WO2012113347A1 - Dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel - Google Patents

Dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel Download PDF

Info

Publication number
WO2012113347A1
WO2012113347A1 PCT/CN2012/071594 CN2012071594W WO2012113347A1 WO 2012113347 A1 WO2012113347 A1 WO 2012113347A1 CN 2012071594 W CN2012071594 W CN 2012071594W WO 2012113347 A1 WO2012113347 A1 WO 2012113347A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
liquid
natural gas
tube
straight
Prior art date
Application number
PCT/CN2012/071594
Other languages
English (en)
Chinese (zh)
Inventor
文闯
曹学文
杨燕
蒋文明
Original Assignee
Wen Chuang
Cao Xuewen
Yang Yan
Jiang Wenming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wen Chuang, Cao Xuewen, Yang Yan, Jiang Wenming filed Critical Wen Chuang
Priority to AU2012220206A priority Critical patent/AU2012220206B2/en
Publication of WO2012113347A1 publication Critical patent/WO2012113347A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/106Removal of contaminants of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates

Definitions

  • the invention relates to a natural gas supersonic expansion refrigeration and cyclone separation device, which is mainly applied to the fields of natural gas dehydration and heavy hydrocarbon separation.
  • the patent 200910081813.7 structure is similar to the "Twisterll" separator, but the alignment of the eddy current control body is more difficult; Xi'an Jiaotong University's patented 200910024347.9 patent ultrasonic speed section is equipped with a shock compression zone, which decelerates the supersonic compression to the subsonic velocity, but the droplets are prone to re-evaporation in the subsonic zone, reducing the separation efficiency of the separator.
  • SUMMARY OF THE INVENTION The object of the present invention is to overcome the deficiencies of the prior art described above, and to provide a natural gas supersonic expansion refrigeration and cyclone separation device which has a simple structure, high processing and installation precision, stable and reliable operation, and high separation efficiency.
  • the technical solution adopted by the present invention is: a natural gas supersonic expansion refrigeration and a cyclone separation device consisting of a flange, a straight tube of equal diameter, a static swirling vane, a center body, a casing expansion tube, a vane vane, and an expansion Compressor tube and drain tube.
  • the left end of the straight pipe of the casing is a saturated moisture inlet
  • the right end of the diffuser pipe is a dry gas outlet
  • the lower end of the liquid discharge pipe is a liquid outlet
  • the gap between the straight pipe of the equal diameter and the center body forms a circular subsonic contraction flow path with a sectional change.
  • a nozzle throat and a supersonic expansion flow passage a gap between the diffuser tube and the center body forms a dry gas diffusing flow passage and a dry gas outlet; a gap between the outer casing expansion tube and the diffuser tube forms a liquid separation port and a product
  • the liquid chamber, the effusion chamber is in communication with the drain tube, and a liquid outlet is formed at the lower end of the drain tube.
  • the outer casing expansion tube and the diffuser tube are fixedly connected by a flange; the upper end of the static swirling vane is fixedly coupled with the inner wall surface of the straight tube of the outer casing, and the lower end is fixedly coupled with the surface of the central body; the upper end of the vanishing vane is fixedly connected with the diffusing tube, and the lower end is fixed to the central body connection.
  • the equal-diameter outer casing straight tube and the central body constitute a circular contraction-expansion nozzle having a variable cross section, and constitute a subsonic contraction flow passage, a nozzle throat and a supersonic expansion flow passage.
  • the central body is composed of a semi-ellipsoid, a constricted segment, a straight segment and a tail segment; wherein the ratio of the long semi-axis radius R2 of the semi-ellipsoid to the short semi-axis radius R1 satisfies: 2 ⁇ R2/R1 ⁇ 10;
  • the contraction angle (1 is 1° ⁇ 4° ; the straight section enters the diffusing flow passage, and the straight section length L is: 1.
  • 5D1 ⁇ L ⁇ 10D1 is the straight section diameter.
  • the expansion tube and the diffuser are described by the outer casing
  • the distance ⁇ of the liquid separation port formed by the tube is: 0. 01D ⁇ Ad ⁇ 0. 15D
  • D is the inner diameter of the straight pipe of the outer casing.
  • the static swirling vane is uniformly mounted on the surface of the semi-ellipsoid in a circumferential direction, and the number of blades is 3 to 12 pieces.
  • the circumferentially evenly arranged static swirling vanes are mounted on the ellipsoid, since the speed conversion occurs at subsonic conditions, the blades do not At the same time, due to the existence of the central body, the vortex dissipation phenomenon of the supersonic swirl field is controlled.
  • the natural gas supersonic expansion refrigeration and cyclone separation device of the present invention after the natural gas enters the device from the moisture inlet, the air flow rotates through the blade.
