WO2012111865A1 - 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법 - Google Patents

수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법 Download PDF

Info

Publication number
WO2012111865A1
WO2012111865A1 PCT/KR2011/001086 KR2011001086W WO2012111865A1 WO 2012111865 A1 WO2012111865 A1 WO 2012111865A1 KR 2011001086 W KR2011001086 W KR 2011001086W WO 2012111865 A1 WO2012111865 A1 WO 2012111865A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
film
absorbing film
papss
resin composition
Prior art date
Application number
PCT/KR2011/001086
Other languages
English (en)
French (fr)
Inventor
이승곤
이윤석
최홍열
Original Assignee
주식회사 보스팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 보스팩 filed Critical 주식회사 보스팩
Priority to JP2013554379A priority Critical patent/JP5840705B2/ja
Priority to PCT/KR2011/001086 priority patent/WO2012111865A1/ko
Publication of WO2012111865A1 publication Critical patent/WO2012111865A1/ko
Priority to US13/767,563 priority patent/US8697805B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/49Materials comprising an indicator, e.g. colour indicator, pH-indicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a resin composition for a moisture absorption film, a moisture absorption film for packaging, and a method for manufacturing the same, and specifically, a polyacrylic acid partial sodium salt (PAPSS) or acrylamide synthesis using a polyethylene resin and a moisture absorbent. It relates to a resin composition for moisture adsorption film comprising attapulgite (ATPGAA, Attapulgite synthesized Acrylic amide).
  • the packaging materials industry is free from the passive purpose of simple product protection and quality preservation, and actively provides packaging products with active characteristics according to the characteristics of the products. Research efforts are being actively conducted to increase the marketability by granting these benefits.
  • plastic packaging materials are developed due to their packaging properties in various foods, pharmaceuticals, electronics and household products, due to their light and excellent gas barrier properties, transparency, and relatively inexpensive cost compared to other packaging materials.
  • Most of the functional packaging materials that have been recently researched are manufactured by impregnating and coating the active materials for product quality improvement, which is intended to continuously give maximum effectiveness to the target product immediately after packaging. Examples include nano films that increase water and gas barrier properties, films containing zeolites that inhibit microbial growth of products, far-infrared radiation films that emit energy, films that adsorb odors, and films that adsorb oxygen and odor gases. Development is being attempted.
  • the inside of the package needs to be kept dry, which means that the water activity of the product changes in properties, rancidity, nutritional loss, sensory value and decay through microbial growth, and electronics. This is because it is an important cause to deteriorate the quality of the packaged products by inducing oxidative corrosion of the metal surface.
  • food is processed by hot air drying pre-treatment, dry gas replacement packaging, barrier vacuum packaging, and a method of separately adding a desiccant to the packaging material. Problems such as discomfort, increased treatment cost, and weakening of drying persistence due to an increase in shelf life.
  • a desiccant is a substance used to remove moisture in a substance and is classified into a chemical action that reacts with moisture to fix moisture and a physical action that adsorbs or absorbs moisture to remove moisture from the substance.
  • Representative desiccants that remove moisture by chemical action include calcium chloride or copper sulfate, which absorb moisture in the form of crystal water.
  • Desiccants that remove moisture by physical action include silica gel, aluminum oxide and zeolite, and have a large surface area to accommodate a large amount of moisture.
  • silica gel is a mineral that is a SiO 2 chemical component and exists in the form of granules.
  • Silica gel used as a desiccant has an average size of absorbing holes of 24 A, which has strong affinity with moisture molecules. It attracts moisture up to 220 ° F (105 ° C), ferments the desiccant function at 70 ° F ⁇ 90T, 60 ⁇ 90% RH and absorbs water molecules up to 40% RH. It is the only material approved by the US FDA as a desiccant material that can be in direct contact with foods and pharmaceuticals.
  • silica gel can absorb various organic chemicals, and the size of absorbing holes varies.
  • the order of absorbable materials and absorption power of silica gel is water, ammonia, alcohols, aromatics, diolefins, olefins, and paraffins.
  • Another desiccant is a molecular sieve, which is a porous aluminosilicate, a synthetic desiccant with a high water affinity. Unlike other desiccants, the size of the absorbent holes is consistent with the lattice structure, and the size of the absorbent holes can be controlled. Generally, materials having absorbing hole sizes of 3A, 4A, 5A, and 10A are used.
  • the FDA does not approve direct use for the product, but in Europe, it is used in medicine. The price is expensive, but it is mainly used when it needs to be kept in low humidity conditions due to its excellent absorption.
  • Montmorillonite clay is made by drying magnesium aluminum silicate in the form of sub-bentonite. In the absence of contamination and expansion, those used at low humidity can be regenerated.
  • Calcium oxide can absorb up to 28.5% of water by weight. It is used when low humidity conditions are important because it has the best absorption of dry matter. Calcium oxide absorbs moisture at a slow rate and expands upon absorption of moisture. For dry frozen foods, the use of calcium oxide is limited.
  • the CaO, zeolite, and silica gel drying agent were put into a tea bag pouch (Tyvek pouch) and sealed, and a method of injecting it into a product was used.
  • the basic purpose of the desiccant is to maintain the texture of processed products and to suppress microbial growth.
  • the humidity of the inside of the package is controlled to prevent water droplets from forming on the inside due to the water vapor vaporized from the fruit.
  • Mainly used materials are salt, saturated salt solution, and super absorbent polymer, and super absorbent polymer sheet is used for bath or fish to absorb the juice generated by silver.
  • the material of this sheet is mainly Polyacrylate or starch graft copolymers are used.
  • the desiccant used in traditional food, medicine, electronics round is because they are used mixed in between the product and the packaging into a small pouch Chi form, by wrapping result of the desiccant pouch "This phenomenon due to which a desiccant is incorporated into the product occurs Thus, there is a problem that the product is contaminated and the quality of the product is deteriorated, and in the case of food and medicine, there may be a problem of safety in use of the consumer.
  • the present inventors have attempted to develop a functional moisture absorbent packaging film in consideration of the characteristics of ease of use and moisture absorption sustaining effect for moisture-sensitive products.
  • the main object of the present invention is to provide a moisture adsorption film that is excellent in moisture adsorption and sustaining effect, does not cause contamination of products, is easy to use, and also has excellent physical properties. Another object of the present invention to provide a method for producing the moisture adsorption film.
  • the present invention comprises a polyethylene-based resin, polyacrylic acid partial sodium salt (PAPSS) or acrylamide synthetic attapulgite (ATPGAA, attapulgite) as a water adsorbent It provides a resin composition for a water adsorption film further comprises a synthesized acrylic amide).
  • PAPSS Polyacrylic acid partial sodium salts
  • the polyacrylic acid partial sodium salt is nontoxic and alkaline.
  • the volume expansion occurs by absorbing water rapidly by direct contact with water.
  • Powder type at the same time
  • the fetus when it comes into contact with high humidity and moisture, a lump phenomenon appears (see FIG. 1), and when the amount of moisture increases, it is dissolved in water, and a high concentration of 3 ⁇ 4 can be used. It is also used in papermaking and pigment manufacturing, as well as in the air conditioning systems of factories.
  • the structural formula is C 3 H 3 NaO 2 and can be used for medical purposes. When used for medical purposes, it is used as a prophylactic and therapeutic agent for anti-tumor and viral diseases, or as an antiviral substance in the nest that interferes with the DNA synthesis of viruses. It can also be used in medical devices (dentures, prosthetics) used for the purpose of dental treatment, and is also a component of eye drops. As previously known, as the ratio of the crosslinked salts increases, the hygroscopicity tends to decrease.
  • Attapulgite synthesized acrylic amide is a crosslinked material of attapulgite and poly acrylamide. This material is a hybrid material composed of inorganic and organic materials by Junping Zhang (2007).
  • Attapulgite is classified as clay, such as zeolite, montmorillonite (MMT) and diatomite. It is composed mainly of magnesium aluminum phyllosilicate, (Mg, Al) 2 Si 4 o (OH) o4 (H 2 O), fuller's earth, smectite & palgolite (palygorskite). Smactite is composed of a lattice structure, and the particles of the lattice structure and water are bonded through a hydrogen bond to exist in the form of a gel. Palgite is inflated and It does not expand. The palgolithic particles form a + or-charge, causing the attapulgite to turn into gel type on the solution. Attapulgite's existing applications include paints, sealants, adhesives, catalysts, binders and binders, and are less expensive than other nanoscale clays.
  • Polyacrylamide which is a polymer, is not ionized and has a high degree of expansion, and has excellent mechanical properties and is modified through crosslinking with a water-soluble synthetic polymer. Saponification in the synthesis process improves the surface morphology of the synthesized ATPGAA. Synthesis of ATPGAA according to an embodiment is shown in FIG. 2.
  • the moisture absorbent is preferably 0.5 to 4% by weight of the total weight of the resin composition.
  • the polyethylene resin is preferably linear low density polyethylene (LLDPE).
  • the polyethylene resin is preferably a melting point of 180 ° C or less. This is because the polyacrylic acid partial sodium salt may be thermally decomposed when the processing silver is 18CTC or more.
  • the present invention provides a moisture absorbing film for packaging, characterized in that the resin composition is produced.
  • the present invention comprises the steps of preparing a pellet by compounding a polyethylene-based resin and a moisture absorbent;
  • the method of manufacturing a moisture absorbing film for packaging comprising the step of further extruding the polyethylene-based resin to the pellet, the moisture adsorbent polyacrylic acid partial sodium salt (PAPSS) and acrylamide synthetic attapulgyi
  • PAPSS polyacrylic acid partial sodium salt
  • acrylamide synthetic attapulgyi It provides a method for producing a moisture absorbing film for packaging, characterized in that it is selected from the (ATPGAA, attapulgite synthesized acrylic amide).
  • the weight ratio of the polyethylene resin and the moisture adsorbent in the step of preparing the pellets is preferably 20: 1 to 20: 6, the content of the moisture adsorbent in the blow extrusion step is 0.5 to 4 weight of the total resin composition It is preferable to further add polyethylene resin to be%. More preferably, the increase ratio of the polyethylene-based resin and the moisture adsorbent is 9: 1 in the step of preparing the pellets.
  • the particle size of the moisture absorbent is 100 to 500 mesh.
  • the export proceeds using silica gel and absorbent paper for color preservation of the flower, which can be handled with the moisture-absorbing film of the present invention, which is convenient to handle and has high hygroscopic effect, thereby enhancing the quality preservation effect of the product.
  • silica gel and absorbent paper for color preservation of the flower, which can be handled with the moisture-absorbing film of the present invention, which is convenient to handle and has high hygroscopic effect, thereby enhancing the quality preservation effect of the product.
  • It is not only applicable to dry foods sensitive to powders, ie powdered flour, fried flour and dried fish, but also to the dehumidification packaging when storing machinery parts or scrap metal, which can increase the preservation effect of these products. It can also be used as a packaging material for dehumidification inside storage and storage warehouses.
  • Fig. 1 is a photograph showing the expansion action when water of iOme (left), 50me (center) and ⁇ (right) is added to 5g polyacrylic acid partial sodium salt (PAPSS).
  • FIG. 2 is a flow chart showing the synthesis process of acrylamide synthetic attapulgite (ATPGAA).
  • Figure 3 is a schematic diagram showing the experimental process of the embodiment of the present invention.
  • Figure 4 is a graph showing the sorption action of each adsorbent at 2 (C, 30 ° C, 40 ° C.).
  • FIG. 5 is a photograph showing the distribution of PAPSS particles in a sheet prepared using 2.5 times dispersant (Triton X-100).
  • FIG. 6 is a photograph showing the distribution of PAPSS particles in a sheet prepared using a 2.0-fold dispersant (Triton X-100).
  • FIG. 8 is a flow chart showing a manufacturing process of the packaging film in the embodiment of the present invention.
