WO2012114407A1 - アルカリ二次電池 - Google Patents

アルカリ二次電池 Download PDF

Info

Publication number
WO2012114407A1
WO2012114407A1 PCT/JP2011/006799 JP2011006799W WO2012114407A1 WO 2012114407 A1 WO2012114407 A1 WO 2012114407A1 JP 2011006799 W JP2011006799 W JP 2011006799W WO 2012114407 A1 WO2012114407 A1 WO 2012114407A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc alloy
zinc
battery
indium
secondary battery
Prior art date
Application number
PCT/JP2011/006799
Other languages
English (en)
French (fr)
Inventor
布目 潤
加藤 文生
真知子 築地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012520848A priority Critical patent/JPWO2012114407A1/ja
Priority to US13/580,295 priority patent/US20140186711A1/en
Publication of WO2012114407A1 publication Critical patent/WO2012114407A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline secondary battery having high leakage resistance.
  • alkaline batteries which are primary batteries
  • the performance as the secondary battery may not be sufficiently obtained.
  • Patent Document 1 improves cycle characteristics while suppressing self-discharge by using a negative electrode in which a composite zinc oxide of zinc, indium, bismuth, and the like is added to a zinc alloy containing indium, bismuth, and the like.
  • An alkaline secondary battery is described.
  • an alkaline dry battery that is a primary battery when used as a secondary battery, it is effective to improve the performance of the alkaline dry battery itself in order to improve the performance of the secondary battery.
  • the content of metals such as aluminum and indium in the zinc alloy and the content of zinc alloy having a predetermined particle size are defined within predetermined ranges, respectively.
  • the technique is described in Patent Document 2.
  • Patent Document 3 describes a technique for defining the aspect ratio of zinc alloy particles within a predetermined range.
  • alkaline batteries which are primary batteries, are used in the zinc alloy in terms of the balance between gas generation suppression and discharge performance, the content of metals such as aluminum and indium in the zinc alloy, the aspect ratio of the zinc particles, and the particles of a predetermined size.
  • the ratio of zinc alloy with a diameter is determined.
  • the content of bismuth in the zinc alloy is 100 ppm or less, the content of indium is 400 ppm or less, the aspect ratio of the zinc alloy particles is about 1.8, and the particle size is 75 ⁇ m or less.
  • a zinc alloy having a zinc alloy ratio of 20 to 40% by mass is generally used as a negative electrode agent for alkaline batteries.
  • the main objective is to provide the alkaline secondary battery which suppressed generation
  • the alkaline battery according to the present invention is an alkaline secondary battery having a gelled negative electrode containing a zinc alloy powder, wherein the zinc alloy powder has a particle shape aspect ratio in the range of 2.0 to 2.4.
  • the alloy contains 150 to 350 ppm of bismuth and 600 to 1500 ppm of indium.
  • the mass ratio of bismuth to indium in the zinc alloy is in the range of 1: 3 to 1: 6.
  • the zinc alloy powder preferably contains particles having a particle size of 75 ⁇ m or less in a proportion of 5 to 18% by mass.
  • the alkaline secondary battery which suppressed generation
  • the inventors of the present application examined the cause of a large amount of gas generated after a charge / discharge cycle and led to leakage when charging / discharging an alkaline dry battery having a zinc alloy powder as a negative electrode, and obtained the following knowledge. .
  • indium which has a strong effect of increasing the hydrogen overvoltage, moves in the positive electrode direction when charging and discharging are repeated, and a portion having almost no indium is generated in a certain portion in the negative electrode.
  • the gelled negative electrode of the alkaline secondary battery of the present invention contains a zinc alloy powder, and zinc related to the zinc alloy powder acts as a negative electrode active material.
  • the aspect ratio of the shape of the zinc alloy particles that is, the ratio of the length of the zinc alloy particles to the long side to the short side is in the range of 2.0 to 2.4.
  • a so-called atomization method is generally used in which a high-pressure gas is jetted into molten zinc to be powdered.
  • the oxygen concentration of the injection gas and the particle cooling part is adjusted, or the adjustment of the injection pressure and the nozzle shape, or the injected molten zinc is applied to the plate, etc.
  • the aspect ratio was controlled by adjusting the oxygen concentration in the particle cooling section, the injection nozzle, and the injection pressure.
  • the aspect ratio defined in the present invention refers to the length of the long diameter (longest diameter in the powder) and the short diameter (diameter orthogonal to the longest diameter in the powder) of the zinc alloy powder, and the long diameter is divided by the short diameter. Value.
  • the aspect ratio of the zinc particles is smaller than 2.0, the particles are nearly spherical and the reaction surface area from the beginning is insufficient. In addition, the contact between the particles is insufficient and the performance is deteriorated. Further, the contact between the particles is insufficient even during charging, so that the reaction is not uniform in the negative electrode, and the shape change of the zinc particles proceeds.
  • the aspect ratio is larger than 2.4
  • the action of releasing additional elements such as indium inside the zinc particles is remarkable when the aspect ratio is larger than 2.4.
  • the amount of bismuth and indium is reduced.
  • the zinc alloy powder is composed of a zinc alloy containing bismuth, which is an alloy element, in an initial state of 150 ppm to 350 ppm, and a zinc alloy containing indium of 600 ppm to 1500 ppm.
  • the mass ratio of bismuth and indium (bismuth: indium), which is an alloy element, is preferably in the range of 1: 3 to 1: 6.
  • the reason for this is considered to be that bismuth and indium eluted out of the zinc particles by discharge are likely to return to the inside of the deposited zinc when the ratio is a specific ratio.
  • the ratio of particles having a particle diameter of 75 ⁇ m or less in the zinc alloy powder is in the range of 5 to 18% by mass. If the fine powder of the zinc alloy is in the above range, the shape and surface area of zinc re-deposited after charge and discharge are appropriate, and the gas generation rate is considered to be smaller.