  • the supersonic expansion channel of the body expands to supersonic speed, forming a low temperature and low pressure, causing condensation of water and heavy hydrocarbons in the natural gas.
  • the condensed droplets are smashed to the tube wall under the action of huge centrifugal force, achieving the purpose of gas-liquid separation.
  • This causes the condensable components in natural gas to expand and cool under the conditions of supersonic swirling flow field.
  • the working principle of condensation edge-side swirling expansion principle
  • FIG. 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic view showing the structure of a center body of the present invention
  • Figure 3 is a schematic view showing the structure of the outer tube expansion tube and the diffuser tube of the present invention.
  • the present invention mainly consists of a flange 1, a straight tube 2, a static swirling vane 3, a center body 4, a casing expansion tube 5, a vanishing vane 6, a flange 7,
  • the flange 8, the diffuser tube 9, and the drain tube 11 are composed.
  • the outer casing straight pipe 2 and the central body 4 constitute a circular contraction-expansion nozzle with a varying cross section, forming a subsonic contraction flow passage 17, a nozzle throat portion 16, and a supersonic expansion flow passage 15;
  • the diffuser tube 9 and the center body 4 constitute The annular dry gas diffusing flow passage 14;
  • the gap between the outer casing expansion pipe 5 and the diffusing pipe 9 forms a liquid separation port 23 and a liquid accumulation chamber 13.
  • the center body 4 of the present invention is centered, and is coaxial with the outer casing straight tube 2, the outer casing expansion tube 5, and the diffuser tube 9, and is centered by the static swirl vane 3 and the vandal vane vane 6 fixed.
  • the central body 4 is composed of a semi-ellipsoid 19, a constricted section 20, a straight section 21 and a tail section 22.
  • the ratio of the long semi-axis radius R2 of the semi-ellipsoid 19 to the short half-axis radius R1 satisfies: 2 ⁇ R2/R1 ⁇ 10; the contraction angle of the contraction section 20 (1 is 1 ° to 4 ° ; the straight section 21 enters the expansion
  • the pressure passage 14, the straight length L is: 1.5D1 ⁇ L ⁇ 10D1, and Dl is a straight diameter.
  • the gap between the semi-ellipsoid 19 and the corresponding outer casing straight tube 2 constitutes a subsonic contraction flow passage 17, in which the gas The flow path is accelerated, and a nozzle throat 16 is formed at the junction of the semi-ellipsoid 19 and the constricted section 20, and the airflow speed reaches the speed of sound.
  • the gap between the contraction section 20 and the corresponding outer casing straight tube 2 forms a supersonic expansion flow passage 15,
  • the gas is accelerated to supersonic speed in the flow path, forming a low temperature and low pressure, water and heavy hydrocarbons begin to condense, and the condensed liquid is smashed toward the pipe wall under the action of a strong swirling centrifugal field and flows forward through the liquid separation port 23 as the gas flows forward.
  • the effusion chamber 13 is discharged from the liquid outlet 12 through the liquid discharge tube 11.
  • the distance Ad of the liquid separation port 23 is: 0.01D ⁇ Ad ⁇ 0.15D, and D is the inner diameter of the outer tube 2 of the outer casing.
  • the diffuser tube 9 and the center body 4 constitute an annular dry gas diffusing flow passage 14, and a shock wave is generated in the diffusing flow passage 14, Downhill degree by the ultrasonic At subsonic speed, the pressure and temperature rise, and the vortex vane 6 is diverted from the dry gas outlet 10 after being diverted.
  • the static swirling vanes 3 of the present invention are uniformly mounted circumferentially on the surface of the semi-ellipsoid 29, and are not allowed to enter the supersonic expanding flow passage 15, and the number of vanes is 3 to 12 pieces.
  • the static swirl vane 3 and the vandal vane 6 of the present invention also have a centering action on the center body 4, and the vandal vane 6 also supports the anti-vibration effect.
  • the outer casing expansion pipe 5 and the diffuser pipe 9 are fixedly connected by a flange 7 and a flange 8, and the liquid discharge pipe 11 is fixed by welding and the outer casing straight pipe 2, thereby ensuring the supersonic expansion refrigeration and swirling of the natural gas of the present invention.
  • the separation device operates stably and reliably.
  • the specific working flow of the present invention is as follows:
  • the saturated incoming gas enters the device from the saturated moisture inlet 18, and after the static swirling vane 3 swirls, sequentially enters the subsonic contraction flow passage 17, the nozzle throat 16, and the supersonic speed.
  • the liquid port 23 flows into the liquid accumulation chamber 13 and is discharged from the liquid outlet 12 through the liquid discharge tube 11; the dry gas enters the annular dry gas diffusion flow passage 14 formed by the diffuser tube 9 and the center body 4, and is in the diffuser flow passage 14 A shock wave is generated, the speed is reduced from the supersonic speed to the subsonic speed, the pressure and the temperature are raised, and the vortex vane 6 is diverted and discharged from the dry gas outlet 10.