  • 9 is a graph showing the sorption action of the water adsorption film produced according to the concentration of the adsorption material in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the water distribution according to the concentration of the adsorbent.
  • 11 is a graph showing the mechanical properties of the film produced according to the concentration of PAPSS in the embodiment of the present invention.
  • FIG. 12 is a graph showing the mechanical properties of the film produced according to the concentration of ATPGAA in the embodiment of the present invention.
  • the present invention comprises a polyethylene-based resin
  • PAPSS polyacrylic acid partial sodium salt
  • ATPGAA acrylamide synthesized attapulgite synthesized Acrylic amide
  • the manufacturing process of the adsorbent was identified to select a material that minimizes chemical treatment. This is also to minimize the problems caused when applied to food packaging.
  • Hygroscopic ability was measured for a total of seven materials including silica gel as a control.
  • Zeolites were supplied by AK Chem Tech., And Diatomite (brand name power dry) was supplied by Saenam Materials.
  • Received montmorillonite (montmorillonite, MMT) is supplied by Southern clay (USA), it was carried out an experiment by a preliminary test tube select "to Closite Na +.
  • Polyacrylic acid partial sodium salt (PAPSS) (lightly crosslinked) was purchased from Aldrich Co., (USA), and attapulgite (ATPG) from BASF Co. Purchased through (Korea).
  • Acrylamide synthesized attapulgite (attapulgite synthesized acrylic amide, ATPGAA) was synthesized through the process shown in Figure 2, silica-gel (silica-gel) purchased by Duksan Co., Ltd. products.
  • Zeolite is a substance that improves the adsorption capacity of gas by replacing anions on the surface with cations
  • Power dry is diatomaceous earth which is precipitated and dried in CaO after firing at 800 ° C.
  • Closite Na + is a natural MMT and PAPSS is a material incorporated in the middle layer of the diaper.
  • ATPG is a mineral that is hydrated with alumina magnesium, has the ability to adsorb, and ATGAA is a potential superabsorbent.
  • silica gallon is a representative absorbent applied to existing food packaging and serves as a control in this experiment.
  • each material was measured under relative humidity conditions. 5 g each of the pretreated material was placed on a disposable AL dish and weighed using an electronic bottom (Sartorius Ag Gottingen CP224S, ⁇ 0.0001 g). The initial weight (Wi) of the material is 5g, and stored at 20 ° C, 30 ° C, 40 ° C respectively for 19 days after storage, and opened for 19 days The increase and decrease was measured. The weight (Wf) after 19 days minus the initial weight is the amount of moisture in the atmosphere adsorbed by 5 g of the substance for 19 days, and the value divided by the initial weight is calculated as the amount of moisture adsorbed by the substance lg. If this is expressed as an equation, it is the same as Equation 1.
  • the process was carried out inside an airtight container fixed at six relative humidity levels.
  • the sealed container used a plastic container that can be opened and closed, and the internal system is shown in FIG. 3.
  • Relative humidity was adjusted using saturated salt solution.
  • kinds of salt used are KC1, NH4NO3, Na 2 Cr 2 O 7 o H 2 O, CaCb, NaOH, K 2 S04, and these salts can form 30, 40, 50, 60, 70, 80% RH, respectively.
  • a data logger sensor (datalogger sensor, SK-Sato, SK-L200THn, Tokyo, Japan) was used to measure the actual relative humidity in the system as shown in FIG.
  • the relative humidity measured by temperature is shown in Table 2.
  • the temperature was adjusted only by using a large temperature thermostat. 20 ° C ⁇ 0.5 ° C, 30 ° C ⁇ 0.5 ° C, 40 ° C ⁇ 0.5 ° C, each temperature is phase, summer outside, summer storage
  • PAPSS showed the greatest adsorption capacity of seven substances, followed by ATPGAA. Adsorption capacity for each material is shown in Tables 3 to 4.
  • a, b, and c are constants.
  • the criterion for modeling was selected based on the correlation coefficient, and the values of the constants expressed in the models and equations selected by materials are shown in Table 6.
  • Example 1 two hygroscopic materials, PAPSS and ATPGAA, were selected. A study was conducted to apply these to packaging materials. First, using LDPE resin, a general-purpose plastic, the sheet was manufactured and then evaluated for physical properties and material dispersibility. The possibility of film development was evaluated by producing a sheet, which is an intermediate step in the functional film development process.
  • LDPE resin a general-purpose plastic
  • the sheet was produced using a hot press, and the temperature and pressure were set at 200 ° C. and lOMPa, respectively.
  • LDPE resin was used as the sheet resin, and the functional materials were PAPSS and ATPGAA selected in Example 1.
  • the particle size was adjusted to 1000 / dl or less to evenly disperse the two materials in the LDPE resin.
  • the average amount of silica gel used for drying steam was 6g
  • the amount of PAPSS and ATPGAA was calculated to be 1.7g and 2.45g.
  • the amount of material to be put into the sheet was determined on the assumption that the material had a 100% hygroscopic efficiency.
  • Dispersants were used to disperse the two functional materials in powder form between the resins.
  • Triton X-100 a material commonly used to disperse solids in powder form, was applied as a dispersant.
  • Each sheet was prepared to determine the degree of dispersion according to the amount of dispersant, and the degree of dispersion was confirmed using an electron microscope.
  • tensile strength and elongation were measured using a TA.XT texture analyzer (stable microsystem Ltd, UK).
  • the load cell used was 50kgf
  • the average thickness of the sheet was 1.14 ⁇ 0.5 ⁇
  • the specimen size consisted of 1cm in width and 10cm in length. Five specimens per test zone were fabricated and measured.
  • the dispersion effect of Triton X-100 was visually checked, and the amount of dispersant was checked to prevent the dispersant from coming out during the hot press process.
  • the amount of dispersant in PAPSS lg was used 1.5 times, 2.0 times and 2.5 times the weight of the material.
  • the reason for applying the dispersant to the sheet fabrication is to facilitate the removal of Al-foil supporting the material in the hot press process as well as the dispersion effect of the functional material. Similarly, when 2.0 and 2.5 times of dispersant were used, the effect of dispersion was shown.
  • the black area is the area where PAPSS or dispersant is aggregated.
  • Model 1 is the size and dispersion of material in zone 1, with an average size of 70m.
  • section 2 the part shows black spots around it, but the middle part shows an empty donut. It is a wound form that occurs in the pressing process, and melted into sheets without being dispersed in a state surrounded by spherical resin.
  • the appearance in zone 2 was also observed in zones 3 and 4, which can be regarded as a characteristic of the press process. Since the black spots were PAPSS, the overall dispersion was good, but it was not partially dispersed, but the formation of the puncturing by the liquid dispersant was observed.
  • the overall PAPSS is embedded as shown in FIG. 5. It was difficult to find the shape, and the wave pattern was observed. This is because the amount of the dispersant is small, the amount of dispersing during the dispersion by pressure is low, and the dispersant remains in the sheet. That is, it is determined that there is a substance inside the wavy pattern.
  • Pellets containing 10% concentration of the functional material were produced into a film by blow extrusion to a thickness of 0.7 kPa in ARTS Co., Ltd., Yangsan, Gyeongnam.
  • the produced film including the control LLDPE film, a total of nine kinds of films were prepared with a concentration of 0.5%, 1%, 2%, and 4% for each material (see FIG. 8).
  • the increase of the film is shown in Table 9.
  • each film of Example 3-1 was cut into 0.25m 2 area and 0.07 thickness, which is a constant size, and the weight of each specimen (based on lg) was evaluated based on the measurement.
  • the initial weight of the film was used to compare and determine the dispersion of materials.
  • Table 10 shows the weight of the material in the specimens, assuming 100% initial weight and dispersion of the film.
  • Table 10 The results shown in Table 10 can be used to predict the degree of dispersion of the material. Based on the 0.5% amount of material, the amount of functional material in the specimen was found to be higher than expected. Comparing and evaluating the shape can predict that the dispersion is relatively good.
  • Example 1-1 Cut to the above-described portrait to landscape 25cm 10cm, each film of Examples 3-1 was conducted in Example 1-1 in the same manner as the moisture absorption capability of the moisture-absorbing test materials, is carried out a temperature 20 ° C, the period is 10 days It was. Other conditions except these were carried out in the same manner as in Example 1-1.
  • the water mass was calculated under the assumption that the hygroscopic material in the cut film was 100% dispersed (Equation 2 below). The difference between the initial weight of the film and the final weight was divided by the amount of material, and the moisture absorption capacity of the film was measured. The results are shown in Table 11 and FIG.
  • the adsorption capacity tended to increase as the concentration of functional material added during the 10 days storage test.
  • the adsorption effect of the final material was the same as the storage period was longer.
  • the difference in is expected to be the difference in the degree of the rate of adsorption of water (see FIG. 10).
  • 11 and 12 show the properties of the functional film according to the application content of the hygroscopic material.
  • PAPSS the physical properties of the film were increased with increasing material content.
  • the tensile strength was decreased by 68% due to the addition of PAPSS.
  • concentrations of PAPSS added 0.5% added, 1% added and 2% added showed numerical differences, but little variation. This can be interpreted that the addition of PAPSS up to 2% by weight does not have a significant effect on the decrease in tensile strength, and when the 4% PAPSS is added, the tensile strength of the functional film is reduced to about 56% compared to the LLDPE control film.
  • ATPGAA is a clay-based inorganic material
  • PAPSS is a polymer-based material. It is expected to be located in the empty space between resin matrices in an independent state. Basically, the difference in physical properties of two materials is interpreted as the elongation value obtained by the difference in chemical structural properties.
  • Table 12 shows the results of evaluating the hygroscopic ability of each film, comparing the results of the moisture absorption of silica gel, PAPSS, ATPGAA at 20 ° C and the moisture absorption of the functional film added 2% of each raw material.
  • the functional film added with 2% moisture absorbent showed high moisture absorption with little change in tensile strength or elongation. Comparison of the data shows the ratio of relative humidity, which is the environmental condition, in%.
  • the film containing 2% of PAPSS showed up to 33% water adsorption efficiency compared to the original PAPSS material, but compared with silica gel, it had similar or higher water adsorption capacity under the relative humidity of 50% or higher. Showed. In the case of 2% ATPGAA added film, the moisture absorption ability of silica gel was more than 50% RH.
  • ATPGAA and PAPSS are considered to be excellent moisture adsorbents that can replace silica gel.
  • the added amount of the 2% hygroscopic material for the production of the film compared to the increase was found to have the packaging function of the product.
  • the moisture absorption capacity of the PAPSS was evaluated as a result of the thermal decomposition of the PAPSS in the extrusion process of the film, but only partially occurred, there was no loss of the overall moisture absorption capacity of the film.
  • the present invention it is possible to produce a water adsorption film having excellent water adsorption power and physical properties.
  • silica gel and absorbent paper are used to preserve the color of the flower.
  • the export process is carried out using the water absorbing film of the present invention, which is easy to handle and has a high hygroscopic effect, thereby enhancing the quality preservation effect of the product. It is not only applicable to fried powder, dried fish, etc. but also to dehumidifying packaging when storing machinery parts or scrap metal, which can increase the preservation effect of these products. It can also be used as a packaging material for dehumidification inside storage and storage warehouses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Packages (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 폴리에틸렌계 수지 및 수분흡착제로 폴리아크릴산 부분 나트륨 염(PAPSS, Polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트(ATPGAA, Attapulgite synthesized Acrylic amide)를 포함하여 이루어지는 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법에 관한 것이다. 본 발명에 따르면 수분 흡착력 및 물성이 우수한 수분 흡착 필름을 제조할 수 있다. 일반적으로 수출용 화훼의 경우 화훼의 색보존을 위해 실리카겖 치 흡습지를 이용하여 수출을 진행하는데, 이것을 취급 편리하고 흡습 효과성이 높은 본 발명의 수분 흡착 필름으로 대처하여 제품의 품질보존 효과를 놓일 수 있으며, 특히 수분에 민감한 건조음식 즉, 분말 입자 형태의 밀가루, 튀김가루, 건어물 등에 적용 가능할 뿐만 아니라 기계 부속품 또는 고철류 보관 시 제습포장에 적용이 가능하여 이들 제품의 보존 효과를 높일 수 있다. 또한 제품의 저장 및 보관 창고 내부에 제습을 위한 포장재로의 활용도 가능하다.

