WO2012111748A1 - Method for manufacturing optical element, and optical element - Google Patents

Method for manufacturing optical element, and optical element Download PDF

Info

Publication number
WO2012111748A1
WO2012111748A1 PCT/JP2012/053653 JP2012053653W WO2012111748A1 WO 2012111748 A1 WO2012111748 A1 WO 2012111748A1 JP 2012053653 W JP2012053653 W JP 2012053653W WO 2012111748 A1 WO2012111748 A1 WO 2012111748A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
optical
optical element
lens
flange
Prior art date
Application number
PCT/JP2012/053653
Other languages
French (fr)
Japanese (ja)
Inventor
山本省吾
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN201280008953.1A priority Critical patent/CN103370182B/en
Priority to JP2012537040A priority patent/JP5120525B2/en
Publication of WO2012111748A1 publication Critical patent/WO2012111748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses

Definitions

  • the present invention relates to a method for manufacturing a resin-made optical element, and more particularly to a method for manufacturing an optical element with a runner using an injection molding apparatus, and an optical element manufactured by the method.
  • a method called injection molding is known as a method for manufacturing a resin lens, but it is necessary to project the resin lens to the outside when releasing the resin lens after shape transfer from the mold surface.
  • the optical lens transfer core mold part hereinafter referred to as the core part
  • the core part having a relatively large curvature is advanced so as to protrude from the surrounding mold part, thereby making the resin lens Is available (see, for example, Patent Document 1).
  • an objective lens for a BD (Blu-ray Disc) has a large curvature and a large amount of protrusion, so that the transfer surface of the core portion tends to be deep, and the lens portion size is required even though high shape accuracy is required for the lens portion. Is small. Therefore, the deformation of the gate portion tends to easily reach the optical surface, and it is desirable to reduce the deformation of the optical surface at the time of mold release. Also, if the lens is tilted and released due to deformation of the gate part, the optical surface of the lens may come into contact with the mold at the time of release, which may cause a crescent-shaped scratch on the optical surface of the lens. However, as a result, a desired optical surface cannot be obtained, or the yield rate of the product is lowered. Therefore, it is desirable to reduce scratches on the optical surface at the time of mold release.
  • the gate portion may be bent. If the gate portion is bent at the protruding stage, the gate portion is more likely to bend due to the lens sticking to the core portion at the time of subsequent removal.
  • the optical surface with a relatively large curvature is the fixed side of the mold, the optical surface with a relatively small curvature is the movable side of the mold, and the flange on the optical surface side with a relatively small curvature is protruded from the pin, the gate It is thought that the problem of bending of the part and the problem of air accumulation will be solved.
  • the optical surface side with a relatively small curvature is protruded from the pin, the area of the flange end surface (annular mirror surface portion) existing on the outer periphery of the optical surface with a relatively small curvature becomes small. The problem that detection becomes difficult arises.
  • the protrusion timing is completely the same It becomes difficult to make it. If the projecting timing is different, the gate part will bend due to the difference in timing, but in the case of a BD pickup lens, the influence is transmitted to the optical function surface by the slight bending of the gate part. The aberration performance may not be obtained.
  • a plurality of protrusion members that protrude an optical element and a member that protrudes a runner portion increase the number of parts to be protruded, so that the timing of protrusion is further adjusted. It is difficult to cause the gate portion to bend more easily.
  • the present invention relates to a method for manufacturing an optical element capable of reducing deformation and scratches on an optical surface while maintaining the function of a flange end surface when a molded part is taken out by protruding a core part for mold release, and an optical manufactured by the method.
  • An object is to provide an element.
  • an optical element manufacturing method is incorporated in an optical pickup device that records and / or reproduces information on an optical information recording medium, and has an aperture of 0.75 or more.
  • a molding step for molding the runner part and a mold opening step for relatively opening the mold by moving the first mold and the second mold so as to leave the optical element in the second mold
  • the core part provided in the second mold is located on the first mold side with respect to the holding part that holds the core part from the periphery.
  • the optical element is protruded toward the first mold side by moving the projection element, the projecting member provided on the second mold is moved to the first mold side, and the runner part is moved to the first mold side.
  • a projecting step of projecting to the surface is protruded toward the first mold side by moving the projection element, the projecting member provided on the second mold is moved to the first mold side, and the runner part is moved to the first mold side.
  • the second optical surface when the second mold is moved away from the first mold in the mold opening process, the second optical surface has a small curvature and a relatively shallow surface depth.
  • the optical element remains in the second mold (generally, a movable mold) for molding the mold, and the extrusion process after the mold opening by the core portion provided in the second mold and the subsequent molding by the take-out device It is possible to prevent the gate portion provided in the optical element from being deformed in the product removal step. This is because the second transfer surface that molds the second optical surface having a relatively small curvature is shallower than the first transfer surface that molds the first optical surface. This is because the sticking force becomes relatively small and the molded product can be easily removed from the core portion.
  • the first mold for molding the first optical surface is a mold (generally, a fixed mold) in which no optical element remains when the mold is opened, a flange portion formed by the first mold This partial thickness is made smaller than when the optical element is left in the first mold. For this reason, the distance between the first transfer surface and the parting surface that is the contact surface between the first and second molds is reduced, and air and gas are easily released from the first transfer surface. As described above, appearance defects of the optical element can be reduced, and a highly accurate optical element can be manufactured. This is particularly effective in a lens having a relatively high thickness ratio p (thickness of the thickest part ⁇ thickness of the thinnest part), such as an objective lens for a BD optical pickup device.
  • p thickness of the thickest part ⁇ thickness of the thinnest part
  • the optical element is released by protruding the core on the second optical surface side, it is possible to prevent the occurrence of burrs due to the protruding pins on the mounting reference surface of the optical element on the first optical surface side.
  • the lens is attached to the holder, it is possible to prevent a problem that the lens is inclined and coma is generated.
  • an optical element can be attached to an optical pick-up apparatus etc. with a sufficient precision.
  • the optical element is released from the core by protruding, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion) of the optical surface. As a result, the light is reliably reflected at the end face with sufficient intensity, and the skew can be adjusted efficiently.
  • the second transfer surface for forming the second optical surface having a relatively small curvature is shallower than the first transfer surface for forming the first optical surface, the second optical surface sticks to the second transfer surface of the core portion. Although the force is relatively small, it becomes easy to remove the molded product from the core part.
  • the first optical surface having a larger curvature than the second optical surface is molded by the first mold (generally a fixed mold). Therefore, it is conceivable that the optical element sticks to the first mold side and tends to remain when the mold is opened.
  • the optical element is arranged on the second mold side (general Can be easily left on the movable mold).
  • the runner part molded in the flow path space is strongly attached to the second mold side.
  • the second mold protrudes from the runner part to the first mold side. Since the member is provided, it is possible to release the runner part smoothly (smoothly).
  • the core protrusion it is possible to reduce the number of parts for protrusion compared to the pin protrusion. Therefore, it is possible to more easily match the timing of projecting between the member that projects the optical element and the member that projects the runner portion, and it is possible to reduce gate bending at the time of ejection. As a result, it is possible to obtain a desired aberration even for a lens that requires high molding accuracy, such as a BD pickup lens.
  • the core protrusion is a protrusion member having a transfer surface that molds the optical function surface of the optical element, and protrudes by bringing the transfer surface into contact with the optical function surface of the optical element.
  • projects means that a flange portion provided on the outer periphery of the optical function portion of the optical element is projected by a plurality of projecting members.
  • the timing at which the optical element is projected to the first mold side at the core portion is different from the timing at which the runner portion is projected to the first mold side by the projecting member.
  • the timing of projecting different means that there is a slight timing shift when projecting them almost simultaneously.
  • the protrusion timing must be completely matched Will be difficult.
  • the molding step forms a plurality of optical elements and a plurality of runner portions.
  • a plurality of optical elements and a plurality of runner parts are molded at a time, there are more parts for projecting the optical elements and the runner parts, and it becomes even more difficult to match the timings of the projections.
  • the number of parts of the protruding member can be reduced as compared with the pin protrusion, so that the protrusion timing can be relatively matched.
  • the mold space is evacuated before the molding step in the method of manufacturing an optical element.
  • the first transfer surface for forming the first optical surface having a relatively large curvature is also reliably filled with the molten resin, the transfer accuracy is improved, and the appearance of the optical element can be improved.
  • the optical element is a lens having an optical function part having a first optical surface and a second optical surface, and a flange part arranged around the optical function part.
  • the gate width in the direction is W
  • the following conditional expressions (1) to (3) are satisfied.
  • 0.05D ⁇ W ⁇ 0.4D (1) 0.5T ⁇ H ⁇ T (2) 0.1 (mm) ⁇ L ⁇ 2.0 (mm) (3)
  • the element at the time of molding the optical element can be surely filled with the molten resin at the time of resin injection, and can provide an appropriate gate seal time, and Since the gate portion is less likely to be deformed in the ejecting step and the molded product taking-out step thereafter by the take-out device, it is possible to reliably prevent deformation of the optical function portion.
  • conditional expression (4) is satisfied, where t1 is the thickness of the flange portion formed by the first mold. 0 ⁇ t1 ⁇ 0.5T (4)
  • the optical element can be reliably left on the second mold side in the mold opening process.
  • the parting surface that is a contact surface between the first mold and the second mold is more than the center of the flange thickness in the direction parallel to the lens optical axis of the flange portion. It is located on the first mold side in the direction parallel to the lens optical axis. In this case, the distance between the first transfer surface and the parting surface can be reduced, and air and gas can be easily released from the first transfer surface. Further, it is possible to easily leave the optical element on the second mold side.
  • the first mold includes a core part and a holding part that holds the core part, and the first optical surface of the optical function part is formed by the core part of the first mold. And forming an at least part of the first flange surface provided on the first optical surface side of the flange portion, and the outer peripheral portion of the tip portion facing the second mold of the core portion of the first mold is, An annular convex portion for forming an annular concave portion is provided between the first optical surface and the first flange surface. In this case, the flange space which forms a flange part can be enlarged, and the fluidity
  • the first optical part bites into the first core portion and becomes easy to adhere, but the first optical surface molded by the first mold is the second optical surface.
  • the optical element has a fine shape on the first optical surface.
  • the first optical surface has a fine shape
  • the first core portion and the first optical surface are easily brought into close contact with each other in the first mold, but the first optical surface is ahead of the second optical surface.
  • the mold By releasing the mold, it is possible to reliably prevent the mold release deformation and the like.
  • there is a fine step on the optical surface with the larger curvature such as a triple compatible lens that uses a common objective to interchange three types of optical disks: BD, DVD (digital versatile disk) and CD (compact disk).
  • BD digital versatile disk
  • CD compact disk
  • the optical element has an on-axis lens thickness of d (mm) and a focal length of the optical element in a light beam having a wavelength of 500 nm or less is f (mm). .8 ⁇ d / f ⁇ 2.0.
  • d mm
  • f mm
  • the optical element is an objective lens for an optical pickup device.
  • the optical element is an objective lens for an optical pickup device that records and / or reproduces information on three types of optical disks: BD, DVD, and CD.
  • BD optical disk
  • DVD digital versatile disk
  • CD compact disk
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to It is a generic term for BD series optical discs of about 0.125 mm, and includes BD having only a single information recording layer, BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the protective substrate has a thickness of about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW, and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • a portion excluding the optical element of the molded product molded by the molding step is gripped, and the optical element is separated from the second mold.
  • the optical element since the optical element is not gripped, it is possible to prevent scratches due to gripping from being attached to the optical element.
  • the optical element according to the present invention is obtained by manufacturing by the above-described optical element manufacturing method.
  • the optical element is a highly accurate optical element when manufactured by the manufacturing method described above. This is particularly effective in a lens having a relatively high thickness ratio p (thickness of the thickest part ⁇ thickness of the thinnest part), such as an objective lens for a BD optical pickup device. Further, it is possible to prevent burrs caused by the protruding pins on the mounting reference surface of the optical element, and it is possible to attach the optical element to an optical pickup device or the like with high accuracy. Furthermore, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion) of the optical surface, and the skew can be adjusted efficiently.
  • p thickness of the thickest part ⁇ thickness of the thinnest part
  • the optical surface can be prevented from coming into contact with the mold when the optical element is tilted and released due to deformation of the gate portion, and the optical surface can be made an optical element having no scratch such as a crescent shape. Gate bending at the time of protrusion can be reduced, and a desired aberration performance can be satisfied even for a lens that requires high molding accuracy, such as a pickup lens for BD.
  • FIG. 6A is a cross-sectional view of a lens that is an optical element
  • FIG. 3B is a plan view of the lens as viewed from the second optical surface.
  • FIG. 6B is a flowchart explaining the shaping
  • an injection molding apparatus 100 for carrying out the manufacturing method of the present embodiment includes a molding die 40, and the molding die 40 includes a first die 41 and a second die 42.
  • die 42 is driven by the opening / closing drive apparatus 79, and can be reciprocated to AB direction.
  • the second mold 42 is moved toward the first mold 41, and both molds 41 and 42 are mold-matched with the parting surfaces PS1 and PS2 and are clamped to partially expand in FIG.
  • a mold space CV for molding the lens 10 as an optical element and a flow path space FC for supplying resin to the mold space CV are formed.
  • a plurality of mold spaces CV and flow path spaces FC may be formed in the molding die 40.
  • the mold space CV includes the main body space CV1 sandwiched between the first and second transfer surfaces S1 and S2, and the third, fourth, fifth, and sixth transfer surfaces S3, S4, and S5. , S6 and a flange space CV2 surrounded by S6.
  • the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 are the first and second optical elements of the optical function unit 11 at the center of the lens 10 shown enlarged in FIGS. 3A and 3B. This is a portion for forming the surfaces OS1 and OS2.
  • one first transfer surface S1 is deeper and larger in curvature than the other second transfer surface S2, and a fine uneven pattern for transferring the fine structure or fine shape FS of the first optical surface OS1.
  • the third, fourth, fifth, and sixth transfer surfaces S3, S4, S5, and S6 surrounding the flange space CV2 are portions for forming the flange portion 12 of the lens 10.
  • the third, fourth, and sixth transfer surfaces S3, S4, S6 facing the flange space CV2 are the first, second, and third flange surfaces of the lens 10 shown in an enlarged manner in FIGS. 3A and 3B. It is a part for forming 12a, 12b, 12c.
  • the fifth transfer surface S5 facing the flange space CV2 is a portion for forming the outer peripheral side surface SS of the lens 10. In the first flange surface 12 a of the flange portion 12 shown in FIG.
  • an annular recess u ⁇ b> 1 is provided on the outer edge adjacent to the outer peripheral side surface SS of the lens 10.
  • the convex transfer surface S7 forming the concave portion u1 is adjusted when a spacer (not shown) is put on the bottom surface of the first core portion 64a described later in the first mold 41 in order to adjust the axial lens thickness d of the lens 10. To be a generation. As shown in FIG. 2, the convex transfer surface S7 is formed by projecting the end surface of the holding portion 64b beyond the end surface of the first core portion 64a.
  • the flow path space FC has a runner portion RS as a space for forming the runner portion RP in the molded product MP shown in FIGS. 2, 3A, and 3B.
  • the runner portion RS includes the gate portion GS. Via the mold space CV.
  • the space of the gate portion GS forms a gate portion GP that connects the lens 10 and the runner portion RP in the molded product MP.
  • the lens 10 as the main body is made of resin, and as described above, the optical function unit 11 having an optical function and the outer edge of the optical function unit 11 in the radial direction. And a substantially annular flange portion 12 provided outside.
  • the lens 10 is an objective lens for a thick optical pickup having a large protrusion on the first optical surface OS1 side. Specifically, the lens 10 enables reading or writing of optical information corresponding to a BD (Blu-ray Disc) having a wavelength of 405 nm and a numerical aperture (NA) of 0.85, for example.
  • BD Blu-ray Disc
  • the optical specification of the lens 10 is not limited to NA 0.85, and can correspond to various objective lens standards for optical pickups having NA of 0.75 or more, for example.
  • the lens 10 has an on-axis lens thickness d (mm) and a focal length of the lens 10 in a light beam having a wavelength of 500 nm or less is f (mm). 2.0.
  • one first optical surface OS1 is disposed on the laser light source side, and protrudes larger than the other second optical surface OS2 disposed on the optical disk side which is an optical information recording medium. Is getting bigger. Furthermore, since the curvature of the first optical surface OS1 is extremely large, the lens 10 has a very large thickness at the center, and the thickness deviation ratio p (thickness of the thickest portion ⁇ thickness of the thinnest portion) is high.
  • the first optical surface OS1 is provided with a fine structure or fine shape FS that is a diffractive structure. The fine shape FS or the like is formed in a concentric annular zone.
  • the second optical surface OS2 is a mirror surface having no diffractive structure.
  • the flange portion 12 has a first flange surface 12a extending in the direction perpendicular to the lens optical axis OA on the first optical surface OS1 side, and a second flange surface extending in the direction perpendicular to the lens optical axis OA on the second optical surface OS2 side. 12b and a third flange surface 12c.
  • the third flange surface 12c is a mirror surface as an end surface for alignment.
  • the gate portion GP is formed on a part of the outer peripheral side surface SS of the flange portion 12, but is removed by a finishing process after taking out from the molding die 40.
  • the size of the mold space CV corresponds to each element of the lens 10 and is substantially the same as the size of the lens 10. That is, when the molding shrinkage rate of the resin is ⁇ , the dimension of the lens 10 is (1 ⁇ ) times the dimension of the mold space CV. Therefore, the dimension of the lens 10 will be described below.
  • the dimension of the lens 10 is such that the lens outer diameter in the direction perpendicular to the lens optical axis OA of the lens 10 is D, and the flange thickness of the flange portion 12 in the direction parallel to the lens optical axis OA is as follows. Is T, the gate thickness of the gate portion GP in the direction parallel to the lens optical axis OA is H, the gate length of the gate portion GP in the direction perpendicular to the lens optical axis OA is L, and the lens light of the gate portion GP When the gate width in the direction perpendicular to the axis OA is W, the following conditional expressions (1) to (3) are satisfied. 0.05D ⁇ W ⁇ 0.4D (1) 0.5T ⁇ H ⁇ T (2) 0.1 (mm) ⁇ L ⁇ 2.0 (mm) (3)
  • the lens 10 that satisfies the conditional expressions (1) to (3) can be reliably filled with the molten resin at the time of resin injection in the resin injection step (step S14) described later and provided with an appropriate gate seal time.
  • the gate part GP is not easily deformed in the projecting process (step S17) and the molded product taking process (step S18), and the deformation of the gate part GP is difficult to reach the optical function part 11. Therefore, the deformation of the gate part GP is ensured. Can be prevented.
  • the shape of the gate portion GP is not particularly limited as long as the conditional expressions (1) to (3) are satisfied, and may be a rectangular parallelepiped, for example.
  • the parting surfaces PS1 and PS2 which are contact surfaces of the first mold 41 and the second mold 42 are in a direction parallel to the lens optical axis OA of the flange portion 12. It is located closer to the first mold 41 in the direction parallel to the lens optical axis OA than the center of the flange thickness T. As a result, the distance between the first transfer surface S1 of the first mold 41 and the parting surface PS1 is shortened, and air and gas can easily escape from the first transfer surface S1.
  • the lens 10 can be reliably left on the second mold 42 side on the movable side in the mold opening process.
  • the lens outer diameter D changes depending on the misalignment amount, and the outer diameter of the fourth transfer surface S4 corresponding to the second flange surface 12b of the second mold 42 is used in order to make the lens outer diameter D with high accuracy. Even if (equivalent to d2) is made accurately, it becomes meaningless. Further, if d1> d2, even if the outer diameter (corresponding to d1) of the third transfer surface S3 of the first mold 41 is made with high accuracy, the thickness of the flange portion 12 is the first mold 41 side with respect to d1. Therefore, when the lens 10 is attached to a holder or the like, the lens 10 becomes loose and cannot be positioned with high accuracy.
  • the first mold 41 on the fixed side includes a first core part 64 a as a central part that forms the mold space CV shown in FIG. 2 from the first mold 41, and the periphery of the first core part 64 a.
  • a holding part 64b as a peripheral part provided in the base plate and a receiving plate 64c for supporting the first core part 64a and the holding part 64b from the back are provided.
  • the first core portion 64a is incorporated in a through hole 64g formed in the holding portion 64b and fixed with a bolt (not shown).
  • the end surface 64e of the holding portion 64b is formed with a concave portion to be the runner portion RS of the molded product MP shown in FIG.
  • the second mold 42 on the movable side includes a second core part 74a as a central part for forming the mold space CV shown in FIG. 2 from the second mold 42, and peripheral parts provided around the second core part 74a.
  • the movable rods 75 and 76 that push the 74a and the projecting member 74p from the back, and the advance / retreat mechanism 78 that moves the movable rods 75 and 76 forward and backward in the axis AX direction are provided.
  • the second core portion 74a is incorporated in a through hole 74g formed in the holding portion 74b so as to be movable back and forth along the axis AX direction.
  • the projecting member 74p is also incorporated in a through hole 74h formed in the holding portion 74b so as to be movable back and forth along the axis AX direction.
  • the 2nd core part 74a is urged
  • the protruding member 74p is driven by the movable rod 76 to advance toward the first mold 41 side, and when the mold is closed, an external force by a holding portion 64b on the first mold 41 side, which will be described later, or resin at the time of resin inflow Treatments by pressure and returns to the original position.
  • the protruding member 74p may be automatically retracted and returned to its original position by using a spring.
  • the end surface 74e of the holding portion 74b is formed with a concave portion to be the runner portion RS of the molded product MP shown in FIG.
  • FIG. 5 is a flowchart conceptually illustrating a method for manufacturing an optical element using the molding die 40 shown in FIG.
  • the opening / closing drive device 79 is operated, and the mold closing is started by moving the second mold 42 relatively forward toward the first mold 41 (step S11). Note that the surfaces of both molds 41 and 42 are heated to a temperature suitable for molding.
  • the opening / closing drive device 79 By continuing the closing operation of the opening / closing drive device 79, the first mold 41 and the second mold 42 are moved to the mold contact position where they are in contact with each other, the mold closing is completed, and the opening / closing drive device 79 is further closed. By continuing, the mold clamping which clamps the 1st metal mold
  • a vacuum device (not shown) is operated to evacuate the mold space CV between the clamped first mold 41 and the second mold 42 (step S13).
  • the mold space CV is appropriately decompressed, and the molten resin is reliably filled into the first transfer surface S1 having a relatively large curvature.
  • an injection device (not shown) is operated to inject the molten resin into the mold space CV with a necessary pressure (step S14).
  • the injection device maintains the resin pressure in the mold space CV.
  • step S15 After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding (step S15).
  • the opening / closing drive device 79 is operated to perform mold opening for relatively moving the second mold 42 backward (step S16).
  • the second mold 42 moves backward, the first mold 41 and the second mold 42 are separated from each other.
  • the molded product MP that is, the lens 10 remains on the second mold 42 side. That is, the lens 10 is released from the first mold 41 while being held so as to be embedded in the movable second mold 42.
  • step S17 the advancing / retreating mechanism 78 is operated, and the molded product MP remaining in the second mold 42 is ejected to the first mold 41 side by the movable rods 75 and 76 (step S17). Thereby, as shown to FIG. 6B, mold release of the molded product MP is performed. At this time, the lens 10 is completely pushed out of the holding portion 74b.
  • the unillustrated unloading device is operated to separate the molded product MP from the second mold 42 and carry it out (step S18).
  • the portion of the molded product MP excluding the lens 10 is gripped.
  • the curvature of the second optical surface OS2 of the lens 10 is small and the surface depth is relatively shallow, the sticking force of the second optical surface OS2 to the second transfer surface S2 of the second core portion 74a is relatively small. Therefore, since the molded product MP can be easily removed from the second core portion 74a, it is possible to prevent a biased force from being applied to a part of the outer periphery of the lens 10.
  • the relatively shallow first step is performed.
  • the lens 10 is left in the second mold 42 for molding the optical surface OS2, and the protruding process after the mold opening by the second core portion 74a of the second mold 42 (step S17) and the molded product taking-out process by the taking-out device In (Step S18), the gate portion GP provided in the lens 10 can be prevented from being deformed. This is because the second transfer surface S2 for forming the second optical surface OS2 having a relatively small curvature is shallower than the first transfer surface S1 for forming the first optical surface OS1, and the second transfer surface of the second core portion 74a.
  • the sticking force of the second optical surface OS2 to S2 becomes relatively small and the molded product MP can be easily detached from the second core portion 74a.
  • the partial thickness t1 of the flange portion 12 formed by the first mold 41 is set to the first thickness 41. Compared with the case where the lens 10 is left in one mold 41, the size is reduced. For this reason, the distance between the first transfer surface S1 and the parting surface PS1 becomes relatively short, and air and gas easily escape from the first transfer surface S1.
  • the second transfer surface S2 for forming the second optical surface OS2 having a relatively small curvature is shallower than the first transfer surface S1 for forming the first optical surface OS1, the second transfer surface S2 of the second core portion 74a.
  • the first optical surface OS1 having a larger curvature than the second optical surface OS2 is provided on the first optical surface OS1.
  • the lens 10 Since the molding is performed with the single mold 41, it is conceivable that the lens 10 sticks to the first mold 41 side and easily remains when the mold is opened. On the other hand, the lens 10 can be easily left on the second mold 42 side by increasing the volume of the flow path space FC provided on the second mold 42 side. However, in that case, the runner portion RP formed in the flow path space FC is strongly attached to the second mold 42 side, but the runner portion RP protrudes from the second mold 42 to the first mold 41 side. Since the member 74p is provided, the runner part RP can be released smoothly.
  • the lens 10 is tilted and released due to the deformation of the gate portion GP, and the first optical surface OS1 of the lens 10 contacts the mold during the release, and the first optical surface OS1 of the lens 10 has a crescent-shaped scratch. Can be prevented. Further, even if the gate portion GP is bent at the time of protrusion due to a difference in timing of protrusion between the second core portion 74a that protrudes the lens 10 and the protruding member 74p that protrudes the runner portion RP, the lens 10 is removed from the second core portion 74a. Since it is easy to remove, further bending of the gate portion GP can be prevented during subsequent removal.
  • the core protrusion it is possible to reduce the number of parts for protrusion compared to the pin protrusion. Therefore, it is possible to more easily match the timing of projection between the second core portion 74a that projects the lens 10 and the projecting member 74p that projects the runner portion RP, and the bending of the gate portion GP at the time of projection can be reduced. As a result, it is possible to obtain a desired aberration even for the lens 10 that requires high molding accuracy, such as a BD pickup lens.
  • the lens 10 is released by the core protrusion, it is possible to prevent a burr at the time of pin protrusion from occurring on the mounting reference surface of the lens 10. Thereby, the lens 10 can be accurately attached to the optical pickup device or the like. Furthermore, since the lens 10 is released by protruding the core, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion 12) of the optical surface. As a result, the light is reliably reflected at the end face with sufficient intensity, and the skew can be adjusted efficiently.
  • step difference structure b1 in the 1st flange surface 12a of the flange part 12.
  • the step on the center side of the lens 10 is higher toward the laser light source side than the step on the outside of the lens 10.
  • a step-shaped convex transfer surface S21 for forming the step structure b1 is provided.
  • the burr is not attached when the lens 10 is attached to a lens holder or the like. It can be stored in a space formed between the holder or the like and the step structure b1. Thereby, the lens 10 can be accurately attached to a holder or the like.
  • optical element manufacturing method is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
  • the lens 10 has a step structure b2 on the second flange surface 12b side of the flange portion 12.
  • the step on the outside of the lens 10 is higher toward the information recording medium side than the step on the center side of the lens 10.
  • a step-shaped convex transfer surface S22 for forming the step structure b2 is provided on the inner side of the holding portion 74b of the second mold 42.
  • the lens 10 Since the lens 10 has the step structure b2, even if a burr due to the boundary between the second core portion 74a and the holding portion 74b occurs on the second flange surface 12b side, the burr is stored in the space formed by the step structure b2. Can do. Thereby, it is possible to prevent the distance (WD: working distance) between the information recording medium and the lens 10 from being changed due to the variation of the burr length during molding.
  • WD working distance
  • step difference structure b1 demonstrated in 1st Embodiment in the 1st flange surface 12a of the flange part 12. As shown in FIG. 9, you may provide the level
  • the step on the center side of the lens 10 of the step structure b3 is higher toward the information recording medium side than the step on the outside of the lens 10. Also good.
  • a step-shaped convex transfer surface S23 for forming the step structure b3 is provided outside the second core portion 74a of the second mold 42.
  • the convex transfer surface S23 of the second core portion 74a is deeper from the parting surface PS2 than the fourth transfer surface S4 of the holding portion 74b.
  • the lens 10 has a recess m1 between the optical function part 11 and the flange part 12. That is, the boundary between the optical function part 11 and the flange part 12 on the laser light source side has a circularly depressed shape.
  • a convex transfer surface S24 is formed as a surface constituting an annular convex portion for forming the concave portion m1. Is provided.
  • the convex transfer surface S24 is shallower from the parting surface PS1 than the third transfer surface S3.
  • the flange space CV2 that forms the flange 12 can be widened, and the fluidity of the molten resin can be improved.
  • the step structure b1 described in the first and second embodiments may be provided on the first flange surface 12a of the flange portion 12.
  • optical element manufacturing method is a modification of the second and third embodiments, and parts not specifically described are the same as those of the second and third embodiments. .
  • the leading end surface of the first core portion 64a is a first transfer surface S1 for forming a first optical surface OS1 of the lens 10 at a main portion. Therefore, the holding portion 64b having the third transfer surface S3 is arranged around the first core portion 64a having the first transfer surface S1, so that the outer edge portion of the first core portion 64a is connected to the main body space CV1 and the flange space. It is in a state of biting into the boundary with CV2.
  • the outer edge portion of the first core portion 64a has a structure that easily bites between the first optical surface OS1 of the lens 10 and the first flange surface 12a, the molten resin filled in the mold space CV is completely solidified. Then, the lens 10 becomes difficult to release from the first mold 41 due to the shrinkage of the resin, which causes a poor appearance. Therefore, by making the first mold 41 a fixed mold that does not leave the lens 10 when the mold is opened, the lens 10 can be reliably removed from the first mold 41 while maintaining a good appearance before the molten resin is completely solidified. Can be released.
  • step structure b1 described in the first and second embodiments may be provided on the first flange surface 12a of the flange portion 12.
  • a stepped structure b4 may be provided on the first flange surface 12a side of the flange portion 12.
  • the step on the outside of the lens 10 is higher toward the laser light source side than the step on the center side of the lens 10.
  • a step-like convex transfer surface S25 for forming the step structure b4 is provided on the inner side of the holding portion 64b of the first mold 41.
  • optical element manufacturing method is a modification of the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • die 41 has a structure which is not divided
  • the optical surface OS1 and the first flange surface 12a are formed.
  • the taper TP is provided in the outer edge by the side of the 1st flange surface 12a of the flange part 12, ie, the side surface of the recessed part u1.
  • the first mold 41 is provided with an inclined transfer surface S26 for forming a taper TP outside the third transfer surface S3 of the mold part 64d.
  • the lens 10 can be easily removed from the first mold 41, and the lens 10 can be easily left in the second mold 42 on the movable side when the mold is opened.
  • the mold closing process can be performed by fixing the second mold 42 and making the first mold 41 movable.
  • a projection mechanism for the lens 10 is provided on the second mold 42 side where the lens 10 remains.
  • the lens 10 is an objective lens for an optical pickup.
  • a small lens having a similar shape and a large central thickness can also be manufactured by the same method as in this embodiment. Deformation and scratches can be reduced, and a case where the required accuracy is high can be dealt with.
  • the return force of the core portion 64a is given by the spring, but the core portion 64a can be returned by means other than the spring.
  • the outer peripheral side surface SS of the lens 10 is a cylindrical surface, but the outer peripheral side surface SS may not be symmetrical to the lens optical axis OA. That is, the outer peripheral side surface SS may be a substantially prismatic surface, or a surface obtained by combining a cylindrical surface and a prismatic surface. Further, a slight taper can be formed on the outer peripheral side surface SS, and a slight taper can also be formed on the fifth transfer surface S5 of the holding portion 74b.
  • the optical surface of the lens 10 may be smooth without providing the fine shape FS or the like on the optical surface.
  • step S13 evacuation is performed (step S13), but the mold space CV is reliably filled with the molten resin, and the transfer accuracy is maintained. For example, it is not necessary to perform evacuation.

Abstract

To provide a method for manufacturing an optical element capable of suppressing deformation and damage on an optical surface upon mold removal by pushing out a core section for mold release while maintaining the function of a flange end surface. [Solution] In the process of opening a mold, a lens (10) remains in a comparatively shallow second mold (42) for molding a second optical surface (OS2), and a gate portion GP provided in the lens (10) can be prevented from deformation in the process of pushing out after the second mold (42) is opened as well as in the following process of pushing out a mold. In addition, because a first mold (41) for molding a first optical surface (OS1) is one in which the lens (10) does not remain when the mold is opened, a flange section (12) formed by the first mold (41) has a small partial thickness. Therefore, a distance between a first transfer surface (S1) and a parting surface (PS1) is comparatively small, and consequently air can easily be removed from the first transfer surface (S1). As described above, a failure in the appearance of the lens (10) can be suppressed and a high-precision lens (10) can be manufactured.

Description

光学素子の製造方法及び光学素子Optical element manufacturing method and optical element
 本発明は、樹脂製の光学素子の製造方法等に関し、特に射出成形装置を用いたランナー部付きの光学素子の製造方法、及び当該方法によって製造した光学素子に関する。 The present invention relates to a method for manufacturing a resin-made optical element, and more particularly to a method for manufacturing an optical element with a runner using an injection molding apparatus, and an optical element manufactured by the method.
 樹脂製レンズの製造方法として、射出成形という手法が知られているが、形状転写後の樹脂製レンズを型面から離す離型に際して、樹脂製レンズを外側に突き出す必要がある。このような樹脂製レンズの突き出し工程として、例えば曲率が比較的大きい光学面転写用のコア金型部(以下、コア部)を周囲の型部分から突出させるように前進させることで、樹脂製レンズの取り出しを可能にするものがある(例えば、特許文献1参照)。 A method called injection molding is known as a method for manufacturing a resin lens, but it is necessary to project the resin lens to the outside when releasing the resin lens after shape transfer from the mold surface. As such a resin lens projecting process, for example, the optical lens transfer core mold part (hereinafter referred to as the core part) having a relatively large curvature is advanced so as to protrude from the surrounding mold part, thereby making the resin lens Is available (see, for example, Patent Document 1).
 しかし、特許文献1のような光学素子の製造方法では、曲率が大きく型面に深く嵌り込むような樹脂製レンズの場合、樹脂製レンズの突き出し工程後に樹脂製レンズから延びるランナー部やスプル―部等を取出装置に把持させて成形品を型外に取り出す際に、コア部に樹脂製レンズが張り付いてゲート部が曲がってしまう。このようなゲート部の変形により、樹脂製レンズの光学面にまで微小な変形が達することがあったり、レンズが傾いて離型されるため不均一な離型力が加わり光学面が微小に変形することがあったりする。そのため、結果的に所望の光学面が得られなくなり、或いは製品の歩留まり率を下げることになる。特に、BD(ブルーレイディスク)用の対物レンズは、曲率が大きく突起量が大きくなってコア部の転写面が深くなりやすく、レンズ部分に高い形状精度が要求されるにもかかわらずレンズ部分のサイズが小さい。よって、ゲート部の変形が光学面に及びやすい傾向があり、離型時の光学面の変形を低減することが望ましい。また、ゲート部の変形によりレンズが傾いて離型されると、離型の際にレンズの光学面が金型に接触し、レンズの光学面に三日月状の傷を生じる虞があり、この場合も、結果的に所望の光学面が得られなくなり、或いは製品の歩留まり率を下げることになってしまうので、離型時の光学面の傷を低減することが望ましい。 However, in the method of manufacturing an optical element as in Patent Document 1, in the case of a resin lens that has a large curvature and is deeply inserted into a mold surface, a runner portion or a sprue portion that extends from the resin lens after the resin lens protrusion process. When the molded product is taken out of the mold by holding it by the take-out device, the resin lens sticks to the core portion and the gate portion is bent. Such deformation of the gate part may cause minute deformation to the optical surface of the resin lens, or because the lens is tilted and released, an uneven release force is applied and the optical surface is minutely deformed. Sometimes. Therefore, as a result, a desired optical surface cannot be obtained, or the yield rate of the product is lowered. In particular, an objective lens for a BD (Blu-ray Disc) has a large curvature and a large amount of protrusion, so that the transfer surface of the core portion tends to be deep, and the lens portion size is required even though high shape accuracy is required for the lens portion. Is small. Therefore, the deformation of the gate portion tends to easily reach the optical surface, and it is desirable to reduce the deformation of the optical surface at the time of mold release. Also, if the lens is tilted and released due to deformation of the gate part, the optical surface of the lens may come into contact with the mold at the time of release, which may cause a crescent-shaped scratch on the optical surface of the lens. However, as a result, a desired optical surface cannot be obtained, or the yield rate of the product is lowered. Therefore, it is desirable to reduce scratches on the optical surface at the time of mold release.
 また、製品部分であるレンズ部分を突き出す部材とランナー等の非製品部分を突き出す部材とでは型内での構造がそれぞれ異なる場合、突き出すタイミングを完全に一致させることは困難となり、突き出すタイミングの違いにより、ゲート部に曲がりを生じさせてしまうことがある。そして、突き出しの段階でゲート部に曲がりが生じてしまうと、後の取出しの際に、コア部にレンズが張り付くことによるゲート部の曲がりをよりいっそう引き起こしやすくなってしまう。 Also, if the structure in the mold is different between the member that protrudes the lens part that is the product part and the member that protrudes the non-product part such as the runner, it is difficult to make the protrusion timing completely match, and the difference in the protrusion timing In some cases, the gate portion may be bent. If the gate portion is bent at the protruding stage, the gate portion is more likely to bend due to the lens sticking to the core portion at the time of subsequent removal.
 また、成形時においては、金型の境界であるパーティング面からエア抜きやガス抜きが行われる。また、その効果を上げるために0.1μm~10μm程度の隙間又はエアベントが形成されることがある。特許文献1のような光学素子の製造方法では、曲率が比較的大きい光学面がパーティング面から離れているため、成形時のエア抜けやガス抜けが悪くなり、曲率が比較的大きい光学面にエア溜まりや微小な面くもり等の外観不良が生じるおそれがある。 Also, during molding, air venting and gas venting are performed from the parting surface that is the boundary of the mold. In order to increase the effect, a gap or an air vent of about 0.1 μm to 10 μm may be formed. In the method of manufacturing an optical element as in Patent Document 1, since the optical surface having a relatively large curvature is separated from the parting surface, air leakage and gas escape at the time of molding deteriorate, and the optical surface has a relatively large curvature. There is a possibility that appearance defects such as air accumulation and minute surface clouding may occur.
 ここで、曲率が比較的大きい光学面側のフランジ部に突き出しピンを設置してピン突き出しをし、取出装置で把持する前にコア部の離型を済ませることによって、樹脂製レンズの取り出し工程において、ゲート部が曲がる問題が解決すると考えられる。しかしながら、ピン突き出しの場合、樹脂製レンズのフランジ部にある取付基準面に突き出しバリ(不要な微小な突起)が生じる。そのため、樹脂製レンズをレンズホルダに取り付ける際に、樹脂製レンズが傾き、コマ収差が発生するという問題が生じる。また、曲率が比較的大きい光学面を金型の固定側とし、曲率が比較的小さい光学面を金型の可動側とし、曲率が比較的小さい光学面側のフランジ部をピン突き出しすれば、ゲート部が曲がる問題やエア溜まりの問題が解決すると考えられる。しかしながら、曲率が比較的小さい光学面側をピン突き出しした場合、曲率が比較的小さい光学面の外周に存在するフランジ端面(円環状の鏡面部)の面積が小さくなるため、スキュー調整時にレンズ傾きの検出が難しくなる問題が生じる。 Here, in the step of taking out the resin lens, by installing a protruding pin on the flange portion on the optical surface side having a relatively large curvature and protruding the pin, and releasing the core portion before gripping with the extraction device It is considered that the problem that the gate part is bent is solved. However, in the case of pin protrusion, a protrusion burr (unnecessary minute protrusion) is generated on the mounting reference surface in the flange portion of the resin lens. Therefore, when the resin lens is attached to the lens holder, there arises a problem that the resin lens is tilted and coma aberration occurs. If the optical surface with a relatively large curvature is the fixed side of the mold, the optical surface with a relatively small curvature is the movable side of the mold, and the flange on the optical surface side with a relatively small curvature is protruded from the pin, the gate It is thought that the problem of bending of the part and the problem of air accumulation will be solved. However, when the optical surface side with a relatively small curvature is protruded from the pin, the area of the flange end surface (annular mirror surface portion) existing on the outer periphery of the optical surface with a relatively small curvature becomes small. The problem that detection becomes difficult arises.
 また、コア突き出し及びピン突き出しのどちらの場合も、製品部分である光学素子を突き出す部材とランナー等の非製品部分を突き出す部材とでは型内での構造がそれぞれ異なる場合、突き出すタイミングを完全に一致させることは困難となる。突き出すタイミングが異なると、そのタイミングのずれによって、ゲート部に曲がりを生じさせてしまうが、BD用のピックアップレンズのような場合、ゲート部の僅かな曲がりにより、その影響が光学機能面へ伝わり所望の収差性能が得られなくなる虞がある。特に、複数の突き出し部材でフランジ部を突き出すピン突き出しの場合、光学素子を突き出す複数の突き出し部材とランナー部を突き出す部材とで、突き出すための部品点数が多くなるためより一層突き出しのタイミングを合わせることが難しく、よりゲート部の曲がりを生じさせやすくなってしまうことが考えられる。 Also, in both cases of core protrusion and pin protrusion, if the structure in the mold differs between the member that protrudes the optical element that is the product part and the member that protrudes the non-product part such as the runner, the protrusion timing is completely the same It becomes difficult to make it. If the projecting timing is different, the gate part will bend due to the difference in timing, but in the case of a BD pickup lens, the influence is transmitted to the optical function surface by the slight bending of the gate part. The aberration performance may not be obtained. In particular, in the case of a pin protrusion that protrudes a flange portion with a plurality of protrusion members, a plurality of protrusion members that protrude an optical element and a member that protrudes a runner portion increase the number of parts to be protruded, so that the timing of protrusion is further adjusted. It is difficult to cause the gate portion to bend more easily.
特開2002-200652号公報Japanese Patent Laid-Open No. 2002-200652
 本発明は、離型のためにコア部を突き出して成形品を取り出す際に、フランジ端面の機能を保ちつつ、光学面の変形や傷を低減できる光学素子の製造方法及び当該方法によって製造した光学素子を提供することを目的とする。
The present invention relates to a method for manufacturing an optical element capable of reducing deformation and scratches on an optical surface while maintaining the function of a flange end surface when a molded part is taken out by protruding a core part for mold release, and an optical manufactured by the method. An object is to provide an element.
 上記目的を達成するため、本発明に係る光学素子の製造方法は、光情報記録媒体への情報の記録及び/又は再生を行う光ピックアップ装置に組み込まれ、開口数が0.75以上の光学素子のうち第1光学面を成形するための第1の金型と、光学素子のうち第2光学面を成形するための第2の金型とを有する射出成型装置を用いた光学素子の製造方法であって、第2光学面は、第1光学面よりも曲率が小さく、第1の金型と第2の金型とで形成する型空間及び流路空間に溶融樹脂を射出して光学素子及びランナー部を成形する成形工程と、第2の金型に光学素子を残すように、第1の金型と第2の金型とを相対的に移動させて型開きする型開き工程と、第2の金型に設けたコア部を、コア部を周囲から保持する保持部に対して第1の金型側に相対的に移動させて、光学素子を第1の金型側へ突き出し、第2の金型に設けた突出部材を第1の金型側に移動させて、ランナー部を第1の金型側へ突き出す突き出し工程と、を備える。 In order to achieve the above object, an optical element manufacturing method according to the present invention is incorporated in an optical pickup device that records and / or reproduces information on an optical information recording medium, and has an aperture of 0.75 or more. Method of manufacturing an optical element using an injection molding apparatus having a first mold for molding the first optical surface of the first mold and a second mold for molding the second optical surface of the optical elements The second optical surface has a smaller curvature than the first optical surface, and the molten resin is injected into a mold space and a flow path space formed by the first mold and the second mold, thereby optical elements. And a molding step for molding the runner part, and a mold opening step for relatively opening the mold by moving the first mold and the second mold so as to leave the optical element in the second mold, The core part provided in the second mold is located on the first mold side with respect to the holding part that holds the core part from the periphery. The optical element is protruded toward the first mold side by moving the projection element, the projecting member provided on the second mold is moved to the first mold side, and the runner part is moved to the first mold side. A projecting step of projecting to the surface.
 上記光学素子の製造方法によれば、型開き工程において第1の金型に対して第2の金型を離すように移動させる際に、曲率が小さく面深さが比較的浅い第2光学面を成形する第2の金型(一般的には、可動金型)に光学素子を残しており、第2の金型に設けたコア部による型開き後の突き出し工程とその後の取出装置による成形品取り出し工程とにおいて、光学素子に設けられたゲート部が変形することを防ぐことができる。これは、曲率が比較的小さい第2光学面を成形する第2転写面が第1光学面を成形する第1転写面よりも浅いため、コア部の第2転写面への第2光学面の張り付き力が比較的小さくなって成形品をコア部から外しやすくなるからである。また、第1光学面を成形する第1の金型を型開き時に光学素子が残らない金型(一般的には、固定金型)とするため、第1の金型によって形成されるフランジ部の部分厚さを、第1の金型に光学素子を残す場合に比較して小さくすることになる。そのため、第1転写面と、第1及び第2の金型との当接面であるパーティング面との距離が近くなり、第1転写面からエアやガスが抜けやすくなる。以上により、光学素子の外観不良を低減し、高精度な光学素子を製造することができる。これは、特に、例えばBD用光ピックアップ装置用の対物レンズのような偏肉比p(最厚部の厚み÷最薄部の厚み)が比較的高いレンズにおいて有効である。また、ゲート部の変形によりレンズが傾いて離型され、離型の際にレンズの光学面が金型に接触し、レンズの光学面に三日月状の傷が付いてしまうのを防ぐことが可能となる。さらに、光学素子を突き出すコア部とランナー部を突き出す突出部材とで突き出すタイミングの違いにより、突き出し時にゲート部に曲がりが生じたとしても、成形品をコア部から外しやすくなっているため、後の取出しの際に、ゲート部のさらなる曲がりを防止することができる。 According to the method for manufacturing an optical element, when the second mold is moved away from the first mold in the mold opening process, the second optical surface has a small curvature and a relatively shallow surface depth. The optical element remains in the second mold (generally, a movable mold) for molding the mold, and the extrusion process after the mold opening by the core portion provided in the second mold and the subsequent molding by the take-out device It is possible to prevent the gate portion provided in the optical element from being deformed in the product removal step. This is because the second transfer surface that molds the second optical surface having a relatively small curvature is shallower than the first transfer surface that molds the first optical surface. This is because the sticking force becomes relatively small and the molded product can be easily removed from the core portion. Further, since the first mold for molding the first optical surface is a mold (generally, a fixed mold) in which no optical element remains when the mold is opened, a flange portion formed by the first mold This partial thickness is made smaller than when the optical element is left in the first mold. For this reason, the distance between the first transfer surface and the parting surface that is the contact surface between the first and second molds is reduced, and air and gas are easily released from the first transfer surface. As described above, appearance defects of the optical element can be reduced, and a highly accurate optical element can be manufactured. This is particularly effective in a lens having a relatively high thickness ratio p (thickness of the thickest part ÷ thickness of the thinnest part), such as an objective lens for a BD optical pickup device. In addition, it is possible to prevent the lens from being tilted and released due to the deformation of the gate, and the lens optical surface comes into contact with the mold during the release and the lens optical surface is not crescent-shaped. It becomes. Furthermore, due to the difference in the timing of projecting between the core part that projects the optical element and the projecting member that projects the runner part, it is easy to remove the molded product from the core part even if the gate part is bent at the time of ejection, When taking out, further bending of the gate portion can be prevented.
 また、第2光学面側のコアを突き出すことによって光学素子を離型するため、第1光学面側にある光学素子の取付基準面上に突き出しピンによるバリが生じることを防ぐことができ、レンズホルダに取り付ける際にレンズが傾き、コマ収差が発生するという問題が生じることを防ぐことができる。これにより、光学素子を精度良く光ピックアップ装置等に取り付けることができる。さらに、光学素子をコア突き出しによって離型するため、光学面の外周(例えば、フランジ部)において、端面部分の面積を十分に確保することができる。これにより、端面において光が十分な強さで確実に反射されるものとなり、効率良くスキュー調整することができる。 Further, since the optical element is released by protruding the core on the second optical surface side, it is possible to prevent the occurrence of burrs due to the protruding pins on the mounting reference surface of the optical element on the first optical surface side. When the lens is attached to the holder, it is possible to prevent a problem that the lens is inclined and coma is generated. Thereby, an optical element can be attached to an optical pick-up apparatus etc. with a sufficient precision. Furthermore, since the optical element is released from the core by protruding, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion) of the optical surface. As a result, the light is reliably reflected at the end face with sufficient intensity, and the skew can be adjusted efficiently.
 また、曲率が比較的小さい第2光学面を成形する第2転写面が第1光学面を成形する第1転写面よりも浅いため、コア部の第2転写面への第2光学面の張り付き力が比較的小さくなって成形品をコア部から外しやすくなるが、その一方、第2光学面よりも曲率の大きい第1光学面を第1の金型(一般的に固定金型)で成形するため、型開きの際に光学素子が第1の金型側に張り付いて残りやすくなってしまうことが考えられる。それに対し、第2の金型側に設ける流路空間の体積を第1の金型側に設ける流路空間の体積よりも大きくする等することで光学素子が第2の金型側(一般的に可動金型)に残りやすくすることができる。しかしその場合、流路空間で成形されるランナー部の第2の金型側への張り付きが強まってしまうが、本発明では、第2の金型にランナー部を第1金型側へ突き出す突出部材を設けているので、ランナー部をスムーズ(円滑)に離型することを可能としている。 In addition, since the second transfer surface for forming the second optical surface having a relatively small curvature is shallower than the first transfer surface for forming the first optical surface, the second optical surface sticks to the second transfer surface of the core portion. Although the force is relatively small, it becomes easy to remove the molded product from the core part. On the other hand, the first optical surface having a larger curvature than the second optical surface is molded by the first mold (generally a fixed mold). Therefore, it is conceivable that the optical element sticks to the first mold side and tends to remain when the mold is opened. On the other hand, by making the volume of the flow path space provided on the second mold side larger than the volume of the flow path space provided on the first mold side, the optical element is arranged on the second mold side (general Can be easily left on the movable mold). However, in that case, the runner part molded in the flow path space is strongly attached to the second mold side. However, in the present invention, the second mold protrudes from the runner part to the first mold side. Since the member is provided, it is possible to release the runner part smoothly (smoothly).
 さらに、コア突き出しとすることにより、ピン突き出しに比べて突き出すための部品点数を少なくすることが可能となる。そのため、光学素子を突き出す部材とランナー部を突き出す部材とで突き出すタイミングをより合わせやすくでき、突き出しの際のゲート曲がりを低減することができる。その結果、BD用のピックアップレンズのような高い成形精度が必要となるレンズに対しても所望の収差を得ることが可能となる。 Furthermore, by using the core protrusion, it is possible to reduce the number of parts for protrusion compared to the pin protrusion. Therefore, it is possible to more easily match the timing of projecting between the member that projects the optical element and the member that projects the runner portion, and it is possible to reduce gate bending at the time of ejection. As a result, it is possible to obtain a desired aberration even for a lens that requires high molding accuracy, such as a BD pickup lens.
 なお、本明細書においてコア突き出しとは、光学素子の光学機能面を成形する転写面を有する突き出し部材で、その転写面を光学素子の光学機能面に当接させて突き出すものであり、ピン突き出しとは、光学素子の光学機能部の外周に設けたフランジ部を複数の突き出し部材で突き出すものをいう。 In this specification, the core protrusion is a protrusion member having a transfer surface that molds the optical function surface of the optical element, and protrudes by bringing the transfer surface into contact with the optical function surface of the optical element. The term “projects” means that a flange portion provided on the outer periphery of the optical function portion of the optical element is projected by a plurality of projecting members.
 本発明の具体的な態様又は側面では、突き出し工程において、コア部で光学素子を第1の金型側へ突き出すタイミングと、突出部材でランナー部を第1の金型側へ突き出すタイミングが異なる。ここで、突き出すタイミングが異なるとは、それぞれをほぼ同時に突き出した際における若干のタイミングのズレであることを意味する。
 コア突き出し及びピン突き出しのどちらの場合も、製品部分である光学素子を突き出す部材とランナー等の非製品部分を突き出す部材とでは型内での構造がそれぞれ異なる場合、突き出すタイミングを完全に一致させることは困難となる。本発明では、コア突き出しとすることにより、ピン突き出しに比べて、光学素子を突き出すタイミングとランナー部を突き出すタイミングをより合わせやすくすることができる。
In a specific mode or aspect of the present invention, in the projecting step, the timing at which the optical element is projected to the first mold side at the core portion is different from the timing at which the runner portion is projected to the first mold side by the projecting member. Here, the timing of projecting different means that there is a slight timing shift when projecting them almost simultaneously.
In both cases of core protrusion and pin protrusion, if the structure in the mold is different between the member that protrudes the optical element that is the product part and the member that protrudes the non-product part such as the runner, the protrusion timing must be completely matched Will be difficult. In the present invention, it is possible to make it easier to match the timing of projecting the optical element and the timing of projecting the runner portion than by projecting the pin by using the core projecting.
 本発明の別の側面では、成形工程は、複数の光学素子及び複数のランナー部を成形する。複数の光学素子及び複数のランナー部を一度に成形する場合、光学素子及びランナー部を突き出すための部品がより多くなるため、突き出しのタイミングをそれぞれ合わせることがより一層困難となる。本発明では、コア突き出しとすることにより、ピン突き出しに比べて、突き出す部材の部品点数を少なくできるため、比較的突き出しのタイミングを合わせることを可能としている。 In another aspect of the present invention, the molding step forms a plurality of optical elements and a plurality of runner portions. When a plurality of optical elements and a plurality of runner parts are molded at a time, there are more parts for projecting the optical elements and the runner parts, and it becomes even more difficult to match the timings of the projections. In the present invention, by setting the core protrusion, the number of parts of the protruding member can be reduced as compared with the pin protrusion, so that the protrusion timing can be relatively matched.
 本発明のさらに別の側面では、上記光学素子の製造方法において、成形工程前に、型空間内を真空引きする。この場合、比較的曲率の大きい第1光学面を成形する第1転写面にも溶融樹脂が確実に充填されて転写精度が向上し、光学素子の外観を良好なものとすることができる。 In still another aspect of the present invention, the mold space is evacuated before the molding step in the method of manufacturing an optical element. In this case, the first transfer surface for forming the first optical surface having a relatively large curvature is also reliably filled with the molten resin, the transfer accuracy is improved, and the appearance of the optical element can be improved.
 本発明のさらに別の側面では、光学素子は、第1光学面と第2光学面とを有する光学機能部と、光学機能部の周囲に配置されるフランジ部とを有するレンズであり、光学素子は、フランジ部の外周縁に成形工程において形成されるゲート部を有し、レンズのレンズ光軸に垂直な方向のレンズ外径をDとし、フランジ部のレンズ光軸に平行な方向のフランジ厚さをTとし、ゲート部のレンズ光軸に平行な方向のゲート厚さをHとし、ゲート部のレンズ光軸に垂直な方向のゲート長さをLとし、ゲート部のレンズ光軸に垂直な方向のゲート幅をWとしたときに、以下の条件式(1)~(3)を満たす。
 0.05D≦W≦0.4D       (1)
 0.5T≦H≦T           (2)
 0.1(mm)≦L≦2.0(mm)  (3)
この場合、光学素子の成形時における要素が上記条件式(1)~(3)を満たすことにより、樹脂注入時に溶融樹脂が確実に充填されるとともに適切なゲートシール時間を設けることができ、かつ突き出し工程とその後の取出装置による成形品取り出し工程とにおいてゲート部が変形しにくくなるため、光学機能部の変形を確実に防ぐことができる。
In still another aspect of the present invention, the optical element is a lens having an optical function part having a first optical surface and a second optical surface, and a flange part arranged around the optical function part. Has a gate portion formed in the outer peripheral edge of the flange portion in the molding process, and the lens outer diameter in the direction perpendicular to the lens optical axis of the lens is D, and the flange thickness in the direction parallel to the lens optical axis of the flange portion is T is the gate thickness in the direction parallel to the lens optical axis of the gate portion, H is the gate length in the direction perpendicular to the lens optical axis of the gate portion, and L is perpendicular to the lens optical axis of the gate portion. When the gate width in the direction is W, the following conditional expressions (1) to (3) are satisfied.
0.05D ≦ W ≦ 0.4D (1)
0.5T ≦ H ≦ T (2)
0.1 (mm) ≦ L ≦ 2.0 (mm) (3)
In this case, by satisfying the above conditional expressions (1) to (3), the element at the time of molding the optical element can be surely filled with the molten resin at the time of resin injection, and can provide an appropriate gate seal time, and Since the gate portion is less likely to be deformed in the ejecting step and the molded product taking-out step thereafter by the take-out device, it is possible to reliably prevent deformation of the optical function portion.
 本発明のさらに別の側面では、フランジ部のうち第1の金型によって形成される部分厚さをt1としたきに、以下の条件式(4)を満たす。
 0≦t1<0.5T          (4)
この場合、上記条件式(4)が満たされることにより、型開き工程において、光学素子を第2の金型側に確実に残すことができる。
In still another aspect of the present invention, the following conditional expression (4) is satisfied, where t1 is the thickness of the flange portion formed by the first mold.
0 ≦ t1 <0.5T (4)
In this case, when the conditional expression (4) is satisfied, the optical element can be reliably left on the second mold side in the mold opening process.
 本発明のさらに別の側面では、レンズのフランジ部のうち、第1の金型側の第1フランジ外径をd1とし、第2の金型側の第2フランジ外径をd2としたときに、以下の条件式(5)を満たす。
 d1<d2              (5)
この場合、上記条件式(5)が満たされることにより、第2の金型単体のみで、光学素子の外径に対応する転写面を形成することができるため、光学素子の外径を高精度に維持することができる。
In still another aspect of the present invention, when the first flange outer diameter on the first mold side of the lens flange portion is d1, and the second flange outer diameter on the second mold side is d2. The following conditional expression (5) is satisfied.
d1 <d2 (5)
In this case, since the conditional expression (5) is satisfied, a transfer surface corresponding to the outer diameter of the optical element can be formed with only the second mold alone, so that the outer diameter of the optical element is highly accurate. Can be maintained.
 本発明のさらに別の側面では、第1の金型と第2の金型の当接面であるパーティング面は、フランジ部のレンズ光軸に平行な方向のフランジ厚さの中心よりも、レンズ光軸に平行な方向において第1の金型側に位置している。この場合、第1転写面とパーティング面との距離を近くすることができ、第1転写面からエアやガスが抜けやすくすることができる。また、第2の金型側に光学素子を残しやすくすることができる。 In still another aspect of the present invention, the parting surface that is a contact surface between the first mold and the second mold is more than the center of the flange thickness in the direction parallel to the lens optical axis of the flange portion. It is located on the first mold side in the direction parallel to the lens optical axis. In this case, the distance between the first transfer surface and the parting surface can be reduced, and air and gas can be easily released from the first transfer surface. Further, it is possible to easily leave the optical element on the second mold side.
 本発明のさらに別の側面では、第1の金型は、コア部と、コア部を保持する保持部とを有し、第1の金型のコア部によって、光学機能部の第1光学面と、フランジ部のうち第1光学面側に設けられる第1フランジ面の少なくとも一部を形成し、第1の金型のコア部の第2の金型に対向する先端部の外周部分は、第1光学面と第1フランジ面との間に環状の凹部を形成するための環状の凸部を有する。この場合、フランジ部を形成するフランジ空間を広くすることができ、溶融樹脂の流動性を向上させることができる。また、この場合、第1の金型において光学素子が冷却により収縮した際に第1コア部に食い付いて密着しやすくなるが、第1の金型によって成形される第1光学面を第2光学面よりも先に離型することで、離型変形等を確実に防止できる。 In still another aspect of the present invention, the first mold includes a core part and a holding part that holds the core part, and the first optical surface of the optical function part is formed by the core part of the first mold. And forming an at least part of the first flange surface provided on the first optical surface side of the flange portion, and the outer peripheral portion of the tip portion facing the second mold of the core portion of the first mold is, An annular convex portion for forming an annular concave portion is provided between the first optical surface and the first flange surface. In this case, the flange space which forms a flange part can be enlarged, and the fluidity | liquidity of molten resin can be improved. Further, in this case, when the optical element contracts due to cooling in the first mold, the first optical part bites into the first core portion and becomes easy to adhere, but the first optical surface molded by the first mold is the second optical surface. By releasing the mold before the optical surface, it is possible to reliably prevent the mold release deformation and the like.
 本発明のさらに別の側面では、光学素子は、第1光学面に微細形状を有する。この場合、第1光学面が微細形状を有することにより、第1の金型において第1コア部と第1光学面とが密着しやすくなるが、第1光学面を第2光学面よりも先に離型することで、離型変形等を確実に防止できる。
 例えば、BD、DVD(デジタルバーサタイルディスク)及びCD(コンパクトディスク)の3種類の光ディスクの互換を共通の対物レンズで行うトリプル互換レンズのように、曲率が大きい方の光学面に微細な段差を有する回折構造が形成されているような光学素子の場合において、取出しの際にゲート部が曲がりを有し光学素子が傾いて離型されたとしても、回折構造を崩すことはないため高い光利用効率を得ることが可能となる。
In still another aspect of the present invention, the optical element has a fine shape on the first optical surface. In this case, since the first optical surface has a fine shape, the first core portion and the first optical surface are easily brought into close contact with each other in the first mold, but the first optical surface is ahead of the second optical surface. By releasing the mold, it is possible to reliably prevent the mold release deformation and the like.
For example, there is a fine step on the optical surface with the larger curvature, such as a triple compatible lens that uses a common objective to interchange three types of optical disks: BD, DVD (digital versatile disk) and CD (compact disk). In the case of an optical element in which a diffractive structure is formed, even if the gate part is bent at the time of extraction and the optical element is tilted and released, the diffractive structure is not destroyed, and thus high light utilization efficiency. Can be obtained.
 本発明のさらに別の側面では、光学素子は、光学素子の軸上レンズ厚をd(mm)とし、500nm以下の波長の光束における光学素子の焦点距離をf(mm)としたときに、0.8≦d/f≦2.0である。この場合、第1光学面の曲率が大きく突起量も大きくなるが、このような光学素子に対しても、光学素子の外観不良を低減し、高精度な光学素子を製造することができる。 In yet another aspect of the present invention, the optical element has an on-axis lens thickness of d (mm) and a focal length of the optical element in a light beam having a wavelength of 500 nm or less is f (mm). .8 ≦ d / f ≦ 2.0. In this case, although the curvature of the first optical surface is large and the amount of protrusion is large, the appearance defect of the optical element can be reduced and a highly accurate optical element can be manufactured even for such an optical element.
 本発明のさらに別の側面では、光学素子は、光ピックアップ装置用の対物レンズである。 In yet another aspect of the present invention, the optical element is an objective lens for an optical pickup device.
 本発明のさらに別の側面では、光学素子は、BD、DVD及びCDの3種類の光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズである。非常に高い成形精度が求められるBD、DVD(デジタルバーサタイルディスク)及びCD(コンパクトディスク)の3種類の光ディスクの互換を共通の対物レンズで行うトリプル互換レンズにおいて、より有用となる。
 なお、本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。
In still another aspect of the present invention, the optical element is an objective lens for an optical pickup device that records and / or reproduces information on three types of optical disks: BD, DVD, and CD. This is more useful in a triple compatible lens in which three types of optical disks of BD, DVD (digital versatile disk), and CD (compact disk), which require extremely high molding accuracy, are used with a common objective lens.
In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to It is a generic term for BD series optical discs of about 0.125 mm, and includes BD having only a single information recording layer, BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the protective substrate has a thickness of about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW, and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 本発明のさらに別の側面では、突き出し工程後に、成形工程によって成形された成形品のうち光学素子を除いた部分を把持し、光学素子を第2の金型から離間させる。この場合、光学素子を把持しないので、把持による傷が光学素子につくことを防止することができる。
In still another aspect of the present invention, after the projecting step, a portion excluding the optical element of the molded product molded by the molding step is gripped, and the optical element is separated from the second mold. In this case, since the optical element is not gripped, it is possible to prevent scratches due to gripping from being attached to the optical element.
 上記課題を解決するため、本発明に係る光学素子は、上述の光学素子の製造方法で製造することによって得られる。 In order to solve the above-described problems, the optical element according to the present invention is obtained by manufacturing by the above-described optical element manufacturing method.
 上記光学素子は、上述の製造方法で製造されることにより、高精度な光学素子となる。これは、特に、例えばBD用光ピックアップ装置用の対物レンズのような偏肉比p(最厚部の厚み÷最薄部の厚み)が比較的高いレンズにおいて有効である。また、光学素子の取付基準面上に突き出しピンによるバリが生じることを防ぐことができ、光学素子を精度良く光ピックアップ装置等に取り付けることができる。さらに、光学面の外周(例えば、フランジ部)において、端面部分の面積を十分に確保することができ、効率良くスキュー調整することができる。また、ゲート部の変形により光学素子が傾いて離型される際に光学面が金型に接触することを防止でき、光学面に三日月状などの傷のない光学素子にすることができる。突き出しの際のゲート曲がりを低減することができ、BD用のピックアップレンズのような高い成形精度が必要となるレンズに対しても所望の収差性能を満たすことが可能となる。 The optical element is a highly accurate optical element when manufactured by the manufacturing method described above. This is particularly effective in a lens having a relatively high thickness ratio p (thickness of the thickest part ÷ thickness of the thinnest part), such as an objective lens for a BD optical pickup device. Further, it is possible to prevent burrs caused by the protruding pins on the mounting reference surface of the optical element, and it is possible to attach the optical element to an optical pickup device or the like with high accuracy. Furthermore, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion) of the optical surface, and the skew can be adjusted efficiently. In addition, the optical surface can be prevented from coming into contact with the mold when the optical element is tilted and released due to deformation of the gate portion, and the optical surface can be made an optical element having no scratch such as a crescent shape. Gate bending at the time of protrusion can be reduced, and a desired aberration performance can be satisfied even for a lens that requires high molding accuracy, such as a pickup lens for BD.
第1実施形態に係る光学素子の製造方法を実施するための成形金型を説明する側方断面図である。It is a sectional side view explaining the shaping die for enforcing the manufacturing method of the optical element concerning a 1st embodiment. 光学素子を成形するための型空間を説明する図である。It is a figure explaining the type | mold space for shape | molding an optical element. 図3Aは、光学素子であるレンズの断面図であり、図3Bは、レンズの第2光学面からみた平面図である。3A is a cross-sectional view of a lens that is an optical element, and FIG. 3B is a plan view of the lens as viewed from the second optical surface. 図2の比較例を説明する図である。It is a figure explaining the comparative example of FIG. 図1に示す成形金型を用いた成形方法を説明するフローチャートである。It is a flowchart explaining the shaping | molding method using the shaping die shown in FIG. 図6A、図6Bは、光学素子の製造工程を説明する概念図である。6A and 6B are conceptual diagrams illustrating the manufacturing process of the optical element. 図2の型空間及び図3の光学素子の変形例について説明する図である。It is a figure explaining the modification of the type | mold space of FIG. 2, and the optical element of FIG. 第2実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 2nd Embodiment. 図8の型空間及び光学素子の変形例について説明する図である。It is a figure explaining the type | mold space of FIG. 8, and the modification of an optical element. 図8の型空間及び光学素子の別の変形例について説明する図である。It is a figure explaining another modification of the type | mold space of FIG. 8, and an optical element. 第3実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 3rd Embodiment. 第4実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 4th Embodiment. 図12の型空間及び光学素子の変形例について説明する図である。It is a figure explaining the modification of the type | mold space of FIG. 12, and an optical element. 第5実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 5th Embodiment. 図14の型空間及び光学素子の変形例について説明する図である。It is a figure explaining the type | mold space of FIG. 14, and the modification of an optical element. 第6実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 6th Embodiment.
〔第1実施形態〕
 以下、本発明の第1実施形態に係る光学素子の製造方法について、図面を参照しつつ詳細に説明する。
[First Embodiment]
Hereinafter, an optical element manufacturing method according to a first embodiment of the present invention will be described in detail with reference to the drawings.
 図1に示すように、本実施形態の製造方法を実施するための射出成形装置100は、成形金型40を備え、成形金型40は、第1の金型41と第2の金型42とを備える。ここで、第2金型42は、開閉駆動装置79に駆動されてAB方向に往復移動可能になっている。第2金型42を第1金型41に向けて移動させ、両金型41,42をパーティング面PS1,PS2で型合わせして型締めすることにより、図2に部分的に拡大して示すように、光学素子としてのレンズ10を成形するための型空間CVと、これに樹脂を供給するための流路空間FCとが形成される。なお、型空間CVや流路空間FCは成形金型40内に複数個形成される場合もある。 As shown in FIG. 1, an injection molding apparatus 100 for carrying out the manufacturing method of the present embodiment includes a molding die 40, and the molding die 40 includes a first die 41 and a second die 42. With. Here, the 2nd metal mold | die 42 is driven by the opening / closing drive apparatus 79, and can be reciprocated to AB direction. The second mold 42 is moved toward the first mold 41, and both molds 41 and 42 are mold-matched with the parting surfaces PS1 and PS2 and are clamped to partially expand in FIG. As shown, a mold space CV for molding the lens 10 as an optical element and a flow path space FC for supplying resin to the mold space CV are formed. A plurality of mold spaces CV and flow path spaces FC may be formed in the molding die 40.
 図2に示すように、型空間CVは、第1及び第2転写面S1,S2に挟まれた本体空間CV1と、第3、第4、第5、及び第6転写面S3,S4,S5,S6に囲まれたフランジ空間CV2とを備える。ここで、本体空間CV1に臨む一対の対向する第1及び第2転写面S1,S2は、図3A及び3Bに拡大して示すレンズ10のうち中央の光学機能部11の第1及び第2光学面OS1,OS2を形成するための部分である。この場合、一方の第1転写面S1は、他方の第2転写面S2よりも深く曲率が大きくなっており、第1光学面OS1の微細構造又は微細形状FSを転写するための微細な凹凸パターンFPが設けられている。一方、フランジ空間CV2を囲む第3、第4、第5、及び第6転写面S3,S4,S5,S6は、レンズ10のうちフランジ部12を形成するための部分である。ここで、フランジ空間CV2に臨む第3、第4、及び第6転写面S3,S4,S6は、図3A及び3Bに拡大して示すレンズ10のうち第1、第2、及び第3フランジ面12a,12b,12cを形成するための部分である。また、フランジ空間CV2に臨む第5転写面S5は、レンズ10の外周側面SSを形成するための部分である。図3Aに示すフランジ部12の第1フランジ面12aには、レンズ10の外周側面SSに隣接する外縁に、環状の凹部u1が設けられている。この凹部u1を形成する凸転写面S7は、レンズ10の軸上レンズ厚dを調整するために第1金型41において後述する第1コア部64aの底面に不図示のスペーサを入れる際の調整代となる。凸転写面S7は、図2に示すように、保持部64bの端面を第1コア部64aの端面よりも突出させることにより形成される。なお、流路空間FCは、図2、3A、及び3Bに示す成形品MPのうちランナー部RPを形成する空間として、ランナー部分RSを有しており、このランナー部分RSは、ゲート部分GSを介して型空間CVに連通している。このゲート部分GSの空間により、成形品MPにおいてレンズ10とランナー部RPとをつなぐゲート部GPが形成される。 As shown in FIG. 2, the mold space CV includes the main body space CV1 sandwiched between the first and second transfer surfaces S1 and S2, and the third, fourth, fifth, and sixth transfer surfaces S3, S4, and S5. , S6 and a flange space CV2 surrounded by S6. Here, the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 are the first and second optical elements of the optical function unit 11 at the center of the lens 10 shown enlarged in FIGS. 3A and 3B. This is a portion for forming the surfaces OS1 and OS2. In this case, one first transfer surface S1 is deeper and larger in curvature than the other second transfer surface S2, and a fine uneven pattern for transferring the fine structure or fine shape FS of the first optical surface OS1. An FP is provided. On the other hand, the third, fourth, fifth, and sixth transfer surfaces S3, S4, S5, and S6 surrounding the flange space CV2 are portions for forming the flange portion 12 of the lens 10. Here, the third, fourth, and sixth transfer surfaces S3, S4, S6 facing the flange space CV2 are the first, second, and third flange surfaces of the lens 10 shown in an enlarged manner in FIGS. 3A and 3B. It is a part for forming 12a, 12b, 12c. The fifth transfer surface S5 facing the flange space CV2 is a portion for forming the outer peripheral side surface SS of the lens 10. In the first flange surface 12 a of the flange portion 12 shown in FIG. 3A, an annular recess u <b> 1 is provided on the outer edge adjacent to the outer peripheral side surface SS of the lens 10. The convex transfer surface S7 forming the concave portion u1 is adjusted when a spacer (not shown) is put on the bottom surface of the first core portion 64a described later in the first mold 41 in order to adjust the axial lens thickness d of the lens 10. To be a generation. As shown in FIG. 2, the convex transfer surface S7 is formed by projecting the end surface of the holding portion 64b beyond the end surface of the first core portion 64a. The flow path space FC has a runner portion RS as a space for forming the runner portion RP in the molded product MP shown in FIGS. 2, 3A, and 3B. The runner portion RS includes the gate portion GS. Via the mold space CV. The space of the gate portion GS forms a gate portion GP that connects the lens 10 and the runner portion RP in the molded product MP.
 図3A及び3B等に示す成形品MPのうち、本体であるレンズ10は、樹脂製であり、上述のように、光学的機能を有する光学機能部11と、光学機能部11の外縁から半径方向外側に設けられた略環状のフランジ部12とを備える。レンズ10は、第1光学面OS1側の突起が大きな肉厚型の光ピックアップ用の対物レンズである。具体的には、レンズ10は、例えば波長405nmで開口数(NA)0.85のBD(ブルーレイディスク)に対応した光情報の読み取り又は書き込みを可能にする。ここで、レンズ10の光学的な仕様については、NA0.85に限らず、例えばNA0.75以上の様々な光ピックアップ用の対物レンズの規格に対応するものとすることができる。また、レンズ10は、レンズ10の軸上レンズ厚をd(mm)とし、500nm以下の波長の光束におけるレンズ10の焦点距離をf(mm)としたときに、0.8≦d/f≦2.0である。 Of the molded product MP shown in FIGS. 3A and 3B, the lens 10 as the main body is made of resin, and as described above, the optical function unit 11 having an optical function and the outer edge of the optical function unit 11 in the radial direction. And a substantially annular flange portion 12 provided outside. The lens 10 is an objective lens for a thick optical pickup having a large protrusion on the first optical surface OS1 side. Specifically, the lens 10 enables reading or writing of optical information corresponding to a BD (Blu-ray Disc) having a wavelength of 405 nm and a numerical aperture (NA) of 0.85, for example. Here, the optical specification of the lens 10 is not limited to NA 0.85, and can correspond to various objective lens standards for optical pickups having NA of 0.75 or more, for example. The lens 10 has an on-axis lens thickness d (mm) and a focal length of the lens 10 in a light beam having a wavelength of 500 nm or less is f (mm). 2.0.
 光学機能部11において、一方の第1光学面OS1は、レーザ光源側に配置されるものであり、光情報記録媒体である光ディスク側に配置される他方の第2光学面OS2よりも大きく突出し曲率が大きくなっている。さらに、第1光学面OS1の曲率が極めて大きいため、レンズ10は、中心部で肉厚が極めて大きく、偏肉比p(最厚部の厚み÷最薄部の厚み)が高くなっている。なお、第1光学面OS1には、回折構造である微細構造又は微細形状FSが設けられている。この微細形状FS等は、同心の輪帯状に形成されている。一方、第2光学面OS2は、回折構造等を有しない鏡面となっている。 In the optical function unit 11, one first optical surface OS1 is disposed on the laser light source side, and protrudes larger than the other second optical surface OS2 disposed on the optical disk side which is an optical information recording medium. Is getting bigger. Furthermore, since the curvature of the first optical surface OS1 is extremely large, the lens 10 has a very large thickness at the center, and the thickness deviation ratio p (thickness of the thickest portion ÷ thickness of the thinnest portion) is high. The first optical surface OS1 is provided with a fine structure or fine shape FS that is a diffractive structure. The fine shape FS or the like is formed in a concentric annular zone. On the other hand, the second optical surface OS2 is a mirror surface having no diffractive structure.
 フランジ部12は、第1光学面OS1側にレンズ光軸OAに垂直な方向に延びる第1フランジ面12aと、第2光学面OS2側にレンズ光軸OAに垂直な方向に延びる第2フランジ面12b、第3フランジ面12cとを有する。第3フランジ面12cは、アライメント用の端面としての鏡面となっている。レンズ10の成形時には、フランジ部12の外周側面SSの一部にゲート部GPが形成されるが、成形金型40から取り出した後の仕上げ処理によって除去される。 The flange portion 12 has a first flange surface 12a extending in the direction perpendicular to the lens optical axis OA on the first optical surface OS1 side, and a second flange surface extending in the direction perpendicular to the lens optical axis OA on the second optical surface OS2 side. 12b and a third flange surface 12c. The third flange surface 12c is a mirror surface as an end surface for alignment. At the time of molding the lens 10, the gate portion GP is formed on a part of the outer peripheral side surface SS of the flange portion 12, but is removed by a finishing process after taking out from the molding die 40.
 以下、レンズ10及び型空間CVの寸法について説明する。なお、図2、図3A、及び3Bに示すように、型空間CVの寸法は、レンズ10の各要素に対応したものであり、レンズ10の寸法と略同様である。すなわち、樹脂の成形収縮率をαとすると、型空間CVの寸法の(1-α)倍がレンズ10の寸法となる。よって、以下ではレンズ10の寸法について説明する。 Hereinafter, the dimensions of the lens 10 and the mold space CV will be described. 2, 3A, and 3B, the size of the mold space CV corresponds to each element of the lens 10 and is substantially the same as the size of the lens 10. That is, when the molding shrinkage rate of the resin is α, the dimension of the lens 10 is (1−α) times the dimension of the mold space CV. Therefore, the dimension of the lens 10 will be described below.
 図3A及び3Bに示すように、レンズ10の寸法は、レンズ10のレンズ光軸OAに垂直な方向のレンズ外径をDとし、フランジ部12のレンズ光軸OAに平行な方向のフランジ厚さをTとし、ゲート部GPのレンズ光軸OAに平行な方向のゲート厚さをHとし、ゲート部GPのレンズ光軸OAに垂直な方向のゲート長さをLとし、ゲート部GPのレンズ光軸OAに垂直な方向のゲート幅をWとしたときに、以下の条件式(1)~(3)を満たす。
 0.05D≦W≦0.4D       (1)
 0.5T≦H≦T           (2)
 0.1(mm)≦L≦2.0(mm)  (3)
As shown in FIGS. 3A and 3B, the dimension of the lens 10 is such that the lens outer diameter in the direction perpendicular to the lens optical axis OA of the lens 10 is D, and the flange thickness of the flange portion 12 in the direction parallel to the lens optical axis OA is as follows. Is T, the gate thickness of the gate portion GP in the direction parallel to the lens optical axis OA is H, the gate length of the gate portion GP in the direction perpendicular to the lens optical axis OA is L, and the lens light of the gate portion GP When the gate width in the direction perpendicular to the axis OA is W, the following conditional expressions (1) to (3) are satisfied.
0.05D ≦ W ≦ 0.4D (1)
0.5T ≦ H ≦ T (2)
0.1 (mm) ≦ L ≦ 2.0 (mm) (3)
 上記条件式(1)~(3)を満たすようなレンズ10は、後述する樹脂注入工程(ステップS14)において樹脂注入時に溶融樹脂が確実に充填されるとともに適切なゲートシール時間を設けることができ、かつ突き出し工程(ステップS17)と成形品取り出し工程(ステップS18)とにおいてゲート部GPが変形しにくく、ゲート部GPの変形が光学機能部11に及びにくくなるため、ゲート部GPの変形を確実に防ぐことができる。なお、上記条件式(1)~(3)を満たす範囲であれば、ゲート部GPの形状については、特に制限はなく、例えば直方体とすることができる。 The lens 10 that satisfies the conditional expressions (1) to (3) can be reliably filled with the molten resin at the time of resin injection in the resin injection step (step S14) described later and provided with an appropriate gate seal time. In addition, the gate part GP is not easily deformed in the projecting process (step S17) and the molded product taking process (step S18), and the deformation of the gate part GP is difficult to reach the optical function part 11. Therefore, the deformation of the gate part GP is ensured. Can be prevented. Note that the shape of the gate portion GP is not particularly limited as long as the conditional expressions (1) to (3) are satisfied, and may be a rectangular parallelepiped, for example.
 また、レンズ10のレンズ光軸OAに平行な方向のフランジ厚さをTとし、フランジ部12のうち固定側の第1金型41によって形成される部分厚さをt1としたきに、以下の条件式(4)
 0≦t1<0.5T          (4)
を満たす。なお、より好ましくは、以下の条件式(4a)
 0≦t1<0.2T          (4a)
を満たすものとする。なお、フランジ部12のうち可動側の第2金型42によって形成される部分厚さをt2としたときに、上記条件式(4)に対応するように、部分厚さt2は、0.5T≦t2≦Tの範囲となっている。
When the flange thickness of the lens 10 in the direction parallel to the lens optical axis OA is T and the partial thickness formed by the first mold 41 on the fixed side of the flange portion 12 is t1, the following Conditional expression (4)
0 ≦ t1 <0.5T (4)
Meet. More preferably, the following conditional expression (4a)
0 ≦ t1 <0.2T (4a)
Shall be satisfied. In addition, when the partial thickness formed by the movable second mold 42 in the flange portion 12 is t2, the partial thickness t2 is 0.5T so as to correspond to the conditional expression (4). ≦ t2 ≦ T.
 本実施形態では、図2に示すように、第1金型41と第2金型42の当接面であるパーティング面PS1,PS2は、フランジ部12のレンズ光軸OAに平行な方向のフランジ厚さTの中心よりも、レンズ光軸OAに平行な方向において第1金型41側に位置している。これにより、第1金型41の第1転写面S1とパーティング面PS1との距離が近くなっており、第1転写面S1からエアやガスが抜けやすくなる。 In the present embodiment, as shown in FIG. 2, the parting surfaces PS1 and PS2 which are contact surfaces of the first mold 41 and the second mold 42 are in a direction parallel to the lens optical axis OA of the flange portion 12. It is located closer to the first mold 41 in the direction parallel to the lens optical axis OA than the center of the flange thickness T. As a result, the distance between the first transfer surface S1 of the first mold 41 and the parting surface PS1 is shortened, and air and gas can easily escape from the first transfer surface S1.
 上記条件式(4)を満たすことにより、型開き工程において、レンズ10を可動側の第2金型42側に確実に残すことができる。 By satisfying the conditional expression (4), the lens 10 can be reliably left on the second mold 42 side on the movable side in the mold opening process.
 また、レンズ10のフランジ部12のうち、第1フランジ面12a側の外径をd1とし、第2フランジ面12b側の外径をd2としたときに、以下の条件式(5)
 d1<d2              (5)
を満たす。なお、より好ましくは、以下の条件式(5a)
 d1<d2-0.010(mm)    (5a)
を満たすものとする。
In the flange portion 12 of the lens 10, when the outer diameter on the first flange surface 12a side is d1, and the outer diameter on the second flange surface 12b side is d2, the following conditional expression (5)
d1 <d2 (5)
Meet. More preferably, the following conditional expression (5a)
d1 <d2-0.010 (mm) (5a)
Shall be satisfied.
 上記条件式(5)を満たすことにより、第2金型42単体のみで、レンズ10のレンズ外径Dに対応する第4転写面S4を形成することができるため、レンズ10のレンズ外径Dを高精度に維持することができる。一方、d1=d2の場合、例えば第1金型41側と第2金型42側と間に芯ずれ(レンズ光軸OAと軸AXとのずれ)が起きた時にレンズ10のレンズ外径Dがd3となり(図4参照)、結果的に所期のレンズ外径D(=d2)よりも大きくd3>d2となってしまう。よって、芯ずれ量によってレンズ外径Dが変化してしまい、レンズ外径Dを高精度に作るために、第2金型42の第2フランジ面12bに対応する第4転写面S4の外径(d2に相当)を精度良く作っても無意味になってしまう。また、d1>d2であると、第1金型41の第3転写面S3の外径(d1に相当)を精度良く作っても、d1に関して、第1金型41側はフランジ部12の厚さが第2金型42側に比べて小さくなるため、レンズ10をホルダ等に取り付ける際にレンズ10がガタついてしまい精度良い位置決めができなくなってしまう。 By satisfying the conditional expression (5), it is possible to form the fourth transfer surface S4 corresponding to the lens outer diameter D of the lens 10 using only the second mold 42 alone. Can be maintained with high accuracy. On the other hand, when d1 = d2, the lens outer diameter D of the lens 10 is generated when a misalignment (deviation between the lens optical axis OA and the axis AX) occurs between the first mold 41 side and the second mold 42 side, for example. Becomes d3 (see FIG. 4), and as a result, d3> d2 which is larger than the desired lens outer diameter D (= d2). Therefore, the lens outer diameter D changes depending on the misalignment amount, and the outer diameter of the fourth transfer surface S4 corresponding to the second flange surface 12b of the second mold 42 is used in order to make the lens outer diameter D with high accuracy. Even if (equivalent to d2) is made accurately, it becomes meaningless. Further, if d1> d2, even if the outer diameter (corresponding to d1) of the third transfer surface S3 of the first mold 41 is made with high accuracy, the thickness of the flange portion 12 is the first mold 41 side with respect to d1. Therefore, when the lens 10 is attached to a holder or the like, the lens 10 becomes loose and cannot be positioned with high accuracy.
 図1に戻って、固定側の第1金型41は、図2に示す型空間CVを第1金型41から形成する中心部としての第1コア部64aと、第1コア部64aの周囲に設けられる周辺部としての保持部64bと、第1コア部64aや保持部64bを背後から支持する受板64cとを備える。ここで、第1コア部64aは、保持部64bに形成された貫通孔64g中に組み込まれて不図示のボルトで固定されている。なお、保持部64bの端面64eには、図2に示す成形品MPのランナー部分RS等となるべき凹部が形成されている。 Returning to FIG. 1, the first mold 41 on the fixed side includes a first core part 64 a as a central part that forms the mold space CV shown in FIG. 2 from the first mold 41, and the periphery of the first core part 64 a. A holding part 64b as a peripheral part provided in the base plate and a receiving plate 64c for supporting the first core part 64a and the holding part 64b from the back are provided. Here, the first core portion 64a is incorporated in a through hole 64g formed in the holding portion 64b and fixed with a bolt (not shown). In addition, the end surface 64e of the holding portion 64b is formed with a concave portion to be the runner portion RS of the molded product MP shown in FIG.
 可動側の第2金型42は、図2に示す型空間CVを第2金型42から形成する中心部としての第2コア部74aと、第2コア部74aの周囲に設けられる周辺部としての保持部74bと、第2コア部74aや保持部74bを背後から支持する受板74cと、成形品MPのランナー部RP等を突き出して離型するための突出部材74pと、第2コア部74a及び突出部材74pを背後から押す可動ロッド75,76と、可動ロッド75,76を軸AX方向に進退移動させる進退機構部78とを備える。 The second mold 42 on the movable side includes a second core part 74a as a central part for forming the mold space CV shown in FIG. 2 from the second mold 42, and peripheral parts provided around the second core part 74a. Holding part 74b, a receiving plate 74c that supports the second core part 74a and the holding part 74b from behind, a projecting member 74p for protruding and releasing the runner part RP of the molded product MP, and the second core part The movable rods 75 and 76 that push the 74a and the projecting member 74p from the back, and the advance / retreat mechanism 78 that moves the movable rods 75 and 76 forward and backward in the axis AX direction are provided.
 第2コア部74aは、保持部74bに形成された貫通孔74g中に軸AX方向に沿って進退移動可能に組み込まれている。突出部材74pも、保持部74bに形成された貫通孔74h中に軸AX方向に沿って進退移動可能に組み込まれている。ここで、第2コア部74aは、バネ74sによって一定以上の力で後方に付勢されている。つまり、第2コア部74aは、前進する可動ロッド75に駆動されて第1金型41側に前進し、可動ロッド75の後退に伴って伸張するバネ74sに従って自動的に後退して元の位置に復帰する。また、突出部材74pは、可動ロッド76に駆動されて第1金型41側に前進し、型閉じの際に後述する第1金型41側の保持部64bによる外力や、樹脂流入時の樹脂圧力により後退して元の位置に復帰する。また、第2コア部74aと同様に、突出部材74pにもバネを用いることで自動的に後退して元の位置に復帰するようにしてもよい。なお、保持部74bの端面74eには、図2に示す成形品MPのランナー部分RS等となるべき凹部が形成されている。 The second core portion 74a is incorporated in a through hole 74g formed in the holding portion 74b so as to be movable back and forth along the axis AX direction. The projecting member 74p is also incorporated in a through hole 74h formed in the holding portion 74b so as to be movable back and forth along the axis AX direction. Here, the 2nd core part 74a is urged | biased back by the force more than fixed by the spring 74s. That is, the second core portion 74a is driven by the moving movable rod 75 to move forward and moves forward to the first mold 41 side, and automatically retracts according to the spring 74s that expands as the movable rod 75 moves backward. Return to. Further, the protruding member 74p is driven by the movable rod 76 to advance toward the first mold 41 side, and when the mold is closed, an external force by a holding portion 64b on the first mold 41 side, which will be described later, or resin at the time of resin inflow Retreats by pressure and returns to the original position. Similarly to the second core portion 74a, the protruding member 74p may be automatically retracted and returned to its original position by using a spring. In addition, the end surface 74e of the holding portion 74b is formed with a concave portion to be the runner portion RS of the molded product MP shown in FIG.
 なお、曲率の比較的大きい第1光学面OS1を固定側の金型で成形する場合、第1及び第2金型41,42の型開きの際に軸ずれによる光学面の変形が生じやすくなる可能性があるが、例えば実開平7-9945号公報に開示されるように型板にテーパピンやテーパブロックを使用することで解決可能である。 Note that when the first optical surface OS1 having a relatively large curvature is formed by a fixed mold, the optical surface is likely to be deformed due to an axial deviation when the first and second molds 41 and 42 are opened. There is a possibility, but it can be solved by using a taper pin or a taper block for the template as disclosed in Japanese Utility Model Laid-Open No. 7-9945.
 図5は、図1に示す成形金型40を用いた光学素子の製造方法を概念的に説明するフローチャートである。 FIG. 5 is a flowchart conceptually illustrating a method for manufacturing an optical element using the molding die 40 shown in FIG.
 まず、開閉駆動装置79を動作させ、第2金型42を第1金型41に向けて相対的に前進させることで型閉じを開始させる(ステップS11)。なお、両金型41,42の表面は、成形に適する温度まで加熱されている。 First, the opening / closing drive device 79 is operated, and the mold closing is started by moving the second mold 42 relatively forward toward the first mold 41 (step S11). Note that the surfaces of both molds 41 and 42 are heated to a temperature suitable for molding.
 開閉駆動装置79の閉動作を継続することにより、第1金型41と第2金型42とが接触する型当たり位置まで移動して型閉じが完了し、開閉駆動装置79の閉動作をさらに継続することにより、第1金型41と第2金型42とを必要な圧力で締め付ける型締めが行われる(ステップS12)。 By continuing the closing operation of the opening / closing drive device 79, the first mold 41 and the second mold 42 are moved to the mold contact position where they are in contact with each other, the mold closing is completed, and the opening / closing drive device 79 is further closed. By continuing, the mold clamping which clamps the 1st metal mold | die 41 and the 2nd metal mold | die 42 with required pressure is performed (step S12).
 次に、不図示の真空装置を動作させて、型締めされた第1金型41と第2金型42との間の型空間CV内を真空引きする(ステップS13)。これにより、型空間CVは適度に減圧された状態となり、比較的曲率の大きい第1転写面S1にも溶融樹脂が確実に充填される。 Next, a vacuum device (not shown) is operated to evacuate the mold space CV between the clamped first mold 41 and the second mold 42 (step S13). As a result, the mold space CV is appropriately decompressed, and the molten resin is reliably filled into the first transfer surface S1 having a relatively large curvature.
 次に、不図示の射出装置を動作させて、型空間CV中に、必要な圧力で溶融樹脂を注入する射出を行わせる(ステップS14)。そして、射出装置は、型空間CV中の樹脂圧を保つ。 Next, an injection device (not shown) is operated to inject the molten resin into the mold space CV with a necessary pressure (step S14). The injection device maintains the resin pressure in the mold space CV.
 溶融樹脂を型空間CVに導入した後、型空間CV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS15)。 After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding (step S15).
 次に、開閉駆動装置79を動作させて、第2金型42を相対的に後退させる型開きが行われる(ステップS16)。第2金型42の後退に伴って第1金型41と第2金型42とが離間する。この結果、図6Aに示すように、成形品MPすなわちレンズ10は、第2金型42側に残る。つまり、レンズ10は、可動側の第2金型42に埋め込むように保持された状態で第1金型41から離型される。 Next, the opening / closing drive device 79 is operated to perform mold opening for relatively moving the second mold 42 backward (step S16). As the second mold 42 moves backward, the first mold 41 and the second mold 42 are separated from each other. As a result, as shown in FIG. 6A, the molded product MP, that is, the lens 10 remains on the second mold 42 side. That is, the lens 10 is released from the first mold 41 while being held so as to be embedded in the movable second mold 42.
 次に、進退機構部78を動作させて、可動ロッド75,76により、第2金型42に残った成形品MPを第1金型41側に突き出す(ステップS17)。これにより、図6Bに示すように、成形品MPの離型が行われる。この際、レンズ10は保持部74bから完全に押し出された状態となっている。 Next, the advancing / retreating mechanism 78 is operated, and the molded product MP remaining in the second mold 42 is ejected to the first mold 41 side by the movable rods 75 and 76 (step S17). Thereby, as shown to FIG. 6B, mold release of the molded product MP is performed. At this time, the lens 10 is completely pushed out of the holding portion 74b.
 この状態で、不図示の取出装置を動作させて、成形品MPを第2金型42から離間させるとともに外部に搬出する(ステップS18)。成形品MPを搬送する際には、成形品MPのうち本体のレンズ10を除いた部分を把持する。この際、レンズ10の第2光学面OS2の曲率が小さく面深さが比較的浅いため、第2コア部74aの第2転写面S2への第2光学面OS2の張り付き力は比較的小さい。よって成形品MPを第2コア部74aから外しやすいので、レンズ10外周の一部に偏った力が加えられることを防止できる。 In this state, the unillustrated unloading device is operated to separate the molded product MP from the second mold 42 and carry it out (step S18). When transporting the molded product MP, the portion of the molded product MP excluding the lens 10 is gripped. At this time, since the curvature of the second optical surface OS2 of the lens 10 is small and the surface depth is relatively shallow, the sticking force of the second optical surface OS2 to the second transfer surface S2 of the second core portion 74a is relatively small. Therefore, since the molded product MP can be easily removed from the second core portion 74a, it is possible to prevent a biased force from being applied to a part of the outer periphery of the lens 10.
 以上説明した本実施形態の光学素子の製造方法によれば、型開き工程(ステップS16)において第1金型41に対して第2金型42を離すように移動させる際に、比較的浅い第2光学面OS2を成形する第2金型42にレンズ10を残しており、第2金型42の第2コア部74aによる型開き後の突き出し工程(ステップS17)と取出装置による成形品取り出し工程(ステップS18)とにおいて、レンズ10に設けられたゲート部GPが変形することを防ぐことができる。これは、曲率が比較的小さい第2光学面OS2を成形する第2転写面S2が第1光学面OS1を成形する第1転写面S1よりも浅くなり、第2コア部74aの第2転写面S2への第2光学面OS2の張り付き力が比較的小さくなって成形品MPを第2コア部74aから外しやすくなるからである。また、第1光学面OS1を成形する第1金型41を型開き時にレンズ10が残らない金型とするために、第1金型41によって形成されるフランジ部12の部分厚さt1を第1金型41にレンズ10を残す場合に比較して小さくすることになる。そのため、第1転写面S1とパーティング面PS1との距離が比較的近くなり、第1転写面S1からエアやガスが抜けやすくなる。以上により、レンズ10の外観不良を低減し、高精度なレンズ10を製造することができる。これは、特に、例えばBD用光ピックアップ装置用の対物レンズのような偏肉比p(最厚部の厚み÷最薄部の厚み)が比較的高いレンズにおいて有効である。
 また、曲率が比較的小さい第2光学面OS2を成形する第2転写面S2が第1光学面OS1を成形する第1転写面S1よりも浅いため、第2コア部74aの第2転写面S2への第2光学面OS2の張り付き力が比較的小さくなってレンズ10を第2コア部74aから外しやすくなるが、その一方、第2光学面OS2よりも曲率の大きい第1光学面OS1を第1金型41で成形するため、型開きの際にレンズ10が第1金型41側に張り付いて残りやすくなってしまうことが考えられる。それに対し、第2金型42側に設ける流路空間FCの体積を増やすことでレンズ10が第2金型42側に残りやすくすることができる。しかしその場合、流路空間FCで成形されるランナー部RPの第2金型42側への張り付きが強まってしまうが、第2金型42にランナー部RPを第1金型41側へ突き出す突出部材74pを設けているので、ランナー部RPをスムーズに離型することを可能としている。
 さらに、ゲート部GPの変形によりレンズ10が傾いて離型され、離型の際にレンズ10の第1光学面OS1が金型に接触し、レンズ10の第1光学面OS1に三日月状の傷が付いてしまうのを防ぐことが可能となる。さらに、レンズ10を突き出す第2コア部74aとランナー部RPを突き出す突出部材74pとで突き出すタイミングの違いにより、突き出し時にゲート部GPに曲がりが生じたとしても、レンズ10を第2コア部74aから外しやすくなっているため、後の取出しの際に、ゲート部GPのさらなる曲がりを防止することができる。
 さらに、コア突き出しとすることにより、ピン突き出しに比べて突き出すための部品点数を少なくすることが可能となる。そのため、レンズ10を突き出す第2コア部74aとランナー部RPを突き出す突出部材74pとで突き出すタイミングをより合わせやすくでき、突き出しの際のゲート部GPの曲がりを低減することができる。その結果、BD用のピックアップレンズのような高い成形精度が必要となるレンズ10に対しても所望の収差を得ることが可能となる。
According to the optical element manufacturing method of the present embodiment described above, when the second mold 42 is moved away from the first mold 41 in the mold opening process (step S16), the relatively shallow first step is performed. 2 The lens 10 is left in the second mold 42 for molding the optical surface OS2, and the protruding process after the mold opening by the second core portion 74a of the second mold 42 (step S17) and the molded product taking-out process by the taking-out device In (Step S18), the gate portion GP provided in the lens 10 can be prevented from being deformed. This is because the second transfer surface S2 for forming the second optical surface OS2 having a relatively small curvature is shallower than the first transfer surface S1 for forming the first optical surface OS1, and the second transfer surface of the second core portion 74a. This is because the sticking force of the second optical surface OS2 to S2 becomes relatively small and the molded product MP can be easily detached from the second core portion 74a. Further, in order to make the first mold 41 for molding the first optical surface OS1 a mold in which the lens 10 does not remain when the mold is opened, the partial thickness t1 of the flange portion 12 formed by the first mold 41 is set to the first thickness 41. Compared with the case where the lens 10 is left in one mold 41, the size is reduced. For this reason, the distance between the first transfer surface S1 and the parting surface PS1 becomes relatively short, and air and gas easily escape from the first transfer surface S1. By the above, the appearance defect of the lens 10 can be reduced and the highly accurate lens 10 can be manufactured. This is particularly effective in a lens having a relatively high thickness ratio p (thickness of the thickest part ÷ thickness of the thinnest part), such as an objective lens for a BD optical pickup device.
Further, since the second transfer surface S2 for forming the second optical surface OS2 having a relatively small curvature is shallower than the first transfer surface S1 for forming the first optical surface OS1, the second transfer surface S2 of the second core portion 74a. Although the sticking force of the second optical surface OS2 to the surface becomes relatively small and the lens 10 can be easily detached from the second core portion 74a, the first optical surface OS1 having a larger curvature than the second optical surface OS2 is provided on the first optical surface OS1. Since the molding is performed with the single mold 41, it is conceivable that the lens 10 sticks to the first mold 41 side and easily remains when the mold is opened. On the other hand, the lens 10 can be easily left on the second mold 42 side by increasing the volume of the flow path space FC provided on the second mold 42 side. However, in that case, the runner portion RP formed in the flow path space FC is strongly attached to the second mold 42 side, but the runner portion RP protrudes from the second mold 42 to the first mold 41 side. Since the member 74p is provided, the runner part RP can be released smoothly.
Furthermore, the lens 10 is tilted and released due to the deformation of the gate portion GP, and the first optical surface OS1 of the lens 10 contacts the mold during the release, and the first optical surface OS1 of the lens 10 has a crescent-shaped scratch. Can be prevented. Further, even if the gate portion GP is bent at the time of protrusion due to a difference in timing of protrusion between the second core portion 74a that protrudes the lens 10 and the protruding member 74p that protrudes the runner portion RP, the lens 10 is removed from the second core portion 74a. Since it is easy to remove, further bending of the gate portion GP can be prevented during subsequent removal.
Furthermore, by using the core protrusion, it is possible to reduce the number of parts for protrusion compared to the pin protrusion. Therefore, it is possible to more easily match the timing of projection between the second core portion 74a that projects the lens 10 and the projecting member 74p that projects the runner portion RP, and the bending of the gate portion GP at the time of projection can be reduced. As a result, it is possible to obtain a desired aberration even for the lens 10 that requires high molding accuracy, such as a BD pickup lens.
 また、レンズ10をコア突き出しによって離型するため、レンズ10の取付基準面上にピン突き出し時のバリが生じることを防ぐことができる。これにより、レンズ10を精度良く光ピックアップ装置等に取り付けることができる。さらに、レンズ10をコア突き出しによって離型するため、光学面の外周(例えば、フランジ部12)において、端面部分の面積を十分に確保することができる。これにより、端面において光が十分な強さで確実に反射されるものとなり、効率良くスキュー調整することができる。 In addition, since the lens 10 is released by the core protrusion, it is possible to prevent a burr at the time of pin protrusion from occurring on the mounting reference surface of the lens 10. Thereby, the lens 10 can be accurately attached to the optical pickup device or the like. Furthermore, since the lens 10 is released by protruding the core, a sufficient area of the end surface portion can be secured on the outer periphery (for example, the flange portion 12) of the optical surface. As a result, the light is reliably reflected at the end face with sufficient intensity, and the skew can be adjusted efficiently.
 なお、第1実施形態において、図7に示すように、フランジ部12の第1フランジ面12aに段差構造b1を設けてもよい。段差構造b1は、レンズ10の中心側の段差がレンズ10の外側の段差よりもレーザ光源側に向かって高くなっている。第1金型41の第1コア部64aの外側には、段差構造b1を形成するための段差状の凸転写面S21が設けられている。 In addition, in 1st Embodiment, as shown in FIG. 7, you may provide the level | step difference structure b1 in the 1st flange surface 12a of the flange part 12. As shown in FIG. In the step structure b <b> 1, the step on the center side of the lens 10 is higher toward the laser light source side than the step on the outside of the lens 10. On the outside of the first core portion 64a of the first mold 41, a step-shaped convex transfer surface S21 for forming the step structure b1 is provided.
 レンズ10が段差構造b1を有することにより、第1フランジ面12a側に第1コア部64aと保持部64bとの境界によるバリが生じても、レンズ10をレンズホルダ等に取り付ける際に、バリをホルダ等と段差構造b1との間に形成される空間に収めることができる。これにより、レンズ10をホルダ等に精度良く取り付けることができる。 When the lens 10 has the stepped structure b1, even if a burr due to the boundary between the first core portion 64a and the holding portion 64b occurs on the first flange surface 12a side, the burr is not attached when the lens 10 is attached to a lens holder or the like. It can be stored in a space formed between the holder or the like and the step structure b1. Thereby, the lens 10 can be accurately attached to a holder or the like.
〔第2実施形態〕
 以下、第2実施形態に係る光学素子の製造方法について説明する。なお、第2実施形態に係る光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, a method for manufacturing an optical element according to the second embodiment will be described. Note that the optical element manufacturing method according to the second embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
 図8に示すように、レンズ10は、フランジ部12の第2フランジ面12b側に段差構造b2を有する。段差構造b2は、レンズ10の外側の段差がレンズ10の中心側の段差よりも情報記録媒体側に向かって高くなっている。第2金型42の保持部74bの内側には、段差構造b2を形成するための段差状の凸転写面S22が設けられている。 As shown in FIG. 8, the lens 10 has a step structure b2 on the second flange surface 12b side of the flange portion 12. In the step structure b <b> 2, the step on the outside of the lens 10 is higher toward the information recording medium side than the step on the center side of the lens 10. On the inner side of the holding portion 74b of the second mold 42, a step-shaped convex transfer surface S22 for forming the step structure b2 is provided.
 レンズ10が段差構造b2を有することにより、第2フランジ面12b側に第2コア部74aと保持部74bとの境界によるバリが生じても、バリを段差構造b2で形成される空間に収めることができる。これにより、成形時にバリの長さがばらつくことにより情報記録媒体とレンズ10との間の距離(WD:ワーキングディスタンス)が変化することを防止することができる。 Since the lens 10 has the step structure b2, even if a burr due to the boundary between the second core portion 74a and the holding portion 74b occurs on the second flange surface 12b side, the burr is stored in the space formed by the step structure b2. Can do. Thereby, it is possible to prevent the distance (WD: working distance) between the information recording medium and the lens 10 from being changed due to the variation of the burr length during molding.
 なお、第2実施形態において、図9に示すように、フランジ部12の第1フランジ面12aに第1実施形態で説明した段差構造b1を設けてもよい。 In addition, in 2nd Embodiment, as shown in FIG. 9, you may provide the level | step difference structure b1 demonstrated in 1st Embodiment in the 1st flange surface 12a of the flange part 12. As shown in FIG.
 また、第2実施形態において、図10に示す段差構造b3のように、段差構造b3のレンズ10の中心側の段差がレンズ10の外側の段差よりも情報記録媒体側に向かって高くなっていてもよい。この場合、第2金型42の第2コア部74aの外側に段差構造b3を形成するための段差状の凸転写面S23が設けられている。第2コア部74aの凸転写面S23は、保持部74bの第4転写面S4よりもパーティング面PS2から深くなっている。なお、図10において、フランジ部12の第1フランジ面12aに段差構造b1を設けない構造としてもよい。 Further, in the second embodiment, like the step structure b3 shown in FIG. 10, the step on the center side of the lens 10 of the step structure b3 is higher toward the information recording medium side than the step on the outside of the lens 10. Also good. In this case, a step-shaped convex transfer surface S23 for forming the step structure b3 is provided outside the second core portion 74a of the second mold 42. The convex transfer surface S23 of the second core portion 74a is deeper from the parting surface PS2 than the fourth transfer surface S4 of the holding portion 74b. In addition, in FIG. 10, it is good also as a structure which does not provide the level | step difference structure b1 in the 1st flange surface 12a of the flange part 12. As shown in FIG.
〔第3実施形態〕
 以下、第3実施形態に係る光学素子の製造方法について説明する。なお、第3実施形態に係る光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, a method for manufacturing an optical element according to the third embodiment will be described. Note that the optical element manufacturing method according to the third embodiment is a modification of the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 図11に示すように、レンズ10は、光学機能部11とフランジ部12との間に凹部m1を有する。つまり、レーザ光源側の光学機能部11とフランジ部12との境界が環状に窪んだ形状となっている。第1金型41の第1コア部64aの第1転写面S1と第3転写面S3との境界には、凹部m1を形成するための環状の凸部を構成する面として凸転写面S24が設けられている。凸転写面S24は、第3転写面S3よりもパーティング面PS1から浅くなっている。 As shown in FIG. 11, the lens 10 has a recess m1 between the optical function part 11 and the flange part 12. That is, the boundary between the optical function part 11 and the flange part 12 on the laser light source side has a circularly depressed shape. At the boundary between the first transfer surface S1 and the third transfer surface S3 of the first core portion 64a of the first mold 41, a convex transfer surface S24 is formed as a surface constituting an annular convex portion for forming the concave portion m1. Is provided. The convex transfer surface S24 is shallower from the parting surface PS1 than the third transfer surface S3.
 凹部m1を形成する凸転写面S24を設けることにより、フランジ部12を形成するフランジ空間CV2を広くすることができ、溶融樹脂の流動性を向上させることができる。 By providing the convex transfer surface S24 that forms the recess m1, the flange space CV2 that forms the flange 12 can be widened, and the fluidity of the molten resin can be improved.
 なお、第3実施形態において、フランジ部12の第1フランジ面12aに、第1及び第2実施形態で説明した段差構造b1を設けてもよい。 In the third embodiment, the step structure b1 described in the first and second embodiments may be provided on the first flange surface 12a of the flange portion 12.
〔第4実施形態〕
 以下、第4実施形態に係る光学素子の製造方法について説明する。なお、第4実施形態に係る光学素子の製造方法は、第2及び第3実施形態を変形したものであり、特に説明しない部分については、第2及び第3実施形態と同様であるものとする。
[Fourth Embodiment]
Hereinafter, a method for manufacturing an optical element according to the fourth embodiment will be described. Note that the optical element manufacturing method according to the fourth embodiment is a modification of the second and third embodiments, and parts not specifically described are the same as those of the second and third embodiments. .
 図12に示すように、第1コア部64aの先端面は、主要な部分がレンズ10の第1光学面OS1を形成するための第1転写面S1となっている。そのため、第1転写面S1を有する第1コア部64aの周りに第3転写面S3を有する保持部64bが配置されることで、第1コア部64aの外縁部が、本体空間CV1とフランジ空間CV2との境界に食い込んだ状態となっている。 As shown in FIG. 12, the leading end surface of the first core portion 64a is a first transfer surface S1 for forming a first optical surface OS1 of the lens 10 at a main portion. Therefore, the holding portion 64b having the third transfer surface S3 is arranged around the first core portion 64a having the first transfer surface S1, so that the outer edge portion of the first core portion 64a is connected to the main body space CV1 and the flange space. It is in a state of biting into the boundary with CV2.
 第1コア部64aの外縁部がレンズ10の第1光学面OS1と第1フランジ面12aとの間に食い込みやすい構造となっているため、型空間CV内に充填された溶融樹脂が完全に固化すると、樹脂の収縮によりレンズ10が第1金型41から離型しにくくなり、外観不良の原因となる。そのため、第1金型41を型開き時にレンズ10が残らない固定金型とすることで、溶融樹脂が完全に固化する前にレンズ10を良好な外観を保ちつつ確実に第1金型41から離型することができる。 Since the outer edge portion of the first core portion 64a has a structure that easily bites between the first optical surface OS1 of the lens 10 and the first flange surface 12a, the molten resin filled in the mold space CV is completely solidified. Then, the lens 10 becomes difficult to release from the first mold 41 due to the shrinkage of the resin, which causes a poor appearance. Therefore, by making the first mold 41 a fixed mold that does not leave the lens 10 when the mold is opened, the lens 10 can be reliably removed from the first mold 41 while maintaining a good appearance before the molten resin is completely solidified. Can be released.
 なお、第4実施形態において、第1実施形態のように、フランジ部12の第2フランジ面12b側に段差構造b2を設けない構造としてもよい。また、第4実施形態において、フランジ部12の第1フランジ面12aに、第1及び第2実施形態で説明した段差構造b1を設けてもよい。 In addition, in 4th Embodiment, it is good also as a structure which does not provide the level | step difference structure b2 in the 2nd flange surface 12b side of the flange part 12 like 1st Embodiment. In the fourth embodiment, the step structure b1 described in the first and second embodiments may be provided on the first flange surface 12a of the flange portion 12.
 また、図13に示すように、フランジ部12の第1フランジ面12a側に段差構造b4を有していてもよい。段差構造b4は、レンズ10の外側の段差がレンズ10の中心側の段差よりもレーザ光源側に向かって高くなっている。第1金型41の保持部64bの内側には、段差構造b4を形成するための段差状の凸転写面S25が設けられている。これにより、第1フランジ面12a側に第1コア部64aと保持部64bとの境界によるバリが生じてもレンズ10をレンズホルダ等に取り付ける際に、バリをホルダ等と段差構造b4との間に形成される空間に収めることができる。これにより、レンズ10をホルダ等に精度良く取り付けることができる。 Further, as shown in FIG. 13, a stepped structure b4 may be provided on the first flange surface 12a side of the flange portion 12. In the step structure b <b> 4, the step on the outside of the lens 10 is higher toward the laser light source side than the step on the center side of the lens 10. On the inner side of the holding portion 64b of the first mold 41, a step-like convex transfer surface S25 for forming the step structure b4 is provided. Thus, even if a burr due to the boundary between the first core portion 64a and the holding portion 64b occurs on the first flange surface 12a side, when the lens 10 is attached to the lens holder or the like, the burr is placed between the holder and the step structure b4. Can be accommodated in the space formed. Thereby, the lens 10 can be accurately attached to a holder or the like.
〔第5実施形態〕
 以下、第5実施形態に係る光学素子の製造方法について説明する。なお、第5実施形態に係る光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Fifth Embodiment]
Hereinafter, a method for manufacturing an optical element according to the fifth embodiment will be described. Note that the optical element manufacturing method according to the fifth embodiment is a modification of the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 図14に示すように、第1金型41は、第1コア部64aと保持部64bとに分割されていない構造となっている。つまり、第1金型41は、第1実施形態で説明した第1コア部64aと保持部64bとを一体化した金型部64dを有しており、金型部64dによってレンズ10の第1光学面OS1と第1フランジ面12a等を成形する。 As shown in FIG. 14, the 1st metal mold | die 41 has a structure which is not divided | segmented into the 1st core part 64a and the holding | maintenance part 64b. That is, the first mold 41 has a mold part 64d in which the first core part 64a and the holding part 64b described in the first embodiment are integrated, and the first part of the lens 10 is formed by the mold part 64d. The optical surface OS1 and the first flange surface 12a are formed.
 なお、第5実施形態において、図15に示すように、フランジ部12の第1フランジ面12a側の外縁、すなわち凹部u1の側面にテーパTPが設けられていることがより好ましい。第1金型41には、金型部64dの第3転写面S3の外側にテーパTPを形成するための傾斜転写面S26が設けられている。 In addition, in 5th Embodiment, as shown in FIG. 15, it is more preferable that the taper TP is provided in the outer edge by the side of the 1st flange surface 12a of the flange part 12, ie, the side surface of the recessed part u1. The first mold 41 is provided with an inclined transfer surface S26 for forming a taper TP outside the third transfer surface S3 of the mold part 64d.
 第1金型41にテーパTPを設けることにより、レンズ10が第1金型41から抜けやすくなり、型開き時にレンズ10を可動側の第2金型42に残しやすくすることができる。 By providing the first mold 41 with the taper TP, the lens 10 can be easily removed from the first mold 41, and the lens 10 can be easily left in the second mold 42 on the movable side when the mold is opened.
〔第6実施形態〕
 以下、第6実施形態に係る光学素子の製造方法について説明する。なお、第6実施形態に係る光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Sixth Embodiment]
Hereinafter, a method for manufacturing an optical element according to the sixth embodiment will be described. Note that the optical element manufacturing method according to the sixth embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
 図16に示すように、レンズ10のフランジ部12のうち第1金型41によって形成される部分厚さt1がt1=0となっている。すなわち、レンズ10のフランジ厚さTが、フランジ部12のうち第2金型42によって形成される部分厚さt2と等しくなっている。これにより、第1転写面S1からエアがより抜けやすくなる。また、レンズ10が第1金型41から抜けやすくなるため、型開き時にレンズ10を可動側の第2金型42に残しやすくすることができる。 As shown in FIG. 16, the partial thickness t1 formed by the first mold 41 in the flange portion 12 of the lens 10 is t1 = 0. That is, the flange thickness T of the lens 10 is equal to the partial thickness t2 formed by the second mold 42 in the flange portion 12. Thereby, air becomes easier to escape from the first transfer surface S1. Further, since the lens 10 is easily removed from the first mold 41, the lens 10 can be easily left in the movable second mold 42 when the mold is opened.
 以上、実施形態に即して本発明を説明したが本発明は、上記実施形態に限定されるものではない。例えば第2金型42を固定し、第1金型41を可動とすることで型閉じ工程を行うことができる。この場合、レンズ10が残った第2金型42側にレンズ10の突き出し機構等を設ける。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, the mold closing process can be performed by fixing the second mold 42 and making the first mold 41 movable. In this case, a projection mechanism for the lens 10 is provided on the second mold 42 side where the lens 10 remains.
 また、第1金型41と第2金型42とを水平に配置する必要はなく、第1金型41と第2金型42とを上下に配置する竪型の成形金型とすることもできる。 Moreover, it is not necessary to arrange | position the 1st metal mold | die 41 and the 2nd metal mold | die 42 horizontally, and it can also be set as the vertical molding metal mold | die which arrange | positions the 1st metal mold | die 41 and the 2nd metal mold | die 42 up and down. it can.
 上記実施形態では、レンズ10が光ピックアップ用の対物レンズとしたが、同様の形状を有し中心肉厚が大きな小型のレンズについても、本実施形態と同様の手法で製造することにより、光学面の変形や傷を低減してすることができ、要求精度が高い場合に対応することができる。 In the above embodiment, the lens 10 is an objective lens for an optical pickup. However, a small lens having a similar shape and a large central thickness can also be manufactured by the same method as in this embodiment. Deformation and scratches can be reduced, and a case where the required accuracy is high can be dealt with.
 上記実施形態では、コア部64aの戻し力をバネによって与えているが、バネ以外の手段でコア部64aを戻すこともできる。 In the above embodiment, the return force of the core portion 64a is given by the spring, but the core portion 64a can be returned by means other than the spring.
 上記実施形態において、レンズ10の外周側面SSが円筒面であるとしたが、外周側面SSはレンズ光軸OAに対称な形状で無くてもよい。すなわち、外周側面SSは略角柱面であってもよいし、円筒面と角柱面を組み合せた面で有ってもよい。また、外周側面SSに僅かなテーパを形成することができ、保持部74bの第5転写面S5にも僅かなテーパを形成することができる。 In the above embodiment, the outer peripheral side surface SS of the lens 10 is a cylindrical surface, but the outer peripheral side surface SS may not be symmetrical to the lens optical axis OA. That is, the outer peripheral side surface SS may be a substantially prismatic surface, or a surface obtained by combining a cylindrical surface and a prismatic surface. Further, a slight taper can be formed on the outer peripheral side surface SS, and a slight taper can also be formed on the fifth transfer surface S5 of the holding portion 74b.
 上記実施形態において、レンズ10の光学面は、光学面に微細形状FS等を設けずに、平滑なものであってもよい。 In the above embodiment, the optical surface of the lens 10 may be smooth without providing the fine shape FS or the like on the optical surface.
 上記実施形態において、第1及び第2金型41,42の型締め後、真空引きを行ったが(ステップS13)、型空間CV内に溶融樹脂が確実に充填され、転写精度が維持されれば、真空引きを行わなくてもよい。 In the above embodiment, after the first and second molds 41 and 42 are clamped, evacuation is performed (step S13), but the mold space CV is reliably filled with the molten resin, and the transfer accuracy is maintained. For example, it is not necessary to perform evacuation.

Claims (15)

  1.  光情報記録媒体への情報の記録及び/又は再生を行う光ピックアップ装置に組み込まれ、開口数が0.75以上の光学素子のうち第1光学面を成形するための第1の金型と、前記光学素子のうち第2光学面を成形するための第2の金型とを有する射出成型装置を用いた光学素子の製造方法であって、
     前記第2光学面は、前記第1光学面よりも曲率が小さく、
     前記第1の金型と前記第2の金型とで形成する型空間及び流路空間に溶融樹脂を射出して前記光学素子及びランナー部を成形する成形工程と、
     前記第2の金型に前記光学素子を残すように、前記第1の金型と前記第2の金型とを相対的に移動させて型開きする型開き工程と、
     前記第2の金型に設けたコア部を、前記コア部を周囲から保持する保持部に対して前記第1の金型側に相対的に移動させて、前記光学素子を前記第1の金型側へ突き出し、前記第2の金型に設けた突出部材を前記第1の金型側に移動させて、前記ランナー部を前記第1の金型側へ突き出す突き出し工程と、
    を備えることを特徴とする光学素子の製造方法。
    A first mold for forming a first optical surface of an optical element that is incorporated in an optical pickup device that records and / or reproduces information on an optical information recording medium, and has a numerical aperture of 0.75 or more; A method of manufacturing an optical element using an injection molding apparatus having a second mold for molding a second optical surface of the optical elements,
    The second optical surface has a smaller curvature than the first optical surface,
    A molding step of molding the optical element and the runner part by injecting a molten resin into a mold space and a flow path space formed by the first mold and the second mold;
    A mold opening step of opening the mold by relatively moving the first mold and the second mold so as to leave the optical element in the second mold;
    The core part provided in the second mold is moved relatively to the first mold side with respect to the holding part that holds the core part from the periphery, and the optical element is moved to the first mold. Projecting to the mold side, moving the projecting member provided on the second mold to the first mold side, and projecting the runner part to the first mold side; and
    An optical element manufacturing method comprising:
  2.  前記突き出し工程において、前記コア部で前記光学素子を前記第1の金型側へ突き出すタイミングと、前記突出部材で前記ランナー部を前記第1の金型側へ突き出すタイミングが異なることを特徴とする請求項1に記載の光学素子の製造方法。 In the projecting step, the timing of projecting the optical element to the first mold side at the core portion and the timing of projecting the runner portion to the first mold side from the projecting member are different. The manufacturing method of the optical element of Claim 1.
  3.  前記成形工程は、複数の前記光学素子及び複数の前記ランナー部を成形することを特徴とする請求項1に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, wherein the molding step forms a plurality of the optical elements and a plurality of the runner portions.
  4.  前記成形工程前に、前記型空間内を真空引きすることを特徴とする請求項1に記載の光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1, wherein the mold space is evacuated before the molding step.
  5.  前記光学素子は、前記第1光学面と前記第2光学面とを有する光学機能部と、前記光学機能部の周囲に配置されるフランジ部とを有するレンズであり、
     前記光学素子は、前記フランジ部の外周縁に前記成形工程において形成されるゲート部を有し、
     前記レンズのレンズ光軸に垂直な方向のレンズ外径をDとし、前記フランジ部の前記レンズ光軸に平行な方向のフランジ厚さをTとし、前記ゲート部の前記レンズ光軸に平行な方向のゲート厚さをHとし、前記ゲート部の前記レンズ光軸に垂直な方向のゲート長さをLとし、前記ゲート部の前記レンズ光軸に垂直な方向のゲート幅をWとしたときに、以下の条件式を満たすことを特徴とする請求項1に記載の光学素子の製造方法。
     0.05D≦W≦0.4D
     0.5T≦H≦T
     0.1(mm)≦L≦2.0(mm)
    The optical element is a lens having an optical function part having the first optical surface and the second optical surface, and a flange part arranged around the optical function part,
    The optical element has a gate portion formed in the molding step on an outer peripheral edge of the flange portion,
    A lens outer diameter in a direction perpendicular to the lens optical axis of the lens is D, a flange thickness of the flange portion in a direction parallel to the lens optical axis is T, and a direction parallel to the lens optical axis of the gate portion When the gate thickness in the direction perpendicular to the lens optical axis of the gate portion is L and the gate width in the direction perpendicular to the lens optical axis of the gate portion is W, The optical element manufacturing method according to claim 1, wherein the following conditional expression is satisfied.
    0.05D ≦ W ≦ 0.4D
    0.5T ≦ H ≦ T
    0.1 (mm) ≦ L ≦ 2.0 (mm)
  6.  前記フランジ部のうち第1の金型によって形成される部分厚さをt1としたきに、以下の条件式を満たすことを特徴とする請求項5に記載の光学素子の製造方法。
     0≦t1<0.5T
    6. The method of manufacturing an optical element according to claim 5, wherein the following conditional expression is satisfied when a thickness of the flange portion formed by the first mold is t1.
    0 ≦ t1 <0.5T
  7.  前記レンズの前記フランジ部のうち、前記第1の金型側の第1フランジ外径をd1とし、前記第2の金型側の第2フランジ外径をd2としたときに、以下の条件式を満たすことを特徴とする請求項5に記載の光学素子の製造方法。
     d1<d2
    Of the flange portions of the lens, when the first flange outer diameter on the first mold side is d1, and the second flange outer diameter on the second mold side is d2, the following conditional expression The method of manufacturing an optical element according to claim 5, wherein:
    d1 <d2
  8.  前記第1の金型と前記第2の金型の当接面であるパーティング面は、前記フランジ部の前記レンズ光軸に平行な方向のフランジ厚さの中心よりも、前記レンズ光軸に平行な方向において第1の金型側に位置していることを特徴とする請求項5に記載の光学素子の製造方法。 The parting surface, which is the contact surface between the first mold and the second mold, is closer to the lens optical axis than the center of the flange thickness of the flange portion in the direction parallel to the lens optical axis. 6. The method of manufacturing an optical element according to claim 5, wherein the optical element is located on the first mold side in a parallel direction.
  9.  前記第1の金型は、コア部と、前記コア部を保持する保持部とを有し、
     前記第1の金型の前記コア部によって、前記光学機能部の前記第1光学面と、前記フランジ部のうち前記第1光学面側に設けられる第1フランジ面の少なくとも一部を形成し、
     前記第1の金型の前記コア部の前記第2の金型に対向する先端部の外周部分は、前記第1光学面と前記第1フランジ面との間に環状の凹部を形成するための環状の凸部を有することを特徴とする請求項5に記載の光学素子の製造方法。
    The first mold has a core part and a holding part for holding the core part,
    The core portion of the first mold forms at least a part of the first optical surface of the optical function portion and a first flange surface provided on the first optical surface side of the flange portion,
    An outer peripheral portion of a tip portion of the core portion of the first die facing the second die is formed with an annular recess between the first optical surface and the first flange surface. The method for manufacturing an optical element according to claim 5, further comprising an annular convex portion.
  10.  前記光学素子は、前記第1光学面に微細形状を有することを特徴とする請求項1に記載の光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1, wherein the optical element has a fine shape on the first optical surface.
  11.  前記光学素子は、前記光学素子の軸上レンズ厚をd(mm)とし、500nm以下の波長の光束における前記光学素子の焦点距離をf(mm)としたときに、0.8≦d/f≦2.0であることを特徴とする請求項1に記載の光学素子の製造方法。 The optical element has an axial lens thickness of d (mm), and 0.8 ≦ d / f when the focal length of the optical element in a light beam having a wavelength of 500 nm or less is f (mm). 2. The method of manufacturing an optical element according to claim 1, wherein ≦ 2.0.
  12.  前記光学素子は、光ピックアップ装置用の対物レンズであることを特徴とする請求項1に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the optical element is an objective lens for an optical pickup device.
  13.  前記光学素子は、BD、DVD及びCDの3種類の光ディスクに対して情報の記録及び/又は再生を行う光ピックアップ装置用の対物レンズであることを特徴とする請求項1に記載の光学素子の製造方法。 2. The optical element according to claim 1, wherein the optical element is an objective lens for an optical pickup device that records and / or reproduces information on three types of optical disks of BD, DVD, and CD. Production method.
  14.  前記突き出し工程後に、前記成形工程によって成形された成形品のうち前記光学素子を除いた部分を把持し、前記光学素子を前記第2の金型から離間させることを特徴とする請求項1に記載の光学素子の製造方法。