Abstract

La présente invention concerne un dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel comportant un tube droit de revêtement de diamètre égal (2), des aubes de cyclone statiques (3), un corps central (4), un tube de revêtement dilaté (5), un tube de diffusion (9), et un tube de décharge de liquide (11). À l'extrémité gauche du tube droit de revêtement de diamètre égal (2) se trouve un orifice d'entrée d'humidité saturée (18), à l'extrémité droite du tube de diffusion (9) se trouve un orifice de sortie de gaz sec (10), et à l'extrémité inférieure du tube de décharge de liquide (9) se trouve un orifice de sortie de liquide (2). Le tube droit de revêtement de diamètre égal (2) et le corps central (4) forment un tube annulaire de pulvérisation de contraction-dilatation avec la section transversale variable. Le tube annulaire de pulvérisation de contraction-dilatation comporte un passage de circulation de contraction subsonique (17), une partie de gorge de tube (16), et un passage de circulation de détente supersonique (15). Les aubes de cyclone statiques (3) sont montées de manière uniforme dans le passage de circulation de contraction subsonique (17). Le tube de diffusion (9) et le corps central (4) forment un passage annulaire de circulation de diffusion de gaz sec (14). Le tube de revêtement dilaté (5) et le tube de diffusion (9) forment un orifice de séparation de liquide (23) et une cavité d'accumulation de liquide (13). La cavité d'accumulation de liquide (13) communique avec le tube de décharge de liquide (11). Du gaz naturel pénètre à travers l'orifice d'entrée d'humidité saturée (18), et ensuite le cyclone est généré à travers les aubes de cyclone statiques (3). Ensuite le cyclone pénètre dans le tube annulaire de pulvérisation de contraction-dilatation pour une dilatation afin d'atteindre la vitesse supersonique. L'eau et l'hydrocarbure lourd dans le gaz naturel sont condensés par la basse température et la basse pression. Des gouttelettes de liquide condensé sont séparées de la phase gazeuse par une force centrifuge, et sont déchargées à travers l'orifice de sortie de liquide (12) après avoir pénétré dans la cavité d'accumulation de liquide (13) à travers l'orifice de séparation de liquide (23). Le gaz sec pénètre dans le passage annulaire de circulation de diffusion de gaz sec (14) et est déchargé à travers l'orifice de sortie de gaz sec (10) après la récupération d'énergie de pression. Le dispositif présente une structure simple et une grande précision d'usinage, fonctionne de manière stable et fiable, et possède une grande efficacité de séparation.
PCT/CN2012/071594 2011-02-27 2012-02-24 Dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel WO2012113347A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012220206A AU2012220206B2 (en) 2011-02-27 2012-02-24 Supersonic expansion refrigeration and cyclone separation device for natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110046300.X 2011-02-27
CN 201110046300 CN102167988B (zh) 2011-02-27 2011-02-27 一种天然气超声速膨胀制冷与旋流分离装置

Publications (1)

Publication Number Publication Date
WO2012113347A1 true WO2012113347A1 (fr) 2012-08-30

Family

ID=44489307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071594 WO2012113347A1 (fr) 2011-02-27 2012-02-24 Dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel

Country Status (3)