Description

명세서
발명의 명칭
수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법 기술분야
본 발명은 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조 방법에 관한 것으로, 구체적으로 폴리에틸렌계 수지 및 수분흡착제로 폴리아크릴산 부분 나트름 염 (PAPSS, Polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, Attapulgite synthesized Acrylic amide)를 포함하여 이루어지는 수분 흡착 필름용 수지 조성물에 관한 것이다.
배경기술
최근 현대 산업의 발전에 따라, 각종 제품의 다양화와 상품성이 중요시 되고 있으며, 제품의 생산, 저장, 유통 및 판매를 위한 포장에 있어서, 취급 편리성 및 품 질 보존 등에 대한 소비자의 요구가 점차 증가하고 있다.
따라서 포장재 산업 분야에서는 이러한 사회 환경에 발맞추어, 기존 포장의 단순 제품보호 및 품질보존의 수동적인 목적에서 벗어나, 제품의 특성에 따라 적극 적으로 포장 제품에 능동적 효과를 제공하려고 하며, 포장재에 기능성 요인을 부여 하여 상품성을 증대시키는 연구 노력을 활발히 진행하고 있다.
오늘날 다양한 식품, 의약품, 전자 및 생활용품에서의 포장재로, 가볍고 우수 한 가스 차단성, 투명성의 물성 특징, 다른 포장 소재에 비해 상대적으로 저렴한 비 용 둥으로 인해 플라스틱 포장재의 개발이 많이 이루어지고 있다. 최근 연구되고 있는 기능성 포장재는 대부분 제품 품질개선을 위한 활성물질 을 포장재에 함침 및 코팅하여 제조되고 있는데, 이는 포장 직후부터 지속적으로 대 상 제품에 최대의 효과성을 부여하기 위한 것이다. 그 예로 수분 및 가스 차단성을 높이는 나노 필름, 제품의 미생물 성장을 억제시키는 제올라이트를 함유한 필름, 에 너지를 방사하는 원적외선 방사 필름, 이취를 흡착하는 필름, 산소 및 이취 가스를 흡착하는 필름 등의 개발이 시도되고 있다.
특히 수분에 민감한 식품의 경우, 포장 내부를 건조한 상태로 유지시킬 필요 가 있는데, 이는 수분 활성도가 제품의 물성 변화, 산패 발생, 영양적 손실, 관능적 가치 저하 및 미생물 성장을 통한 부패 발생, 그리고 전자 제품에서는 금속 표면의 산화 부식 유도 등으로 포장된 제품의 품질을 떨어지게 하는 중요한 원인이 되기 때문이다. 일반적으로 이러한 문제점을 해결하기 위하여, 식품의 경우 열풍 건조 전 처리, 건조 가스 치환 포장, 차단성이 있는 진공 포장, 건조제를 포장재 내부에 별도 로 첨가하는 방법 둥으로 처리하고 있으나, 이러한 방법은 처리 공정의 불편함, 처리 비용 상승, 보존 기간의 증대에 따른 건조 지속성의 약화와 같은 문제점이 있다. 건조제는 물질속의 수분을 제거하여 건조시키기 위해 사용되는 물질로 수분 과 반웅하여 수분을 고착시키는 화학적 작용과 수분을 흡착 또는 흡수하는 물리적 작용으로 구분되어 물질의 수분을 제거한다. 화학적 작용으로 수분을 제거하는 대표 적인 건조제로는 염화칼슘 또는 황산구리가 있으며, 이들은 수분을 결정수의 형태로 흡수한다. 물리적 작용으로 수분을 제거하는 건조제로는 실리카겔, 산화 알루미늄, 제올라이트 둥이 있으며, 표면적이 넓어 여기에 다량의 수분을 수용할 수 있다. 이러한 건조제 중, 실리카겔은 Si02 화학 성분인 광물질이며, 알갱이 형태로 존재한다. 건조제로 사용되는 실리카겔의 흡수공 평균 크기는 24A으로, 수분분자와 친화력이 강하다. 220°F(105°C)까지 수분을 끌어당기는 성질이 있으며, 70°F ~ 90T, 60 ~ 90%RH에서 건조제의 기능을 최대한 발효하고, 40%RH까지 물분자를 흡수한 다. 미국 FDA에서 식품과 의약품에 직접 접촉 가능한 건조제 물질로 유일하게 승인 된 물질이다.
실리카겔이 흡수할 수 있는 물질은 수분 이외에도 여러 유기 화학물질이 있 으며, 흡수 공의 크기도 다양하다. 실리카겔의 흡수 가능한 물질과 흡수력의 순서는 물 (water), 암모니아 (ammonia), 알코을 (alcohols), 방향족 (aromatics), 디올레핀 (diolefins), 을레핀 (olefins), 파라핀 (paraffins) 순이다.
r 다른 건조제로 몰리클러시브 (molecular sieve)가 있는데, 이는 수분 친화력이 강한 합성 건조제인 다공성의 알루미노실리케이트 (aluminosilicate)이다. 다른 건조제 와 달리 흡수공의 크기가 격자구조로 일정하며, 이 흡수공의 크기는 조절이 가능하 다 일반적으로는 3A,4A,5A,10A의 흡수공 크기를 가진 물질을 사용한다.
몰리클러시브는 수분은 흡수하지만, 휘발성 물질은 방출한다. 3A의 경우 수 분을 흡수하면서 다수의 탄화수소를 방출한다. 4A의 경우는 3A보다 흡수 능력이 우수하지만 보다 많은 부탄을 방출한다. 230°C(450°F)까지 수분을 함유할 수 있고, 실리카겔보다 수분 친화력이 좋기 때문에 10%RH 까지 유지 가능하다. FDA에서는 제품에 직접 사용하는 것을 승인하지 않았지만 유럽에서는 의약품에 사용된다. 가격 은 비싸지만, 흡수력이 뛰어나 저습도 조건으로 유지해야할 경우에 주로 사용된다. 또 다른 건조제로, 몬모릴로나이트 진흙 (Montmorillonite clay)은 서브-벤토나 이트 (sub-bentonite) 형태의 마그네슘 알루미늄 실리케이트 (magnesium aluminum silicate)를 건조하여 만들어진다. 오염 및 팽창이 없을 경우, 저습도에서 사용된 것 은 재생이 가능하다. 수분을 흡수한 후 재방출하는 역기능 효과가 있기도 하다. 12 0°F(50°C)이하에서 건조제의 기능을 수행하며, 이 은도 이상에서는 수분을 흡수하기 보다는 방출하는 특성을 나타낸다. 따라서 건조제로 사용 시, 저장 및 유통조건을 고려할 필요가 있다. 일반적으로 상온, 표준 상대습도에서는 건조제의 기능을 다한 다 회색의 색상을 가지는 입자로, 순도를 높여야 포장제품에 적용 시, 제품과의 반 응을 최소화 할 수 있다.
산화칼슘 (CaO)은 중량의 28.5%에 달하는 수분을 흡수할 수 있다. 건제물질 중에서 가장 좋은 흡수력을 가지고 있기 때문에 저습도 조건이 중요한 경우 사용한 다. 산화칼슘은 느린 속도로 수분을 흡수하며, 수분을 흡수하면 팽창한다. 건조 냉동 식품의 경우는 산화칼슘의 사용이 제한된다.
기존에는 이러한 CaO, 제올라이트, 실리카겔 둥의 건조제를 티백 파우치 (Tyvek pouch)에 넣어 밀봉하고, 이것을 제품에 투입하는 방법을 사용하였다. 건조 제를 사용하는 기본 목적은 가공제품의 텍스쳐 (texture) 유지와 미생물 생장억제이 며, 과실의 경우 포장내부의 포화습도조건을 조절하여 과실에서부터 증산한 수증기 로 인해 내면에 물방을이 맺히는 것을 예방하기 위함이다. 주로 사용하는 물질은 소 금, 포화 염용액, 고흡수성 고분자이며, 욕류나 어류에는 은도에 따라 발생하는 육즙 의 흡수를 위한 고흡수성 고분자 시트 (sheet)를 사용한다. 이 시트의 재료로는 주로 폴리아크릴레이트 (polyacrylate)나 전분 그래프트 (graft) 증합체를 이용한다. 그리고 이러한 육류, 어류를 감싸는 용도로 플라스틱 필름 사이에 수분 조절제를 넣은 것을 사용하는데, 폴리비닐 알코올 (polyvinyl alcohol)로 밀봉된 폴리프로필렌 글리콜 (Propylene glycol)을 이용하기도 한다. 또한 수송이나 보관 중에 금속 /전기, 정밀 전 자기기 부품 및 제품이 수분의 영향으로 부식되거나 녹이 스는 것을 막기 위한 용 도로도 다양하게 적용이 가능하다.
. 이와 같이 기존의 식품, 의약품, 전자제품 둥에 사용되는 건조제는 작은 파우 치 형태로 제품과 포장 사이에 혼입되어 사용되기 때문에, 건조제 파우치의 포장 결 함으로 '인해 건조제가 제품 내부로 혼입되는 현상이 발생하여, 제품이 오염되고 상 품성이 저하되는 문제점이 있으며, 식품, 의약품의 경우 소비자의 사용상 안전성의 문제가 발생할 수 있다.
또한 건조제 파우치를 제품 내부에 투입하는 공정이 번잡하고, 건조제가 흡 습기능을 발휘한 이후에 이취 및 반웅생성물이 발생할 가능성이 높다.
따라서 본 발명자들은 수분 민감 제품을 위한 사용 편의성과 흡습 지속 효과 의 특성을 고려하여 기능성 흡습 포장재 필름 개발하고자 하였다. 적용 건조 활성 물질로 흡습효과가 높은 물질을 조사, 선별하여 적용 농도별로 범용 플라스틱 필름 에 함침 제조하였으며, 기능성 흡습 필름의 물성 및 효과를 확인하였다.
