WO2012114500A1 - 多種燃料内燃機関の制御装置 - Google Patents

多種燃料内燃機関の制御装置 Download PDF

Info

Publication number
WO2012114500A1
WO2012114500A1 PCT/JP2011/054196 JP2011054196W WO2012114500A1 WO 2012114500 A1 WO2012114500 A1 WO 2012114500A1 JP 2011054196 W JP2011054196 W JP 2011054196W WO 2012114500 A1 WO2012114500 A1 WO 2012114500A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
spark plug
internal combustion
ignition timing
ignition
Prior art date
Application number
PCT/JP2011/054196
Other languages
English (en)
French (fr)
Inventor
谷口 聡
匡彦 増渕
宏 江藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180068532.3A priority Critical patent/CN103415687B/zh
Priority to US14/001,259 priority patent/US9200611B2/en
Priority to JP2013500790A priority patent/JP5556952B2/ja
Priority to BR112013021760A priority patent/BR112013021760A2/pt
Priority to EP11859155.1A priority patent/EP2679788A4/en
Priority to PCT/JP2011/054196 priority patent/WO2012114500A1/ja
Publication of WO2012114500A1 publication Critical patent/WO2012114500A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/02Checking or adjusting ignition timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits
    • F02P2017/128Measuring ionisation of combustion gas, e.g. by using ignition circuits for knock detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/151Digital data processing using one central computing unit with means for compensating the variation of the characteristics of the engine or of a sensor, e.g. by ageing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for a multi-fuel internal combustion engine that can be operated by mixing and burning a plurality of types of fuel.
  • Patent Document 1 discloses an internal combustion engine that uses gas fuel as main fuel and liquid fuel as ignition auxiliary fuel. Patent Document 1 describes that when the required discharge voltage exceeds the limit voltage (design voltage) of the ignition plug, liquid fuel is supplied to the internal combustion engine as ignition auxiliary fuel in addition to gas fuel.
  • a required discharge voltage which is a voltage necessary for generating a discharge in a spark plug, varies depending on the operating state of the internal combustion engine.
  • the required discharge voltage also changes depending on the type of fuel used or the mixing ratio.
  • the voltage applied to the spark plug normally satisfies the required discharge voltage regardless of the operating state of the internal combustion engine, the type of fuel used, or the mixing ratio, and discharges to cause ignition of the mixture. Is set to a value that allows The applied voltage to the spark plug is a design value and is a constant value regardless of the operating state of the internal combustion engine.
  • the required discharge voltage increases as compared to the normal state.
  • the required discharge voltage becomes equal to or higher than the voltage near the applied voltage to the spark plug (including a voltage slightly lower than the applied voltage).
  • the ignition of the engine becomes unstable. If the ignition of the air-fuel mixture by the spark plug becomes unstable, combustion failure such as misfire or increase in combustion fluctuations may be caused.
  • the present invention has been made in view of the above problems, and an object of the present invention is to more stably ignite an air-fuel mixture in a multifuel internal combustion engine.
  • the present invention controls the mixing ratio of a plurality of types of fuel and controls the ignition timing of the spark plug so that the required discharge voltage is lower than the voltage lower than the voltage applied to the spark plug by a certain value. To do.
  • control device for a multi-fuel internal combustion engine is: A control device for a multifuel internal combustion engine operable by mixing and burning a plurality of types of fuel, Ignition plug for igniting the air-fuel mixture in the cylinder, a mixture ratio control unit for controlling the mixture ratio of the plurality of types of fuel, and an ignition timing control for controlling the ignition timing of the spark plug based on the mixture ratio of the plurality of types of fuel And comprising
  • the mixing ratio control means controls the mixing ratio of a plurality of types of fuel so that the required discharge voltage is not more than a voltage lower than the voltage applied to the spark plug, and the ignition timing control means controls the ignition plug. Control ignition timing.
  • the relative dielectric constant of the fuel varies depending on the type. Under the same conditions, the required discharge voltage is higher as the relative dielectric constant of the fuel is lower. When a plurality of types of fuels are mixed and used, under the same conditions, the required discharge voltage increases as the mixing ratio of the fuel having a relatively low relative dielectric constant increases.
  • the burning speed of the fuel varies depending on the type. The lower the burning speed of the fuel used, the more the ignition timing of the spark plug can be advanced with respect to the compression stroke top dead center. And the cylinder pressure at the time of ignition falls, so that the ignition timing of a spark plug advances with respect to a compression stroke top dead center. If the relative permittivity of the fuel is the same, the required discharge voltage becomes lower as the in-cylinder pressure becomes lower.
  • the required discharge voltage is higher when the fuel A and the fuel B are mixed and the ignition timing of the spark plug is advanced than when only the fuel A is used (that is, the mixing ratio of the fuel A is 100%). May be lower. This is because the effect on the required discharge voltage by advancing the ignition timing of the spark plug rather than the effect on the required discharge voltage due to a decrease in the relative permittivity of the fuel as a whole (the effect on the increase side of the required discharge voltage). This is because (the influence of the required discharge voltage lowering side) may be larger.
  • the required discharge voltage is higher when fuel A and fuel B are mixed and the ignition timing of the spark plug is retarded than when only fuel B is used (that is, the mixing ratio of fuel B is 100%). It may be lower. This is because the effect on the required discharge voltage due to the increase in the relative dielectric constant of the fuel as a whole is greater than the effect on the required discharge voltage caused by retarding the ignition timing of the spark plug (the effect on the rising side of the required discharge voltage). This is because (the influence of the required discharge voltage lowering side) may be larger.
  • the required discharge voltage is adjusted in consideration of the characteristics of each fuel as described above. That is, in the present invention, the required discharge voltage is higher than the applied voltage to the ignition plug by controlling the mixing ratio of the plurality of types of fuel by the mixing ratio control means and controlling the ignition timing of the spark plug by the ignition timing control means. Make the voltage lower than a certain value. As a result, in the multi-fuel internal combustion engine, it is possible to perform ignition of the air-fuel mixture more stably.
  • the mixing ratio of a plurality of types of fuel and the ignition timing of the spark plug are controlled so that the required discharge voltage is equal to or lower than a voltage lower than the voltage applied to the spark plug by a certain value.
  • the constant value is a value of a voltage difference from the applied voltage at which the air-fuel mixture can be stably ignited.
  • the control apparatus for a multi-fuel internal combustion engine may further include an ignition failure detection unit that detects an ignition failure to the air-fuel mixture in the cylinder.
  • the mixing rate control means controls the mixing ratio of a plurality of types of fuel
  • the ignition timing control means controls the ignition timing of the spark plug.
  • the discharge voltage may be reduced. According to this, when the ignition failure to the air-fuel mixture occurs, the ignition failure can be eliminated.
  • the control apparatus for a multi-fuel internal combustion engine may further include a deterioration determination unit that determines whether or not the deterioration degree of the fire plug is equal to or higher than a predetermined deterioration degree.
  • a deterioration determination unit determines whether or not the deterioration degree of the fire plug is equal to or higher than a predetermined deterioration degree.
  • the mixture ratio control The required discharge voltage may be reduced by controlling the mixing ratio of a plurality of types of fuel by means and controlling the ignition timing of the spark plug by the ignition timing control means.
  • the predetermined deterioration degree and the predetermined high demand discharge voltage region are determined so that the operating state of the multi-fuel internal combustion engine belongs to the predetermined high demand discharge voltage region when the deterioration degree of the spark plug is equal to or higher than the predetermined deterioration degree.
  • the degree of deterioration and the operating region in which it can be determined that a poor ignition of the air-fuel mixture is likely to occur are predetermined based on experiments and the like.
  • the air-fuel mixture in the multi-fuel internal combustion engine, can be ignited more stably.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine according to a first embodiment and its fuel system and intake / exhaust system.
  • FIG. It is a figure which shows the relationship between the request
  • 3 is a flowchart showing a flow of control of a first fuel mixture ratio and ignition timing according to the first embodiment.
  • 4 is a flowchart showing a flow of control of a second fuel mixture ratio and ignition timing according to the first embodiment.
  • 6 is a flowchart showing a flow of control of a fuel mixing ratio and ignition timing according to a second embodiment. It is a figure which shows the relationship between the engine speed of an internal combustion engine and a request
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its fuel system and intake / exhaust system according to the present embodiment.
  • the internal combustion engine 1 is a spark ignition engine for driving a vehicle that uses gasoline and compressed natural gas (hereinafter referred to as CNG) as fuel.
  • CNG compressed natural gas
  • the internal combustion engine 1 is a multi-fuel internal combustion engine that can be operated by burning only gasoline or only CNG, and can also be operated by mixing and burning gasoline and CNG.
  • the internal combustion engine 1 has four cylinders 2. Each cylinder 2 is provided with a spark plug 3. A predetermined voltage is applied to the spark plug 3 from a battery (not shown). As a result, a discharge is generated between the electrodes of the spark plug 3 protruding into the combustion chamber in the cylinder 2, and the mixture is ignited.
  • An intake manifold 4 and an exhaust manifold 5 are connected to the internal combustion engine 1.
  • An intake passage 6 is connected to the intake manifold 4.
  • An exhaust passage 7 is connected to the exhaust manifold 5.
  • the four branch pipes of the intake manifold 4 are connected to the respective cylinders 2.
  • Each branch pipe is provided with a gasoline injector 8 for injecting gasoline and a CNG injector 9 for injecting CNG.
  • a gasoline injector may be provided in each cylinder, and gasoline may be injected into the cylinder.
  • a CNG injector may be provided in each cylinder, and CNG may be injected into the cylinder.
  • Each gasoline injector 8 is connected to a gasoline delivery pipe 10.
  • One end of a gasoline supply passage 12 is connected to the gasoline delivery pipe 10, and the other end of the gasoline supply passage 12 is connected to a gasoline tank 13.
  • a feed pump 14 is installed in the gasoline supply passage 12. Gasoline is supplied from the gasoline tank 13 to the gasoline delivery pipe 10 via the gasoline supply passage 12, and further, gasoline is supplied from the gasoline delivery pipe 10 to each gasoline injector 8.
  • Each CNG injector 9 is connected to a delivery pipe 11 for CNG.
  • One end of a CNG supply passage 15 is connected to the CNG delivery pipe 11, and the other end of the CNG supply passage 15 is connected to a CNG tank 16.
  • a regulator 17 is installed in the CNG supply passage 15. CNG is supplied from the CNG tank 16 to the CNG delivery pipe 11 via the CNG supply passage 15, and further CNG is supplied from the CNG delivery pipe 11 to each CNG injector 9.
  • the CNG delivery pipe 11 is provided with a pressure sensor 23 that detects the pressure of the CNG in the CNG delivery pipe 11 and a temperature sensor 24 that detects the temperature of the CNG. Further, a pressure sensor 25 that detects the pressure of CNG in the CNG supply passage 15 and a temperature sensor 26 that detects the temperature of the CNG are also provided upstream of the regulator 17 in the CNG supply passage 15.
  • an air cleaner 18, an air flow meter 22, and a throttle valve 19 are installed in order from the upstream side.
  • An exhaust gas purification catalyst 21 configured by an air-fuel ratio sensor 27 that detects the air-fuel ratio of exhaust gas and a three-way catalyst is installed in the exhaust passage 7.
  • the internal combustion engine 1 is provided with an electronic control unit (ECU) 20.
  • the ECU 20 is a unit that controls the operating state of the internal combustion engine 1 and the like.
  • An air flow meter 22, pressure sensors 23 and 25, temperature sensors 24 and 26, and an air-fuel ratio sensor 27 are electrically connected to the ECU 20.
  • a crank angle sensor 28 that detects the crank angle of the internal combustion engine 1 is also electrically connected to the ECU 20. Output signals from the sensors are input to the ECU 20.
  • the ECU 20 derives the engine speed of the internal combustion engine 1 based on the output signal of the crank angle sensor 28.
  • the ECU 20 is electrically connected to each gasoline injector 8, each CNG injector 9, a feed pump 14, a regulator 17, and a throttle valve 19. These are controlled by the ECU 20. Further, the ECU 20 is electrically connected to a warning display unit 30 provided in a vehicle on which the internal combustion engine 1 is mounted. The function of the warning display unit 30 will be described later.
  • FIG. 2 is a diagram showing the relationship between the required discharge voltage Vde, the CNG mixing ratio Rcng in the whole fuel supplied to the internal combustion engine 1, and the ignition timing Tig of the spark plug 3 according to the present embodiment.
  • FIG. 2 represents the mixing ratio Rcng of CNG in the whole fuel supplied to the internal combustion engine 1.
  • the horizontal axis in FIG. A CNG mixing ratio Rcng of 0% indicates that the internal combustion engine 1 is operated only with gasoline, and a CNG mixing ratio Rcng of 100% indicates that the internal combustion engine 1 is operated only with CNG.
  • the vertical axis in the upper part of FIG. 2 represents the required discharge voltage Vde.
  • the vertical axis in the lower part of FIG. 2 represents the ignition timing Tig of the spark plug 3.
  • the ignition timing Tig of the spark plug 3 is represented by an advance angle (BTDC: Before Top Dead Centre) with reference to the top dead center of the compression stroke.
  • BTDC Before Top Dead Centre
  • CNG has a lower dielectric constant than gasoline. Therefore, when only CNG is supplied to the internal combustion engine 1 under the same conditions, the required discharge voltage Vde is higher than when only gasoline is supplied to the internal combustion engine 1. When both gasoline and CNG are supplied to the internal combustion engine 1, the required discharge voltage Vde increases as the mixing ratio of CNG increases under the same conditions.
  • CNG has a lower combustion speed than gasoline. Therefore, when the CNG mixing ratio Rcng in the whole fuel supplied to the internal combustion engine 1 is higher than the predetermined ratio ⁇ , the ignition timing Tig of the spark plug 3 can be advanced to MBT (Minimum Advance for Best Torque). However, when the CNG mixture ratio Rcng in the whole fuel supplied to the internal combustion engine 1 is lower than the predetermined ratio ⁇ , if the ignition timing Tig of the spark plug 3 is advanced to MBT, the fuel combustion speed is high, which is too early. Ignites and knocks. Therefore, in this case, the ignition timing Tig of the spark plug 3 is controlled to a TK (Trace Knock) point, which is a timing that is later than the MBT and can suppress the occurrence of knocking.
  • TK Race Knock
  • the in-cylinder pressure at the time of ignition decreases as the ignition timing Tig of the spark plug 3 is advanced with respect to the top dead center of the compression stroke.
  • the lower the in-cylinder pressure the easier the discharge occurs in the spark plug 3. That is, if the relative dielectric constant of the fuel supplied to the internal combustion engine 1 is the same, the required discharge voltage Vde decreases as the ignition timing Tig is advanced.
  • the voltage applied to the spark plug 3 satisfies the required discharge voltage in a normal state regardless of the operating state of the internal combustion engine 1 and the mixing ratio of CNG and gasoline, and discharge occurs to the mixture.
  • the value is set so that the ignition can be performed.
  • the applied voltage is a design value and is a constant value regardless of the operating state of the internal combustion engine 1 or the like.
  • FIG. 3 is a flowchart showing a flow of control of the first fuel mixture ratio and ignition timing according to the present embodiment. This flow shows the control flow of the fuel mixture ratio and ignition timing when ignition failure occurs when CNG combustion in which only CNG is supplied to the internal combustion engine 1 is performed. This flow is stored in advance in the ECU 20, and is repeatedly executed by the ECU 20 at predetermined intervals.
  • step S101 it is determined whether CNG combustion is being performed. If a negative determination is made in step S101, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S101, it is then determined in step S102 whether or not an ignition failure has occurred in the air-fuel mixture by the spark plug 3.
  • the determination as to whether or not an ignition failure has occurred may be performed using any known method. For example, it may be determined whether or not an ignition failure has occurred based on the fluctuation amount of the engine speed of the internal combustion engine 1. If the fluctuation amount of the engine speed of the internal combustion engine 1 is larger than a predetermined threshold value, it can be determined that an ignition failure has occurred. Further, when an in-cylinder pressure sensor is provided in each cylinder 2, it is possible to determine whether or not an ignition failure has occurred based on a detection value in the in-cylinder pressure sensor. If the in-cylinder pressure at the original combustion timing is smaller than a predetermined threshold, it can be determined that an ignition failure has occurred.
  • ignition failure occurs based on the ion current value in the cylinder 2, the HC concentration of the exhaust discharged from the internal combustion engine 1, or the temperature of the exhaust, which is a parameter highly correlated with the combustion state in the cylinder 2. It can also be determined whether or not.
  • step S102 If a negative determination is made in step S102, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S102, then in step S103, the first predetermined mixing ratio R1 and the first predetermined ignition timing Tig1 are calculated based on the current operating state of the internal combustion engine 1.
  • the first predetermined mixing ratio R1 and the first predetermined ignition timing Tig1 are the same as the mixing ratio of CNG and gasoline and the spark plug whose required discharge voltage is equivalent to that during gasoline combustion when only gasoline is supplied to the internal combustion engine 1.
  • 3 is the ignition timing.
  • FIG. 2 there is a map showing the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline (CNG mixing ratio Rcng in the entire fuel), and the ignition timing Tig of the spark plug 3.
  • the ECU 20 is stored in advance corresponding to each operation state of the internal combustion engine 1.
  • the actual required discharge voltage varies depending on the degree of deterioration of the spark plug 3, the amount of deposit deposited on the electrode of the spark plug 3, and the like.
  • the map shows the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3 when the spark plug 3 is assumed to be in a predetermined state (for example, the initial state). It shows the relationship.
  • the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3 when the spark plug 3 is in a predetermined state can be obtained based on experiments or the like.
  • the first predetermined mixing ratio R1 and the first predetermined ignition timing Tig1 are calculated from the map.
  • step S104 mixed combustion in which both CNG and gasoline are supplied to the internal combustion engine 1 is started.
  • the mixing ratio of CNG and gasoline is controlled to the first predetermined mixing ratio R1, and the ignition timing by the spark plug 3 is controlled to the first ignition timing Tig1.
  • the required discharge voltage decreases. If the required discharge voltage is equal to or lower than a voltage lower than a voltage applied to the spark plug 3, the ignition failure is eliminated.
  • the constant value is a value of a voltage difference from the applied voltage at which the mixture can be stably ignited.
  • step S105 it is determined whether or not the ignition failure has been resolved. If an affirmative determination is made in step S105, the execution of this flow is temporarily terminated. On the other hand, if a negative determination is made in step S105, it is then determined in step S106 whether or not the mixing ratio of CNG and gasoline has already reached the second predetermined mixing ratio R2.
  • the second predetermined mixing ratio R2 is the above-described map indicating the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3, and the required discharge voltage Vde is This is the mixing ratio of CNG and gasoline at the lowest value.
  • the ignition ratio of the ignition plug 3 can be changed even if the mixing ratio of CNG and gasoline and the ignition timing of the spark plug 3 are further changed. It is difficult to eliminate defects. In this case, it can be determined that there is a problem such that the degree of deterioration of the spark plug 3 is very large or a large amount of deposit is deposited on the electrode of the spark plug 3.
  • step S106 if an affirmative determination is made in step S106, then in step S107, a warning for prompting the driver or the like of the vehicle equipped with the internal combustion engine 1 to replace or repair the spark plug 3 is displayed in the warning display unit 30. Is displayed.
  • step S108 the mixing ratio of CNG and gasoline is changed.
  • the supply ratio of CNG to the internal combustion engine 1 is decreased by a predetermined ratio X%, and the supply ratio of gasoline to the internal combustion engine 1 is increased by the predetermined ratio X%.
  • step S108 the ignition timing of the spark plug 3 is retarded to the ignition timing corresponding to the changed mixing ratio of CNG and gasoline (however, before and after the change of the mixing ratio of CNG and gasoline, If the ignition timing corresponding to the mixing ratio is the same, the ignition timing is maintained.) That is, in step S108, the mixing ratio of CNG and gasoline and the ignition timing of the spark plug 3 are changed in such a direction that the required discharge voltage further decreases. Thereafter, the process of step S105 is executed again.
  • the required discharge voltage can be reduced when ignition failure occurs in the air-fuel mixture due to deterioration of the spark plug 3 or deposit deposition on the electrode of the spark plug 3 during CNG combustion. it can.
  • the required discharge voltage is reduced to a voltage lower than a voltage lower than a voltage applied to the spark plug 3 by a certain value, whereby the ignition failure can be eliminated.
  • the required discharge voltage may be reduced by switching to gasoline combustion, thereby eliminating the ignition failure.
  • the required discharge voltage can be reduced while using CNG as fuel as much as possible. Therefore, gasoline consumption can be reduced compared with the case of switching to gasoline combustion.
  • the mixing ratio of CNG and gasoline is controlled to the first predetermined mixing ratio R1, and the ignition timing of the spark plug 3 is set to the first predetermined mixing ratio R1.
  • the corresponding first predetermined ignition timing Tig1 is controlled. If the ignition failure is still not solved, the CNG and gasoline mixing ratio and the ignition timing of the spark plug 3 are fed back within the range until the CNG and gasoline mixing ratio reaches the second predetermined mixing ratio R2. Control.
  • the mixing ratio of CNG and gasoline may be controlled from the beginning to the second predetermined mixing ratio R2. In this case, the ignition timing of the spark plug 3 is also controlled from the beginning to the second predetermined ignition timing corresponding to the second predetermined mixing ratio R2.
  • FIG. 4 is a flowchart showing a flow of control of the second fuel mixture ratio and ignition timing according to the present embodiment. This flow shows the flow of control of the fuel mixture ratio and ignition timing when ignition failure occurs when gasoline combustion is performed in which only gasoline is supplied to the internal combustion engine 1. This flow is stored in advance in the ECU 20, and is repeatedly executed by the ECU 20 at predetermined intervals.
  • step S201 it is determined whether gasoline combustion is being performed. If a negative determination is made in step S201, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S201, it is then determined in step S202 whether or not an ignition failure to the air-fuel mixture by the spark plug 3 has occurred.
  • the processing content of step S202 is the same as the processing content of step S102 of the flowchart shown in FIG.
  • step S203 the second predetermined mixing ratio R2 and the second predetermined ignition timing Tig2 are calculated based on the current operating state of the internal combustion engine 1.
  • the second predetermined mixing ratio R2 is such that the required discharge voltage Vde is the lowest value on the map indicating the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3. Is the mixing ratio of CNG and gasoline.
  • the second predetermined ignition timing Tig2 is an ignition timing of the spark plug 3 corresponding to the second predetermined mixing ratio.
  • step S203 the second predetermined mixing ratio R2 and the second predetermined ignition timing Tig2 are the same as the case where the first predetermined mixing ratio R1 and the first predetermined ignition timing Tig1 are calculated in step S103 of the flowchart shown in FIG. It is calculated from a map stored in the ECU 20 that shows the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3.
  • step S204 mixed combustion in which both CNG and gasoline are supplied to the internal combustion engine 1 is started.
  • the mixing ratio of CNG and gasoline is controlled to the second predetermined mixing ratio R2, and the ignition timing by the spark plug 3 is controlled to the second ignition timing Tig2.
  • the required discharge voltage decreases. If the required discharge voltage is equal to or lower than a voltage lower than a voltage applied to the spark plug 3, the ignition failure is eliminated.
  • step S205 it is determined whether or not the ignition failure has been resolved.
  • the processing content of step S205 is the same as the processing content of step S105 of the flowchart shown in FIG. If an affirmative determination is made in step S205, the execution of this flow is temporarily terminated. On the other hand, if a negative determination is made in step S205, a warning for prompting the driver or the like of the vehicle equipped with the internal combustion engine 1 to replace or repair the spark plug 3 is displayed on the warning display unit 30 in step S206. Is displayed.
  • the processing content of step S206 is the same as the processing content of step S107 of the flowchart shown in FIG.
  • the required discharge voltage Vde becomes lower than that during gasoline combustion.
  • the required discharge voltage is reduced as much as possible by switching to mixed combustion.
  • the ignition failure can be eliminated by lowering the required discharge voltage to a voltage lower than a voltage lower than a voltage applied to the spark plug 3 by a certain value.
  • the ECU 20 that executes the processes of steps S104 and S108 in the flowchart shown in FIG. 3 or the ECU 20 that executes the process of step S204 in the flowchart shown in FIG. corresponds to an ignition timing control unit.
  • ECU20 which performs the process of step S102 of the flowchart shown in FIG. 3, or ECU20 which performs the process of step S202 of the flowchart shown in FIG. 4 is equivalent to the ignition failure detection part which concerns on this invention.
  • Example 2 [Control of fuel mixing ratio and ignition timing]
  • the schematic configuration of the internal combustion engine according to the present embodiment and its fuel system and intake / exhaust system is the same as the schematic configuration of the internal combustion engine according to the first embodiment and its fuel system and intake / exhaust system.
  • the higher the degree of deterioration of the spark plug 3 the higher the required discharge voltage, and the more likely the ignition failure occurs. Therefore, in this embodiment, when the degree of deterioration of the spark plug 3 becomes higher to some extent, the fuel mixture ratio and the ignition timing are controlled when the operation state of the internal combustion engine 1 becomes an operation state where the required discharge voltage is relatively high. As a result, the required discharge voltage is reduced.
  • FIG. 5 is a flowchart showing a flow of control of the fuel mixture ratio and ignition timing according to the present embodiment. This flow is stored in advance in the ECU 20, and is repeatedly executed by the ECU 20 at predetermined intervals.
  • step S301 it is determined whether CNG combustion is being performed. If a negative determination is made in step S301, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S301, it is then determined in step S302 whether or not the deterioration degree DL of the spark plug 3 is equal to or greater than a predetermined deterioration degree DL0.
  • Whether or not the deterioration degree DL of the spark plug 3 is greater than or equal to a predetermined deterioration degree DL0 may be determined based on whether or not a parameter value highly correlated with the deterioration degree DL is equal to or greater than a predetermined threshold value.
  • the parameter having a high correlation with the deterioration degree DL of the spark plug 3 include an accumulated time of CNG combustion, a travel distance of a vehicle on which the internal combustion engine 1 is mounted, an accumulated value of a high load operation time, and the like.
  • step S302 If a negative determination is made in step S302, the execution of this flow is temporarily terminated. On the other hand, if an affirmative determination is made in step S302, it is then determined in step S303 whether or not the current operating state of the internal combustion engine 1 belongs to a predetermined high required discharge voltage region.
  • FIG. 6 is a diagram showing the relationship between the engine speed of the internal combustion engine 1 and the required discharge voltage during high load operation.
  • the horizontal axis represents the engine speed Ne of the internal combustion engine 1
  • the vertical axis represents the required discharge voltage Vde.
  • the required discharge voltage Vde is higher as the engine speed is lower.
  • the shaded area corresponds to a predetermined high required discharge voltage region.
  • the required discharge voltage varies depending on the engine load. That is, the required discharge voltage is higher as the engine load is higher. Therefore, in practice, the predetermined high required discharge voltage region is determined on a three-dimensional map using the engine speed and the engine load as parameters. In step S303, it is determined using the map whether or not the operating state of the internal combustion engine 1 belongs to a predetermined high required discharge voltage region.
  • the deterioration degree DL of the spark plug 3 is greater than or equal to the predetermined deterioration degree DL0.
  • the deterioration degree and the operating region in which it can be determined that a poor ignition to the air-fuel mixture is likely to occur are determined based on experiments and the like. Is remembered.
  • step S304 the second predetermined mixing ratio R2 and the second predetermined ignition timing Tig2 are calculated based on the current operating state of the internal combustion engine 1.
  • the second predetermined mixing ratio R2 is such that the required discharge voltage Vde is the lowest value on the map indicating the relationship between the required discharge voltage Vde, the mixing ratio of CNG and gasoline, and the ignition timing Tig of the spark plug 3. Is the mixing ratio of CNG and gasoline.
  • the second predetermined ignition timing Tig2 is an ignition timing of the spark plug 3 corresponding to the second predetermined mixing ratio.
  • the processing content of step S304 is the same as the processing content of step S203 of the flowchart shown in FIG.
  • step S305 mixed combustion in which both CNG and gasoline are supplied to the internal combustion engine 1 is started.
  • the mixing ratio of CNG and gasoline is controlled to the second predetermined mixing ratio R2, and the ignition timing by the spark plug 3 is controlled to the second ignition timing Tig2.
  • the processing content of step S305 is the same as the processing content of step S204 of the flowchart shown in FIG.
  • the mixing ratio of CNG and gasoline is controlled to the first predetermined mixing ratio R1, and the ignition timing of the spark plug 3 is controlled to the first ignition timing Tig1.
  • the first predetermined mixing ratio R1 and the first predetermined ignition timing Tig1 are the mixing ratio of CNG and gasoline at which the required discharge voltage is equivalent to that during gasoline combustion and the ignition timing by the spark plug 3. Even when controlled in this way, the required discharge voltage can be reduced, so that the occurrence of poor ignition can be suppressed.
  • the mixing ratio of CNG and gasoline is controlled to the second predetermined mixing ratio R2 and the ignition timing of the spark plug 3 is controlled to the second ignition timing Tig2, the required discharge voltage can be lowered, so that the ignition It becomes possible to suppress defects with a higher probability.
  • the deterioration degree of the spark plug 3 is more easily promoted during CNG combustion than during gasoline combustion. Therefore, in the above flow, when the deterioration degree DL of the spark plug 3 becomes equal to or higher than the predetermined deterioration degree DL0 during the CNG combustion, the mixed combustion is performed when the operating state of the internal combustion engine 1 belongs to the high required discharge voltage region. The required discharge voltage was reduced by starting. However, the same control may be performed when the deterioration degree DL of the spark plug 3 becomes equal to or greater than the predetermined deterioration degree DL0 during gasoline combustion. According to this, the occurrence of ignition failure during gasoline combustion can be suppressed as much as possible.
  • the ECU 20 that executes the process of step S305 in the flowchart shown in FIG. 5 corresponds to the mixing ratio control unit and the ignition timing control unit according to the present invention. Moreover, ECU20 which performs the process of step S302 of the flowchart shown in FIG. 5 is equivalent to the deterioration determination part which concerns on this invention.
  • the fuel of the internal combustion engine 1 is CNG and gasoline.
  • the present invention can also be applied to multi-fuel internal combustion engines that use other fuels.
  • Gas fuel has a lower dielectric constant and a lower combustion rate than liquid fuel. Therefore, the present invention can be applied to a multi-fuel internal combustion engine that uses a gas fuel other than CNG and a liquid fuel other than gasoline.
  • gas fuel other than CNG include hydrogen gas or LPG.
  • methanol or ethanol etc. can be illustrated as liquid fuels other than gasoline.
  • the present invention can be applied to any multi-fuel internal combustion engine that uses a combination of fuels having different dielectric constants and combustion speeds other than a combination of gas fuel and liquid fuel.