  • the zinc alloy powder may contain alloy elements other than bismuth and indium. For example, aluminum, calcium, lead, etc. are mentioned. When lead is contained in an amount of 10 to 30 ppm, the gas generation rate is the smallest and preferable.
  • the positive electrode contains 9.1 g or more of manganese dioxide
  • the negative electrode contains 3.6 g or more of zinc alloy
  • the particle diameter of the zinc alloy powder according to the present invention means a particle diameter obtained by classification with a sieve. That is, the above-mentioned “particles having a particle size of 75 ⁇ m or less” means particles that can pass through a standard sieve having a side of an opening of 75 ⁇ m.
  • the aspect ratio of the shape of the zinc alloy powder can be measured by the following method.
  • Zinc particles were classified with three types of sieves of 48, 100, and 200 mesh, and particles between 48 and 100 mesh and 100 to 200 mesh were observed using an electron microscope. From the obtained photograph (two-dimensional image), the length of the long diameter (longest diameter in the powder) and the short diameter (diameter orthogonal to the longest diameter in the powder) of 10 zinc alloy powders are obtained. The value obtained by dividing the major axis by the minor axis was the particle aspect ratio between 48 and 100 mesh and between 100 and 200 mesh, and the average of all of them was the aspect ratio of the zinc alloy powder of the present invention.
  • the negative electrode according to the alkaline battery of the present invention is a gelled negative electrode, and contains a gelling agent and an alkaline electrolyte in addition to the zinc alloy powder.
  • the gelling agent is not particularly limited, and various polymer gelling agents such as carboxymethylcellulose, polyacrylic acid, sodium polyacrylate and the like used in known alkaline batteries can be used.
  • the content of the gelling agent in the gelled negative electrode is preferably 1.0 to 2.5% by mass with respect to the zinc alloy, for example.
  • the gelled negative electrode may contain other additives.
  • powders of indium oxide, indium hydroxide, and aluminum hydroxide can be mixed and dissolved during the preparation of the gelled negative electrode.
  • an organic surfactant may be added.
  • the alkaline electrolyte is the same as the alkaline electrolyte used in known alkaline batteries having a gelled negative electrode (for example, an aqueous solution of an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide). ) Can be used.
  • the alkali concentration may be the same as that of a conventionally known alkaline battery. For example, it is preferably 33 to 39% by mass.
  • the alkaline electrolyte may contain zinc oxide, preferably 2 to 10% by mass.
  • the ratio of the alkaline electrolyte to the zinc alloy in the gelled negative electrode is preferably 40 to 58% by mass, and particularly preferably 48 to 54% by mass.
  • the gelled negative electrode can be prepared, for example, by a method in which a zinc alloy powder is mixed with an alkaline electrolyte previously gelled using the above gelling agent.
  • a zinc alloy powder When using the above-mentioned indium compound, it may be mixed with zinc alloy powder in advance, and then mixed with gel-like alkaline electrolyte, and zinc alloy powder, gel-like alkaline electrolyte and You may add at the time of mixing.
  • the gelled negative electrode may be prepared by methods other than these.
  • the alkaline secondary battery of the present invention is characterized in that it has a negative electrode containing the above-mentioned zinc alloy, and there are no particular restrictions on other configurations, and known alkaline batteries (alkaline primary batteries) Each configuration adopted in (including) can be used.
  • manganese dioxide is used as a main active material, and nickel oxyhydroxide, silver oxide, silver nickel oxide and the like can be used.
  • Manganese dioxide may be electrolytic manganese dioxide, natural manganese dioxide, or natural manganese dioxide that has been chemically treated.
  • polyethylene or the like may be added as a binder, and metatitanic acid or titanium dioxide may be mixed as an additive. The amount added may be such that the amount of the main active material is not significantly reduced, for example, about 0.1 to 1% by mass.
  • the separator may be a non-woven fabric of vinylon or rayon as used in conventional alkaline batteries, or may be a microporous film such as cellophane, a graphite polymer film, or a polyolefin.
  • the most typical effect of the present invention can be confirmed in the size of the AA alkaline battery.
  • the mass of manganese dioxide contained in the battery is 9.4 g
  • the mass of the zinc alloy is 3.8 g
  • the liquid mass is 1.75 ml.
  • a battery having a good balance with high discharge performance and excellent leakage resistance after charge and discharge when 9.1 g or more of manganese dioxide and 3.6 g or more of a zinc alloy and 1.75 ml of electrolyte are included. Can be configured.
  • FIG. 1 is a partial cross-sectional view schematically showing an alkaline secondary battery according to an embodiment of the present invention.
  • a hollow cylindrical positive electrode 2 containing manganese dioxide is accommodated so as to be inscribed.
  • a gelled negative electrode 3 containing a zinc alloy is disposed via a separator 4 made of a bottomed cylindrical porous film.
  • the positive electrode 2, the gelled negative electrode 3, and the separator 4 contain an alkaline electrolyte made of an alkaline aqueous solution.
  • the opening of the battery case 1 has a thin-walled portion that functions as a safety valve, and a negative electrode terminal 7 that is electrically connected to the nail-type negative electrode current collector 6 after housing power generation elements such as the positive electrode 2 and the gelled negative electrode 3. Sealing is performed by a sealing unit 9 integrated with a resin gasket 5 having 5a.
  • the outer surface of the battery case 1 is covered with an exterior label 8.
  • a gel-like alkaline electrolyte was prepared by adding 1.0% by mass of polyacrylic acid and sodium polyacrylate to the alkaline electrolyte. To this, indium hydroxide was added so as to be 0.05% with respect to the zinc alloy.
  • the zinc alloy powder has a particle shape aspect ratio of 2.0, is composed of a zinc alloy containing aluminum: 50 ppm, bismuth: 250 ppm, indium: 1000 ppm, and the ratio of the particle size of 75 ⁇ m or less is 12% by mass. I prepared something.