이의 결과, 폴리에틸렌계 수지에 폴리아크릴산 부분 나트륨 염 (PAPSS, polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, attapulgite synthesized acrylic amide)를 함침하여 필름을 제조할 경우, 수분 흡착력 및 물성이 우수한 수분 흡착 필름을 제조할 수 있음을 확인하고, 본 발 명을 완성하게 되었다.
발명의 상세한 설명
기술적 과제
본 발명의 주된 목적은 수분 흡착력 및 지속 효과가 뛰어나고, 제품의 오염이 발생하지 않으며, 사용이 간편하고 물성 또한 우수한 수분 흡착 필름을 제공하는데 있다. 본 발명의 다른 목적은 상기 수분 흡착 필름의 제조방법을 제공하는데 있다. 기술적 해결방법
본 발명의 한 양태에 따르면, 본 발명은 폴리에틸렌계 수지를 포함하여 이루 어지며, 수분흡착제로 폴리아크릴산 부분 나트름 염 (PAPSS, polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, attapulgite synthesized acrylic amide)를 더 포함하여 이루어지는 수분 흡착 필름용 수지 조성 물을 제공한다.
폴리아크릴산 부분 나트름 염 (PAPSS, polyacrylic acid partial sodium salts) 은 나트름염과 폴리아크릴산 (polyacrylic acid)을 가교화시킨 물질로, 가교화를 통해 생긴 분자사슬간의 공간에 물 분자를 함유하는 형태의 흡착을 진행한다.
폴리아크릴산 나트름 염 (PASS, polyacryic acid sodium salts)과는 가교화 정 도의 차이가 있으며, PASS는 PAPSS보다 가교화를 더 진행시킨 것이다.
폴리아크릴산 부분 나트름 염은 무독성이며 알칼리성이다. 수분과의 직접적 인 접촉에 의해 급속도로 수분을 흡수하면서, 부피팽창이 이뤄진다. 동시에 분말형 태의 경우, 고습도 및 수분과 접촉하게 되면 웅집현상이 나타나고 (도 1 참조), 수분 의 양이 더 많아지게 되면 물에 녹으며, 고농도 ¾ 사용이 가능하다. 여러 염을 분산 시킬 수 있는 분산 능력과 제지 및 안료 제조 둥에 사용하기도 하며, 공장의 공기조 절 시스템에도 사용된다.
구조식은 C3H3NaO2이며, 의학용으로 사용이 가능하다. 이 물질을 의학용으로 사용할 경우, 항종양성 및 바이러스성 질환의 예방 및 치료제 또는 바이러스의 DNA합성을 방해하는 둥의 항바이러스성 물질로 사용된다. 또한 치아치료의 목적으 로 사용되는 의료기구 (의치, 보철) 둥에 사용할 수 있으며, 안약의 구성성분이기도 하다. 기존에 알려진 바에 따르면, 가교화된 염의 비율이 높아질수록 흡습능력이 감 소되는 경향을 보이는 것으로 나타났다.
아크릴 아마이드 합성 아타풀자이트 (ATPGAA, attapulgite synthesized acrylic amide)는 아타풀자이트 (attapulgite)와 폴리아크릴아미드 (poly acrylamide)를 가교화시킨 물질이다. 이 물질은 Junping Zhang(2007)에 의해 무기물과 유기물을 합 성시킨 하이브리드 (hybrid) 물질이다.
아타풀자이트는 제올라이트 (zeolite), 몬모릴로나이트 (montmorillonite, MMT), 규조토 (diatomite) 둥과 같이 점토 (clay)로 분류된다. 주로 마그네슘 알루미늄 층상규 산염 (magnesium aluminium phyllosilicate, (Mg,Al)2Si4이 o(OH)o4(H2O))으로 구성되 어 있으며, fuller's earth로, 스맥타이트 (smectite) & 팔리고스카이트 (palygorskite)로 구성되어 있다. 스맥타이트는 격자구조로 구성되어 있으며, 격자구조의 입자와 수분 이 수소결합을 통해 결합하여 겔 (gel) 형태로 존재한다. 팔리고스카이트는 팽창 및 확장이 되지 않는다. 팔리고스카이트 입자는 + 또는 ― 전하 (charge)를 형성하여, 용 액 상에서 아타풀자이트가 겔 타입으로 변하게 된다. 아타풀자이트의 기존 사용처는 페인트, 실란트, 접착제, 촉매, 고착제, 바인더 용도로 사용하며, 기타 나노 (nano) 크 기의 점토에 비해 저비용이다.
아크릴 아마이드 합성 아타풀자이트에 관한 연구는 Polymer for advanced tech.에 적용되어 연구가 진행이 되고 있으며, 연구 결과 아타풀자이트의 표면 이온 치환 후 합성을 한 물질의 흡습능력이 우수한 것으로 나타났다. 이 물질은 최초의 웅용 분야는 관상용 수목의 화분용 층진제로 개발이 되었으며, 이후 연구가 진행이 되면서 기타 분야로의 적용이 연구되고 있다.
고분자인 폴리아크릴아미드는 이온화가 안되며, 팽창정도가 큰 폴리머로, 기 계적성이 우수하고 수용성 합성 폴리머로 가교화를 통해 개질이 이루어진다. 합성과 정에서의 비누화 (saponification)를 통해, 합성된 ATPGAA의 표면형태를 개선하게 된다. 일실시예에 따른 ATPGAA의 합성과정은 도 2와 같다.
본 발명의 수분 흡착 필름용 수지 조성물에서, 상기 수분흡착제는 상기 수지 조성물 총 중량의 0.5 내지 4중량 %인 것이 바람직하다.
본 발명의 수분 흡착 필름용 수지 조성물에서, 상기 폴리에틸렌계 수지는 선 형 저밀도 폴리에틸렌 (LLDPE)인 것이 바람직하다.
본 발명의 수분 흡착 필름용 수지 조성물에서, 상기 폴리에틸렌계 수지는 녹 는점이 180 °C 이하인 것이 바람직하다. 이는 가공은도가 18CTC 이상일 경우, 폴리아 크릴산 부분 나트름 염이 열분해될 수 있기 때문이다. 본 발명의 다른 양태에 따르면, 본 발명은 상기 수지 조성물로 제조되는 것 을 특징으로 하는 포장용 수분 흡착 필름을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 폴리에틸렌계 수지 및 수분흡 착제를 컴파운딩하여 펠렛을 제조하는 단계; 상기 펠렛에 상기 폴리에틸렌계 수지를 더 첨가하여 블로우 압출시키는 단계를 포함하는 포장용 수분 흡착 필름 제조방법 이고, 상기 수분흡착제는 폴리아크릴산 부분 나트륨 염 (PAPSS, polyacrylic acid partial sodium salt) 및 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, attapulgite synthesized acrylic amide) 중에서 선택된 것임을 특징으로 하는 포장용 수분 흡착 필름 제조방법을 제공한다.
상기 펠렛을 제조하는 단계에서 폴리에틸렌계 수지 및 수분흡착제의 중량비 는 20 : 1 내지 20: 6으로 하는 것이 바탑직하며, 상기 불로우 압출시키는 단계에서 수분흡착제의 함량이 총 수지조성물의 0.5 내지 4중량 %가 되도록 폴리에틸렌계 수 지를 더 첨가하는 것이 바람직하다. 보다 바람직하게는 상기 펠렛을 제조하는 단계 에서 폴리에틸렌계 수지 및 수분흡착제의 증량비를 9: 1로 하는 것이 좋다.
상기 수분흡착제의 입도가 100 내지 500메쉬 (mesh)인 것이 바람직하다.
유리한 효과
본 발명에 따르면 수분 흡착력 및 물성이 우수한 수분 흡착 필름을 제조할 수 있다. 일반적으로 수출용 화훼의 경우 화훼의 색보존을 위해 실리카겔 및 흡습지 를 이용하여 수출을 진행하는데, 이것을 취급 편리하고 흡습 효과성이 높은 본 발명 의 수분 흡착 필름으로 대처하여 제품의 품질보존 효과를 높일 수 있으며, 특히 수 분에 민감한 건조식품 즉, 분말 입자 형태의 밀가루, 튀김가루, 건어물 둥에 적용 가 능할 뿐만 아니라 기계 부속품 또는 고철류 보관 시 제습포장에 적용이 가능하여 이들 제품의 보존 효과를 높일 수 있다. 또한 제품의 저장 및 보관 창고 내부에 제 습을 위한 포장재로의 활용도 가능하다.
도면의 간단한 설명
도 1은 5g 폴리아크릴산 부분 나트름 염 (PAPSS)에 iOme(좌), 50me (가운데), ΙΟΟπ (우)의 물을 첨가하였을 때의 팽창 작용을 나타내는 사진이다.
도 2는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA)의 합성 공정을 나타 낸 플로우 차트이다.
도 3은 본 발명 실시예의 실험과정을 나타낸 모식도이다.
도 4는 2( C, 30 °C, 40°C에서 각 흡착 물질의 수착 작용을 나타내는 그래프이 다.
도 5는 2.5배의 분산제 (Triton X-100)를 사용하여 제작한 시트에서 PAPSS 입자의 분포를 나타내는 사진이다.
도 6은 2.0배의 분산제 (Triton X-100)를 사용하여 제작한 시트에서 PAPSS 입자의 분포를 나타내는 사진이다.
도 7은 본 발명 실시예에서 제작한 시트의 기계적 물성을 나타낸 그래프이 다.
도 8은 본 발명 실시예에서 포장용 필름의 제조공정을 나타낸 플로우 차트이 다. 도 9는 본 발명 실시예에서 흡착 물질 농도에 따라 제작한 수분 흡착 필름의 수착 작용을 나타낸 그래프이다.
