WO2013039241A1 - Optical element and production method therefor - Google Patents

Optical element and production method therefor Download PDF

Info

Publication number
WO2013039241A1
WO2013039241A1 PCT/JP2012/073748 JP2012073748W WO2013039241A1 WO 2013039241 A1 WO2013039241 A1 WO 2013039241A1 JP 2012073748 W JP2012073748 W JP 2012073748W WO 2013039241 A1 WO2013039241 A1 WO 2013039241A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical element
marking
character
lens
Prior art date
Application number
PCT/JP2012/073748
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤望
澤上明
菅忍
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to CN201280044777.7A priority Critical patent/CN103959381A/en
Publication of WO2013039241A1 publication Critical patent/WO2013039241A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • B29C45/374Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles for displaying altering indicia, e.g. data, numbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to an optical element incorporated in an optical pickup device and a manufacturing method thereof, and more particularly to a resin optical element formed by injection molding and a manufacturing method thereof.
  • marking is performed on the flange portion of the optical element, and historical information about the manufacturing equipment is obtained by the marking (specifically, which mold was manufactured once.
  • a method for identifying which cavity in the mold was molded for example, see Patent Document 1.
  • Patent Document 1 describes that hemispherical marking is formed on the lower surface of the flange portion having a step.
  • An object of the present invention is to provide an optical element recorded so that information on a manufacturing jig or the like can be easily read and a manufacturing method thereof.
  • an optical element according to the present invention is an optical element incorporated in an optical pickup device, which is formed of a resin, an optical function part, and a flange part formed around the optical function part.
  • Convex character marking is provided on the uppermost surface of the flange portion on the optical information recording medium side.
  • the character marking is identification information having a character as a constituent element, and can also include a figure and a symbol.
  • the character marking is provided on the flange portion, it is possible to directly identify information on the manufacturing jig or the like when the optical element is manufactured without using a replacement table or the like by the character marking. This makes it possible to improve identification and workability in subsequent management.
  • a transfer surface can be provided by forming a depression corresponding to the character marking on the transfer surface of the mold, and the transfer surface can be easily processed. Further, by providing character marking on the uppermost surface on the optical information recording medium side, detection and recognition of character marking becomes relatively easy.
  • the height h of the convex character marking is 0.003 mm ⁇ h ⁇ 0.020 mm.
  • the height h of the character marking is 0.020 mm or less as described above. In addition, it is preferable that the height h of the character marking is 0.010 mm or less because WD can be secured more reliably.
  • the component of the convex character marking is sized to fit within a square region having a side length of D, and the length D is 0.05 mm ⁇ D ⁇ 0.30 mm. It is.
  • the square area containing the components of the character marking more than the above lower limit, the size of the character is increased to such an extent that transferability can be ensured, and the characters etc. are buried without being neatly transferred or crushed. Can be prevented.
  • the space in the flange portion is easily secured by setting the square area that accommodates the components of the character marking to the upper limit or less.
  • the flange portion further has a gate identification marking on the opposite side of the gate portion where the resin has been introduced. In this case, the position of the gate at the time of molding can be reliably identified.
  • the optical function unit includes a first optical surface and a second optical surface disposed on the optical information recording medium side of the first optical surface, and the optical information recording medium of the flange portion.
  • the uppermost surface on the side protrudes from the uppermost surface of the second optical surface.
  • the optical function unit includes a first optical surface and a second optical surface disposed on the optical information recording medium side of the first optical surface, and is the uppermost surface of the second optical surface. This protrudes from the uppermost surface of the flange portion on the optical information recording medium side.
  • the protrusion amount of the optical element on the side of the optical information recording medium can be suppressed to a functionally necessary minimum, and when the optical element is an objective lens, it becomes easy to secure WD for the flange portion.
  • the first optical surface has a larger curvature than the second optical surface.
  • the character marking can be formed on the second optical surface side instead of the first optical surface side which becomes the reference surface, so that the accuracy of attaching the optical element to the apparatus can be improved. it can.
  • the relative position between the gate identification marking and the first character of the character marking is 90 °.
  • the reproducibility and accuracy of the processing can be improved, and the reliability of the detection of the character marking can also be improved.
  • Still another aspect of the present invention has a mirror surface portion that generates reflected light that enables measurement of the inclination of the optical function portion, and the uppermost surface on the optical information recording medium side of the flange portion is on the outer periphery of the mirror surface portion.
  • the optical element is an objective lens arranged to face the optical information recording medium.
  • the optical element is a coupling lens disposed between a light source and an objective lens.
  • the optical element is incorporated into an optical pickup device for a Blu-ray disc.
  • an optical element manufacturing method is a resin optical element manufacturing method in which an optical element incorporated in an optical pickup device is molded using an injection molding apparatus having a movable mold and a fixed mold. And a step of forming a character marking on the uppermost surface of the optical information recording medium side of the flange portion formed around the optical function portion of the optical element.
  • the character marking is movable and fixed. It is formed by transferring one of the molds.
  • the character-like marking is identification information having a character, a figure, a symbol, or the like as a constituent element, and includes cases where only a figure or a symbol is used as a constituent element in addition to the character.
  • the letter-like marking is formed on the flange portion by transfer, the information regarding the mold parts and the arrangement of the optical element when the optical element is produced is read by using the letter-like marking. Therefore, it is possible to directly identify the information, and it is possible to improve identification and workability in the subsequent management.
  • the character marking on the uppermost surface on the optical information recording medium side, detection and recognition of the character marking becomes relatively easy.
  • the character-like marking is formed by a movable mold.
  • the first optical surface is deeper with a larger curvature than the second optical surface, for example, when the first optical surface is formed on the fixed mold side, there is no marking when the mold is opened to release the optical element from the fixed mold.
  • the mold release resistance can be reduced with respect to one optical surface or the like.
  • the second optical surface having a small release resistance can be protruded, so that the optical element is hardly deformed.
  • the movable mold has a core part and a holding part that holds the core part from the periphery, and forms a letter-like marking by transferring the holding part.
  • the character-shaped marking is formed by the holding portion, and when the shape corresponding to the character-shaped marking is formed in the movable mold, the influence on the core portion corresponding to the optical function portion may be reduced. it can.
  • the optical part of the optical function part can be finely adjusted by rotating the core part.
  • the fixed mold has a core portion and a holding portion that holds the core portion from the periphery.
  • FIG. 2A is a cross-sectional view for explaining a mold space for molding an optical element
  • FIG. 2B is a plan view of a transfer surface on the second mold side in FIG. 2A
  • 3A is a cross-sectional view of a lens that is an optical element
  • FIG. 3B is an enlarged conceptual diagram viewed from the side of the character marking
  • FIG. 4A is a plan view seen from the first optical surface of the lens
  • FIG. 4B is a plan view seen from the second optical surface of the lens.
  • FIG. 13A and 13B are diagrams illustrating a modification of the optical element shown in FIG. 3A and the like.
  • an injection molding apparatus 100 for carrying out the manufacturing method of the present embodiment includes a molding die 40, and the molding die 40 is a first die 41 that is a fixed die and a movable die.
  • a second mold 42 is provided.
  • die 42 is driven by the opening / closing drive apparatus 79, and can be reciprocated to AB direction.
  • the second mold 42 is moved toward the first mold 41, and both molds 41 and 42 are mold-matched with the parting surfaces PS1 and PS2 and are clamped to partially expand in FIG.
  • a mold space CV for molding the lens 10 as an optical element and a flow path space FC for supplying resin to the mold space CV are formed.
  • a plurality of mold spaces CV and flow path spaces FC may be formed in the molding die 40.
  • the mold space CV includes the main body space CV1 sandwiched between the first and second transfer surfaces S1 and S2, and the third, fourth, fifth, and sixth transfer surfaces S3, S4, and S5. , S6 and a flange space CV2 surrounded by S6.
  • the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 are the first and second optical function portions 11 in the center of the lens 10 shown enlarged in FIGS. 3A, 4A, and 4B. This is a portion for forming the second optical surfaces OS1 and OS2.
  • one first transfer surface S1 is deeper and larger in curvature than the other second transfer surface S2, and a fine uneven pattern for transferring the fine structure FS or the fine shape of the first optical surface OS1.
  • An FP is provided.
  • the third, fourth, fifth, and sixth transfer surfaces S3, S4, S5, and S6 surrounding the flange space CV2 are portions for forming the flange portion 12 of the lens 10.
  • the third, fourth, and sixth transfer surfaces S3, S4, and S6 facing the flange space CV2 are the first, second, and third flange surfaces 12a of the lens 10 shown in an enlarged view in FIG. 3A and the like. , 12b, and 12c.
  • the fifth transfer surface S5 facing the flange space CV2 is a portion for forming the outer peripheral side surface SS of the lens 10.
  • a convex character marking M1 and a gate identification marking M2 are provided on the uppermost surface 2b of the second flange surface 12b of the flange portion 12 shown in FIG. 3A and the like.
  • the sixth transfer surface S6 is provided with recesses MS1 and MS2, respectively.
  • the flow path space FC has a runner part RS as a space for forming the runner part RP in the molded product MP shown in FIGS. 2A, 3A, etc., and the runner part RS is interposed via the gate part GS. It communicates with the mold space CV.
  • the space of the gate portion GS forms a gate portion GP that connects the lens 10 and the runner portion RP in the molded product MP.
  • the lens 10 as the main body has an optical function part 11 having an optical function and an outer edge of the optical function part 11 radially outward as described above. And a substantially annular flange portion 12 provided.
  • the lens 10 is an objective lens for a thick-type optical pickup device having a large protrusion on the first optical surface OS1 side.
  • the lens 10 is a plastic lens.
  • the plastic material in the present embodiment is, for example, a cycloolefin resin, and trade name APEL manufactured by Mitsui Chemicals, Inc., or trade name ZEONEX manufactured by Nippon Zeon Co., Ltd. can be used.
  • the lens 10 has an on-axis lens thickness d (mm) and a focal length of the lens 10 in a light beam having a wavelength of 500 nm or less is f (mm). 2.0 is satisfied.
  • the first optical surface OS1 has a fine structure FS (optical path difference providing structure including a plurality of steps) having a step of a diffractive structure in order to be compatible with multiple wavelengths. That is, the lens 10 is a three-wavelength compatible optical element corresponding to a short wavelength, high numerical aperture standard, a medium wavelength, medium numerical aperture standard, and a long wavelength, low numerical aperture standard.
  • the fine structure FS provided on the optical surface OS1 has a shape that allows light collection in conformity with each wavelength.
  • OT is formed concentrically around the optical axis OA.
  • a first optical path difference providing structure is formed in the central region CN, and a second optical path difference providing structure is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the peripheral region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the first optical path difference providing structure formed in the central region CN of the lens 10 is a structure in which the first basic structure and the second basic structure are overlaid as shown in FIG.
  • the first basic structure makes the first-order diffracted light quantity of the first light beam (first wavelength; eg, 405 nm) that has passed through the first basic structure larger than any other order diffracted light quantity, and passes through the first basic structure.
  • the first-order diffracted light quantity of the second light flux (second wavelength; for example, 658 nm) is made larger than any other order diffracted light quantity, and the third light flux (third wavelength; for example, 785 nm) that has passed through the first basic structure.
  • the first order diffracted light amount is made larger than any other order diffracted light amount.
  • At least the first basic structure provided in the vicinity of the optical axis OA of the central region CN has a step in a direction opposite to the optical axis OA.
  • the second basic structure makes the second-order diffracted light quantity of the first light beam that has passed through the second basic structure larger than the diffracted light quantity of any other order, and the first-order of the second light beam that has passed through the second basic structure.
  • the diffracted light quantity is made larger than any other order diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order diffracted light quantity.
  • the step is directed in the direction of the optical axis OA, and the wavelength of the incident light beam is longer in the first basic structure and the second basic structure.
  • the spherical aberration changes in the direction of insufficient correction.
  • the lens 10 may be a lens corresponding only to a BD (Blu-ray) Disc) having a wavelength of 405 nm and a numerical aperture (NA) of 0.85.
  • one first optical surface OS1 is disposed on the laser light source side and protrudes larger than the other second optical surface OS2 disposed on the optical disk side which is an optical information recording medium. Is getting bigger. Further, since the curvature of the first optical surface OS1 is extremely large, the lens 10 has a very large thickness at the center and a large thickness ratio p (thickness of the thickest portion ⁇ thickness of the thinnest portion).
  • the first optical surface OS1 on the light source side of the lens 10 is provided with three layers of antireflection films.
  • This antireflection film is provided using a vacuum deposition method.
  • SiO 2 or ZrO 2 is used as the material of the antireflection film on the first optical surface OS1.
  • the second optical surface OS2 on the optical disc side of the lens 10 is provided with a seven-layer antireflection film.
  • the antireflection film is provided by using this vacuum deposition method.
  • a material of the antireflection film on the second optical surface OS2 for example, SiO 2 , ZrO 2 , a mixed material of SiO 2 and Al 2 O 3 , or the like is used.
  • the flange portion 12 has a first flange surface 12a extending in a direction perpendicular to the optical axis OA on the first optical surface OS1 side, a second flange surface 12b extending in a direction perpendicular to the optical axis OA on the second optical surface OS2 side, And a third flange surface 12c.
  • the third flange surface 12c extends adjacent to the second optical surface OS2, and serves as a mirror surface as an end surface for alignment.
  • the second flange surface 12b is provided on the outer periphery of the third flange surface 12c.
  • the flange portion 12 has a step structure b2 on the second flange surface 12b side.
  • the step on the outside of the lens 10 is higher toward the information recording medium side than the step on the center side of the lens 10.
  • a step-shaped convex transfer surface S22 for forming the step structure b2 is provided on the inner side of the holding portion 74b of the second mold 42. Since the lens 10 has the step structure b2, even if a burr due to the boundary between the second core portion 74a and the holding portion 74b occurs on the second flange surface 12b side, the burr is stored in the space formed by the step structure b2. Can do. Thereby, it is possible to prevent the distance (WD: working distance) between the information recording medium and the lens 10 from being changed due to the variation of the burr length during molding.
  • the gate portion GP is formed on a part of the outer peripheral side surface SS of the flange portion 12, but is removed by a finishing process after taking out from the molding die 40.
  • the gate part GP is cut in a straight line including a part of the flange part 12 in a direction perpendicular to the radial direction of the lens 10 extending to the gate part GP. This cut shape is usually called a D-cut shape.
  • the uppermost surface TP2 of the second optical surface OS2 protrudes from the uppermost surface TP1 of the step structure b2 of the second flange surface 12b on the optical disc side of the flange portion 12.
  • convex character marking M1 and hemispherical gate identification marking M2 are provided on the uppermost surface TP1 of the step structure b2 of the second flange surface 12b.
  • the character marking M1 is for identifying information relating to a manufacturing jig or the like when the lens 10 is manufactured.
  • the gate identification marking M2 is for identifying the position of the gate part GP at the time of molding.
  • the character marking M1 is provided at a position of 90 ° counterclockwise with respect to the gate part GP.
  • the gate identification marking M2 is provided on the opposite side of the gate part GP.
  • the relative position between the gate identification marking M2 and the first first character of the character marking M1 is 90 °. This is for improving the reproducibility and accuracy of processing and improving the detection reliability of the character marking M1 when the second die 42 is subjected to the groove processing corresponding to the character marking M1.
  • the height h1 of the character marking M1 and the height h2 of the gate identification marking M2 are 0.003 mm or more and 0.020 mm or less, respectively.
  • the lens 10 is an objective lens that is compatible with a plurality of types of optical information recording media, it is necessary to ensure a WD (working distance) for all types of optical information recording media.
  • the heights h1 and h2 of the character marking M1 and the gate identification marking M2 are set to 0.020 mm or less as described above. It is desirable. In order to ensure WD more reliably, it is more desirable that the heights h1 and h2 of the character marking M1 and the gate identification marking M2 be 0.010 mm or less.
  • the character marking M1 has, for example, constituent elements of four character parts J1, J2, J3, and J4.
  • the character portions J1, J2, J3, and J4 are arranged on the arc of the second flange surface 12b in order from the character portion J1, which is the first character, starting from a position of 90 ° counterclockwise from the gate portion GP. .
  • the character portions J1, J2, J3, and J4 are sized to fit within a square region having a side length D. Specifically, the length D is 0.05 mm or more and 0.30 mm or less.
  • the space in the flange portion 12 can be easily secured by setting the square area that accommodates the character portions J1, J2, J3, and J4 to be equal to or less than the above upper limit.
  • interval for each character is dense, since visibility becomes good, the space
  • the first mold 41 on the fixed side includes a first core part 64 a as a central part that forms the mold space CV shown in FIG. 2 from the first mold 41, and the periphery of the first core part 64 a.
  • a holding part 64b as a peripheral part provided in the base plate and a receiving plate 64c for supporting the first core part 64a and the holding part 64b from the back are provided.
  • the first core portion 64a is incorporated in a through hole 64g formed in the holding portion 64b and fixed with a bolt (not shown).
  • the leading end surface of the first core portion 64a is a first transfer surface S1 for forming a first optical surface OS1 of the lens 10 at a main portion.
  • the holding portion 64b having the third transfer surface S3 is arranged around the first core portion 64a having the first transfer surface S1, so that the outer edge portion of the first core portion 64a is connected to the main body space CV1 and the flange space. It is in a state of biting into the boundary with CV2.
  • the end surface 64e of the holding portion 64b is formed with a concave portion to be the runner portion RP of the molded product MP shown in FIG.
  • the second mold 42 on the movable side includes a second core part 74a as a central part that forms the mold space CV shown in FIG. 2A from the second mold 42, and a peripheral part provided around the second core part 74a.
  • the movable rods 75 and 76 that push the 74a and the projecting member 74p from the back, and the advance / retreat mechanism 78 that moves the movable rods 75 and 76 in the axis AX direction are provided.
  • the second core portion 74a is incorporated in a through hole 74g formed in the holding portion 74b so as to be movable back and forth along the axis AX direction.
  • the projecting member 74p is also incorporated in a through hole 74h formed in the holding portion 74b so as to be movable back and forth along the axis AX direction.
  • the 2nd core part 74a is urged
  • the protruding member 74p is driven by the movable rod 76 to advance toward the first mold 41 side, and when the mold is closed, an external force by a holding portion 64b on the first mold 41 side, which will be described later, or resin at the time of resin inflow Treatments by pressure and returns to the original position.
  • the protruding member 74p may be automatically retracted and returned to its original position by using a spring.
  • the end surface 74e of the holding portion 74b is formed with a recess that should become the runner portion RP of the molded product MP shown in FIG. 3A.
  • the optical surface OS1 having a relatively large curvature is formed by a fixed mold, the optical surface is likely to be deformed due to an axial deviation when the first and second molds 41 and 42 are opened.
  • a taper pin or a taper block for the template as disclosed in, for example, Japanese Utility Model Laid-Open No. 7-9945.
  • FIG. 6 is a flowchart conceptually illustrating a method of manufacturing an optical element using the molding die 40 shown in FIG.
  • dies 41 and 42 are produced (step S11).
  • Concave portions MS1 and MS2 for forming the character marking M1 and the gate identification marking M2 are formed on the convex transfer surface S22 of the holding portion 74b of the second mold 42. That is, the character marking M1 and the gate identification marking M2 are formed by the second mold 42 that is a movable type.
  • the recesses MS1 and MS2 are processed by, for example, a laser marker, electric discharge machining, or the like. It should be noted that the processing with the laser marker is easy to recognize because the convex amount of the marking is small.
  • step S12 the first and second molds 41 and 42 are attached to the injection molding apparatus 100, the opening / closing drive unit 79 is operated, and the second mold 42 is relatively advanced toward the first mold 41. Mold closing is started (step S12). Note that the surfaces of both molds 41 and 42 are heated to a temperature suitable for molding.
  • the opening / closing drive device 79 By continuing the closing operation of the opening / closing drive device 79, the first mold 41 and the second mold 42 are moved to the mold contact position where they are in contact with each other, the mold closing is completed, and the opening / closing drive device 79 is further closed. By continuing, the mold clamping which clamps the 1st metal mold
  • a vacuum device (not shown) is operated to evacuate the mold space CV between the clamped first mold 41 and the second mold 42 (step S14).
  • the mold space CV is appropriately decompressed, and the molten resin is reliably filled into the first transfer surface S1 having a relatively large curvature.
  • an injection device (not shown) is operated to inject the molten resin into the mold space CV at a necessary pressure (step S15).
  • the injection device maintains the resin pressure in the mold space CV.
  • step S16 After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding (step S16).
  • the opening / closing drive device 79 is operated to perform mold opening for relatively moving the second mold 42 backward (step S17).
  • the second mold 42 moves backward, the first mold 41 and the second mold 42 are separated from each other.
  • the molded product MP that is, the lens 10 remains on the second mold 42 side. That is, the lens 10 is released from the first mold 41 while being held so as to be embedded in the movable second mold 42.
  • step S18 the advance / retreat mechanism 78 is operated, and the molded product MP remaining in the second mold 42 is ejected to the first mold 41 side by the movable rods 75 and 76 (step S18). As a result, the molded product MP is released. At this time, the lens 10 is completely pushed out of the holding portion 74b.
  • a take-out device (not shown) is operated to separate the molded product MP from the second mold 42 and carry it out (step S19).
  • the portion of the molded product MP excluding the lens 10 is gripped.
  • the sticking force of the second optical surface OS2 to the second transfer surface S2 of the second core portion 74a is relatively small. Therefore, since the molded product MP can be easily removed from the second core portion 74a, it is possible to prevent a biased force from being applied to part of the outer periphery of the lens 10.
  • optical pickup device PU1 incorporating the lens 10
  • the lens 10 is an objective lens capable of appropriately recording and / or reproducing information on, for example, BD, DVD (Digital Versatile Disc), and CD which are different optical disks.
  • the optical pickup device PU1 emits light when recording / reproducing information with respect to the lens 10, the ⁇ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, the dichroic prism DP, and the BD.
  • the light is converted into parallel light, converted from linearly polarized light into circularly polarized light by the ⁇ / 4 wavelength plate QWP, and the diameter of the light flux is regulated by a diaphragm (not shown) and is incident on the lens 10.
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the lens 10 becomes a spot formed on the information recording surface RL1 of the BD via the protective substrate PL1.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the lens 10 and a diaphragm (not shown), converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and converged by the collimating lens COL.
  • the light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the lens 10 by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification.
  • the collimating lens COL as a means is changed in the direction of the optical axis OA, and can be corrected by changing the divergence angle or the convergence angle of the light beam incident on the lens 10.
  • the light is converted from linearly polarized light to circularly polarized light by the / 4 wavelength plate QWP and enters the lens 10.
  • the light beam condensed by the central region and the intermediate region of the lens 10 (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is transmitted through the protective substrate PL2 to the information recording surface of the DVD. It becomes a spot formed on RL2, and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 passes through the lens 10 again, is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and is converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the light is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP and enters the lens 10.
  • the light beam condensed by the central region of the lens 10 (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL3, and the information recording surface of the CD It becomes a spot formed on RL3.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the lens 10 again, is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on CD can be read using the output signal of light receiving element PD.
  • the manufacturing jig when the lens 10 is manufactured, and the like since the character marking M1 and the gate identification marking M2 are provided on the flange portion 12, the manufacturing jig when the lens 10 is manufactured, and the like.
  • the information can be directly identified without using a replacement table or the like by the character marking M1 or the like.
  • the discriminability and workability can be enhanced in the subsequent management of the lens 10.
  • transfer is performed by forming depressions (recesses MS1, MS2) corresponding to the character markings M1 and the like on the convex transfer surface S22 of the second mold 42. A surface can be provided, and the transfer surface can be easily processed.
  • the character marking M1 and the like on the uppermost surface TP1 on the optical disc side which is an optical information recording medium, detection and recognition of the character marking M1 and the like becomes relatively easy.
  • the inclination of the optical function part 11 is provided on the outer periphery of the third flange surface 12c, which is the mirror surface part, of the uppermost surface TP1 of the flange part 12. , It is possible to prevent a decrease in reflected light for measurement.
  • the third flange surface 12c for measuring the inclination is not provided with the character marking M1 or the like, but is provided with the character marking M1 or the like on the outer periphery thereof, thereby making it possible to prevent the reflected light from being lowered.
  • the character marking M1 or the like is provided further away from the second optical surface OS2
  • the second optical surface OS2 (the optical function unit 11) is processed. ) Can be reduced.
  • Example 1 Hereinafter, examples of the optical surface of the lens 10 according to the above-described embodiment will be described.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis OA and is defined by a mathematical formula obtained by substituting the coefficients shown in Table 1 into Formula 1.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • h is the height from the optical axis
  • is the wavelength of the incident light beam
  • m is the diffraction order
  • B 2i is the coefficient of the optical path difference function.
  • the first optical path difference providing structure of the lens 10 of the first embodiment will be described with reference to FIG. 5 (FIG. 5 is a conceptual diagram different from the actual shape of the first embodiment).
  • the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region.
  • the optical path difference providing structure is formed by superimposing the first basic structure BS1, which is a diffractive structure of the mold.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA.
  • the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis OA of the first foundation structure is the second foundation structure BS2. More than the number of steps facing the direction of the optical axis OA of the structure.
  • the spherical aberration is changed in the direction of insufficient correction.
  • the second optical path difference providing structure of Example 1 has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. It has become.
  • the step of the third foundation structure faces in the opposite direction to the optical axis OA
  • the step of the fourth foundation structure faces the optical axis OA.
  • the third foundation structure and the fourth foundation structure when the third foundation structure changes so that the wavelength of the incident light beam becomes longer, the spherical aberration changes in the overcorrection direction, and the fourth foundation structure enters. If the wavelength of the light beam is changed so as to be longer, the spherical aberration changes to be undercorrected.
  • the third optical path difference providing structure of Example 1 is composed of only the fifth basic structure.
  • the second-order diffracted light amount of the first light beam that has passed through the fifth basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the fifth basic structure.
  • It is a blaze-type diffractive structure in which the amount of light is larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the fifth basic structure is larger than any other order of diffracted light.
  • Table 1 shows the lens data of Example 1.
  • ri represents the radius of curvature
  • di represents the distance from the next surface
  • Ni indicates the refractive index of the lens material.
  • the actual shape of the objective lens was designed based on the lens data of Example 1.
  • the actual shape data is shown in Tables 2 and 3.
  • the actual shape data of each annular zone can be obtained.
  • H represents the height from the optical axis in the direction perpendicular to the optical axis.
  • Ai represents an aspheric coefficient.
  • the first zone to the 104th zone is the central region
  • the 105th zone to the 160th zone is the middle zone
  • the 161th zone is the peripheral region.
  • FIG. 8 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 1 are provided in a flat element.
  • the step surface of the optical path difference providing structure is inclined with respect to the optical axis OA, but in FIG. 8, it is arranged as a direction parallel to the optical axis OA for convenience.
  • the central region where the first optical path difference providing structure is provided is the region indicated by CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the peripheral area provided with is an area indicated by OT.
  • the antireflection film of Example 1 will be described.
  • the first optical surface OS1 on the laser light source side of the lens 10 is provided with a three-layer antireflection film shown in Table 4 below.
  • the antireflection film is provided using a vacuum deposition method.
  • the second optical surface OS2 on the optical disc side of the lens 10 is provided with a seven-layer antireflection film shown in Table 3 below.
  • the antireflection film is provided using a vacuum deposition method.
  • the outer diameter g1 of the lens 10 shown in FIG. 3A is 5 mm, and the on-axis thickness g2 of the optical function unit 11 is 2.67 mm.
  • the surface depth g3 of the first optical surface OS1 of the lens 10 is 1.930 mm, the surface diameter g4 of the first optical surface OS1 is 4.015 mm, and the effective diameter g5 of the first optical surface OS1 is 3. It is 850 mm.
  • the surface depth g6 of the second optical surface OS2 of the lens 10 is 0.087 mm
  • the surface diameter g7 of the second optical surface OS2 is 3.033 mm
  • the effective diameter g8 of the second optical surface OS2 is 2. It is 851 mm.
  • the surface diameter refers to the diameter of the optical surface
  • the effective diameter refers to the diameter of the portion of the optical surface through which the light beam passes.
  • the thickness g9 of the flange portion 12 of the lens 10 parallel to the optical axis OA direction is 0.77 mm
  • the width g10 of the first flange surface 12a in the lens radial direction is 0.985 mm
  • the second flange surface 12b is 0.77 mm
  • the lens width g11 in the lens radial direction is 1.967 mm.
  • the thickness g12 of the thinnest portion of the flange portion 12 is 0.653 mm, and the distance g13 from the uppermost surface TP1 of the second flange surface 12b to the uppermost surface TP2 of the second optical surface OS2 is 0.03 mm. Yes.
  • the width g14 of the alignment end face 12c is 0.082 mm.
  • the heights h1 and h2 of the character marking M1 and the gate identification marking M2 are 0.010 mm.
  • the length D of one side of the square area of the character portions J1, J2, J3, and J4, which are components of the character marking M1 is 0.15 mm.
  • the gate cut amount d1 is 0.14 mm. Note that the gate cut amount d1 is the length in the gate axis direction of a portion of the flange portion 12 cut away perpendicularly to the gate axis direction extending to the gate portion GP when viewed from the optical axis OA direction.
  • optical element and a method for manufacturing the optical element according to the second embodiment will be described.
  • the optical element and the method for manufacturing the optical element according to the second embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
  • the top surface TP1 of the step structure b2 of the second flange surface 12b on the optical disc side of the flange portion 12 protrudes from the top surface TP2 of the second optical surface OS2. Since the second flange surface 12b protrudes from the uppermost surface TP2 of the second optical surface OS2, when the lens 10 is placed on a placement member such as a tray, the second optical surface OS2 is placed downward. However, the flange portion 12 serves as a guard so that the second optical surface OS2 does not contact the mounting member, and the second optical surface OS2 is not damaged.
  • optical element and a method for manufacturing the optical element according to the third embodiment will be described.
  • the optical element and the method for manufacturing the optical element according to the third embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
  • the first and second molds 41 and 42 in the first embodiment are arranged in reverse. That is, the first mold 41 is a movable mold, and the second mold 42 is a fixed mold.
  • optical element according to the fourth embodiment will be described below.
  • the optical element according to the fourth embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
  • the gate part GP is cut so as to go around the local part of the flange part 12.
  • This cut shape is usually called a U-cut shape.
  • optical element according to the fifth embodiment will be described below.
  • the optical element according to the fifth embodiment is a modification of the fourth embodiment, and parts that are not particularly described are the same as those in the fourth embodiment.
  • a part of the flange portion 12 near the gate portion GP is cut along the outer periphery thereof. Further, the gate portion GP is cut so as to go around the local portion of the flange portion 12.
  • the gate cut amount d1 is 0.2 mm
  • the arc cut amount d2 is 0.08 mm or less
  • the total cut range d3 is 1.2 mm or more and 2 mm or less.
  • the gate cut amount d1 is the length in the gate axis direction extending from the outer diameter of the lens 10 to the deepest portion of the flange portion 12 as viewed from the optical axis OA direction.
  • the arc cut amount d2 is the length in the gate axis direction of the portion of the flange portion 12 cut away along the outer periphery thereof.
  • the total cut range d3 is a length in a direction perpendicular to the gate axis direction of a portion obtained by cutting a part of the flange portion 12 along the outer periphery thereof.
  • first mold 41 and the second mold 42 horizontally, and it may be a vertical mold in which the first mold 41 and the second mold 42 are arranged vertically.
  • the return force of the core portion 64a is given by the spring, but the core portion 64a can be returned by means other than the spring.
  • the outer peripheral side surface SS of the lens 10 is a cylindrical surface, but the outer peripheral side surface SS may not have a shape symmetrical to the optical axis OA. That is, the outer peripheral side surface SS may be a substantially prismatic surface, or a surface obtained by combining a cylindrical surface and a prismatic surface. Further, a slight taper can be formed on the outer peripheral side surface SS, and a slight taper can also be formed on the fifth transfer surface S5 of the holding portion 74b.
  • the optical surface of the lens 10 may be smooth without providing the microstructure FS or the like on the optical surface.
  • the lens 10 may be a coupling lens disposed between the laser light source and the objective lens.
  • the character marking M1 is composed only of characters, but may be a combination of characters, figures, symbols, and the like. Moreover, only a figure and a symbol are good also as a component as a character-like marking.
  • the constituent elements of the character marking M1 are the four character portions J1, J2, J3, and J4, but the number of constituent elements may be changed as appropriate.
  • the shapes of the character marking M1 and the gate identification marking M2 can be changed as appropriate.
  • the gate identification marking M2 is not limited to a hemispherical shape but may be a convex line shape. Specifically, as shown in FIGS. 13A and 13B, a convex three-line shape can be used.

Abstract

The purpose of the present invention is to provide an optical element on which information related to a production jig and the like is recorded so as to be easily read out, and also provide a production method therefor. A flange (12) is provided with a character mark (M1) and a gate identification mark (M2), and as a result, information related to the production jig or the like used when producing a lens (10) can be directly identified according to the character mark (M1) and the like without using a replacement table or the like. This configuration enables enhanced identifiability and workability on the occasion of subsequent lens (10) management. Further, by providing the character mark (M1) and the like on the uppermost surface (TP1) on the optical disc side, said optical disc being an optical information recording medium, detection and identification of the character mark (M1) and the like becomes relatively easier.

Description

光学素子及びその製造方法Optical element and manufacturing method thereof
 本発明は、光ピックアップ装置に組み込まれる光学素子及びその製造方法等に関し、特に射出成形によって形成される樹脂製の光学素子及びその製造方法に関する。 The present invention relates to an optical element incorporated in an optical pickup device and a manufacturing method thereof, and more particularly to a resin optical element formed by injection molding and a manufacturing method thereof.
 従来から、光ピックアップ装置等に組み込まれる光学素子において、光学素子のフランジ部にマーキングを施し、そのマーキングにより、製造器具に関する履歴的な情報(具体的には、どの金型で製造したか、一度に複数のレンズを成形する場合、金型中のどのキャビティで成形したかという情報)を識別する手法が知られている(例えば特許文献1参照)。 Conventionally, in an optical element incorporated in an optical pickup device or the like, marking is performed on the flange portion of the optical element, and historical information about the manufacturing equipment is obtained by the marking (specifically, which mold was manufactured once. In the case of molding a plurality of lenses, there is known a method for identifying which cavity in the mold was molded (for example, see Patent Document 1).
 上記特許文献1には、段差を有するフランジ部の低い面に半球状のマーキングを形成することが記載されている。 Patent Document 1 describes that hemispherical marking is formed on the lower surface of the flange portion having a step.
 しかしながら、このような半球状の凸マーキング単独で製造治具等に関する履歴的な情報を識別することは容易でなく、マーキングの数を増やしたり、マーキング同士の相対位置及び角度を変えたりすることで、必要な情報を識別することが考えられる。この場合、個々の光学素子において、マーキングの個数や、マーキング同士の相対位置や角度を調べる必要があり、識別に手間がかかってしまう。つまり、識別に読み替え表等が必要で、識別の作業が煩雑となって、識別の作業性が低下する。 However, it is not easy to identify historical information about manufacturing jigs or the like with such a hemispherical convex marking alone, by increasing the number of markings or changing the relative position and angle between the markings. It is possible to identify necessary information. In this case, it is necessary to check the number of markings and the relative positions and angles of the markings in each optical element, which takes time for identification. That is, a replacement table or the like is required for identification, and the identification work becomes complicated, and the identification workability decreases.
特開平11-16197号公報Japanese Patent Laid-Open No. 11-16197
 本発明は、製造治具等に関する情報を簡易に読み取ることができるように記録した光学素子及びその製造方法を提供することを目的とする。 An object of the present invention is to provide an optical element recorded so that information on a manufacturing jig or the like can be easily read and a manufacturing method thereof.
 かかる目的を達成するため、本発明に係る光学素子は、光ピックアップ装置に組み込まれる光学素子であって、樹脂で形成され、光学機能部と、当該光学機能部の周囲に形成されたフランジ部とを有し、フランジ部の光情報記録媒体側の最上面に凸状の文字マーキングを設けている。ここで、文字マーキングとは、文字を構成要素とする識別情報であり、図形や記号も含めることができる。 In order to achieve such an object, an optical element according to the present invention is an optical element incorporated in an optical pickup device, which is formed of a resin, an optical function part, and a flange part formed around the optical function part. Convex character marking is provided on the uppermost surface of the flange portion on the optical information recording medium side. Here, the character marking is identification information having a character as a constituent element, and can also include a figure and a symbol.
 上記光学素子によれば、フランジ部に文字マーキングを設けているので、光学素子を製造した際の製造治具等に関する情報を、文字マーキングによって読み替え表等を用いることなく直接的に識別することが可能となり、その後の管理に際して識別性や作業性を高めることができる。なお、文字マーキングを凸状とすることにより、金型の転写面に文字マーキングに対応する窪みを形成することで転写面を設けることができ、転写面の加工が容易である。また、光情報記録媒体側の最上面に文字マーキングを設けることで、文字マーキングの検出や認識が比較的容易になる。 According to the optical element described above, since the character marking is provided on the flange portion, it is possible to directly identify information on the manufacturing jig or the like when the optical element is manufactured without using a replacement table or the like by the character marking. This makes it possible to improve identification and workability in subsequent management. By making the character marking convex, a transfer surface can be provided by forming a depression corresponding to the character marking on the transfer surface of the mold, and the transfer surface can be easily processed. Further, by providing character marking on the uppermost surface on the optical information recording medium side, detection and recognition of character marking becomes relatively easy.
 本発明の具体的な態様又は側面では、上記光学素子において、凸状の文字マーキングの高さhが、0.003mm≦h≦0.020mmである。文字マーキングの高さを上記下限以上とすることにより、文字マーキングの視認性を確保しており、文字マーキングの高さを上記上限以下とすることにより、文字マーキングと光情報記録媒体等の他の部材が衝突しやすくなることを回避している。なお、光学素子が複数種類の光情報記録媒体に対して互換性を持たせた対物レンズである場合、全種類の光情報記録媒体に対してWD(ワーキングディスタンス)の確保が必要となり、例えばCD(Compact Disc)(基板厚1.2mm)のように基板厚が厚いものについてもWDを確保するために、上記のように文字マーキングの高さhを0.020mm以下とすることが望ましい。また、文字マーキングの高さhが0.010mm以下とすると、より確実にWDを確保できるため好ましい。 In a specific mode or aspect of the present invention, in the optical element, the height h of the convex character marking is 0.003 mm ≦ h ≦ 0.020 mm. By making the height of the character marking more than the above lower limit, the visibility of the character marking is secured, and by making the height of the character marking less than the above upper limit, the character marking and other information such as an optical information recording medium This prevents the members from colliding easily. When the optical element is an objective lens that is compatible with a plurality of types of optical information recording media, it is necessary to ensure WD (working distance) for all types of optical information recording media. In order to secure WD even for a substrate having a large substrate thickness such as (Compact Disc) (substrate thickness 1.2 mm), it is desirable that the height h of the character marking is 0.020 mm or less as described above. In addition, it is preferable that the height h of the character marking is 0.010 mm or less because WD can be secured more reliably.
 本発明の別の側面では、凸状の文字マーキングの構成要素が、1辺の長さがDの正方形領域内に収まる大きさであり、長さDが、0.05mm≦D≦0.30mmである。文字マーキングの構成要素を収める正方形領域を上記下限以上とすることにより、転写性を確保できる程度に文字のサイズを大きくして、文字等がきれいに転写されずに埋もれてしまう又はつぶれてしまうことを防止することができる。一方、文字マーキングの構成要素を収める正方形領域を上記上限以下とすることにより、フランジ部におけるスペース確保を容易にしている。 In another aspect of the present invention, the component of the convex character marking is sized to fit within a square region having a side length of D, and the length D is 0.05 mm ≦ D ≦ 0.30 mm. It is. By making the square area containing the components of the character marking more than the above lower limit, the size of the character is increased to such an extent that transferability can be ensured, and the characters etc. are buried without being neatly transferred or crushed. Can be prevented. On the other hand, the space in the flange portion is easily secured by setting the square area that accommodates the components of the character marking to the upper limit or less.
 本発明のさらに別の側面では、フランジ部が、樹脂の導入跡であるゲート部の反対側に、ゲート識別用マーキングをさらに有する。この場合、成形時のゲートの位置を確実に識別することが可能となる。 In yet another aspect of the present invention, the flange portion further has a gate identification marking on the opposite side of the gate portion where the resin has been introduced. In this case, the position of the gate at the time of molding can be reliably identified.
 本発明のさらに別の側面では、光学機能部が、第1光学面と、第1光学面の光情報記録媒体側に配置される第2光学面とを有し、フランジ部の光情報記録媒体側の最上面の方が、第2光学面の最上面よりも突出している。光学素子をトレー等の載置部材上に載置する際に、第2光学面を下向きにして置いても、フランジ部がガードとなって第2光学面が載置部材に接しないようにできるため、第2光学面に傷がつかない。これにより、第2光学面を下向きにして搬送又は保管することが可能となる。 In still another aspect of the present invention, the optical function unit includes a first optical surface and a second optical surface disposed on the optical information recording medium side of the first optical surface, and the optical information recording medium of the flange portion. The uppermost surface on the side protrudes from the uppermost surface of the second optical surface. When placing the optical element on a placement member such as a tray, the flange portion can serve as a guard so that the second optical surface does not contact the placement member even when the second optical surface faces downward. Therefore, the second optical surface is not damaged. This makes it possible to carry or store the second optical surface facing downward.
 本発明のさらに別の側面では、光学機能部が、第1光学面と、第1光学面の光情報記録媒体側に配置される第2光学面とを有し、第2光学面の最上面の方が、フランジ部の光情報記録媒体側の最上面よりも突出している。この場合、光学素子の光情報記録媒体側の突出量を機能的に必要な最小限に抑えることができ、光学素子が対物レンズである場合に、フランジ部についてWDを確保しやすくなる。 In still another aspect of the present invention, the optical function unit includes a first optical surface and a second optical surface disposed on the optical information recording medium side of the first optical surface, and is the uppermost surface of the second optical surface. This protrudes from the uppermost surface of the flange portion on the optical information recording medium side. In this case, the protrusion amount of the optical element on the side of the optical information recording medium can be suppressed to a functionally necessary minimum, and when the optical element is an objective lens, it becomes easy to secure WD for the flange portion.
 本発明のさらに別の側面では、第1光学面が、第2光学面よりも大きな曲率を有する。この場合、光学素子を装置へ取り付ける際に、基準面となる第1光学面側ではなく、第2光学面側に文字マーキングを形成できるので、光学素子の装置への取り付け精度を向上させることができる。 In still another aspect of the present invention, the first optical surface has a larger curvature than the second optical surface. In this case, when the optical element is attached to the apparatus, the character marking can be formed on the second optical surface side instead of the first optical surface side which becomes the reference surface, so that the accuracy of attaching the optical element to the apparatus can be improved. it can.
 本発明のさらに別の側面では、ゲート識別用マーキングと、文字マーキングの最初の一文字目との相対位置が、90°である。この場合、金型へ文字マーキングに対応する溝加工を行う際に、加工の再現性や精度を高めることができ、文字マーキングの検出の信頼性も高めることができる。 In yet another aspect of the present invention, the relative position between the gate identification marking and the first character of the character marking is 90 °. In this case, when performing the groove processing corresponding to the character marking on the mold, the reproducibility and accuracy of the processing can be improved, and the reliability of the detection of the character marking can also be improved.
 本発明のさらに別の側面では、光学機能部の傾きを測定可能とする反射光を生じさせる鏡面部を有し、フランジ部の光情報記録媒体側の最上面は、鏡面部の外周にある。鏡面部によって光学機能部の傾きを測定する際に、測定用の反射光の低下を防止することができる。なお、鏡面部に半球状のマーキングをつけることは従来から知られているが、この場合、傾き測定時に反射光の強度が若干低下することが考えられる。まして、識別性を高めるために、文字マーキングにした場合には、さらなる強度の低下が考えられる。そこで、傾き測定用の鏡面部には、文字マーキングを設けずに、その外周に文字マーキングを設けることにより、反射光の低下を防止することを可能としている。また、レンズ設計の観点からは、光学機能部から離れるほど、文字マーキングをつけるためのスペースを確保しやすい。さらに、光学面からより離れたところにマーキングを設ける場合、金型へ文字マーキングに対応する溝を加工する際、光学面(光学機能部)への影響をより少なくすることができる。 Still another aspect of the present invention has a mirror surface portion that generates reflected light that enables measurement of the inclination of the optical function portion, and the uppermost surface on the optical information recording medium side of the flange portion is on the outer periphery of the mirror surface portion. When measuring the inclination of the optical function part by the mirror surface part, it is possible to prevent the reflected light for measurement from being lowered. In addition, it is conventionally known to apply a hemispherical marking to the mirror surface, but in this case, it is considered that the intensity of the reflected light slightly decreases during the tilt measurement. In addition, in order to improve the distinguishability, when the character marking is used, the strength can be further reduced. Therefore, it is possible to prevent a decrease in reflected light by providing character markings on the outer periphery of the mirror surface portion for measuring inclination without providing character markings. Further, from the viewpoint of lens design, as the distance from the optical function section increases, it is easier to secure a space for marking characters. Furthermore, when marking is provided further away from the optical surface, the effect on the optical surface (optical function unit) can be further reduced when the groove corresponding to the character marking is processed in the mold.
 本発明のさらに別の側面では、光学素子が光情報記録媒体に対向して配置される対物レンズである。 In still another aspect of the present invention, the optical element is an objective lens arranged to face the optical information recording medium.
 本発明のさらに別の側面では、光学素子が光源と対物レンズとの間に配置されるカップリングレンズである。 In still another aspect of the present invention, the optical element is a coupling lens disposed between a light source and an objective lens.
 本発明のさらに別の側面では、光学素子がブルーレイディスク用の光ピックアップ装置に組み込まれる。 In yet another aspect of the present invention, the optical element is incorporated into an optical pickup device for a Blu-ray disc.
 上記目的を達成するため、本発明に係る光学素子の製造方法は、光ピックアップ装置に組み込まれる光学素子を可動型及び固定型を有する射出成型装置を用いて成形する樹脂製の光学素子の製造方法であって、光学素子の光学機能部の周囲に形成されたフランジ部の光情報記録媒体側の最上面に文字状のマーキングを形成する工程を有し、文字状のマーキングが、可動型及び固定型のうちいずれか一方の転写によって形成される。ここで、文字状のマーキングは、文字、図形、記号等を構成要素とする識別情報であり、文字のみ以外にも図形や記号のみを構成要素とする場合も含む。 In order to achieve the above object, an optical element manufacturing method according to the present invention is a resin optical element manufacturing method in which an optical element incorporated in an optical pickup device is molded using an injection molding apparatus having a movable mold and a fixed mold. And a step of forming a character marking on the uppermost surface of the optical information recording medium side of the flange portion formed around the optical function portion of the optical element. The character marking is movable and fixed. It is formed by transferring one of the molds. Here, the character-like marking is identification information having a character, a figure, a symbol, or the like as a constituent element, and includes cases where only a figure or a symbol is used as a constituent element in addition to the character.
 上記の製造方法によれば、フランジ部に文字状のマーキングを転写によって形成するので、光学素子を製造した際の型部品やその配置等に関する情報を、文字状のマーキングによって読み替え表等を用いることなく直接的に識別することが可能となり、その後の管理に際して識別性や作業性を高めることができる。なお、光情報記録媒体側の最上面に文字マーキングを設けることで、文字状のマーキングの検出や認識が比較的容易になる。 According to the above manufacturing method, since the letter-like marking is formed on the flange portion by transfer, the information regarding the mold parts and the arrangement of the optical element when the optical element is produced is read by using the letter-like marking. Therefore, it is possible to directly identify the information, and it is possible to improve identification and workability in the subsequent management. In addition, by providing the character marking on the uppermost surface on the optical information recording medium side, detection and recognition of the character marking becomes relatively easy.
 本発明の具体的な側面では、上記光学素子の製造方法において、文字状のマーキングが、可動型によって形成される。第1光学面が第2光学面に比較して大きな曲率で深い場合、例えば第1光学面を固定型側で形成すると、固定型から光学素子を離型する型開きの際、マーキングがなく第1光学面等に関して離型抵抗を小さくすることができる。また、可動型から光学素子を突き出し、光学素子を取り出す際に、離型抵抗の小さい第2光学面を突き出すことができるため、光学素子の変形が起こり難い。 In a specific aspect of the present invention, in the above-described optical element manufacturing method, the character-like marking is formed by a movable mold. When the first optical surface is deeper with a larger curvature than the second optical surface, for example, when the first optical surface is formed on the fixed mold side, there is no marking when the mold is opened to release the optical element from the fixed mold. The mold release resistance can be reduced with respect to one optical surface or the like. Further, when the optical element is protruded from the movable mold and the optical element is taken out, the second optical surface having a small release resistance can be protruded, so that the optical element is hardly deformed.
 本発明の別の側面では、可動型が、コア部と、コア部を周囲から保持する保持部とを有し、保持部の転写によって文字状のマーキングを形成する。この場合、文字状のマーキングを保持部で形成することになり、文字状のマーキングに対応する形状を可動型に形成する際に、光学機能部に対応するコア部への影響を少なくすることができる。なお、コア部と保持部との分割構造にすることにより、コア部を回転させて光学機能部の光学面を微調整することができる。 In another aspect of the present invention, the movable mold has a core part and a holding part that holds the core part from the periphery, and forms a letter-like marking by transferring the holding part. In this case, the character-shaped marking is formed by the holding portion, and when the shape corresponding to the character-shaped marking is formed in the movable mold, the influence on the core portion corresponding to the optical function portion may be reduced. it can. In addition, by using a split structure of the core part and the holding part, the optical part of the optical function part can be finely adjusted by rotating the core part.
 本発明のさらに別の側面では、固定型が、コア部と、コア部を周囲から保持する保持部とを有する。コア部と保持部との分割構造にすることにより、コア部を回転させて光学機能部の光学面を微調整することができる。 In still another aspect of the present invention, the fixed mold has a core portion and a holding portion that holds the core portion from the periphery. By using a split structure of the core part and the holding part, it is possible to finely adjust the optical surface of the optical function part by rotating the core part.
第1実施形態に係る光学素子の製造方法を実施するための成形金型を説明する側方断面図である。It is a sectional side view explaining the shaping die for enforcing the manufacturing method of the optical element concerning a 1st embodiment. 図2Aは、光学素子を成形するための型空間を説明するための断面図であり、図2Bは、図2Aの第2金型側の転写面を見た平面図である。2A is a cross-sectional view for explaining a mold space for molding an optical element, and FIG. 2B is a plan view of a transfer surface on the second mold side in FIG. 2A. 図3Aは、光学素子であるレンズの断面図であり、図3Bは、文字マーキングの側方から見た拡大概念図である。3A is a cross-sectional view of a lens that is an optical element, and FIG. 3B is an enlarged conceptual diagram viewed from the side of the character marking. 図4Aは、レンズの第1光学面からみた平面図であり、図4Bは、レンズの第2光学面からみた平面図である。FIG. 4A is a plan view seen from the first optical surface of the lens, and FIG. 4B is a plan view seen from the second optical surface of the lens. 第1光路差付与構造の概念図である。It is a conceptual diagram of the 1st optical path difference providing structure. 図1に示す成形金型を用いた成形方法を説明するフローチャートである。It is a flowchart explaining the shaping | molding method using the shaping die shown in FIG. 光ピックアップ装置の構成の概念図である。It is a conceptual diagram of a structure of an optical pick-up apparatus. レンズの第1、第2、及び第3光路差付与構造を平板状素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st, 2nd, and 3rd optical path difference providing structure of a lens in a flat element. 第2実施形態に係る光学素子を説明する図である。It is a figure explaining the optical element which concerns on 2nd Embodiment. 第3実施形態に係る光学素子の製造方法で用いられる型空間及び光学素子を説明する図である。It is a figure explaining the type | mold space and optical element which are used with the manufacturing method of the optical element which concerns on 3rd Embodiment. 第4実施形態に係る光学素子を説明する図である。It is a figure explaining the optical element which concerns on 4th Embodiment. 第5実施形態に係る光学素子を説明する図である。It is a figure explaining the optical element which concerns on 5th Embodiment. 図13A及び13Bは、図3A等に示す光学素子の変形例を説明する図である。13A and 13B are diagrams illustrating a modification of the optical element shown in FIG. 3A and the like.
〔第1実施形態〕
A)金型及びレンズ
 以下、本発明の第1実施形態に係る光学素子及び光学素子の製造方法について、図面を参照しつつ詳細に説明する。
[First Embodiment]
A) Mold and Lens Hereinafter, the optical element and the optical element manufacturing method according to the first embodiment of the present invention will be described in detail with reference to the drawings.
 図1に示すように、本実施形態の製造方法を実施するための射出成形装置100は、成形金型40を備え、成形金型40は、固定型である第1金型41と可動型である第2金型42とを備える。ここで、第2金型42は、開閉駆動装置79に駆動されてAB方向に往復移動可能になっている。第2金型42を第1金型41に向けて移動させ、両金型41,42をパーティング面PS1,PS2で型合わせして型締めすることにより、図2に部分的に拡大して示すように、光学素子としてのレンズ10を成形するための型空間CVと、これに樹脂を供給するための流路空間FCとが形成される。なお、型空間CVや流路空間FCは成形金型40内に複数個形成される場合もある。 As shown in FIG. 1, an injection molding apparatus 100 for carrying out the manufacturing method of the present embodiment includes a molding die 40, and the molding die 40 is a first die 41 that is a fixed die and a movable die. A second mold 42 is provided. Here, the 2nd metal mold | die 42 is driven by the opening / closing drive apparatus 79, and can be reciprocated to AB direction. The second mold 42 is moved toward the first mold 41, and both molds 41 and 42 are mold-matched with the parting surfaces PS1 and PS2 and are clamped to partially expand in FIG. As shown, a mold space CV for molding the lens 10 as an optical element and a flow path space FC for supplying resin to the mold space CV are formed. A plurality of mold spaces CV and flow path spaces FC may be formed in the molding die 40.
 図2Aに示すように、型空間CVは、第1及び第2転写面S1,S2に挟まれた本体空間CV1と、第3、第4、第5、及び第6転写面S3,S4,S5,S6に囲まれたフランジ空間CV2とを備える。ここで、本体空間CV1に臨む一対の対向する第1及び第2転写面S1,S2は、図3A、4A、及び4Bに拡大して示すレンズ10のうち中央の光学機能部11の第1及び第2光学面OS1,OS2を形成するための部分である。この場合、一方の第1転写面S1は、他方の第2転写面S2よりも深く曲率が大きくなっており、第1光学面OS1の微細構造FS又は微細形状を転写するための微細な凹凸パターンFPが設けられている。一方、フランジ空間CV2を囲む第3、第4、第5、及び第6転写面S3,S4,S5,S6は、レンズ10のうちフランジ部12を形成するための部分である。ここで、フランジ空間CV2に臨む第3、第4、及び第6転写面S3,S4,S6は、図3A等に拡大して示すレンズ10のうち第1、第2、及び第3フランジ面12a,12b,12cを形成するための部分である。また、フランジ空間CV2に臨む第5転写面S5は、レンズ10の外周側面SSを形成するための部分である。詳細は後述するが、図3A等に示すフランジ部12の第2フランジ面12bには、その最上面2bに凸状の文字マーキングM1とゲート識別用マーキングM2とが設けられている。この文字マーキングM1及びゲート識別用マーキングM2を形成するために、第6転写面S6には、凹部MS1,MS2がそれぞれ設けられている。なお、流路空間FCは、図2A、3A等に示す成形品MPのうちランナー部RPを形成する空間として、ランナー部分RSを有しており、このランナー部分RSは、ゲート部分GSを介して型空間CVに連通している。このゲート部分GSの空間により、成形品MPにおいてレンズ10とランナー部RPとをつなぐゲート部GPが形成される。 As shown in FIG. 2A, the mold space CV includes the main body space CV1 sandwiched between the first and second transfer surfaces S1 and S2, and the third, fourth, fifth, and sixth transfer surfaces S3, S4, and S5. , S6 and a flange space CV2 surrounded by S6. Here, the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 are the first and second optical function portions 11 in the center of the lens 10 shown enlarged in FIGS. 3A, 4A, and 4B. This is a portion for forming the second optical surfaces OS1 and OS2. In this case, one first transfer surface S1 is deeper and larger in curvature than the other second transfer surface S2, and a fine uneven pattern for transferring the fine structure FS or the fine shape of the first optical surface OS1. An FP is provided. On the other hand, the third, fourth, fifth, and sixth transfer surfaces S3, S4, S5, and S6 surrounding the flange space CV2 are portions for forming the flange portion 12 of the lens 10. Here, the third, fourth, and sixth transfer surfaces S3, S4, and S6 facing the flange space CV2 are the first, second, and third flange surfaces 12a of the lens 10 shown in an enlarged view in FIG. 3A and the like. , 12b, and 12c. The fifth transfer surface S5 facing the flange space CV2 is a portion for forming the outer peripheral side surface SS of the lens 10. Although the details will be described later, a convex character marking M1 and a gate identification marking M2 are provided on the uppermost surface 2b of the second flange surface 12b of the flange portion 12 shown in FIG. 3A and the like. In order to form the character marking M1 and the gate identification marking M2, the sixth transfer surface S6 is provided with recesses MS1 and MS2, respectively. The flow path space FC has a runner part RS as a space for forming the runner part RP in the molded product MP shown in FIGS. 2A, 3A, etc., and the runner part RS is interposed via the gate part GS. It communicates with the mold space CV. The space of the gate portion GS forms a gate portion GP that connects the lens 10 and the runner portion RP in the molded product MP.
 図3A、4A、及び4B等に示す成形品MPのうち、本体であるレンズ10は、上述のように、光学的機能を有する光学機能部11と、光学機能部11の外縁から半径方向外側に設けられた略環状のフランジ部12とを備える。レンズ10は、第1光学面OS1側の突起が大きな肉厚型の光ピックアップ装置用の対物レンズである。また、レンズ10はプラスチックレンズである。本実施形態におけるプラスチック材料は、例えばシクロオレフィン樹脂であり、三井化学株式会社製の商品名APEL、日本ゼオン株式会社製の商品名ZEONEXを用いることができる。また、レンズ10は、レンズ10の軸上レンズ厚をd(mm)とし、500nm以下の波長の光束におけるレンズ10の焦点距離をf(mm)としたときに、0.8≦d/f≦2.0を満たすものとなっている。 Of the molded product MP shown in FIGS. 3A, 4A, 4B, etc., the lens 10 as the main body has an optical function part 11 having an optical function and an outer edge of the optical function part 11 radially outward as described above. And a substantially annular flange portion 12 provided. The lens 10 is an objective lens for a thick-type optical pickup device having a large protrusion on the first optical surface OS1 side. The lens 10 is a plastic lens. The plastic material in the present embodiment is, for example, a cycloolefin resin, and trade name APEL manufactured by Mitsui Chemicals, Inc., or trade name ZEONEX manufactured by Nippon Zeon Co., Ltd. can be used. The lens 10 has an on-axis lens thickness d (mm) and a focal length of the lens 10 in a light beam having a wavelength of 500 nm or less is f (mm). 2.0 is satisfied.
 光学機能部11において、第1光学面OS1は、多波長互換のため、回折構造の段差を有する微細構造FS(複数の段差からなる光路差付与構造)を有している。つまり、レンズ10は、短波長で高開口数の規格と、中波長で中程度の開口数の規格と、長波長で低開口数の規格とに対応する3波長互換光学素子であり、第1光学面OS1に設けた微細構造FSは、各波長に適合して集光を可能にする形状を有している。単玉のレンズ10において、図示の例では、光源側の非球面光学面に光軸OAを含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸OAを中心とする同心円状に形成されている。図示していないが、中央領域CNには第1光路差付与構造が形成され、中間領域MDには第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造が形成されている。本実施の形態では、第3光路差付与構造はブレーズ型の回折構造である。レンズ10の中央領域CNに形成された第1光路差付与構造は、図5に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造である。第1基礎構造は、第1基礎構造を通過した第1光束(第1の波長;例えば405nm)の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束(第2の波長;例えば658nm)の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束(第3の波長;例えば785nm)の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。少なくとも中央領域CNの光軸OA付近に設けられる第1基礎構造は、その段差が光軸OAとは逆の方向を向いている。第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。少なくとも中央領域CNの光軸OA付近に設けられる第2基礎構造は、その段差が光軸OAの方向を向いており、第1基礎構造と第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化する。なお、レンズ10は、例えば波長405nmで開口数(NA)0.85のBD(Blu-ray Disc)にのみ対応するレンズとしてもよい。 In the optical function unit 11, the first optical surface OS1 has a fine structure FS (optical path difference providing structure including a plurality of steps) having a step of a diffractive structure in order to be compatible with multiple wavelengths. That is, the lens 10 is a three-wavelength compatible optical element corresponding to a short wavelength, high numerical aperture standard, a medium wavelength, medium numerical aperture standard, and a long wavelength, low numerical aperture standard. The fine structure FS provided on the optical surface OS1 has a shape that allows light collection in conformity with each wavelength. In the illustrated example of the single lens 10, in the illustrated example, a central region CN including the optical axis OA on the aspherical optical surface on the light source side, an intermediate region MD disposed around the center region CN, and a peripheral region disposed further around the center region CN. OT is formed concentrically around the optical axis OA. Although not shown, a first optical path difference providing structure is formed in the central region CN, and a second optical path difference providing structure is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the peripheral region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The first optical path difference providing structure formed in the central region CN of the lens 10 is a structure in which the first basic structure and the second basic structure are overlaid as shown in FIG. The first basic structure makes the first-order diffracted light quantity of the first light beam (first wavelength; eg, 405 nm) that has passed through the first basic structure larger than any other order diffracted light quantity, and passes through the first basic structure. The first-order diffracted light quantity of the second light flux (second wavelength; for example, 658 nm) is made larger than any other order diffracted light quantity, and the third light flux (third wavelength; for example, 785 nm) that has passed through the first basic structure. ) Of the first order diffracted light amount is made larger than any other order diffracted light amount. At least the first basic structure provided in the vicinity of the optical axis OA of the central region CN has a step in a direction opposite to the optical axis OA. The second basic structure makes the second-order diffracted light quantity of the first light beam that has passed through the second basic structure larger than the diffracted light quantity of any other order, and the first-order of the second light beam that has passed through the second basic structure. The diffracted light quantity is made larger than any other order diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order diffracted light quantity. In the second basic structure provided at least near the optical axis OA in the central region CN, the step is directed in the direction of the optical axis OA, and the wavelength of the incident light beam is longer in the first basic structure and the second basic structure. When this is changed, the spherical aberration changes in the direction of insufficient correction. For example, the lens 10 may be a lens corresponding only to a BD (Blu-ray) Disc) having a wavelength of 405 nm and a numerical aperture (NA) of 0.85.
 光学機能部11において、一方の第1光学面OS1は、レーザー光源側に配置されるものであり、光情報記録媒体である光ディスク側に配置される他方の第2光学面OS2よりも大きく突出し曲率が大きくなっている。さらに、第1光学面OS1の曲率が極めて大きいため、レンズ10は、中心部で肉厚が極めて大きく、偏肉比p(最厚部の厚み÷最薄部の厚み)が大きくなっている。 In the optical function unit 11, one first optical surface OS1 is disposed on the laser light source side and protrudes larger than the other second optical surface OS2 disposed on the optical disk side which is an optical information recording medium. Is getting bigger. Further, since the curvature of the first optical surface OS1 is extremely large, the lens 10 has a very large thickness at the center and a large thickness ratio p (thickness of the thickest portion ÷ thickness of the thinnest portion).
 図示を省略するが、レンズ10の光源側の第1光学面OS1には、3層の反射防止膜が設けられている。この反射防止膜は、真空蒸着法を用いて設ける。第1光学面OS1上の反射防止膜の材料は、例えばSiO、ZrO等を用いる。また、レンズ10の光ディスク側の第2光学面OS2には、7層の反射防止膜が設けられている。反射防止膜は、この真空蒸着法を用いて設ける。第2光学面OS2上の反射防止膜の材料は、例えばSiO、ZrO、SiOとAlとの混合材料等を用いる。 Although not shown, the first optical surface OS1 on the light source side of the lens 10 is provided with three layers of antireflection films. This antireflection film is provided using a vacuum deposition method. For example, SiO 2 or ZrO 2 is used as the material of the antireflection film on the first optical surface OS1. Further, the second optical surface OS2 on the optical disc side of the lens 10 is provided with a seven-layer antireflection film. The antireflection film is provided by using this vacuum deposition method. As a material of the antireflection film on the second optical surface OS2, for example, SiO 2 , ZrO 2 , a mixed material of SiO 2 and Al 2 O 3 , or the like is used.
 フランジ部12は、第1光学面OS1側に光軸OAに垂直な方向に延びる第1フランジ面12aと、第2光学面OS2側に光軸OAに垂直な方向に延びる第2フランジ面12b、第3フランジ面12cとを有する。第3フランジ面12cは、第2光学面OS2に隣接して延びており、アライメント用の端面としての鏡面となっている。第2フランジ面12bは、第3フランジ面12cの外周に設けられている。フランジ部12は、第2フランジ面12b側に段差構造b2を有する。段差構造b2は、レンズ10の外側の段差がレンズ10の中心側の段差よりも情報記録媒体側に向かって高くなっている。第2金型42の保持部74bの内側には、段差構造b2を形成するための段差状の凸転写面S22が設けられている。レンズ10が段差構造b2を有することにより、第2フランジ面12b側に第2コア部74aと保持部74bとの境界によるバリが生じても、バリを段差構造b2で形成される空間に収めることができる。これにより、成形時にバリの長さがばらつくことにより情報記録媒体とレンズ10との間の距離(WD:ワーキングディスタンス)が変化することを防止することができる。レンズ10の成形時には、フランジ部12の外周側面SSの一部にゲート部GPが形成されるが、成形金型40から取り出した後の仕上げ処理によって除去される。本実施形態の場合、ゲート部GPに延びるレンズ10の半径方向に垂直な方向に、フランジ部12の一部を含んでゲート部GPが直線状に切断されている。なお、この切断形状は、通常Dカット形状と呼ばれる。 The flange portion 12 has a first flange surface 12a extending in a direction perpendicular to the optical axis OA on the first optical surface OS1 side, a second flange surface 12b extending in a direction perpendicular to the optical axis OA on the second optical surface OS2 side, And a third flange surface 12c. The third flange surface 12c extends adjacent to the second optical surface OS2, and serves as a mirror surface as an end surface for alignment. The second flange surface 12b is provided on the outer periphery of the third flange surface 12c. The flange portion 12 has a step structure b2 on the second flange surface 12b side. In the step structure b <b> 2, the step on the outside of the lens 10 is higher toward the information recording medium side than the step on the center side of the lens 10. On the inner side of the holding portion 74b of the second mold 42, a step-shaped convex transfer surface S22 for forming the step structure b2 is provided. Since the lens 10 has the step structure b2, even if a burr due to the boundary between the second core portion 74a and the holding portion 74b occurs on the second flange surface 12b side, the burr is stored in the space formed by the step structure b2. Can do. Thereby, it is possible to prevent the distance (WD: working distance) between the information recording medium and the lens 10 from being changed due to the variation of the burr length during molding. At the time of molding the lens 10, the gate portion GP is formed on a part of the outer peripheral side surface SS of the flange portion 12, but is removed by a finishing process after taking out from the molding die 40. In the case of this embodiment, the gate part GP is cut in a straight line including a part of the flange part 12 in a direction perpendicular to the radial direction of the lens 10 extending to the gate part GP. This cut shape is usually called a D-cut shape.
 第2光学面OS2の最上面TP2は、フランジ部12のうち光ディスク側の第2フランジ面12bの段差構造b2の最上面TP1よりも突出している。これにより、レンズ10の光ディスク側の突出量を機能的に必要な最小限に抑えることができ、レンズ10が対物レンズである場合に、フランジ部12についてWDを確保しやすくなる。 The uppermost surface TP2 of the second optical surface OS2 protrudes from the uppermost surface TP1 of the step structure b2 of the second flange surface 12b on the optical disc side of the flange portion 12. Thereby, the protrusion amount of the lens 10 on the optical disk side can be suppressed to a functionally necessary minimum, and when the lens 10 is an objective lens, it becomes easy to secure WD for the flange portion 12.
 既に説明したように、第2フランジ面12bの段差構造b2の最上面TP1には、凸状の文字マーキングM1と半球状のゲート識別用マーキングM2とが設けられている。文字マーキングM1は、レンズ10を製造した際の製造治具等に関する情報を識別するためのものである。一方、ゲート識別用マーキングM2は、成形時のゲート部GPの位置を識別するためのものである。文字マーキングM1は、ゲート部GPを基準に反時計まわりに90°の位置に設けられている。ゲート識別用マーキングM2は、ゲート部GPの反対側の位置に設けられている。ゲート識別用マーキングM2と、文字マーキングM1の最初の一文字目との相対位置は、90°となっている。これは、第2金型42へ文字マーキングM1に対応する溝加工を行う際に、加工の再現性や精度を高め、文字マーキングM1の検出の信頼性を高めるためである。 As already described, convex character marking M1 and hemispherical gate identification marking M2 are provided on the uppermost surface TP1 of the step structure b2 of the second flange surface 12b. The character marking M1 is for identifying information relating to a manufacturing jig or the like when the lens 10 is manufactured. On the other hand, the gate identification marking M2 is for identifying the position of the gate part GP at the time of molding. The character marking M1 is provided at a position of 90 ° counterclockwise with respect to the gate part GP. The gate identification marking M2 is provided on the opposite side of the gate part GP. The relative position between the gate identification marking M2 and the first first character of the character marking M1 is 90 °. This is for improving the reproducibility and accuracy of processing and improving the detection reliability of the character marking M1 when the second die 42 is subjected to the groove processing corresponding to the character marking M1.
 図3A及び3Bに示すように、文字マーキングM1の高さh1及びゲート識別用マーキングM2の高さh2は、それぞれ0.003mm以上0.020mm以下となっている。文字マーキングM1及びゲート識別用マーキングM2の高さh1,h2を上記下限以上とすることにより、文字マーキングM1及びゲート識別用マーキングM2の視認性を確保している。また、文字マーキングM1及びゲート識別用マーキングM2の高さh1,h2を上記上限以下とすることにより、文字マーキングM1及びゲート識別用マーキングM2と光ディスク等の他の部材が衝突しやすくなることを回避している。なお、レンズ10が複数種類の光情報記録媒体に対して互換性を持たせた対物レンズである場合、全種類の光情報記録媒体に対してWD(ワーキングディスタンス)の確保が必要となり、例えばCD(基板厚1.2mm)のように基板厚が厚いものについてもWDを確保するために、上記のように文字マーキングM1及びゲート識別用マーキングM2の高さh1,h2を0.020mm以下とすることが望ましい。より確実にWDを確保するためには、文字マーキングM1及びゲート識別用マーキングM2の高さh1,h2を0.010mm以下とすることがより望ましい。 3A and 3B, the height h1 of the character marking M1 and the height h2 of the gate identification marking M2 are 0.003 mm or more and 0.020 mm or less, respectively. By making the heights h1 and h2 of the character marking M1 and the gate identification marking M2 equal to or higher than the lower limit, the visibility of the character marking M1 and the gate identification marking M2 is secured. Further, by making the heights h1 and h2 of the character marking M1 and the gate identification marking M2 equal to or less than the above upper limit, it is avoided that the character marking M1 and the gate identification marking M2 easily collide with other members such as an optical disk. is doing. When the lens 10 is an objective lens that is compatible with a plurality of types of optical information recording media, it is necessary to ensure a WD (working distance) for all types of optical information recording media. In order to secure a WD even for a substrate having a large thickness such as (substrate thickness 1.2 mm), the heights h1 and h2 of the character marking M1 and the gate identification marking M2 are set to 0.020 mm or less as described above. It is desirable. In order to ensure WD more reliably, it is more desirable that the heights h1 and h2 of the character marking M1 and the gate identification marking M2 be 0.010 mm or less.
 図4Bに示すように、文字マーキングM1は、例えば4つの文字部J1,J2,J3,J4の構成要素を有する。文字部J1,J2,J3,J4は、ゲート部GPから反時計回りに90°の位置を起点として、最初の一文字目である文字部J1から順に第2フランジ面12bの円弧上に並んでいる。文字部J1,J2,J3,J4は、1辺の長さDの正方形領域内に収まる大きさとなっている。具体的には、長さDは、0.05mm以上0.30mm以下となっている。文字部J1,J2,J3,J4を収める正方形領域を上記下限以上とすることにより、転写性を確保できる程度に文字部J1,J2,J3,J4のサイズを大きくして、文字部J1,J2,J3,J4がきれいに転写されずに埋もれてしまう又はつぶれてしまうことを防止することができる。一方、文字部J1,J2,J3,J4を収める正方形領域を上記上限以下とすることにより、フランジ部12におけるスペース確保を容易にしている。また、各文字ごとの間隔は密集している方が視認性がよくなるため好ましいが、それぞれの文字の間隔が大きく開いていてもよい。 As shown in FIG. 4B, the character marking M1 has, for example, constituent elements of four character parts J1, J2, J3, and J4. The character portions J1, J2, J3, and J4 are arranged on the arc of the second flange surface 12b in order from the character portion J1, which is the first character, starting from a position of 90 ° counterclockwise from the gate portion GP. . The character portions J1, J2, J3, and J4 are sized to fit within a square region having a side length D. Specifically, the length D is 0.05 mm or more and 0.30 mm or less. By setting the square area containing the character portions J1, J2, J3, and J4 to be equal to or higher than the lower limit, the size of the character portions J1, J2, J3, and J4 is increased to the extent that transferability can be ensured. , J3 and J4 can be prevented from being buried or crushed without being clearly transferred. On the other hand, the space in the flange portion 12 can be easily secured by setting the square area that accommodates the character portions J1, J2, J3, and J4 to be equal to or less than the above upper limit. Moreover, although it is preferable that the space | interval for each character is dense, since visibility becomes good, the space | interval of each character may open large.
 図1に戻って、固定側の第1金型41は、図2に示す型空間CVを第1金型41から形成する中心部としての第1コア部64aと、第1コア部64aの周囲に設けられる周辺部としての保持部64bと、第1コア部64aや保持部64bを背後から支持する受板64cとを備える。ここで、第1コア部64aは、保持部64bに形成された貫通孔64g中に組み込まれて不図示のボルトで固定されている。第1コア部64aの先端面は、主要な部分がレンズ10の第1光学面OS1を形成するための第1転写面S1となっている。そのため、第1転写面S1を有する第1コア部64aの周りに第3転写面S3を有する保持部64bが配置されることで、第1コア部64aの外縁部が、本体空間CV1とフランジ空間CV2との境界に食い込んだ状態となっている。なお、保持部64bの端面64eには、図3に示す成形品MPのランナー部RP等となるべき凹部が形成されている。 Returning to FIG. 1, the first mold 41 on the fixed side includes a first core part 64 a as a central part that forms the mold space CV shown in FIG. 2 from the first mold 41, and the periphery of the first core part 64 a. A holding part 64b as a peripheral part provided in the base plate and a receiving plate 64c for supporting the first core part 64a and the holding part 64b from the back are provided. Here, the first core portion 64a is incorporated in a through hole 64g formed in the holding portion 64b and fixed with a bolt (not shown). The leading end surface of the first core portion 64a is a first transfer surface S1 for forming a first optical surface OS1 of the lens 10 at a main portion. Therefore, the holding portion 64b having the third transfer surface S3 is arranged around the first core portion 64a having the first transfer surface S1, so that the outer edge portion of the first core portion 64a is connected to the main body space CV1 and the flange space. It is in a state of biting into the boundary with CV2. In addition, the end surface 64e of the holding portion 64b is formed with a concave portion to be the runner portion RP of the molded product MP shown in FIG.
 可動側の第2金型42は、図2Aに示す型空間CVを第2金型42から形成する中心部としての第2コア部74aと、第2コア部74aの周囲に設けられる周辺部としての保持部74bと、第2コア部74aや保持部74bを背後から支持する受板74cと、成形品MPのランナー部RP等を突き出して離型するための突出部材74pと、第2コア部74a及び突出部材74pを背後から押す可動ロッド75,76と、可動ロッド75,76を軸AX方向に進退移動させる進退機構部78とを備える。 The second mold 42 on the movable side includes a second core part 74a as a central part that forms the mold space CV shown in FIG. 2A from the second mold 42, and a peripheral part provided around the second core part 74a. Holding part 74b, a receiving plate 74c that supports the second core part 74a and the holding part 74b from behind, a projecting member 74p for protruding and releasing the runner part RP of the molded product MP, and the second core part The movable rods 75 and 76 that push the 74a and the projecting member 74p from the back, and the advance / retreat mechanism 78 that moves the movable rods 75 and 76 in the axis AX direction are provided.
 第2コア部74aは、保持部74bに形成された貫通孔74g中に軸AX方向に沿って進退移動可能に組み込まれている。突出部材74pも、保持部74bに形成された貫通孔74h中に軸AX方向に沿って進退移動可能に組み込まれている。ここで、第2コア部74aは、バネ74sによって一定以上の力で後方に付勢されている。つまり、第2コア部74aは、前進する可動ロッド75に駆動されて第1金型41側に前進し、可動ロッド75の後退に伴って伸張するバネ74sに従って自動的に後退して元の位置に復帰する。また、突出部材74pは、可動ロッド76に駆動されて第1金型41側に前進し、型閉じの際に後述する第1金型41側の保持部64bによる外力や、樹脂流入時の樹脂圧力により後退して元の位置に復帰する。また、第2コア部74aと同様に、突出部材74pにもバネを用いることで自動的に後退して元の位置に復帰するようにしてもよい。なお、保持部74bの端面74eには、図3Aに示す成形品MPのランナー部RP等となるべき凹部が形成されている。 The second core portion 74a is incorporated in a through hole 74g formed in the holding portion 74b so as to be movable back and forth along the axis AX direction. The projecting member 74p is also incorporated in a through hole 74h formed in the holding portion 74b so as to be movable back and forth along the axis AX direction. Here, the 2nd core part 74a is urged | biased back by the force more than fixed by the spring 74s. That is, the second core portion 74a is driven by the moving movable rod 75 to move forward and moves forward to the first mold 41 side, and automatically retracts according to the spring 74s that expands as the movable rod 75 moves backward. Return to. Further, the protruding member 74p is driven by the movable rod 76 to advance toward the first mold 41 side, and when the mold is closed, an external force by a holding portion 64b on the first mold 41 side, which will be described later, or resin at the time of resin inflow Retreats by pressure and returns to the original position. Similarly to the second core portion 74a, the protruding member 74p may be automatically retracted and returned to its original position by using a spring. In addition, the end surface 74e of the holding portion 74b is formed with a recess that should become the runner portion RP of the molded product MP shown in FIG. 3A.
 なお、曲率の比較的大きい第1光学面OS1を固定側の金型で成形する場合、第1及び第2金型41,42の型開きの際に軸ずれによる光学面の変形が生じやすくなる可能性があるが、例えば実開平7-9945号公報に開示されるように型板にテーパーピンやテーパーブロックを使用することで解決可能である。
Note that when the first optical surface OS1 having a relatively large curvature is formed by a fixed mold, the optical surface is likely to be deformed due to an axial deviation when the first and second molds 41 and 42 are opened. Although there is a possibility, it can be solved by using a taper pin or a taper block for the template as disclosed in, for example, Japanese Utility Model Laid-Open No. 7-9945.
B)レンズの製造方法
 図6は、図1に示す成形金型40を用いた光学素子の製造方法を概念的に説明するフローチャートである。
B) Lens Manufacturing Method FIG. 6 is a flowchart conceptually illustrating a method of manufacturing an optical element using the molding die 40 shown in FIG.
 まず、第1及び第2金型41,42を作製する(ステップS11)。第2金型42の保持部74bの凸転写面S22に文字マーキングM1及びゲート識別用マーキングM2を形成するための凹部MS1,MS2を形成する。つまり、文字マーキングM1及びゲート識別用マーキングM2は、可動型である第2金型42によって形成される。凹部MS1,MS2の加工は、例えばレーザーマーカー、放電加工等によって行われる。なお、レーザーマーカーで加工した方が、マーキングの凸量が小さく認識しやすい。 First, the 1st and 2nd metal mold | dies 41 and 42 are produced (step S11). Concave portions MS1 and MS2 for forming the character marking M1 and the gate identification marking M2 are formed on the convex transfer surface S22 of the holding portion 74b of the second mold 42. That is, the character marking M1 and the gate identification marking M2 are formed by the second mold 42 that is a movable type. The recesses MS1 and MS2 are processed by, for example, a laser marker, electric discharge machining, or the like. It should be noted that the processing with the laser marker is easy to recognize because the convex amount of the marking is small.
 次に、第1及び第2金型41,42を射出成形装置100に取り付け、開閉駆動装置79を動作させ、第2金型42を第1金型41に向けて相対的に前進させることで型閉じを開始させる(ステップS12)。なお、両金型41,42の表面は、成形に適する温度まで加熱されている。 Next, the first and second molds 41 and 42 are attached to the injection molding apparatus 100, the opening / closing drive unit 79 is operated, and the second mold 42 is relatively advanced toward the first mold 41. Mold closing is started (step S12). Note that the surfaces of both molds 41 and 42 are heated to a temperature suitable for molding.
 開閉駆動装置79の閉動作を継続することにより、第1金型41と第2金型42とが接触する型当たり位置まで移動して型閉じが完了し、開閉駆動装置79の閉動作をさらに継続することにより、第1金型41と第2金型42とを必要な圧力で締め付ける型締めが行われる(ステップS13)。 By continuing the closing operation of the opening / closing drive device 79, the first mold 41 and the second mold 42 are moved to the mold contact position where they are in contact with each other, the mold closing is completed, and the opening / closing drive device 79 is further closed. By continuing, the mold clamping which clamps the 1st metal mold | die 41 and the 2nd metal mold | die 42 with required pressure is performed (step S13).
 次に、不図示の真空装置を動作させて、型締めされた第1金型41と第2金型42との間の型空間CV内を真空引きする(ステップS14)。これにより、型空間CVは適度に減圧された状態となり、比較的曲率の大きい第1転写面S1にも溶融樹脂が確実に充填される。 Next, a vacuum device (not shown) is operated to evacuate the mold space CV between the clamped first mold 41 and the second mold 42 (step S14). As a result, the mold space CV is appropriately decompressed, and the molten resin is reliably filled into the first transfer surface S1 having a relatively large curvature.
 次に、不図示の射出装置を動作させて、型空間CV中に、必要な圧力で溶融樹脂を注入する射出を行わせる(ステップS15)。そして、射出装置は、型空間CV中の樹脂圧を保つ。 Next, an injection device (not shown) is operated to inject the molten resin into the mold space CV at a necessary pressure (step S15). The injection device maintains the resin pressure in the mold space CV.
 溶融樹脂を型空間CVに導入した後、型空間CV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ(ステップS16)。 After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding (step S16).
 次に、開閉駆動装置79を動作させて、第2金型42を相対的に後退させる型開きが行われる(ステップS17)。第2金型42の後退に伴って第1金型41と第2金型42とが離間する。この結果、成形品MPすなわちレンズ10は、第2金型42側に残る。つまり、レンズ10は、可動側の第2金型42に埋め込むように保持された状態で第1金型41から離型される。 Next, the opening / closing drive device 79 is operated to perform mold opening for relatively moving the second mold 42 backward (step S17). As the second mold 42 moves backward, the first mold 41 and the second mold 42 are separated from each other. As a result, the molded product MP, that is, the lens 10 remains on the second mold 42 side. That is, the lens 10 is released from the first mold 41 while being held so as to be embedded in the movable second mold 42.
 次に、進退機構部78を動作させて、可動ロッド75,76により、第2金型42に残った成形品MPを第1金型41側に突き出す(ステップS18)。これにより、成形品MPの離型が行われる。この際、レンズ10は保持部74bから完全に押し出された状態となっている。 Next, the advance / retreat mechanism 78 is operated, and the molded product MP remaining in the second mold 42 is ejected to the first mold 41 side by the movable rods 75 and 76 (step S18). As a result, the molded product MP is released. At this time, the lens 10 is completely pushed out of the holding portion 74b.
 この状態で、不図示の取出装置を動作させて、成形品MPを第2金型42から離間させるとともに外部に搬出する(ステップS19)。成形品MPを搬送する際には、成形品MPのうち本体のレンズ10を除いた部分を把持する。この際、レンズ10の第2光学面OS2の曲率が小さく面深さが比較的浅いため、第2コア部74aの第2転写面S2への第2光学面OS2の張り付き力は比較的小さい。よって成形品MPを第2コア部74aから外しやすいので、レンズ10外周の一部に偏った力が加えられることを防止できる。
In this state, a take-out device (not shown) is operated to separate the molded product MP from the second mold 42 and carry it out (step S19). When transporting the molded product MP, the portion of the molded product MP excluding the lens 10 is gripped. At this time, since the curvature of the second optical surface OS2 of the lens 10 is small and the surface depth is relatively shallow, the sticking force of the second optical surface OS2 to the second transfer surface S2 of the second core portion 74a is relatively small. Therefore, since the molded product MP can be easily removed from the second core portion 74a, it is possible to prevent a biased force from being applied to part of the outer periphery of the lens 10.
C)光ピックアップ装置
 以下、図7を参照しつつ、レンズ10を組み込んだ光ピックアップ装置PU1の構成について説明する。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。ここで、レンズ10は、例えば異なる光ディスクであるBDとDVD(Digital Versatile Disc)とCDに対して適切に情報の記録及び/又は再生を行うことができる対物レンズである。
C) Optical Pickup Device Hereinafter, the configuration of the optical pickup device PU1 incorporating the lens 10 will be described with reference to FIG. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. Here, the lens 10 is an objective lens capable of appropriately recording and / or reproducing information on, for example, BD, DVD (Digital Versatile Disc), and CD which are different optical disks.
 光ピックアップ装置PU1は、レンズ10と、λ/4波長板QWPと、コリメートレンズCOLと、偏光ビームスプリッタBSと、ダイクロイックプリズムDPと,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザー光束(第1光束)を射出する第1半導体レーザーLD1(第1光源)、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザー光束(第2光束)を射出する第2半導体レーザーLD2(第2光源)、及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザー光束(第3光束)を射出する第3半導体レーザーLD3を一体化したレーザーユニットLDPと、センサーレンズSENと、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the lens 10, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, the dichroic prism DP, and the BD. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) of λ1 = 405 nm, a laser beam (second laser beam) emitted when information is recorded / reproduced with respect to a DVD (second laser beam of wavelength λ2 = 660 nm) A second semiconductor laser LD2 (second light source) that emits a light beam) and a third semiconductor that emits a laser light beam (third light beam) having a wavelength of λ3 = 785 nm that is emitted when information is recorded / reproduced with respect to the CD. It has a laser unit LDP integrated with a laser LD3, a sensor lens SEN, and a light receiving element PD as a photodetector.
 青紫色半導体レーザーLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、レンズ10に入射する。ここで、レンズ10の中央領域と中間領域と周辺領域により集光された光束は、保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. The light is converted into parallel light, converted from linearly polarized light into circularly polarized light by the λ / 4 wavelength plate QWP, and the diameter of the light flux is regulated by a diaphragm (not shown) and is incident on the lens 10. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the lens 10 becomes a spot formed on the information recording surface RL1 of the BD via the protective substrate PL1.
 情報記録面RL1上で情報ピットにより変調された反射光束は、再びレンズ10、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサーレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエーターAC1によりレンズ10をフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを光軸OA方向に変化させて、レンズ10に入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the lens 10 and a diaphragm (not shown), converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and converged by the collimating lens COL. The light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. Then, the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the lens 10 by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. The collimating lens COL as a means is changed in the direction of the optical axis OA, and can be corrected by changing the divergence angle or the convergence angle of the light beam incident on the lens 10.
 レーザーユニットLDPの半導体レーザーLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、レンズ10に入射する。ここで、レンズ10の中央領域と中間領域により集光された(周辺領域を通過した光束はフレアー化され、スポット周辺部を形成する)光束は、保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP as shown by the dotted line, passes through the polarization beam splitter BS, the collimating lens COL, and λ The light is converted from linearly polarized light to circularly polarized light by the / 4 wavelength plate QWP and enters the lens 10. Here, the light beam condensed by the central region and the intermediate region of the lens 10 (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is transmitted through the protective substrate PL2 to the information recording surface of the DVD. It becomes a spot formed on RL2, and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再びレンズ10を透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサーレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 passes through the lens 10 again, is converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and is converted into a convergent light beam by the collimating lens COL. The light is reflected by the beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 レーザーユニットLDPの半導体レーザーLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、レンズ10に入射する。ここで、レンズ10の中央領域により集光された(中間領域及び周辺領域を通過した光束はフレアー化され、スポット周辺部を形成する)光束は、保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。 The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP, as shown by the one-dot chain line, and passes through the polarization beam splitter BS and the collimating lens COL. The light is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP and enters the lens 10. Here, the light beam condensed by the central region of the lens 10 (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL3, and the information recording surface of the CD It becomes a spot formed on RL3.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再びレンズ10を透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサーレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 passes through the lens 10 again, is converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is converted into a convergent light beam by the collimating lens COL. The light is reflected by the beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
 以上説明した本実施形態の光学素子及び光学素子の製造方法によれば、フランジ部12に文字マーキングM1及びゲート識別用マーキングM2を設けているので、レンズ10を製造した際の製造治具等に関する情報を、文字マーキングM1等によって読み替え表等を用いることなく直接的に識別することが可能となる。これにより、その後のレンズ10の管理に際して識別性や作業性を高めることができる。なお、文字マーキングM1及びゲート識別用マーキングM2を凸状とすることにより、第2金型42の凸転写面S22に文字マーキングM1等に対応する窪み(凹部MS1,MS2)を形成することで転写面を設けることができ、転写面の加工が容易である。また、光情報記録媒体である光ディスク側の最上面TP1に文字マーキングM1等を設けることで、文字マーキングM1等の検出や認識が比較的容易になる。 According to the optical element and the optical element manufacturing method of the present embodiment described above, since the character marking M1 and the gate identification marking M2 are provided on the flange portion 12, the manufacturing jig when the lens 10 is manufactured, and the like. The information can be directly identified without using a replacement table or the like by the character marking M1 or the like. Thereby, the discriminability and workability can be enhanced in the subsequent management of the lens 10. In addition, by making the character markings M1 and the gate identification markings M2 convex, transfer is performed by forming depressions (recesses MS1, MS2) corresponding to the character markings M1 and the like on the convex transfer surface S22 of the second mold 42. A surface can be provided, and the transfer surface can be easily processed. Further, by providing the character marking M1 and the like on the uppermost surface TP1 on the optical disc side which is an optical information recording medium, detection and recognition of the character marking M1 and the like becomes relatively easy.
 また、光学機能部11の傾きをフランジ部12の最上面TP1が鏡面部である第3フランジ面12cの外周に設けられていることにより、鏡面部によって光学機能部11の傾きを測定する際に、測定用の反射光の低下を防止することができる。また、傾き測定用の第3フランジ面12cには、文字マーキングM1等を設けずに、その外周に文字マーキングM1等を設けることにより、反射光の低下を防止することを可能としている。また、レンズ設計の観点からは、光学機能部11から離れるほど、文字マーキングM1等をつけるためのスペースを確保しやすい。さらに、第2光学面OS2からより離れたところに文字マーキングM1等を設ける場合、第2金型42へ文字マーキングM1等に対応する溝を加工する際、第2光学面OS2(光学機能部11)への影響をより少なくすることができる。 Further, when the inclination of the optical function unit 11 is measured by the mirror surface part, the inclination of the optical function part 11 is provided on the outer periphery of the third flange surface 12c, which is the mirror surface part, of the uppermost surface TP1 of the flange part 12. , It is possible to prevent a decrease in reflected light for measurement. Further, the third flange surface 12c for measuring the inclination is not provided with the character marking M1 or the like, but is provided with the character marking M1 or the like on the outer periphery thereof, thereby making it possible to prevent the reflected light from being lowered. Further, from the viewpoint of lens design, the further away from the optical function unit 11, the easier it is to secure a space for attaching the character marking M1 and the like. Further, when the character marking M1 or the like is provided further away from the second optical surface OS2, when the groove corresponding to the character marking M1 or the like is processed in the second mold 42, the second optical surface OS2 (the optical function unit 11) is processed. ) Can be reduced.
〔実施例1〕
 以下、上述した実施形態のレンズ10の光学面の実施例について説明する。なお、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸OAの周りに軸対称な非球面に形成されている。
[Example 1]
Hereinafter, examples of the optical surface of the lens 10 according to the above-described embodiment will be described. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). Further, the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis OA and is defined by a mathematical formula obtained by substituting the coefficients shown in Table 1 into Formula 1.
 〔数1〕
Figure JPOXMLDOC01-appb-I000001
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
 〔数2〕
Figure JPOXMLDOC01-appb-I000002
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
 なお、hは光軸からの高さ、λは入射光束の波長、mは回折次数、B2iは光路差関数の係数である。 Here, h is the height from the optical axis, λ is the wavelength of the incident light beam, m is the diffraction order, and B 2i is the coefficient of the optical path difference function.
 実施例1のレンズ10の第1光路差付与構造を、図5を参照して説明する(図5は実施例1の実際の形状とは異なり、あくまでも概念図である)。実施例1の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ね合わされた光路差付与構造となっている。また、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。さらに、第1基礎構造BS1の平均ピッチが、第2基礎構造BS2の平均ピッチに比べて小さく、第1基礎構造の光軸OAとは逆の方向を向いている段差の数が、第2基礎構造の光軸OAの方向を向いている段差の数に比べて多い。第1基礎構造BS1と第2基礎構造BS2において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化する。 The first optical path difference providing structure of the lens 10 of the first embodiment will be described with reference to FIG. 5 (FIG. 5 is a conceptual diagram different from the actual shape of the first embodiment). In the first optical path difference providing structure of Example 1, the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region. The optical path difference providing structure is formed by superimposing the first basic structure BS1, which is a diffractive structure of the mold. Further, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA. Furthermore, the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis OA of the first foundation structure is the second foundation structure BS2. More than the number of steps facing the direction of the optical axis OA of the structure. In the first basic structure BS1 and the second basic structure BS2, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the direction of insufficient correction.
 また、実施例1の第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。第3基礎構造の段差は光軸OAと逆の方を向いており、第4基礎構造の段差は光軸OAの方を向いている。第3基礎構造と第4基礎構造において、第3基礎構造は、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化し、第4基礎構造は、入射する光束の波長がより長くなるように変化した場合に球面収差が補正不足に変化する。 In addition, the second optical path difference providing structure of Example 1 has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. It has become. The step of the third foundation structure faces in the opposite direction to the optical axis OA, and the step of the fourth foundation structure faces the optical axis OA. In the third foundation structure and the fourth foundation structure, when the third foundation structure changes so that the wavelength of the incident light beam becomes longer, the spherical aberration changes in the overcorrection direction, and the fourth foundation structure enters. If the wavelength of the light beam is changed so as to be longer, the spherical aberration changes to be undercorrected.
 実施例1の第3光路差付与構造は、第5基礎構造のみからなっている。第5基礎構造は、第5基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくするブレーズ型の回折構造である。 The third optical path difference providing structure of Example 1 is composed of only the fifth basic structure. In the fifth basic structure, the second-order diffracted light amount of the first light beam that has passed through the fifth basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the fifth basic structure. It is a blaze-type diffractive structure in which the amount of light is larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the fifth basic structure is larger than any other order of diffracted light.
 表1に実施例1のレンズデータを示す。表1において、「ri」は、曲率半径を示し、「di」は、次の面との間隔を表している。また、「ni」は、レンズ材料の屈折率を示す。 Table 1 shows the lens data of Example 1. In Table 1, “ri” represents the radius of curvature, and “di” represents the distance from the next surface. “Ni” indicates the refractive index of the lens material.
 〔表1〕
Figure JPOXMLDOC01-appb-I000003
[Table 1]
Figure JPOXMLDOC01-appb-I000003
 更に、実施例1のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状データを表2、表3に示す。表2、3に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 1. The actual shape data is shown in Tables 2 and 3. By substituting the data shown in Tables 2 and 3 into the equation shown in Equation 3, the actual shape data of each annular zone can be obtained.
 〔数3〕
Figure JPOXMLDOC01-appb-I000004
[Equation 3]
Figure JPOXMLDOC01-appb-I000004
 hは、光軸直交方向の光軸からの高さを表す。Aiは、非球面係数を示す。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Ai represents an aspheric coefficient.
 〔表2〕
Figure JPOXMLDOC01-appb-I000005
[Table 2]
Figure JPOXMLDOC01-appb-I000005
 〔表3〕
Figure JPOXMLDOC01-appb-I000006
[Table 3]
Figure JPOXMLDOC01-appb-I000006
 表2、3からわかるように、本実施例において、第1輪帯から第104輪帯までが中央領域であり、第105輪帯から第160輪帯までが中間領域であり、第161輪帯から第181輪帯までが周辺領域である。 As can be seen from Tables 2 and 3, in this example, the first zone to the 104th zone is the central region, the 105th zone to the 160th zone is the middle zone, and the 161th zone. To the 181st ring zone is the peripheral region.
 さらに、実施例1の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板状素子に設けた場合の概念断面図を、図8として示す。なお、実際は、光路差付与構造の段差面は光軸OAに対して斜めとなっているが、図8においては便宜上光軸OAに平行な方向として配置されている。第1光路差付与構造が設けられた中央領域がCNで示された領域であり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 Furthermore, FIG. 8 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 1 are provided in a flat element. Actually, the step surface of the optical path difference providing structure is inclined with respect to the optical axis OA, but in FIG. 8, it is arranged as a direction parallel to the optical axis OA for convenience. The central region where the first optical path difference providing structure is provided is the region indicated by CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the third optical path difference providing structure The peripheral area provided with is an area indicated by OT.
 次に、実施例1の反射防止膜について説明する。レンズ10のレーザー光源側の第1光学面OS1には、以下の表4に示す3層の反射防止膜が設けられている。反射防止膜は、真空蒸着法を用いて設ける。 Next, the antireflection film of Example 1 will be described. The first optical surface OS1 on the laser light source side of the lens 10 is provided with a three-layer antireflection film shown in Table 4 below. The antireflection film is provided using a vacuum deposition method.
 〔表4〕
Figure JPOXMLDOC01-appb-I000007
[Table 4]
Figure JPOXMLDOC01-appb-I000007
 また、レンズ10の光ディスク側の第2光学面OS2には、以下の表3に示す7層の反射防止膜が設けられている。反射防止膜は、真空蒸着法を用いて設ける。なお、表5中のL5とは、SiOとAlの混合材料であり、SiO:Al=90~99:1~10の混合比となっている。 The second optical surface OS2 on the optical disc side of the lens 10 is provided with a seven-layer antireflection film shown in Table 3 below. The antireflection film is provided using a vacuum deposition method. Note that L5 in Table 5 is a mixed material of SiO 2 and Al 2 O 3 and has a mixing ratio of SiO 2 : Al 2 O 3 = 90 to 99: 1 to 10.
 〔表5〕
Figure JPOXMLDOC01-appb-I000008
[Table 5]
Figure JPOXMLDOC01-appb-I000008
 以下、上述した実施形態のレンズ10の寸法等の実施例について説明する。
 図3Aに示すレンズ10の外径の直径g1は5mmであり、光学機能部11の軸上厚さg2は2.67mmとなっている。また、レンズ10の第1光学面OS1の面深さg3は1.930mmであり、第1光学面OS1の面径g4は4.015mmであり、第1光学面OS1の有効径g5は3.850mmとなっている。また、レンズ10の第2光学面OS2の面深さg6は0.087mmであり、第2光学面OS2の面径g7は3.033mmであり、第2光学面OS2の有効径g8は2.851mmとなっている。ここで、面径とは、光学面の直径のことをいい、有効径とは、光学面において光束が通過する部分の直径のことをいう。また、レンズ10のフランジ部12の光軸OA方向に平行な厚さg9は0.77mmであり、第1フランジ面12aのレンズ半径方向の幅g10は0.985mmであり、第2フランジ面12bのレンズ半径方向の幅g11は1.967mmとなっている。また、フランジ部12の最も薄い部分の厚さg12はで0.653mmあり、第2フランジ面12bの最上面TP1から第2光学面OS2の最上面TP2までの距離g13は0.03mmとなっている。また、アライメント用の端面12cの幅g14は0.082mmとなっている。また、文字マーキングM1及びゲート識別用マーキングM2の高さh1,h2は、0.010mmとなっている。図4Bに示すように、文字マーキングM1の構成要素である文字部J1,J2,J3,J4の正方形領域の1辺の長さDは、0.15mmとなっている。また、ゲートカット量d1は0.14mmとなっている。なお、ゲートカット量d1は、フランジ部12の一部を光軸OA方向から見たゲート部GPに延びるゲート軸方向に垂直に切除した部分のゲート軸方向の長さである。
Hereinafter, examples of dimensions and the like of the lens 10 according to the above-described embodiment will be described.
The outer diameter g1 of the lens 10 shown in FIG. 3A is 5 mm, and the on-axis thickness g2 of the optical function unit 11 is 2.67 mm. The surface depth g3 of the first optical surface OS1 of the lens 10 is 1.930 mm, the surface diameter g4 of the first optical surface OS1 is 4.015 mm, and the effective diameter g5 of the first optical surface OS1 is 3. It is 850 mm. The surface depth g6 of the second optical surface OS2 of the lens 10 is 0.087 mm, the surface diameter g7 of the second optical surface OS2 is 3.033 mm, and the effective diameter g8 of the second optical surface OS2 is 2. It is 851 mm. Here, the surface diameter refers to the diameter of the optical surface, and the effective diameter refers to the diameter of the portion of the optical surface through which the light beam passes. The thickness g9 of the flange portion 12 of the lens 10 parallel to the optical axis OA direction is 0.77 mm, the width g10 of the first flange surface 12a in the lens radial direction is 0.985 mm, and the second flange surface 12b. The lens width g11 in the lens radial direction is 1.967 mm. The thickness g12 of the thinnest portion of the flange portion 12 is 0.653 mm, and the distance g13 from the uppermost surface TP1 of the second flange surface 12b to the uppermost surface TP2 of the second optical surface OS2 is 0.03 mm. Yes. The width g14 of the alignment end face 12c is 0.082 mm. The heights h1 and h2 of the character marking M1 and the gate identification marking M2 are 0.010 mm. As shown in FIG. 4B, the length D of one side of the square area of the character portions J1, J2, J3, and J4, which are components of the character marking M1, is 0.15 mm. The gate cut amount d1 is 0.14 mm. Note that the gate cut amount d1 is the length in the gate axis direction of a portion of the flange portion 12 cut away perpendicularly to the gate axis direction extending to the gate portion GP when viewed from the optical axis OA direction.
〔第2実施形態〕
 以下、第2実施形態に係る光学素子及び光学素子の製造方法について説明する。なお、第2実施形態に係る光学素子及び光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, an optical element and a method for manufacturing the optical element according to the second embodiment will be described. The optical element and the method for manufacturing the optical element according to the second embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図9に示すように、フランジ部12のうち光ディスク側の第2フランジ面12bの段差構造b2の最上面TP1は、第2光学面OS2の最上面TP2よりも突出している。第2フランジ面12bが第2光学面OS2の最上面TP2よりも突出していることにより、レンズ10をトレー等の載置部材上に載置する際に、第2光学面OS2を下向きにして置いても、フランジ部12がガードとなって第2光学面OS2が載置部材に接しないようにでき、第2光学面OS2に傷がつかない。 As shown in FIG. 9, the top surface TP1 of the step structure b2 of the second flange surface 12b on the optical disc side of the flange portion 12 protrudes from the top surface TP2 of the second optical surface OS2. Since the second flange surface 12b protrudes from the uppermost surface TP2 of the second optical surface OS2, when the lens 10 is placed on a placement member such as a tray, the second optical surface OS2 is placed downward. However, the flange portion 12 serves as a guard so that the second optical surface OS2 does not contact the mounting member, and the second optical surface OS2 is not damaged.
〔第3実施形態〕
 以下、第3実施形態に係る光学素子及び光学素子の製造方法について説明する。なお、第3実施形態に係る光学素子及び光学素子の製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, an optical element and a method for manufacturing the optical element according to the third embodiment will be described. The optical element and the method for manufacturing the optical element according to the third embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図10に示すように、本実施形態において、第1実施形態における第1及び第2金型41,42が逆に配置されている。つまり、第1金型41が可動型となっており、第2金型42が固定型となっている。 As shown in FIG. 10, in the present embodiment, the first and second molds 41 and 42 in the first embodiment are arranged in reverse. That is, the first mold 41 is a movable mold, and the second mold 42 is a fixed mold.
〔第4実施形態〕
 以下、第4実施形態に係る光学素子について説明する。なお、第4実施形態に係る光学素子は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Fourth Embodiment]
The optical element according to the fourth embodiment will be described below. The optical element according to the fourth embodiment is a modification of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment.
 図11に示すように、レンズ10において、フランジ部12の局所部分をえぐるようにゲート部GPが切断されている。なお、この切断形状は、通常Uカット形状と呼ばれる。 As shown in FIG. 11, in the lens 10, the gate part GP is cut so as to go around the local part of the flange part 12. This cut shape is usually called a U-cut shape.
〔第5実施形態〕
 以下、第5実施形態に係る光学素子について説明する。なお、第5実施形態に係る光学素子は、第4実施形態を変形したものであり、特に説明しない部分については、第4実施形態と同様であるものとする。
[Fifth Embodiment]
The optical element according to the fifth embodiment will be described below. The optical element according to the fifth embodiment is a modification of the fourth embodiment, and parts that are not particularly described are the same as those in the fourth embodiment.
 図12に示すように、レンズ10において、ゲート部GP付近のフランジ部12の一部をその外周に沿って切断されている。さらに、フランジ部12の局所部分をえぐるようにゲート部GPが切断されている。 As shown in FIG. 12, in the lens 10, a part of the flange portion 12 near the gate portion GP is cut along the outer periphery thereof. Further, the gate portion GP is cut so as to go around the local portion of the flange portion 12.
 以下、図12に示すレンズ10の寸法等について説明する。レンズ10において、例えばゲートカット量d1は0.2mmであり、円弧カット量d2は0.08mm以下であり、全カット範囲d3は1.2mm以上2mm以下となっている。なお、ゲートカット量d1は、レンズ10の外径からフランジ部12の局所部分をえぐった最も深い部分までの光軸OA方向から見たゲート部GPに延びるゲート軸方向の長さである。また、円弧カット量d2は、フランジ部12をその外周に沿って切除した部分のゲート軸方向の長さである。また、全カット範囲d3は、フランジ部12の一部をその外周に沿って切除した部分のゲート軸方向に垂直な方向の長さである。 Hereinafter, dimensions and the like of the lens 10 shown in FIG. 12 will be described. In the lens 10, for example, the gate cut amount d1 is 0.2 mm, the arc cut amount d2 is 0.08 mm or less, and the total cut range d3 is 1.2 mm or more and 2 mm or less. The gate cut amount d1 is the length in the gate axis direction extending from the outer diameter of the lens 10 to the deepest portion of the flange portion 12 as viewed from the optical axis OA direction. The arc cut amount d2 is the length in the gate axis direction of the portion of the flange portion 12 cut away along the outer periphery thereof. Further, the total cut range d3 is a length in a direction perpendicular to the gate axis direction of a portion obtained by cutting a part of the flange portion 12 along the outer periphery thereof.
 以上、実施形態に即して本発明を説明したが本発明は、上記実施形態に限定されるものではない。例えば第1金型41と第2金型42とを水平に配置する必要はなく、第1金型41と第2金型42とを上下に配置する竪型の成形金型とすることもできる。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment. For example, it is not necessary to arrange the first mold 41 and the second mold 42 horizontally, and it may be a vertical mold in which the first mold 41 and the second mold 42 are arranged vertically. .
 上記実施形態では、コア部64aの戻し力をバネによって与えているが、バネ以外の手段でコア部64aを戻すこともできる。 In the above embodiment, the return force of the core portion 64a is given by the spring, but the core portion 64a can be returned by means other than the spring.
 上記実施形態において、レンズ10の外周側面SSが円筒面であるとしたが、外周側面SSは光軸OAに対称な形状で無くてもよい。すなわち、外周側面SSは略角柱面であってもよいし、円筒面と角柱面を組み合せた面であってもよい。また、外周側面SSに僅かなテーパーを形成することができ、保持部74bの第5転写面S5にも僅かなテーパーを形成することができる。 In the above embodiment, the outer peripheral side surface SS of the lens 10 is a cylindrical surface, but the outer peripheral side surface SS may not have a shape symmetrical to the optical axis OA. That is, the outer peripheral side surface SS may be a substantially prismatic surface, or a surface obtained by combining a cylindrical surface and a prismatic surface. Further, a slight taper can be formed on the outer peripheral side surface SS, and a slight taper can also be formed on the fifth transfer surface S5 of the holding portion 74b.
 上記実施形態において、レンズ10の光学面は、光学面に微細構造FS等を設けずに、平滑なものであってもよい。 In the above embodiment, the optical surface of the lens 10 may be smooth without providing the microstructure FS or the like on the optical surface.
 上記実施形態において、レンズ10がレーザー光源と対物レンズとの間に配置されるカップリングレンズであってもよい。 In the above embodiment, the lens 10 may be a coupling lens disposed between the laser light source and the objective lens.
 上記実施形態において、文字マーキングM1を文字のみで構成されるとしたが、文字、図形、記号等の組み合わせとしてもよい。また、文字状マーキングとして、図形や記号のみを構成要素としてもよい。 In the above embodiment, the character marking M1 is composed only of characters, but may be a combination of characters, figures, symbols, and the like. Moreover, only a figure and a symbol are good also as a component as a character-like marking.
 上記実施形態において、文字マーキングM1の構成要素を4つの文字部J1,J2,J3,J4としたが、構成要素の数を適宜変更してもよい。また、文字マーキングM1やゲート識別用マーキングM2の形状も適宜変更することもできる。例えば、ゲート識別用マーキングM2は半球状に限らず、凸状の線形状であってもよい。具体的には、図13A及び13Bに示すように凸状の3本線形状とすることもできる。 In the above embodiment, the constituent elements of the character marking M1 are the four character portions J1, J2, J3, and J4, but the number of constituent elements may be changed as appropriate. In addition, the shapes of the character marking M1 and the gate identification marking M2 can be changed as appropriate. For example, the gate identification marking M2 is not limited to a hemispherical shape but may be a convex line shape. Specifically, as shown in FIGS. 13A and 13B, a convex three-line shape can be used.

Claims (16)

  1.  光ピックアップ装置に組み込まれる光学素子であって、
     樹脂で形成され、
     光学機能部と、当該光学機能部の周囲に形成されたフランジ部とを有し、
     前記フランジ部の光情報記録媒体側の最上面に凸状の文字マーキングを設けた、光学素子。
    An optical element incorporated in an optical pickup device,
    Formed of resin,
    An optical function part, and a flange part formed around the optical function part,
    An optical element provided with convex character markings on the uppermost surface of the flange portion on the optical information recording medium side.
  2.  前記凸状の文字マーキングの高さhは、0.003mm≦h≦0.020mmである、請求項1に記載の光学素子。 The optical element according to claim 1, wherein a height h of the convex character marking is 0.003 mm ≦ h ≦ 0.020 mm.
  3.  前記凸状の文字マーキングの構成要素は、1辺の長さがDの正方形領域内に収まる大きさであり、
     長さDは、0.05mm≦D≦0.30mmである、請求項1に記載の光学素子。
    The component of the convex character marking is sized to fit within a square region having a side length of D,
    The optical element according to claim 1, wherein the length D is 0.05 mm ≦ D ≦ 0.30 mm.
  4.  前記フランジ部は、樹脂の導入跡であるゲート部の反対側に、ゲート識別用マーキングをさらに有する、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the flange portion further has a gate identification marking on the opposite side of the gate portion which is a resin introduction trace.
  5.  前記光学機能部は、第1光学面と、前記第1光学面の光情報記録媒体側に配置される第2光学面とを有し、
     前記フランジ部の光情報記録媒体側の最上面の方が、前記第2光学面の最上面よりも突出している、請求項1に記載の光学素子。
    The optical function unit has a first optical surface and a second optical surface arranged on the optical information recording medium side of the first optical surface,
    The optical element according to claim 1, wherein an uppermost surface of the flange portion on the optical information recording medium side protrudes from an uppermost surface of the second optical surface.
  6.  前記光学機能部は、第1光学面と、前記第1光学面の光情報記録媒体側に配置される第2光学面とを有し、
     前記第2光学面の最上面の方が、前記フランジ部の光情報記録媒体側の最上面よりも突出している、請求項1に記載の光学素子。
    The optical function unit has a first optical surface and a second optical surface arranged on the optical information recording medium side of the first optical surface,
    The optical element according to claim 1, wherein an uppermost surface of the second optical surface protrudes from an uppermost surface on the optical information recording medium side of the flange portion.
  7.  前記第1光学面は、前記第2光学面よりも大きな曲率を有する、請求項5に記載の光学素子。 The optical element according to claim 5, wherein the first optical surface has a larger curvature than the second optical surface.
  8.  前記ゲート識別用マーキングと、前記文字マーキングの最初の一文字目との相対位置が、90°である、請求項1に記載の光学素子。 The optical element according to claim 1, wherein a relative position between the gate identification marking and the first character of the character marking is 90 °.
  9.  前記光学機能部の傾きを測定可能とする反射光を生じさせる鏡面部を有し、
     前記フランジ部の光情報記録媒体側の最上面は、前記鏡面部の外周にある、請求項1に記載の光学素子。
    A mirror surface portion that generates reflected light that enables measurement of the inclination of the optical function portion;
    The optical element according to claim 1, wherein an uppermost surface of the flange portion on the optical information recording medium side is on an outer periphery of the mirror surface portion.
  10.  光情報記録媒体に対向して配置される対物レンズである、請求項1に記載の光学素子。 The optical element according to claim 1, wherein the optical element is an objective lens disposed to face the optical information recording medium.
  11.  光源と対物レンズとの間に配置されるカップリングレンズである、請求項1に記載の光学素子。 The optical element according to claim 1, which is a coupling lens disposed between the light source and the objective lens.
  12.  ブルーレイディスク用の光ピックアップ装置に組み込まれる、請求項1に記載の光学素子。 The optical element according to claim 1, which is incorporated in an optical pickup device for a Blu-ray disc.
  13.  光ピックアップ装置に組み込まれる光学素子を可動型及び固定型を有する射出成型装置を用いて成形する樹脂製の光学素子の製造方法であって、
     前記光学素子の光学機能部の周囲に形成されたフランジ部の光情報記録媒体側の最上面に文字状のマーキングを形成する工程を有し、
     前記文字状のマーキングは、前記可動型及び前記固定型のうちいずれか一方の転写によって形成される、光学素子の製造方法。
    A method for producing a resin-made optical element for molding an optical element incorporated in an optical pickup device using an injection molding apparatus having a movable mold and a fixed mold,
    Forming a letter-like marking on the uppermost surface of the optical information recording medium side of the flange portion formed around the optical function portion of the optical element;
    The method of manufacturing an optical element, wherein the character marking is formed by transferring one of the movable mold and the fixed mold.
  14.  前記文字状のマーキングは、前記可動型によって形成される、請求項13に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 13, wherein the character-like marking is formed by the movable mold.
  15.  前記可動型は、コア部と、前記コア部を周囲から保持する保持部とを有し、
     前記保持部の転写によって前記文字状のマーキングを形成する、請求項13に記載の光学素子の光学素子の製造方法。
    The movable mold has a core part and a holding part that holds the core part from the surroundings,
    The method of manufacturing an optical element of an optical element according to claim 13, wherein the character-like marking is formed by transferring the holding part.
  16.  前記固定型は、コア部と、前記コア部を周囲から保持する保持部とを有する、請求項13に記載の光学素子の製造方法。 14. The method of manufacturing an optical element according to claim 13, wherein the fixed mold includes a core part and a holding part that holds the core part from the periphery.
PCT/JP2012/073748 2011-09-16 2012-09-14 Optical element and production method therefor WO2013039241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280044777.7A CN103959381A (en) 2011-09-16 2012-09-14 Optical element and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-203857 2011-09-16
JP2011203857 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013039241A1 true WO2013039241A1 (en) 2013-03-21

Family

ID=47883456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073748 WO2013039241A1 (en) 2011-09-16 2012-09-14 Optical element and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2013039241A1 (en)
CN (1) CN103959381A (en)
WO (1) WO2013039241A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111709A (en) * 1998-09-30 2000-04-21 Fuji Photo Optical Co Ltd Optical component
JP2002062409A (en) * 2000-08-21 2002-02-28 Konica Corp Coupling lens, optical system for optical pickup device and optical pickup device
JP2007147888A (en) * 2005-11-25 2007-06-14 Hitachi Maxell Ltd Plastic lens and optical pickup device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594328B2 (en) * 2004-12-17 2010-12-08 パナソニック株式会社 Optical unit and manufacturing method thereof
CN101174013A (en) * 2006-11-02 2008-05-07 亚洲光学股份有限公司 Glasses lens with recognition mark
JP2008213397A (en) * 2007-03-07 2008-09-18 Konica Minolta Opto Inc Resin molding mold, optical element and optical pickup apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111709A (en) * 1998-09-30 2000-04-21 Fuji Photo Optical Co Ltd Optical component
JP2002062409A (en) * 2000-08-21 2002-02-28 Konica Corp Coupling lens, optical system for optical pickup device and optical pickup device
JP2007147888A (en) * 2005-11-25 2007-06-14 Hitachi Maxell Ltd Plastic lens and optical pickup device

Also Published As

Publication number Publication date
JPWO2013039241A1 (en) 2015-03-26
CN103959381A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP4992105B2 (en) Resin molding die and optical element manufacturing method
US20050174643A1 (en) Hybrid lens array and method of fabricating the same
WO2008053692A1 (en) Optical element, resin molding metal die and optical element manufacturing method
WO2010116804A1 (en) Lens
JP5120525B2 (en) Optical element manufacturing method and optical element
US7403464B2 (en) Lens and combination lens
JP2012056321A (en) Mold for resin molding, objective lens for optical pickup device and method for manufacturing optical element
US20120182625A1 (en) Optical Element
WO2009096230A1 (en) Method for manufacturing optical element, and optical element
WO2013039241A1 (en) Optical element and production method therefor
WO2013094173A1 (en) Objective lens, optical pickup, optical disc device, mold for resin forming, and method for manufacturing objective lens
JP2004314545A (en) Method and equipment for manufacturing optical element, and optical element
JP2004295998A (en) Objective lens, optical pickup device and optical information recording/reproducing device
JP5733388B2 (en) Objective lens, objective lens manufacturing method, and molding die
WO2012118041A1 (en) Optical element, molding die, and method for producing optical element
JP2009037721A (en) Optical pickup device and objective optical element
JP2008234724A (en) Compound objective lens forming mold, compound objective lens, and optical pickup device
WO2012133596A1 (en) Optical element, molding die, and method for manufacturing optical element
JP2008234738A (en) Compound objective lens and optical pickup device
JP5765333B2 (en) Mold, injection molding machine, and objective optical element manufacturing method
JP2012045900A (en) Optical element, method for manufacturing the optical element, and mold
JP2013134797A (en) Object lens for optical pickup device
JP2010160860A (en) Composite optical element and optical pickup equipped with composite optical element
JP2011113587A (en) Optical element and optical pickup device using the same
JP2008234726A (en) Compound objective lens forming mold, compound objective lens, and optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830963

Country of ref document: EP

Kind code of ref document: A1