  • the gelled alkaline electrolyte and the zinc alloy powder were mixed at a mass ratio of 100: 185 to prepare a gelled negative electrode 3.
  • electrolytic manganese dioxide was used as an active material, and this manganese dioxide and graphite were mixed at a mass ratio of 94: 6 and formed into a ring shape.
  • a battery 1 (AA alkaline secondary battery) having the structure shown in FIG. 1 was produced.
  • the mass of manganese dioxide contained in the battery of this example was 9.4 g, the mass of the zinc alloy was 3.8 g, and the mass of the total electrolyte was 1.75 ml.
  • the charge / discharge test was as follows. Discharge is performed continuously at 100 mA up to 1.0 V, and after a rest time of 1 hour, charging is performed at 1.9 V constant voltage control and a maximum current value of 250 mA.
  • the charge termination condition is a point in time when the current value reaches 25 mA, and an idle time of 1 hour is provided after the charge termination, which is defined as one cycle. This discharging / charging cycle was repeated 10 times. Charging and discharging were performed in a 20 ° C. environment.
  • the glass jig is filled with liquid paraffin, and the battery is submerged in the liquid paraffin, so that the gas emitted from the battery can be collected in the glass jig and weighed so that the volume can be measured.
  • a jig provided with a scale was used.
  • the battery was placed in this jig and allowed to stand for 14 hours before starting measurement, and the amount of gas increase per battery after 5 days was measured in an atmosphere at 25 ° C.
  • the average amount of gas generated over 5 days was expressed in ml / day, and the average value of the three batteries was obtained.
  • the aspect ratio of zinc particles is in the range of 2.0 to 2.4 and the indium concentration in the zinc alloy is 1000 ppm
  • the bismuth concentration in the zinc alloy is related to the gas generation rate, and the bismuth concentration is 150 It was found that the gas generation rate was small at ⁇ 350 ppm.
  • the batteries 8, 13 and 18 having a bismuth concentration of less than 150 ppm have a high gas generation rate. It was found that the batteries 12, 17, and 22 having a bismuth concentration of greater than 350 ppm had a high gas generation rate.
  • (5) Indium concentration in the zinc alloy Next, as shown in Table 3, the aspect ratio of the zinc particles was 2.0.
  • the batteries 23 to 37 were produced under the same conditions as the battery 1 except that the indium concentration in the zinc alloy was changed within the range of from 2.4 to 2.4. Table 3 shows the results of the charge / discharge test.
  • the indium concentration in the zinc alloy is related to the gas generation rate, and the indium concentration is 600. It was found that the gas generation rate was small at ⁇ 1500 ppm. On the other hand, in the batteries 23, 28 and 33 having an indium concentration of less than 600 ppm, the gas generation rate is high. It has been found that the batteries 27, 32, and 37 having an indium concentration of more than 1500 ppm have a high gas generation rate.
  • the aspect ratio of zinc particles is as small as 1.6 as in battery 1 and battery 38, or the aspect ratio of zinc particles is as 2.7 as in battery 7 and battery 39.
  • the gas generation rate was high even if the bismuth concentration and the indium concentration were within the appropriate ranges.
  • the aspect ratio, the bismuth concentration, and the indium concentration of the zinc particles are closely related to the gas generation rate after charge / discharge, and if both are within the appropriate range, the gas Although the generation rate is small, if any of the aspect ratio, bismuth concentration, and indium concentration is out of the appropriate range, the gas generation rate becomes higher than 0.25 ml / day, and the possibility of liquid leakage increases.
  • the gas generation rate increases. If the aspect ratio is too large as in the case of the battery 7 or the battery 39, the deformation of zinc in the charging / discharging process is large, the pulverization progresses, and the segregation of additive elements such as bismuth and indium progresses, so the gas generation rate increases. In addition, when the aspect ratio is too small as in the battery 1 or the battery 38, the electronic contact is poor in the charge / discharge process, and the reaction becomes nonuniform in the electrode. As a result, the deformation and pulverization of zinc progresses partially, and the segregation of additive elements such as bismuth and indium also progresses in that part, thereby increasing the gas generation rate.
  • Bismuth or indium originally tends to be present at grain boundaries in alloying with zinc. Therefore, since the deformation of zinc in the charge / discharge process is preferentially dissolved from the grain boundary, it is segregated outside the grain rather than inside the grain or grain boundary part even if it is precipitated again. However, when bismuth and indium are in a certain ratio, it is considered that the segregation is small in the charge / discharge process because they are easily dispersed uniformly by the three of zinc and are relatively easily present inside the particles.
  • the gas generation rate after the charge / discharge test is small and preferable.
  • the rate of gas generation in the batteries 41 to 43, the batteries 46 to 48, and the batteries 51 to 53 is smaller than that in the case where the ratio of particles of 75 ⁇ m or less is small as in the batteries 40, 45, and 50.
  • the amount of fine zinc particles as the core is appropriate and the amount of zinc in the ultrafine state that is deposited directly on zinc from the state of zincate ions dissolved in the electrolyte decreases, the gas generation rate decreases. Conceivable.
  • the batteries 41 to 43, the batteries 46 to 48, and the batteries 51 to 53 have a lower gas generation rate and are appropriate than the batteries 44, 49, and 54.
  • the alkaline secondary battery according to the present invention is useful as an alkaline secondary battery having excellent leakage resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、亜鉛合金粉末を含むゲル状負極(3)を有するアルカリ二次電池に関する。 現在、アルカリ乾電池は、ガス発生抑制と放電性能のバランスの観点から、前記亜鉛合金中のアルミ、インジウム等の含有率、前記亜鉛合金粉末のアスペクト比、及び、所定の大きさの粒径の前記亜鉛合金粉末の割合等が定められているが、近年、環境意識の高まりから、アルカリ乾電池を、二次電池のように、充放電使用することが要望されている。 しかし、このようなアルカリ乾電池を充放電した場合、充放電サイクル後のガス発生量が非常に多くなり、漏液に至る場合があるという問題がある。本発明は、前記アルカリ二次電池において、前記亜鉛合金粉末のアスペクト比を2.0~2.4 の範囲にするとともに、前記亜鉛合金の中にビスマスを150~350ppm、インジウムを600~1500ppm 含有させることで、上記問題の解決を図ったものである。