    2. The method according to claim 1, wherein after the projecting step, a portion excluding the optical element of the molded product molded by the molding step is gripped, and the optical element is separated from the second mold. Of manufacturing the optical element.

  15.  請求項1に記載の光学素子の製造方法で製造したことを特徴とする光学素子。 An optical element manufactured by the method for manufacturing an optical element according to claim 1.
PCT/JP2012/053653 2011-02-16 2012-02-16 Method for manufacturing optical element, and optical element WO2012111748A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280008953.1A CN103370182B (en) 2011-02-16 2012-02-16 The manufacture method of optical element and optical element
JP2012537040A JP5120525B2 (en) 2011-02-16 2012-02-16 Optical element manufacturing method and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011030351 2011-02-16
JP2011-030351 2011-12-27

Publications (1)

Publication Number Publication Date
WO2012111748A1 true WO2012111748A1 (en) 2012-08-23

Family

ID=46672660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053653 WO2012111748A1 (en) 2011-02-16 2012-02-16 Method for manufacturing optical element, and optical element

Country Status (3)

Country Link
JP (2) JP5120525B2 (en)
CN (1) CN103370182B (en)
WO (1) WO2012111748A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014050537A1 (en) * 2012-09-27 2016-08-22 コニカミノルタ株式会社 Optical communication lens, optical communication module and molding die
US10203089B2 (en) 2016-07-05 2019-02-12 Enplas Corporation Light flux controlling member, light emitting device and method for manufacturing light flux controlling member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092463B2 (en) * 2014-03-18 2017-03-08 富士フイルム株式会社 Optical lens, lens unit, imaging module, and electronic device
JP2015178197A (en) * 2014-03-19 2015-10-08 コニカミノルタ株式会社 Holding device, method for manufacturing optical unit, and optical unit
TWI696010B (en) 2019-09-17 2020-06-11 大立光電股份有限公司 Imaging lens, camera module and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225968A (en) * 1996-02-21 1997-09-02 Olympus Optical Co Ltd Injection molding die for molding plastic lens
JP2003191296A (en) * 2001-12-27 2003-07-08 Nidec Copal Corp Apparatus for manufacturing optical resin lens and method for manufacturing it
JP2004314545A (en) * 2003-04-18 2004-11-11 Konica Minolta Opto Inc Method and equipment for manufacturing optical element, and optical element
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element
JP2010012693A (en) * 2008-07-03 2010-01-21 Maxell Finetech Ltd Injection molding apparatus, method of ejecting molded article, and resin lens
JP2010083025A (en) * 2008-09-30 2010-04-15 Konica Minolta Opto Inc Method for manufacturing optical element and metallic mold for molding optical element
WO2010116804A1 (en) * 2009-03-30 2010-10-14 コニカミノルタオプト株式会社 Lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228805A (en) * 2000-11-30 2002-08-14 Nikon Corp Resin joined optical element, molding tool for the same and optical article
US20050028558A1 (en) * 2003-08-06 2005-02-10 Hoya Corporation Process for producing glass molded lens
US8535043B2 (en) * 2006-10-30 2013-09-17 Johnson & Johnson Vision Care, Inc. Molds for use in contact lens production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225968A (en) * 1996-02-21 1997-09-02 Olympus Optical Co Ltd Injection molding die for molding plastic lens
JP2003191296A (en) * 2001-12-27 2003-07-08 Nidec Copal Corp Apparatus for manufacturing optical resin lens and method for manufacturing it
JP2004314545A (en) * 2003-04-18 2004-11-11 Konica Minolta Opto Inc Method and equipment for manufacturing optical element, and optical element
JP2007196665A (en) * 2005-12-26 2007-08-09 Konica Minolta Opto Inc Mold for resin molding, objective lens for optical pickup device and manufacturing method of optical element
JP2010012693A (en) * 2008-07-03 2010-01-21 Maxell Finetech Ltd Injection molding apparatus, method of ejecting molded article, and resin lens
JP2010083025A (en) * 2008-09-30 2010-04-15 Konica Minolta Opto Inc Method for manufacturing optical element and metallic mold for molding optical element
WO2010116804A1 (en) * 2009-03-30 2010-10-14 コニカミノルタオプト株式会社 Lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014050537A1 (en) * 2012-09-27 2016-08-22 コニカミノルタ株式会社 Optical communication lens, optical communication module and molding die
US10203089B2 (en) 2016-07-05 2019-02-12 Enplas Corporation Light flux controlling member, light emitting device and method for manufacturing light flux controlling member

Also Published As

Publication number Publication date
CN103370182A (en) 2013-10-23
CN103370182B (en) 2015-10-14
JPWO2012111748A1 (en) 2014-07-07
JP5120525B2 (en) 2013-01-16
JP2013037758A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4525868B2 (en) Optical pickup objective lens manufacturing method, optical pickup objective lens molding die, and optical pickup objective lens
JP5120525B2 (en) Optical element manufacturing method and optical element
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
JP5713021B2 (en) Optical element manufacturing method
KR100813209B1 (en) Molding apparatus for injection-molding disk substrate and disk substrate pick-up apparatus
WO2010116804A1 (en) Lens
WO2011040148A1 (en) Optical element
JP4808089B2 (en) Optical element molding method
JP2007237407A (en) Disk substrate molding method and blue lay disk
EP1136223A2 (en) Mold for injection molding of disc substrate
JP5716755B2 (en) Objective lens manufacturing method and mold
WO2012118041A1 (en) Optical element, molding die, and method for producing optical element
JP4305302B2 (en) Disk substrate manufacturing method and molding die apparatus
WO2012133596A1 (en) Optical element, molding die, and method for manufacturing optical element
JP2010080012A (en) Objective lens for optical pickup, method of manufacturing the same, and forming mold
JP2001076385A (en) Dummy substrate for optical disk, and optical disk
JP2006255942A (en) Mold assembly for molding optical disk substrate
JP2007226888A (en) Molding die for disk substrate, disk substrate and optical disk product
JP5716754B2 (en) Objective lens manufacturing method and mold
JP2006139822A (en) Manufacturing method of optical recording medium substrate, and optical recording medium substrate
JP2013169692A (en) Molding equipment, and method for manufacturing optical element
JP2006260650A (en) Optical recording medium
WO2011122106A1 (en) Molding die, injection molding machine, and method of manufacturing objective optical element
WO2013039241A1 (en) Optical element and production method therefor
JP2003326575A (en) Injection molding device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012537040

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747181

Country of ref document: EP

Kind code of ref document: A1