Country Link
CN (1) CN102167988B (fr)
AU (1) AU2012220206B2 (fr)
WO (1) WO2012113347A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566812A (zh) * 2019-08-06 2019-12-13 李珊 一种天然气站输气工艺
CN113308284A (zh) * 2021-06-09 2021-08-27 中国石油工程建设有限公司华北分公司 一种自动排液装置及自动排液方法
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167988B (zh) * 2011-02-27 2013-03-20 文闯 一种天然气超声速膨胀制冷与旋流分离装置
CN102653693B (zh) * 2012-05-15 2014-01-15 中国石油天然气股份有限公司 离心式预分离脱水吸收塔
CN109985808B (zh) * 2019-03-14 2020-11-10 北京航空航天大学 气动离心式颗粒物分级筛分装置
CN112455699B (zh) * 2020-11-13 2024-01-02 中国航空工业集团公司沈阳飞机设计研究所 一种高融合飞机后体
CN113251311B (zh) * 2021-05-19 2022-08-19 中国人民解放军海军工程大学 一种具有排液结构的高压气瓶快速充气阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998393A (en) * 1976-01-20 1976-12-21 The United States Of America As Represented By The Secretary Of The Air Force Supersonic diffuser
EP0496128A1 (fr) * 1991-01-25 1992-07-29 Stork Product Engineering B.V. Procédé et dispositif pour séparer un gaz d'un mélange gazeux
RU2167374C1 (ru) * 2000-01-13 2001-05-20 Алферов Вадим Иванович Устройство для сжижения газа
US20020194988A1 (en) * 1998-12-31 2002-12-26 M. Betting Supersonic separator apparatus and method
CN1559002A (zh) * 2001-09-28 2004-12-29 ���ʿ����о����޹�˾ 入口段内具有涡流发生器的旋风流体分离器
CN101518709A (zh) * 2009-04-10 2009-09-02 中国石油天然气股份有限公司 跨音速可控涡气体除湿装置
CN102167988A (zh) * 2011-02-27 2011-08-31 文闯 一种天然气超声速膨胀制冷与旋流分离装置
CN202039046U (zh) * 2011-02-27 2011-11-16 文闯 一种天然气超声速膨胀制冷与旋流分离装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA73729C2 (en) * 1998-12-31 2005-09-15 Shell Int Research Method to remove condensable materials from a natural gas flow and a system for a well completion
US6280502B1 (en) * 1998-12-31 2001-08-28 Shell Oil Company Removing solids from a fluid
AU2009339468B2 (en) * 2009-02-05 2013-07-04 Twister B.V. Multistage cyclonic fluid separator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998393A (en) * 1976-01-20 1976-12-21 The United States Of America As Represented By The Secretary Of The Air Force Supersonic diffuser
EP0496128A1 (fr) * 1991-01-25 1992-07-29 Stork Product Engineering B.V. Procédé et dispositif pour séparer un gaz d'un mélange gazeux
US20020194988A1 (en) * 1998-12-31 2002-12-26 M. Betting Supersonic separator apparatus and method
RU2167374C1 (ru) * 2000-01-13 2001-05-20 Алферов Вадим Иванович Устройство для сжижения газа
CN1559002A (zh) * 2001-09-28 2004-12-29 ���ʿ����о����޹�˾ 入口段内具有涡流发生器的旋风流体分离器
CN101518709A (zh) * 2009-04-10 2009-09-02 中国石油天然气股份有限公司 跨音速可控涡气体除湿装置
CN102167988A (zh) * 2011-02-27 2011-08-31 文闯 一种天然气超声速膨胀制冷与旋流分离装置
CN202039046U (zh) * 2011-02-27 2011-11-16 文闯 一种天然气超声速膨胀制冷与旋流分离装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas
CN110566812A (zh) * 2019-08-06 2019-12-13 李珊 一种天然气站输气工艺
CN113308284A (zh) * 2021-06-09 2021-08-27 中国石油工程建设有限公司华北分公司 一种自动排液装置及自动排液方法

Also Published As

Publication number Publication date
AU2012220206B2 (en) 2014-01-09
AU2012220206A1 (en) 2013-10-17
CN102167988B (zh) 2013-03-20
CN102167988A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
WO2012113347A1 (fr) Dispositif de séparation cyclonique et de réfrigération à détente supersonique pour le gaz naturel
CN100589883C (zh) 锥芯式超音速冷凝旋流分离器
CN102274805B (zh) 一种双喉道自起动超音速旋流分离器及其分离方法
CN101745246B (zh) 超声速气体旋流冷凝分离装置
CN102151619B (zh) 一种多孔壁超音速旋流分离器及其分离方法
CN102407064B (zh) 一种双喉部型气体超声速旋流分离装置
CN102416289B (zh) 多个进气喷嘴型超声速凝结分离装置
CN102744166A (zh) 调芯式变截面管超音速冷凝旋流分离器
CN105689161B (zh) 整流式超音速旋流分离器
CN202655135U (zh) 一种可变截面管式超音速冷凝旋流器
CN101518709B (zh) 跨音速可控涡气体除湿装置
CN102198353A (zh) 气液分离管及组合可调式气液分离器
CN202039046U (zh) 一种天然气超声速膨胀制冷与旋流分离装置
CN201214074Y (zh) 锥芯式超音速冷凝旋流分离装置
CN105536297A (zh) 一种管式油水旋流分离设备
CN107398123A (zh) 一种用于烟道气的超声速旋流捕捉处理系统
CN102407063B (zh) 一种切向入口式气体超声速旋流分离装置
CN202376860U (zh) 一种切向入口式气体超声速旋流分离装置
CN102489081B (zh) 一种气体超声速凝结与旋流分离喷管
CN111763547B (zh) 一种全旋流超声速分离装置
CN209584136U (zh) 一种超声速冷凝分离器
CN202105736U (zh) 一种预旋流超音速旋流分离器
CN102373971B (zh) 轴流透平与单侧径向排汽/气系统一体化气动设计方法
CN102166464B (zh) 一种预成核超音速涡流管天然气脱水方法
CN202410493U (zh) 多个进气喷嘴型超声速凝结分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012220206

Country of ref document: AU

Date of ref document: 20120224

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12749364

Country of ref document: EP

Kind code of ref document: A1