Description

アルカリ二次電池
 本発明は、耐漏液性の高いアルカリ二次電池に関するものである。
 近年、環境意識の高まりから、一次電池であるアルカリ乾電池を充放電使用したいという要望がある。使用後のアルカリ乾電池を充電して再利用することは可能ではあるが、一次電池として設計されたアルカリ乾電池をそのまま充放電使用すると、二次電池としての性能が十分に得られない場合がある。
 例えば、一次電池で使用したアルカリ乾電池を二次電池として使用した場合、十分なサイクル特性が得られないという問題がある。
 そこで、特許文献1には、インジウムやビスマス等を含む亜鉛合金に、亜鉛とインジウム、ビスマス等との複合亜鉛酸化物を添加した負極を用いることによって、自己放電を抑制しつつ、サイクル特性を改善したアルカリ二次電池が記載されている。
 一方、一次電池であるアルカリ乾電池を二次電池として使用する場合、二次電池の性能を向上させるためには、アルカリ乾電池自身の性能を向上させることが有効である。
 例えば、アルカリ乾電池の放電特性を向上させる対策として、亜鉛合金中のアルミニウム、インジウム等の金属の含有率と、所定の大きさの粒径の亜鉛合金の含有率を、それぞれ所定の範囲に規定する技術が、特許文献2に記載されている。
 また、亜鉛合金粉末の流動性を向上させる対策として、亜鉛合金粒子のアスペクト比を、所定の範囲に規定する技術が、特許文献3に記載されている。
特開平11-176467号公報 特開2007-128707号公報 特開平09-235636号公報
 現在、一次電池であるアルカリ乾電池は、ガス発生抑制と放電性能のバランスの観点から、亜鉛合金中のアルミニウム、インジウム等の金属の含有率、亜鉛粒子のアスペクト比、及び、所定の大きさの粒径の亜鉛合金の割合等が定められている。
 例えば、典型的な例を挙げれば、亜鉛合金中のビスマスの含有率を100ppm以下、インジウムの含有率を400ppm以下とし、亜鉛合金粒子のアスペクト比を約1.8とし、粒径が75μm以下の亜鉛合金の割合を20~40質量%とする亜鉛合金が、アルカリ乾電池の負極剤として、一般に使用されている。
 しかしながら、本願発明者等が検討したところ、このような亜鉛粒子を用いたアルカリ乾電池を充放電した場合、充放電サイクル後のガス発生量が非常に多くなり、漏液に至る場合があることが判明した。
 このようなアルカリ二次電池の充放電サイクル後の漏液を防止するには、例えば、アルカリ乾電池内の空間を増加させることによって、充放電後に大量にガスが発生しても、電池内圧の上昇を抑え、漏液しにくい構成にすることも考えられる。しかしながら、アルカリ二次電池をこのような構成にすると、放電性能を著しく低下させてしまうため、実施の商品には採用し難い。
 従来、このようなアルカリ二次電池の充放電サイクル後の漏液は、何ら考慮されていなかった。本願発明は、このような観点に鑑みなされたもので、その主な目的は、放電性能を維持しつつ、充放電サイクル後の漏液発生を抑制したアルカリ二次電池を提供することにある。
 本発明に係るアルカリ電池は、亜鉛合金粉末を含むゲル状負極を有するアルカリ二次電池であって、亜鉛合金粉末は、粒子形状のアスペクト比が2.0~2.4の範囲であり、亜鉛合金中にビスマスを150~350ppm、インジウムを600~1500ppm含有することを特徴とする。
 ある好適な実施形態において、亜鉛合金中のビスマスとインジウムとの質量比が、1:3~1:6の範囲にある。
 また、亜鉛合金粉末は、粒径が75μm以下の粒子が、5~18質量%の割合で含まれていることが好ましい。
 本発明によれば、亜鉛合金の粒子形状とその組成の両方を適正化することにより、充放電を繰り返しても、亜鉛粒子形状の変化や、添加元素の偏析が起こりにくいため、亜鉛からのガス発生を抑制することができる。これにより、放電性能を維持しつつ、充放電サイクル後の漏液発生を抑制したアルカリ二次電池を提供することができる。
本発明の一実施形態におけるアルカリ二次電池の構成を示した部分断面図である。
 本願発明者等は、亜鉛合金粉末を負極とするアルカリ乾電池を充放電したとき、充放電サイクル後にガスが大量に発生して、漏液に至る原因を検討し、以下のような知見を得た。
 亜鉛合金粉末を負極とするアルカリ乾電池を放電すると、亜鉛合金粒子は溶解し酸化亜鉛となり、次に充電する際には金属亜鉛として析出する。しかし、その場合、元の亜鉛合金粉末と全く同様な状態には戻らない。すなわち、金属亜鉛の形状が変化し、表面積は増加する方向となる。その結果、元の亜鉛合金粉末の内部に、耐食性向上のために添加していたビスマスやインジウム等の元素が、充放電の繰り返しにより、亜鉛結晶の外部に偏析すると考えられる。
 特に、水素過電圧を高める作用が強いインジウムは、充放電を繰り返すと、正極方向へ移動して行き、負極内のある部分には、殆んどインジウムが存在しない箇所が生成されると考えられる。
 このような現象から、充放電の回数を繰り返すほど、亜鉛合金の耐腐食性が低下し、これにより、水素ガスが大量に発生し、漏液に至ったものと考えられる。
 なお、このような知見から、亜鉛合金の耐腐食性を向上させるために、ビスマスやインジウム等の元素の添加量を単純に増加することを試みたが、充放電により、添加した元素が亜鉛結晶の外部に出てしまうため、あまり効果は得られなかった。
 また、金属亜鉛の形状変化に着目して、亜鉛粒子の形状を球形に近づけたり、逆に扁平度を高めたりすることも試みたが、それだけでは、あまり効果は得られなかった。
 さらに、一次電池であるアルカリ乾電池で亜鉛負極の腐食反応を抑える効果が期待できる有機あるいは無機の化合物を単純に添加することも試みたが、それだけでは、十分な効果は得られなかった。また、活物質以外の物質を過剰に添加することは、放電性能の著しい低下をもたらした。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 本発明のアルカリ二次電池のゲル状負極は、亜鉛合金粉末を含有しており、この亜鉛合金粉末に係る亜鉛が負極活物質として作用する。亜鉛合金粒子の形状のアスペクト比、すなわち、亜鉛合金粒子の長辺と短辺に対する長さの比が2.0~2.4の範囲である。