도 10은 흡착 물질 농도에 따른 수분 분포을을 나타낸 모식도이다.
도 11은 본 발명 실시예에서 PAPSS의 농도에 따라 제작한 필름의 기계적 특성을 나타내는 그래프이다.
도 12는 본 발명 실시예에서 ATPGAA의 농도에 따라 제작한 필름의 기계적 특성을 나타내는 그래프이다.
발명의 실시를 위한 최선의 형태
이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
본 발명은 폴리에틸렌계 수지를 포함하여 이루어지며,
수분흡착제로 폴리아크릴산 부분 나트름 염 (PAPSS, Polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, Attapulgite synthesized Acrylic amide)를 더 포함하여 이루어지는 수분 흡착 필름용 수지 조성 물에 관한 것이다.
발명의 실시를 위한 형태
실시예 1. 수분흡착 소재 특성 분석
수분 및 여러 흡착제간의 특성을 비교하여, 대기 중의 수분 흡착이 용이할 것으로 추정되어지는 물질을 선정하였으며, 대기 중의 수분 및 주변의 액체를 물리 적으로 흡착하는 형태의 흡착물질을 선정하였다. 이는 식품포장에 적용 시, 화학적 결착으로 예상치 못한 수분과 흡착제간의 반웅 부산물에 의 한 문제를 예방하기 위 함이다.
또한 흡착제의 제조 공정을 파악하여, 화학적 처 리가 최소화 되는 물질을 선 정 하였다. 이 또한 식품포장에 적용 시 야기될 문제점을 최소화하기 위 함이 다。
필름 적용 시 의 가공 적성을 고려하여, 필름에 혼입을 위 한 적정 입도로의 가 공 가능성과 대 량 생산에 적용 시 경제성을 고려 하여, 용이하게 구입 가능한 물질 둥을 위주로 선정하였다.
상기 기준에 근거하여 표 1과 같은 물질을 선정 하였다.
[표 1]
Figure imgf000014_0001
* PAPSS : Polyacrylic acid partial sodium salt
* ATPG : Attapulgite
* ATPGAA : Attapulgite synthesized acrylic amide
1-1. 물질별 흡착능력 평가
대조구인 실리카겔을 포함한 총 7개의 물질에 대해 흡습능력을 측정하였다. 제올라이트 (zeolites)는 AK Chem Tech.에서 제공받았으며, 규조토 (Diatomite) (상품명 power dry)는 새남소재에서 제공 받았다. 몬모릴로나이트 (montmorillonite, MMT)는 Southern clay(USA)에서 공급 받았으며, 예비실험을 통 '하여 Closite Na+를 선택하여 실험을 진행하였다. 폴리아크릴산 부분 나트름 염 (polyacrylic acid partial sodium salt, PAPSS) (lightly crosslinked)은 Aldrich Co., (USA)와 물질을 구매하였으며, 아타풀자이트 (attapulgite, ATPG)는 BASF Co. (Korea)를 통해 구매하였다. 아크릴 아마이드 합성 아타풀자이트 (attapulgite synthesized acrylic amide, ATPGAA)는 도 2에 제시된 과정을 통해 합성을 하였으 며, 실리카겔 (silica-gel)은 (주)덕산의 제품을 구매하였다.
제올라이트는 표면의 음이온을 양이온으로 치환하여, 기체의 흡착능력을 향 상 시킨 물질이며, Power dry는 800 °C에서의 소성을 시킨 후 CaO에 침전 및 건조 시킨 규조토이다. Closite Na+는 천연 MMT이며, PAPSS는 기저귀의 중간층에 혼 입되어 있는 물질이다. ATPG는 알루미나 마그네슘이 수화된 무기물로, 흡착능력이 있으며, ATGAA는 초흡수제로의 가능성이 있는 물질이다. 마지막으로 실리카갤은 기존의 식품포장에 적용되고 있는 대표적인 흡수제로 본 실험에서는 대조구로의 역 할을 한다.
상대습도 조건하에서 각 물질의 흡습능력을 측정하였다. 전처리를 거친 물질 을 일회용 AL 접시에 각각 5g씩을 전자저을 (Sartorius Ag Gottingen CP224S, ±0.0001g)을 이용하여 계량하여 옮겼다. 물질의 초기무게 (Wi)는 5g이며, 저장 이후 19일간 각각 20°C, 30 °C, 40°C의 온도에서 보관을 하였고, 개봉하여 19일간의 무게 증감을 측정하였다. 19일 이후의 무게 (Wf)에서 초기무게 을 뺀 값은 물질 5g이 19일간 흡착한 대기 중의 수분의 양이 되 며, 이를 초기무게로 나눈 값은 물질 lg이 흡착한 수분의 양으로 계산된다. 이를 수식으로 나타내면, 방정식 1과 같다.
[방정식 1]
Figure imgf000016_0001
6개의 상대습도로 고정 된 밀폐용기 내부에서 진행하였다. 밀폐용기는 개 폐가 가능한 플라스틱 용기를 이용하였으며, 내부 시스템은 도 3과 같다. 상대습도는 포 화 염 용액 (saturated salt solution)을 이용하여 조절하였다. 사용한 염의 종류는 KC1, NH4NO3, Na2Cr2O7o H2O, CaCb, NaOH, K2S04이 며, 이들 염은 각각 30, 40, 50, 60, 70, 80%RH를 조성 할 수 있는 염 이 다. 이들 포화 염 용액의 저장 온도에 따 라 조성 되는 상대습도의 차이는 있다. 도 3과 같이 조성 한 시스템 내부의 실제 상대 습도를 측정하기 위해 데 이 터로거 센서 (datalogger sensor, SK-Sato, SK-L200THn, Tokyo, Japan)를 이용하였다. 온도별로 실제 측정 한 상대습도는 표 2와 같다.
【표 2]
온도는 대형 항온 항습기를 이용하여, 온도만을 조정하였다. 20°C±0.5°C, 30 °C ±0.5°C, 40°C±0.5°C로 조성하였으며 , 각 온도는 상은, 여름철 외부은도, 여름철 저 장
Figure imgf000017_0001
창고 온도를 가정하여 설정하였다. 최종 적용대상이 건제품의 보관환경을 묘사하였 으며, 온도에 따른 물질의 흡착능력 이 미치는 영향을 파악하였다.
1-2. 결과 및 해석
각 물질별 흡습량은 상기 방정식 1을 사용하여 결과값을 도출하였으며, 각각 의 결과를 도식 화하면, 도 4와 같다.
도 4에 나타난 것과 같이 PAPSS가 7개의 물질 증 가장 큰 흡착 능력을 나 타냈으며, 그 다음으로는 ATPGAA가 우수한 것으로 나타났다. 각 물질별 흡착 능 력은 표 3 내지 4와 같다.
【표 3】
//:/ O 980sono2Ml>d S98nlzszAV
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
(sorption isotherm)의 해석에 사용되는 방법으로, 기존에 사용된 수학적 모델식을 이용하여, 가장 적합한 모델을 찾아 기타 환경에서의 값들을 추정하였다. 사용한 수 학적 모델은 표 5에 나타나 있다.
【표 5】
Figure imgf000019_0001
* Xe : Qeq의 의미와 같다.
* a, b, c는 상수 (constant)이다. 모델링 의 판단 기준은 상관계수인 값을 기 준으로 선정 하였으며, 물질별로 선정 된 모델 및 수식 에 표현된 상수의 값들은 표 6과 같다.
【표 6】
Figure imgf000020_0001
상가 표 6을 이용하여, 적용되는 대상의 주요 온도를 알면 해당 온도에서 물질이 흡습하는 수분의 양을 R2값의 확률로 추정 할 수 있다.
본 실시 예를 통해 7개의 흡습 물질 중 PAPSS와 ATPGAA의 흡습능력 이 우 수한 것으로 나타났다. 이 두 가지 물질은 대조구인 실리카겔과 비교 시, PAPSS는 약 6배, ATPGSS는 약 4배의 흡습능력을 보였다.
또한 수학적 모델을 이용한 모델링을 통해 전 범위 상대습도에 대한 논리적 인 유추를 할 수 있는 방법을 유도하였으며, 이는 적용대상에 따라 물질의 함유량을 결정지을 수 있는 근거를 추론할 수 있다. 본 실시 예의 결과를 실제 필름 제작에 이 용하였다. 실시예 2. 시트 (sheet) 제작을 통한 필름 적용 가능성 분석
상기 실시예 1을 통해 PAPSS와 ATPGAA의 2가지 흡습물질을 선정하였다. 이들을 포장재에 적용하기 위한 연구를 진행하였다. 우선, 범용 플라스틱인 LDPE 수지를 이용하여, 시트를 제작한 후 물성 및 물질 분산성 평가를 수행하였다. 최종 목적인 기능성 필름 개발 과정 중간 단계인 시트 (sheet) 제작을 통해 필름 개발 가 능성을 평가하였다.
2-1. 시트 제작 및 분석
핫 프레스 (hot press)를 이용하여 시트를 제작하였으며, 온도 및 압력을 각각 200 °C, lOMPa 조건으로 하였다. 시트 수지로 LDPE 수지를 사용하였으며, 기능성 물질은 상기 실시예 1에서 선정된 PAPSS와 ATPGAA이다. 두 가지 물질을 LDPE 수지에 고르게 분산시키기 위해 입도를 1000/朋 이하로 조정하였다.
