salts; and alkaline earth metal salts such as magnesium salts, calcium salts, and barium salts. etc.

B成分の前駆体であるセルロース材料は、アルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基だけでなく、アルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基、並びに、カルボン酸基、リン酸基、スルホン酸基、及び硫酸基等の酸型のアニオン性基の両方を有してよい。 The cellulose material that is the precursor of component B contains not only an anionic group forming an alkali metal salt or alkaline earth metal salt, but also an anionic group forming an alkali metal salt or alkaline earth metal salt, and a carboxylic acid group. It may have both acid type anionic groups such as phosphoric acid groups, sulfonic acid groups, and sulfuric acid groups.

B成分の前駆体として、セルロースナノファイバー(CeNF)を用いる場合、得られる硫黄変性セルロースは、硫黄変性セルロースナノファイバー(S-CeNF)となる。B成分が繊維状の硫黄変性セルロースナノファイバー(S-CeNF)であれば、A成分の表面や内部に導電性を有する三次元網目構造を形成することができ、電極の活物質として充分な集電効果が得られるため好ましい。 When cellulose nanofibers (CeNF) are used as the precursor of component B, the resulting sulfur-modified cellulose becomes sulfur-modified cellulose nanofibers (S-CeNF). If component B is a fibrous sulfur-modified cellulose nanofiber (S-CeNF), a three-dimensional network structure with conductivity can be formed on the surface or inside of component A, and it can be used as an active material for an electrode. This is preferable because an electric effect can be obtained.

B成分の前駆体としては、処理後(B成分の前駆体に硫黄を接触させた状態で、加熱処理した後)に官能基としてSO基を少なくとも有するセルロース材料であることが望ましい。例えば、TEMPO酸化セルロースのアルカリ金属塩又はアルカリ土類金属塩;スルホン酸変性セルロースのアルカリ金属塩又はアルカリ土類金属塩;硫酸変性セルロースのアルカリ金属塩又はアルカリ土類金属塩;及びカルボキシメチルセルロースのアルカリ金属塩又はアルカリ土類金属塩等が挙げられる。これらのいずれか1種を有していてもよく、2種以上を有していてもよい。また、これらのなかでも、TEMPO酸化セルロースのアルカリ金属塩が好ましく、TEMPO酸化セルロースナノファイバーのアルカリ金属塩が高い放電容量が得られるためより好ましい。 The precursor of component B is preferably a cellulose material having at least SO 3 groups as a functional group after treatment (after heat treatment in a state where the precursor of component B is brought into contact with sulfur). For example, alkali metal salts or alkaline earth metal salts of TEMPO-oxidized cellulose; alkali metal salts or alkaline earth metal salts of sulfonic acid-modified cellulose; alkali metal salts or alkaline earth metal salts of sulfuric acid-modified cellulose; and alkali metal salts of carboxymethyl cellulose. Examples include metal salts and alkaline earth metal salts. It may contain any one type of these, or it may contain two or more types. Moreover, among these, an alkali metal salt of TEMPO-oxidized cellulose is preferable, and an alkali metal salt of TEMPO-oxidized cellulose nanofiber is more preferable because a high discharge capacity can be obtained.

次に、複合粉末の調製について述べる。A成分とB成分からなる複合粉末を得る方法としては、特に限定されないが、例えば、メカニカルミリング法、スプレードライ法、流動層造粒法、及び焼成粉砕法等の方法が挙げられる。 Next, the preparation of the composite powder will be described. Methods for obtaining the composite powder consisting of component A and component B are not particularly limited, and examples include methods such as mechanical milling, spray drying, fluidized bed granulation, and sintering and pulverization.

メカニカルミリング法は、衝撃・引張り・摩擦・圧縮・せん断等の外力を原料粉末(少なくともA成分及びB成分)に与える方法で、転動ミル、振動ミル、遊星ミル、揺動ミル、水平ミル、ボールミル、アトライターミル、ジェットミル、撹拌擂潰機、ホモジナイザー、フルイダイザー、ペイントシェイカー、及びミキサー等などを用いることができる。当該方法により、A成分とB成分からなる複合粉末が得られる。特に、A成分の表面をB成分で担持又は被覆した複合体を形成しやすい。ただし、この方法では、B成分はA成分と比べて機械的強度が低い条件であることが好ましい。すなわち、B成分がA成分よりも粉砕されやすいことが好ましい。優先的に微粒子となったB成分がA成分の表面に機械的に圧着することとなり、A成分にB成分を担持、被覆又は露出することが可能となる。 Mechanical milling is a method of applying external forces such as impact, tension, friction, compression, and shear to the raw material powder (at least A component and B component), and uses a rolling mill, a vibration mill, a planetary mill, an oscillating mill, a horizontal mill, etc. A ball mill, an attritor mill, a jet mill, an agitator and a crusher, a homogenizer, a fluidizer, a paint shaker, a mixer, and the like can be used. By this method, a composite powder consisting of component A and component B is obtained. In particular, it is easy to form a composite in which the surface of component A is supported or coated with component B. However, in this method, it is preferable that the B component has a lower mechanical strength than the A component. That is, it is preferable that component B is more easily crushed than component A. Component B, which has become fine particles, is preferentially mechanically pressed onto the surface of component A, making it possible for component A to support, cover, or expose component B to component A.

スプレードライ法では、A成分とB成分とを水や有機溶媒に分散した液体をスプレードライすることにより、A成分の表面をB成分で担持、被覆又は露出した複合体を形成することができる。A成分が疎水性の材料である場合は、A成分の分散のため、有機溶媒を利用することが好ましく、特に、A成分が硫黄又は硫黄系有機材料である場合は、水に界面活性剤やアルコールなどを添加した溶媒を利用することが好ましい。界面活性剤やアルコールなどは、熱処理することによって、分解又は気化するので、電極材料に悪影響を及ぼさない。 In the spray drying method, by spray drying a liquid in which component A and component B are dispersed in water or an organic solvent, it is possible to form a composite in which the surface of component A is supported, covered, or exposed with component B. When the A component is a hydrophobic material, it is preferable to use an organic solvent to disperse the A component. In particular, when the A component is sulfur or a sulfur-based organic material, a surfactant or a surfactant is added to the water. It is preferable to use a solvent to which alcohol or the like is added. Surfactants, alcohols, and the like are decomposed or vaporized by heat treatment, so they do not adversely affect the electrode material.

流動層造粒法では、A成分を入れた造粒室の下部から熱風を送り込み、A成分を空中に巻き上げて流動させた状態で、B成分が分散した溶媒をA成分に噴霧することで、A成分の表面にB成分が担持又は被覆した複合体を形成することができる。また、A成分が硫黄又は硫黄系有機材料である場合は、A成分又はA成分の前駆体を入れた造粒室の下部から熱風を送り込み、A成分又はA成分の前駆体を空中に巻き上げて流動させた状態で、B成分の前駆体が分散した溶媒をA成分前駆体に噴霧して、A成分の前駆体の表面にB成分の前駆体が担持又は被覆した複合粉末を作製した後、この複合粉末と硫黄とを接触させた状態で200℃以上の加熱処理をすることでも、A成分の表面にB成分が担持、被覆又は露出した複合体を形成することができる。 In the fluidized bed granulation method, hot air is sent from the bottom of the granulation chamber containing component A, and while component A is rolled up into the air and fluidized, a solvent in which component B is dispersed is sprayed onto component A. A complex can be formed in which component B is supported or coated on the surface of component A. In addition, when the A component is sulfur or a sulfur-based organic material, hot air is sent from the bottom of the granulation chamber containing the A component or the precursor of the A component to blow up the A component or the precursor of the A component into the air. After spraying a solvent in which the B component precursor is dispersed onto the A component precursor in a fluidized state to produce a composite powder in which the B component precursor is supported or coated on the surface of the A component precursor, By heating the composite powder at 200° C. or higher while bringing it into contact with sulfur, it is possible to form a composite in which component B is supported, coated, or exposed on the surface of component A.

焼成粉砕法では、A成分、B成分の前駆体、及び硫黄を溶媒に分散させた後、この分散体を200℃以上で加熱処理し、その後粉砕することにより、A成分の表面にB成分が担持又は被覆された複合粉末を形成することができる。また、A成分が硫黄又は硫黄系有機材料である場合は、A成分又はA成分の前駆体、B成分前駆体、及び硫黄を溶媒に分散させた後、この分散体を加熱処理し、その後粉砕することにより、A成分の表面にB成分が担持、被覆又は露出された複合体を形成することができる。焼成粉砕法で、用いられる溶媒は、水に界面活性剤やアルコールなどを添加した溶媒を利用することが好ましい。界面活性剤やアルコールなどは、熱処理することによって、分解又は気化するので、電極材料に悪影響を及ぼさない。 In the sintering and pulverization method, component A, a precursor of component B, and sulfur are dispersed in a solvent, and then this dispersion is heat-treated at 200°C or higher, and then crushed, so that component B is on the surface of component A. Supported or coated composite powders can be formed. In addition, when component A is sulfur or a sulfur-based organic material, after dispersing component A or a precursor of component A, a precursor of component B, and sulfur in a solvent, this dispersion is heat-treated, and then pulverized. By doing so, it is possible to form a complex in which component B is supported, coated, or exposed on the surface of component A. In the sintering and pulverizing method, it is preferable that the solvent used be water with a surfactant, alcohol, or the like added thereto. Surfactants, alcohols, and the like are decomposed or vaporized by heat treatment, so they do not adversely affect the electrode material.

メカニカルミリング法、スプレードライ法、流動層造粒法、焼成粉砕法などの方法において、A成分を先に調製してから製造する場合、特に、A成分が、硫黄、上記元素の硫化物又は硫黄系有機材料である場合、A成分は、加熱処理によって、上記元素を硫化する、また有機化合物を硫黄変性することによって得られる。また、この有機化合物としては、電気容量が大きく寿命特性に優れる観点から、ポリアクリロニトリル(PAN)が好ましい。 In a method such as a mechanical milling method, a spray drying method, a fluidized bed granulation method, or a pyrolysis method, when the A component is prepared first and then manufactured, the A component is sulfur, a sulfide of the above element, or sulfur. In the case of organic materials, component A can be obtained by sulfurizing the above elements or modifying the organic compound with sulfur by heat treatment. Moreover, as this organic compound, polyacrylonitrile (PAN) is preferable from the viewpoint of large electric capacity and excellent life characteristics.

また、A成分が、A成分として例示した上記元素の硫化物、又は硫黄系有機材料である場合、本開示の蓄電デバイスの電極材料は、前記A成分又はA成分の前駆体と、B成分の前駆体と、硫黄とを接触させた状態で200℃以上800℃以下に加熱する工程を有し、前記A成分がアルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料であり、前記A成分の前駆体が有機材料であって、前記B成分の前駆体がセルロース材料であり、前記セルロース材料がアルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基を有する、蓄電デバイスの電極材料の製造方法、により製造してよい。これにより、A成分の表面にB成分が担持、被覆又は露出された複合粉末を得ることができる。 Further, when the A component is a sulfide of the above element exemplified as the A component or a sulfur-based organic material, the electrode material of the electricity storage device of the present disclosure includes the A component or a precursor of the A component, and the B component. The precursor and sulfur are brought into contact with each other and heated to 200°C or more and 800°C or less, and the A component is a material capable of electrochemically occluding and releasing alkali metal ions, An electrode for an electricity storage device, wherein the precursor of component A is an organic material, the precursor of component B is a cellulose material, and the cellulose material has an anionic group forming an alkali metal salt or an alkaline earth metal salt. It may be manufactured by the manufacturing method of the material. Thereby, a composite powder in which component B is supported, coated, or exposed on the surface of component A can be obtained.

特に、A成分の前駆体を原料として用いる方法は、A成分の表面にB成分が露出された複合粉末を得るために好適である。さらに、A成分の表面にB成分が露出された複合粉末を得る場合、A成分の前駆体は液化している状態のものを原料とすることが好ましい。A成分の前駆体が液化している状態とは、例えば、A成分が熱または化学反応によって軟化した状態、A成分が溶媒に溶解している状態、A成分が加圧によって変形できる状態などが挙げられる。 In particular, a method using a precursor of component A as a raw material is suitable for obtaining a composite powder in which component B is exposed on the surface of component A. Furthermore, when obtaining a composite powder in which component B is exposed on the surface of component A, it is preferable that the precursor of component A is in a liquefied state. The state in which the precursor of the A component is liquefied includes, for example, a state in which the A component is softened by heat or chemical reaction, a state in which the A component is dissolved in a solvent, a state in which the A component can be deformed by pressure, etc. Can be mentioned.