 亜鉛粒子の製造法は、亜鉛溶湯に高圧ガスを噴射して粉末化させるいわゆるアトマイズ法を用いるのが一般的である。この場合、亜鉛合金粒子の形状のアスペクト比を調整するために、噴射ガスや粒子冷却部の酸素濃度を調整する、あるいは、噴射圧力やノズル形状の調整、あるいは、噴射した溶融亜鉛を板などに当てるなどの方法がある。
 本発明では、粒子冷却部の酸素濃度と、噴射ノズル、噴射圧力を調整することによりアスペクト比を制御した。本発明で規定するアスペクト比とは、亜鉛合金粉末の長径(粉末中の最も長い径)の長さと、短径(粉末中の最も長い径に直交する径)を求め、長径を短径で割った値である。
 この亜鉛粒子のアスペクト比が2.0より小さいと、粒子が球形に近く、初期からの反応表面積が不足してしまう。また、粒子間の接触が不十分となり性能が低下するばかりか、充電時にも粒子間の接触が不十分なため負極内で反応が不均一となり、亜鉛粒子の形状変化が進む。
 また、亜鉛粒子内部のインジウムなどの添加元素の粒子外への放出作用においても、アスペクト比が2.4より大きいと、非表面積の大きな亜鉛粒子では顕著となり、充放電後に亜鉛粒子内部に残存しているビスマス、インジウムの量が少なくなる。
 上記亜鉛合金粉末は、初期状態において合金元素であるビスマスを150ppm以上350ppm以下で含有する亜鉛合金で構成されており、かつインジウムを600ppm以上1500ppm以下で含有する亜鉛合金で構成されている。
 亜鉛合金中のビスマス、およびインジウムの含有量が少なすぎると、初期からの亜鉛の耐食性が不足するばかりか、充放電後にも耐食性が不足し効果が十分に発現しない。また含有量が多すぎると、放電性能の低下や充電時の分極抵抗増大により電池の充放電性能を低下させる。
 また、合金元素であるビスマスとインジウムの質量比(ビスマス:インジウム)が、1:3から1:6の範囲であることが好ましい。この理由としては、放電によって亜鉛粒子外に溶出したビスマスとインジウムが、特定の比率である場合に、析出した亜鉛の内部に戻りやすいためと考えられる。
 また、上記亜鉛合金粉末の粒径が75μm以下の粒子の割合が5~18質量%の範囲であることが好ましい。亜鉛合金の微粉末が上記範囲であると、充放電後に再析出した亜鉛の形状や表面積が適性であり、ガス発生速度がより小さくなると考えられる。
 なお、上記亜鉛合金粉末は、ビスマス、インジウム以外の合金元素を含有していてもよい。例えば、アルミニウム、カルシウム、鉛などが挙げられる。鉛を10~30ppm含有すると最もガス発生速度が小さく好ましい。
 また、上記正極が二酸化マンガンを9.1g以上含み、上記負極が亜鉛合金を3.6g以上含み、電解液を1.75ml以上含むことが好ましい。電池の活物質である二酸化マンガン、および亜鉛合金がそれよりも少ないと、初期および充放電後の電池性能(放電容量)が不足し、実用上の価値が低下する。
 さらに、上記電解液が少ないと電池内部抵抗が増大して放電分極が大きくなるばかりか、充電時の分極も大きくなり、実用上の充電条件で十分な充電が入らない。加えて、上述のように亜鉛の局部的な状態変化が起こりやすく、漏液も起こりやすい。
 一般的には、二酸化マンガン、亜鉛、電解液の全てが多いほど初期の放電性能は高く、充放電後にも初期の傾向が維持されやすいが、電池内部の空間が減るため、特にアルカリ二次電池では、充放電後の発生ガスによって、漏液に至る可能性が高まる。
 ここで、本発明に係る亜鉛合金粉末の粒径は、篩いによる分級によって求められる粒径を意味している。すなわち、上記の「粒径が75μm以下の粒子」とは、開き目の一辺が75μmの標準篩いを通過し得る粒子であることを意味している。
 亜鉛合金粉末全体を425μmの開き目の篩いを通過し得るものを用いることが好ましい。
 また、亜鉛合金粉末の形状のアスペクト比は以下の方法により測定できる。亜鉛粒子を48、100、200メッシュの3種類の篩で分級し、48~100メッシュと、100~200メッシュの間の粒子を、それぞれ電子顕微鏡を用いて観察した。得られた写真(二次元の画像)から、各々10個ずつの亜鉛合金粉末の長径(粉末中の最も長い径)の長さと、短径(粉末中の最も長い径に直交する径)を求め、長径を短径で割った値を48~100メッシュと、100~200メッシュの間の粒子のアスペクト比とし、その両者の全ての平均を本発明の亜鉛合金粉末のアスペクト比とした。
 本発明のアルカリ電池に係る負極はゲル状負極であり、上記亜鉛合金粉末以外に、ゲル化剤およびアルカリ電解液を含有している。ゲル化剤については特に制限はなく、公知のアルカリ電池に使用されているゲル化剤、例えば、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸ナトリウムなどの各種高分子ゲル化剤が使用できる。ゲル状負極中のゲル化剤の含有量は、例えば、亜鉛合金に対し1.0~2.5質量%であることが好ましい。
 また、上記ゲル状負極は、他の添加物を含有してもよい。例えば、酸化インジウム、水酸化インジウムや水酸化アルミニウムの粉末をゲル状負極の調製中に混合や溶解して用いることができる。例えば、水酸化インジウムを亜鉛合金に対し、0.02~0.1%添加することが望ましい。さらに、有機系の界面活性剤を添加してもよい。
 また、上記アルカリ電解液としては、公知のゲル状負極を有するアルカリ電池に使用されているアルカリ電解液と同様のもの(例えば、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物の水溶液)が使用できる。そのアルカリ濃度も、従来公知のアルカリ電池と同程度とすればよい。例えば、33~39質量%であることが好ましい。また、アルカリ電解液中には、酸化亜鉛を含有してもよく、2~10質量%であることが好ましい。ゲル状負極中の、亜鉛合金に対するアルカリ電解液の比率は、40~58質量%であることが好ましく、特に48~54質量%であることが好ましい。