Abstract

 本発明は、上記問題に鑑みてなされたものであって、多種燃料内燃機関において、混合気への点火をより安定的に行うことを目的とする。複数種類の燃料を混合燃焼させることで運転可能な多種燃料内燃機関の制御装置であって、要求放電電圧が点火プラグへの印加電圧よりも一定値低い電圧以下となるように、混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に点火時期制御手段によって前記点火プラグの点火時期を制御する(S104,S108)。

Description

多種燃料内燃機関の制御装置
 本発明は、複数種類の燃料を混合燃焼させることで運転可能な多種燃料内燃機関の制御装置に関する。
 従来、複数種類の燃料を混合燃焼させることで運転可能な多種燃料内燃機関が開発されている。例えば、特許文献1には、ガス燃料を主燃料として使用し、液体燃料を点火補助燃料として使用する内燃機関が開示されている。この特許文献1には、要求放電電圧が点火プラグの限界電圧(設計電圧)を超える場合、ガス燃料に加えて液体燃料を点火補助燃料として内燃機関に供給することが記載されている。
特開2007-270750公報
 火花点火式の内燃機関では、点火プラグにおいて放電が生じるために必要な電圧である要求放電電圧が、該内燃機関の運転状態に応じて変化する。また、多種燃料内燃機関では、使用する燃料の種類或いは混合割合によっても要求放電電圧が変化する。ただし、点火プラグへの印加電圧は、通常の状態では内燃機関の運転状態や使用する燃料の種類或いは混合割合に関わらず、要求放電電圧を満たし、放電が生じて混合気への点火を行うことができるような値に設定されている。尚、点火プラグへの印加電圧は、設計値であり、内燃機関の運転状態等に関わらず、一定の値である。
 しかしながら、点火プラグの劣化度合いが高くなったり、点火プラグの電極にデポジットが堆積したりすると、点火プラグにおいて放電が生じ難くなる。つまり、通常の状態のときに比べて要求放電電圧が上昇する。その結果、使用する燃料の種類或いは混合割合によっては、要求放電電圧が点火プラグへの印加電圧付近の電圧(印加電圧より僅かに低い電圧を含む)以上となることとなり、点火プラグによる混合気への点火が不安定となる虞がある。点火プラグによる混合気への点火が不安定となると失火や燃焼変動の増大等の燃焼不具合を招く場合がある。
 本発明は、上記問題に鑑みてなされたものであって、多種燃料内燃機関において、混合気への点火をより安定的に行うことを目的とする。
 本発明は、多種燃料内燃機関において、要求放電電圧が点火プラグへの印加電圧よりも一定値低い電圧以下となるように、複数種類の燃料の混合割合を制御すると共に点火プラグの点火時期を制御するものである。
 より詳しくは、本発明に係る多種燃料内燃機関の制御装置は、
 複数種類の燃料を混合燃焼させることで運転可能な多種燃料内燃機関の制御装置であって、
 気筒内の混合気への点火を行う点火プラグと
 複数種類の燃料の混合割合を制御する混合割合制御部と
 複数種類の燃料の混合割合に基づいて前記点火プラグの点火時期を制御する点火時期制御部と、を備え、
 要求放電電圧が前記点火プラグへの印加電圧よりも一定値低い電圧以下となるように、前記混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に前記点火時期制御手段によって前記点火プラグの点火時期を制御する。
 燃料の比誘電率はその種類に応じて異なっている。同一条件下においては、燃料の比誘電率が低いほど、要求放電電圧が高い。また、複数種類の燃料を混合して使用する場合、同一条件下においては、比誘電率が相対的に低い燃料の混合割合が大きいほど、要求放電電圧が高くなる。
 一方、燃料の燃焼速度もその種類に応じて異なっている。使用する燃料の燃焼速度が低いほど、点火プラグの点火時期を圧縮行程上死点に対して進角することができる。そして、点火プラグの点火時期が圧縮行程上死点に対して進角するほど、点火時の筒内圧力が低下する。燃料の比誘電率が同一であれば、筒内圧力が低いほど要求放電電圧が低くなる。
 そのため、相対的に比誘電率が高く且つ燃焼速度が高い燃料A(例えば、液体燃料)と、相対的に比誘電率が低く且つ燃焼速度が低い燃料B(例えば、ガス燃焼)とを混合燃焼させる場合であって、その混合割合に応じて点火プラグの点火時期を変更するようにすると、必ずしも、比誘電率の高い燃料Aの割合が大きいほど要求放電電圧が低くなるわけではない。
 つまり、燃料Aのみ(即ち、燃料Aの混合割合が100%)を使用する場合よりも、燃料Aと燃料Bとを混合して点火プラグの点火時期を進角した方が、要求放電電圧が低くなる場合がある。これは、燃料全体としての比誘電率が低下することによる要求放電電圧への影響(要求放電電圧上昇側の影響)よりも、点火プラグの点火時期を進角することによる要求放電電圧への影響(要求放電電圧低下側の影響)の方が大きい場合があるためである。
 一方、燃料Bのみ(即ち、燃料Bの混合割合が100%)を使用する場合よりも、燃料Aと燃料Bとを混合して点火プラグの点火時期を遅角した方が、要求放電電圧が低くなる場合もある。これは、点火プラグの点火時期を遅角することによる要求放電電圧への影響(要求放電電圧上昇側の影響)よりも、燃料全体としての比誘電率が上昇することによる要求放電電圧への影響(要求放電電圧低下側の影響)の方が大きい場合があるためである。
 本発明では、上記のような各燃料の特性を考慮して要求放電電圧を調整する。つまり、本発明では、混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に点火時期制御手段によって点火プラグの点火時期を制御することで、要求放電電圧が点火プラグへの印加電圧よりも一定値低い電圧以下となるようにする。これにより、多種燃料内燃機関において、混合気への点火をより安定的に行うことが可能となる。
 尚、要求放電電圧が点火プラグへの印加電圧以下であっても該印加電圧付近の電圧(印加電圧より僅かに低い電圧を含む)であると、混合気への点火が不安定となる虞がある。そこで、本発明では、要求放電電圧が点火プラグへの印加電圧よりも一定値低い電圧以下となるように、複数種類の燃料の混合割合及び点火プラグの点火時期を制御する。ここでの一定値とは、混合気への点火を安定的に行うことが可能となる、印加電圧との電圧差の値である。
 本発明に係る多種燃料内燃機関の制御装置は、気筒内の混合気への点火不良を検出する点火不良検出部をさらに備えてもよい。この場合、点火不良検出部によって点火不良が検出されたときに、混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に点火時期制御手段によって点火プラグの点火時期を制御することで、要求放電電圧を低下させてもよい。これによれば、混合気への点火不良が生じた場合に、該点火不良を解消することができる。
 本発明に係る多種燃料内燃機関の制御装置は、火プラグの劣化度合いが所定の劣化度合い以上であるか否かを判別する劣化判別部をさらに備えてもよい。この場合、劣化判別部によって点火プラグの劣化度合いが所定の劣化度合い以上であると判定された場合に、多種燃料内燃機関の運転状態が所定の高要求放電電圧領域に属する時は、混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に点火時期制御手段によって前記点火プラグの点火時期を制御することで、要求放電電圧を低下させてもよい。
 点火プラグの劣化度合いが高いほど、点火プラグにおいて放電が生じ難くなる。そのため、点火プラグの劣化度合いがある程度以上高くなると、多種燃料内燃機関の運転状態が要求放電電圧が比較的高い運転状態となったときに、気筒内の混合気への点火不良が生じ易くなる。上記によれば、このような点火不良の発生を抑制することができる。
 尚、所定の劣化度合い及び所定の高要求放電電圧領域は、点火プラグの劣化度合いが該所定の劣化度合い以上の時に、多種燃料内燃機関の運転状態が該所定の高要求放電電圧領域に属すると、混合気への点火不良が生じ易い、と判断できる劣化度合い及び運転領域として実験等に基づいて予め定められる。
 本発明によれば、多種燃料内燃機関において、混合気への点火をより安定的に行うことができる。
実施例1に係る内燃機関とその燃料系及び吸排気系との概略構成を示す図である。 実施例1に係る、要求放電電圧Vde、内燃機関に供給される燃料全体におけるCNGの混合割合Rcng、及び点火プラグの点火時期Tigとの関係を示す図である。 実施例1に係る、第一の燃料混合割合及び点火時期の制御のフローを示すフローチャートである。 実施例1に係る、第二の燃料混合割合及び点火時期の制御のフローを示すフローチャートである。 実施例2に係る、燃料混合割合及び点火時期の制御のフローを示すフローチャートである。 実施例2に係る、高負荷運転時における、内燃機関の機関回転速度と要求放電電圧との関係を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 [概略構成]