시트 제작 시 물질의 함유량을 결정하기 위해, 제습제가 흔입되어 있는 식품 증 건조 김을 기준으로 하였고, 상용화되고 있는 건조제인 실리카겔의 적정량을 기 준으로, 실험결과와 비교하여 PAPSS와 ATPGAA 적용 시 필요한 물질량으로 환산 하였다. 건조 김의 제품 중량 분류는 표 7과 같다.
【표 7】 A사 제품 B사 제품 C사 제품 D사 제품 제품 증량 15.51g 14.10g 13.47g 12.12g
필름 중량 3.1g 3.17g 3.16g 3.12g
트레이 중량 4.21g 4.27g 4.25g 4.50g
생산품 증량 5g 5g 5g 5g
흡수제 중량 8.2g 6.66g 6.06g 4.5g 표 7의 조사 자료에 의하여 건조 김에 사용되는 실리카겔의 양이 평균 6g이 며, 이에 따라 PAPSS와 ATPGAA의 양은 1.7g과 2.45g으로 계산되었다. 시트 제작 시 들어갈 물질의 양은 이 물질이 100%의 흡습 효율을 발휘한다는 가정을 전제로 결정되었다.
분말 형태의 두 기능성 물질을 수지 사이에 분산을 시키기 위해 분산제를 이 용하였다. 분말형태의 고체를 분산시키는데 일반적으로 이용되는 물질인 Triton X— 100를 분산제로 적용하였다.
분산제의 양에 따라서 분산정도를 알아보기 위해 각 시트를 제작하였으며, 전자 현미경을 이용하여 분산정도를 확인하였다.
제작한 시트의 물성을 평가하기 위해, TA.XT 질감 분석기 (texture analyzer, stable Micro System Ltd, UK)를 이용하여 인장강도와 신장률 (%)을 측정하였다. 사 용한 로드셀 (load cell)은 50kgf이며, 시트의 평균 두께는 1.14±0.5腿로, 시편 크기는 가로 lcm, 세로 10cm로 구성하였다. 실험구 1개당 5개의 시편을 제작하여 측정하였 다.
2-2. 결과 및 해석
시트 제작 이전에 Triton X-100의 분산효과를 육안으로 확인하고, 핫 프레스 공정 중 분산제가 홀러나오는 현상을 방지하기 위해 분산제 사용량을 확인하였다. PAPSS lg에 분산제의 양을 물질 중량 대비 1.5배, 2.0배, 2.5배를 사용하였다. 시트 제작에 분산제를 적용하는 이유는 기능성 물질의 분산 효과뿐만 아니라 핫 프레스 공정에서 물질을 받쳐주는 알루미늄 포일 (Al-foil) 제거를 용이하게 하기 위함이다. 같이, 2.0배와 2.5배의 분산제를 사용했을 때 분산의 효과가 있는 것으로 나타났다.
전자 현미경을 이용한 관찰은 시트의 특정 부분을 선정하여 실시하였고, 선 정된 부분을 2400배 확대하여 확인하였다. 2.5배의 분산제를 이용한 시트의 관찰 결 과는 도 5와 같으며, 2.0배 분산제를 이용한 시트의 관찰 결과는 도 6과 같다.
도 5에서 번호로 표시된 부분을 전자 현미경을 이용하여 확대하였으며, 이 사진은 오른쪽 부분에 나타냈다. 공통적으로 검은색으로 표시된 부분이 PAPSS 또 는 분산제가 뭉쳐 있는 부분이라 할 수 있다. 1번 구역에서 물질이 분산된 모형과 크기이며, 평균 크기는 7O9 m이다. 2번 구역에서 부분은 주변에 검은 반점이 보이 지만 가운데 부분은 비어있는 도넛형태를 나타낸다. 이는 프레스 공정에서 발생하는 상처 형태로, 구형 수지 주변에 물질이 둘러싸인 상태로 분산되지 않고 녹아서 시트 가 된 형태이다. 2번 구역에서 나타난 형태는 3, 4번 구역에서도 관찰되었으며, 이는 프레스 공정의 특징으로 간주할 수 있다. 검은 반점이 PAPSS이기 때문에 전반적인 분산 상태는 양호하지만, 부분적으로 분산이 안 되고 액형 분산제에 따른 웅집이 발 생한 것으로 관찰되었다.
도 6의 전자현미경 확대 사진을 보면, 전반적으로 PAPSS가 도 5처럼 박혀있 는 형 태를 찾아보기가 힘들며, 물결무늬가 관찰되 었다. 이는 분산제의 양이 적어 압 력 에 의 한 분산 시 분산되는 양이 적고, 분산제가 시트 내부에 잔존해 있는 것으로 보인다. 즉, 물결무늬 내부에 물질이 있을 것으로 판단된다.
전자현미 경을 이용한 관찰 결과, 액형 분산제를 이용하여 물질을 분산시 키 려 는 시도는 어 려운 것으로 판단되 며, 분산제와 분말이 접촉할 때 발생되는 응집 현상 과 시트 제조 방법 에 대한 문제로 인해 기 계적 방법을 이용한 분산을 이용해야 한 다는 결론을 도출하였다.
제작한 시트의 물성 실험 결과는 표 8 및 도 7과 같다.
【표 8】 최 대인장력 평균신장을 평균
변형을 (%) 웅력 (kg/mnf) 비 교 (%) (kg) (%) 인장응력
9.7 97.647 1.026316
9.9 101.486 1.026316
10.1 96.687 1.052632
LDPE 9.7 93.927 - 1.026316 97.2868 1.031579
9.7 96.687 1.026316
8.2 49.779 0.723
10 77.952 0.881
2.0배 87 50.155 0/761
(PAPSS) 8.9 49.638 0.777 55.4324 0.7922 56.98 76.94
9.3 49.638 0.819
10.2 63.671 0.897
9.3 57.342 0.816
2.5배 10.2 66.661 0.897
(PAPSS) 10.5 67.781 0.922 63.3452 0.868 65.11 84.14
9.2 61.271 0.808
8.3 63.491 0.724
7.8 57.302 0.685
2.0배
8 55.772 0.7
(ATPGA
8.7 55.842 0.764 57.5698 0.7078 59.18 68.61 A)
7.6 55.442 0.666
6.2 56.912 0.54
4.4 53.512 0.385
2.5배
6.7 54.732 0.59
(ATPGA
8.3 63.491 0.724 57.1898 0.5848 58.74 56.69
7.8 57.302 0.685 LDPE 데이터를 기준으로 비교한 결과 신장률은 50~60%사이의 값을 나타내 며, 인장강도는 평균적으로 70%의 값을 나타낸다. 분석 이후 절단된 시트를 관찰한 결과 절단된 위치는 각기 다르지만, 공통점으로는 물질이 뭉쳐있는 부분에서 절단이 일어났다. 분산제 사용량에 따른 비교는 PAPSS의 경우만 나타났으며, 분산제 사용 이 많을 경우 신장률과 인장 강도면에서 우수한 결과를 도출할 수 있었다. 이는 결 국 물리적 혼합 시 분산이 필름 또는 시트의 물성에 영향을 미친다는 것을 나타낸 다. 실시예 3. 필름 제작
3-1. 필름 제조
시트 제작을 통한 실험결과 분산제를 이용한 분산은 분말형태의 기능성 물질 이 접촉과 동시에 발생되는 웅집 현상 등에 의해 효과적이지 못한 것으로 나타났다. 따라서 기계적인 분산을 선택하였고, 그 방법으로 수지와의 컴파운딩 (compounding) 을 통해 펠렛 (pallet)을 만들어 1차적으로 분산을 시킨 뒤 필름 압출 과정을 통해 2 차적으로 분산시키는 방법을 선택하였다.
컴파운딩은 강원도 원주시 소재의 (주) NPI를 통해 실시하였다. 트윈 스크류 사출성형 장치를 사용하였으몌 레진은 필름용 LLDPE인 Hanwha 3126을 이용하였 다. PAPSS와 ATPGAA는 필름 제작 시 입도에 의한 물성저하 둥을 최소화하기 위 해 입도를 lOOmesh로 갈아서 사용하였다. 펠렛 내부의 기능성 물질의 함량은 중량 대비 10%로 맞춰 제작을 하였다. 각 구간의 온도는 실린더 l(cylinder) 150 °C, 실린 더 2 150, 실린더 3 160 °C, 어댑터 (adapter) 170 °C, 캐리어 (carrier) 170 °C, 다이 (die) 1 170 °C, 다이 2 170°C로 설정하였으며, 내부 속도는 40rpm 이었다.
기능성 물질이 10% 농도로 첨가된 펠렛은 경남 양산시 소재의 (주) ARTS에 서 0.7腿의 두께로 블로우 (blow) 압출을 통해 필름으로 제작하였다. 제작한 필름은 대조구인 LLDPE 필름을 포함하여, 물질별 농도를 0.5%, 1%, 2%, 4%로 하여 총 9 종의 필름을 제작하였다 (도 8 참조). 필름의 증량은 표 9과 같다.
【표 9】
Figure imgf000026_0001
제조 공정상에서 PAPSS가 첨가된 샘플 2 ~ 5번은 발포성향이 나타났으며, PAPSS가 160°C에서 발포하는 것으로 나타났다. 발포현상은 PAPSS의 열분해에 의 한 결과로 추측되어진다. 참고로 실시예 2에서 핫 프레스를 이용하여 시트를 제작할 때에는 200°C에서 5분간 열에 노출되어도 분해 성향이 나타나지 않았다. 이와 같은 현상은 제조 공정상 압출기에서 지속적인 열 및 압력에 의하여 분해되기 때문인 것 으로 추측된다. 반면 ATPGAA는 점토와 고분자의 합성 물질이기 때문에 열에 대해 안정적인 것으로 나타났다. 이는 혼성 물질의 특징으로 무기물의 열안정성 및 강성 과 유기물의 기능성이 복합되었기 때문인 것으로 결론지을 수 있다. 3—2. 필름의 분산도 평가