 ゲル状負極は、例えば、予め上記のゲル化剤を用いてゲル状にしておいたアルカリ電解液に亜鉛合金粉末を混合する方法により調製できる。上記のインジウム化合物を使用する場合には、予め亜鉛合金粉末と混合しておき、その後、ゲル状のアルカリ電解液と混合してもよく、また、亜鉛合金粉末と、ゲル状のアルカリ電解液との混合の際に添加してもよい。これら以外の方法で、ゲル状負極を調製しても構わない。
 また、本発明のアルカリ二次電池では、上述の亜鉛合金を含む負極を有していることが最大の特徴であり、その他の構成については特に制限は少なく、公知のアルカリ電池(アルカリ一次電池を含む)で採用されている各構成を用いることができる。
 正極活物質としては、二酸化マンガンを主たる活物質として使用し、オキシ水酸化ニッケル、酸化銀、銀ニッケル酸化物などを使用することができる。二酸化マンガンは、電解二酸化マンガンであっても、天然二酸化マンガンや化学処理をした天然二酸化マンガンであってもよい。正極の中には、結着剤としてポリエチレンなどを添加してもよく、またメタチタン酸や二酸化チタンを添加剤として混合してもよい。添加量は、主たる活物質量が著しく減らない程度、たとえば0.1~1質量%程度であればよい。
 セパレータは、従来のアルカリ乾電池に用いているようなビニロンやレーヨンの不織布でもよく、またセロハン、グラファイト重合膜、ポリオレフィンなどの微多孔膜を使用してもよい。
 本発明で最も典型的に効果が確認できるのは、単3形アルカリ乾電池のサイズであり、この電池内に含まれる二酸化マンガンの質量は9.4g、亜鉛合金の質量は3.8g、全電解液の質量は1.75mlである。また、二酸化マンガンを9.1g以上、亜鉛合金を3.6g以上含み、電解液を1.75mlであると、放電性能が高く、かつ充放電後の耐漏液性にも優れてバランスの良い電池を構成することができる。
 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明の一実施形態のアルカリ二次電池を模式的に示した部分断面図である。
 正極端子1aを兼ねた電池ケース1には、二酸化マンガンを含む中空円筒状の正極2が内接するように収納されている。正極2の中空部には、有底円筒形の多孔膜からなるセパレータ4を介して亜鉛合金を含むゲル状負極3が配置されている。なお、正極2、ゲル状負極3およびセパレータ4は、アルカリ水溶液からなるアルカリ電解液を含んでいる。電池ケース1の開口部は、正極2、ゲル状負極3等の発電要素を収納した後、釘型の負極集電体6と電気的に接続された負極端子7と、安全弁として機能する薄肉部5aを有する樹脂製のガスケット5とを一体化した封口ユニット9により封口される。電池ケース1の外表面は、外装ラベル8により被覆されている。
 以下、実施例に基づいて本発明を詳細に述べる。
(1)電池の作成
 アルカリ電解液として、水酸化カリウムの含有量が38質量%で、かつ酸化亜鉛の含有量が5質量%の水溶液を調製した。
 このアルカリ電解液にポリアクリル酸とポリアクリル酸ナトリウムとを、それぞれ1.0質量%添加して、ゲル状のアルカリ電解液を調製した。これに水酸化インジウムが亜鉛合金に対して0.05%となるように添加した。亜鉛合金粉末は、粒子形状のアスペクト比が2.0であり、アルミニウム:50ppm、ビスマス:250ppm、インジウム:1000ppmを含有する亜鉛合金で構成され、粒径が75μm以下の割合が12質量%であるものを準備した。
 上記のゲル状のアルカリ電解液と上記亜鉛合金粉末とを、質量比100:185の割合で混合してゲル状負極3を調製した。
 正極2には、活物質として電解二酸化マンガンを使用し、この二酸化マンガンと黒鉛とを質量比94:6の割合で混合し、リング状に成形したものを用いた。上記の正極2、ゲル状3の負極、およびアルカリ電解液を用いて、図1に示す構造の電池1(単3形のアルカリ二次電池)を作製した。
 本実施例の電池内に含まれる二酸化マンガンの質量は9.4g、亜鉛合金の質量は3.8g、全電解液の質量は1.75mlであった。
(2)充放電試験
 この電池1および以下に記述するすべての電池について、作製後40℃で3日間のエージングを経た電池を評価した。評価は、以下に説明する方法で、充放電試験後のガス発生速度を測定した。
 充放電試験は以下の通りとした。放電は100mAで1.0Vまで連続放電を実施、休止時間を1時間設けた後に、充電を1.9V定電圧制御、最大電流値250mAで実施。充電の終止条件は、電流値が25mAに至った時点とし、充電終止後1時間の休止時間を設け、これを1サイクルとする。この放電・充電のサイクルを10サイクル繰り返した。充電、および放電は20℃環境下で実施した。
 この充放電を10サイクルした後の充電状態の電池3個について、正極端子の突出部を切り取り、ガラス治具を用いて電池内の発生ガスを置換捕集することにより測定した。ガラス治具内には流動パラフィンを満たし、電池を流動パラフィンに沈めることで、電池内から外部に出たガスをガラス治具内に捕集できる構造であり、その体積を測定できるように、計量目盛が設けられている治具を用いた。
 この治具内に電池を設置し、14時間静置した後計測を開始し、25℃雰囲気下で5日間後の電池1個あたりのガス増加量を計測した。この5日間の平均のガス発生量をml/dayで示し、電池3個の数値の平均値を求めた。
 充放電試験後のガス発生速度は0.25ml/day以下であれば、使用中または使用後に漏液する可能性が低い。
(3)亜鉛粒子のアスペクト比
 表1に示す亜鉛粒子のアスペクト比であること以外は、電池1と同様の電池2~7を作製した。表1に、充放電試験の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、亜鉛粒子のアスペクト比が充放電後のガス発生速度と関係があり、アスペクト比は、2.0から2.4であればガス発生速度が小さいことが分かった。一方で、アスペクト比が2.0より小さい電池1ではガス発速度が大きい。また、アスペクト比が2.7と大きすぎる電池7についてもガス発生速度が大きい。