 図1は、本実施例に係る内燃機関とその燃料系及び吸排気系との概略構成を示す図である。内燃機関1は、ガソリン及び圧縮天然ガス(以下、CNGと称する)を燃料として使用する車両駆動用の火花点火式エンジンである。内燃機関1は、ガソリンのみ又はCNGのみを燃焼させることでも運転でき、またガソリンとCNGとを混合燃焼させることでも運転できる多種燃料内燃機関である。
 内燃機関1は4つの気筒2を有している。各気筒2には点火プラグ3が設けられている。点火プラグ3にはバッテリ(図示せず)から所定の電圧が印加される。これによって、気筒2内の燃焼室に突出した点火プラグ3の電極間において放電が生じ、混合気への点火が行われる。
 内燃機関1には、インテークマニホールド4およびエキゾーストマニホールド5が接続されている。インテークマニホールド4には吸気通路6が接続されている。エキゾーストマニホールド5には排気通路7が接続されている。インテークマニホールド4の4つ枝管は各気筒2にそれぞれ接続されている。各枝管には、ガソリンを噴射するガソリンインジェクタ8及びCNGを噴射するCNGインジェクタ9が設けられている。尚、ガソリンインジェクタを各気筒に設け、気筒内にガソリンを噴射してもよい。また、これと同様に、CNGインジェクタを各気筒に設け、気筒内にCNGを噴射してもよい。
 各ガソリンインジェクタ8はガソリン用デリバリーパイプ10に接続されている。ガソリン用デリバリーパイプ10にはガソリン供給通路12の一端が接続されており、該ガソリン供給通路12の他端はガソリンタンク13に接続されている。ガソリン供給通路12にはフィードポンプ14が設置されている。ガソリンタンク13からガソリン供給通路12を介してガソリン用デリバリーパイプ10にガソリンが供給され、さらにガソリン用デリバリーパイプ10から各ガソリンインジェクタ8にガソリンが供給される。
 各CNGインジェクタ9はCNG用デリバリーパイプ11に接続されている。CNG用デリバリーパイプ11にはCNG供給通路15の一端が接続されており、CNG供給通路15の他端はCNGタンク16に接続されている。CNG供給通路15にはレギュレータ17が設置されている。CNGタンク16からCNG供給通路15を介してCNG用デリバリーパイプ11にCNGが供給され、さらにCNG用デリバリーパイプ11から各CNGインジェクタ9にCNGが供給される。
 CNG用デリバリーパイプ11には、該CNG用デリバリーパイプ11内のCNGの圧力を検出する圧力センサ23及び該CNGの温度を検出する温度センサ24が設けられている。また、CNG供給通路15におけるレギュレータ17より上流側にも、該CNG供給通路15内のCNGの圧力を検出する圧力センサ25及び該CNGの温度を検出する温度センサ26が設けられている。
 吸気通路6には、エアクリーナ18、エアフローメータ22及びスロットル弁19が上流側から順番に設置されている。排気通路7には、排気の空燃比を検出する空燃比センサ27及び三元触媒等によって構成される排気浄化触媒21が設置されている。
 内燃機関1には電子制御ユニット(ECU)20が併設されている。このECU20は内燃機関1の運転状態等を制御するユニットである。ECU20には、エアフローメータ22、圧力センサ23、25、温度センサ24、26及び空燃比センサ27が電気的に接続されている。さらに、ECU20には、内燃機関1のクランク角を検出するクランク角センサ28も電気的に接続されている。各センサの出力信号がECU20に入力される。ECU20は、クランク角センサ28の出力信号に基づいて内燃機関1の機関回転速度を導出する。
 また、ECU20には、各ガソリンインジェクタ8、各CNGインジェクタ9、フィードポンプ14、レギュレータ17及びスロットル弁19が電気的に接続されている。そして、ECU20によってこれらが制御される。さらに、ECU20には、内燃機関1を搭載した車両に設けられた警告表示部30が電気的に接続されている。該警告表示部30の機能については後述する。
 [燃料の混合割合、要求放電電圧、及び点火時期との関係]
 本実施例に係る、要求放電電圧、ガソリンとCNGとの混合割合、及び点火プラグの点火時期の関係について図2に基づいて説明する。図2は、本実施例に係る、要求放電電圧Vde、内燃機関1に供給される燃料全体におけるCNGの混合割合Rcng、及び点火プラグ3の点火時期Tigとの関係を示す図である。
 図2における横軸は、内燃機関1に供給される燃料全体におけるCNGの混合割合Rcngを表している。CNGの混合割合Rcngが0%とは、内燃機関1がガソリンのみで運転される場合を示しており、CNGの混合割合Rcngが100%とは、内燃機関1がCNGのみで運転される場合を示している。また、図2の上段における縦軸は要求放電電圧Vdeを表している。図2の下段における縦軸は点火プラグ3の点火時期Tigを表している。図2においては、点火プラグ3の点火時期Tigを、圧縮行程上死点を基準とする進角角度(BTDC:Before Top Dead Centre)によって表している。
 CNGはガソリンに比べて比誘電率が低い。従って、同一条件下では、内燃機関1にCNGのみを供給する場合、内燃機関1にガソリンのみを供給する場合に比べて、要求放電電圧Vdeが高い。また、ガソリンとCNGとの両方を内燃機関1に供給する場合、同一条件下では、CNGの混合割合が高いほど要求放電電圧Vdeが高くなる。
 一方、CNGはガソリンに比べて燃焼速度が低い。そのため、内燃機関1に供給される燃料全体におけるCNGの混合割合Rcngが所定割合α以上高い場合は、点火プラグ3の点火時期TigをMBT(Minimum Advance for Best Torque)まで進角することができる。しかしながら、内燃機関1に供給される燃料全体におけるCNGの混合割合Rcngが所定割合αより低い場合は、点火プラグ3の点火時期TigをMBTまで進角すると、燃料の燃焼速度が高いために過早着火し、ノッキングが発生する。そのため、この場合は、点火プラグ3の点火時期Tigを、MBTよりも遅い時期であってノッキング発生を抑制可能な点火時期の閾値であるTK(Trace Knock)点に制御する。
 ここで、点火プラグ3の点火時期Tigを圧縮行程上死点に対して進角するほど、点火時の筒内圧力が低下する。筒内圧力が低いほど、点火プラグ3において放電が生じ易い。つまり、内燃機関1に供給される燃料の比誘電率が同一であれば、点火時期Tigが進角されるほど、要求放電電圧Vdeが低くなる。
 従って、ガソリンとCNGとの両方を内燃機関1に供給する場合であっても、その混合割合に応じて点火プラグ3の点火時期Tigを進角すると、図2において斜線で示す部分のように、要求放電電圧Vdeが、ガソリンのみを内燃機関1に供給した場合と同等以下となる混合割合が存在する。
 [燃料混合割合及び点火時期の制御]
 本実施例においては、点火プラグ3への印加電圧は、通常の状態では内燃機関1の運転状態やCNGとガソリンとの混合割合に関わらず、要求放電電圧を満たし、放電が生じて混合気への点火を行うことができるような値に設定されている。該印加電圧は、設計値であり、内燃機関1の運転状態等に関わらず、一定の値である。
 しかしながら、内燃機関1においては、点火プラグ3の劣化度合いが高くなったり、点火プラグ3の電極にデポジットが堆積したりすること等により、通常の状態のときに比べて要求放電電圧が上昇する場合がある。このような場合に、要求放電電圧が点火プラグ3への印加電圧付近の電圧以上となると、点火プラグによる混合気への点火が不安定となり、点火不良が生じる。
 そこで、本実施例では、点火不良が生じた場合、上記特性を考慮して、燃料混合割合及び点火時期を制御することで、要求放電電圧を低下させる。図3は、本実施例に係る、第一の燃料混合割合及び点火時期の制御のフローを示すフローチャートである。本フローは、CNGのみが内燃機関1に供給されるCNG燃焼が行われている時に点火不良が生じた場合の燃料混合割合及び点火時期の制御のフローを示している。本フローは、ECU20に予め記憶されており、ECU20によって所定の間隔で繰り返し実行される。
 本フローでは、先ずステップS101において、CNG燃焼が行われているか否が判別される。ステップS101において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS101において肯定判定された場合、次にステップS102において、点火プラグ3による混合気への点火不良が発生したか否かが判別される。
 点火不良が発生したか否かの判別は、周知のどのような方法を用いて行ってもよい。例えば、内燃機関1の機関回転速度の変動量に基づいて、点火不良が発生したか否かを判別してもよい。内燃機関1の機関回転速度の変動量が所定の閾値より大きければ、点火不良が発生したと判断できる。また、各気筒2に筒内圧センサを設けた場合、点火不良が発生したか否かを該筒内圧センサに検出値に基づいて判別することができる。本来の燃焼タイミングにおける筒内圧が所定の閾値より小さければ、点火不良が発生したと判断できる。また、気筒2内の燃焼状態と相関の高いパラメータである、気筒2内のイオン電流値、内燃機関1から排出される排気のHC濃度、又は該排気の温度等に基づいて、点火不良が発生したか否かを判別することもできる。
 ステップS102において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS102において肯定判定された場合、次にステップS103において、現時点の内燃機関1の運転状態に基づいて第一所定混合割合R1及び第一所定点火時期Tig1が算出される。
 ここで、第一所定混合割合R1及び第一所定点火時期Tig1は、要求放電電圧が、ガソリンのみが内燃機関1に供給されるガソリン燃焼時と同等となるCNGとガソリンとの混合割合及び点火プラグ3による点火時期である。本実施例では、図2に示すような、要求放電電圧Vdeと、CNGとガソリンとの混合割合(燃料全体におけるCNGの混合割合Rcng)及び点火プラグ3の点火時期Tigとの関係を示すマップが、内燃機関1の各運転状態に対応してECU20に予め記憶されている。ただし、実際の要求放電電圧は、点火プラグ3の劣化度合いや点火プラグ3の電極におけるデポジットの堆積量等に応じて変化する。そのため、該マップは、点火プラグ3が所定の状態(例えば、初期状態)であると仮定した場合の、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係を示すものである。点火プラグ3が所定の状態であるときの、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係は実験等に基づいて求めることができる。ステップS103においては、該マップから、第一所定混合割合R1及び第一所定点火時期Tig1が算出される。
 次に、ステップS104において、CNGとガソリンとの両方が内燃機関1に供給される混合燃焼が開始される。このとき、CNGとガソリンとの混合割合が第一所定混合割合R1に制御され、点火プラグ3による点火時期が第一点火時期Tig1に制御される。これによって、要求放電電圧が低下する。そして、要求放電電圧が点火プラグ3への印加電圧よりも一定値低い電圧以下となれば、点火不良が解消される。尚、ここでの一定値とは、混合気への点火を安定的に行うことが可能となる、印加電圧との電圧差の値である。
 次に、ステップS105において、点火不良が解消されたか否かが判別される。ステップS105において肯定判定された場合、本フローの実行は一旦終了される。一方、ステップS105において否定判定された場合、次にステップS106において、すでにCNGとガソリンとの混合割合が第二所定混合割合R2に達しているか否かが判別される。ここで、第二所定混合割合R2とは、上述した、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係を示すマップ上において、要求放電電圧Vdeが最低値となるときのCNGとガソリンとの混合割合である。
 CNGとガソリンとの混合割合を第二所定混合割合R2に制御しても、点火不良が解消されない場合は、CNGとガソリンとの混合割合及び点火プラグ3の点火時期をさらに変更したとしても、点火不良を解消することは困難である。この場合、点火プラグ3の劣化度合いが非常に大きい、或いは多量のデポジットが点火プラグ3の電極に堆積している等の不具合が発生していると判断できる。
 そこで、ステップS106において肯定判定された場合は、次にステップS107において、内燃機関1を搭載した車両の運転者等に対して点火プラグ3の交換や修理等を促すための警告が警告表示部30に表示される。
 一方、ステップS106において否定判定された場合は、次にステップS108において、CNGとガソリンとの混合割合が変更される。ここでは、内燃機関1へのCNGの供給割合が所定割合X%減少され、内燃機関1へのガソリンの供給割合が該所定割合X%増加される。さらに、ステップS108においては、点火プラグ3の点火時期が、変更後のCNGとガソリンとの混合割合に対応した点火時期に遅角される(ただし、CNGとガソリンとの混合割合の変更前後において、該混合割合に対応する点火時期が同一であれば、点火時期は維持される。)。即ち、ステップS108においては、要求放電電圧がさらに低下する方向に、CNGとガソリンとの混合割合及び点火プラグ3の点火時期が変更される。その後、ステップS105の処理が再度実行される。
 上記フローによれば、CNG燃焼時に、点火プラグ3の劣化や点火プラグ3の電極へのデポジットの堆積等に起因する混合気への点火不良が生じた場合に、要求放電電圧を低下させることができる。そして、要求放電電圧が点火プラグ3への印加電圧よりも一定値低い電圧以下まで低下させることで、点火不良を解消することができる。
 また、CNG燃焼時に点火不良が生じた場合は、ガソリン燃焼に切り換えることで、要求放電電圧を低下させ、これによって、点火不良を解消することができる場合がある。しかしながら、上記フローによれば、出来るだけCNGを燃料として使用しつつ要求放電電圧を低下させることができる。従って、ガソリン燃焼に切り換える場合に比べて、ガソリンの消費量を抑制することができる。
 尚、上記フローにおいては、点火不良が検出された場合、先ず、CNGとガソリンとの混合割合を第一所定混合割合R1に制御し、点火プラグ3の点火時期を該第一所定混合割合R1に対応する第一所定点火時期Tig1に制御する。そして、それでも点火不良が解消されない場合に、CNGとガソリンとの混合割合及び点火プラグ3の点火時期を、CNGとガソリンとの混合割合が第二所定混合割合R2に達するまでの範囲内で、フィードバック制御する。しかしながら、点火プラグ3の点火不良が検出された場合に、CNGとガソリンとの混合割合を初めから第二所定混合割合R2に制御してもよい。この場合、点火プラグ3の点火時期も初めから該第二所定混合割合R2に対応する第二所定点火時期に制御する。
 図4は、本実施例に係る、第二の燃料混合割合及び点火時期の制御のフローを示すフローチャートである。本フローは、ガソリンのみが内燃機関1に供給されるガソリン燃焼が行われている時に点火不良が生じた場合の燃料混合割合及び点火時期の制御のフローを示している。本フローは、ECU20に予め記憶されており、ECU20によって所定の間隔で繰り返し実行される。
 本フローでは、先ずステップS201において、ガソリン燃焼が行われているか否が判別される。ステップS201において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS201において肯定判定された場合、次にステップS202において、点火プラグ3による混合気への点火不良が発生したか否かが判別される。該ステップS202の処理内容は、図3に示すフローチャートのステップS102の処理内容と同様である。
 ステップS202において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS202において肯定判定された場合、次にステップS203において、現時点の内燃機関1の運転状態に基づいて第二所定混合割合R2及び第二所定点火時期Tig2が算出される。上述したように、第二所定混合割合R2は、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係を示すマップ上において、要求放電電圧Vdeが最低値となるときのCNGとガソリンとの混合割合である。また、第二所定点火時期Tig2は、該第二所定混合割合に対応した点火プラグ3の点火時期である。
 ステップS203においては、第二所定混合割合R2及び第二所定点火時期Tig2は、図3に示すフローチャートのステップS103において第一所定混合割合R1及び第一所定点火時期Tig1が算出される場合と同様、ECU20に記憶された、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係を示すマップから算出される。
 次に、ステップS204において、CNGとガソリンとの両方が内燃機関1に供給される混合燃焼が開始される。このとき、CNGとガソリンとの混合割合が第二所定混合割合R2に制御され、点火プラグ3による点火時期が第二点火時期Tig2に制御される。これによって、要求放電電圧が低下する。そして、要求放電電圧が点火プラグ3への印加電圧よりも一定値低い電圧以下となれば、点火不良が解消される。
 次に、ステップS205において、点火不良が解消されたか否かが判別される。該ステップS205の処理内容は、図3に示すフローチャートのステップS105の処理内容と同様である。ステップS205において肯定判定された場合、本フローの実行は一旦終了される。一方、ステップS205において否定判定された場合、次にステップS206において、内燃機関1を搭載した車両の運転者等に対して点火プラグ3の交換や修理等を促すための警告が警告表示部30に表示される。該ステップS206の処理内容は、図3に示すフローチャートのステップS107の処理内容と同様である。
 上述したように、ガソリンとCNGとの混合割合をある割合に制御すると共に点火プラグ3の点火時期をその混合割合に対応した時期に制御すると、要求放電電圧Vdeが、ガソリン燃焼時よりも低くなる場合がある。上記フローによれば、ガソリン燃焼時に点火不良が生じた場合に、混合燃焼に切り換えることで、要求放電電圧を可及的に低下させる。これにより、要求放電電圧を点火プラグ3への印加電圧よりも一定値低い電圧以下まで低下させることで、点火不良を解消することができる。
 尚、上記各フローのようにCNG燃焼又はガソリン燃焼を行っているときに点火不良が生じた場合のみならず、混合燃焼を行っているときに点火不良が生じた場合も、CNGとガソリンの混合比率及び点火プラグ3の点火時期を制御し、それによって要求放電電圧を点火プラグ3への印加電圧よりも一定値低い電圧以下まで低下させることで、点火不良を解消することができる。
 本実施例においては、図3に示すフローチャートのステップS104及びS108の処理を実行するECU20、又は、図4に示すフローチャートのステップS204の処理を実行するECU20が、本発明に係る混合割合制御部及び点火時期制御部に相当する。また、図3に示すフローチャートのステップS102の処理を実行するECU20、又は、図4に示すフローチャートのステップS202の処理を実行するECU20が、本発明に係る点火不良検出部に相当する。
 <実施例2>
 [燃料混合割合及び点火時期の制御]
 本実施例に係る内燃機関とその燃料系及び吸排気系との概略構成は実施例1に係る内燃機関とその燃料系及び吸排気系との概略構成と同様である。内燃機関1においては、同一運転状態且つ同一燃料であっても、点火プラグ3の劣化度合いが高くなるほど、要求放電電圧が高くなるため、点火不良が生じ易くなる。そこで、本実施例においては、点火プラグ3の劣化度合いがある程度以上高くなると、内燃機関1の運転状態が要求放電電圧が比較的高い運転状態となった時に、燃料混合割合及び点火時期を制御することで、要求放電電圧を低下させる。
 図5は、本実施例に係る、燃料混合割合及び点火時期の制御のフローを示すフローチャートである。本フローは、ECU20に予め記憶されており、ECU20によって所定の間隔で繰り返し実行される。
 本フローでは、先ずステップS301において、CNG燃焼が行われているか否が判別される。ステップS301において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS301において肯定判定された場合、次にステップS302において、点火プラグ3の劣化度合いDLが所定の劣化度合いDL0以上であるか否かが判別される。
 点火プラグ3の劣化度合いDLが所定の劣化度合いDL0以上であるか否かは、該劣化度合いDLと相関の高いパラメータの値が所定の閾値以上となったか否かに基づいて判別してもよい。点火プラグ3の劣化度合いDLと相関の高いパラメータとしては、CNG燃焼の積算時間、内燃機関1を搭載した車両の走行距離、又は高負荷運転時間の積算値等を例示することができる。
 ステップS302において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS302において肯定判定された場合、次にステップS303において、現時点の内燃機関1の運転状態が所定の高要求放電電圧領域に属するか否かが判別される。
 図6は、高負荷運転時における、内燃機関1の機関回転速度と要求放電電圧との関係を示す図である。図6において、横軸は内燃機関1の機関回転速度Neを表しており、縦軸は要求放電電圧Vdeを表している。図6に示すように、機関回転速度が低いほど要求放電電圧Vdeは高い。図6においては、斜線部が所定の高要求放電電圧領域に相当する。また、要求放電電圧は機関負荷に応じても変化する。即ち、機関負荷が高いほど要求放電電圧は高い。そのため、実際には、所定の高要求放電電圧領域は、機関回転数及び機関負荷をパラメータとする三次元マップ上に定められている。ステップS303においては、該マップを用いて、内燃機関1の運転状態が所定の高要求放電電圧領域に属するか否かが判別される。
 尚、所定の劣化度合いDL0(又は、劣化度合いDLと相関の高いパラメータについての所定の閾値)及び所定の高要求放電電圧領域は、点火プラグ3の劣化度合いDLが該所定の劣化度合いDL0以上の時に、内燃機関1の運転状態が該所定の高要求放電電圧領域に属すると、混合気への点火不良が生じ易い、と判断できる劣化度合い及び運転領域として実験等に基づいて予め定められ、ECU20に記憶されている。
 ステップS303において否定判定された場合、本フローの実行は一旦終了される。一方、ステップS303において肯定判定された場合、次にステップS304において、現時点の内燃機関1の運転状態に基づいて第二所定混合割合R2及び第二所定点火時期Tig2が算出される。上述したように、第二所定混合割合R2は、要求放電電圧Vdeと、CNGとガソリンとの混合割合及び点火プラグ3の点火時期Tigとの関係を示すマップ上において、要求放電電圧Vdeが最低値となるときのCNGとガソリンとの混合割合である。また、第二所定点火時期Tig2は、該第二所定混合割合に対応した点火プラグ3の点火時期である。該ステップS304の処理内容は、図4に示すフローチャートのステップS203の処理内容と同様である。
 次に、ステップS305において、CNGとガソリンとの両方が内燃機関1に供給される混合燃焼が開始される。このとき、CNGとガソリンとの混合割合が第二所定混合割合R2に制御され、点火プラグ3による点火時期が第二点火時期Tig2に制御される。これによって、要求放電電圧が低下する。該ステップS305の処理内容は、図4に示すフローチャートのステップS204の処理内容と同様である。
 上記フローによれば、点火不良が発生し易いときには、要求放電電圧を可及的に低下させる。従って、点火不良の発生を可及的に抑制することができる。
 尚、上記フローにおいて、CNGとガソリンとの混合燃焼を開始するときには、CNGとガソリンの混合割合を第一所定混合割合R1に制御し、点火プラグ3の点火時期を第一点火時期Tig1に制御してもよい。上述したように、第一所定混合割合R1及び第一所定点火時期Tig1は、要求放電電圧がガソリン燃焼時と同等となるCNGとガソリンとの混合割合及び点火プラグ3による点火時期である。このように制御した場合でも、要求放電電圧を低下させることができるため、点火不良の発生を抑制することができる。ただし、CNGとガソリンの混合割合を第二所定混合割合R2に制御し、点火プラグ3の点火時期を第二点火時期Tig2に制御した方が、要求放電電圧をより低くすることができるため、点火不良をより高い確率で抑制することが可能となる。
 また、CNG燃焼時はガソリン燃焼時に比べて点火プラグ3の劣化度合いが促進し易い。そのため、上記フローでは、CNG燃焼時において、点火プラグ3の劣化度合いDLが所定の劣化度合いDL0以上となった時に、内燃機関1の運転状態が高要求放電電圧領域に属する場合に、混合燃焼を開始して要求放電電圧を低下させた。しかしながら、ガソリン燃焼時に点火プラグ3の劣化度合いDLが所定の劣化度合いDL0以上となった時に、同様の制御を行ってもよい。これによれば、ガソリン燃焼時における点火不良の発生を可及的に抑制することができる。
 本実施例においては、図5に示すフローチャートのステップS305の処理を実行するECU20が、本発明に係る混合割合制御部及び点火時期制御部に相当する。また、図5に示すフローチャートのステップS302の処理を実行するECU20が、本発明に係る劣化判別部に相当する。
 [その他の実施例]
 上記実施例1及び2では、内燃機関1の燃料をCNG及びガソリンとした。しかしながら、本発明は、他の燃料を使用する多種燃料内燃機関にも適用することができる。ガス燃料は液体燃料に比べて比誘電率が低く且つ燃焼速度が低い。従って、CNG以外のガス燃料とガソリン以外の液体燃料とを使用する多種燃料内燃機関にも本発明を適用することができる。CNG以外のガス燃料としては、水素ガス又はLPG等を例示することができる。また、ガソリン以外の液体燃料としては、メタノール又はエタノール等を例示することができる。また、ガス燃料と液体燃料との組み合わせ以外でも、比誘電率及び燃焼速度が異なる燃料を組み合わせて使用する多種燃料内燃機関であれば、本発明を適用することができる。
 また、上記実施例1及び2は組み合わせることができる。
1・・・内燃機関
2・・・気筒
3・・・点火プラグ
8・・・ガソリンインジェクタ
9・・・CNGインジェクタ
10・・ガソリン用デリバリーパイプ
11・・CNG用デリバリーパイプ
15・・CNG供給通路
16・・CNGタンク
20・・ECU
27・・空燃比センサ
28・・クランク角センサ

Claims (3)

  1.  複数種類の燃料を混合燃焼させることで運転可能な多種燃料内燃機関の制御装置であって、
     気筒内の混合気への点火を行う点火プラグと
     複数種類の燃料の混合割合を制御する混合割合制御部と
     複数種類の燃料の混合割合に基づいて前記点火プラグの点火時期を制御する点火時期制御部と、を備え、
     要求放電電圧が前記点火プラグへの印加電圧よりも一定値低い電圧以下となるように、前記混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に前記点火時期制御手段によって前記点火プラグの点火時期を制御する多種燃料内燃機関の制御装置。
  2.  気筒内の混合気への点火不良を検出する点火不良検出部をさらに備え、
     前記点火不良検出部によって点火不良が検出された場合、前記混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に前記点火時期制御手段によって前記点火プラグの点火時期を制御することで、要求放電電圧を低下させる請求項1に記載の多種燃料内燃機関の制御装置。
  3.  前記点火プラグの劣化度合いが所定の劣化度合い以上であるか否かを判別する劣化判別部をさらに備え、
     前記劣化判別部によって前記点火プラグの劣化度合いが前記所定の劣化度合い以上であると判定された場合に、多種燃料内燃機関の運転状態が所定の高要求放電電圧領域に属する時は、前記混合割合制御手段によって複数種類の燃料の混合割合を制御すると共に前記点火時期制御手段によって前記点火プラグの点火時期を制御することで、要求放電電圧を低下させる請求項1又は2に記載の多種燃料内燃機関の制御装置。
PCT/JP2011/054196 2011-02-24 2011-02-24 多種燃料内燃機関の制御装置 WO2012114500A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180068532.3A CN103415687B (zh) 2011-02-24 2011-02-24 多燃料内燃机的控制装置
US14/001,259 US9200611B2 (en) 2011-02-24 2011-02-24 Control apparatus for a multi-fuel internal combustion engine
JP2013500790A JP5556952B2 (ja) 2011-02-24 2011-02-24 多種燃料内燃機関の制御装置
BR112013021760A BR112013021760A2 (pt) 2011-02-24 2011-02-24 aparelho de controle para um motor de combustão interna de múltiplos combustíveis
EP11859155.1A EP2679788A4 (en) 2011-02-24 2011-02-24 Control device for various types of fuel internal combustion engines
PCT/JP2011/054196 WO2012114500A1 (ja) 2011-02-24 2011-02-24 多種燃料内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054196 WO2012114500A1 (ja) 2011-02-24 2011-02-24 多種燃料内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012114500A1 true WO2012114500A1 (ja) 2012-08-30

Family

ID=46720317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054196 WO2012114500A1 (ja) 2011-02-24 2011-02-24 多種燃料内燃機関の制御装置

Country Status (6)

Country Link
US (1) US9200611B2 (ja)
EP (1) EP2679788A4 (ja)
JP (1) JP5556952B2 (ja)
CN (1) CN103415687B (ja)
BR (1) BR112013021760A2 (ja)
WO (1) WO2012114500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183615A (ja) * 2015-03-26 2016-10-20 株式会社豊田自動織機 エンジンの点火装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140366840A1 (en) * 2013-06-17 2014-12-18 Caterpillar Motoren GmbH & Co. KG. Fuel Apportionment for Multi Fuel Engine System
US10323586B1 (en) 2017-12-20 2019-06-18 Caterpillar Inc. Dual fuel engine control strategy for limiting cylinder over-pressurization
WO2020236154A1 (en) 2019-05-21 2020-11-26 Cummins Inc. Variable energy ignition methods, systems, methods, and apparatuses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270750A (ja) 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc ガス燃料内燃機関
JP2008121489A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp 内燃機関の制御装置
JP2009024594A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp 点火制御装置およびこれを備えた車両制御装置
JP2009174354A (ja) * 2008-01-22 2009-08-06 Toyota Motor Corp 燃料噴射装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283860A (ja) * 1989-04-24 1990-11-21 Nissan Motor Co Ltd エンジンの点火時期制御装置
US4995367A (en) * 1990-06-29 1991-02-26 Hitachi America, Ltd. System and method of control of internal combustion engine using methane fuel mixture
US6298825B1 (en) * 1998-11-27 2001-10-09 Fev Motorentechnik Gmbh Method for igniting a multi-cylinder reciprocating gas engine by injecting an ignition gas
JP4372472B2 (ja) * 2003-08-07 2009-11-25 トヨタ自動車株式会社 内燃機関
US7823562B2 (en) * 2008-05-16 2010-11-02 Woodward Governor Company Engine fuel control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270750A (ja) 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc ガス燃料内燃機関
JP2008121489A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp 内燃機関の制御装置
JP2009024594A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp 点火制御装置およびこれを備えた車両制御装置
JP2009174354A (ja) * 2008-01-22 2009-08-06 Toyota Motor Corp 燃料噴射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679788A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183615A (ja) * 2015-03-26 2016-10-20 株式会社豊田自動織機 エンジンの点火装置

Also Published As

Publication number Publication date
BR112013021760A2 (pt) 2016-10-18
US9200611B2 (en) 2015-12-01
JP5556952B2 (ja) 2014-07-23
CN103415687B (zh) 2015-12-16
EP2679788A4 (en) 2017-04-05
US20130327294A1 (en) 2013-12-12
JPWO2012114500A1 (ja) 2014-07-07
CN103415687A (zh) 2013-11-27
EP2679788A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US7077105B2 (en) Spark ignition internal combustion engine
JP5569644B2 (ja) 多種燃料内燃機関の燃料供給制御システム
JP6684492B2 (ja) 二元燃料エンジンおよび制御方法
CN107489556B (zh) 内燃机的控制装置
JP2006329158A (ja) 火花点火式筒内噴射型内燃機関の制御装置
JP2009114973A (ja) 内燃機関の始動制御装置
KR101542540B1 (ko) 과급기 부착 내연 기관의 제어 장치
JP5556952B2 (ja) 多種燃料内燃機関の制御装置
WO2013027276A1 (ja) 多種燃料内燃機関の制御システム
JP4924580B2 (ja) 内燃機関制御装置
JP2010133367A (ja) 筒内噴射内燃機関の燃料噴射制御装置
JP2007285195A (ja) 内燃機関の着火時期制御システム
JP2016130473A (ja) 内燃機関の制御装置
JP2018105191A (ja) 内燃機関の制御装置
JP2007270750A (ja) ガス燃料内燃機関
JP5728818B2 (ja) ガス燃料エンジンの制御装置
JP6169512B2 (ja) 内燃機関の燃料供給制御装置
JP4136555B2 (ja) 内燃機関の燃料供給装置
JP2011132930A (ja) ガス燃料内燃機関の点火システム
JP2008064055A (ja) 複数燃料内燃機関の燃料噴射制御装置
JP2008133794A (ja) 燃料噴射量制御装置
JP2014190311A (ja) バイフューエル内燃機関の燃料噴射制御装置
JP2005201178A (ja) 多種燃料機関
JP2009174354A (ja) 燃料噴射装置
JP2016217299A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500790

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001259

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301004720

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011859155

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013021760

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013021760

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130826