필름의 분산도 평가를 위하여 상기 실시예 3-1의 각 필름을 일정한 크기인 0.25m2 면적과 0.07 두께로 절단하였고, 각 시편의 무게 (약 lg 기준)를 측정한 기 준으로 평가하였다. 필름의 초기 무게 측정을 통해 물질의 분산여부를 판단 비교하 였다. 필름의 초기 무게 및 분산이 100% 이뤄졌다는 가정 하에 계산된 시편안의 물 질의 무게를 표 10에 나타냈다.
【표 10】
Figure imgf000027_0001
표 10에 나타난 결과로 물질의 분산 정도를 예측할 수 있다.0.5% 물질 양을 기준으로 평가하였을 때, 시편 안에 있는 기능성 물질의 양이 예측치 보다 많은 양 이 있는 것으로 나타났으나, 제조한 필름을 외형상으로 비교 평가하면 분산이 비교 적 잘된 것으로 예측할 수 있다.
ATPGAA와 PAPSS의 양을 비교하였을 때 ATPGAA의 양이 예측치 값과의 상대 비교 차이가 PAPSS 보다 작게 나타나 분산이 PAPSS 보다 잘된 것으로 생각 되며, 물질의 필름 분산도 차이는 PAPSS의 160°C에서의 열분해에 의한 발포 특성 과 달리 ATPGAA의 경우 폴리머 기반 물질에 의해 같은 조건 상의 필름 제조 시 분산의 차이가 발생된 것으로 판단된다. 기계적 분산 과정에서 PAPSS의 열분해 및 발포에 의해 LLDPE 용융액의 점도가 고체 입자로 존재 했을 때에 비해 증가하여, 필름 분산에 장애요소로 작용했을 것이라 추정된다. 3-3. 필름의 흡습능력 평가
상기 실시예 3-1의 각 필름을 가로 10cm, 세로 25cm로 절단하여, 상기 실시예 1—1에서 흡습물질의 흡습능력 테스트와 동일한 방법으로 진행하였다, 수행 온도는 20 °C, 기간은 10일이었다. 이외의 기타 조건은 실시예 1—1과 동일하게 진행하였다. 재단한 필름에 있는 흡습물질이 100% 분산되었다는 가정아래 추정하여, 물 질량을 계산하였다 (하기 방정식 2). 필름의 초기 무게와, 최종무게의 차이를 물질량 으로 나워서, 필름의 흡습능력을 측정하였다. 이의 결과는 표 11 및 도 9와 같다.
[방정식 2]
Figure imgf000028_0001
absorbent
【표 11]
Figure imgf000029_0001
도 9는 LLDPE 필름에 함침된 PAPSS 또는 ATPGAA 물질 lg이 흡착한 대 기 중의 수분의 양을 나타낸다. 도 9의 20°C에서 기능성 물질의 흡착능력 결과와 비 교하면, 기능성 물질이 적용된 필름은 흡습능력 저하의 차이를 나타낸다. 이는 기능 성 물질의 흡습능력 측정 시, PAPSS가 최고의 흡습력을 보여주었지만, 필름 적용을 위한 제조과정에서 열분해에 의해 흡습능력이 ATPGAA에 비해 떨어진 것으로 나 타났다. LLDPE 필름에 함침된 ATPGAA 물질의 경우도 기존 물질의 흡습능력에 비해 낮은 흡습력을 나타낸 이유는 기능성 필름의 LLDPE가 수분 흡착에 있어서 간 섭 역할을 하기 때문으로 판단된다.
10일의 저장 시험 동안 첨가된 기능성 물질의 농도가 증가 할수록 흡착능력 이 증가하는 경향을 나타냈으며, 저장 기간이 길수록 최종적인 물질의 흡착 효을은 동일하다고 볼 수 있으나, 10일을 기준으로 발생한 흡착을의 차이는 진행되는 수분 흡착 속도 정도의 차이가 생긴 것으로 예측되어 진다 (도 10참조).
3—4. 필름의 물성 비교 PAPSS와 ATPGAA의 함량변화에 따른 필름의 기계적 물성을 비교 분석하' 기 위하여 인장강도 (tansile strength)와 신장을 (elongation at break)을 측정하였다. 시험편의 두께 및 크기 둥은 일반적인 인장강도 표준규격인 ASTM D 3826 방법에 따라 가로 25腿, 세로 102醒로 재단하였고, TA.XT 질감 분석기 (texture analyzer, stable Micro System Ltd, UK)를 이용하여 측정하였다. 로드셀은 50kg이 었으며, 인장속도는 500醒 /min 이었다. 각 시료별로 5개 이상의 샘플을 채취하여 실 시하였다.
도 11과 도 12는 흡습 물질 적용 함량 별로 기능성 필름 물성의 보여주고 있 다. PAPSS의 경우 물질 함량 증가에 따른 필름의 물성 변화를 나타냈다. LLDPE 필름인 대조군과 비교하였을 때 PAPSS 첨가로 인해 인장강도는 전체적으로 68% 정도 저하되는 성향이 나타났다. PAPSS 첨가 농도 별로 비교하였을 때 0.5% 첨가, 1% 첨가, 2% 첨가의 경우 수치적 차이는 있으나, 각각 편차는 적은 것으로 나타났 다. 이는 중량대비 PAPSS를 2%까지 첨가하여도 인장강도 저하에 큰 영향이 없는 것으로 해석할 수 있으며, 4%의 PAPSS 첨가 시 기능성 필름의 인장강도는 LLDPE 대조구 필름 대비 약 56%로 저하되었다.
도 11의 PAPSS 첨가에 따른 인장강도의 변화와 도 12의 ATPGAA의 첨가 에 따른 인장강도의 변화를 비교하면, ATPGAA 첨가 시 인장강도의 저하율이 비교 적 적은 것을 알 수 있다. 필름 제작 시 PAPSS 첨가에 따른 발포현상이 관찰되었 고, 이는 160°C에서 PAPSS의 열분해 되어 변화되는 것에 따른 물성 저하가 추가 진행된 것으로 판단된다. 도 11의 신장율은 4%의 PAPSS에서 급격한 저하가 나타났으며, 0.5% 1%, 2% 첨가 시 신장을의 저하는 발생되지만, 물질 양에 따른 저하는 차이가 적은 것으 로 나타났다.
도 12의 ATPGAA 첨가에 따른 물성변화는 도 11의 PAPSS 첨가에 따른 물 성 변화와 유사한 경향을 나타냈으며, PAPSS를 첨가한 필름과 비교하여 인장강도 는 높게 나왔지만, ATPGAA를 첨가'한 필름이 신장율이 낮은 것으로 평가되었다. 이는 ATPGAA가 점토 기반의 무기 물질이므로, 일정한 함량 이상 적용 시 고분자 필름의 물성을 급격히 떨어뜨린다고 판단되며, 반면 PAPSS는 폴리머 기반의 물질 이지만 역시 일정한 함량 이상 적용 시 고분자 수지 필름과의 화학적 결합이 이루 어지 않고 독립적인 상태로 수지 메트릭스 사이의 빈 공간에 위치하는 것으로 예측 되며, 기본적으로 두 물질의 적용에 따른 물성 차이는 화학적 구조 특성 차이에 의 해 얻어지는 신장율 값으로 해석이 된다.
3-5. 결과
표 12은 각 필름의 흡습능력 평가 결과로, 20°C에서 실리카겔, PAPSS, ATPGAA의 흡습량 결과와 각 원재료 물질을 2% 첨가한 기능성 필름의 흡습량을 비교 하여 나타낸 것이다. 2% 흡습물질을 첨가한 기능성 필름은 인장강도 또는 신 장률의 변화가 적으면서, 흡습량이 높은 것으로 나타났다. 데이터의 상호 비교는 환 경조건인 상대습도별 비을 (%)로 나타내었다. PAPSS가 2% 첨가된 필름은 PAPSS 원 물질에 비해, 최대 33%정도의 수분 흡착효율을 나타냈지만, 실리카겔과 비교하였 을 때 상대습도 50% 이상의 조건에서는 유사한 값 또는 그 이상의 수분 흡착력을 보여주었다. ATPGAA가 2% 첨가된 필름의 경우에서도 50%RH 이상의 환경조건에 서 실리카겔이 가지는 수분흡착 값 이상의 흡습능력을 나타냈다.
【표 12]
Figure imgf000032_0001
ATPGAA와 PAPSS의 물질 선정과정 및 필름적용, 필름 제작 이후 필름 물 성 및 흡습력 분석을 통하여 ATPGAA와 PAPSS는 실리카겔을 대체할 수 있는 우 수한 수분 흡착제로 판단되며, 필름 제작에 적용할 때 포장 필름 물성 저하을 및 흡 습력을 고려하여 증량대비 필름 제조를 위한 2% 흡습 물질의 첨가량은 제품의 포장 재 기능을 가질 수 있는 것으로 나타났다. 또한 필름의 압출 제조 공정에서 PAPSS 의 열분해로 인하여 PAPSS 흡습능력이 떨어진 것으로 평가되었으나, 부분적으로 발생한 것일 뿐 필름 전체 흡습능력의 상실은 없는 것으로 나타났다.
산업상 이용 가능성
본 발명에 따르면 수분 흡착력 및 물성이 우수한 수분 흡착 필름을 제조할 수 있다. 일반적으로 수출용 화훼의 경우 화훼의 색보존을 위해 실리카겔 및 흡습지 를 이용하여 수출을 진행하는데, 이것을 취급 편리하고 흡습 효과성이 높은 본 발명 의 수분 흡착 필름으로 대처하여 제품의 품질보존 효과를 높일 수 있으며, 특히 수 분에 민감한 건조식품 즉, 분말 입자 형태의 밀가루, 튀김가루, 건어물 등에 적용 가 능할 뿐만 아니라 기계 부속품 또는 고철류 보관 시 제습포장에 적용이 가능하여 이들 제품의 보존 효과를 높일 수 있다. 또한 제품의 저장 및 보관 창고 내부에 제 습을 위한 포장재로의 활용도 가능하다.

Claims

청구범위
[청구항 1] 폴리 에 틸렌계 수지를 포함하여 이루어지 며,
수분흡착제로 폴리 아크릴산 부분 나트름 염 (PAPSS, Polyacrylic acid partial sodium salt) 또는 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, Attapulgite synthesized Acrylic amide)를 더 포함하여 이루어지는 수분 흡착 필름용 수지 조성 물.
[청구항 2] 제 1항에 있어서, 상기 수분흡착제는 상기 수지 조성물 총 중량의 0.5 내지 4 중량 %인 것을 특징으로 하는 수분 흡착 필름용 수지 조성물.
[청구항 3] 제 1항에 있어서, 상기 폴리 에 틸렌계 수지는 선형 저 밀도 폴리 에 틸렌 (LLDPE)인 것을 특징으로 하는 수분 흡착 필름용 수지 조성물.
[청구항 4] 제 1항에 있어서, 상기 폴리 에 틸렌계 수지는 녹는점 이 150 내지 180°C 인 것을 특징으로 하는 수분 흡착 필름용 수지 조성물.
[청구항 5] 제 1항 내지 제 4항 중 어 느 한 항의 수지 조성물로 제조되는 것 을 특징으로 하는 포장용 수분 흡착 필름.
[청구항 6] 폴리 에 틸렌계 수지 및 수분흡착제를 컴 파운딩하여 펠렛을 제조하 는 단계;
상기 펠렛에 상기 폴리에틸렌계 수지를 더 첨가하여 블로우 압출시키는 단계 를 포함하는 포장용 수분 흡착 필름 제조방법이고, 상기 수분흡착제는 폴리아크릴산 부분 나트름 염 (PAPSS, Polyacrylic acid partial sodium salt) 및 아크릴 아마이드 합성 아타풀자이트 (ATPGAA, Attapulgite synthesized Acrylic amide) 증에서 선택 되는 것을 특징으로 하는 포장용 수분 흡착 필름 제조방법.
[청구항 7] 제 6항에 있어서, 상기 펠렛을 제조하는 단계에서 폴리에 ¾렌계 수지 및 수분흡착제의 중량비는 20 : 1 내지 20 : 6이며, 상기 블로우 압출시키는 단 계에서 수분흡착제의 함량이 총 수지조성물의 0.5 내지 4중량 %가 되도록 폴리에틸 렌계 수지를 더 첨가하는 것을 특징으로 하는 포장용 수분 흡착 필름 제조방법.
[청구항 8] 제 6항에 있어서, 상기 수분흡착제의 입도가 100 내지 500메쉬인 것을 특징으로 하는 포장용 수분 흡착 필름 제조방법.
PCT/KR2011/001086 2011-02-18 2011-02-18 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법 WO2012111865A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013554379A JP5840705B2 (ja) 2011-02-18 2011-02-18 水分吸着フィルム用の樹脂組成物、梱包用の水分吸着フィルム及びその製造方法
PCT/KR2011/001086 WO2012111865A1 (ko) 2011-02-18 2011-02-18 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법
US13/767,563 US8697805B2 (en) 2011-02-18 2013-02-14 Resin composition for a moisture absorbing film, moisture absorbing film for a package, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/001086 WO2012111865A1 (ko) 2011-02-18 2011-02-18 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/767,563 Continuation-In-Part US8697805B2 (en) 2011-02-18 2013-02-14 Resin composition for a moisture absorbing film, moisture absorbing film for a package, and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2012111865A1 true WO2012111865A1 (ko) 2012-08-23

Family

ID=46672763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001086 WO2012111865A1 (ko) 2011-02-18 2011-02-18 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법

Country Status (3)

Country Link
US (1) US8697805B2 (ko)
JP (1) JP5840705B2 (ko)
WO (1) WO2012111865A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964664A (zh) * 2012-10-31 2013-03-13 安徽省易达电子有限公司 一种含有改性凹凸棒土的电容器薄膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980548B (zh) * 2014-05-16 2016-06-15 江苏省农业科学院 一种淀粉基可降解农用地膜及其制备方法
CN104190381B (zh) * 2014-08-06 2016-04-20 明光市国星凹土有限公司 一种改性凹凸棒土重金属离子吸附剂及其制备方法
CN106904623B (zh) * 2017-04-12 2019-02-22 安徽菲扬新材料有限公司 一种凹凸棒土的提纯改性方法
CN109550373A (zh) * 2019-01-29 2019-04-02 艾易西(中国)环保科技有限公司 一种除碱材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977211A (en) * 1987-07-30 1990-12-11 Mitsubishi Pertochemical Co., Ltd. Water-absorptive resin composition
US20020039869A1 (en) * 2000-07-24 2002-04-04 Felix Achille Thermoplastic superabsorbent polymer blend compositions and their preparation
US20030065296A1 (en) * 2001-02-26 2003-04-03 Kaiser Thomas A. Absorbent material of water absorbent polymer, thermoplastic polymer, and water and method for making same
US20040078015A1 (en) * 2002-06-17 2004-04-22 Copat Marcelo S. Extruded super absorbent web

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200142A (ja) * 1985-02-28 1986-09-04 Mitsubishi Petrochem Co Ltd 吸水性ポリオレフイン樹脂組成物
JPS63154754A (ja) * 1986-12-18 1988-06-28 Sumitomo Chem Co Ltd 吸水性プラスチツクフイルム
JPH0680810A (ja) 1992-09-02 1994-03-22 Tonen Chem Corp 吸水性樹脂架橋発泡体の製造方法
JPH0892382A (ja) * 1994-09-20 1996-04-09 Mitsubishi Chem Corp 親水性樹脂成形体
JP2000336604A (ja) * 1999-05-31 2000-12-05 Nippon Hodo Co Ltd 車両テストコース路面
US8367570B2 (en) * 2002-04-04 2013-02-05 The University Of Akron Mechanically strong absorbent non-woven fibrous mats
JP2005007837A (ja) * 2003-06-23 2005-01-13 Fuji Seal Inc 吸湿剤入りペレットとその製造方法、及び吸湿性成形品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977211A (en) * 1987-07-30 1990-12-11 Mitsubishi Pertochemical Co., Ltd. Water-absorptive resin composition
US20020039869A1 (en) * 2000-07-24 2002-04-04 Felix Achille Thermoplastic superabsorbent polymer blend compositions and their preparation
US20030065296A1 (en) * 2001-02-26 2003-04-03 Kaiser Thomas A. Absorbent material of water absorbent polymer, thermoplastic polymer, and water and method for making same
US20040078015A1 (en) * 2002-06-17 2004-04-22 Copat Marcelo S. Extruded super absorbent web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964664A (zh) * 2012-10-31 2013-03-13 安徽省易达电子有限公司 一种含有改性凹凸棒土的电容器薄膜及其制备方法

Also Published As

Publication number Publication date
JP5840705B2 (ja) 2016-01-06
US8697805B2 (en) 2014-04-15
US20130184410A1 (en) 2013-07-18
JP2014506946A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
Gaikwad et al. Moisture absorbers for food packaging applications
Idumah et al. A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture
KR101299161B1 (ko) 포장용 수분 흡착 필름
KR101257670B1 (ko) 포장용 수분 흡착 필름
Youssef Polymer nanocomposites as a new trend for packaging applications
KR100322940B1 (ko) 수지조성물,적층체및적층필름
WO2012111865A1 (ko) 수분흡착 필름용 수지조성물, 포장용 수분 흡착 필름 및 그 제조방법
JP5731985B2 (ja) 吸湿性樹脂組成物及びその成形体
KR19980032770A (ko) 산소흡수용 조성물
GB2449876A (en) Active packaging materials incorporating micro-porous solids and essential oils
KR101768910B1 (ko) 식품포장재의 제조방법
WO2014144071A1 (en) Water vapor barrier composition
JP2020516549A (ja) 包装材料
CN101454063A (zh) 除湿脱氧剂
CN102675708B (zh) 一种吸水薄膜用树脂组合物、包装用吸水薄膜及其制造方法
KR101194897B1 (ko) 기능성 참숯 분말 함유 코팅지 및 이의 제조방법
WO2008008715A1 (en) Oxygen scavenger compositions
JPH0741685A (ja) ガスバリア性成形体
KR101687906B1 (ko) 아타풀자이트 기반 흡착제를 함유하는 흡착성 플라스틱용 수지 조성물 및 플라스틱 제품
KR101440024B1 (ko) 생고분자와 나노점토를 포함하는 생체적합성 생분해성 흡습제 및 이의 제조방법
KR20120124586A (ko) 수분 흡착 필름을 이용한 스티커
EP3089875A1 (en) Oxygen scavenging film containing moisture regulator
JP6690201B2 (ja) 脱酸素剤組成物及び脱酸素剤
KR101687916B1 (ko) 아타풀자이트 기반 흡착제를 함유하는 흡착성 플라스틱용 수지 조성물 및 플라스틱 제품
JP3788057B2 (ja) 脱酸素樹脂組成物、脱酸素包装材料及びこれらを用いる脱酸素容器の乾燥保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858618

Country of ref document: EP

Kind code of ref document: A1