(4)亜鉛合金中のビスマス濃度
 次に、表2に示すように、亜鉛粒子のアスペクト比が2.0から2.4の範囲において、亜鉛合金中のビスマス濃度を変化させた以外は電池1と同様の条件で電池8~22を作製した。表2に、充放電試験の結果を示す。
Figure JPOXMLDOC01-appb-T000002
 この結果より、亜鉛粒子のアスペクト比が2.0から2.4の範囲で、亜鉛合金中のインジウム濃度が1000ppmにおいて、亜鉛合金中のビスマス濃度はガス発生速度と関係があり、ビスマス濃度が150~350ppmにおいて、ガス発生速度が小さいことが分かった。一方で、ビスマス濃度が150ppmより小さい電池8、13、18ではガス発速度が大きい。ビスマス濃度が350ppmより大きい電池12、17、22ではガス発速度が大きいことが判明した
(5)亜鉛合金中のインジウム濃度
 次に、表3に示すように、亜鉛粒子のアスペクト比が2.0から2.4の範囲において、亜鉛合金中のインジウム濃度を変化させた以外は電池1と同様の条件で電池23~37を作製した。表3に、充放電試験の結果を示す。
Figure JPOXMLDOC01-appb-T000003
 この結果より、亜鉛粒子のアスペクト比が2.0から2.4の範囲で、亜鉛合金中のビスマス濃度が250ppmにおいて、亜鉛合金中のインジウム濃度はガス発生速度と関係があり、インジウム濃度が600~1500ppmにおいて、ガス発生速度が小さいことが分かった。一方で、インジウム濃度が600ppmより小さい電池23、28、33ではガス発速度が大きい。インジウム濃度が1500ppmより大きい電池27、32、37ではガス発速度が大きいことが判明した。
 そして、亜鉛合金中のビスマス濃度200ppm、インジウム濃度1000ppmについて、再度、亜鉛粒子のアスペクト比について検討した。その評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4と表2の結果より、電池1および電池38のように亜鉛粒子のアスペクト比が1.6のように小さい、あるいは電池7および電池39のように亜鉛粒子のアスペクト比が2.7のように大きい適正範囲外では、ビスマス濃度とインジウム濃度が適正範囲であっても、ガス発生速度は大きいことが確認された。
 以上の結果より、本発明のアルカリ二次電池において、亜鉛粒子のアスペクト比とビスマス濃度、インジウム濃度は、充放電後のガス発生速度に密接な関係があり、何れも適正範囲内であればガス発生速度が小さいが、アスペクト比、ビスマス濃度、インジウム濃度のいずれかが適正範囲から外れていると、ガス発生速度が0.25ml/dayより大きくなり漏液する可能性が高くなる。
 このように3つの因子が関係し、その全ての因子が適正範囲内である場合のみ、特に良好な性能である理由として、以下のように考察できる。
 充放電過程において、亜鉛の変形が大きいか、あるいはビスマスやインジウムといった添加元素の偏析が進んだ場合に、ガス発生速度が大きくなる。電池7や電池39のようにアスペクト比が大きすぎると、充放電過程における亜鉛の変形が大きく、微粉化も進み、ビスマスやインジウムといった添加元素偏析が進も進むためガス発生速度が増大する。また、電池1や電池38のようにアスペクト比が小さすぎると、充放電過程において、電子的な接触が悪く、電極内で反応が不均一となる。その結果、部分的に、亜鉛の変形や微粉化が進み、その部分でビスマスやインジウムといった添加元素偏析が進も進むためガス発生速度が増大する。
 また、亜鉛粒子のアスペクト比が適正範囲であっても、ビスマス濃度とインジウム濃度の両方が適正範囲でないとガス発生速度が増加している理由は以下のように考えられる。
 ビスマスあるいはインジウムはもともと、亜鉛との合金化において粒界に存在しやすい。よって、充放電過程においての亜鉛の変形は粒界から優先的に溶解するため、再度析出しても、粒子内や粒界部よりも、粒子外に偏析する。しかし、ビスマスとインジウムが一定の比率である場合に、亜鉛との3者で均一に分散しやすく、比較的粒子内部に存在しやすいため、充放電過程で偏析が少ないと考えられる。
 表1から表3の結果において、インジウム濃度/ビスマス濃度の比が3~6の範囲において、ガス発生速度がより小さくい好ましいことからも、この傾向が分かる。
(5)亜鉛粒子中の75μm以下の粒子の割合
 次に、表5に示す種々の亜鉛粒子のアスペクト比や亜鉛合金組成で、亜鉛粒子中の75μm以下の粒子の割合を変化させた以外は電池1と同様の電池40~54を作製した。その評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果より、75μm以下の粒子の割合が5~18%の場合に、充放電試験後のガス発生速度が小さく好ましいことがわかった。電池40、45、50のように75μm以下の粒子の割合が小さい場合に比べて、電池41~43、電池46~48、電池51~53でガス発生速度がより小さいのは、充電過程における結晶核となる微粒子亜鉛の量が適正であり、電解液中に溶解している亜鉛酸イオンの状態から直接亜鉛に析出し生成する超微粒状態の亜鉛の量が低下するためガス発生速度が低下すると考えられる。
 一方、75μm以下の粒子の割合が大きい場合には、もともとの微粒子の表面積が大きく、充放電後にも、これらの微粒子は変形しやすく、更なる表面積増加や、添加元素の偏析が進む傾向が生じるため、電池44、49、54に比べて、電池41~43、電池46~48、電池51~53がよりガス発生速度が小さく適正であると考えられる。
 本発明に係るアルカリ二次電池は、耐漏液特性に優れたアルカリ二次電池として有用である。
  1    電池ケース
  1a   正極端子
  2    正極
  3    ゲル状負極
  4    セパレータ
  5    ガスケット
  5a   薄肉部
  6    負極集電体
  7    負極端子
  8    外装ラベル
  9    封口ユニット