以下、A成分の前駆体を原料する方法を中心に詳述するが、A成分を原料とする場合も、A成分の前駆体をA成分に代える以外は、以下詳述する方法と同じで方法で製造できる。 Below, we will mainly explain in detail the method of using the precursor of component A as a raw material, but when using component A as a raw material, the method is the same as the method detailed below, except that the precursor of component A is replaced with component A. It can be manufactured by

A成分の前駆体と、B成分の前駆体と、硫黄とを接触させた状態とは、A成分の前駆体と、B成分の前駆体と、硫黄とが物理的に接触していればよく、例えば、A成分の前駆体と、B成分の前駆体と、硫黄とを混合した固形粉末;及びA成分の前駆体と、B成分の前駆体と、硫黄とを溶媒中に分散し乾燥したものなどが挙げられる。このようにA成分の前駆体と、B成分の前駆体と、硫黄とを接触させて加熱処理することで、A成分の前駆体と、B成分の前駆体とに硫黄が固相拡散するため、収率よく複合粉末を得ることができる。 The state in which the precursor of component A, the precursor of component B, and sulfur are in contact with each other may be as long as the precursor of component A, the precursor of component B, and sulfur are in physical contact with each other. For example, a solid powder obtained by mixing a precursor of component A, a precursor of component B, and sulfur; and a precursor of component A, a precursor of component B, and sulfur are dispersed in a solvent and dried. Examples include things. By bringing the precursor of component A, the precursor of component B, and sulfur into contact with each other and heat-treating them in this way, sulfur is solid-phase diffused into the precursor of component A and the precursor of component B. , a composite powder can be obtained with good yield.

特に、A成分の前駆体と、B成分の前駆体とを溶媒に溶解し、これに硫黄を分散し乾燥したものでは、得られる複合粒子が、前記A成分の表面にB成分が露出された構造(A成分のマトリックス中にB成分が分散した状態)となる。 In particular, when a precursor of component A and a precursor of component B are dissolved in a solvent, sulfur is dispersed therein, and then dried, the resulting composite particles have the component B exposed on the surface of the component A. structure (a state in which component B is dispersed in a matrix of component A).

加熱温度は、200℃以上800℃以下であればよい。また、A成分の前駆体及びB成分の前駆体が硫黄変性する温度であればよい。これにより、A成分、及びB成分としてセルロース材料に由来する炭素骨格と該炭素骨格と結合した硫黄とからなる硫黄変性セルロースが合成できる。200℃以上であることにより、A成分の前駆体及びB成分の前駆体が十分に硫黄変性し、得られる複合粉末の導電性が200℃未満のものと比べて高い。また、800℃以下であることにより、A成分及びB成分から硫黄が脱離しにくく、硫黄含有量が減少しにくいため、炭化物となり電極材料の電気容量が低下することを防ぐことができる。A成分及びB成分の収率と電気容量が高い観点から、220℃以上600℃以下がより好ましい。また、A成分及びB成分の導電性に優れる観点から、250℃以上500℃以下がさらに好ましい。 The heating temperature may be 200°C or more and 800°C or less. Further, the temperature may be any temperature as long as the precursor of component A and the precursor of component B are modified with sulfur. Thereby, a sulfur-modified cellulose consisting of a carbon skeleton derived from a cellulose material and sulfur bonded to the carbon skeleton can be synthesized as the A component and the B component. When the temperature is 200°C or higher, the precursor of component A and the precursor of component B are sufficiently sulfur-modified, and the conductivity of the resulting composite powder is higher than that of the composite powder that is heated below 200°C. In addition, when the temperature is 800° C. or lower, sulfur is difficult to desorb from component A and component B, and the sulfur content is difficult to decrease, so that it is possible to prevent the formation of carbide and a decrease in the electric capacity of the electrode material. From the viewpoint of high yield and capacitance of component A and component B, the temperature is more preferably 220° C. or higher and 600° C. or lower. Moreover, from the viewpoint of excellent conductivity of the A component and the B component, the temperature is more preferably 250° C. or more and 500° C. or less.

加熱処理時の雰囲気は、特に限定されない。B成分の調製における加熱処理と同じ雰囲気を採用できる。 The atmosphere during the heat treatment is not particularly limited. The same atmosphere as for the heat treatment in the preparation of component B can be used.

加熱処理の時間は、B成分が生成される時間であればよく、1時間以上50時間以下であってよく、1時間以上40時間以下であってよい。この範囲にあることにより、セルロースが十分に硫黄変性し、得られる複合粉末の電気容量に優れるため好ましい。また、加熱時間が長すぎないので、硫黄変性の反応が十分に進行し、無駄な加熱エネルギーを消費しないので、経済的に好ましい。なお、A成分を生成する場合も上記B成分の加熱時間と同様である。 The heat treatment time may be any time as long as component B is produced, and may be 1 hour or more and 50 hours or less, or 1 hour or more and 40 hours or less. This range is preferable because the cellulose is sufficiently sulfur-modified and the resulting composite powder has excellent electric capacity. Furthermore, since the heating time is not too long, the sulfur modification reaction proceeds sufficiently and unnecessary heating energy is not consumed, which is economically preferable. In addition, when producing|generating A component, the heating time is the same as the said B component.

A成分の前駆体及びB成分の前駆体の合計量を100質量%とした場合に、B成分の前駆体が0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。B成分の前駆体が0.01質量%以上であることにより、A成分に対する親水性付与の効果に優れ、水系バインダを用いたスラリーを作製する際に十分な分散性を有する。なお、A成分に親水性を付与する目的だけであれば、10質量%を超えるB成分を設ける必要はなく、10質量%以下であってよい。 When the total amount of the precursor of component A and the precursor of component B is 100% by mass, the precursor of component B is preferably 0.01% by mass or more, and preferably 0.1% by mass or more. is more preferable, and even more preferably 0.5% by mass or more. When the amount of the precursor of component B is 0.01% by mass or more, it has an excellent effect of imparting hydrophilicity to component A, and has sufficient dispersibility when producing a slurry using an aqueous binder. Note that if the purpose is only to impart hydrophilicity to component A, it is not necessary to provide component B in an amount exceeding 10% by mass, and the amount may be 10% by mass or less.

原料となる硫黄の質量は、A成分の前駆体及びB成分の前駆体のそれぞれの質量と同量かそれ以上であればよい。具体的には、硫黄は、A成分の前駆体及びB成分の前駆体のそれぞれの質量に対し、1倍量以上10倍量以下が好ましく、2倍量以上6倍量以下がより好ましい。原料として硫黄の質量がA成分の前駆体及びB成分の前駆体のそれぞれの質量に対し、1倍量以上であることにより、硫黄変性が十分に起こり、電気容量に優れた電極材料となる。10倍量以下であることにより、得られる電極材料に、原料の硫黄が残留しにくく、後工程において脱硫黄処理を行う場合に時間がかからない。電極材料中に単体硫黄が残留すると、初期の電気容量は大きくなるが、サイクル寿命特性が悪くなることがある。このような場合は、脱硫黄処理を行うことが好ましい。 The mass of sulfur used as a raw material may be equal to or greater than the respective mass of the precursor of component A and the precursor of component B. Specifically, the amount of sulfur is preferably 1 to 10 times the mass of the precursor of component A and the precursor of component B, and more preferably 2 times to 6 times the mass of each of the precursors of component B. When the mass of sulfur as a raw material is one or more times the mass of each of the precursors of component A and component B, sulfur modification occurs sufficiently, resulting in an electrode material with excellent electric capacity. When the amount is 10 times or less, raw material sulfur is less likely to remain in the obtained electrode material, and it does not take much time to perform desulfurization treatment in a subsequent step. If elemental sulfur remains in the electrode material, the initial capacitance increases, but cycle life characteristics may deteriorate. In such a case, it is preferable to perform a desulfurization treatment.

脱硫黄処理とは、製造した複合粉末中に含まれる単体硫黄を取り除く処理で、加熱処理や減圧処理などで残留硫黄を除去できれば限定されない。例えば、複合粉末を得た後、さらに減圧又は不活性ガス雰囲気中で、250℃以上に加熱する工程が挙げられる。そして、この加熱を1~20時間ほど行うことで良好に残留硫黄を除去できる。加熱温度の上限は特に限定されないが、電極材料の電気容量が大きい観点からは、800℃以下であってよい。その他、該複合粉末を得た後、二硫化炭素に残留硫黄を溶解してもよいが、二硫化炭素は毒性が強いため、上述した加熱処理による脱硫黄処理が好ましい。 Desulfurization treatment is a treatment for removing elemental sulfur contained in the manufactured composite powder, and is not limited as long as residual sulfur can be removed by heat treatment, reduced pressure treatment, etc. For example, after obtaining the composite powder, it may be further heated to 250° C. or higher under reduced pressure or in an inert gas atmosphere. Residual sulfur can be effectively removed by performing this heating for about 1 to 20 hours. The upper limit of the heating temperature is not particularly limited, but may be 800° C. or lower from the viewpoint of increasing the capacitance of the electrode material. Alternatively, residual sulfur may be dissolved in carbon disulfide after obtaining the composite powder, but since carbon disulfide is highly toxic, desulfurization treatment by heat treatment as described above is preferred.

A成分が硫黄系有機材料である場合、A成分の前駆体は有機材料である。当該有機材料としては、例えば、カーボン、天然ゴム、ピッチ、アントラセン、ポリアクリル、フェノール、ポリオレフィン、ポリビニルアルコール、ナイロン、酢酸ビニル共重合体、アクリル酸、テレフタル酸、ジアミノ安息香酸、メタクリル樹脂、ポリカーボネート、ポリスチレン、N-ビニルホルムアルデヒド共重合体、グリコール、及びポリアクリロニトリル(PAN)などが挙げられる。これらのうち、ポリアクリロニトリルが好ましい。 When component A is a sulfur-based organic material, the precursor of component A is an organic material. Examples of the organic materials include carbon, natural rubber, pitch, anthracene, polyacrylic, phenol, polyolefin, polyvinyl alcohol, nylon, vinyl acetate copolymer, acrylic acid, terephthalic acid, diaminobenzoic acid, methacrylic resin, polycarbonate, Examples include polystyrene, N-vinyl formaldehyde copolymer, glycol, and polyacrylonitrile (PAN). Among these, polyacrylonitrile is preferred.

A成分の前駆体が、ポリアクリロニトリル(PAN)である場合、PAN、B成分の前駆体(セルロース材料)、及び硫黄を原料として、PANとB成分の前駆体と硫黄とを接触させた状態で、200℃以上800℃以下に加熱する工程により、PANは硫黄変性ポリアクリロニトリル(S-PAN;A成分に相当)になり、B成分の前駆体は硫黄変性セルロース(B成分に相当)になり、そして同時に、A成分の表面にB成分が担持、被覆又は露出された複合粉末を得ることができる。 When the precursor of component A is polyacrylonitrile (PAN), PAN, the precursor of component B (cellulose material), and sulfur are used as raw materials, and the PAN, the precursor of component B, and sulfur are brought into contact with each other. , PAN becomes sulfur-modified polyacrylonitrile (S-PAN; equivalent to component A), and the precursor of component B becomes sulfur-modified cellulose (corresponds to component B) by the step of heating at 200 ° C. or more and 800 ° C. or less, At the same time, it is possible to obtain a composite powder in which component B is supported, coated, or exposed on the surface of component A.

B成分の前駆体は、セルロース材料であるところ、セルロース材料は、単体であってよく、溶媒に分散又は溶解したセルロース材料であってよい。 The precursor of component B is a cellulose material, and the cellulose material may be a simple substance or may be a cellulose material dispersed or dissolved in a solvent.

また、電極材料が導電材料を含有する場合、電極材料の製造方法としては、例えば、水などの溶媒に、A成分の前駆体、B成分の前駆体、導電材料及び硫黄を分散し、同様に加熱処理することが挙げられる。A成分の前駆体を水などの溶媒に分散する際、継粉(ダマ又は凝集体)になった場合は、界面活性剤やアルコールなどを併用することにより、水などの溶媒への分散性を向上させることができる。併用する界面活性剤やアルコールなどは、熱処理することによって、分解又は気化するので、電極材料に悪影響を及ぼさない。 In addition, when the electrode material contains a conductive material, the method for manufacturing the electrode material includes, for example, dispersing the precursor of component A, the precursor of component B, the conductive material, and sulfur in a solvent such as water, and One example is heat treatment. When dispersing the precursor of component A in a solvent such as water, if it becomes powder (clumps or aggregates), use a surfactant or alcohol together to improve its dispersibility in a solvent such as water. can be improved. The surfactant, alcohol, etc. used in combination are decomposed or vaporized by heat treatment, so they do not have a negative effect on the electrode material.

このとき、前記A成分の前駆体、前記B成分の前駆体、又は前記A成分の前駆体及び前記B成分の前駆体が導電材料を含有してよい。また、上記の脱硫黄処理を行った後、導電材料を配合してもよい。 At this time, the precursor of the A component, the B component precursor, or the A component precursor and the B component precursor may contain a conductive material. Moreover, after performing the above desulfurization treatment, a conductive material may be added.

また、A成分をマトリックスとし、当該マトリックス中にB成分が分散した状態の粒子により構成される複合粉末は、例えば、液化したA成分の前駆体に、B成分(又はB成分前駆体)と硫黄とを分散させた後、この分散体を200℃以上800℃以下で加熱処理することによっても得ることができる。A成分のマトリックス中にB成分が分散することで、A成分の表面はB成分が一部露出した構造となる。 In addition, a composite powder composed of particles in which component A is used as a matrix and component B is dispersed in the matrix, for example, a liquefied precursor of component A is mixed with component B (or component B precursor) and sulfur. It can also be obtained by dispersing and then heat-treating this dispersion at a temperature of 200° C. or more and 800° C. or less. By dispersing the B component in the matrix of the A component, the surface of the A component has a structure in which the B component is partially exposed.

液化したA成分の前駆体とは、例えば、溶媒にA成分の前駆体を溶解した液体や、加熱処理などにより融点付近まで温度を上げて液化したA成分などが該当する。例えば、有機溶媒にポリアクリロニトリルを溶解させ、この液体にセルロースナノファイバーと硫黄粉末とを分散させ、この分散体を200℃以上で加熱処理することにより、硫黄変性ポリアクリロニトリル中に硫黄変性セルロースナノファイバーを分散した状態の複合粉末が得られる。溶媒としては、A成分の前駆体を溶解できる液体であれば、特に限定されないが、A成分の前駆体がポリアクリロニトリルである場合、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、塩化亜鉛水溶液、及びチオシアン酸ナトリウム水溶液などが好ましく例示できる。 The liquefied precursor of component A is, for example, a liquid obtained by dissolving the precursor of component A in a solvent, or a component A that is liquefied by raising the temperature to around the melting point by heat treatment or the like. For example, by dissolving polyacrylonitrile in an organic solvent, dispersing cellulose nanofibers and sulfur powder in this liquid, and heat-treating this dispersion at 200°C or higher, sulfur-modified cellulose nanofibers are dissolved in sulfur-modified polyacrylonitrile. A composite powder is obtained in which the components are dispersed. The solvent is not particularly limited as long as it is a liquid that can dissolve the precursor of component A, but when the precursor of component A is polyacrylonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, aqueous zinc chloride solution, and thiocyanic acid can be used. A preferred example is a sodium aqueous solution.

[蓄電デバイスの電極]
本開示の蓄電デバイスの電極は、少なくとも、本開示の蓄電デバイスの電極材料、バインダ及び集電体を有する。また、本開示の蓄電デバイスの電極は、導電助剤などの任意成分を含有してよい。
[Electrode of electricity storage device]
The electrode of the power storage device of the present disclosure includes at least the electrode material of the power storage device of the present disclosure, a binder, and a current collector. Further, the electrode of the electricity storage device of the present disclosure may contain an optional component such as a conductive aid.

本開示の蓄電デバイスの電極において、本開示の電極材料におけるA成分とB成分からなる複合粉末は、主に活物質として用いられる。なお、活物質とは、アルカリ金属イオンを電気化学的に吸蔵及び放出することができる物質をいう。 In the electrode of the electricity storage device of the present disclosure, a composite powder consisting of component A and component B in the electrode material of the present disclosure is mainly used as an active material. Note that the active material refers to a substance that can electrochemically occlude and release alkali metal ions.

そして、電極は、具体的には、例えば、本開示の蓄電デバイスの電極材料、バインダ及び導電助剤に、N-メチル-ピロリドン(NMP)、水、アルコール、キシレン、及びトルエン等の適当な溶剤を加えて十分に混練して得られる電極スラリーを、集電体表面に塗布、乾燥し、更にプレス調圧することで、集電体表面に活物質含有層を形成し、電池の電極とすることができる。 Specifically, the electrode is prepared by adding an appropriate solvent such as N-methyl-pyrrolidone (NMP), water, alcohol, xylene, and toluene to the electrode material, binder, and conductive agent of the electricity storage device of the present disclosure. The electrode slurry obtained by adding and sufficiently kneading is applied to the surface of the current collector, dried, and further press-pressured to form an active material-containing layer on the surface of the current collector, and use it as a battery electrode. Can be done.

集電体は、電子伝導性を有し、保持した負極材料に通電し得る材料であれば特に限定されない。例えば、C、Ti、Cr、Fe、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Cu、Ni、Al等の導電性物質;これら導電性物質の2種類以上を含有する合金(例えば、ステンレス鋼)等を使用し得る。電子伝導性が高く、電解液中の安定性と耐酸化性、耐還元性がよい観点から、集電体としてはC、Al、Cu、Ni、及びステンレス鋼等が好ましく、C、Al及びステンレス鋼がより好ましい。 The current collector is not particularly limited as long as it has electron conductivity and can conduct electricity to the negative electrode material held therein. For example, conductive substances such as C, Ti, Cr, Fe, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Cu, Ni, Al; containing two or more of these conductive substances Alloys (eg, stainless steel), etc. may be used. From the viewpoint of high electron conductivity, stability in electrolyte, good oxidation resistance, and good reduction resistance, C, Al, Cu, Ni, stainless steel, etc. are preferable as the current collector, and C, Al, and stainless steel are preferable. Steel is more preferred.

集電体の形状は、特に制約はない。例えば、箔状基材、三次元基材などを用いることができる。三次元基材としては、発泡メタル、メッシュ、織布、不織布、及びエキスパンド等が挙げられる。三次元基材を用いると、集電体との密着性に欠けるようなバインダであっても高い容量密度の電極が得られる。加えて、高率充放電特性も良好になる。 There are no particular restrictions on the shape of the current collector. For example, a foil-like base material, a three-dimensional base material, etc. can be used. Examples of the three-dimensional base material include foamed metal, mesh, woven fabric, nonwoven fabric, expanded fabric, and the like. When a three-dimensional base material is used, an electrode with high capacitance density can be obtained even with a binder that lacks adhesiveness with the current collector. In addition, high rate charge/discharge characteristics are also improved.

また、箔状の集電体であっても、予め、集電体表面上にプライマー層を形成することで高出力化を図ることができる。プライマー層は、電極材料層と集電体とのそれぞれに密着性が良好で、且つ導電性を有するものであればよい。例えば、炭素系導電助剤とプライマー用バインダ等を混ぜ合わせた結着材を集電体上に塗布することで、プライマー層を形成できる。プライマー層の厚みは、例えば、0.1μm~20μmである。なお、プライマー用バインダは、電極に用いられる公知のバインダが使用できる。 Further, even with a foil-shaped current collector, high output can be achieved by forming a primer layer on the surface of the current collector in advance. The primer layer may be of any material as long as it has good adhesion to the electrode material layer and the current collector, and has electrical conductivity. For example, the primer layer can be formed by applying a binding material that is a mixture of a carbon-based conductive additive and a primer binder onto the current collector. The thickness of the primer layer is, for example, 0.1 μm to 20 μm. Note that, as the binder for the primer, a known binder used for electrodes can be used.

(バインダ)
蓄電デバイスの電極に含有されるバインダとしては、蓄電デバイスの電極のバインダとして従来使用されるものであれば制約はない。例えば、カルボキシメチルセルロース塩(CMC)、アクリル系樹脂、アルギン酸塩、ポリフッ化ビニリデン(PVDF)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリアミド、ポリアミドイミド、スチレンブタジエンゴム(SBR)、ポリウレタン、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル樹脂、ポリ塩化ビニル、及びエチレン酢酸共重合体(EVA)等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
(binder)
There are no restrictions on the binder contained in the electrode of the power storage device as long as it is conventionally used as a binder for the electrode of the power storage device. For example, carboxymethyl cellulose salt (CMC), acrylic resin, alginate, polyvinylidene fluoride (PVDF), polyimide (PI), polytetrafluoroethylene (PTFE), polyamide, polyamideimide, styrene-butadiene rubber (SBR), polyurethane, Styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-propylene-styrene copolymer (SEPS) ), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyethylene (PE), polypropylene (PP), polyester resin, polyvinyl chloride, and ethylene acetic acid copolymer (EVA). These may be used alone or in combination of two or more.

上記のバインダのうち、CMC、アクリル系樹脂、アルギン酸塩、PVA、SBRなどが、水を溶媒或いは分散媒とできる水系バインダであるため好適に用いられる。水系バインダを用いると、スラリー溶媒への硫黄溶出抑制や電極の高温耐久性が向上するため好ましい。 Among the above binders, CMC, acrylic resin, alginate, PVA, SBR, etc. are preferably used because they are water-based binders that can use water as a solvent or dispersion medium. It is preferable to use a water-based binder because it suppresses sulfur elution into the slurry solvent and improves the high-temperature durability of the electrode.

一般的には、水系バインダ及び疎水性の電極材料(特に、活物質等)により電極を構成すると、疎水性の材料が水と反発して継粉(例えば、ダマや凝集体など)となり分散しにくいが、本開示の複合粉末は、親水性に優れるB成分がA成分の表面に担持、被覆又は露出しているため、水系バインダを採用しても分散が困難という問題が生じることはない。 Generally, when an electrode is made of a water-based binder and a hydrophobic electrode material (especially an active material, etc.), the hydrophobic material repels water and becomes particles (such as lumps and aggregates) and disperses. However, in the composite powder of the present disclosure, component B, which has excellent hydrophilicity, is supported, coated, or exposed on the surface of component A, so even if a water-based binder is used, the problem of difficulty in dispersion does not occur.

バインダの含有量は、A成分とB成分からなる複合粉末、及びバインダの合計量100質量%に対し、0.1質量%以上30質量%以下が好ましく、0.5質量%以上15質量%以下がより好ましい。上記範囲外であると、安定した寿命特性と出力特性が得られにくい電極となる。すなわち、バインダ量が少ないと集電体との結着力が十分でないため安定した寿命特性が得られにくく、逆に多すぎると電極抵抗が高くなり出力特性が低下する。 The binder content is preferably 0.1% by mass or more and 30% by mass or less, and 0.5% by mass or more and 15% by mass or less, based on 100% by mass of the composite powder consisting of component A and component B and the binder. is more preferable. If it is outside the above range, the electrode will be difficult to obtain stable life characteristics and output characteristics. That is, if the amount of binder is too small, the binding force with the current collector is insufficient, making it difficult to obtain stable life characteristics.On the other hand, if the amount is too large, electrode resistance increases and output characteristics deteriorate.

(導電助剤)
導電助剤とは、活物質間の導電性を助ける物質であり、離れている活物質の間に充填又は架橋され、活物質同士、又は活物質と集電体との導通をとる材料をいう。
(Conductivity aid)
A conductive aid is a substance that helps conductivity between active materials, and is a material that is filled or bridged between separate active materials to establish conduction between the active materials or between the active materials and a current collector. .

蓄電デバイスの電極に任意成分として含有される導電助剤としては、蓄電デバイスの電極の導電助剤として従来使用されるものを用いることができる。例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、カーボンファイバー、カーボンナノチューブ、グラフェン、非晶質炭素、及び気相成長炭素繊維(VGCF)等の炭素材料が挙げられる。導電助剤は、1種単独で用いてもよく、2種以上を併用してもよい。 As the conductive aid contained as an optional component in the electrode of the power storage device, those conventionally used as conductive aids for the electrode of the power storage device can be used. Examples include carbon materials such as acetylene black (AB), Ketjen black (KB), graphite, carbon fiber, carbon nanotubes, graphene, amorphous carbon, and vapor grown carbon fiber (VGCF). The conductive aids may be used alone or in combination of two or more.

これらの中でも、導電性の3次元網目構造を形成できるものが好ましい。導電性の3次元網目構造を形成できるものとしては、例えば、フレークアルミニウム粉、フレークステンレス粉等のフレーク状の導電材;カーボンファイバー;カーボンチューブ;非晶質炭素等が挙げられる。導電性の3次元網目構造が形成されれば、十分な集電効果が得られると共に、充放電における電極の体積膨張を効果的に抑制できる。 Among these, those that can form a conductive three-dimensional network structure are preferred. Examples of materials that can form a conductive three-dimensional network structure include flaky conductive materials such as flake aluminum powder and flake stainless steel powder; carbon fiber; carbon tube; and amorphous carbon. If a conductive three-dimensional network structure is formed, a sufficient current collection effect can be obtained, and volumetric expansion of the electrode during charging and discharging can be effectively suppressed.

導電助剤の含有量は、A成分の表面にB成分が担持、被覆又は露出された複合粉末(言い換えれば、A成分及びB成分)、及び導電助剤の合計量100質量%に対し、0質量%以上20質量%以下が好ましく、1質量%以上10質量%以下がより好ましい。上記範囲であることにより、電池の出力特性に優れると共に、容量の低下も小さい。すなわち、導電助剤は必要に応じて含有される。 The content of the conductive aid is 0% by mass based on 100% by mass of the composite powder in which component B is supported, coated, or exposed on the surface of component A (in other words, component A and component B), and the total amount of the conductive aid. It is preferably at least 1% by mass and at most 20% by mass, and more preferably at least 1% by mass and at most 10% by mass. By being within the above range, the battery has excellent output characteristics and a decrease in capacity is small. That is, the conductive aid is contained as necessary.

[蓄電デバイス]
本開示の蓄電デバイスの電極を用い、蓄電デバイスとすることができる。蓄電デバイスは、正極、負極、及び前記正極と前記負極との間に介在する電解質を備える。そして、本開示の電極を、蓄電デバイスの正極及び負極のうちいずれか一方として用いることができる。すなわち、本開示の電極は、蓄電デバイスの正極又は負極のいずれにも用いることができるが、正極及び負極が同時に、本開示の電極のうち全く同じ電極を用いることは除かれるものである。本開示の蓄電デバイスの電極を蓄電デバイスの正極として用いる場合は、本開示の蓄電デバイスの電極の充放電電位よりも卑の電極と組みわせることで蓄電デバイスを作製できる。一方、本開示の蓄電デバイスの電極を蓄電デバイスの負極として用いる場合は、本開示の蓄電デバイスの電極の充放電電位よりも貴の電極と組み合わせることで蓄電デバイスを作製できる。
[Electricity storage device]
An electricity storage device can be made using the electrode of the electricity storage device of the present disclosure. The electricity storage device includes a positive electrode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode. The electrode of the present disclosure can be used as either a positive electrode or a negative electrode of an electricity storage device. That is, the electrode of the present disclosure can be used as either the positive electrode or the negative electrode of an electricity storage device, but it is excluded that the positive electrode and the negative electrode use exactly the same electrode among the electrodes of the present disclosure at the same time. When the electrode of the electricity storage device of the present disclosure is used as a positive electrode of the electricity storage device, the electricity storage device can be manufactured by combining it with an electrode that is more base in charge/discharge potential than the charge/discharge potential of the electrode of the electricity storage device of the present disclosure. On the other hand, when the electrode of the electricity storage device of the present disclosure is used as a negative electrode of the electricity storage device, the electricity storage device can be manufactured by combining with an electrode whose charging/discharging potential is higher than the charging/discharging potential of the electrode of the electricity storage device of the present disclosure.

蓄電デバイスの電極は、蓄電デバイスを組み立てる前に、予め電極にアルカリ金属イオンをドープしていることが好ましい。あるいは、蓄電デバイスの電極の対極にアルカリ金属イオンをドープしていることが好ましい。 It is preferable that the electrodes of the electricity storage device are doped with alkali metal ions in advance before the electricity storage device is assembled. Alternatively, it is preferable that the counter electrode of the electricity storage device be doped with an alkali metal ion.

アルカリ金属イオンのドープ方法としては、電極にアルカリ金属をドーピングできれば特に限定されないが、例えば、非特許文献(坂本太地ら、「リチウム二次電池部材の測定・分析データ集」技術情報協会出版,第30節, pp.200~205)に記載されているような、(1)電気化学的ドーピング、(2)リチウム金属箔の貼り付けドーピング、(3)高速遊星ミルを用いたメカニカルリチウムドーピング、などが挙げられる。 The method of doping with alkali metal ions is not particularly limited as long as the electrode can be doped with alkali metals, but for example, non-patent literature (Taiji Sakamoto et al., "Measurement and analysis data collection of lithium secondary battery parts" published by Technical Information Association, (1) electrochemical doping, (2) adhesion doping of lithium metal foil, (3) mechanical lithium doping using a high-speed planetary mill, as described in Section 30, pp. 200-205); Examples include.

本開示の蓄電デバイスの電極を正極として用いる場合、対極(負極)は、蓄電デバイスに用いられる負極として用いられる電極であれば特に限定されない。例えば、Li、Na、K、C、Mg、Al、Si、P、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb、及びBiよりなる群から選ばれた少なくとも一種以上の元素;これらの元素が含まれる合金;これらの元素の酸化物、硫化物、及びハロゲン化物;有機化合物の硫黄変性化合物などの硫黄系有機材料;などの材料(言い換えれば、負極材料)を含む電極が挙げられる。なお、これらの材料は1種単独であってもよく、2種以上を併用してもよい。 When using the electrode of the electricity storage device of the present disclosure as a positive electrode, the counter electrode (negative electrode) is not particularly limited as long as it is an electrode used as a negative electrode used in the electricity storage device. For example, Li, Na, K, C, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, At least one element selected from the group consisting of Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, W, Pb, and Bi; alloys containing these elements; oxides of these elements; Examples include electrodes containing materials (in other words, negative electrode materials) such as sulfides and halides; sulfur-based organic materials such as sulfur-modified organic compounds; Note that these materials may be used alone or in combination of two or more.

本開示の蓄電デバイスの電極を負極として用いる場合、対極(正極)としては、蓄電デバイスに用いられる正極として用いられる電極であれば特に限定されない。例えば、ACoO、ANiO、AMnO、ANi0.33Mn0.33Co0.33、ANi0.5Mn0.3Co0.2、ANi0.6Mn0.2Co0.2、ANi0.8Mn0.1Co0.1、AMn、ANi0.5Mn1.5、AFePO、AFe0.5Mn0.5PO、AMnPO、ACoPO、ANiPO、A(PO、AV、AVO、ANb、ANbO、AFeO、AMgO、ACaO、ATiO、ACrO、ARuO、ACuO、AZnO、AMoO、ATaO又はAWO等のアルカリ金属元素-遷移金属酸化物を含む公知の電極が用いられる。これらのアルカリ金属元素-遷移金属酸化物は1種単独であってもよく、2種以上を併用してもよい。ここで、Aはアルカリ金属元素を示し、Aとしては、例えば、Li、Na、又はKが挙げられる。以下、同じである。 When using the electrode of the electricity storage device of the present disclosure as a negative electrode, the counter electrode (positive electrode) is not particularly limited as long as it is an electrode used as a positive electrode used in the electricity storage device. For example, ACoO 2 , ANiO 2 , AMnO 2 , ANi 0.33 Mn 0.33 Co 0.33 O 2 , ANi 0.5 Mn 0.3 Co 0.2 O 2 , ANi 0.6 Mn 0.2 Co 0.2 O 2 , ANi 0.8 Mn 0.1 Co 0.1 O 2 , AMn 2 O 4 , ANi 0.5 Mn 1.5 O 4 , AFePO 4 , AFe 0.5 Mn 0.5 PO 4 , AMnPO4 , ACoPO4 , ANiPO4, A3V2 ( PO4 ) 3 , AV2O5 , AVO2 , ANb2O5 , ANbO2 , AFeO2 , AMgO2 , ACaO2 , ATiO2 , ACrO2 , ARuO 2 , ACuO 2 , AZnO 2 , AMoO 2 , ATaO 2 or AWO 2 , and other known electrodes containing an alkali metal element-transition metal oxide are used. These alkali metal element-transition metal oxides may be used alone or in combination of two or more. Here, A represents an alkali metal element, and examples of A include Li, Na, or K. The same applies below.

また、この電池に用いる電解質は、正極から負極、又は負極から正極にアルカリ金属イオンを移動させることのできる液体又は固体であればよい。すなわち、公知の非水電解質を用いた蓄電デバイスに用いられる電解質と同じものが使用可能である。例えば、電解液、ゲル電解質、固体電解質、イオン性液体、溶融塩などが挙げられる。ここで、電解液とは、電解質が溶媒に溶けた状態のものをいう。 Further, the electrolyte used in this battery may be any liquid or solid that can move alkali metal ions from the positive electrode to the negative electrode or from the negative electrode to the positive electrode. That is, the same electrolyte as used in power storage devices using known non-aqueous electrolytes can be used. Examples include electrolytes, gel electrolytes, solid electrolytes, ionic liquids, and molten salts. Here, the electrolytic solution refers to a state in which an electrolyte is dissolved in a solvent.

電解液は、溶媒に支持塩を溶解することにより得られる。電解液の溶媒としては、特に限定されないが、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネートのような環状カーボネート系;テトラヒドロフランなどのエーテル系;ヘキサンなどの炭化水素系;及びγ-ブチルラクトンなどのラクトン系などを用いることができる。このうち、放電レート特性の観点から、EC又はPCなどの環状カーボネート系電解液が好ましい。放電レートとは、公称容量値の容量を有するセルを定電流放電して、1時間で完全放電となる電流値を「1C率」とすることを基準とした指標であり、例えば、5時間で完全放電となる電流値は「0.2C率」、10時間で完全放電となる電流値は「0.1C率」と表記される。一方、充電レートとは、公称容量値の容量を有するセルを定電流充電して、1時間で満充電となる電流値を「1C率」とすることを基準とした指標であり、例えば、1分で満充電となる電流値は「60C率」、6分で満充電となる電流値は「10C率」、5時間で満充電となる電流値は「0.2C率」、10時間で満充電となる電流値は「0.1C率」と表記される。 The electrolytic solution is obtained by dissolving a supporting salt in a solvent. The solvent for the electrolytic solution is not particularly limited, but includes cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate; ethers such as tetrahydrofuran; hydrocarbons such as hexane; and γ-butyl. Lactones such as lactones can be used. Among these, a cyclic carbonate electrolyte such as EC or PC is preferred from the viewpoint of discharge rate characteristics. The discharge rate is an index based on the "1C rate", which is the current value at which a cell with a nominal capacity is discharged at a constant current and is completely discharged in one hour. The current value at which a complete discharge occurs is expressed as a "0.2C rate," and the current value at which a complete discharge occurs in 10 hours is expressed as a "0.1C rate." On the other hand, the charging rate is an index based on the current value at which a cell having a nominal capacity is charged at a constant current and is fully charged in one hour as the "1C rate". The current value for full charge in minutes is "60C rate", the current value for full charge in 6 minutes is "10C rate", the current value for full charge in 5 hours is "0.2C rate", and the current value for full charge in 10 hours is "0.2C rate". The current value for charging is expressed as "0.1C rate".

通常、ECは常温では固体であるため、EC単独では電解液としての機能を果たさない。しかし、PC、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などと混合して得られる混合溶媒とすることで、常温でも使用可能な電解液として機能する。 Since EC is usually solid at room temperature, EC alone does not function as an electrolyte. However, by creating a mixed solvent obtained by mixing PC, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc., it functions as an electrolytic solution that can be used even at room temperature.

このような混合溶媒としては、EC(エチレンカーボネート)-DEC(ジエチレンカーボネート)、EC-DMC(ジメチルカーボネート)、EC-PCが好適に用いられ、特にEC-DECやEC-PCが好適に用いられる。 As such a mixed solvent, EC (ethylene carbonate)-DEC (diethylene carbonate), EC-DMC (dimethyl carbonate), and EC-PC are preferably used, and EC-DEC and EC-PC are particularly preferably used. .

電解液の支持塩としては、特に限定されないが、蓄電デバイスに一般的に使用される塩を用いることができる。例えば、APF、ABF、AClO、ATiF、AVF、AAsF、ASbF、ACFSO、A(CSON、AB(C、AB10Cl10、AB12Cl12、ACFCOO、A、ANO、ASO、APF(C、AB(C、及びA(CFSOCなどの塩を用いることができる。なお、上記塩のうち1種単独で用いてもよく、2種以上を組み合わせてもよい。 The supporting salt for the electrolytic solution is not particularly limited, but salts commonly used in power storage devices can be used. For example, APF 6 , ABF 4 , AClO 4 , ATiF 4 , AVF 5 , AAsF 6 , ASbF 6 , ACF 3 SO 3 , A(C 2 F 5 SO 2 ) 2 N, AB(C 2 O 4 ) 2 , AB 10 Cl 10 , AB 12 Cl 12 , ACF 3 COO, A 2 S 2 O 4 , ANO 3 , A 2 SO 4 , APF 3 (C 2 F 5 ) 3 , AB(C 6 F 5 ) 4 , and A( Salts such as CF 3 SO 2 ) 3 C can be used. Note that one type of the above salts may be used alone, or two or more types may be used in combination.

このうち、アルカリ金属元素-六フッ化リン酸化合物(APF)が好適に用いられる。APFを塩として用いることで、正極の放電容量とサイクル寿命を改善し、負極のサイクル寿命を改善する効果が高まる。また、電解液の濃度(溶媒中の塩の濃度)は、特に限定されないが、0.1~3mol/Lであることが好ましく、0.8~2mol/Lであることが更に好ましい。 Among these, an alkali metal element-hexafluorophosphate compound (APF 6 ) is preferably used. By using APF 6 as a salt, the effect of improving the discharge capacity and cycle life of the positive electrode and the cycle life of the negative electrode is enhanced. Further, the concentration of the electrolytic solution (concentration of the salt in the solvent) is not particularly limited, but is preferably 0.1 to 3 mol/L, more preferably 0.8 to 2 mol/L.

蓄電デバイスの構造としては、特に限定されないが、積層式、捲回式などの既存の形態・構造を採用できる。すなわち、正極と負極とがセパレータを介して対向して積層又は捲回された電極群を、電解液内に浸漬した状態で密閉化され、蓄電デバイスとなる。あるいは、正極と負極とが固体電解質を介して対向して積層又は捲回された電極群を密閉化して蓄電デバイスとなる。 The structure of the power storage device is not particularly limited, but existing forms and structures such as a stacked type and a wound type can be adopted. That is, an electrode group in which a positive electrode and a negative electrode are stacked or wound facing each other with a separator interposed therebetween is immersed in an electrolytic solution and hermetically sealed to form a power storage device. Alternatively, an electrode group in which a positive electrode and a negative electrode are stacked or wound facing each other with a solid electrolyte interposed therebetween is hermetically sealed to form a power storage device.

[電気機器]
本開示の蓄電デバイスの電極材料を用いた蓄電デバイス(特に、リチウムイオン電池又はリチウムイオンキャパシタ)は、高容量で高出力であることから、例えば、エアコン、洗濯機、テレビ、冷蔵庫、冷凍庫、冷房機器、ノートパソコン、タブレット、スマートフォン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、CRTモニター、パソコンラック、プリンター、一体型パソコン、マウス、ハードディスク、パソコン周辺機器、アイロン、衣類乾燥機、ウインドウファン、トランシーバー、送風機、換気扇、テレビ、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、洗浄機能付便座、温風ヒーター、カーコンポ、カーナビ、懐中電灯、加湿器、携帯カラオケ機、換気扇、乾燥機、空気清浄器、携帯電話、非常用電灯、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、除湿器、食器乾燥機、炊飯器、ステレオ、ストーブ、スピーカー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気カーペット、電気釜、炊飯器、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電子レンジ、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、エアサーキュレーター、電撃殺虫器、複写機、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ビデオカメラ、ビデオデッキ、ファクシミリ、ファンヒーター、フードプロセッサー、布団乾燥機、ヘッドホン、電気ポット、ホットカーペット、マイク、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、床暖房パネル、ランタン、リモコン、冷温庫、冷水器、冷凍ストッカー、冷風器、ワープロ、泡だて器、GPS、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき、自転車、自動二輪、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、鉄道、船、飛行機、潜水艇、航空機、人工衛星、及び非常用電源システムなど様々な電気機器の電源として利用することができる。
[Electrical equipment]
Since the power storage device (especially lithium ion battery or lithium ion capacitor) using the electrode material of the power storage device of the present disclosure has high capacity and high output, it can be used, for example, in air conditioners, washing machines, televisions, refrigerators, freezers, and air conditioners. Equipment, notebook computers, tablets, smartphones, computer keyboards, computer displays, desktop computers, CRT monitors, computer racks, printers, all-in-one computers, mice, hard disks, computer peripherals, irons, clothes dryers, window fans, transceivers , blowers, ventilation fans, televisions, music recorders, music players, ovens, microwaves, toilet seats with cleaning functions, hot air heaters, car components, car navigation systems, flashlights, humidifiers, portable karaoke machines, ventilation fans, dryers, air purifiers, mobile phones Telephones, emergency lights, game consoles, blood pressure monitors, coffee mills, coffee makers, kotatsu, copy machines, disc changers, radios, shavers, juicers, shredders, water purifiers, lighting equipment, dehumidifiers, dish dryers, rice cookers, Stereos, stoves, speakers, trouser presses, vacuum cleaners, body fat scales, weight scales, health meters, movie players, electric carpets, electric kettles, rice cookers, electric razors, desk lamps, electric kettles, electronic game consoles, portable game consoles , electronic dictionaries, electronic notebooks, microwave ovens, induction cookers, calculators, electric carts, electric wheelchairs, power tools, electric toothbrushes, foot massagers, haircuts, telephones, watches, intercoms, air circulators, electric insect killers, photocopiers, Hot plate, toaster, hair dryer, electric drill, water heater, panel heater, crusher, soldering iron, video camera, VCR, facsimile, fan heater, food processor, futon dryer, headphones, electric kettle, hot carpet, microphone , massage machines, mini light bulbs, mixers, sewing machines, mochi making machines, floor heating panels, lanterns, remote controls, refrigerators, water coolers, frozen stockers, air coolers, word processors, whisks, GPS, electronic musical instruments, motorcycles, toys. , lawn mowers, floats, bicycles, motorcycles, automobiles, hybrid vehicles, plug-in hybrid vehicles, electric vehicles, trains, ships, airplanes, submarines, aircraft, satellites, and emergency power systems. It can be used as a power source.

以下、実施例について説明するが、本発明はこの実施例に限定されるものではない。本開示の電極としては、蓄電デバイスの電極であるが、本実施例においては、後述のとおり、リチウムイオン電池を作製し、試験を行っている。リチウムイオンキャパシタは、主に対極の動作が異なる以外はリチウムイオン電池と同様にして作製できる。具体的には、例えば、正極として、従来のリチウムイオンキャパシタ用正極を、負極として、本開示の電極を用いる以外は、後述の電池と同様にして作製できる。リチウムイオン電池以外のアルカリ金属イオン電池は、主にリチウムイオン電池の電荷担体であるLiをNaやKに置き換えた以外はリチウムイオン電池と同様にして作製できる。具体的には、例えば、ナトリウムイオン電池では、正極として、従来のナトリウムイオン電池用正極を、負極として、本開示の電極を、電解液としてナトリウム支持塩を用いる以外は、後述の電池と同様にして作製できる。その他のアルカリ金属イオンも同様である。 Examples will be described below, but the present invention is not limited to these examples. The electrode of the present disclosure is an electrode of a power storage device, but in this example, a lithium ion battery was manufactured and tested as described below. Lithium ion capacitors can be manufactured in the same manner as lithium ion batteries, except that the operation of the counter electrode is different. Specifically, for example, it can be produced in the same manner as the battery described below, except that the conventional positive electrode for lithium ion capacitors is used as the positive electrode and the electrode of the present disclosure is used as the negative electrode. Alkali metal ion batteries other than lithium ion batteries can be produced in the same manner as lithium ion batteries, except that Li, which is a charge carrier in lithium ion batteries, is replaced with Na or K. Specifically, for example, in a sodium ion battery, a conventional positive electrode for sodium ion batteries is used as the positive electrode, the electrode of the present disclosure is used as the negative electrode, and a sodium supporting salt is used as the electrolyte. It can be made by The same applies to other alkali metal ions.

本開示の電極をリチウムイオンキャパシタの電極として用いる場合、その対極として、例えば、活性炭と、バインダと導電助剤からなるスラリーをアルミニウム箔に塗工し、熱処理することで製造された電極を用いることができる。 When the electrode of the present disclosure is used as an electrode of a lithium ion capacitor, an electrode manufactured by, for example, applying a slurry consisting of activated carbon, a binder, and a conductive additive to aluminum foil and heat-treating the same can be used as the counter electrode. Can be done.

かかるリチウムイオンキャパシタの活性炭は、微細な多孔が無数に形成され、比表面積の大きな炭素材料が好ましい。一般的な活性炭の製造方法としては、石油コークスなどの炭素材料と水酸化カリウムなどのアルカリ金属化合物とを非酸素雰囲気中で、600~1500℃で加熱し、アルカリ金属を黒鉛結晶層間に侵入させて反応させる賦活することで得られる。当該活性炭粒子のメディアン径(D50)は、0.5~30μmであることが好ましい。 The activated carbon for such a lithium ion capacitor is preferably a carbon material in which countless fine pores are formed and a large specific surface area. A typical method for manufacturing activated carbon is to heat a carbon material such as petroleum coke and an alkali metal compound such as potassium hydroxide at 600 to 1,500°C in a non-oxygen atmosphere to allow the alkali metal to penetrate between graphite crystal layers. It can be obtained by activating the reaction. The median diameter (D50) of the activated carbon particles is preferably 0.5 to 30 μm.

[比較例1]
(1)電極材料の合成
硫黄とポリアクリロニトリルを、硫黄:ポリアクリルニトリル=1:5の質量比で混合し、得られた混合物を350℃で5時間加熱した。加熱終了後、撹拌擂潰機を用いて、粉砕し、325メッシュ(目開き45μm)のふるいで分級した。分級後、窒素ガス雰囲気、300℃で5時間加熱し、脱硫黄処理を行い、硫黄変性化合物の粉末(S-PAN)を得た。なお、得られた粉末のメディアン径(D50)は、36.3μmであった。この値は、後述の図3に示すデータに基づき得られたものである。
[Comparative example 1]
(1) Synthesis of electrode material Sulfur and polyacrylonitrile were mixed at a mass ratio of sulfur: polyacrylonitrile = 1:5, and the resulting mixture was heated at 350° C. for 5 hours. After heating, the mixture was pulverized using a stirring grinder and classified using a 325-mesh (opening 45 μm) sieve. After classification, the mixture was heated at 300° C. for 5 hours in a nitrogen gas atmosphere to perform a desulfurization treatment to obtain a sulfur-modified compound powder (S-PAN). Note that the median diameter (D50) of the obtained powder was 36.3 μm. This value was obtained based on data shown in FIG. 3, which will be described later.

(水への分散性評価)
得られた粉末を、当該粉末に対し100倍質量の水が入った硝子ビンに入れ、蓋を閉めて、1分程度よく振った。よく振った直後の写真を図2に、結果は表1に示す。
(Evaluation of dispersibility in water)
The obtained powder was placed in a glass bottle containing water 100 times the weight of the powder, the lid was closed, and the bottle was shaken well for about 1 minute. A photograph immediately after shaking is shown in FIG. 2, and the results are shown in Table 1.

(体積基準粒度分布)
得られた粉末について、水を分散媒体としてレーザー回折・散乱式による体積基準粒度分布を測定した。測定装置は、HORIBA製「LA-960」を用いた。波長650nm及び405nmのレーザー光を用いて測定した。結果は、図3に示す。
(Volume-based particle size distribution)
The volume-based particle size distribution of the obtained powder was measured using a laser diffraction/scattering method using water as a dispersion medium. The measuring device used was "LA-960" manufactured by HORIBA. Measurement was performed using laser beams with wavelengths of 650 nm and 405 nm. The results are shown in Figure 3.

(2)試験電極の作製
得られた硫黄変性化合物の粉末、アセチレンブラック(AB)、気相成長炭素繊維(VGCF)、及びアクリル系樹脂バインダを、硫黄変性化合物の粉末:アセチレンブラック(AB):気相成長炭素繊維(VGCF):アクリル系樹脂バインダ=82:3:8:7質量%の比率で、水に十分に分散するまで自公式ミキサー(2000rpm、40分間)で混練し、スラリー化(固形比:35%)した。得られたスラリーを集電体として厚み20μmのアルミニウム箔上に塗工し、160℃で12時間の減圧乾燥処理することで試験電極を得た。硫黄変性化合物の粉末は活物質として用いた。後述のとおり、得られた試験電極は正極として用い、正極の片面の単位面積当たりの正極容量が1mAh/cmとなるようにスラリーの塗布量を調整した。
(2) Preparation of test electrode The obtained sulfur-modified compound powder, acetylene black (AB), vapor grown carbon fiber (VGCF), and acrylic resin binder were mixed into sulfur-modified compound powder: acetylene black (AB): Vapor grown carbon fiber (VGCF): acrylic resin binder = 82:3:8:7 mass% ratio was kneaded in a private mixer (2000 rpm, 40 minutes) until fully dispersed in water, and slurried ( Solid ratio: 35%). The obtained slurry was applied as a current collector onto an aluminum foil having a thickness of 20 μm, and a test electrode was obtained by drying under reduced pressure at 160° C. for 12 hours. Powder of sulfur-modified compound was used as the active material. As described below, the obtained test electrode was used as a positive electrode, and the amount of slurry applied was adjusted so that the positive electrode capacity per unit area of one side of the positive electrode was 1 mAh/cm 2 .

(3)電池の作製
得られた試験電極を正極として用いた電池を作製し、充放電試験Aを行った。詳細は以下のとおりである。充放電試験のため、正極として得られた試験電極;セパレータとしてガラスフィルター(ADVANTEC社製、GA-100 GLASS FIBER FILTER);負極として金属リチウム;電解液として1M LiPF(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=50:50vol%溶液)を具備したCR2032コインセルを作製した。
(3) Production of battery A battery was produced using the obtained test electrode as a positive electrode, and a charge/discharge test A was conducted. Details are as follows. For the charge/discharge test, a test electrode obtained as a positive electrode; a glass filter (manufactured by ADVANTEC, GA-100 GLASS FIBER FILTER) as a separator; metallic lithium as a negative electrode; 1M LiPF 6 (ethylene carbonate (EC): diethyl) as an electrolyte A CR2032 coin cell containing carbonate (DEC) (50:50 vol% solution) was prepared.

(充放電試験A)
得られた電池について、充放電試験を行った。充放電試験Aの条件としては、環境温度30℃、カットオフ電位1.0~3.0V(vs.Li/Li)、充放電電流レート0.2C率とした。充放電曲線を図4に示す。これにより、電極のサイクル寿命特性が分かる。また、放電容量の結果は表1に示す。
(Charge/discharge test A)
A charge/discharge test was conducted on the obtained battery. The conditions for charge/discharge test A were an environmental temperature of 30° C., a cutoff potential of 1.0 to 3.0 V (vs. Li/Li + ), and a charge/discharge current rate of 0.2C. The charge-discharge curve is shown in Figure 4. This gives an idea of the cycle life characteristics of the electrode. Further, the results of discharge capacity are shown in Table 1.

(充放電試験B)
得られた電池について、充放電試験を行った。充放電試験Bの条件としては、環境温度30℃、カットオフ電位1.0~3.0V(vs.Li/Li)、充放電電流レート0.2C率とした。「初回放電容量(mAh/g)」に対する、充電と放電を100サイクル繰り返した後の放電容量(mAh/g)の割合を「容量保持率(%)」として求め、これにより電極のサイクル寿命特性を評価した。結果は表2に示す。サイクル寿命特性の評価基準は次の通りである。放電容量保持率90%以上:〇、90%以下:×
(Charge/discharge test B)
A charge/discharge test was conducted on the obtained battery. The conditions for charge/discharge test B were an environmental temperature of 30° C., a cutoff potential of 1.0 to 3.0 V (vs. Li/Li + ), and a charge/discharge current rate of 0.2C. The ratio of the discharge capacity (mAh/g) after 100 cycles of charging and discharging to the "initial discharge capacity (mAh/g)" is calculated as the "capacity retention rate (%)", and this is used to determine the cycle life characteristics of the electrode. was evaluated. The results are shown in Table 2. The evaluation criteria for cycle life characteristics are as follows. Discharge capacity retention rate 90% or more: ○, 90% or less: ×

(高温放置試験)
得られた試験電極を用いたラミネートセルを作製し、そのラミネートセルについて、高温放置試験を行った。詳細は以下のとおりである。正極として得られた試験電極;セパレータとしてポリプロピレン微多孔膜(厚み20μm);負極として電気化学的に不可逆容量をキャンセルしたSiO;電解液として1M LiPF(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=50:50vol%)を具備したラミネートセルを作製した。作製したラミネートセルを0.1C率で3.0Vまで充電した後、60℃環境下で1週間放置した。結果は表1に示す。
(High temperature storage test)
A laminate cell was produced using the obtained test electrode, and a high temperature storage test was conducted on the laminate cell. Details are as follows. Test electrode obtained as a positive electrode; polypropylene microporous membrane (thickness 20 μm) as a separator; SiO whose irreversible capacity was electrochemically canceled as a negative electrode; 1M LiPF 6 (ethylene carbonate (EC): diethyl carbonate (DEC)) as an electrolyte. = 50:50vol%) was produced. After charging the produced laminate cell to 3.0V at a rate of 0.1C, it was left for one week in a 60°C environment. The results are shown in Table 1.

[参考例1]
硫黄変性化合物の粉末として、以下の方法で得られた硫黄変性セルロースナノファイバー粉末を用いた以外は、比較例1と同様にして、電池を作製し、充放電試験Aを行った。結果は表1に示す。
[Reference example 1]
A battery was produced in the same manner as in Comparative Example 1, except that sulfur-modified cellulose nanofiber powder obtained by the following method was used as the sulfur-modified compound powder, and charge-discharge test A was conducted. The results are shown in Table 1.

CeNF(製品名:レオクリスタI-2SX、第一工業製薬(株)製)と硫黄を、CeNF:硫黄=1:5の質量比で混合したものを用い、これを350℃で5時間加熱し、粉砕後、325メッシュ(目開き45μm)のふるいで分級し、硫黄変性セルロースナノファイバー粉末を得た。 Using a mixture of CeNF (product name: LeoCrysta I-2SX, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and sulfur at a mass ratio of CeNF:sulfur = 1:5, this was heated at 350 ° C. for 5 hours, After pulverization, it was classified using a 325 mesh (opening 45 μm) sieve to obtain sulfur-modified cellulose nanofiber powder.

[実施例1]
硫黄変性化合物の粉末として、以下の方法で得られた複合粉末を用いた以外は、比較例1と同様にして、電池を作製した。電池を作製するまでの工程で得られた、複合粉末の水への分散性評価、電池の充放電試験A、及び電極を用いて高温放置試験を行った。結果は表1、図2、図3及び図5に示す。
[Example 1]
A battery was produced in the same manner as Comparative Example 1, except that a composite powder obtained by the following method was used as the sulfur-modified compound powder. Evaluation of the dispersibility of the composite powder in water obtained in the process up to battery production, battery charge/discharge test A, and high temperature storage test were conducted using the electrodes. The results are shown in Table 1, FIG. 2, FIG. 3, and FIG. 5.

比較例1で得られた硫黄変性ポリアクリロニトリル粉末、セルロースナノファイバー(CeNF(製品名:レオクリスタI-2SX、第一工業製薬(株)製))、及び硫黄を、硫黄変性ポリアクリロニトリル粉末:セルロースナノファイバー(CeNF):硫黄=94:1:5の質量比で混合し、得られた混合物を350℃で5時間加熱した。加熱終了後、撹拌擂潰機で粉砕し、325メッシュ(目開き45μm)のふるいで分級し、硫黄変性ポリアクリロニトリル粉末の表面に硫黄変性セルロースが担持又は被覆された複合粉末(S-CeNF+S-PAN)を得た。得られた粉末のメディアン径(D50)は、14.2μmであった。この値は、図3に示すデータに基づき得られたものである。 The sulfur-modified polyacrylonitrile powder obtained in Comparative Example 1, cellulose nanofiber (CeNF (product name: LeoCrysta I-2SX, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)), and sulfur were added to the sulfur-modified polyacrylonitrile powder: cellulose nano The fibers (CeNF) and sulfur were mixed at a mass ratio of 94:1:5, and the resulting mixture was heated at 350° C. for 5 hours. After heating, it was crushed with a stirrer and crushed, and classified with a 325 mesh (opening 45 μm) sieve to obtain a composite powder (S-CeNF+S-PAN) in which sulfur-modified polyacrylonitrile powder was supported or coated with sulfur-modified cellulose on the surface. ) was obtained. The median diameter (D50) of the obtained powder was 14.2 μm. This value was obtained based on the data shown in FIG.

Figure 0007449527000001
Figure 0007449527000001

[実施例2]
硫黄変性化合物の粉末として、以下の方法で得られた複合粉末を用いた以外は、比較例1と同様にして、電池を作製した。電池を作製するまでの工程で得られた、複合粉末について「水への分散性評価」、電池について「充放電試験B」及び電極を用いて「高温放置試験」を行った。結果は表2に示す。
[Example 2]
A battery was produced in the same manner as Comparative Example 1, except that a composite powder obtained by the following method was used as the sulfur-modified compound powder. "Evaluation of dispersibility in water" was performed on the composite powder obtained in the process up to the production of the battery, "Charge/Discharge Test B" was conducted on the battery, and "High Temperature Storage Test" was conducted using the electrode. The results are shown in Table 2.

ポリアクリロニトリル、セルロース材料B1として、カルボキシメチルセルロースナトリウム塩(CMC-Na(製品名:セロゲン7A、第一工業製薬(株)製))及び硫黄を、ポリアクリロニトリル:B1:硫黄=99:1:20の質量比で混合し、得られた混合物を350℃で5時間加熱した。加熱終了後、撹拌擂潰機で粉砕し、325メッシュ(目開き45μm)のふるいで分級し、硫黄変性ポリアクリロニトリル粉末の表面に硫黄変性セルロースが担持、被覆又は露出された複合粉末(S-PAN+S-Cel)を得た。 As polyacrylonitrile and cellulose material B1, carboxymethylcellulose sodium salt (CMC-Na (product name: Celogen 7A, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)) and sulfur were added in a ratio of polyacrylonitrile:B1:sulfur=99:1:20. They were mixed in mass ratio and the resulting mixture was heated at 350° C. for 5 hours. After heating, the powder was crushed using a stirrer and crushed, and then classified using a 325-mesh (opening 45 μm) sieve to obtain a composite powder (S-PAN+S) in which sulfur-modified cellulose was supported, coated, or exposed on the surface of sulfur-modified polyacrylonitrile powder. -Cel) was obtained.

[実施例3]
セルロース材料B1に換えて、セルロース材料B2として、TEMPO酸化セルロースナノファイバーのNa塩(製品名:レオクリスタI-2SX、第一工業製薬(株)製)を用い、B2をポリアクリロニトリルと混合後、乾燥して得られた粉末と硫黄とを、当該粉末:硫黄=100(この内、ポリアクリルニトリルが99、B2が1):20の質量比で混合した以外は、実施例2と同様の手法で硫黄変性ポリアクリロニトリル粉末の表面に硫黄変性セルロースが担持、被覆又は露出された複合粉末を得た。電池を作製するまでの工程で得られた、複合粉末について「水への分散性評価」、電池について「充放電試験B」及び電極を用いて「高温放置試験」を行った。結果は表2に示す。
[Example 3]
Instead of cellulose material B1, Na salt of TEMPO oxidized cellulose nanofiber (product name: RheoCrysta I-2SX, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used as cellulose material B2, and B2 was mixed with polyacrylonitrile and then dried. The obtained powder and sulfur were mixed in the same manner as in Example 2, except that the powder: sulfur = 100 (including 99 polyacrylonitrile and 1 B2): 20 mass ratio. A composite powder was obtained in which sulfur-modified cellulose was supported, coated, or exposed on the surface of sulfur-modified polyacrylonitrile powder. "Evaluation of dispersibility in water" was performed on the composite powder obtained in the process up to the production of the battery, "Charge/Discharge Test B" was conducted on the battery, and "High Temperature Storage Test" was conducted using the electrode. The results are shown in Table 2.

[実施例4]
セルロース材料B2に換えて、セルロース材料B3として、以下の合成例1のスルホン酸変性セルロースナノファイバーNa塩を用いた以外は、実施例3と同様の手法で硫黄変性ポリアクリロニトリル粉末の表面に硫黄変性セルロースが担持、被覆又は露出された複合粉末を得た。電池を作製するまでの工程で得られた、複合粉末について「水への分散性評価」、電池について「充放電試験B」及び電極を用いて「高温放置試験」を行った。結果は表2に示す。
[Example 4]
The surface of sulfur-modified polyacrylonitrile powder was sulfur-modified in the same manner as in Example 3, except that the following sulfonic acid-modified cellulose nanofiber Na salt of Synthesis Example 1 was used as cellulose material B3 instead of cellulose material B2. A composite powder in which cellulose was supported, coated, or exposed was obtained. "Evaluation of dispersibility in water" was performed on the composite powder obtained in the process up to the production of the battery, "Charge/Discharge Test B" was conducted on the battery, and "High Temperature Storage Test" was conducted using the electrode. The results are shown in Table 2.

(合成例1)
平均粒子径が45μmの微小結晶セルロース(日本製紙株式会社製「KCフロックW-50」)10gをガラス製セパラブルフラスコ内で200mLの蒸留水に懸濁させた。このセパラブルフラスコを氷浴中に置き、系中の温度を40℃以下に維持し攪拌しながら、硫酸の最終濃度が48質量%となるまで濃硫酸を徐々に加えた。次いで、この懸濁液を60℃の水浴に移して30分間攪拌を継続した後、粗製物を取り出し、8000rpmで10分間遠心分離を行った。この遠心分離操作により余剰の硫酸を除去し、残留物を蒸留水に再懸濁させ、遠心分離後、再び蒸留水を添加する操作を繰り返して洗浄と再懸濁を5回繰り返した。この操作で得られた残留物を蒸留水に懸濁させ、水酸化ナトリウムによりpHを8に調整した後、固形分濃度が5質量%となるように調製した。その後、得られたセルロース懸濁液を高圧ホモジナイザーを用いて圧力140MPaで1回処理してスルホン酸変性セルロースナノファイバーナトリウム塩を得た。
(Synthesis example 1)
10 g of microcrystalline cellulose ("KC Flock W-50" manufactured by Nippon Paper Industries Co., Ltd.) having an average particle size of 45 μm was suspended in 200 mL of distilled water in a separable glass flask. This separable flask was placed in an ice bath, and concentrated sulfuric acid was gradually added while stirring and maintaining the temperature in the system below 40° C. until the final concentration of sulfuric acid was 48% by mass. Next, this suspension was transferred to a 60° C. water bath and stirring was continued for 30 minutes, and then the crude product was taken out and centrifuged at 8000 rpm for 10 minutes. Excess sulfuric acid was removed by this centrifugation operation, the residue was resuspended in distilled water, and after centrifugation, the operation of adding distilled water again was repeated to repeat washing and resuspension five times. The residue obtained by this operation was suspended in distilled water, the pH was adjusted to 8 with sodium hydroxide, and the solid content concentration was adjusted to 5% by mass. Thereafter, the obtained cellulose suspension was treated once at a pressure of 140 MPa using a high-pressure homogenizer to obtain a sulfonic acid-modified cellulose nanofiber sodium salt.

[比較例2]
セルロース材料B2に換えて、セルロース材料B4として、TEMPO酸化セルロースナノファイバーのテトラブチルアンモニウム塩(第一工業製薬(株)製)を用いた以外は、実施例3と同様の手法で複合粉末を得た。電池を作製するまでの工程で得られた、複合粉末について「水への分散性評価」、電池について「充放電試験B」及び電極を用いて「高温放置試験」を行った。結果は表2に示す。
[Comparative example 2]
A composite powder was obtained in the same manner as in Example 3, except that TEMPO-oxidized cellulose nanofiber tetrabutylammonium salt (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as cellulose material B4 instead of cellulose material B2. Ta. "Evaluation of dispersibility in water" was performed on the composite powder obtained in the process up to the production of the battery, "Charge/Discharge Test B" was conducted on the battery, and "High Temperature Storage Test" was conducted using the electrode. The results are shown in Table 2.

[比較例3]
セルロース材料B1に換えて、セルロース材料B5として、未変性の針葉樹漂白クラフトパルプ(NBKP)を用いた以外は、実施例2と同様の手法で複合粉末を得た。電池を作製するまでの工程で得られた、複合粉末について「水への分散性評価」、電池について「充放電試験B」及び電極を用いて「高温放置試験」を行った。結果は表2に示す。
[Comparative example 3]
A composite powder was obtained in the same manner as in Example 2, except that unmodified softwood bleached kraft pulp (NBKP) was used as cellulose material B5 instead of cellulose material B1. "Evaluation of dispersibility in water" was performed on the composite powder obtained in the process up to the production of the battery, "Charge/Discharge Test B" was performed on the battery, and "High Temperature Storage Test" was performed using the electrode. The results are shown in Table 2.

Figure 0007449527000002
Figure 0007449527000002

図2と図3から明らかなように、実施例1(図2(b))は比較例1(図2(a))に対して優れた水分散性を示すことがわかる。比較例1の粉末は、実施例1の粉末に比べ大きな粒子径の値に幅が狭いピークを有し、実施例1の粉末は小さな粒子径の値に広いピークがあることから、実施例1の粉末が水中に十分に分散していることが分かる。また、表1から明らかなように、比較例1の電極は、1サイクルの674mAh/gから100サイクルの641mAh/gまで4.9%程度の放電容量の減少であるのに対し、実施例1の電極は、1サイクルの652mAh/gから100サイクルの620mAh/gまで4.9%程度の放電容量の減少であり、比較例1の電極と同程度の可逆容量とサイクル寿命特性を示した。参考例1の電極は、1サイクルの353mAh/gから100サイクルの287mAh/gまで19%程度の放電容量の減少であり、ある程度優れたサイクル寿命特性を有するものの、実施例1及び比較例1の600mAh/gを超える容量と比較して、特に電気容量が少ないことが示された。実施例1及び比較例1の電極を用いた電池には、目視による大きな変化は見られず、ガス発生による電池膨れは確認されなかった。 As is clear from FIGS. 2 and 3, it can be seen that Example 1 (FIG. 2(b)) exhibits superior water dispersibility to Comparative Example 1 (FIG. 2(a)). Compared to the powder of Example 1, the powder of Comparative Example 1 has a narrow peak at large particle size values, and the powder of Example 1 has a broad peak at small particle size values. It can be seen that the powder is well dispersed in the water. Furthermore, as is clear from Table 1, the discharge capacity of the electrode of Comparative Example 1 decreased by about 4.9% from 674 mAh/g for 1 cycle to 641 mAh/g for 100 cycles, whereas the electrode of Example 1 The electrode showed a decrease in discharge capacity of about 4.9% from 652 mAh/g for 1 cycle to 620 mAh/g for 100 cycles, and exhibited reversible capacity and cycle life characteristics comparable to those of the electrode of Comparative Example 1. The electrode of Reference Example 1 showed a decrease in discharge capacity of about 19% from 353 mAh/g at 1 cycle to 287 mAh/g at 100 cycles, and although it had somewhat excellent cycle life characteristics, it did not match those of Example 1 and Comparative Example 1. It was shown that the electrical capacity was particularly low compared to the capacity exceeding 600 mAh/g. No major changes were observed visually in the batteries using the electrodes of Example 1 and Comparative Example 1, and no battery swelling due to gas generation was observed.

実施例のサンプルはいずれも図2(b)のような良好な分散性を示したが、比較例のサンプルは図2(a)のようにほとんどの粉体が凝集して沈降し、分散性はみられなかった。表1、表2及び図2から明らかなように、実施例は比較例に対して優れた水分散性を示すことがわかる。 All of the samples of the examples showed good dispersibility as shown in Figure 2(b), but in the sample of the comparative example, most of the powder aggregated and settled as shown in Figure 2(a), resulting in poor dispersibility. was not seen. As is clear from Table 1, Table 2, and FIG. 2, it can be seen that the Examples exhibit superior water dispersibility compared to the Comparative Examples.

また、表2から明らかなように、実施例の電極は比較例1と比較し同程度の初回放電容量、及びサイクル寿命特性を示し、水分散性と優れた放電性能を両立していることを示す。一方、比較例2、3については、良好な初回放電容量を示したが水分散性、サイクル及び寿命特性が劣る結果となった。実施例及び比較例の電極を用いた電池には、目視による大きな変化は見られず、ガス発生による電池膨れは確認されなかった。 Furthermore, as is clear from Table 2, the electrode of the example exhibited similar initial discharge capacity and cycle life characteristics as compared to Comparative Example 1, demonstrating that it has both water dispersibility and excellent discharge performance. show. On the other hand, Comparative Examples 2 and 3 showed good initial discharge capacity, but had poor water dispersibility, cycle and life characteristics. In the batteries using the electrodes of Examples and Comparative Examples, no major changes were observed visually, and no battery swelling due to gas generation was observed.

(表面官能基の評価)
セルロース材料B1及び硫黄を、B1:硫黄=1:5の質量比で混合し、得られた混合物を350℃で5時間加熱した。加熱流量後、粉砕し、325メッシュ(目開き45μm)のふるいで分級し、硫黄変性セルロース粉末B’1を得た。硫黄変性セルロース粉末B’1について、KBrを用いたミクロ錠剤法によりIR測定を行った。結果は図6に示す。
(Evaluation of surface functional groups)
Cellulose material B1 and sulfur were mixed at a mass ratio of B1:sulfur=1:5, and the resulting mixture was heated at 350° C. for 5 hours. After heating and flowing, it was pulverized and classified using a 325 mesh (opening 45 μm) sieve to obtain sulfur-modified cellulose powder B'1. IR measurement was performed on the sulfur-modified cellulose powder B'1 by the micro-tablet method using KBr. The results are shown in Figure 6.

また、セルロース材料B1を、セルロース材料B2、B4及びB5に換え、同じ手順で、それぞれ硫黄変性セルロース粉末B’2、B’4、及びB’5を得て、KBrを用いたミクロ錠剤法によりIR測定を行った。結果は、それぞれ図7~図9に示す。 In addition, cellulose material B1 was replaced with cellulose materials B2, B4, and B5, and sulfur-modified cellulose powders B'2, B'4, and B'5 were obtained respectively by the same procedure, and by the micro-tablet method using KBr. IR measurement was performed. The results are shown in FIGS. 7 to 9, respectively.

図6~図9から明らかなように、実施例で用いたセルロース材料由来の硫黄変性セルロース粉末B’1、B’2はIRスペクトル評価にて、600~700cm-1付近に特性吸収を有し、SO基が存在していると言える。一方、比較例で用いたセルロース材料由来の硫黄変性セルロース粉末B’4及びB’5は600~700cm-1の領域に特性吸収を持たず、SO基を有していないと言える。 As is clear from FIGS. 6 to 9, the sulfur-modified cellulose powders B'1 and B'2 derived from cellulose materials used in the examples have a characteristic absorption in the vicinity of 600 to 700 cm -1 in the IR spectrum evaluation. , SO 3 groups are present. On the other hand, the sulfur-modified cellulose powders B'4 and B'5 derived from cellulose materials used in the comparative examples do not have characteristic absorption in the region of 600 to 700 cm −1 and can be said to have no SO 3 group.

さらに、表2に示すように、官能基としてSO基を少なくとも有する硫黄変性セルロースを用いる実施例は、官能基としてSO基を有しない硫黄変性セルロースと比較して、電極特性を低下させることなく、優れた分散性を有することが分かる。また、600~700cm-1付近の特性吸収と親水性とが良い相関を有するため、この領域に特性吸収を持つSO基の存在が、優れた分散性を発揮する理由となっていると言える。
Furthermore, as shown in Table 2, the examples using sulfur-modified cellulose having at least SO 3 groups as functional groups have lower electrode properties compared to sulfur-modified cellulose that does not have SO 3 groups as functional groups. It can be seen that it has excellent dispersibility. In addition, since there is a good correlation between the characteristic absorption in the vicinity of 600 to 700 cm -1 and hydrophilicity, it can be said that the presence of SO 3 groups with characteristic absorption in this region is the reason for the excellent dispersibility. .

Claims (18)

非水電解質を用いた蓄電デバイスの電極材料であって、
前記電極材料は、複合粉末を含み、
前記複合粉末を構成する1つの粒子中にA成分とB成分の両方が含まれ、前記粒子は、前記A成分の表面にB成分が担持、被覆又は露出された構造であり、
前記粒子が、前記A成分をマトリックスとし、前記マトリックス中に前記B成分が分散した状態で存在する粒子であり、
前記A成分が、アルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料からなり、
前記B成分が、官能基としてSO基を少なくとも有する硫黄変性セルロースであり、
前記A成分及び前記B成分の合計量100質量%に対し、前記B成分が0.01質量%以上である、非水電解質を用いた蓄電デバイスの電極材料。
An electrode material for a power storage device using a non-aqueous electrolyte,
The electrode material includes a composite powder,
Both A component and B component are contained in one particle constituting the composite powder, and the particle has a structure in which the B component is supported, coated, or exposed on the surface of the A component,
The particles are particles in which the A component is used as a matrix, and the B component is present in a dispersed state in the matrix,
The A component is made of a material capable of electrochemically occluding and releasing alkali metal ions,
The B component is a sulfur-modified cellulose having at least 3 SO groups as a functional group,
An electrode material for an electricity storage device using a non-aqueous electrolyte, wherein the B component is 0.01% by mass or more with respect to 100% by mass of the total amount of the A component and the B component.
前記硫黄変性セルロースが、最大繊維径1μm以下の硫黄変性セルロースナノファイバーである、請求項1に記載の蓄電デバイスの電極材料。 The electrode material for an electricity storage device according to claim 1, wherein the sulfur-modified cellulose is a sulfur-modified cellulose nanofiber having a maximum fiber diameter of 1 μm or less. 前記電極材料が、さらに導電材料を含有し、
前記A成分、前記B成分及び前記導電材料の合計量100質量%に対し、前記導電材料が0.1質量%以上30質量%以下である、請求項1又は2に記載の蓄電デバイスの電極材料。
The electrode material further contains a conductive material,
The electrode material for an electricity storage device according to claim 1 or 2, wherein the amount of the conductive material is 0.1% by mass or more and 30% by mass or less with respect to 100% by mass of the total amount of the A component, the B component, and the conductive material. .
前記A成分が、硫黄系有機材料である、請求項1~のいずれか1項に記載の蓄電デバイスの電極材料。 The electrode material for an electricity storage device according to any one of claims 1 to 3 , wherein the component A is a sulfur-based organic material. 前記A成分が、硫黄変性ポリアクリロニトリルである、請求項1~のいずれか1項に記載の蓄電デバイスの電極材料。 The electrode material for an electricity storage device according to any one of claims 1 to 4 , wherein the component A is sulfur-modified polyacrylonitrile. 前記複合粉末のメディアン径(D50)が0.1μm以上50μm以下である、請求項1~のいずれか1項に記載の蓄電デバイスの電極材料。 The electrode material for an electricity storage device according to any one of claims 1 to 5 , wherein the composite powder has a median diameter (D50) of 0.1 μm or more and 50 μm or less. 少なくとも、請求項1~のいずれか1項に記載の電極材料、バインダ及び集電体を有する、蓄電デバイスの電極。 An electrode for an electricity storage device, comprising at least the electrode material according to any one of claims 1 to 6 , a binder, and a current collector. 前記バインダが水系バインダである、請求項に記載の蓄電デバイスの電極。 The electrode for a power storage device according to claim 7 , wherein the binder is a water-based binder. 正極、負極、及び前記正極と前記負極との間に介在する電解質を備える蓄電デバイスであって、前記正極又は前記負極のうちいずれか一方が、請求項7又は8に記載の電極である、蓄電デバイス。 An electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode, wherein either the positive electrode or the negative electrode is the electrode according to claim 7 or 8 . device. 請求項に記載の蓄電デバイスを用いた電気機器。 An electrical device using the electricity storage device according to claim 9 . 電デバイスの電極材料の製造方法であって、
前記蓄電デバイスの電極材料は、
非水電解質を用いた蓄電デバイスの電極材料であって、
前記電極材料は、複合粉末を含み、
前記複合粉末を構成する1つの粒子中にA成分とB成分の両方が含まれ、前記粒子は、前記A成分の表面にB成分が担持、被覆又は露出された構造であり、
前記A成分が、アルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料からなり、
前記B成分が、官能基としてSO 基を少なくとも有する硫黄変性セルロースであり、
前記A成分及び前記B成分の合計量100質量%に対し、前記B成分が0.01質量%以上であり、
前記A成分又は前記A成分の前駆体と、前記B成分の前駆体と、硫黄とを接触させた状態で200℃以上800℃以下に加熱する工程を有し、
前記A成分がアルカリ金属イオンを電気化学的に吸蔵及び放出することが可能な材料であり、前記A成分の前駆体が有機材料であって、
前記B成分の前駆体がセルロース材料であり、前記セルロース材料がアルカリ金属塩又はアルカリ土類金属塩をなすアニオン性基を有する、蓄電デバイスの電極材料の製造方法。
A method for manufacturing an electrode material for a power storage device, the method comprising:
The electrode material of the electricity storage device is
An electrode material for a power storage device using a non-aqueous electrolyte,
The electrode material includes a composite powder,
Both A component and B component are contained in one particle constituting the composite powder, and the particle has a structure in which the B component is supported, coated, or exposed on the surface of the A component,
The A component is made of a material capable of electrochemically occluding and releasing alkali metal ions,
The B component is a sulfur-modified cellulose having at least 3 SO groups as a functional group,
The B component is 0.01% by mass or more with respect to 100% by mass of the total amount of the A component and the B component,
A step of heating the A component or a precursor of the A component, the B component precursor, and sulfur to a temperature of 200° C. or higher and 800° C. or lower while in contact with each other,
The A component is a material capable of electrochemically occluding and releasing alkali metal ions, and the precursor of the A component is an organic material,
A method for producing an electrode material for an electricity storage device, wherein the precursor of component B is a cellulose material, and the cellulose material has an anionic group forming an alkali metal salt or an alkaline earth metal salt.
前記粒子が、前記A成分をマトリックスとし、前記マトリックス中に前記B成分が分散した状態で存在する粒子である、請求項11に記載の蓄電デバイスの電極材料の製造方法。The method for manufacturing an electrode material for an electricity storage device according to claim 11, wherein the particles are particles in which the A component is used as a matrix and the B component is present in a dispersed state in the matrix. 前記A成分の前駆体、前記B成分の前駆体、又は前記A成分の前駆体及び前記B成分の前駆体が導電材料を含有する、請求項11又は12に記載の蓄電デバイスの電極材料の製造方法。 Production of an electrode material for an electricity storage device according to claim 11 or 12, wherein the precursor of component A, the precursor of component B, or the precursor of component A and the precursor of component B contain a conductive material. Method. 前記A成分の前駆体が、ポリアクリロニトリルである、請求項11~13のいずれか1項に記載の蓄電デバイスの電極材料の製造方法。 The method for producing an electrode material for a power storage device according to any one of claims 11 to 13 , wherein the precursor of component A is polyacrylonitrile. 前記加熱する工程の後、
さらに減圧又は不活性ガス雰囲気中、250℃以上に加熱する工程を有する、請求項11~14のいずれか1項に記載の蓄電デバイスの電極材料の製造方法。
After the heating step,
The method for producing an electrode material for a power storage device according to any one of claims 11 to 14, further comprising the step of heating to 250° C. or higher in a reduced pressure or inert gas atmosphere.
前記B成分の前駆体が、溶媒に分散又は溶解したセルロース材料である、請求項11~15のいずれか1項に記載の蓄電デバイスの電極材料の製造方法。 The method for producing an electrode material for an electricity storage device according to any one of claims 11 to 15, wherein the precursor of component B is a cellulose material dispersed or dissolved in a solvent. 前記セルロース材料が、カルボン酸アルカリ金属塩を官能基として有する、請求項11~16のいずれか1項に記載の蓄電デバイスの電極材料の製造方法。 The method for producing an electrode material for a power storage device according to any one of claims 11 to 16, wherein the cellulose material has an alkali metal carboxylic acid salt as a functional group. 前記セルロース材料が、最大繊維径1μm以下のセルロースナノファイバーである、請求項11~17のいずれか1項に記載の蓄電デバイスの電極材料の製造方法。
The method for producing an electrode material for a power storage device according to any one of claims 11 to 17, wherein the cellulose material is cellulose nanofibers having a maximum fiber diameter of 1 μm or less.
JP2019163004A 2018-10-01 2019-09-06 Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device Active JP7449527B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217006977A KR20210062628A (en) 2018-10-01 2019-09-30 Electrode materials for power storage devices, electrodes, power storage devices, electric devices, and methods of manufacturing electrode materials for power storage devices
PCT/JP2019/038446 WO2020071298A1 (en) 2018-10-01 2019-09-30 Electrode material for electrical storage device, electrode, electrical storage device, electrical equipment, and method for manufacturing electrode material for electrical storage device
CN201980059098.9A CN112673498B (en) 2018-10-01 2019-09-30 Electrode material for power storage device, electrode, power storage device, electrical apparatus, and method for manufacturing electrode material for power storage device
TW108135473A TW202030912A (en) 2018-10-01 2019-10-01 Electrode material for electrical storage device, electrode, electrical storage device, electrical equipment, and method for manufacturing electrode material for electrical storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018186889 2018-10-01
JP2018186889 2018-10-01

Publications (2)

Publication Number Publication Date
JP2020080301A JP2020080301A (en) 2020-05-28
JP7449527B2 true JP7449527B2 (en) 2024-03-14

Family

ID=70801909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163004A Active JP7449527B2 (en) 2018-10-01 2019-09-06 Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device

Country Status (4)

Country Link
JP (1) JP7449527B2 (en)
KR (1) KR20210062628A (en)
CN (1) CN112673498B (en)
TW (1) TW202030912A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909230A (en) * 2021-01-19 2021-06-04 江西科技师范大学 Electrode for absorbing composite tin elementary substance by using dunaliella salina and preparation method thereof
CN113096885B (en) * 2021-04-07 2022-09-09 佳雅(威海)新材料科技有限公司 Preparation method of low-resistance high-transparency conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114651A1 (en) 2011-02-25 2012-08-30 株式会社豊田自動織機 Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle
JP2015525437A5 (en) 2013-05-24 2016-03-10
JP2016513860A (en) 2013-03-05 2016-05-16 シオン・パワー・コーポレーション Electrochemical cells containing fibril materials such as fibril cellulose materials
JP2017218584A (en) 2016-06-02 2017-12-14 株式会社Adeka Production method of sulfur-modified polyacrylonitrile

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940436B2 (en) 2008-10-17 2015-01-27 National Institute Of Advanced Industrial Science And Technology Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP5358792B2 (en) 2008-12-26 2013-12-04 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile sheet, production method thereof and use thereof
WO2011074905A2 (en) * 2009-12-18 2011-06-23 주식회사 엘지화학 Macromolecular electrolyte membrane for a fuel cell, and a membrane electrode binder material and a fuel cell comprising the same
JP5164286B2 (en) 2010-11-02 2013-03-21 株式会社豊田自動織機 Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery
JP2012150933A (en) 2011-01-18 2012-08-09 Toyota Industries Corp Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
GB2502345B (en) * 2012-05-25 2017-03-15 Nexeon Ltd Composite material
CN102903922A (en) * 2012-10-11 2013-01-30 华南理工大学 Organic radical-modified cellulose derivative, as well as preparation method and application thereof
JP6127446B2 (en) * 2012-10-24 2017-05-17 凸版印刷株式会社 Battery electrode composition and method for producing the same, battery electrode and method for producing the same
JP2014096326A (en) 2012-11-12 2014-05-22 Toyota Industries Corp Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
JP6099247B2 (en) 2012-11-12 2017-03-22 株式会社豊田自動織機 Sulfur-based active material, method for producing the same, and electrode for lithium ion secondary battery
JP6115914B2 (en) 2013-03-13 2017-04-19 国立研究開発法人産業技術総合研究所 Sulfur-modified nitrile group-containing copolymer resin and use thereof
CN108292745B (en) * 2016-06-02 2021-10-12 株式会社Lg化学 Negative electrode active material, negative electrode comprising same, and lithium secondary battery comprising same
JP6462051B2 (en) * 2017-06-29 2019-01-30 第一工業製薬株式会社 Chemically modified cellulose fiber and method for producing the same
JP6981621B2 (en) * 2017-08-08 2021-12-15 第一工業製薬株式会社 A method for manufacturing an electrode material for a lithium ion battery, an electrode material for a lithium ion capacitor, an electrode, a battery, a capacitor, an electric device, an electrode material for a lithium ion battery, and a method for manufacturing an electrode material for a lithium ion capacitor.
JP2019119984A (en) * 2017-12-27 2019-07-22 花王株式会社 Manufacturing method of refined hydrophobic modified cellulose fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114651A1 (en) 2011-02-25 2012-08-30 株式会社豊田自動織機 Sulfur-modified polyacrylonitrile and evaluation method therefor, positive electrode using sulfur-modified polyacrylonitrile, non-aqueous electrolyte secondary battery, and vehicle
JP2016513860A (en) 2013-03-05 2016-05-16 シオン・パワー・コーポレーション Electrochemical cells containing fibril materials such as fibril cellulose materials
JP2015525437A5 (en) 2013-05-24 2016-03-10
JP2017218584A (en) 2016-06-02 2017-12-14 株式会社Adeka Production method of sulfur-modified polyacrylonitrile

Also Published As

Publication number Publication date
KR20210062628A (en) 2021-05-31
JP2020080301A (en) 2020-05-28
TW202030912A (en) 2020-08-16
CN112673498A (en) 2021-04-16
CN112673498B (en) 2024-08-06

Similar Documents

Publication Publication Date Title
JP6981621B2 (en) A method for manufacturing an electrode material for a lithium ion battery, an electrode material for a lithium ion capacitor, an electrode, a battery, a capacitor, an electric device, an electrode material for a lithium ion battery, and a method for manufacturing an electrode material for a lithium ion capacitor.
CA2916160C (en) Negative electrode mixture for non-aqueous electrolyte secondary cell and its use
JP5686332B2 (en) Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
Zeng et al. Architecture and performance of the novel sulfur host material based on Ti2O3 microspheres for lithium–sulfur batteries
US9553308B2 (en) Negative electrode material for sodium secondary battery and method for producing same, negative electrode for sodium secondary batter, and sodium secondary battery
JP6115909B2 (en) Negative electrode for lithium secondary battery, method for producing the same, lithium secondary battery using the negative electrode, and electric device using the battery
JP2013196978A (en) Positive electrode material for sodium secondary battery and manufacturing method of the same, and positive electrode for sodium secondary battery, sodium secondary battery, and electric apparatus using sodium secondary battery
JP7449527B2 (en) Electrode material for power storage device, electrode, power storage device, electrical equipment, and method for manufacturing electrode material for power storage device
US10541416B2 (en) Binder for lithium ion secondary battery positive electrodes
JP5999683B2 (en) Positive electrode for lithium ion secondary battery excellent in high temperature characteristics, lithium ion secondary battery equipped with the positive electrode, and electrical equipment using the secondary battery
WO2020071298A1 (en) Electrode material for electrical storage device, electrode, electrical storage device, electrical equipment, and method for manufacturing electrode material for electrical storage device
JP2003123737A (en) Composite electrode material, method of manufacturing the same, and composite electrode using the composite electrode material
JP6931788B2 (en) Titanium-based positive electrode material for calcium storage batteries and cells containing it

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7449527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150