Claims (4)

  1.  亜鉛合金粉末を含むゲル状負極を有するアルカリ二次電池であって、
     前記亜鉛合金粉末は、粒子形状のアスペクト比が2.0~2.4の範囲であり、亜鉛合金中にビスマスを150~350ppm、インジウムを600~1500ppm含有するアルカリ二次電池。
  2.  正極が二酸化マンガンを含む、請求項1に記載のアルカリ二次電池。
  3.  前記亜鉛合金中のビスマスとインジウムとの質量比が、1:3~1:6の範囲にある請求項1に記載のアルカリ二次電池。
  4.  前記亜鉛合金粉末は、粒径が75μm以下の粒子が、5~18質量%の割合で含まれている、請求項1~3のいずれか1項に記載のアルカリ二次電池。
PCT/JP2011/006799 2011-02-22 2011-12-05 アルカリ二次電池 WO2012114407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012520848A JPWO2012114407A1 (ja) 2011-02-22 2011-12-05 アルカリ二次電池
US13/580,295 US20140186711A1 (en) 2011-02-22 2011-12-05 Alkaline secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035652 2011-02-22
JP2011035652 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012114407A1 true WO2012114407A1 (ja) 2012-08-30

Family

ID=46720229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006799 WO2012114407A1 (ja) 2011-02-22 2011-12-05 アルカリ二次電池

Country Status (3)

Country Link
US (1) US20140186711A1 (ja)
JP (1) JPWO2012114407A1 (ja)
WO (1) WO2012114407A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235636A (ja) 1996-02-28 1997-09-09 Dowa Mining Co Ltd アルカリ電池用亜鉛合金粉末およびその製造方法
JPH11176467A (ja) 1997-12-11 1999-07-02 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
JP2000067910A (ja) * 1998-06-12 2000-03-03 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
JP2000251925A (ja) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
WO2001003209A1 (de) * 1999-06-30 2001-01-11 Grillo-Werke Ag Gemisch aus metall- und/oder legierungsteilchen und einem flüssigen elektrolytischen medium sowie verfahren zur herstellung desselben
JP2001057211A (ja) * 1999-06-08 2001-02-27 Dowa Mining Co Ltd アルカリ電池用負極材とその製造方法ならびに該負極材を用いたアルカリ電池
JP2007128707A (ja) 2005-11-02 2007-05-24 Hitachi Maxell Ltd アルカリ電池
WO2007129285A2 (en) * 2006-05-09 2007-11-15 The Gillette Company Battery anodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056617B2 (en) * 2001-02-01 2006-06-06 The Gillette Company Batteries and battery systems
US7045253B2 (en) * 2002-01-07 2006-05-16 Eveready Battery Company, Inc. Zinc shapes for anodes of electrochemical cells
US7364819B2 (en) * 2004-06-28 2008-04-29 Eveready Battery Company, Inc. Alkaline electrochemical cell with a blended zinc powder
US8334067B2 (en) * 2009-01-13 2012-12-18 The Gillette Company Non-uniform conductive coating for cathode active material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235636A (ja) 1996-02-28 1997-09-09 Dowa Mining Co Ltd アルカリ電池用亜鉛合金粉末およびその製造方法
JPH11176467A (ja) 1997-12-11 1999-07-02 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
JP2000067910A (ja) * 1998-06-12 2000-03-03 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
JP2000251925A (ja) * 1999-02-26 2000-09-14 Sanyo Electric Co Ltd 密閉型アルカリ亜鉛蓄電池
JP2001057211A (ja) * 1999-06-08 2001-02-27 Dowa Mining Co Ltd アルカリ電池用負極材とその製造方法ならびに該負極材を用いたアルカリ電池
WO2001003209A1 (de) * 1999-06-30 2001-01-11 Grillo-Werke Ag Gemisch aus metall- und/oder legierungsteilchen und einem flüssigen elektrolytischen medium sowie verfahren zur herstellung desselben
JP2007128707A (ja) 2005-11-02 2007-05-24 Hitachi Maxell Ltd アルカリ電池
WO2007129285A2 (en) * 2006-05-09 2007-11-15 The Gillette Company Battery anodes

Also Published As

Publication number Publication date
US20140186711A1 (en) 2014-07-03
JPWO2012114407A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5743780B2 (ja) 円筒型ニッケル−水素蓄電池
WO2020154516A1 (en) Alkaline electrochemical cells comprising increased zinc oxide levels
EP2690690B1 (en) Nickel-metal hydride secondary cell and negative electrode therefor
JP4222488B2 (ja) アルカリ電池
JP3215448B2 (ja) 亜鉛アルカリ電池
JP5172181B2 (ja) 亜鉛アルカリ電池
JPH04284357A (ja) 亜鉛アルカリ電池
JP2009064756A (ja) アルカリ乾電池
JP5568185B1 (ja) アルカリ電池
JP2006093093A (ja) 水素吸蔵合金電極及びアルカリ蓄電池
WO2012057351A1 (ja) アルカリ蓄電池
JP2006040887A (ja) アルカリ電池
JP6734155B2 (ja) アルカリ電池
WO2012114407A1 (ja) アルカリ二次電池
JP2010010012A (ja) アルカリ電池
JP6934629B2 (ja) アルカリ乾電池
JP7149079B2 (ja) アルカリ二次電池
JPH04212269A (ja) アルカリ蓄電池
JP5019634B2 (ja) アルカリ電池
JPWO2019181538A1 (ja) アルカリ電池
JP2002117859A (ja) アルカリ電池
JP2011014258A (ja) ニッケル−水素二次電池用水素吸蔵合金およびニッケル−水素二次電池
JPH08321302A (ja) 水素吸蔵電極
JP2006302774A (ja) 負極活物質およびそれを用いたアルカリ電池
JP2001006666A (ja) アルカリ蓄電池用水素吸蔵合金及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012520848

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13580295

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011859444

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE